SemaDecl.cpp revision 1cd45d3521e568f5d60d2311273ba34533bff478
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  return D->isCopyAssignment();
548}
549
550bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
551  assert(D);
552
553  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
554    return false;
555
556  // Ignore class templates.
557  if (D->getDeclContext()->isDependentContext())
558    return false;
559
560  // We warn for unused decls internal to the translation unit.
561  if (D->getLinkage() == ExternalLinkage)
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition())
579      return !Context.DeclMustBeEmitted(FD);
580    return true;
581  }
582
583  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
584    if (VD->isStaticDataMember() &&
585        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
586      return false;
587
588    if ( VD->isFileVarDecl() &&
589        !VD->getType().isConstant(Context))
590      return !Context.DeclMustBeEmitted(VD);
591  }
592
593   return false;
594 }
595
596 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
597  if (!D)
598    return;
599
600  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
601    const FunctionDecl *First = FD->getFirstDeclaration();
602    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
603      return; // First should already be in the vector.
604  }
605
606  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
607    const VarDecl *First = VD->getFirstDeclaration();
608    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612   if (ShouldWarnIfUnusedFileScopedDecl(D))
613     UnusedFileScopedDecls.push_back(D);
614 }
615
616static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
617  if (D->isInvalidDecl())
618    return false;
619
620  if (D->isUsed() || D->hasAttr<UnusedAttr>())
621    return false;
622
623  // White-list anything that isn't a local variable.
624  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
625      !D->getDeclContext()->isFunctionOrMethod())
626    return false;
627
628  // Types of valid local variables should be complete, so this should succeed.
629  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
630
631    // White-list anything with an __attribute__((unused)) type.
632    QualType Ty = VD->getType();
633
634    // Only look at the outermost level of typedef.
635    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
636      if (TT->getDecl()->hasAttr<UnusedAttr>())
637        return false;
638    }
639
640    // If we failed to complete the type for some reason, or if the type is
641    // dependent, don't diagnose the variable.
642    if (Ty->isIncompleteType() || Ty->isDependentType())
643      return false;
644
645    if (const TagType *TT = Ty->getAs<TagType>()) {
646      const TagDecl *Tag = TT->getDecl();
647      if (Tag->hasAttr<UnusedAttr>())
648        return false;
649
650      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
651        // FIXME: Checking for the presence of a user-declared constructor
652        // isn't completely accurate; we'd prefer to check that the initializer
653        // has no side effects.
654        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
655          return false;
656      }
657    }
658
659    // TODO: __attribute__((unused)) templates?
660  }
661
662  return true;
663}
664
665void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
666  if (!ShouldDiagnoseUnusedDecl(D))
667    return;
668
669  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
670    Diag(D->getLocation(), diag::warn_unused_exception_param)
671    << D->getDeclName();
672  else
673    Diag(D->getLocation(), diag::warn_unused_variable)
674    << D->getDeclName();
675}
676
677void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
678  if (S->decl_empty()) return;
679  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
680         "Scope shouldn't contain decls!");
681
682  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
683       I != E; ++I) {
684    Decl *TmpD = (*I);
685    assert(TmpD && "This decl didn't get pushed??");
686
687    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
688    NamedDecl *D = cast<NamedDecl>(TmpD);
689
690    if (!D->getDeclName()) continue;
691
692    // Diagnose unused variables in this scope.
693    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
694      DiagnoseUnusedDecl(D);
695
696    // Remove this name from our lexical scope.
697    IdResolver.RemoveDecl(D);
698  }
699}
700
701/// \brief Look for an Objective-C class in the translation unit.
702///
703/// \param Id The name of the Objective-C class we're looking for. If
704/// typo-correction fixes this name, the Id will be updated
705/// to the fixed name.
706///
707/// \param IdLoc The location of the name in the translation unit.
708///
709/// \param TypoCorrection If true, this routine will attempt typo correction
710/// if there is no class with the given name.
711///
712/// \returns The declaration of the named Objective-C class, or NULL if the
713/// class could not be found.
714ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
715                                              SourceLocation IdLoc,
716                                              bool TypoCorrection) {
717  // The third "scope" argument is 0 since we aren't enabling lazy built-in
718  // creation from this context.
719  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
720
721  if (!IDecl && TypoCorrection) {
722    // Perform typo correction at the given location, but only if we
723    // find an Objective-C class name.
724    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
725    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
726        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
727      Diag(IdLoc, diag::err_undef_interface_suggest)
728        << Id << IDecl->getDeclName()
729        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
730      Diag(IDecl->getLocation(), diag::note_previous_decl)
731        << IDecl->getDeclName();
732
733      Id = IDecl->getIdentifier();
734    }
735  }
736
737  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
738}
739
740/// getNonFieldDeclScope - Retrieves the innermost scope, starting
741/// from S, where a non-field would be declared. This routine copes
742/// with the difference between C and C++ scoping rules in structs and
743/// unions. For example, the following code is well-formed in C but
744/// ill-formed in C++:
745/// @code
746/// struct S6 {
747///   enum { BAR } e;
748/// };
749///
750/// void test_S6() {
751///   struct S6 a;
752///   a.e = BAR;
753/// }
754/// @endcode
755/// For the declaration of BAR, this routine will return a different
756/// scope. The scope S will be the scope of the unnamed enumeration
757/// within S6. In C++, this routine will return the scope associated
758/// with S6, because the enumeration's scope is a transparent
759/// context but structures can contain non-field names. In C, this
760/// routine will return the translation unit scope, since the
761/// enumeration's scope is a transparent context and structures cannot
762/// contain non-field names.
763Scope *Sema::getNonFieldDeclScope(Scope *S) {
764  while (((S->getFlags() & Scope::DeclScope) == 0) ||
765         (S->getEntity() &&
766          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
767         (S->isClassScope() && !getLangOptions().CPlusPlus))
768    S = S->getParent();
769  return S;
770}
771
772void Sema::InitBuiltinVaListType() {
773  if (!Context.getBuiltinVaListType().isNull())
774    return;
775
776  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
777  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
778                                       LookupOrdinaryName, ForRedeclaration);
779  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
780  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
781}
782
783/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
784/// file scope.  lazily create a decl for it. ForRedeclaration is true
785/// if we're creating this built-in in anticipation of redeclaring the
786/// built-in.
787NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
788                                     Scope *S, bool ForRedeclaration,
789                                     SourceLocation Loc) {
790  Builtin::ID BID = (Builtin::ID)bid;
791
792  if (Context.BuiltinInfo.hasVAListUse(BID))
793    InitBuiltinVaListType();
794
795  ASTContext::GetBuiltinTypeError Error;
796  QualType R = Context.GetBuiltinType(BID, Error);
797  switch (Error) {
798  case ASTContext::GE_None:
799    // Okay
800    break;
801
802  case ASTContext::GE_Missing_stdio:
803    if (ForRedeclaration)
804      Diag(Loc, diag::err_implicit_decl_requires_stdio)
805        << Context.BuiltinInfo.GetName(BID);
806    return 0;
807
808  case ASTContext::GE_Missing_setjmp:
809    if (ForRedeclaration)
810      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
811        << Context.BuiltinInfo.GetName(BID);
812    return 0;
813  }
814
815  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
816    Diag(Loc, diag::ext_implicit_lib_function_decl)
817      << Context.BuiltinInfo.GetName(BID)
818      << R;
819    if (Context.BuiltinInfo.getHeaderName(BID) &&
820        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
821          != Diagnostic::Ignored)
822      Diag(Loc, diag::note_please_include_header)
823        << Context.BuiltinInfo.getHeaderName(BID)
824        << Context.BuiltinInfo.GetName(BID);
825  }
826
827  FunctionDecl *New = FunctionDecl::Create(Context,
828                                           Context.getTranslationUnitDecl(),
829                                           Loc, II, R, /*TInfo=*/0,
830                                           SC_Extern,
831                                           SC_None, false,
832                                           /*hasPrototype=*/true);
833  New->setImplicit();
834
835  // Create Decl objects for each parameter, adding them to the
836  // FunctionDecl.
837  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
838    llvm::SmallVector<ParmVarDecl*, 16> Params;
839    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
840      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
841                                           FT->getArgType(i), /*TInfo=*/0,
842                                           SC_None, SC_None, 0));
843    New->setParams(Params.data(), Params.size());
844  }
845
846  AddKnownFunctionAttributes(New);
847
848  // TUScope is the translation-unit scope to insert this function into.
849  // FIXME: This is hideous. We need to teach PushOnScopeChains to
850  // relate Scopes to DeclContexts, and probably eliminate CurContext
851  // entirely, but we're not there yet.
852  DeclContext *SavedContext = CurContext;
853  CurContext = Context.getTranslationUnitDecl();
854  PushOnScopeChains(New, TUScope);
855  CurContext = SavedContext;
856  return New;
857}
858
859/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
860/// same name and scope as a previous declaration 'Old'.  Figure out
861/// how to resolve this situation, merging decls or emitting
862/// diagnostics as appropriate. If there was an error, set New to be invalid.
863///
864void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
865  // If the new decl is known invalid already, don't bother doing any
866  // merging checks.
867  if (New->isInvalidDecl()) return;
868
869  // Allow multiple definitions for ObjC built-in typedefs.
870  // FIXME: Verify the underlying types are equivalent!
871  if (getLangOptions().ObjC1) {
872    const IdentifierInfo *TypeID = New->getIdentifier();
873    switch (TypeID->getLength()) {
874    default: break;
875    case 2:
876      if (!TypeID->isStr("id"))
877        break;
878      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'id', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
881      return;
882    case 5:
883      if (!TypeID->isStr("Class"))
884        break;
885      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'Class', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
888      return;
889    case 3:
890      if (!TypeID->isStr("SEL"))
891        break;
892      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
893      // Install the built-in type for 'SEL', ignoring the current definition.
894      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
895      return;
896    case 8:
897      if (!TypeID->isStr("Protocol"))
898        break;
899      Context.setObjCProtoType(New->getUnderlyingType());
900      return;
901    }
902    // Fall through - the typedef name was not a builtin type.
903  }
904
905  // Verify the old decl was also a type.
906  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
907  if (!Old) {
908    Diag(New->getLocation(), diag::err_redefinition_different_kind)
909      << New->getDeclName();
910
911    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
912    if (OldD->getLocation().isValid())
913      Diag(OldD->getLocation(), diag::note_previous_definition);
914
915    return New->setInvalidDecl();
916  }
917
918  // If the old declaration is invalid, just give up here.
919  if (Old->isInvalidDecl())
920    return New->setInvalidDecl();
921
922  // Determine the "old" type we'll use for checking and diagnostics.
923  QualType OldType;
924  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
925    OldType = OldTypedef->getUnderlyingType();
926  else
927    OldType = Context.getTypeDeclType(Old);
928
929  // If the typedef types are not identical, reject them in all languages and
930  // with any extensions enabled.
931
932  if (OldType != New->getUnderlyingType() &&
933      Context.getCanonicalType(OldType) !=
934      Context.getCanonicalType(New->getUnderlyingType())) {
935    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
936      << New->getUnderlyingType() << OldType;
937    if (Old->getLocation().isValid())
938      Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  // The types match.  Link up the redeclaration chain if the old
943  // declaration was a typedef.
944  // FIXME: this is a potential source of wierdness if the type
945  // spellings don't match exactly.
946  if (isa<TypedefDecl>(Old))
947    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
948
949  if (getLangOptions().Microsoft)
950    return;
951
952  if (getLangOptions().CPlusPlus) {
953    // C++ [dcl.typedef]p2:
954    //   In a given non-class scope, a typedef specifier can be used to
955    //   redefine the name of any type declared in that scope to refer
956    //   to the type to which it already refers.
957    if (!isa<CXXRecordDecl>(CurContext))
958      return;
959
960    // C++0x [dcl.typedef]p4:
961    //   In a given class scope, a typedef specifier can be used to redefine
962    //   any class-name declared in that scope that is not also a typedef-name
963    //   to refer to the type to which it already refers.
964    //
965    // This wording came in via DR424, which was a correction to the
966    // wording in DR56, which accidentally banned code like:
967    //
968    //   struct S {
969    //     typedef struct A { } A;
970    //   };
971    //
972    // in the C++03 standard. We implement the C++0x semantics, which
973    // allow the above but disallow
974    //
975    //   struct S {
976    //     typedef int I;
977    //     typedef int I;
978    //   };
979    //
980    // since that was the intent of DR56.
981    if (!isa<TypedefDecl >(Old))
982      return;
983
984    Diag(New->getLocation(), diag::err_redefinition)
985      << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // If we have a redefinition of a typedef in C, emit a warning.  This warning
991  // is normally mapped to an error, but can be controlled with
992  // -Wtypedef-redefinition.  If either the original or the redefinition is
993  // in a system header, don't emit this for compatibility with GCC.
994  if (getDiagnostics().getSuppressSystemWarnings() &&
995      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
996       Context.getSourceManager().isInSystemHeader(New->getLocation())))
997    return;
998
999  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1000    << New->getDeclName();
1001  Diag(Old->getLocation(), diag::note_previous_definition);
1002  return;
1003}
1004
1005/// DeclhasAttr - returns true if decl Declaration already has the target
1006/// attribute.
1007static bool
1008DeclHasAttr(const Decl *D, const Attr *A) {
1009  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1010  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1011    if ((*i)->getKind() == A->getKind()) {
1012      // FIXME: Don't hardcode this check
1013      if (OA && isa<OwnershipAttr>(*i))
1014        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1015      return true;
1016    }
1017
1018  return false;
1019}
1020
1021/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1022static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1023  if (!Old->hasAttrs())
1024    return;
1025  // Ensure that any moving of objects within the allocated map is done before
1026  // we process them.
1027  if (!New->hasAttrs())
1028    New->setAttrs(AttrVec());
1029  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1030       ++i) {
1031    // FIXME: Make this more general than just checking for Overloadable.
1032    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1033      Attr *NewAttr = (*i)->clone(C);
1034      NewAttr->setInherited(true);
1035      New->addAttr(NewAttr);
1036    }
1037  }
1038}
1039
1040namespace {
1041
1042/// Used in MergeFunctionDecl to keep track of function parameters in
1043/// C.
1044struct GNUCompatibleParamWarning {
1045  ParmVarDecl *OldParm;
1046  ParmVarDecl *NewParm;
1047  QualType PromotedType;
1048};
1049
1050}
1051
1052/// getSpecialMember - get the special member enum for a method.
1053Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1054  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1055    if (Ctor->isCopyConstructor())
1056      return Sema::CXXCopyConstructor;
1057
1058    return Sema::CXXConstructor;
1059  }
1060
1061  if (isa<CXXDestructorDecl>(MD))
1062    return Sema::CXXDestructor;
1063
1064  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1065  return Sema::CXXCopyAssignment;
1066}
1067
1068/// canRedefineFunction - checks if a function can be redefined. Currently,
1069/// only extern inline functions can be redefined, and even then only in
1070/// GNU89 mode.
1071static bool canRedefineFunction(const FunctionDecl *FD,
1072                                const LangOptions& LangOpts) {
1073  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1074          FD->isInlineSpecified() &&
1075          FD->getStorageClass() == SC_Extern);
1076}
1077
1078/// MergeFunctionDecl - We just parsed a function 'New' from
1079/// declarator D which has the same name and scope as a previous
1080/// declaration 'Old'.  Figure out how to resolve this situation,
1081/// merging decls or emitting diagnostics as appropriate.
1082///
1083/// In C++, New and Old must be declarations that are not
1084/// overloaded. Use IsOverload to determine whether New and Old are
1085/// overloaded, and to select the Old declaration that New should be
1086/// merged with.
1087///
1088/// Returns true if there was an error, false otherwise.
1089bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1090  // Verify the old decl was also a function.
1091  FunctionDecl *Old = 0;
1092  if (FunctionTemplateDecl *OldFunctionTemplate
1093        = dyn_cast<FunctionTemplateDecl>(OldD))
1094    Old = OldFunctionTemplate->getTemplatedDecl();
1095  else
1096    Old = dyn_cast<FunctionDecl>(OldD);
1097  if (!Old) {
1098    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1099      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1100      Diag(Shadow->getTargetDecl()->getLocation(),
1101           diag::note_using_decl_target);
1102      Diag(Shadow->getUsingDecl()->getLocation(),
1103           diag::note_using_decl) << 0;
1104      return true;
1105    }
1106
1107    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1108      << New->getDeclName();
1109    Diag(OldD->getLocation(), diag::note_previous_definition);
1110    return true;
1111  }
1112
1113  // Determine whether the previous declaration was a definition,
1114  // implicit declaration, or a declaration.
1115  diag::kind PrevDiag;
1116  if (Old->isThisDeclarationADefinition())
1117    PrevDiag = diag::note_previous_definition;
1118  else if (Old->isImplicit())
1119    PrevDiag = diag::note_previous_implicit_declaration;
1120  else
1121    PrevDiag = diag::note_previous_declaration;
1122
1123  QualType OldQType = Context.getCanonicalType(Old->getType());
1124  QualType NewQType = Context.getCanonicalType(New->getType());
1125
1126  // Don't complain about this if we're in GNU89 mode and the old function
1127  // is an extern inline function.
1128  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1129      New->getStorageClass() == SC_Static &&
1130      Old->getStorageClass() != SC_Static &&
1131      !canRedefineFunction(Old, getLangOptions())) {
1132    Diag(New->getLocation(), diag::err_static_non_static)
1133      << New;
1134    Diag(Old->getLocation(), PrevDiag);
1135    return true;
1136  }
1137
1138  // If a function is first declared with a calling convention, but is
1139  // later declared or defined without one, the second decl assumes the
1140  // calling convention of the first.
1141  //
1142  // For the new decl, we have to look at the NON-canonical type to tell the
1143  // difference between a function that really doesn't have a calling
1144  // convention and one that is declared cdecl. That's because in
1145  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1146  // because it is the default calling convention.
1147  //
1148  // Note also that we DO NOT return at this point, because we still have
1149  // other tests to run.
1150  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1151  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1152  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1153  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1154  if (OldTypeInfo.getCC() != CC_Default &&
1155      NewTypeInfo.getCC() == CC_Default) {
1156    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1157    New->setType(NewQType);
1158    NewQType = Context.getCanonicalType(NewQType);
1159  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1160                                     NewTypeInfo.getCC())) {
1161    // Calling conventions really aren't compatible, so complain.
1162    Diag(New->getLocation(), diag::err_cconv_change)
1163      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1164      << (OldTypeInfo.getCC() == CC_Default)
1165      << (OldTypeInfo.getCC() == CC_Default ? "" :
1166          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1167    Diag(Old->getLocation(), diag::note_previous_declaration);
1168    return true;
1169  }
1170
1171  // FIXME: diagnose the other way around?
1172  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1173    NewQType = Context.getNoReturnType(NewQType);
1174    New->setType(NewQType);
1175    assert(NewQType.isCanonical());
1176  }
1177
1178  // Merge regparm attribute.
1179  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1180    if (NewType->getRegParmType()) {
1181      Diag(New->getLocation(), diag::err_regparm_mismatch)
1182        << NewType->getRegParmType()
1183        << OldType->getRegParmType();
1184      Diag(Old->getLocation(), diag::note_previous_declaration);
1185      return true;
1186    }
1187
1188    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1189    New->setType(NewQType);
1190    assert(NewQType.isCanonical());
1191  }
1192
1193  if (getLangOptions().CPlusPlus) {
1194    // (C++98 13.1p2):
1195    //   Certain function declarations cannot be overloaded:
1196    //     -- Function declarations that differ only in the return type
1197    //        cannot be overloaded.
1198    QualType OldReturnType
1199      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1200    QualType NewReturnType
1201      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1202    QualType ResQT;
1203    if (OldReturnType != NewReturnType) {
1204      if (NewReturnType->isObjCObjectPointerType()
1205          && OldReturnType->isObjCObjectPointerType())
1206        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1207      if (ResQT.isNull()) {
1208        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1209        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210        return true;
1211      }
1212      else
1213        NewQType = ResQT;
1214    }
1215
1216    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1217    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1218    if (OldMethod && NewMethod) {
1219      // Preserve triviality.
1220      NewMethod->setTrivial(OldMethod->isTrivial());
1221
1222      bool isFriend = NewMethod->getFriendObjectKind();
1223
1224      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1225        //    -- Member function declarations with the same name and the
1226        //       same parameter types cannot be overloaded if any of them
1227        //       is a static member function declaration.
1228        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1229          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1230          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1231          return true;
1232        }
1233
1234        // C++ [class.mem]p1:
1235        //   [...] A member shall not be declared twice in the
1236        //   member-specification, except that a nested class or member
1237        //   class template can be declared and then later defined.
1238        unsigned NewDiag;
1239        if (isa<CXXConstructorDecl>(OldMethod))
1240          NewDiag = diag::err_constructor_redeclared;
1241        else if (isa<CXXDestructorDecl>(NewMethod))
1242          NewDiag = diag::err_destructor_redeclared;
1243        else if (isa<CXXConversionDecl>(NewMethod))
1244          NewDiag = diag::err_conv_function_redeclared;
1245        else
1246          NewDiag = diag::err_member_redeclared;
1247
1248        Diag(New->getLocation(), NewDiag);
1249        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1250
1251      // Complain if this is an explicit declaration of a special
1252      // member that was initially declared implicitly.
1253      //
1254      // As an exception, it's okay to befriend such methods in order
1255      // to permit the implicit constructor/destructor/operator calls.
1256      } else if (OldMethod->isImplicit()) {
1257        if (isFriend) {
1258          NewMethod->setImplicit();
1259        } else {
1260          Diag(NewMethod->getLocation(),
1261               diag::err_definition_of_implicitly_declared_member)
1262            << New << getSpecialMember(OldMethod);
1263          return true;
1264        }
1265      }
1266    }
1267
1268    // (C++98 8.3.5p3):
1269    //   All declarations for a function shall agree exactly in both the
1270    //   return type and the parameter-type-list.
1271    // attributes should be ignored when comparing.
1272    if (Context.getNoReturnType(OldQType, false) ==
1273        Context.getNoReturnType(NewQType, false))
1274      return MergeCompatibleFunctionDecls(New, Old);
1275
1276    // Fall through for conflicting redeclarations and redefinitions.
1277  }
1278
1279  // C: Function types need to be compatible, not identical. This handles
1280  // duplicate function decls like "void f(int); void f(enum X);" properly.
1281  if (!getLangOptions().CPlusPlus &&
1282      Context.typesAreCompatible(OldQType, NewQType)) {
1283    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1284    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1285    const FunctionProtoType *OldProto = 0;
1286    if (isa<FunctionNoProtoType>(NewFuncType) &&
1287        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1288      // The old declaration provided a function prototype, but the
1289      // new declaration does not. Merge in the prototype.
1290      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1291      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1292                                                 OldProto->arg_type_end());
1293      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1294                                         ParamTypes.data(), ParamTypes.size(),
1295                                         OldProto->isVariadic(),
1296                                         OldProto->getTypeQuals(),
1297                                         false, false, 0, 0,
1298                                         OldProto->getExtInfo());
1299      New->setType(NewQType);
1300      New->setHasInheritedPrototype();
1301
1302      // Synthesize a parameter for each argument type.
1303      llvm::SmallVector<ParmVarDecl*, 16> Params;
1304      for (FunctionProtoType::arg_type_iterator
1305             ParamType = OldProto->arg_type_begin(),
1306             ParamEnd = OldProto->arg_type_end();
1307           ParamType != ParamEnd; ++ParamType) {
1308        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1309                                                 SourceLocation(), 0,
1310                                                 *ParamType, /*TInfo=*/0,
1311                                                 SC_None, SC_None,
1312                                                 0);
1313        Param->setImplicit();
1314        Params.push_back(Param);
1315      }
1316
1317      New->setParams(Params.data(), Params.size());
1318    }
1319
1320    return MergeCompatibleFunctionDecls(New, Old);
1321  }
1322
1323  // GNU C permits a K&R definition to follow a prototype declaration
1324  // if the declared types of the parameters in the K&R definition
1325  // match the types in the prototype declaration, even when the
1326  // promoted types of the parameters from the K&R definition differ
1327  // from the types in the prototype. GCC then keeps the types from
1328  // the prototype.
1329  //
1330  // If a variadic prototype is followed by a non-variadic K&R definition,
1331  // the K&R definition becomes variadic.  This is sort of an edge case, but
1332  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1333  // C99 6.9.1p8.
1334  if (!getLangOptions().CPlusPlus &&
1335      Old->hasPrototype() && !New->hasPrototype() &&
1336      New->getType()->getAs<FunctionProtoType>() &&
1337      Old->getNumParams() == New->getNumParams()) {
1338    llvm::SmallVector<QualType, 16> ArgTypes;
1339    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1340    const FunctionProtoType *OldProto
1341      = Old->getType()->getAs<FunctionProtoType>();
1342    const FunctionProtoType *NewProto
1343      = New->getType()->getAs<FunctionProtoType>();
1344
1345    // Determine whether this is the GNU C extension.
1346    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1347                                               NewProto->getResultType());
1348    bool LooseCompatible = !MergedReturn.isNull();
1349    for (unsigned Idx = 0, End = Old->getNumParams();
1350         LooseCompatible && Idx != End; ++Idx) {
1351      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1352      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1353      if (Context.typesAreCompatible(OldParm->getType(),
1354                                     NewProto->getArgType(Idx))) {
1355        ArgTypes.push_back(NewParm->getType());
1356      } else if (Context.typesAreCompatible(OldParm->getType(),
1357                                            NewParm->getType(),
1358                                            /*CompareUnqualified=*/true)) {
1359        GNUCompatibleParamWarning Warn
1360          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1361        Warnings.push_back(Warn);
1362        ArgTypes.push_back(NewParm->getType());
1363      } else
1364        LooseCompatible = false;
1365    }
1366
1367    if (LooseCompatible) {
1368      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1369        Diag(Warnings[Warn].NewParm->getLocation(),
1370             diag::ext_param_promoted_not_compatible_with_prototype)
1371          << Warnings[Warn].PromotedType
1372          << Warnings[Warn].OldParm->getType();
1373        if (Warnings[Warn].OldParm->getLocation().isValid())
1374          Diag(Warnings[Warn].OldParm->getLocation(),
1375               diag::note_previous_declaration);
1376      }
1377
1378      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1379                                           ArgTypes.size(),
1380                                           OldProto->isVariadic(), 0,
1381                                           false, false, 0, 0,
1382                                           OldProto->getExtInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  // C++ [class.mem]p1:
1472  //   A member shall not be declared twice in the member-specification [...]
1473  //
1474  // Here, we need only consider static data members.
1475  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1476    Diag(New->getLocation(), diag::err_duplicate_member)
1477      << New->getIdentifier();
1478    Diag(Old->getLocation(), diag::note_previous_declaration);
1479    New->setInvalidDecl();
1480  }
1481
1482  MergeDeclAttributes(New, Old, Context);
1483
1484  // Merge the types
1485  QualType MergedT;
1486  if (getLangOptions().CPlusPlus) {
1487    if (Context.hasSameType(New->getType(), Old->getType()))
1488      MergedT = New->getType();
1489    // C++ [basic.link]p10:
1490    //   [...] the types specified by all declarations referring to a given
1491    //   object or function shall be identical, except that declarations for an
1492    //   array object can specify array types that differ by the presence or
1493    //   absence of a major array bound (8.3.4).
1494    else if (Old->getType()->isIncompleteArrayType() &&
1495             New->getType()->isArrayType()) {
1496      CanQual<ArrayType> OldArray
1497        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1498      CanQual<ArrayType> NewArray
1499        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1500      if (OldArray->getElementType() == NewArray->getElementType())
1501        MergedT = New->getType();
1502    } else if (Old->getType()->isArrayType() &&
1503             New->getType()->isIncompleteArrayType()) {
1504      CanQual<ArrayType> OldArray
1505        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1506      CanQual<ArrayType> NewArray
1507        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1508      if (OldArray->getElementType() == NewArray->getElementType())
1509        MergedT = Old->getType();
1510    } else if (New->getType()->isObjCObjectPointerType()
1511               && Old->getType()->isObjCObjectPointerType()) {
1512        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1513    }
1514  } else {
1515    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1516  }
1517  if (MergedT.isNull()) {
1518    Diag(New->getLocation(), diag::err_redefinition_different_type)
1519      << New->getDeclName();
1520    Diag(Old->getLocation(), diag::note_previous_definition);
1521    return New->setInvalidDecl();
1522  }
1523  New->setType(MergedT);
1524
1525  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1526  if (New->getStorageClass() == SC_Static &&
1527      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1528    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1529    Diag(Old->getLocation(), diag::note_previous_definition);
1530    return New->setInvalidDecl();
1531  }
1532  // C99 6.2.2p4:
1533  //   For an identifier declared with the storage-class specifier
1534  //   extern in a scope in which a prior declaration of that
1535  //   identifier is visible,23) if the prior declaration specifies
1536  //   internal or external linkage, the linkage of the identifier at
1537  //   the later declaration is the same as the linkage specified at
1538  //   the prior declaration. If no prior declaration is visible, or
1539  //   if the prior declaration specifies no linkage, then the
1540  //   identifier has external linkage.
1541  if (New->hasExternalStorage() && Old->hasLinkage())
1542    /* Okay */;
1543  else if (New->getStorageClass() != SC_Static &&
1544           Old->getStorageClass() == SC_Static) {
1545    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1546    Diag(Old->getLocation(), diag::note_previous_definition);
1547    return New->setInvalidDecl();
1548  }
1549
1550  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1551
1552  // FIXME: The test for external storage here seems wrong? We still
1553  // need to check for mismatches.
1554  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1555      // Don't complain about out-of-line definitions of static members.
1556      !(Old->getLexicalDeclContext()->isRecord() &&
1557        !New->getLexicalDeclContext()->isRecord())) {
1558    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1559    Diag(Old->getLocation(), diag::note_previous_definition);
1560    return New->setInvalidDecl();
1561  }
1562
1563  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1564    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1565    Diag(Old->getLocation(), diag::note_previous_definition);
1566  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  }
1570
1571  // C++ doesn't have tentative definitions, so go right ahead and check here.
1572  const VarDecl *Def;
1573  if (getLangOptions().CPlusPlus &&
1574      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1575      (Def = Old->getDefinition())) {
1576    Diag(New->getLocation(), diag::err_redefinition)
1577      << New->getDeclName();
1578    Diag(Def->getLocation(), diag::note_previous_definition);
1579    New->setInvalidDecl();
1580    return;
1581  }
1582  // c99 6.2.2 P4.
1583  // For an identifier declared with the storage-class specifier extern in a
1584  // scope in which a prior declaration of that identifier is visible, if
1585  // the prior declaration specifies internal or external linkage, the linkage
1586  // of the identifier at the later declaration is the same as the linkage
1587  // specified at the prior declaration.
1588  // FIXME. revisit this code.
1589  if (New->hasExternalStorage() &&
1590      Old->getLinkage() == InternalLinkage &&
1591      New->getDeclContext() == Old->getDeclContext())
1592    New->setStorageClass(Old->getStorageClass());
1593
1594  // Keep a chain of previous declarations.
1595  New->setPreviousDeclaration(Old);
1596
1597  // Inherit access appropriately.
1598  New->setAccess(Old->getAccess());
1599}
1600
1601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1602/// no declarator (e.g. "struct foo;") is parsed.
1603Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1604                                            DeclSpec &DS) {
1605  // FIXME: Error on auto/register at file scope
1606  // FIXME: Error on inline/virtual/explicit
1607  // FIXME: Warn on useless __thread
1608  // FIXME: Warn on useless const/volatile
1609  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1610  // FIXME: Warn on useless attributes
1611  Decl *TagD = 0;
1612  TagDecl *Tag = 0;
1613  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1614      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1615      DS.getTypeSpecType() == DeclSpec::TST_union ||
1616      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1617    TagD = DS.getRepAsDecl();
1618
1619    if (!TagD) // We probably had an error
1620      return 0;
1621
1622    // Note that the above type specs guarantee that the
1623    // type rep is a Decl, whereas in many of the others
1624    // it's a Type.
1625    Tag = dyn_cast<TagDecl>(TagD);
1626  }
1627
1628  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1629    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1630    // or incomplete types shall not be restrict-qualified."
1631    if (TypeQuals & DeclSpec::TQ_restrict)
1632      Diag(DS.getRestrictSpecLoc(),
1633           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1634           << DS.getSourceRange();
1635  }
1636
1637  if (DS.isFriendSpecified()) {
1638    // If we're dealing with a class template decl, assume that the
1639    // template routines are handling it.
1640    if (TagD && isa<ClassTemplateDecl>(TagD))
1641      return 0;
1642    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1643  }
1644
1645  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1646    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1647
1648    if (!Record->getDeclName() && Record->isDefinition() &&
1649        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1650      if (getLangOptions().CPlusPlus ||
1651          Record->getDeclContext()->isRecord())
1652        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1653
1654      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655        << DS.getSourceRange();
1656    }
1657
1658    // Microsoft allows unnamed struct/union fields. Don't complain
1659    // about them.
1660    // FIXME: Should we support Microsoft's extensions in this area?
1661    if (Record->getDeclName() && getLangOptions().Microsoft)
1662      return Tag;
1663  }
1664
1665  if (getLangOptions().CPlusPlus &&
1666      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1667    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1668      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1669          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1670        Diag(Enum->getLocation(), diag::ext_no_declarators)
1671          << DS.getSourceRange();
1672
1673  if (!DS.isMissingDeclaratorOk() &&
1674      DS.getTypeSpecType() != DeclSpec::TST_error) {
1675    // Warn about typedefs of enums without names, since this is an
1676    // extension in both Microsoft and GNU.
1677    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1678        Tag && isa<EnumDecl>(Tag)) {
1679      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1680        << DS.getSourceRange();
1681      return Tag;
1682    }
1683
1684    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1685      << DS.getSourceRange();
1686  }
1687
1688  return TagD;
1689}
1690
1691/// We are trying to inject an anonymous member into the given scope;
1692/// check if there's an existing declaration that can't be overloaded.
1693///
1694/// \return true if this is a forbidden redeclaration
1695static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1696                                         Scope *S,
1697                                         DeclContext *Owner,
1698                                         DeclarationName Name,
1699                                         SourceLocation NameLoc,
1700                                         unsigned diagnostic) {
1701  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1702                 Sema::ForRedeclaration);
1703  if (!SemaRef.LookupName(R, S)) return false;
1704
1705  if (R.getAsSingle<TagDecl>())
1706    return false;
1707
1708  // Pick a representative declaration.
1709  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1710  if (PrevDecl && Owner->isRecord()) {
1711    RecordDecl *Record = cast<RecordDecl>(Owner);
1712    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1713      return false;
1714  }
1715
1716  SemaRef.Diag(NameLoc, diagnostic) << Name;
1717  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1718
1719  return true;
1720}
1721
1722/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1723/// anonymous struct or union AnonRecord into the owning context Owner
1724/// and scope S. This routine will be invoked just after we realize
1725/// that an unnamed union or struct is actually an anonymous union or
1726/// struct, e.g.,
1727///
1728/// @code
1729/// union {
1730///   int i;
1731///   float f;
1732/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1733///    // f into the surrounding scope.x
1734/// @endcode
1735///
1736/// This routine is recursive, injecting the names of nested anonymous
1737/// structs/unions into the owning context and scope as well.
1738static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1739                                                DeclContext *Owner,
1740                                                RecordDecl *AnonRecord,
1741                                                AccessSpecifier AS) {
1742  unsigned diagKind
1743    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1744                            : diag::err_anonymous_struct_member_redecl;
1745
1746  bool Invalid = false;
1747  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1748                               FEnd = AnonRecord->field_end();
1749       F != FEnd; ++F) {
1750    if ((*F)->getDeclName()) {
1751      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1752                                       (*F)->getLocation(), diagKind)) {
1753        // C++ [class.union]p2:
1754        //   The names of the members of an anonymous union shall be
1755        //   distinct from the names of any other entity in the
1756        //   scope in which the anonymous union is declared.
1757        Invalid = true;
1758      } else {
1759        // C++ [class.union]p2:
1760        //   For the purpose of name lookup, after the anonymous union
1761        //   definition, the members of the anonymous union are
1762        //   considered to have been defined in the scope in which the
1763        //   anonymous union is declared.
1764        Owner->makeDeclVisibleInContext(*F);
1765        S->AddDecl(*F);
1766        SemaRef.IdResolver.AddDecl(*F);
1767
1768        // That includes picking up the appropriate access specifier.
1769        if (AS != AS_none) (*F)->setAccess(AS);
1770      }
1771    } else if (const RecordType *InnerRecordType
1772                 = (*F)->getType()->getAs<RecordType>()) {
1773      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1774      if (InnerRecord->isAnonymousStructOrUnion())
1775        Invalid = Invalid ||
1776          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1777                                              InnerRecord, AS);
1778    }
1779  }
1780
1781  return Invalid;
1782}
1783
1784/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1785/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1786/// illegal input values are mapped to SC_None.
1787static StorageClass
1788StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1789  switch (StorageClassSpec) {
1790  case DeclSpec::SCS_unspecified:    return SC_None;
1791  case DeclSpec::SCS_extern:         return SC_Extern;
1792  case DeclSpec::SCS_static:         return SC_Static;
1793  case DeclSpec::SCS_auto:           return SC_Auto;
1794  case DeclSpec::SCS_register:       return SC_Register;
1795  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1796    // Illegal SCSs map to None: error reporting is up to the caller.
1797  case DeclSpec::SCS_mutable:        // Fall through.
1798  case DeclSpec::SCS_typedef:        return SC_None;
1799  }
1800  llvm_unreachable("unknown storage class specifier");
1801}
1802
1803/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1804/// a StorageClass. Any error reporting is up to the caller:
1805/// illegal input values are mapped to SC_None.
1806static StorageClass
1807StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1808  switch (StorageClassSpec) {
1809  case DeclSpec::SCS_unspecified:    return SC_None;
1810  case DeclSpec::SCS_extern:         return SC_Extern;
1811  case DeclSpec::SCS_static:         return SC_Static;
1812  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1813    // Illegal SCSs map to None: error reporting is up to the caller.
1814  case DeclSpec::SCS_auto:           // Fall through.
1815  case DeclSpec::SCS_mutable:        // Fall through.
1816  case DeclSpec::SCS_register:       // Fall through.
1817  case DeclSpec::SCS_typedef:        return SC_None;
1818  }
1819  llvm_unreachable("unknown storage class specifier");
1820}
1821
1822/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1823/// anonymous structure or union. Anonymous unions are a C++ feature
1824/// (C++ [class.union]) and a GNU C extension; anonymous structures
1825/// are a GNU C and GNU C++ extension.
1826Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1827                                             AccessSpecifier AS,
1828                                             RecordDecl *Record) {
1829  DeclContext *Owner = Record->getDeclContext();
1830
1831  // Diagnose whether this anonymous struct/union is an extension.
1832  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1833    Diag(Record->getLocation(), diag::ext_anonymous_union);
1834  else if (!Record->isUnion())
1835    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1836
1837  // C and C++ require different kinds of checks for anonymous
1838  // structs/unions.
1839  bool Invalid = false;
1840  if (getLangOptions().CPlusPlus) {
1841    const char* PrevSpec = 0;
1842    unsigned DiagID;
1843    // C++ [class.union]p3:
1844    //   Anonymous unions declared in a named namespace or in the
1845    //   global namespace shall be declared static.
1846    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1847        (isa<TranslationUnitDecl>(Owner) ||
1848         (isa<NamespaceDecl>(Owner) &&
1849          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1850      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1851      Invalid = true;
1852
1853      // Recover by adding 'static'.
1854      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1855                             PrevSpec, DiagID);
1856    }
1857    // C++ [class.union]p3:
1858    //   A storage class is not allowed in a declaration of an
1859    //   anonymous union in a class scope.
1860    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1861             isa<RecordDecl>(Owner)) {
1862      Diag(DS.getStorageClassSpecLoc(),
1863           diag::err_anonymous_union_with_storage_spec);
1864      Invalid = true;
1865
1866      // Recover by removing the storage specifier.
1867      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1868                             PrevSpec, DiagID);
1869    }
1870
1871    // C++ [class.union]p2:
1872    //   The member-specification of an anonymous union shall only
1873    //   define non-static data members. [Note: nested types and
1874    //   functions cannot be declared within an anonymous union. ]
1875    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1876                                 MemEnd = Record->decls_end();
1877         Mem != MemEnd; ++Mem) {
1878      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1879        // C++ [class.union]p3:
1880        //   An anonymous union shall not have private or protected
1881        //   members (clause 11).
1882        assert(FD->getAccess() != AS_none);
1883        if (FD->getAccess() != AS_public) {
1884          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1885            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1886          Invalid = true;
1887        }
1888
1889        if (CheckNontrivialField(FD))
1890          Invalid = true;
1891      } else if ((*Mem)->isImplicit()) {
1892        // Any implicit members are fine.
1893      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1894        // This is a type that showed up in an
1895        // elaborated-type-specifier inside the anonymous struct or
1896        // union, but which actually declares a type outside of the
1897        // anonymous struct or union. It's okay.
1898      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1899        if (!MemRecord->isAnonymousStructOrUnion() &&
1900            MemRecord->getDeclName()) {
1901          // This is a nested type declaration.
1902          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1903            << (int)Record->isUnion();
1904          Invalid = true;
1905        }
1906      } else if (isa<AccessSpecDecl>(*Mem)) {
1907        // Any access specifier is fine.
1908      } else {
1909        // We have something that isn't a non-static data
1910        // member. Complain about it.
1911        unsigned DK = diag::err_anonymous_record_bad_member;
1912        if (isa<TypeDecl>(*Mem))
1913          DK = diag::err_anonymous_record_with_type;
1914        else if (isa<FunctionDecl>(*Mem))
1915          DK = diag::err_anonymous_record_with_function;
1916        else if (isa<VarDecl>(*Mem))
1917          DK = diag::err_anonymous_record_with_static;
1918        Diag((*Mem)->getLocation(), DK)
1919            << (int)Record->isUnion();
1920          Invalid = true;
1921      }
1922    }
1923  }
1924
1925  if (!Record->isUnion() && !Owner->isRecord()) {
1926    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1927      << (int)getLangOptions().CPlusPlus;
1928    Invalid = true;
1929  }
1930
1931  // Mock up a declarator.
1932  Declarator Dc(DS, Declarator::TypeNameContext);
1933  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1934  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1935
1936  // Create a declaration for this anonymous struct/union.
1937  NamedDecl *Anon = 0;
1938  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1939    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1940                             /*IdentifierInfo=*/0,
1941                             Context.getTypeDeclType(Record),
1942                             TInfo,
1943                             /*BitWidth=*/0, /*Mutable=*/false);
1944    Anon->setAccess(AS);
1945    if (getLangOptions().CPlusPlus) {
1946      FieldCollector->Add(cast<FieldDecl>(Anon));
1947      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1948        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1949    }
1950  } else {
1951    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1952    assert(SCSpec != DeclSpec::SCS_typedef &&
1953           "Parser allowed 'typedef' as storage class VarDecl.");
1954    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1955    if (SCSpec == DeclSpec::SCS_mutable) {
1956      // mutable can only appear on non-static class members, so it's always
1957      // an error here
1958      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1959      Invalid = true;
1960      SC = SC_None;
1961    }
1962    SCSpec = DS.getStorageClassSpecAsWritten();
1963    VarDecl::StorageClass SCAsWritten
1964      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1965
1966    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1967                           /*IdentifierInfo=*/0,
1968                           Context.getTypeDeclType(Record),
1969                           TInfo, SC, SCAsWritten);
1970  }
1971  Anon->setImplicit();
1972
1973  // Add the anonymous struct/union object to the current
1974  // context. We'll be referencing this object when we refer to one of
1975  // its members.
1976  Owner->addDecl(Anon);
1977
1978  // Inject the members of the anonymous struct/union into the owning
1979  // context and into the identifier resolver chain for name lookup
1980  // purposes.
1981  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1982    Invalid = true;
1983
1984  // Mark this as an anonymous struct/union type. Note that we do not
1985  // do this until after we have already checked and injected the
1986  // members of this anonymous struct/union type, because otherwise
1987  // the members could be injected twice: once by DeclContext when it
1988  // builds its lookup table, and once by
1989  // InjectAnonymousStructOrUnionMembers.
1990  Record->setAnonymousStructOrUnion(true);
1991
1992  if (Invalid)
1993    Anon->setInvalidDecl();
1994
1995  return Anon;
1996}
1997
1998
1999/// GetNameForDeclarator - Determine the full declaration name for the
2000/// given Declarator.
2001DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2002  return GetNameFromUnqualifiedId(D.getName());
2003}
2004
2005/// \brief Retrieves the declaration name from a parsed unqualified-id.
2006DeclarationNameInfo
2007Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2008  DeclarationNameInfo NameInfo;
2009  NameInfo.setLoc(Name.StartLocation);
2010
2011  switch (Name.getKind()) {
2012
2013  case UnqualifiedId::IK_Identifier:
2014    NameInfo.setName(Name.Identifier);
2015    NameInfo.setLoc(Name.StartLocation);
2016    return NameInfo;
2017
2018  case UnqualifiedId::IK_OperatorFunctionId:
2019    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2020                                           Name.OperatorFunctionId.Operator));
2021    NameInfo.setLoc(Name.StartLocation);
2022    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2023      = Name.OperatorFunctionId.SymbolLocations[0];
2024    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2025      = Name.EndLocation.getRawEncoding();
2026    return NameInfo;
2027
2028  case UnqualifiedId::IK_LiteralOperatorId:
2029    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2030                                                           Name.Identifier));
2031    NameInfo.setLoc(Name.StartLocation);
2032    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2033    return NameInfo;
2034
2035  case UnqualifiedId::IK_ConversionFunctionId: {
2036    TypeSourceInfo *TInfo;
2037    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2038    if (Ty.isNull())
2039      return DeclarationNameInfo();
2040    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2041                                               Context.getCanonicalType(Ty)));
2042    NameInfo.setLoc(Name.StartLocation);
2043    NameInfo.setNamedTypeInfo(TInfo);
2044    return NameInfo;
2045  }
2046
2047  case UnqualifiedId::IK_ConstructorName: {
2048    TypeSourceInfo *TInfo;
2049    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2050    if (Ty.isNull())
2051      return DeclarationNameInfo();
2052    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2053                                              Context.getCanonicalType(Ty)));
2054    NameInfo.setLoc(Name.StartLocation);
2055    NameInfo.setNamedTypeInfo(TInfo);
2056    return NameInfo;
2057  }
2058
2059  case UnqualifiedId::IK_ConstructorTemplateId: {
2060    // In well-formed code, we can only have a constructor
2061    // template-id that refers to the current context, so go there
2062    // to find the actual type being constructed.
2063    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2064    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2065      return DeclarationNameInfo();
2066
2067    // Determine the type of the class being constructed.
2068    QualType CurClassType = Context.getTypeDeclType(CurClass);
2069
2070    // FIXME: Check two things: that the template-id names the same type as
2071    // CurClassType, and that the template-id does not occur when the name
2072    // was qualified.
2073
2074    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2075                                    Context.getCanonicalType(CurClassType)));
2076    NameInfo.setLoc(Name.StartLocation);
2077    // FIXME: should we retrieve TypeSourceInfo?
2078    NameInfo.setNamedTypeInfo(0);
2079    return NameInfo;
2080  }
2081
2082  case UnqualifiedId::IK_DestructorName: {
2083    TypeSourceInfo *TInfo;
2084    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2085    if (Ty.isNull())
2086      return DeclarationNameInfo();
2087    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2088                                              Context.getCanonicalType(Ty)));
2089    NameInfo.setLoc(Name.StartLocation);
2090    NameInfo.setNamedTypeInfo(TInfo);
2091    return NameInfo;
2092  }
2093
2094  case UnqualifiedId::IK_TemplateId: {
2095    TemplateName TName = Name.TemplateId->Template.get();
2096    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2097    return Context.getNameForTemplate(TName, TNameLoc);
2098  }
2099
2100  } // switch (Name.getKind())
2101
2102  assert(false && "Unknown name kind");
2103  return DeclarationNameInfo();
2104}
2105
2106/// isNearlyMatchingFunction - Determine whether the C++ functions
2107/// Declaration and Definition are "nearly" matching. This heuristic
2108/// is used to improve diagnostics in the case where an out-of-line
2109/// function definition doesn't match any declaration within
2110/// the class or namespace.
2111static bool isNearlyMatchingFunction(ASTContext &Context,
2112                                     FunctionDecl *Declaration,
2113                                     FunctionDecl *Definition) {
2114  if (Declaration->param_size() != Definition->param_size())
2115    return false;
2116  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2117    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2118    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2119
2120    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2121                                        DefParamTy.getNonReferenceType()))
2122      return false;
2123  }
2124
2125  return true;
2126}
2127
2128/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2129/// declarator needs to be rebuilt in the current instantiation.
2130/// Any bits of declarator which appear before the name are valid for
2131/// consideration here.  That's specifically the type in the decl spec
2132/// and the base type in any member-pointer chunks.
2133static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2134                                                    DeclarationName Name) {
2135  // The types we specifically need to rebuild are:
2136  //   - typenames, typeofs, and decltypes
2137  //   - types which will become injected class names
2138  // Of course, we also need to rebuild any type referencing such a
2139  // type.  It's safest to just say "dependent", but we call out a
2140  // few cases here.
2141
2142  DeclSpec &DS = D.getMutableDeclSpec();
2143  switch (DS.getTypeSpecType()) {
2144  case DeclSpec::TST_typename:
2145  case DeclSpec::TST_typeofType:
2146  case DeclSpec::TST_decltype: {
2147    // Grab the type from the parser.
2148    TypeSourceInfo *TSI = 0;
2149    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2150    if (T.isNull() || !T->isDependentType()) break;
2151
2152    // Make sure there's a type source info.  This isn't really much
2153    // of a waste; most dependent types should have type source info
2154    // attached already.
2155    if (!TSI)
2156      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2157
2158    // Rebuild the type in the current instantiation.
2159    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2160    if (!TSI) return true;
2161
2162    // Store the new type back in the decl spec.
2163    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2164    DS.UpdateTypeRep(LocType);
2165    break;
2166  }
2167
2168  case DeclSpec::TST_typeofExpr: {
2169    Expr *E = DS.getRepAsExpr();
2170    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2171    if (Result.isInvalid()) return true;
2172    DS.UpdateExprRep(Result.get());
2173    break;
2174  }
2175
2176  default:
2177    // Nothing to do for these decl specs.
2178    break;
2179  }
2180
2181  // It doesn't matter what order we do this in.
2182  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2183    DeclaratorChunk &Chunk = D.getTypeObject(I);
2184
2185    // The only type information in the declarator which can come
2186    // before the declaration name is the base type of a member
2187    // pointer.
2188    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2189      continue;
2190
2191    // Rebuild the scope specifier in-place.
2192    CXXScopeSpec &SS = Chunk.Mem.Scope();
2193    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2194      return true;
2195  }
2196
2197  return false;
2198}
2199
2200Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2201  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2202}
2203
2204Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2205                             MultiTemplateParamsArg TemplateParamLists,
2206                             bool IsFunctionDefinition) {
2207  // TODO: consider using NameInfo for diagnostic.
2208  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2209  DeclarationName Name = NameInfo.getName();
2210
2211  // All of these full declarators require an identifier.  If it doesn't have
2212  // one, the ParsedFreeStandingDeclSpec action should be used.
2213  if (!Name) {
2214    if (!D.isInvalidType())  // Reject this if we think it is valid.
2215      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2216           diag::err_declarator_need_ident)
2217        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2218    return 0;
2219  }
2220
2221  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2222  // we find one that is.
2223  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2224         (S->getFlags() & Scope::TemplateParamScope) != 0)
2225    S = S->getParent();
2226
2227  DeclContext *DC = CurContext;
2228  if (D.getCXXScopeSpec().isInvalid())
2229    D.setInvalidType();
2230  else if (D.getCXXScopeSpec().isSet()) {
2231    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2232    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2233    if (!DC) {
2234      // If we could not compute the declaration context, it's because the
2235      // declaration context is dependent but does not refer to a class,
2236      // class template, or class template partial specialization. Complain
2237      // and return early, to avoid the coming semantic disaster.
2238      Diag(D.getIdentifierLoc(),
2239           diag::err_template_qualified_declarator_no_match)
2240        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2241        << D.getCXXScopeSpec().getRange();
2242      return 0;
2243    }
2244
2245    bool IsDependentContext = DC->isDependentContext();
2246
2247    if (!IsDependentContext &&
2248        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2249      return 0;
2250
2251    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2252      Diag(D.getIdentifierLoc(),
2253           diag::err_member_def_undefined_record)
2254        << Name << DC << D.getCXXScopeSpec().getRange();
2255      D.setInvalidType();
2256    }
2257
2258    // Check whether we need to rebuild the type of the given
2259    // declaration in the current instantiation.
2260    if (EnteringContext && IsDependentContext &&
2261        TemplateParamLists.size() != 0) {
2262      ContextRAII SavedContext(*this, DC);
2263      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2264        D.setInvalidType();
2265    }
2266  }
2267
2268  NamedDecl *New;
2269
2270  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2271  QualType R = TInfo->getType();
2272
2273  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2274                        ForRedeclaration);
2275
2276  // See if this is a redefinition of a variable in the same scope.
2277  if (!D.getCXXScopeSpec().isSet()) {
2278    bool IsLinkageLookup = false;
2279
2280    // If the declaration we're planning to build will be a function
2281    // or object with linkage, then look for another declaration with
2282    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2283    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2284      /* Do nothing*/;
2285    else if (R->isFunctionType()) {
2286      if (CurContext->isFunctionOrMethod() ||
2287          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2288        IsLinkageLookup = true;
2289    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2290      IsLinkageLookup = true;
2291    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2292             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2293      IsLinkageLookup = true;
2294
2295    if (IsLinkageLookup)
2296      Previous.clear(LookupRedeclarationWithLinkage);
2297
2298    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2299  } else { // Something like "int foo::x;"
2300    LookupQualifiedName(Previous, DC);
2301
2302    // Don't consider using declarations as previous declarations for
2303    // out-of-line members.
2304    RemoveUsingDecls(Previous);
2305
2306    // C++ 7.3.1.2p2:
2307    // Members (including explicit specializations of templates) of a named
2308    // namespace can also be defined outside that namespace by explicit
2309    // qualification of the name being defined, provided that the entity being
2310    // defined was already declared in the namespace and the definition appears
2311    // after the point of declaration in a namespace that encloses the
2312    // declarations namespace.
2313    //
2314    // Note that we only check the context at this point. We don't yet
2315    // have enough information to make sure that PrevDecl is actually
2316    // the declaration we want to match. For example, given:
2317    //
2318    //   class X {
2319    //     void f();
2320    //     void f(float);
2321    //   };
2322    //
2323    //   void X::f(int) { } // ill-formed
2324    //
2325    // In this case, PrevDecl will point to the overload set
2326    // containing the two f's declared in X, but neither of them
2327    // matches.
2328
2329    // First check whether we named the global scope.
2330    if (isa<TranslationUnitDecl>(DC)) {
2331      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2332        << Name << D.getCXXScopeSpec().getRange();
2333    } else {
2334      DeclContext *Cur = CurContext;
2335      while (isa<LinkageSpecDecl>(Cur))
2336        Cur = Cur->getParent();
2337      if (!Cur->Encloses(DC)) {
2338        // The qualifying scope doesn't enclose the original declaration.
2339        // Emit diagnostic based on current scope.
2340        SourceLocation L = D.getIdentifierLoc();
2341        SourceRange R = D.getCXXScopeSpec().getRange();
2342        if (isa<FunctionDecl>(Cur))
2343          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2344        else
2345          Diag(L, diag::err_invalid_declarator_scope)
2346            << Name << cast<NamedDecl>(DC) << R;
2347        D.setInvalidType();
2348      }
2349    }
2350  }
2351
2352  if (Previous.isSingleResult() &&
2353      Previous.getFoundDecl()->isTemplateParameter()) {
2354    // Maybe we will complain about the shadowed template parameter.
2355    if (!D.isInvalidType())
2356      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2357                                          Previous.getFoundDecl()))
2358        D.setInvalidType();
2359
2360    // Just pretend that we didn't see the previous declaration.
2361    Previous.clear();
2362  }
2363
2364  // In C++, the previous declaration we find might be a tag type
2365  // (class or enum). In this case, the new declaration will hide the
2366  // tag type. Note that this does does not apply if we're declaring a
2367  // typedef (C++ [dcl.typedef]p4).
2368  if (Previous.isSingleTagDecl() &&
2369      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2370    Previous.clear();
2371
2372  bool Redeclaration = false;
2373  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2374    if (TemplateParamLists.size()) {
2375      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2376      return 0;
2377    }
2378
2379    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2380  } else if (R->isFunctionType()) {
2381    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2382                                  move(TemplateParamLists),
2383                                  IsFunctionDefinition, Redeclaration);
2384  } else {
2385    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2386                                  move(TemplateParamLists),
2387                                  Redeclaration);
2388  }
2389
2390  if (New == 0)
2391    return 0;
2392
2393  // If this has an identifier and is not an invalid redeclaration or
2394  // function template specialization, add it to the scope stack.
2395  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2396    PushOnScopeChains(New, S);
2397
2398  return New;
2399}
2400
2401/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2402/// types into constant array types in certain situations which would otherwise
2403/// be errors (for GCC compatibility).
2404static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2405                                                    ASTContext &Context,
2406                                                    bool &SizeIsNegative,
2407                                                    llvm::APSInt &Oversized) {
2408  // This method tries to turn a variable array into a constant
2409  // array even when the size isn't an ICE.  This is necessary
2410  // for compatibility with code that depends on gcc's buggy
2411  // constant expression folding, like struct {char x[(int)(char*)2];}
2412  SizeIsNegative = false;
2413  Oversized = 0;
2414
2415  if (T->isDependentType())
2416    return QualType();
2417
2418  QualifierCollector Qs;
2419  const Type *Ty = Qs.strip(T);
2420
2421  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2422    QualType Pointee = PTy->getPointeeType();
2423    QualType FixedType =
2424        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2425                                            Oversized);
2426    if (FixedType.isNull()) return FixedType;
2427    FixedType = Context.getPointerType(FixedType);
2428    return Qs.apply(FixedType);
2429  }
2430
2431  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2432  if (!VLATy)
2433    return QualType();
2434  // FIXME: We should probably handle this case
2435  if (VLATy->getElementType()->isVariablyModifiedType())
2436    return QualType();
2437
2438  Expr::EvalResult EvalResult;
2439  if (!VLATy->getSizeExpr() ||
2440      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2441      !EvalResult.Val.isInt())
2442    return QualType();
2443
2444  // Check whether the array size is negative.
2445  llvm::APSInt &Res = EvalResult.Val.getInt();
2446  if (Res.isSigned() && Res.isNegative()) {
2447    SizeIsNegative = true;
2448    return QualType();
2449  }
2450
2451  // Check whether the array is too large to be addressed.
2452  unsigned ActiveSizeBits
2453    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2454                                              Res);
2455  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2456    Oversized = Res;
2457    return QualType();
2458  }
2459
2460  return Context.getConstantArrayType(VLATy->getElementType(),
2461                                      Res, ArrayType::Normal, 0);
2462}
2463
2464/// \brief Register the given locally-scoped external C declaration so
2465/// that it can be found later for redeclarations
2466void
2467Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2468                                       const LookupResult &Previous,
2469                                       Scope *S) {
2470  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2471         "Decl is not a locally-scoped decl!");
2472  // Note that we have a locally-scoped external with this name.
2473  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2474
2475  if (!Previous.isSingleResult())
2476    return;
2477
2478  NamedDecl *PrevDecl = Previous.getFoundDecl();
2479
2480  // If there was a previous declaration of this variable, it may be
2481  // in our identifier chain. Update the identifier chain with the new
2482  // declaration.
2483  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2484    // The previous declaration was found on the identifer resolver
2485    // chain, so remove it from its scope.
2486    while (S && !S->isDeclScope(PrevDecl))
2487      S = S->getParent();
2488
2489    if (S)
2490      S->RemoveDecl(PrevDecl);
2491  }
2492}
2493
2494/// \brief Diagnose function specifiers on a declaration of an identifier that
2495/// does not identify a function.
2496void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2497  // FIXME: We should probably indicate the identifier in question to avoid
2498  // confusion for constructs like "inline int a(), b;"
2499  if (D.getDeclSpec().isInlineSpecified())
2500    Diag(D.getDeclSpec().getInlineSpecLoc(),
2501         diag::err_inline_non_function);
2502
2503  if (D.getDeclSpec().isVirtualSpecified())
2504    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2505         diag::err_virtual_non_function);
2506
2507  if (D.getDeclSpec().isExplicitSpecified())
2508    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2509         diag::err_explicit_non_function);
2510}
2511
2512NamedDecl*
2513Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2514                             QualType R,  TypeSourceInfo *TInfo,
2515                             LookupResult &Previous, bool &Redeclaration) {
2516  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2517  if (D.getCXXScopeSpec().isSet()) {
2518    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2519      << D.getCXXScopeSpec().getRange();
2520    D.setInvalidType();
2521    // Pretend we didn't see the scope specifier.
2522    DC = CurContext;
2523    Previous.clear();
2524  }
2525
2526  if (getLangOptions().CPlusPlus) {
2527    // Check that there are no default arguments (C++ only).
2528    CheckExtraCXXDefaultArguments(D);
2529  }
2530
2531  DiagnoseFunctionSpecifiers(D);
2532
2533  if (D.getDeclSpec().isThreadSpecified())
2534    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2535
2536  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2537    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2538      << D.getName().getSourceRange();
2539    return 0;
2540  }
2541
2542  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2543  if (!NewTD) return 0;
2544
2545  // Handle attributes prior to checking for duplicates in MergeVarDecl
2546  ProcessDeclAttributes(S, NewTD, D);
2547
2548  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2549  // then it shall have block scope.
2550  // Note that variably modified types must be fixed before merging the decl so
2551  // that redeclarations will match.
2552  QualType T = NewTD->getUnderlyingType();
2553  if (T->isVariablyModifiedType()) {
2554    getCurFunction()->setHasBranchProtectedScope();
2555
2556    if (S->getFnParent() == 0) {
2557      bool SizeIsNegative;
2558      llvm::APSInt Oversized;
2559      QualType FixedTy =
2560          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2561                                              Oversized);
2562      if (!FixedTy.isNull()) {
2563        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2564        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2565      } else {
2566        if (SizeIsNegative)
2567          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2568        else if (T->isVariableArrayType())
2569          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2570        else if (Oversized.getBoolValue())
2571          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2572            << Oversized.toString(10);
2573        else
2574          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2575        NewTD->setInvalidDecl();
2576      }
2577    }
2578  }
2579
2580  // Merge the decl with the existing one if appropriate. If the decl is
2581  // in an outer scope, it isn't the same thing.
2582  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2583  if (!Previous.empty()) {
2584    Redeclaration = true;
2585    MergeTypeDefDecl(NewTD, Previous);
2586  }
2587
2588  // If this is the C FILE type, notify the AST context.
2589  if (IdentifierInfo *II = NewTD->getIdentifier())
2590    if (!NewTD->isInvalidDecl() &&
2591        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2592      if (II->isStr("FILE"))
2593        Context.setFILEDecl(NewTD);
2594      else if (II->isStr("jmp_buf"))
2595        Context.setjmp_bufDecl(NewTD);
2596      else if (II->isStr("sigjmp_buf"))
2597        Context.setsigjmp_bufDecl(NewTD);
2598    }
2599
2600  return NewTD;
2601}
2602
2603/// \brief Determines whether the given declaration is an out-of-scope
2604/// previous declaration.
2605///
2606/// This routine should be invoked when name lookup has found a
2607/// previous declaration (PrevDecl) that is not in the scope where a
2608/// new declaration by the same name is being introduced. If the new
2609/// declaration occurs in a local scope, previous declarations with
2610/// linkage may still be considered previous declarations (C99
2611/// 6.2.2p4-5, C++ [basic.link]p6).
2612///
2613/// \param PrevDecl the previous declaration found by name
2614/// lookup
2615///
2616/// \param DC the context in which the new declaration is being
2617/// declared.
2618///
2619/// \returns true if PrevDecl is an out-of-scope previous declaration
2620/// for a new delcaration with the same name.
2621static bool
2622isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2623                                ASTContext &Context) {
2624  if (!PrevDecl)
2625    return false;
2626
2627  if (!PrevDecl->hasLinkage())
2628    return false;
2629
2630  if (Context.getLangOptions().CPlusPlus) {
2631    // C++ [basic.link]p6:
2632    //   If there is a visible declaration of an entity with linkage
2633    //   having the same name and type, ignoring entities declared
2634    //   outside the innermost enclosing namespace scope, the block
2635    //   scope declaration declares that same entity and receives the
2636    //   linkage of the previous declaration.
2637    DeclContext *OuterContext = DC->getRedeclContext();
2638    if (!OuterContext->isFunctionOrMethod())
2639      // This rule only applies to block-scope declarations.
2640      return false;
2641
2642    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2643    if (PrevOuterContext->isRecord())
2644      // We found a member function: ignore it.
2645      return false;
2646
2647    // Find the innermost enclosing namespace for the new and
2648    // previous declarations.
2649    OuterContext = OuterContext->getEnclosingNamespaceContext();
2650    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2651
2652    // The previous declaration is in a different namespace, so it
2653    // isn't the same function.
2654    if (!OuterContext->Equals(PrevOuterContext))
2655      return false;
2656  }
2657
2658  return true;
2659}
2660
2661static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2662  CXXScopeSpec &SS = D.getCXXScopeSpec();
2663  if (!SS.isSet()) return;
2664  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2665                       SS.getRange());
2666}
2667
2668NamedDecl*
2669Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2670                              QualType R, TypeSourceInfo *TInfo,
2671                              LookupResult &Previous,
2672                              MultiTemplateParamsArg TemplateParamLists,
2673                              bool &Redeclaration) {
2674  DeclarationName Name = GetNameForDeclarator(D).getName();
2675
2676  // Check that there are no default arguments (C++ only).
2677  if (getLangOptions().CPlusPlus)
2678    CheckExtraCXXDefaultArguments(D);
2679
2680  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2681  assert(SCSpec != DeclSpec::SCS_typedef &&
2682         "Parser allowed 'typedef' as storage class VarDecl.");
2683  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2684  if (SCSpec == DeclSpec::SCS_mutable) {
2685    // mutable can only appear on non-static class members, so it's always
2686    // an error here
2687    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2688    D.setInvalidType();
2689    SC = SC_None;
2690  }
2691  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2692  VarDecl::StorageClass SCAsWritten
2693    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2694
2695  IdentifierInfo *II = Name.getAsIdentifierInfo();
2696  if (!II) {
2697    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2698      << Name.getAsString();
2699    return 0;
2700  }
2701
2702  DiagnoseFunctionSpecifiers(D);
2703
2704  if (!DC->isRecord() && S->getFnParent() == 0) {
2705    // C99 6.9p2: The storage-class specifiers auto and register shall not
2706    // appear in the declaration specifiers in an external declaration.
2707    if (SC == SC_Auto || SC == SC_Register) {
2708
2709      // If this is a register variable with an asm label specified, then this
2710      // is a GNU extension.
2711      if (SC == SC_Register && D.getAsmLabel())
2712        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2713      else
2714        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2715      D.setInvalidType();
2716    }
2717  }
2718  if (DC->isRecord() && !CurContext->isRecord()) {
2719    // This is an out-of-line definition of a static data member.
2720    if (SC == SC_Static) {
2721      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2722           diag::err_static_out_of_line)
2723        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2724    } else if (SC == SC_None)
2725      SC = SC_Static;
2726  }
2727  if (SC == SC_Static) {
2728    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2729      if (RD->isLocalClass())
2730        Diag(D.getIdentifierLoc(),
2731             diag::err_static_data_member_not_allowed_in_local_class)
2732          << Name << RD->getDeclName();
2733    }
2734  }
2735
2736  // Match up the template parameter lists with the scope specifier, then
2737  // determine whether we have a template or a template specialization.
2738  bool isExplicitSpecialization = false;
2739  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2740  bool Invalid = false;
2741  if (TemplateParameterList *TemplateParams
2742        = MatchTemplateParametersToScopeSpecifier(
2743                                  D.getDeclSpec().getSourceRange().getBegin(),
2744                                                  D.getCXXScopeSpec(),
2745                        (TemplateParameterList**)TemplateParamLists.get(),
2746                                                   TemplateParamLists.size(),
2747                                                  /*never a friend*/ false,
2748                                                  isExplicitSpecialization,
2749                                                  Invalid)) {
2750    // All but one template parameter lists have been matching.
2751    --NumMatchedTemplateParamLists;
2752
2753    if (TemplateParams->size() > 0) {
2754      // There is no such thing as a variable template.
2755      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2756        << II
2757        << SourceRange(TemplateParams->getTemplateLoc(),
2758                       TemplateParams->getRAngleLoc());
2759      return 0;
2760    } else {
2761      // There is an extraneous 'template<>' for this variable. Complain
2762      // about it, but allow the declaration of the variable.
2763      Diag(TemplateParams->getTemplateLoc(),
2764           diag::err_template_variable_noparams)
2765        << II
2766        << SourceRange(TemplateParams->getTemplateLoc(),
2767                       TemplateParams->getRAngleLoc());
2768
2769      isExplicitSpecialization = true;
2770    }
2771  }
2772
2773  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2774                                   II, R, TInfo, SC, SCAsWritten);
2775
2776  if (D.isInvalidType() || Invalid)
2777    NewVD->setInvalidDecl();
2778
2779  SetNestedNameSpecifier(NewVD, D);
2780
2781  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2782    NewVD->setTemplateParameterListsInfo(Context,
2783                                         NumMatchedTemplateParamLists,
2784                        (TemplateParameterList**)TemplateParamLists.release());
2785  }
2786
2787  if (D.getDeclSpec().isThreadSpecified()) {
2788    if (NewVD->hasLocalStorage())
2789      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2790    else if (!Context.Target.isTLSSupported())
2791      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2792    else
2793      NewVD->setThreadSpecified(true);
2794  }
2795
2796  // Set the lexical context. If the declarator has a C++ scope specifier, the
2797  // lexical context will be different from the semantic context.
2798  NewVD->setLexicalDeclContext(CurContext);
2799
2800  // Handle attributes prior to checking for duplicates in MergeVarDecl
2801  ProcessDeclAttributes(S, NewVD, D);
2802
2803  // Handle GNU asm-label extension (encoded as an attribute).
2804  if (Expr *E = (Expr*) D.getAsmLabel()) {
2805    // The parser guarantees this is a string.
2806    StringLiteral *SE = cast<StringLiteral>(E);
2807    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2808                                                Context, SE->getString()));
2809  }
2810
2811  // Diagnose shadowed variables before filtering for scope.
2812  if (!D.getCXXScopeSpec().isSet())
2813    CheckShadow(S, NewVD, Previous);
2814
2815  // Don't consider existing declarations that are in a different
2816  // scope and are out-of-semantic-context declarations (if the new
2817  // declaration has linkage).
2818  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2819
2820  // Merge the decl with the existing one if appropriate.
2821  if (!Previous.empty()) {
2822    if (Previous.isSingleResult() &&
2823        isa<FieldDecl>(Previous.getFoundDecl()) &&
2824        D.getCXXScopeSpec().isSet()) {
2825      // The user tried to define a non-static data member
2826      // out-of-line (C++ [dcl.meaning]p1).
2827      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2828        << D.getCXXScopeSpec().getRange();
2829      Previous.clear();
2830      NewVD->setInvalidDecl();
2831    }
2832  } else if (D.getCXXScopeSpec().isSet()) {
2833    // No previous declaration in the qualifying scope.
2834    Diag(D.getIdentifierLoc(), diag::err_no_member)
2835      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2836      << D.getCXXScopeSpec().getRange();
2837    NewVD->setInvalidDecl();
2838  }
2839
2840  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2841
2842  // This is an explicit specialization of a static data member. Check it.
2843  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2844      CheckMemberSpecialization(NewVD, Previous))
2845    NewVD->setInvalidDecl();
2846
2847  // attributes declared post-definition are currently ignored
2848  // FIXME: This should be handled in attribute merging, not
2849  // here.
2850  if (Previous.isSingleResult()) {
2851    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2852    if (Def && (Def = Def->getDefinition()) &&
2853        Def != NewVD && D.hasAttributes()) {
2854      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2855      Diag(Def->getLocation(), diag::note_previous_definition);
2856    }
2857  }
2858
2859  // If this is a locally-scoped extern C variable, update the map of
2860  // such variables.
2861  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2862      !NewVD->isInvalidDecl())
2863    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2864
2865  // If there's a #pragma GCC visibility in scope, and this isn't a class
2866  // member, set the visibility of this variable.
2867  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2868    AddPushedVisibilityAttribute(NewVD);
2869
2870  MarkUnusedFileScopedDecl(NewVD);
2871
2872  return NewVD;
2873}
2874
2875/// \brief Diagnose variable or built-in function shadowing.  Implements
2876/// -Wshadow.
2877///
2878/// This method is called whenever a VarDecl is added to a "useful"
2879/// scope.
2880///
2881/// \param S the scope in which the shadowing name is being declared
2882/// \param R the lookup of the name
2883///
2884void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2885  // Return if warning is ignored.
2886  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2887    return;
2888
2889  // Don't diagnose declarations at file scope.  The scope might not
2890  // have a DeclContext if (e.g.) we're parsing a function prototype.
2891  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2892  if (NewDC && NewDC->isFileContext())
2893    return;
2894
2895  // Only diagnose if we're shadowing an unambiguous field or variable.
2896  if (R.getResultKind() != LookupResult::Found)
2897    return;
2898
2899  NamedDecl* ShadowedDecl = R.getFoundDecl();
2900  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2901    return;
2902
2903  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2904
2905  // Only warn about certain kinds of shadowing for class members.
2906  if (NewDC && NewDC->isRecord()) {
2907    // In particular, don't warn about shadowing non-class members.
2908    if (!OldDC->isRecord())
2909      return;
2910
2911    // TODO: should we warn about static data members shadowing
2912    // static data members from base classes?
2913
2914    // TODO: don't diagnose for inaccessible shadowed members.
2915    // This is hard to do perfectly because we might friend the
2916    // shadowing context, but that's just a false negative.
2917  }
2918
2919  // Determine what kind of declaration we're shadowing.
2920  unsigned Kind;
2921  if (isa<RecordDecl>(OldDC)) {
2922    if (isa<FieldDecl>(ShadowedDecl))
2923      Kind = 3; // field
2924    else
2925      Kind = 2; // static data member
2926  } else if (OldDC->isFileContext())
2927    Kind = 1; // global
2928  else
2929    Kind = 0; // local
2930
2931  DeclarationName Name = R.getLookupName();
2932
2933  // Emit warning and note.
2934  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2935  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2936}
2937
2938/// \brief Check -Wshadow without the advantage of a previous lookup.
2939void Sema::CheckShadow(Scope *S, VarDecl *D) {
2940  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2941                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2942  LookupName(R, S);
2943  CheckShadow(S, D, R);
2944}
2945
2946/// \brief Perform semantic checking on a newly-created variable
2947/// declaration.
2948///
2949/// This routine performs all of the type-checking required for a
2950/// variable declaration once it has been built. It is used both to
2951/// check variables after they have been parsed and their declarators
2952/// have been translated into a declaration, and to check variables
2953/// that have been instantiated from a template.
2954///
2955/// Sets NewVD->isInvalidDecl() if an error was encountered.
2956void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2957                                    LookupResult &Previous,
2958                                    bool &Redeclaration) {
2959  // If the decl is already known invalid, don't check it.
2960  if (NewVD->isInvalidDecl())
2961    return;
2962
2963  QualType T = NewVD->getType();
2964
2965  if (T->isObjCObjectType()) {
2966    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2967    return NewVD->setInvalidDecl();
2968  }
2969
2970  // Emit an error if an address space was applied to decl with local storage.
2971  // This includes arrays of objects with address space qualifiers, but not
2972  // automatic variables that point to other address spaces.
2973  // ISO/IEC TR 18037 S5.1.2
2974  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2975    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2976    return NewVD->setInvalidDecl();
2977  }
2978
2979  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2980      && !NewVD->hasAttr<BlocksAttr>())
2981    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2982
2983  bool isVM = T->isVariablyModifiedType();
2984  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2985      NewVD->hasAttr<BlocksAttr>())
2986    getCurFunction()->setHasBranchProtectedScope();
2987
2988  if ((isVM && NewVD->hasLinkage()) ||
2989      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2990    bool SizeIsNegative;
2991    llvm::APSInt Oversized;
2992    QualType FixedTy =
2993        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2994                                            Oversized);
2995
2996    if (FixedTy.isNull() && T->isVariableArrayType()) {
2997      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2998      // FIXME: This won't give the correct result for
2999      // int a[10][n];
3000      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3001
3002      if (NewVD->isFileVarDecl())
3003        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3004        << SizeRange;
3005      else if (NewVD->getStorageClass() == SC_Static)
3006        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3007        << SizeRange;
3008      else
3009        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3010        << SizeRange;
3011      return NewVD->setInvalidDecl();
3012    }
3013
3014    if (FixedTy.isNull()) {
3015      if (NewVD->isFileVarDecl())
3016        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3017      else
3018        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3019      return NewVD->setInvalidDecl();
3020    }
3021
3022    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3023    NewVD->setType(FixedTy);
3024  }
3025
3026  if (Previous.empty() && NewVD->isExternC()) {
3027    // Since we did not find anything by this name and we're declaring
3028    // an extern "C" variable, look for a non-visible extern "C"
3029    // declaration with the same name.
3030    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3031      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3032    if (Pos != LocallyScopedExternalDecls.end())
3033      Previous.addDecl(Pos->second);
3034  }
3035
3036  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3037    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3038      << T;
3039    return NewVD->setInvalidDecl();
3040  }
3041
3042  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3043    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3044    return NewVD->setInvalidDecl();
3045  }
3046
3047  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3048    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3049    return NewVD->setInvalidDecl();
3050  }
3051
3052  // Function pointers and references cannot have qualified function type, only
3053  // function pointer-to-members can do that.
3054  QualType Pointee;
3055  unsigned PtrOrRef = 0;
3056  if (const PointerType *Ptr = T->getAs<PointerType>())
3057    Pointee = Ptr->getPointeeType();
3058  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3059    Pointee = Ref->getPointeeType();
3060    PtrOrRef = 1;
3061  }
3062  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3063      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3064    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3065        << PtrOrRef;
3066    return NewVD->setInvalidDecl();
3067  }
3068
3069  if (!Previous.empty()) {
3070    Redeclaration = true;
3071    MergeVarDecl(NewVD, Previous);
3072  }
3073}
3074
3075/// \brief Data used with FindOverriddenMethod
3076struct FindOverriddenMethodData {
3077  Sema *S;
3078  CXXMethodDecl *Method;
3079};
3080
3081/// \brief Member lookup function that determines whether a given C++
3082/// method overrides a method in a base class, to be used with
3083/// CXXRecordDecl::lookupInBases().
3084static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3085                                 CXXBasePath &Path,
3086                                 void *UserData) {
3087  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3088
3089  FindOverriddenMethodData *Data
3090    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3091
3092  DeclarationName Name = Data->Method->getDeclName();
3093
3094  // FIXME: Do we care about other names here too?
3095  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3096    // We really want to find the base class destructor here.
3097    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3098    CanQualType CT = Data->S->Context.getCanonicalType(T);
3099
3100    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3101  }
3102
3103  for (Path.Decls = BaseRecord->lookup(Name);
3104       Path.Decls.first != Path.Decls.second;
3105       ++Path.Decls.first) {
3106    NamedDecl *D = *Path.Decls.first;
3107    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3108      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3109        return true;
3110    }
3111  }
3112
3113  return false;
3114}
3115
3116/// AddOverriddenMethods - See if a method overrides any in the base classes,
3117/// and if so, check that it's a valid override and remember it.
3118void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3119  // Look for virtual methods in base classes that this method might override.
3120  CXXBasePaths Paths;
3121  FindOverriddenMethodData Data;
3122  Data.Method = MD;
3123  Data.S = this;
3124  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3125    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3126         E = Paths.found_decls_end(); I != E; ++I) {
3127      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3128        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3129            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3130            !CheckOverridingFunctionAttributes(MD, OldMD))
3131          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3132      }
3133    }
3134  }
3135}
3136
3137NamedDecl*
3138Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3139                              QualType R, TypeSourceInfo *TInfo,
3140                              LookupResult &Previous,
3141                              MultiTemplateParamsArg TemplateParamLists,
3142                              bool IsFunctionDefinition, bool &Redeclaration) {
3143  assert(R.getTypePtr()->isFunctionType());
3144
3145  // TODO: consider using NameInfo for diagnostic.
3146  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3147  DeclarationName Name = NameInfo.getName();
3148  FunctionDecl::StorageClass SC = SC_None;
3149  switch (D.getDeclSpec().getStorageClassSpec()) {
3150  default: assert(0 && "Unknown storage class!");
3151  case DeclSpec::SCS_auto:
3152  case DeclSpec::SCS_register:
3153  case DeclSpec::SCS_mutable:
3154    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3155         diag::err_typecheck_sclass_func);
3156    D.setInvalidType();
3157    break;
3158  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3159  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3160  case DeclSpec::SCS_static: {
3161    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3162      // C99 6.7.1p5:
3163      //   The declaration of an identifier for a function that has
3164      //   block scope shall have no explicit storage-class specifier
3165      //   other than extern
3166      // See also (C++ [dcl.stc]p4).
3167      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3168           diag::err_static_block_func);
3169      SC = SC_None;
3170    } else
3171      SC = SC_Static;
3172    break;
3173  }
3174  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern;break;
3175  }
3176
3177  if (D.getDeclSpec().isThreadSpecified())
3178    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3179
3180  bool isFriend = D.getDeclSpec().isFriendSpecified();
3181  bool isInline = D.getDeclSpec().isInlineSpecified();
3182  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3183  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3184
3185  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3186  FunctionDecl::StorageClass SCAsWritten
3187    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3188
3189  // Check that the return type is not an abstract class type.
3190  // For record types, this is done by the AbstractClassUsageDiagnoser once
3191  // the class has been completely parsed.
3192  if (!DC->isRecord() &&
3193      RequireNonAbstractType(D.getIdentifierLoc(),
3194                             R->getAs<FunctionType>()->getResultType(),
3195                             diag::err_abstract_type_in_decl,
3196                             AbstractReturnType))
3197    D.setInvalidType();
3198
3199  // Do not allow returning a objc interface by-value.
3200  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3201    Diag(D.getIdentifierLoc(),
3202         diag::err_object_cannot_be_passed_returned_by_value) << 0
3203      << R->getAs<FunctionType>()->getResultType();
3204    D.setInvalidType();
3205  }
3206
3207  bool isVirtualOkay = false;
3208  FunctionDecl *NewFD;
3209
3210  if (isFriend) {
3211    // C++ [class.friend]p5
3212    //   A function can be defined in a friend declaration of a
3213    //   class . . . . Such a function is implicitly inline.
3214    isInline |= IsFunctionDefinition;
3215  }
3216
3217  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3218    // This is a C++ constructor declaration.
3219    assert(DC->isRecord() &&
3220           "Constructors can only be declared in a member context");
3221
3222    R = CheckConstructorDeclarator(D, R, SC);
3223
3224    // Create the new declaration
3225    NewFD = CXXConstructorDecl::Create(Context,
3226                                       cast<CXXRecordDecl>(DC),
3227                                       NameInfo, R, TInfo,
3228                                       isExplicit, isInline,
3229                                       /*isImplicitlyDeclared=*/false);
3230  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3231    // This is a C++ destructor declaration.
3232    if (DC->isRecord()) {
3233      R = CheckDestructorDeclarator(D, R, SC);
3234
3235      NewFD = CXXDestructorDecl::Create(Context,
3236                                        cast<CXXRecordDecl>(DC),
3237                                        NameInfo, R,
3238                                        isInline,
3239                                        /*isImplicitlyDeclared=*/false);
3240      NewFD->setTypeSourceInfo(TInfo);
3241
3242      isVirtualOkay = true;
3243    } else {
3244      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3245
3246      // Create a FunctionDecl to satisfy the function definition parsing
3247      // code path.
3248      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3249                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3250                                   /*hasPrototype=*/true);
3251      D.setInvalidType();
3252    }
3253  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3254    if (!DC->isRecord()) {
3255      Diag(D.getIdentifierLoc(),
3256           diag::err_conv_function_not_member);
3257      return 0;
3258    }
3259
3260    CheckConversionDeclarator(D, R, SC);
3261    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3262                                      NameInfo, R, TInfo,
3263                                      isInline, isExplicit);
3264
3265    isVirtualOkay = true;
3266  } else if (DC->isRecord()) {
3267    // If the of the function is the same as the name of the record, then this
3268    // must be an invalid constructor that has a return type.
3269    // (The parser checks for a return type and makes the declarator a
3270    // constructor if it has no return type).
3271    // must have an invalid constructor that has a return type
3272    if (Name.getAsIdentifierInfo() &&
3273        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3274      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3275        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3276        << SourceRange(D.getIdentifierLoc());
3277      return 0;
3278    }
3279
3280    bool isStatic = SC == SC_Static;
3281
3282    // [class.free]p1:
3283    // Any allocation function for a class T is a static member
3284    // (even if not explicitly declared static).
3285    if (Name.getCXXOverloadedOperator() == OO_New ||
3286        Name.getCXXOverloadedOperator() == OO_Array_New)
3287      isStatic = true;
3288
3289    // [class.free]p6 Any deallocation function for a class X is a static member
3290    // (even if not explicitly declared static).
3291    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3292        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3293      isStatic = true;
3294
3295    // This is a C++ method declaration.
3296    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3297                                  NameInfo, R, TInfo,
3298                                  isStatic, SCAsWritten, isInline);
3299
3300    isVirtualOkay = !isStatic;
3301  } else {
3302    // Determine whether the function was written with a
3303    // prototype. This true when:
3304    //   - we're in C++ (where every function has a prototype),
3305    //   - there is a prototype in the declarator, or
3306    //   - the type R of the function is some kind of typedef or other reference
3307    //     to a type name (which eventually refers to a function type).
3308    bool HasPrototype =
3309       getLangOptions().CPlusPlus ||
3310       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3311       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3312
3313    NewFD = FunctionDecl::Create(Context, DC,
3314                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3315                                 HasPrototype);
3316  }
3317
3318  if (D.isInvalidType())
3319    NewFD->setInvalidDecl();
3320
3321  SetNestedNameSpecifier(NewFD, D);
3322
3323  // Set the lexical context. If the declarator has a C++
3324  // scope specifier, or is the object of a friend declaration, the
3325  // lexical context will be different from the semantic context.
3326  NewFD->setLexicalDeclContext(CurContext);
3327
3328  // Match up the template parameter lists with the scope specifier, then
3329  // determine whether we have a template or a template specialization.
3330  FunctionTemplateDecl *FunctionTemplate = 0;
3331  bool isExplicitSpecialization = false;
3332  bool isFunctionTemplateSpecialization = false;
3333  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3334  bool Invalid = false;
3335  if (TemplateParameterList *TemplateParams
3336        = MatchTemplateParametersToScopeSpecifier(
3337                                  D.getDeclSpec().getSourceRange().getBegin(),
3338                                  D.getCXXScopeSpec(),
3339                           (TemplateParameterList**)TemplateParamLists.get(),
3340                                                  TemplateParamLists.size(),
3341                                                  isFriend,
3342                                                  isExplicitSpecialization,
3343                                                  Invalid)) {
3344    // All but one template parameter lists have been matching.
3345    --NumMatchedTemplateParamLists;
3346
3347    if (TemplateParams->size() > 0) {
3348      // This is a function template
3349
3350      // Check that we can declare a template here.
3351      if (CheckTemplateDeclScope(S, TemplateParams))
3352        return 0;
3353
3354      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3355                                                      NewFD->getLocation(),
3356                                                      Name, TemplateParams,
3357                                                      NewFD);
3358      FunctionTemplate->setLexicalDeclContext(CurContext);
3359      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3360    } else {
3361      // This is a function template specialization.
3362      isFunctionTemplateSpecialization = true;
3363
3364      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3365      if (isFriend && isFunctionTemplateSpecialization) {
3366        // We want to remove the "template<>", found here.
3367        SourceRange RemoveRange = TemplateParams->getSourceRange();
3368
3369        // If we remove the template<> and the name is not a
3370        // template-id, we're actually silently creating a problem:
3371        // the friend declaration will refer to an untemplated decl,
3372        // and clearly the user wants a template specialization.  So
3373        // we need to insert '<>' after the name.
3374        SourceLocation InsertLoc;
3375        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3376          InsertLoc = D.getName().getSourceRange().getEnd();
3377          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3378        }
3379
3380        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3381          << Name << RemoveRange
3382          << FixItHint::CreateRemoval(RemoveRange)
3383          << FixItHint::CreateInsertion(InsertLoc, "<>");
3384      }
3385    }
3386  }
3387
3388  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3389    NewFD->setTemplateParameterListsInfo(Context,
3390                                         NumMatchedTemplateParamLists,
3391                        (TemplateParameterList**)TemplateParamLists.release());
3392  }
3393
3394  if (Invalid) {
3395    NewFD->setInvalidDecl();
3396    if (FunctionTemplate)
3397      FunctionTemplate->setInvalidDecl();
3398  }
3399
3400  // C++ [dcl.fct.spec]p5:
3401  //   The virtual specifier shall only be used in declarations of
3402  //   nonstatic class member functions that appear within a
3403  //   member-specification of a class declaration; see 10.3.
3404  //
3405  if (isVirtual && !NewFD->isInvalidDecl()) {
3406    if (!isVirtualOkay) {
3407       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3408           diag::err_virtual_non_function);
3409    } else if (!CurContext->isRecord()) {
3410      // 'virtual' was specified outside of the class.
3411      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3412        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3413    } else {
3414      // Okay: Add virtual to the method.
3415      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3416      CurClass->setMethodAsVirtual(NewFD);
3417    }
3418  }
3419
3420  // C++ [dcl.fct.spec]p3:
3421  //  The inline specifier shall not appear on a block scope function declaration.
3422  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3423    if (CurContext->isFunctionOrMethod()) {
3424      // 'inline' is not allowed on block scope function declaration.
3425      Diag(D.getDeclSpec().getInlineSpecLoc(),
3426           diag::err_inline_declaration_block_scope) << Name
3427        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3428    }
3429  }
3430
3431  // C++ [dcl.fct.spec]p6:
3432  //  The explicit specifier shall be used only in the declaration of a
3433  //  constructor or conversion function within its class definition; see 12.3.1
3434  //  and 12.3.2.
3435  if (isExplicit && !NewFD->isInvalidDecl()) {
3436    if (!CurContext->isRecord()) {
3437      // 'explicit' was specified outside of the class.
3438      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3439           diag::err_explicit_out_of_class)
3440        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3441    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3442               !isa<CXXConversionDecl>(NewFD)) {
3443      // 'explicit' was specified on a function that wasn't a constructor
3444      // or conversion function.
3445      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3446           diag::err_explicit_non_ctor_or_conv_function)
3447        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3448    }
3449  }
3450
3451  // Filter out previous declarations that don't match the scope.
3452  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3453
3454  if (isFriend) {
3455    // DC is the namespace in which the function is being declared.
3456    assert((DC->isFileContext() || !Previous.empty()) &&
3457           "previously-undeclared friend function being created "
3458           "in a non-namespace context");
3459
3460    // For now, claim that the objects have no previous declaration.
3461    if (FunctionTemplate) {
3462      FunctionTemplate->setObjectOfFriendDecl(false);
3463      FunctionTemplate->setAccess(AS_public);
3464    }
3465    NewFD->setObjectOfFriendDecl(false);
3466    NewFD->setAccess(AS_public);
3467  }
3468
3469  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3470      !CurContext->isRecord()) {
3471    // C++ [class.static]p1:
3472    //   A data or function member of a class may be declared static
3473    //   in a class definition, in which case it is a static member of
3474    //   the class.
3475
3476    // Complain about the 'static' specifier if it's on an out-of-line
3477    // member function definition.
3478    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3479         diag::err_static_out_of_line)
3480      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3481  }
3482
3483  // Handle GNU asm-label extension (encoded as an attribute).
3484  if (Expr *E = (Expr*) D.getAsmLabel()) {
3485    // The parser guarantees this is a string.
3486    StringLiteral *SE = cast<StringLiteral>(E);
3487    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3488                                                SE->getString()));
3489  }
3490
3491  // Copy the parameter declarations from the declarator D to the function
3492  // declaration NewFD, if they are available.  First scavenge them into Params.
3493  llvm::SmallVector<ParmVarDecl*, 16> Params;
3494  if (D.getNumTypeObjects() > 0) {
3495    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3496
3497    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3498    // function that takes no arguments, not a function that takes a
3499    // single void argument.
3500    // We let through "const void" here because Sema::GetTypeForDeclarator
3501    // already checks for that case.
3502    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3503        FTI.ArgInfo[0].Param &&
3504        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3505      // Empty arg list, don't push any params.
3506      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3507
3508      // In C++, the empty parameter-type-list must be spelled "void"; a
3509      // typedef of void is not permitted.
3510      if (getLangOptions().CPlusPlus &&
3511          Param->getType().getUnqualifiedType() != Context.VoidTy)
3512        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3513      // FIXME: Leaks decl?
3514    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3515      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3516        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3517        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3518        Param->setDeclContext(NewFD);
3519        Params.push_back(Param);
3520
3521        if (Param->isInvalidDecl())
3522          NewFD->setInvalidDecl();
3523      }
3524    }
3525
3526  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3527    // When we're declaring a function with a typedef, typeof, etc as in the
3528    // following example, we'll need to synthesize (unnamed)
3529    // parameters for use in the declaration.
3530    //
3531    // @code
3532    // typedef void fn(int);
3533    // fn f;
3534    // @endcode
3535
3536    // Synthesize a parameter for each argument type.
3537    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3538         AE = FT->arg_type_end(); AI != AE; ++AI) {
3539      ParmVarDecl *Param =
3540        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3541      Params.push_back(Param);
3542    }
3543  } else {
3544    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3545           "Should not need args for typedef of non-prototype fn");
3546  }
3547  // Finally, we know we have the right number of parameters, install them.
3548  NewFD->setParams(Params.data(), Params.size());
3549
3550  // If the declarator is a template-id, translate the parser's template
3551  // argument list into our AST format.
3552  bool HasExplicitTemplateArgs = false;
3553  TemplateArgumentListInfo TemplateArgs;
3554  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3555    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3556    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3557    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3558    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3559                                       TemplateId->getTemplateArgs(),
3560                                       TemplateId->NumArgs);
3561    translateTemplateArguments(TemplateArgsPtr,
3562                               TemplateArgs);
3563    TemplateArgsPtr.release();
3564
3565    HasExplicitTemplateArgs = true;
3566
3567    if (FunctionTemplate) {
3568      // FIXME: Diagnose function template with explicit template
3569      // arguments.
3570      HasExplicitTemplateArgs = false;
3571    } else if (!isFunctionTemplateSpecialization &&
3572               !D.getDeclSpec().isFriendSpecified()) {
3573      // We have encountered something that the user meant to be a
3574      // specialization (because it has explicitly-specified template
3575      // arguments) but that was not introduced with a "template<>" (or had
3576      // too few of them).
3577      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3578        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3579        << FixItHint::CreateInsertion(
3580                                   D.getDeclSpec().getSourceRange().getBegin(),
3581                                                 "template<> ");
3582      isFunctionTemplateSpecialization = true;
3583    } else {
3584      // "friend void foo<>(int);" is an implicit specialization decl.
3585      isFunctionTemplateSpecialization = true;
3586    }
3587  } else if (isFriend && isFunctionTemplateSpecialization) {
3588    // This combination is only possible in a recovery case;  the user
3589    // wrote something like:
3590    //   template <> friend void foo(int);
3591    // which we're recovering from as if the user had written:
3592    //   friend void foo<>(int);
3593    // Go ahead and fake up a template id.
3594    HasExplicitTemplateArgs = true;
3595    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3596    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3597  }
3598
3599  // If it's a friend (and only if it's a friend), it's possible
3600  // that either the specialized function type or the specialized
3601  // template is dependent, and therefore matching will fail.  In
3602  // this case, don't check the specialization yet.
3603  if (isFunctionTemplateSpecialization && isFriend &&
3604      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3605    assert(HasExplicitTemplateArgs &&
3606           "friend function specialization without template args");
3607    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3608                                                     Previous))
3609      NewFD->setInvalidDecl();
3610  } else if (isFunctionTemplateSpecialization) {
3611    if (CheckFunctionTemplateSpecialization(NewFD,
3612                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3613                                            Previous))
3614      NewFD->setInvalidDecl();
3615  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3616    if (CheckMemberSpecialization(NewFD, Previous))
3617      NewFD->setInvalidDecl();
3618  }
3619
3620  // Perform semantic checking on the function declaration.
3621  bool OverloadableAttrRequired = false; // FIXME: HACK!
3622  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3623                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3624
3625  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3626          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3627         "previous declaration set still overloaded");
3628
3629  NamedDecl *PrincipalDecl = (FunctionTemplate
3630                              ? cast<NamedDecl>(FunctionTemplate)
3631                              : NewFD);
3632
3633  if (isFriend && Redeclaration) {
3634    AccessSpecifier Access = AS_public;
3635    if (!NewFD->isInvalidDecl())
3636      Access = NewFD->getPreviousDeclaration()->getAccess();
3637
3638    NewFD->setAccess(Access);
3639    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3640
3641    PrincipalDecl->setObjectOfFriendDecl(true);
3642  }
3643
3644  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3645      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3646    PrincipalDecl->setNonMemberOperator();
3647
3648  // If we have a function template, check the template parameter
3649  // list. This will check and merge default template arguments.
3650  if (FunctionTemplate) {
3651    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3652    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3653                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3654             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3655                                                : TPC_FunctionTemplate);
3656  }
3657
3658  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3659    // Fake up an access specifier if it's supposed to be a class member.
3660    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3661      NewFD->setAccess(AS_public);
3662
3663    // An out-of-line member function declaration must also be a
3664    // definition (C++ [dcl.meaning]p1).
3665    // Note that this is not the case for explicit specializations of
3666    // function templates or member functions of class templates, per
3667    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3668    // for compatibility with old SWIG code which likes to generate them.
3669    if (!IsFunctionDefinition && !isFriend &&
3670        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3671      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3672        << D.getCXXScopeSpec().getRange();
3673    }
3674    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3675      // The user tried to provide an out-of-line definition for a
3676      // function that is a member of a class or namespace, but there
3677      // was no such member function declared (C++ [class.mfct]p2,
3678      // C++ [namespace.memdef]p2). For example:
3679      //
3680      // class X {
3681      //   void f() const;
3682      // };
3683      //
3684      // void X::f() { } // ill-formed
3685      //
3686      // Complain about this problem, and attempt to suggest close
3687      // matches (e.g., those that differ only in cv-qualifiers and
3688      // whether the parameter types are references).
3689      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3690        << Name << DC << D.getCXXScopeSpec().getRange();
3691      NewFD->setInvalidDecl();
3692
3693      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3694                        ForRedeclaration);
3695      LookupQualifiedName(Prev, DC);
3696      assert(!Prev.isAmbiguous() &&
3697             "Cannot have an ambiguity in previous-declaration lookup");
3698      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3699           Func != FuncEnd; ++Func) {
3700        if (isa<FunctionDecl>(*Func) &&
3701            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3702          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3703      }
3704    }
3705  }
3706
3707  // Handle attributes. We need to have merged decls when handling attributes
3708  // (for example to check for conflicts, etc).
3709  // FIXME: This needs to happen before we merge declarations. Then,
3710  // let attribute merging cope with attribute conflicts.
3711  ProcessDeclAttributes(S, NewFD, D);
3712
3713  // attributes declared post-definition are currently ignored
3714  // FIXME: This should happen during attribute merging
3715  if (Redeclaration && Previous.isSingleResult()) {
3716    const FunctionDecl *Def;
3717    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3718    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3719      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3720      Diag(Def->getLocation(), diag::note_previous_definition);
3721    }
3722  }
3723
3724  AddKnownFunctionAttributes(NewFD);
3725
3726  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3727    // If a function name is overloadable in C, then every function
3728    // with that name must be marked "overloadable".
3729    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3730      << Redeclaration << NewFD;
3731    if (!Previous.empty())
3732      Diag(Previous.getRepresentativeDecl()->getLocation(),
3733           diag::note_attribute_overloadable_prev_overload);
3734    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3735  }
3736
3737  if (NewFD->hasAttr<OverloadableAttr>() &&
3738      !NewFD->getType()->getAs<FunctionProtoType>()) {
3739    Diag(NewFD->getLocation(),
3740         diag::err_attribute_overloadable_no_prototype)
3741      << NewFD;
3742
3743    // Turn this into a variadic function with no parameters.
3744    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3745    QualType R = Context.getFunctionType(FT->getResultType(),
3746                                         0, 0, true, 0, false, false, 0, 0,
3747                                         FT->getExtInfo());
3748    NewFD->setType(R);
3749  }
3750
3751  // If there's a #pragma GCC visibility in scope, and this isn't a class
3752  // member, set the visibility of this function.
3753  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3754    AddPushedVisibilityAttribute(NewFD);
3755
3756  // If this is a locally-scoped extern C function, update the
3757  // map of such names.
3758  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3759      && !NewFD->isInvalidDecl())
3760    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3761
3762  // Set this FunctionDecl's range up to the right paren.
3763  NewFD->setLocEnd(D.getSourceRange().getEnd());
3764
3765  if (FunctionTemplate && NewFD->isInvalidDecl())
3766    FunctionTemplate->setInvalidDecl();
3767
3768  if (FunctionTemplate)
3769    return FunctionTemplate;
3770
3771  MarkUnusedFileScopedDecl(NewFD);
3772
3773  return NewFD;
3774}
3775
3776/// \brief Perform semantic checking of a new function declaration.
3777///
3778/// Performs semantic analysis of the new function declaration
3779/// NewFD. This routine performs all semantic checking that does not
3780/// require the actual declarator involved in the declaration, and is
3781/// used both for the declaration of functions as they are parsed
3782/// (called via ActOnDeclarator) and for the declaration of functions
3783/// that have been instantiated via C++ template instantiation (called
3784/// via InstantiateDecl).
3785///
3786/// \param IsExplicitSpecialiation whether this new function declaration is
3787/// an explicit specialization of the previous declaration.
3788///
3789/// This sets NewFD->isInvalidDecl() to true if there was an error.
3790void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3791                                    LookupResult &Previous,
3792                                    bool IsExplicitSpecialization,
3793                                    bool &Redeclaration,
3794                                    bool &OverloadableAttrRequired) {
3795  // If NewFD is already known erroneous, don't do any of this checking.
3796  if (NewFD->isInvalidDecl()) {
3797    // If this is a class member, mark the class invalid immediately.
3798    // This avoids some consistency errors later.
3799    if (isa<CXXMethodDecl>(NewFD))
3800      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3801
3802    return;
3803  }
3804
3805  if (NewFD->getResultType()->isVariablyModifiedType()) {
3806    // Functions returning a variably modified type violate C99 6.7.5.2p2
3807    // because all functions have linkage.
3808    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3809    return NewFD->setInvalidDecl();
3810  }
3811
3812  if (NewFD->isMain())
3813    CheckMain(NewFD);
3814
3815  // Check for a previous declaration of this name.
3816  if (Previous.empty() && NewFD->isExternC()) {
3817    // Since we did not find anything by this name and we're declaring
3818    // an extern "C" function, look for a non-visible extern "C"
3819    // declaration with the same name.
3820    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3821      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3822    if (Pos != LocallyScopedExternalDecls.end())
3823      Previous.addDecl(Pos->second);
3824  }
3825
3826  // Merge or overload the declaration with an existing declaration of
3827  // the same name, if appropriate.
3828  if (!Previous.empty()) {
3829    // Determine whether NewFD is an overload of PrevDecl or
3830    // a declaration that requires merging. If it's an overload,
3831    // there's no more work to do here; we'll just add the new
3832    // function to the scope.
3833
3834    NamedDecl *OldDecl = 0;
3835    if (!AllowOverloadingOfFunction(Previous, Context)) {
3836      Redeclaration = true;
3837      OldDecl = Previous.getFoundDecl();
3838    } else {
3839      if (!getLangOptions().CPlusPlus)
3840        OverloadableAttrRequired = true;
3841
3842      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3843                            /*NewIsUsingDecl*/ false)) {
3844      case Ovl_Match:
3845        Redeclaration = true;
3846        break;
3847
3848      case Ovl_NonFunction:
3849        Redeclaration = true;
3850        break;
3851
3852      case Ovl_Overload:
3853        Redeclaration = false;
3854        break;
3855      }
3856    }
3857
3858    if (Redeclaration) {
3859      // NewFD and OldDecl represent declarations that need to be
3860      // merged.
3861      if (MergeFunctionDecl(NewFD, OldDecl))
3862        return NewFD->setInvalidDecl();
3863
3864      Previous.clear();
3865      Previous.addDecl(OldDecl);
3866
3867      if (FunctionTemplateDecl *OldTemplateDecl
3868                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3869        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3870        FunctionTemplateDecl *NewTemplateDecl
3871          = NewFD->getDescribedFunctionTemplate();
3872        assert(NewTemplateDecl && "Template/non-template mismatch");
3873        if (CXXMethodDecl *Method
3874              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3875          Method->setAccess(OldTemplateDecl->getAccess());
3876          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3877        }
3878
3879        // If this is an explicit specialization of a member that is a function
3880        // template, mark it as a member specialization.
3881        if (IsExplicitSpecialization &&
3882            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3883          NewTemplateDecl->setMemberSpecialization();
3884          assert(OldTemplateDecl->isMemberSpecialization());
3885        }
3886      } else {
3887        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3888          NewFD->setAccess(OldDecl->getAccess());
3889        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3890      }
3891    }
3892  }
3893
3894  // Semantic checking for this function declaration (in isolation).
3895  if (getLangOptions().CPlusPlus) {
3896    // C++-specific checks.
3897    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3898      CheckConstructor(Constructor);
3899    } else if (CXXDestructorDecl *Destructor =
3900                dyn_cast<CXXDestructorDecl>(NewFD)) {
3901      CXXRecordDecl *Record = Destructor->getParent();
3902      QualType ClassType = Context.getTypeDeclType(Record);
3903
3904      // FIXME: Shouldn't we be able to perform this check even when the class
3905      // type is dependent? Both gcc and edg can handle that.
3906      if (!ClassType->isDependentType()) {
3907        DeclarationName Name
3908          = Context.DeclarationNames.getCXXDestructorName(
3909                                        Context.getCanonicalType(ClassType));
3910//         NewFD->getDeclName().dump();
3911//         Name.dump();
3912        if (NewFD->getDeclName() != Name) {
3913          Diag(NewFD->getLocation(), diag::err_destructor_name);
3914          return NewFD->setInvalidDecl();
3915        }
3916      }
3917
3918      Record->setUserDeclaredDestructor(true);
3919      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3920      // user-defined destructor.
3921      Record->setPOD(false);
3922
3923      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3924      // declared destructor.
3925      // FIXME: C++0x: don't do this for "= default" destructors
3926      Record->setHasTrivialDestructor(false);
3927    } else if (CXXConversionDecl *Conversion
3928               = dyn_cast<CXXConversionDecl>(NewFD)) {
3929      ActOnConversionDeclarator(Conversion);
3930    }
3931
3932    // Find any virtual functions that this function overrides.
3933    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3934      if (!Method->isFunctionTemplateSpecialization() &&
3935          !Method->getDescribedFunctionTemplate())
3936        AddOverriddenMethods(Method->getParent(), Method);
3937    }
3938
3939    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3940    if (NewFD->isOverloadedOperator() &&
3941        CheckOverloadedOperatorDeclaration(NewFD))
3942      return NewFD->setInvalidDecl();
3943
3944    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3945    if (NewFD->getLiteralIdentifier() &&
3946        CheckLiteralOperatorDeclaration(NewFD))
3947      return NewFD->setInvalidDecl();
3948
3949    // In C++, check default arguments now that we have merged decls. Unless
3950    // the lexical context is the class, because in this case this is done
3951    // during delayed parsing anyway.
3952    if (!CurContext->isRecord())
3953      CheckCXXDefaultArguments(NewFD);
3954  }
3955}
3956
3957void Sema::CheckMain(FunctionDecl* FD) {
3958  // C++ [basic.start.main]p3:  A program that declares main to be inline
3959  //   or static is ill-formed.
3960  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3961  //   shall not appear in a declaration of main.
3962  // static main is not an error under C99, but we should warn about it.
3963  bool isInline = FD->isInlineSpecified();
3964  bool isStatic = FD->getStorageClass() == SC_Static;
3965  if (isInline || isStatic) {
3966    unsigned diagID = diag::warn_unusual_main_decl;
3967    if (isInline || getLangOptions().CPlusPlus)
3968      diagID = diag::err_unusual_main_decl;
3969
3970    int which = isStatic + (isInline << 1) - 1;
3971    Diag(FD->getLocation(), diagID) << which;
3972  }
3973
3974  QualType T = FD->getType();
3975  assert(T->isFunctionType() && "function decl is not of function type");
3976  const FunctionType* FT = T->getAs<FunctionType>();
3977
3978  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3979    // TODO: add a replacement fixit to turn the return type into 'int'.
3980    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3981    FD->setInvalidDecl(true);
3982  }
3983
3984  // Treat protoless main() as nullary.
3985  if (isa<FunctionNoProtoType>(FT)) return;
3986
3987  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3988  unsigned nparams = FTP->getNumArgs();
3989  assert(FD->getNumParams() == nparams);
3990
3991  bool HasExtraParameters = (nparams > 3);
3992
3993  // Darwin passes an undocumented fourth argument of type char**.  If
3994  // other platforms start sprouting these, the logic below will start
3995  // getting shifty.
3996  if (nparams == 4 &&
3997      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3998    HasExtraParameters = false;
3999
4000  if (HasExtraParameters) {
4001    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4002    FD->setInvalidDecl(true);
4003    nparams = 3;
4004  }
4005
4006  // FIXME: a lot of the following diagnostics would be improved
4007  // if we had some location information about types.
4008
4009  QualType CharPP =
4010    Context.getPointerType(Context.getPointerType(Context.CharTy));
4011  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4012
4013  for (unsigned i = 0; i < nparams; ++i) {
4014    QualType AT = FTP->getArgType(i);
4015
4016    bool mismatch = true;
4017
4018    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4019      mismatch = false;
4020    else if (Expected[i] == CharPP) {
4021      // As an extension, the following forms are okay:
4022      //   char const **
4023      //   char const * const *
4024      //   char * const *
4025
4026      QualifierCollector qs;
4027      const PointerType* PT;
4028      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4029          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4030          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4031        qs.removeConst();
4032        mismatch = !qs.empty();
4033      }
4034    }
4035
4036    if (mismatch) {
4037      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4038      // TODO: suggest replacing given type with expected type
4039      FD->setInvalidDecl(true);
4040    }
4041  }
4042
4043  if (nparams == 1 && !FD->isInvalidDecl()) {
4044    Diag(FD->getLocation(), diag::warn_main_one_arg);
4045  }
4046}
4047
4048bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4049  // FIXME: Need strict checking.  In C89, we need to check for
4050  // any assignment, increment, decrement, function-calls, or
4051  // commas outside of a sizeof.  In C99, it's the same list,
4052  // except that the aforementioned are allowed in unevaluated
4053  // expressions.  Everything else falls under the
4054  // "may accept other forms of constant expressions" exception.
4055  // (We never end up here for C++, so the constant expression
4056  // rules there don't matter.)
4057  if (Init->isConstantInitializer(Context, false))
4058    return false;
4059  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4060    << Init->getSourceRange();
4061  return true;
4062}
4063
4064void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4065  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4066}
4067
4068/// AddInitializerToDecl - Adds the initializer Init to the
4069/// declaration dcl. If DirectInit is true, this is C++ direct
4070/// initialization rather than copy initialization.
4071void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4072  // If there is no declaration, there was an error parsing it.  Just ignore
4073  // the initializer.
4074  if (RealDecl == 0)
4075    return;
4076
4077  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4078    // With declarators parsed the way they are, the parser cannot
4079    // distinguish between a normal initializer and a pure-specifier.
4080    // Thus this grotesque test.
4081    IntegerLiteral *IL;
4082    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4083        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4084      CheckPureMethod(Method, Init->getSourceRange());
4085    else {
4086      Diag(Method->getLocation(), diag::err_member_function_initialization)
4087        << Method->getDeclName() << Init->getSourceRange();
4088      Method->setInvalidDecl();
4089    }
4090    return;
4091  }
4092
4093  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4094  if (!VDecl) {
4095    if (getLangOptions().CPlusPlus &&
4096        RealDecl->getLexicalDeclContext()->isRecord() &&
4097        isa<NamedDecl>(RealDecl))
4098      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4099        << cast<NamedDecl>(RealDecl)->getDeclName();
4100    else
4101      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4102    RealDecl->setInvalidDecl();
4103    return;
4104  }
4105
4106
4107
4108  // A definition must end up with a complete type, which means it must be
4109  // complete with the restriction that an array type might be completed by the
4110  // initializer; note that later code assumes this restriction.
4111  QualType BaseDeclType = VDecl->getType();
4112  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4113    BaseDeclType = Array->getElementType();
4114  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4115                          diag::err_typecheck_decl_incomplete_type)) {
4116    RealDecl->setInvalidDecl();
4117    return;
4118  }
4119
4120  // The variable can not have an abstract class type.
4121  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4122                             diag::err_abstract_type_in_decl,
4123                             AbstractVariableType))
4124    VDecl->setInvalidDecl();
4125
4126  const VarDecl *Def;
4127  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4128    Diag(VDecl->getLocation(), diag::err_redefinition)
4129      << VDecl->getDeclName();
4130    Diag(Def->getLocation(), diag::note_previous_definition);
4131    VDecl->setInvalidDecl();
4132    return;
4133  }
4134
4135  // C++ [class.static.data]p4
4136  //   If a static data member is of const integral or const
4137  //   enumeration type, its declaration in the class definition can
4138  //   specify a constant-initializer which shall be an integral
4139  //   constant expression (5.19). In that case, the member can appear
4140  //   in integral constant expressions. The member shall still be
4141  //   defined in a namespace scope if it is used in the program and the
4142  //   namespace scope definition shall not contain an initializer.
4143  //
4144  // We already performed a redefinition check above, but for static
4145  // data members we also need to check whether there was an in-class
4146  // declaration with an initializer.
4147  const VarDecl* PrevInit = 0;
4148  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4149    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4150    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4151    return;
4152  }
4153
4154  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4155    getCurFunction()->setHasBranchProtectedScope();
4156
4157  // Capture the variable that is being initialized and the style of
4158  // initialization.
4159  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4160
4161  // FIXME: Poor source location information.
4162  InitializationKind Kind
4163    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4164                                                   Init->getLocStart(),
4165                                                   Init->getLocEnd())
4166                : InitializationKind::CreateCopy(VDecl->getLocation(),
4167                                                 Init->getLocStart());
4168
4169  // Get the decls type and save a reference for later, since
4170  // CheckInitializerTypes may change it.
4171  QualType DclT = VDecl->getType(), SavT = DclT;
4172  if (VDecl->isBlockVarDecl()) {
4173    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4174      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4175      VDecl->setInvalidDecl();
4176    } else if (!VDecl->isInvalidDecl()) {
4177      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4178      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4179                                                MultiExprArg(*this, &Init, 1),
4180                                                &DclT);
4181      if (Result.isInvalid()) {
4182        VDecl->setInvalidDecl();
4183        return;
4184      }
4185
4186      Init = Result.takeAs<Expr>();
4187
4188      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4189      // Don't check invalid declarations to avoid emitting useless diagnostics.
4190      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4191        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4192          CheckForConstantInitializer(Init, DclT);
4193      }
4194    }
4195  } else if (VDecl->isStaticDataMember() &&
4196             VDecl->getLexicalDeclContext()->isRecord()) {
4197    // This is an in-class initialization for a static data member, e.g.,
4198    //
4199    // struct S {
4200    //   static const int value = 17;
4201    // };
4202
4203    // Attach the initializer
4204    VDecl->setInit(Init);
4205
4206    // C++ [class.mem]p4:
4207    //   A member-declarator can contain a constant-initializer only
4208    //   if it declares a static member (9.4) of const integral or
4209    //   const enumeration type, see 9.4.2.
4210    QualType T = VDecl->getType();
4211    if (!T->isDependentType() &&
4212        (!Context.getCanonicalType(T).isConstQualified() ||
4213         !T->isIntegralOrEnumerationType())) {
4214      Diag(VDecl->getLocation(), diag::err_member_initialization)
4215        << VDecl->getDeclName() << Init->getSourceRange();
4216      VDecl->setInvalidDecl();
4217    } else {
4218      // C++ [class.static.data]p4:
4219      //   If a static data member is of const integral or const
4220      //   enumeration type, its declaration in the class definition
4221      //   can specify a constant-initializer which shall be an
4222      //   integral constant expression (5.19).
4223      if (!Init->isTypeDependent() &&
4224          !Init->getType()->isIntegralOrEnumerationType()) {
4225        // We have a non-dependent, non-integral or enumeration type.
4226        Diag(Init->getSourceRange().getBegin(),
4227             diag::err_in_class_initializer_non_integral_type)
4228          << Init->getType() << Init->getSourceRange();
4229        VDecl->setInvalidDecl();
4230      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4231        // Check whether the expression is a constant expression.
4232        llvm::APSInt Value;
4233        SourceLocation Loc;
4234        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4235          Diag(Loc, diag::err_in_class_initializer_non_constant)
4236            << Init->getSourceRange();
4237          VDecl->setInvalidDecl();
4238        } else if (!VDecl->getType()->isDependentType())
4239          ImpCastExprToType(Init, VDecl->getType(), CK_IntegralCast);
4240      }
4241    }
4242  } else if (VDecl->isFileVarDecl()) {
4243    if (VDecl->getStorageClass() == SC_Extern &&
4244        (!getLangOptions().CPlusPlus ||
4245         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4246      Diag(VDecl->getLocation(), diag::warn_extern_init);
4247    if (!VDecl->isInvalidDecl()) {
4248      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4249      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4250                                                MultiExprArg(*this, &Init, 1),
4251                                                &DclT);
4252      if (Result.isInvalid()) {
4253        VDecl->setInvalidDecl();
4254        return;
4255      }
4256
4257      Init = Result.takeAs<Expr>();
4258    }
4259
4260    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4261    // Don't check invalid declarations to avoid emitting useless diagnostics.
4262    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4263      // C99 6.7.8p4. All file scoped initializers need to be constant.
4264      CheckForConstantInitializer(Init, DclT);
4265    }
4266  }
4267  // If the type changed, it means we had an incomplete type that was
4268  // completed by the initializer. For example:
4269  //   int ary[] = { 1, 3, 5 };
4270  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4271  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4272    VDecl->setType(DclT);
4273    Init->setType(DclT);
4274  }
4275
4276  Init = MaybeCreateCXXExprWithTemporaries(Init);
4277  // Attach the initializer to the decl.
4278  VDecl->setInit(Init);
4279
4280  if (getLangOptions().CPlusPlus) {
4281    if (!VDecl->isInvalidDecl() &&
4282        !VDecl->getDeclContext()->isDependentContext() &&
4283        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4284        !Init->isConstantInitializer(Context,
4285                                     VDecl->getType()->isReferenceType()))
4286      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4287        << Init->getSourceRange();
4288
4289    // Make sure we mark the destructor as used if necessary.
4290    QualType InitType = VDecl->getType();
4291    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4292      InitType = Context.getBaseElementType(Array);
4293    if (const RecordType *Record = InitType->getAs<RecordType>())
4294      FinalizeVarWithDestructor(VDecl, Record);
4295  }
4296
4297  return;
4298}
4299
4300/// ActOnInitializerError - Given that there was an error parsing an
4301/// initializer for the given declaration, try to return to some form
4302/// of sanity.
4303void Sema::ActOnInitializerError(Decl *D) {
4304  // Our main concern here is re-establishing invariants like "a
4305  // variable's type is either dependent or complete".
4306  if (!D || D->isInvalidDecl()) return;
4307
4308  VarDecl *VD = dyn_cast<VarDecl>(D);
4309  if (!VD) return;
4310
4311  QualType Ty = VD->getType();
4312  if (Ty->isDependentType()) return;
4313
4314  // Require a complete type.
4315  if (RequireCompleteType(VD->getLocation(),
4316                          Context.getBaseElementType(Ty),
4317                          diag::err_typecheck_decl_incomplete_type)) {
4318    VD->setInvalidDecl();
4319    return;
4320  }
4321
4322  // Require an abstract type.
4323  if (RequireNonAbstractType(VD->getLocation(), Ty,
4324                             diag::err_abstract_type_in_decl,
4325                             AbstractVariableType)) {
4326    VD->setInvalidDecl();
4327    return;
4328  }
4329
4330  // Don't bother complaining about constructors or destructors,
4331  // though.
4332}
4333
4334void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4335                                  bool TypeContainsUndeducedAuto) {
4336  // If there is no declaration, there was an error parsing it. Just ignore it.
4337  if (RealDecl == 0)
4338    return;
4339
4340  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4341    QualType Type = Var->getType();
4342
4343    // C++0x [dcl.spec.auto]p3
4344    if (TypeContainsUndeducedAuto) {
4345      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4346        << Var->getDeclName() << Type;
4347      Var->setInvalidDecl();
4348      return;
4349    }
4350
4351    switch (Var->isThisDeclarationADefinition()) {
4352    case VarDecl::Definition:
4353      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4354        break;
4355
4356      // We have an out-of-line definition of a static data member
4357      // that has an in-class initializer, so we type-check this like
4358      // a declaration.
4359      //
4360      // Fall through
4361
4362    case VarDecl::DeclarationOnly:
4363      // It's only a declaration.
4364
4365      // Block scope. C99 6.7p7: If an identifier for an object is
4366      // declared with no linkage (C99 6.2.2p6), the type for the
4367      // object shall be complete.
4368      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4369          !Var->getLinkage() && !Var->isInvalidDecl() &&
4370          RequireCompleteType(Var->getLocation(), Type,
4371                              diag::err_typecheck_decl_incomplete_type))
4372        Var->setInvalidDecl();
4373
4374      // Make sure that the type is not abstract.
4375      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4376          RequireNonAbstractType(Var->getLocation(), Type,
4377                                 diag::err_abstract_type_in_decl,
4378                                 AbstractVariableType))
4379        Var->setInvalidDecl();
4380      return;
4381
4382    case VarDecl::TentativeDefinition:
4383      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4384      // object that has file scope without an initializer, and without a
4385      // storage-class specifier or with the storage-class specifier "static",
4386      // constitutes a tentative definition. Note: A tentative definition with
4387      // external linkage is valid (C99 6.2.2p5).
4388      if (!Var->isInvalidDecl()) {
4389        if (const IncompleteArrayType *ArrayT
4390                                    = Context.getAsIncompleteArrayType(Type)) {
4391          if (RequireCompleteType(Var->getLocation(),
4392                                  ArrayT->getElementType(),
4393                                  diag::err_illegal_decl_array_incomplete_type))
4394            Var->setInvalidDecl();
4395        } else if (Var->getStorageClass() == SC_Static) {
4396          // C99 6.9.2p3: If the declaration of an identifier for an object is
4397          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4398          // declared type shall not be an incomplete type.
4399          // NOTE: code such as the following
4400          //     static struct s;
4401          //     struct s { int a; };
4402          // is accepted by gcc. Hence here we issue a warning instead of
4403          // an error and we do not invalidate the static declaration.
4404          // NOTE: to avoid multiple warnings, only check the first declaration.
4405          if (Var->getPreviousDeclaration() == 0)
4406            RequireCompleteType(Var->getLocation(), Type,
4407                                diag::ext_typecheck_decl_incomplete_type);
4408        }
4409      }
4410
4411      // Record the tentative definition; we're done.
4412      if (!Var->isInvalidDecl())
4413        TentativeDefinitions.push_back(Var);
4414      return;
4415    }
4416
4417    // Provide a specific diagnostic for uninitialized variable
4418    // definitions with incomplete array type.
4419    if (Type->isIncompleteArrayType()) {
4420      Diag(Var->getLocation(),
4421           diag::err_typecheck_incomplete_array_needs_initializer);
4422      Var->setInvalidDecl();
4423      return;
4424    }
4425
4426    // Provide a specific diagnostic for uninitialized variable
4427    // definitions with reference type.
4428    if (Type->isReferenceType()) {
4429      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4430        << Var->getDeclName()
4431        << SourceRange(Var->getLocation(), Var->getLocation());
4432      Var->setInvalidDecl();
4433      return;
4434    }
4435
4436    // Do not attempt to type-check the default initializer for a
4437    // variable with dependent type.
4438    if (Type->isDependentType())
4439      return;
4440
4441    if (Var->isInvalidDecl())
4442      return;
4443
4444    if (RequireCompleteType(Var->getLocation(),
4445                            Context.getBaseElementType(Type),
4446                            diag::err_typecheck_decl_incomplete_type)) {
4447      Var->setInvalidDecl();
4448      return;
4449    }
4450
4451    // The variable can not have an abstract class type.
4452    if (RequireNonAbstractType(Var->getLocation(), Type,
4453                               diag::err_abstract_type_in_decl,
4454                               AbstractVariableType)) {
4455      Var->setInvalidDecl();
4456      return;
4457    }
4458
4459    const RecordType *Record
4460      = Context.getBaseElementType(Type)->getAs<RecordType>();
4461    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4462        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4463      // C++03 [dcl.init]p9:
4464      //   If no initializer is specified for an object, and the
4465      //   object is of (possibly cv-qualified) non-POD class type (or
4466      //   array thereof), the object shall be default-initialized; if
4467      //   the object is of const-qualified type, the underlying class
4468      //   type shall have a user-declared default
4469      //   constructor. Otherwise, if no initializer is specified for
4470      //   a non- static object, the object and its subobjects, if
4471      //   any, have an indeterminate initial value); if the object
4472      //   or any of its subobjects are of const-qualified type, the
4473      //   program is ill-formed.
4474      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4475    } else {
4476      // Check for jumps past the implicit initializer.  C++0x
4477      // clarifies that this applies to a "variable with automatic
4478      // storage duration", not a "local variable".
4479      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4480        getCurFunction()->setHasBranchProtectedScope();
4481
4482      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4483      InitializationKind Kind
4484        = InitializationKind::CreateDefault(Var->getLocation());
4485
4486      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4487      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4488                                        MultiExprArg(*this, 0, 0));
4489      if (Init.isInvalid())
4490        Var->setInvalidDecl();
4491      else if (Init.get()) {
4492        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4493
4494        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4495            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4496            !Var->getDeclContext()->isDependentContext() &&
4497            !Var->getInit()->isConstantInitializer(Context, false))
4498          Diag(Var->getLocation(), diag::warn_global_constructor);
4499      }
4500    }
4501
4502    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4503      FinalizeVarWithDestructor(Var, Record);
4504  }
4505}
4506
4507Sema::DeclGroupPtrTy
4508Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4509                              Decl **Group, unsigned NumDecls) {
4510  llvm::SmallVector<Decl*, 8> Decls;
4511
4512  if (DS.isTypeSpecOwned())
4513    Decls.push_back(DS.getRepAsDecl());
4514
4515  for (unsigned i = 0; i != NumDecls; ++i)
4516    if (Decl *D = Group[i])
4517      Decls.push_back(D);
4518
4519  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4520                                                   Decls.data(), Decls.size()));
4521}
4522
4523
4524/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4525/// to introduce parameters into function prototype scope.
4526Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4527  const DeclSpec &DS = D.getDeclSpec();
4528
4529  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4530  VarDecl::StorageClass StorageClass = SC_None;
4531  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4532  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4533    StorageClass = SC_Register;
4534    StorageClassAsWritten = SC_Register;
4535  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4536    Diag(DS.getStorageClassSpecLoc(),
4537         diag::err_invalid_storage_class_in_func_decl);
4538    D.getMutableDeclSpec().ClearStorageClassSpecs();
4539  }
4540
4541  if (D.getDeclSpec().isThreadSpecified())
4542    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4543
4544  DiagnoseFunctionSpecifiers(D);
4545
4546  // Check that there are no default arguments inside the type of this
4547  // parameter (C++ only).
4548  if (getLangOptions().CPlusPlus)
4549    CheckExtraCXXDefaultArguments(D);
4550
4551  TagDecl *OwnedDecl = 0;
4552  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4553  QualType parmDeclType = TInfo->getType();
4554
4555  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4556    // C++ [dcl.fct]p6:
4557    //   Types shall not be defined in return or parameter types.
4558    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4559      << Context.getTypeDeclType(OwnedDecl);
4560  }
4561
4562  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4563  IdentifierInfo *II = D.getIdentifier();
4564  if (II) {
4565    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4566                   ForRedeclaration);
4567    LookupName(R, S);
4568    if (R.isSingleResult()) {
4569      NamedDecl *PrevDecl = R.getFoundDecl();
4570      if (PrevDecl->isTemplateParameter()) {
4571        // Maybe we will complain about the shadowed template parameter.
4572        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4573        // Just pretend that we didn't see the previous declaration.
4574        PrevDecl = 0;
4575      } else if (S->isDeclScope(PrevDecl)) {
4576        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4577        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4578
4579        // Recover by removing the name
4580        II = 0;
4581        D.SetIdentifier(0, D.getIdentifierLoc());
4582        D.setInvalidType(true);
4583      }
4584    }
4585  }
4586
4587  // Temporarily put parameter variables in the translation unit, not
4588  // the enclosing context.  This prevents them from accidentally
4589  // looking like class members in C++.
4590  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4591                                    TInfo, parmDeclType, II,
4592                                    D.getIdentifierLoc(),
4593                                    StorageClass, StorageClassAsWritten);
4594
4595  if (D.isInvalidType())
4596    New->setInvalidDecl();
4597
4598  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4599  if (D.getCXXScopeSpec().isSet()) {
4600    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4601      << D.getCXXScopeSpec().getRange();
4602    New->setInvalidDecl();
4603  }
4604
4605  // Add the parameter declaration into this scope.
4606  S->AddDecl(New);
4607  if (II)
4608    IdResolver.AddDecl(New);
4609
4610  ProcessDeclAttributes(S, New, D);
4611
4612  if (New->hasAttr<BlocksAttr>()) {
4613    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4614  }
4615  return New;
4616}
4617
4618/// \brief Synthesizes a variable for a parameter arising from a
4619/// typedef.
4620ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4621                                              SourceLocation Loc,
4622                                              QualType T) {
4623  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4624                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4625                                           SC_None, SC_None, 0);
4626  Param->setImplicit();
4627  return Param;
4628}
4629
4630void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4631                                    ParmVarDecl * const *ParamEnd) {
4632  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4633        Diagnostic::Ignored)
4634    return;
4635
4636  // Don't diagnose unused-parameter errors in template instantiations; we
4637  // will already have done so in the template itself.
4638  if (!ActiveTemplateInstantiations.empty())
4639    return;
4640
4641  for (; Param != ParamEnd; ++Param) {
4642    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4643        !(*Param)->hasAttr<UnusedAttr>()) {
4644      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4645        << (*Param)->getDeclName();
4646    }
4647  }
4648}
4649
4650ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4651                                  TypeSourceInfo *TSInfo, QualType T,
4652                                  IdentifierInfo *Name,
4653                                  SourceLocation NameLoc,
4654                                  VarDecl::StorageClass StorageClass,
4655                                  VarDecl::StorageClass StorageClassAsWritten) {
4656  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4657                                         adjustParameterType(T), TSInfo,
4658                                         StorageClass, StorageClassAsWritten,
4659                                         0);
4660
4661  // Parameters can not be abstract class types.
4662  // For record types, this is done by the AbstractClassUsageDiagnoser once
4663  // the class has been completely parsed.
4664  if (!CurContext->isRecord() &&
4665      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4666                             AbstractParamType))
4667    New->setInvalidDecl();
4668
4669  // Parameter declarators cannot be interface types. All ObjC objects are
4670  // passed by reference.
4671  if (T->isObjCObjectType()) {
4672    Diag(NameLoc,
4673         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4674    New->setInvalidDecl();
4675  }
4676
4677  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4678  // duration shall not be qualified by an address-space qualifier."
4679  // Since all parameters have automatic store duration, they can not have
4680  // an address space.
4681  if (T.getAddressSpace() != 0) {
4682    Diag(NameLoc, diag::err_arg_with_address_space);
4683    New->setInvalidDecl();
4684  }
4685
4686  return New;
4687}
4688
4689void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4690                                           SourceLocation LocAfterDecls) {
4691  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4692         "Not a function declarator!");
4693  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4694
4695  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4696  // for a K&R function.
4697  if (!FTI.hasPrototype) {
4698    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4699      --i;
4700      if (FTI.ArgInfo[i].Param == 0) {
4701        llvm::SmallString<256> Code;
4702        llvm::raw_svector_ostream(Code) << "  int "
4703                                        << FTI.ArgInfo[i].Ident->getName()
4704                                        << ";\n";
4705        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4706          << FTI.ArgInfo[i].Ident
4707          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4708
4709        // Implicitly declare the argument as type 'int' for lack of a better
4710        // type.
4711        DeclSpec DS;
4712        const char* PrevSpec; // unused
4713        unsigned DiagID; // unused
4714        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4715                           PrevSpec, DiagID);
4716        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4717        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4718        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4719      }
4720    }
4721  }
4722}
4723
4724Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4725                                         Declarator &D) {
4726  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4727  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4728         "Not a function declarator!");
4729  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4730
4731  if (FTI.hasPrototype) {
4732    // FIXME: Diagnose arguments without names in C.
4733  }
4734
4735  Scope *ParentScope = FnBodyScope->getParent();
4736
4737  Decl *DP = HandleDeclarator(ParentScope, D,
4738                              MultiTemplateParamsArg(*this),
4739                              /*IsFunctionDefinition=*/true);
4740  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4741}
4742
4743static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4744  // Don't warn about invalid declarations.
4745  if (FD->isInvalidDecl())
4746    return false;
4747
4748  // Or declarations that aren't global.
4749  if (!FD->isGlobal())
4750    return false;
4751
4752  // Don't warn about C++ member functions.
4753  if (isa<CXXMethodDecl>(FD))
4754    return false;
4755
4756  // Don't warn about 'main'.
4757  if (FD->isMain())
4758    return false;
4759
4760  // Don't warn about inline functions.
4761  if (FD->isInlineSpecified())
4762    return false;
4763
4764  // Don't warn about function templates.
4765  if (FD->getDescribedFunctionTemplate())
4766    return false;
4767
4768  // Don't warn about function template specializations.
4769  if (FD->isFunctionTemplateSpecialization())
4770    return false;
4771
4772  bool MissingPrototype = true;
4773  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4774       Prev; Prev = Prev->getPreviousDeclaration()) {
4775    // Ignore any declarations that occur in function or method
4776    // scope, because they aren't visible from the header.
4777    if (Prev->getDeclContext()->isFunctionOrMethod())
4778      continue;
4779
4780    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4781    break;
4782  }
4783
4784  return MissingPrototype;
4785}
4786
4787Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4788  // Clear the last template instantiation error context.
4789  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4790
4791  if (!D)
4792    return D;
4793  FunctionDecl *FD = 0;
4794
4795  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4796    FD = FunTmpl->getTemplatedDecl();
4797  else
4798    FD = cast<FunctionDecl>(D);
4799
4800  // Enter a new function scope
4801  PushFunctionScope();
4802
4803  // See if this is a redefinition.
4804  // But don't complain if we're in GNU89 mode and the previous definition
4805  // was an extern inline function.
4806  const FunctionDecl *Definition;
4807  if (FD->hasBody(Definition) &&
4808      !canRedefineFunction(Definition, getLangOptions())) {
4809    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4810        Definition->getStorageClass() == SC_Extern)
4811      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4812        << FD->getDeclName() << getLangOptions().CPlusPlus;
4813    else
4814      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4815    Diag(Definition->getLocation(), diag::note_previous_definition);
4816  }
4817
4818  // Builtin functions cannot be defined.
4819  if (unsigned BuiltinID = FD->getBuiltinID()) {
4820    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4821      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4822      FD->setInvalidDecl();
4823    }
4824  }
4825
4826  // The return type of a function definition must be complete
4827  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4828  QualType ResultType = FD->getResultType();
4829  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4830      !FD->isInvalidDecl() &&
4831      RequireCompleteType(FD->getLocation(), ResultType,
4832                          diag::err_func_def_incomplete_result))
4833    FD->setInvalidDecl();
4834
4835  // GNU warning -Wmissing-prototypes:
4836  //   Warn if a global function is defined without a previous
4837  //   prototype declaration. This warning is issued even if the
4838  //   definition itself provides a prototype. The aim is to detect
4839  //   global functions that fail to be declared in header files.
4840  if (ShouldWarnAboutMissingPrototype(FD))
4841    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4842
4843  if (FnBodyScope)
4844    PushDeclContext(FnBodyScope, FD);
4845
4846  // Check the validity of our function parameters
4847  CheckParmsForFunctionDef(FD);
4848
4849  bool ShouldCheckShadow =
4850    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4851
4852  // Introduce our parameters into the function scope
4853  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4854    ParmVarDecl *Param = FD->getParamDecl(p);
4855    Param->setOwningFunction(FD);
4856
4857    // If this has an identifier, add it to the scope stack.
4858    if (Param->getIdentifier() && FnBodyScope) {
4859      if (ShouldCheckShadow)
4860        CheckShadow(FnBodyScope, Param);
4861
4862      PushOnScopeChains(Param, FnBodyScope);
4863    }
4864  }
4865
4866  // Checking attributes of current function definition
4867  // dllimport attribute.
4868  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4869  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4870    // dllimport attribute cannot be directly applied to definition.
4871    if (!DA->isInherited()) {
4872      Diag(FD->getLocation(),
4873           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4874        << "dllimport";
4875      FD->setInvalidDecl();
4876      return FD;
4877    }
4878
4879    // Visual C++ appears to not think this is an issue, so only issue
4880    // a warning when Microsoft extensions are disabled.
4881    if (!LangOpts.Microsoft) {
4882      // If a symbol previously declared dllimport is later defined, the
4883      // attribute is ignored in subsequent references, and a warning is
4884      // emitted.
4885      Diag(FD->getLocation(),
4886           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4887        << FD->getName() << "dllimport";
4888    }
4889  }
4890  return FD;
4891}
4892
4893/// \brief Given the set of return statements within a function body,
4894/// compute the variables that are subject to the named return value
4895/// optimization.
4896///
4897/// Each of the variables that is subject to the named return value
4898/// optimization will be marked as NRVO variables in the AST, and any
4899/// return statement that has a marked NRVO variable as its NRVO candidate can
4900/// use the named return value optimization.
4901///
4902/// This function applies a very simplistic algorithm for NRVO: if every return
4903/// statement in the function has the same NRVO candidate, that candidate is
4904/// the NRVO variable.
4905///
4906/// FIXME: Employ a smarter algorithm that accounts for multiple return
4907/// statements and the lifetimes of the NRVO candidates. We should be able to
4908/// find a maximal set of NRVO variables.
4909static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4910  ReturnStmt **Returns = Scope->Returns.data();
4911
4912  const VarDecl *NRVOCandidate = 0;
4913  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4914    if (!Returns[I]->getNRVOCandidate())
4915      return;
4916
4917    if (!NRVOCandidate)
4918      NRVOCandidate = Returns[I]->getNRVOCandidate();
4919    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4920      return;
4921  }
4922
4923  if (NRVOCandidate)
4924    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4925}
4926
4927Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4928  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4929}
4930
4931Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4932                                    bool IsInstantiation) {
4933  FunctionDecl *FD = 0;
4934  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4935  if (FunTmpl)
4936    FD = FunTmpl->getTemplatedDecl();
4937  else
4938    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4939
4940  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4941
4942  if (FD) {
4943    FD->setBody(Body);
4944    if (FD->isMain()) {
4945      // C and C++ allow for main to automagically return 0.
4946      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4947      FD->setHasImplicitReturnZero(true);
4948      WP.disableCheckFallThrough();
4949    }
4950
4951    if (!FD->isInvalidDecl()) {
4952      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4953
4954      // If this is a constructor, we need a vtable.
4955      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4956        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4957
4958      ComputeNRVO(Body, getCurFunction());
4959    }
4960
4961    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4962  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4963    assert(MD == getCurMethodDecl() && "Method parsing confused");
4964    MD->setBody(Body);
4965    MD->setEndLoc(Body->getLocEnd());
4966    if (!MD->isInvalidDecl())
4967      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4968  } else {
4969    return 0;
4970  }
4971
4972  // Verify and clean out per-function state.
4973
4974  // Check goto/label use.
4975  FunctionScopeInfo *CurFn = getCurFunction();
4976  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4977         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
4978    LabelStmt *L = I->second;
4979
4980    // Verify that we have no forward references left.  If so, there was a goto
4981    // or address of a label taken, but no definition of it.  Label fwd
4982    // definitions are indicated with a null substmt.
4983    if (L->getSubStmt() != 0)
4984      continue;
4985
4986    // Emit error.
4987    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4988
4989    // At this point, we have gotos that use the bogus label.  Stitch it into
4990    // the function body so that they aren't leaked and that the AST is well
4991    // formed.
4992    if (Body == 0) {
4993      // The whole function wasn't parsed correctly.
4994      continue;
4995    }
4996
4997    // Otherwise, the body is valid: we want to stitch the label decl into the
4998    // function somewhere so that it is properly owned and so that the goto
4999    // has a valid target.  Do this by creating a new compound stmt with the
5000    // label in it.
5001
5002    // Give the label a sub-statement.
5003    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5004
5005    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5006                               cast<CXXTryStmt>(Body)->getTryBlock() :
5007                               cast<CompoundStmt>(Body);
5008    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5009                                          Compound->body_end());
5010    Elements.push_back(L);
5011    Compound->setStmts(Context, Elements.data(), Elements.size());
5012  }
5013
5014  if (Body) {
5015    // C++ constructors that have function-try-blocks can't have return
5016    // statements in the handlers of that block. (C++ [except.handle]p14)
5017    // Verify this.
5018    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5019      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5020
5021    // Verify that that gotos and switch cases don't jump into scopes illegally.
5022    // Verify that that gotos and switch cases don't jump into scopes illegally.
5023    if (getCurFunction()->NeedsScopeChecking() &&
5024        !dcl->isInvalidDecl() &&
5025        !hasAnyErrorsInThisFunction())
5026      DiagnoseInvalidJumps(Body);
5027
5028    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5029      if (!Destructor->getParent()->isDependentType())
5030        CheckDestructor(Destructor);
5031
5032      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5033                                             Destructor->getParent());
5034    }
5035
5036    // If any errors have occurred, clear out any temporaries that may have
5037    // been leftover. This ensures that these temporaries won't be picked up for
5038    // deletion in some later function.
5039    if (PP.getDiagnostics().hasErrorOccurred())
5040      ExprTemporaries.clear();
5041    else if (!isa<FunctionTemplateDecl>(dcl)) {
5042      // Since the body is valid, issue any analysis-based warnings that are
5043      // enabled.
5044      QualType ResultType;
5045      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5046        AnalysisWarnings.IssueWarnings(WP, FD);
5047      } else {
5048        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5049        AnalysisWarnings.IssueWarnings(WP, MD);
5050      }
5051    }
5052
5053    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5054  }
5055
5056  if (!IsInstantiation)
5057    PopDeclContext();
5058
5059  PopFunctionOrBlockScope();
5060
5061  // If any errors have occurred, clear out any temporaries that may have
5062  // been leftover. This ensures that these temporaries won't be picked up for
5063  // deletion in some later function.
5064  if (getDiagnostics().hasErrorOccurred())
5065    ExprTemporaries.clear();
5066
5067  return dcl;
5068}
5069
5070/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5071/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5072NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5073                                          IdentifierInfo &II, Scope *S) {
5074  // Before we produce a declaration for an implicitly defined
5075  // function, see whether there was a locally-scoped declaration of
5076  // this name as a function or variable. If so, use that
5077  // (non-visible) declaration, and complain about it.
5078  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5079    = LocallyScopedExternalDecls.find(&II);
5080  if (Pos != LocallyScopedExternalDecls.end()) {
5081    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5082    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5083    return Pos->second;
5084  }
5085
5086  // Extension in C99.  Legal in C90, but warn about it.
5087  if (II.getName().startswith("__builtin_"))
5088    Diag(Loc, diag::warn_builtin_unknown) << &II;
5089  else if (getLangOptions().C99)
5090    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5091  else
5092    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5093
5094  // Set a Declarator for the implicit definition: int foo();
5095  const char *Dummy;
5096  DeclSpec DS;
5097  unsigned DiagID;
5098  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5099  Error = Error; // Silence warning.
5100  assert(!Error && "Error setting up implicit decl!");
5101  Declarator D(DS, Declarator::BlockContext);
5102  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5103                                             0, 0, false, SourceLocation(),
5104                                             false, 0,0,0, Loc, Loc, D),
5105                SourceLocation());
5106  D.SetIdentifier(&II, Loc);
5107
5108  // Insert this function into translation-unit scope.
5109
5110  DeclContext *PrevDC = CurContext;
5111  CurContext = Context.getTranslationUnitDecl();
5112
5113  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5114  FD->setImplicit();
5115
5116  CurContext = PrevDC;
5117
5118  AddKnownFunctionAttributes(FD);
5119
5120  return FD;
5121}
5122
5123/// \brief Adds any function attributes that we know a priori based on
5124/// the declaration of this function.
5125///
5126/// These attributes can apply both to implicitly-declared builtins
5127/// (like __builtin___printf_chk) or to library-declared functions
5128/// like NSLog or printf.
5129void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5130  if (FD->isInvalidDecl())
5131    return;
5132
5133  // If this is a built-in function, map its builtin attributes to
5134  // actual attributes.
5135  if (unsigned BuiltinID = FD->getBuiltinID()) {
5136    // Handle printf-formatting attributes.
5137    unsigned FormatIdx;
5138    bool HasVAListArg;
5139    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5140      if (!FD->getAttr<FormatAttr>())
5141        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5142                                                "printf", FormatIdx+1,
5143                                               HasVAListArg ? 0 : FormatIdx+2));
5144    }
5145    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5146                                             HasVAListArg)) {
5147     if (!FD->getAttr<FormatAttr>())
5148       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5149                                              "scanf", FormatIdx+1,
5150                                              HasVAListArg ? 0 : FormatIdx+2));
5151    }
5152
5153    // Mark const if we don't care about errno and that is the only
5154    // thing preventing the function from being const. This allows
5155    // IRgen to use LLVM intrinsics for such functions.
5156    if (!getLangOptions().MathErrno &&
5157        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5158      if (!FD->getAttr<ConstAttr>())
5159        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5160    }
5161
5162    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5163      FD->setType(Context.getNoReturnType(FD->getType()));
5164    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5165      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5166    if (Context.BuiltinInfo.isConst(BuiltinID))
5167      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5168  }
5169
5170  IdentifierInfo *Name = FD->getIdentifier();
5171  if (!Name)
5172    return;
5173  if ((!getLangOptions().CPlusPlus &&
5174       FD->getDeclContext()->isTranslationUnit()) ||
5175      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5176       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5177       LinkageSpecDecl::lang_c)) {
5178    // Okay: this could be a libc/libm/Objective-C function we know
5179    // about.
5180  } else
5181    return;
5182
5183  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5184    // FIXME: NSLog and NSLogv should be target specific
5185    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5186      // FIXME: We known better than our headers.
5187      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5188    } else
5189      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5190                                             "printf", 1,
5191                                             Name->isStr("NSLogv") ? 0 : 2));
5192  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5193    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5194    // target-specific builtins, perhaps?
5195    if (!FD->getAttr<FormatAttr>())
5196      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5197                                             "printf", 2,
5198                                             Name->isStr("vasprintf") ? 0 : 3));
5199  }
5200}
5201
5202TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5203                                    TypeSourceInfo *TInfo) {
5204  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5205  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5206
5207  if (!TInfo) {
5208    assert(D.isInvalidType() && "no declarator info for valid type");
5209    TInfo = Context.getTrivialTypeSourceInfo(T);
5210  }
5211
5212  // Scope manipulation handled by caller.
5213  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5214                                           D.getIdentifierLoc(),
5215                                           D.getIdentifier(),
5216                                           TInfo);
5217
5218  if (const TagType *TT = T->getAs<TagType>()) {
5219    TagDecl *TD = TT->getDecl();
5220
5221    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5222    // keep track of the TypedefDecl.
5223    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5224      TD->setTypedefForAnonDecl(NewTD);
5225  }
5226
5227  if (D.isInvalidType())
5228    NewTD->setInvalidDecl();
5229  return NewTD;
5230}
5231
5232
5233/// \brief Determine whether a tag with a given kind is acceptable
5234/// as a redeclaration of the given tag declaration.
5235///
5236/// \returns true if the new tag kind is acceptable, false otherwise.
5237bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5238                                        TagTypeKind NewTag,
5239                                        SourceLocation NewTagLoc,
5240                                        const IdentifierInfo &Name) {
5241  // C++ [dcl.type.elab]p3:
5242  //   The class-key or enum keyword present in the
5243  //   elaborated-type-specifier shall agree in kind with the
5244  //   declaration to which the name in the elaborated-type-specifier
5245  //   refers. This rule also applies to the form of
5246  //   elaborated-type-specifier that declares a class-name or
5247  //   friend class since it can be construed as referring to the
5248  //   definition of the class. Thus, in any
5249  //   elaborated-type-specifier, the enum keyword shall be used to
5250  //   refer to an enumeration (7.2), the union class-key shall be
5251  //   used to refer to a union (clause 9), and either the class or
5252  //   struct class-key shall be used to refer to a class (clause 9)
5253  //   declared using the class or struct class-key.
5254  TagTypeKind OldTag = Previous->getTagKind();
5255  if (OldTag == NewTag)
5256    return true;
5257
5258  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5259      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5260    // Warn about the struct/class tag mismatch.
5261    bool isTemplate = false;
5262    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5263      isTemplate = Record->getDescribedClassTemplate();
5264
5265    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5266      << (NewTag == TTK_Class)
5267      << isTemplate << &Name
5268      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5269                              OldTag == TTK_Class? "class" : "struct");
5270    Diag(Previous->getLocation(), diag::note_previous_use);
5271    return true;
5272  }
5273  return false;
5274}
5275
5276/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5277/// former case, Name will be non-null.  In the later case, Name will be null.
5278/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5279/// reference/declaration/definition of a tag.
5280Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5281                               SourceLocation KWLoc, CXXScopeSpec &SS,
5282                               IdentifierInfo *Name, SourceLocation NameLoc,
5283                               AttributeList *Attr, AccessSpecifier AS,
5284                               MultiTemplateParamsArg TemplateParameterLists,
5285                               bool &OwnedDecl, bool &IsDependent) {
5286  // If this is not a definition, it must have a name.
5287  assert((Name != 0 || TUK == TUK_Definition) &&
5288         "Nameless record must be a definition!");
5289
5290  OwnedDecl = false;
5291  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5292
5293  // FIXME: Check explicit specializations more carefully.
5294  bool isExplicitSpecialization = false;
5295  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5296  bool Invalid = false;
5297  if (TUK != TUK_Reference) {
5298    if (TemplateParameterList *TemplateParams
5299          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5300                        (TemplateParameterList**)TemplateParameterLists.get(),
5301                                              TemplateParameterLists.size(),
5302                                                    TUK == TUK_Friend,
5303                                                    isExplicitSpecialization,
5304                                                    Invalid)) {
5305      // All but one template parameter lists have been matching.
5306      --NumMatchedTemplateParamLists;
5307
5308      if (TemplateParams->size() > 0) {
5309        // This is a declaration or definition of a class template (which may
5310        // be a member of another template).
5311        if (Invalid)
5312          return 0;
5313
5314        OwnedDecl = false;
5315        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5316                                               SS, Name, NameLoc, Attr,
5317                                               TemplateParams,
5318                                               AS);
5319        TemplateParameterLists.release();
5320        return Result.get();
5321      } else {
5322        // The "template<>" header is extraneous.
5323        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5324          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5325        isExplicitSpecialization = true;
5326      }
5327    }
5328  }
5329
5330  DeclContext *SearchDC = CurContext;
5331  DeclContext *DC = CurContext;
5332  bool isStdBadAlloc = false;
5333
5334  RedeclarationKind Redecl = ForRedeclaration;
5335  if (TUK == TUK_Friend || TUK == TUK_Reference)
5336    Redecl = NotForRedeclaration;
5337
5338  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5339
5340  if (Name && SS.isNotEmpty()) {
5341    // We have a nested-name tag ('struct foo::bar').
5342
5343    // Check for invalid 'foo::'.
5344    if (SS.isInvalid()) {
5345      Name = 0;
5346      goto CreateNewDecl;
5347    }
5348
5349    // If this is a friend or a reference to a class in a dependent
5350    // context, don't try to make a decl for it.
5351    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5352      DC = computeDeclContext(SS, false);
5353      if (!DC) {
5354        IsDependent = true;
5355        return 0;
5356      }
5357    } else {
5358      DC = computeDeclContext(SS, true);
5359      if (!DC) {
5360        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5361          << SS.getRange();
5362        return 0;
5363      }
5364    }
5365
5366    if (RequireCompleteDeclContext(SS, DC))
5367      return 0;
5368
5369    SearchDC = DC;
5370    // Look-up name inside 'foo::'.
5371    LookupQualifiedName(Previous, DC);
5372
5373    if (Previous.isAmbiguous())
5374      return 0;
5375
5376    if (Previous.empty()) {
5377      // Name lookup did not find anything. However, if the
5378      // nested-name-specifier refers to the current instantiation,
5379      // and that current instantiation has any dependent base
5380      // classes, we might find something at instantiation time: treat
5381      // this as a dependent elaborated-type-specifier.
5382      if (Previous.wasNotFoundInCurrentInstantiation()) {
5383        IsDependent = true;
5384        return 0;
5385      }
5386
5387      // A tag 'foo::bar' must already exist.
5388      Diag(NameLoc, diag::err_not_tag_in_scope)
5389        << Kind << Name << DC << SS.getRange();
5390      Name = 0;
5391      Invalid = true;
5392      goto CreateNewDecl;
5393    }
5394  } else if (Name) {
5395    // If this is a named struct, check to see if there was a previous forward
5396    // declaration or definition.
5397    // FIXME: We're looking into outer scopes here, even when we
5398    // shouldn't be. Doing so can result in ambiguities that we
5399    // shouldn't be diagnosing.
5400    LookupName(Previous, S);
5401
5402    // Note:  there used to be some attempt at recovery here.
5403    if (Previous.isAmbiguous())
5404      return 0;
5405
5406    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5407      // FIXME: This makes sure that we ignore the contexts associated
5408      // with C structs, unions, and enums when looking for a matching
5409      // tag declaration or definition. See the similar lookup tweak
5410      // in Sema::LookupName; is there a better way to deal with this?
5411      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5412        SearchDC = SearchDC->getParent();
5413    }
5414  }
5415
5416  if (Previous.isSingleResult() &&
5417      Previous.getFoundDecl()->isTemplateParameter()) {
5418    // Maybe we will complain about the shadowed template parameter.
5419    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5420    // Just pretend that we didn't see the previous declaration.
5421    Previous.clear();
5422  }
5423
5424  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5425      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5426    // This is a declaration of or a reference to "std::bad_alloc".
5427    isStdBadAlloc = true;
5428
5429    if (Previous.empty() && StdBadAlloc) {
5430      // std::bad_alloc has been implicitly declared (but made invisible to
5431      // name lookup). Fill in this implicit declaration as the previous
5432      // declaration, so that the declarations get chained appropriately.
5433      Previous.addDecl(getStdBadAlloc());
5434    }
5435  }
5436
5437  // If we didn't find a previous declaration, and this is a reference
5438  // (or friend reference), move to the correct scope.  In C++, we
5439  // also need to do a redeclaration lookup there, just in case
5440  // there's a shadow friend decl.
5441  if (Name && Previous.empty() &&
5442      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5443    if (Invalid) goto CreateNewDecl;
5444    assert(SS.isEmpty());
5445
5446    if (TUK == TUK_Reference) {
5447      // C++ [basic.scope.pdecl]p5:
5448      //   -- for an elaborated-type-specifier of the form
5449      //
5450      //          class-key identifier
5451      //
5452      //      if the elaborated-type-specifier is used in the
5453      //      decl-specifier-seq or parameter-declaration-clause of a
5454      //      function defined in namespace scope, the identifier is
5455      //      declared as a class-name in the namespace that contains
5456      //      the declaration; otherwise, except as a friend
5457      //      declaration, the identifier is declared in the smallest
5458      //      non-class, non-function-prototype scope that contains the
5459      //      declaration.
5460      //
5461      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5462      // C structs and unions.
5463      //
5464      // It is an error in C++ to declare (rather than define) an enum
5465      // type, including via an elaborated type specifier.  We'll
5466      // diagnose that later; for now, declare the enum in the same
5467      // scope as we would have picked for any other tag type.
5468      //
5469      // GNU C also supports this behavior as part of its incomplete
5470      // enum types extension, while GNU C++ does not.
5471      //
5472      // Find the context where we'll be declaring the tag.
5473      // FIXME: We would like to maintain the current DeclContext as the
5474      // lexical context,
5475      while (SearchDC->isRecord())
5476        SearchDC = SearchDC->getParent();
5477
5478      // Find the scope where we'll be declaring the tag.
5479      while (S->isClassScope() ||
5480             (getLangOptions().CPlusPlus &&
5481              S->isFunctionPrototypeScope()) ||
5482             ((S->getFlags() & Scope::DeclScope) == 0) ||
5483             (S->getEntity() &&
5484              ((DeclContext *)S->getEntity())->isTransparentContext()))
5485        S = S->getParent();
5486    } else {
5487      assert(TUK == TUK_Friend);
5488      // C++ [namespace.memdef]p3:
5489      //   If a friend declaration in a non-local class first declares a
5490      //   class or function, the friend class or function is a member of
5491      //   the innermost enclosing namespace.
5492      SearchDC = SearchDC->getEnclosingNamespaceContext();
5493    }
5494
5495    // In C++, we need to do a redeclaration lookup to properly
5496    // diagnose some problems.
5497    if (getLangOptions().CPlusPlus) {
5498      Previous.setRedeclarationKind(ForRedeclaration);
5499      LookupQualifiedName(Previous, SearchDC);
5500    }
5501  }
5502
5503  if (!Previous.empty()) {
5504    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5505
5506    // It's okay to have a tag decl in the same scope as a typedef
5507    // which hides a tag decl in the same scope.  Finding this
5508    // insanity with a redeclaration lookup can only actually happen
5509    // in C++.
5510    //
5511    // This is also okay for elaborated-type-specifiers, which is
5512    // technically forbidden by the current standard but which is
5513    // okay according to the likely resolution of an open issue;
5514    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5515    if (getLangOptions().CPlusPlus) {
5516      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5517        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5518          TagDecl *Tag = TT->getDecl();
5519          if (Tag->getDeclName() == Name &&
5520              Tag->getDeclContext()->getRedeclContext()
5521                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5522            PrevDecl = Tag;
5523            Previous.clear();
5524            Previous.addDecl(Tag);
5525            Previous.resolveKind();
5526          }
5527        }
5528      }
5529    }
5530
5531    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5532      // If this is a use of a previous tag, or if the tag is already declared
5533      // in the same scope (so that the definition/declaration completes or
5534      // rementions the tag), reuse the decl.
5535      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5536          isDeclInScope(PrevDecl, SearchDC, S)) {
5537        // Make sure that this wasn't declared as an enum and now used as a
5538        // struct or something similar.
5539        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5540          bool SafeToContinue
5541            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5542               Kind != TTK_Enum);
5543          if (SafeToContinue)
5544            Diag(KWLoc, diag::err_use_with_wrong_tag)
5545              << Name
5546              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5547                                              PrevTagDecl->getKindName());
5548          else
5549            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5550          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5551
5552          if (SafeToContinue)
5553            Kind = PrevTagDecl->getTagKind();
5554          else {
5555            // Recover by making this an anonymous redefinition.
5556            Name = 0;
5557            Previous.clear();
5558            Invalid = true;
5559          }
5560        }
5561
5562        if (!Invalid) {
5563          // If this is a use, just return the declaration we found.
5564
5565          // FIXME: In the future, return a variant or some other clue
5566          // for the consumer of this Decl to know it doesn't own it.
5567          // For our current ASTs this shouldn't be a problem, but will
5568          // need to be changed with DeclGroups.
5569          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5570              TUK == TUK_Friend)
5571            return PrevTagDecl;
5572
5573          // Diagnose attempts to redefine a tag.
5574          if (TUK == TUK_Definition) {
5575            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5576              // If we're defining a specialization and the previous definition
5577              // is from an implicit instantiation, don't emit an error
5578              // here; we'll catch this in the general case below.
5579              if (!isExplicitSpecialization ||
5580                  !isa<CXXRecordDecl>(Def) ||
5581                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5582                                               == TSK_ExplicitSpecialization) {
5583                Diag(NameLoc, diag::err_redefinition) << Name;
5584                Diag(Def->getLocation(), diag::note_previous_definition);
5585                // If this is a redefinition, recover by making this
5586                // struct be anonymous, which will make any later
5587                // references get the previous definition.
5588                Name = 0;
5589                Previous.clear();
5590                Invalid = true;
5591              }
5592            } else {
5593              // If the type is currently being defined, complain
5594              // about a nested redefinition.
5595              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5596              if (Tag->isBeingDefined()) {
5597                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5598                Diag(PrevTagDecl->getLocation(),
5599                     diag::note_previous_definition);
5600                Name = 0;
5601                Previous.clear();
5602                Invalid = true;
5603              }
5604            }
5605
5606            // Okay, this is definition of a previously declared or referenced
5607            // tag PrevDecl. We're going to create a new Decl for it.
5608          }
5609        }
5610        // If we get here we have (another) forward declaration or we
5611        // have a definition.  Just create a new decl.
5612
5613      } else {
5614        // If we get here, this is a definition of a new tag type in a nested
5615        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5616        // new decl/type.  We set PrevDecl to NULL so that the entities
5617        // have distinct types.
5618        Previous.clear();
5619      }
5620      // If we get here, we're going to create a new Decl. If PrevDecl
5621      // is non-NULL, it's a definition of the tag declared by
5622      // PrevDecl. If it's NULL, we have a new definition.
5623
5624
5625    // Otherwise, PrevDecl is not a tag, but was found with tag
5626    // lookup.  This is only actually possible in C++, where a few
5627    // things like templates still live in the tag namespace.
5628    } else {
5629      assert(getLangOptions().CPlusPlus);
5630
5631      // Use a better diagnostic if an elaborated-type-specifier
5632      // found the wrong kind of type on the first
5633      // (non-redeclaration) lookup.
5634      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5635          !Previous.isForRedeclaration()) {
5636        unsigned Kind = 0;
5637        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5638        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5639        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5640        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5641        Invalid = true;
5642
5643      // Otherwise, only diagnose if the declaration is in scope.
5644      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5645        // do nothing
5646
5647      // Diagnose implicit declarations introduced by elaborated types.
5648      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5649        unsigned Kind = 0;
5650        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5651        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5652        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5653        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5654        Invalid = true;
5655
5656      // Otherwise it's a declaration.  Call out a particularly common
5657      // case here.
5658      } else if (isa<TypedefDecl>(PrevDecl)) {
5659        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5660          << Name
5661          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5662        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5663        Invalid = true;
5664
5665      // Otherwise, diagnose.
5666      } else {
5667        // The tag name clashes with something else in the target scope,
5668        // issue an error and recover by making this tag be anonymous.
5669        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5670        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5671        Name = 0;
5672        Invalid = true;
5673      }
5674
5675      // The existing declaration isn't relevant to us; we're in a
5676      // new scope, so clear out the previous declaration.
5677      Previous.clear();
5678    }
5679  }
5680
5681CreateNewDecl:
5682
5683  TagDecl *PrevDecl = 0;
5684  if (Previous.isSingleResult())
5685    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5686
5687  // If there is an identifier, use the location of the identifier as the
5688  // location of the decl, otherwise use the location of the struct/union
5689  // keyword.
5690  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5691
5692  // Otherwise, create a new declaration. If there is a previous
5693  // declaration of the same entity, the two will be linked via
5694  // PrevDecl.
5695  TagDecl *New;
5696
5697  if (Kind == TTK_Enum) {
5698    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5699    // enum X { A, B, C } D;    D should chain to X.
5700    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5701                           cast_or_null<EnumDecl>(PrevDecl));
5702    // If this is an undefined enum, warn.
5703    if (TUK != TUK_Definition && !Invalid) {
5704      TagDecl *Def;
5705      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5706        Diag(Loc, diag::ext_forward_ref_enum_def)
5707          << New;
5708        Diag(Def->getLocation(), diag::note_previous_definition);
5709      } else {
5710        Diag(Loc,
5711             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5712                                       : diag::ext_forward_ref_enum);
5713      }
5714    }
5715  } else {
5716    // struct/union/class
5717
5718    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5719    // struct X { int A; } D;    D should chain to X.
5720    if (getLangOptions().CPlusPlus) {
5721      // FIXME: Look for a way to use RecordDecl for simple structs.
5722      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5723                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5724
5725      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5726        StdBadAlloc = cast<CXXRecordDecl>(New);
5727    } else
5728      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5729                               cast_or_null<RecordDecl>(PrevDecl));
5730  }
5731
5732  // Maybe add qualifier info.
5733  if (SS.isNotEmpty()) {
5734    if (SS.isSet()) {
5735      NestedNameSpecifier *NNS
5736        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5737      New->setQualifierInfo(NNS, SS.getRange());
5738      if (NumMatchedTemplateParamLists > 0) {
5739        New->setTemplateParameterListsInfo(Context,
5740                                           NumMatchedTemplateParamLists,
5741                    (TemplateParameterList**) TemplateParameterLists.release());
5742      }
5743    }
5744    else
5745      Invalid = true;
5746  }
5747
5748  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5749    // Add alignment attributes if necessary; these attributes are checked when
5750    // the ASTContext lays out the structure.
5751    //
5752    // It is important for implementing the correct semantics that this
5753    // happen here (in act on tag decl). The #pragma pack stack is
5754    // maintained as a result of parser callbacks which can occur at
5755    // many points during the parsing of a struct declaration (because
5756    // the #pragma tokens are effectively skipped over during the
5757    // parsing of the struct).
5758    AddAlignmentAttributesForRecord(RD);
5759  }
5760
5761  // If this is a specialization of a member class (of a class template),
5762  // check the specialization.
5763  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5764    Invalid = true;
5765
5766  if (Invalid)
5767    New->setInvalidDecl();
5768
5769  if (Attr)
5770    ProcessDeclAttributeList(S, New, Attr);
5771
5772  // If we're declaring or defining a tag in function prototype scope
5773  // in C, note that this type can only be used within the function.
5774  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5775    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5776
5777  // Set the lexical context. If the tag has a C++ scope specifier, the
5778  // lexical context will be different from the semantic context.
5779  New->setLexicalDeclContext(CurContext);
5780
5781  // Mark this as a friend decl if applicable.
5782  if (TUK == TUK_Friend)
5783    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5784
5785  // Set the access specifier.
5786  if (!Invalid && SearchDC->isRecord())
5787    SetMemberAccessSpecifier(New, PrevDecl, AS);
5788
5789  if (TUK == TUK_Definition)
5790    New->startDefinition();
5791
5792  // If this has an identifier, add it to the scope stack.
5793  if (TUK == TUK_Friend) {
5794    // We might be replacing an existing declaration in the lookup tables;
5795    // if so, borrow its access specifier.
5796    if (PrevDecl)
5797      New->setAccess(PrevDecl->getAccess());
5798
5799    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5800    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5801    if (Name) // can be null along some error paths
5802      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5803        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5804  } else if (Name) {
5805    S = getNonFieldDeclScope(S);
5806    PushOnScopeChains(New, S);
5807  } else {
5808    CurContext->addDecl(New);
5809  }
5810
5811  // If this is the C FILE type, notify the AST context.
5812  if (IdentifierInfo *II = New->getIdentifier())
5813    if (!New->isInvalidDecl() &&
5814        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5815        II->isStr("FILE"))
5816      Context.setFILEDecl(New);
5817
5818  OwnedDecl = true;
5819  return New;
5820}
5821
5822void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5823  AdjustDeclIfTemplate(TagD);
5824  TagDecl *Tag = cast<TagDecl>(TagD);
5825
5826  // Enter the tag context.
5827  PushDeclContext(S, Tag);
5828}
5829
5830void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5831                                           SourceLocation LBraceLoc) {
5832  AdjustDeclIfTemplate(TagD);
5833  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5834
5835  FieldCollector->StartClass();
5836
5837  if (!Record->getIdentifier())
5838    return;
5839
5840  // C++ [class]p2:
5841  //   [...] The class-name is also inserted into the scope of the
5842  //   class itself; this is known as the injected-class-name. For
5843  //   purposes of access checking, the injected-class-name is treated
5844  //   as if it were a public member name.
5845  CXXRecordDecl *InjectedClassName
5846    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5847                            CurContext, Record->getLocation(),
5848                            Record->getIdentifier(),
5849                            Record->getTagKeywordLoc(),
5850                            Record);
5851  InjectedClassName->setImplicit();
5852  InjectedClassName->setAccess(AS_public);
5853  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5854      InjectedClassName->setDescribedClassTemplate(Template);
5855  PushOnScopeChains(InjectedClassName, S);
5856  assert(InjectedClassName->isInjectedClassName() &&
5857         "Broken injected-class-name");
5858}
5859
5860void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5861                                    SourceLocation RBraceLoc) {
5862  AdjustDeclIfTemplate(TagD);
5863  TagDecl *Tag = cast<TagDecl>(TagD);
5864  Tag->setRBraceLoc(RBraceLoc);
5865
5866  if (isa<CXXRecordDecl>(Tag))
5867    FieldCollector->FinishClass();
5868
5869  // Exit this scope of this tag's definition.
5870  PopDeclContext();
5871
5872  // Notify the consumer that we've defined a tag.
5873  Consumer.HandleTagDeclDefinition(Tag);
5874}
5875
5876void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5877  AdjustDeclIfTemplate(TagD);
5878  TagDecl *Tag = cast<TagDecl>(TagD);
5879  Tag->setInvalidDecl();
5880
5881  // We're undoing ActOnTagStartDefinition here, not
5882  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5883  // the FieldCollector.
5884
5885  PopDeclContext();
5886}
5887
5888// Note that FieldName may be null for anonymous bitfields.
5889bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5890                          QualType FieldTy, const Expr *BitWidth,
5891                          bool *ZeroWidth) {
5892  // Default to true; that shouldn't confuse checks for emptiness
5893  if (ZeroWidth)
5894    *ZeroWidth = true;
5895
5896  // C99 6.7.2.1p4 - verify the field type.
5897  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5898  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5899    // Handle incomplete types with specific error.
5900    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5901      return true;
5902    if (FieldName)
5903      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5904        << FieldName << FieldTy << BitWidth->getSourceRange();
5905    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5906      << FieldTy << BitWidth->getSourceRange();
5907  }
5908
5909  // If the bit-width is type- or value-dependent, don't try to check
5910  // it now.
5911  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5912    return false;
5913
5914  llvm::APSInt Value;
5915  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5916    return true;
5917
5918  if (Value != 0 && ZeroWidth)
5919    *ZeroWidth = false;
5920
5921  // Zero-width bitfield is ok for anonymous field.
5922  if (Value == 0 && FieldName)
5923    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5924
5925  if (Value.isSigned() && Value.isNegative()) {
5926    if (FieldName)
5927      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5928               << FieldName << Value.toString(10);
5929    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5930      << Value.toString(10);
5931  }
5932
5933  if (!FieldTy->isDependentType()) {
5934    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5935    if (Value.getZExtValue() > TypeSize) {
5936      if (!getLangOptions().CPlusPlus) {
5937        if (FieldName)
5938          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5939            << FieldName << (unsigned)Value.getZExtValue()
5940            << (unsigned)TypeSize;
5941
5942        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5943          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5944      }
5945
5946      if (FieldName)
5947        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5948          << FieldName << (unsigned)Value.getZExtValue()
5949          << (unsigned)TypeSize;
5950      else
5951        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5952          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5953    }
5954  }
5955
5956  return false;
5957}
5958
5959/// ActOnField - Each field of a struct/union/class is passed into this in order
5960/// to create a FieldDecl object for it.
5961Decl *Sema::ActOnField(Scope *S, Decl *TagD,
5962                                 SourceLocation DeclStart,
5963                                 Declarator &D, ExprTy *BitfieldWidth) {
5964  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
5965                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5966                               AS_public);
5967  return Res;
5968}
5969
5970/// HandleField - Analyze a field of a C struct or a C++ data member.
5971///
5972FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5973                             SourceLocation DeclStart,
5974                             Declarator &D, Expr *BitWidth,
5975                             AccessSpecifier AS) {
5976  IdentifierInfo *II = D.getIdentifier();
5977  SourceLocation Loc = DeclStart;
5978  if (II) Loc = D.getIdentifierLoc();
5979
5980  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5981  QualType T = TInfo->getType();
5982  if (getLangOptions().CPlusPlus)
5983    CheckExtraCXXDefaultArguments(D);
5984
5985  DiagnoseFunctionSpecifiers(D);
5986
5987  if (D.getDeclSpec().isThreadSpecified())
5988    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5989
5990  // Check to see if this name was declared as a member previously
5991  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
5992  LookupName(Previous, S);
5993  assert((Previous.empty() || Previous.isOverloadedResult() ||
5994          Previous.isSingleResult())
5995    && "Lookup of member name should be either overloaded, single or null");
5996
5997  // If the name is overloaded then get any declaration else get the single result
5998  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
5999    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6000
6001  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6002    // Maybe we will complain about the shadowed template parameter.
6003    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6004    // Just pretend that we didn't see the previous declaration.
6005    PrevDecl = 0;
6006  }
6007
6008  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6009    PrevDecl = 0;
6010
6011  bool Mutable
6012    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6013  SourceLocation TSSL = D.getSourceRange().getBegin();
6014  FieldDecl *NewFD
6015    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6016                     AS, PrevDecl, &D);
6017
6018  if (NewFD->isInvalidDecl())
6019    Record->setInvalidDecl();
6020
6021  if (NewFD->isInvalidDecl() && PrevDecl) {
6022    // Don't introduce NewFD into scope; there's already something
6023    // with the same name in the same scope.
6024  } else if (II) {
6025    PushOnScopeChains(NewFD, S);
6026  } else
6027    Record->addDecl(NewFD);
6028
6029  return NewFD;
6030}
6031
6032/// \brief Build a new FieldDecl and check its well-formedness.
6033///
6034/// This routine builds a new FieldDecl given the fields name, type,
6035/// record, etc. \p PrevDecl should refer to any previous declaration
6036/// with the same name and in the same scope as the field to be
6037/// created.
6038///
6039/// \returns a new FieldDecl.
6040///
6041/// \todo The Declarator argument is a hack. It will be removed once
6042FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6043                                TypeSourceInfo *TInfo,
6044                                RecordDecl *Record, SourceLocation Loc,
6045                                bool Mutable, Expr *BitWidth,
6046                                SourceLocation TSSL,
6047                                AccessSpecifier AS, NamedDecl *PrevDecl,
6048                                Declarator *D) {
6049  IdentifierInfo *II = Name.getAsIdentifierInfo();
6050  bool InvalidDecl = false;
6051  if (D) InvalidDecl = D->isInvalidType();
6052
6053  // If we receive a broken type, recover by assuming 'int' and
6054  // marking this declaration as invalid.
6055  if (T.isNull()) {
6056    InvalidDecl = true;
6057    T = Context.IntTy;
6058  }
6059
6060  QualType EltTy = Context.getBaseElementType(T);
6061  if (!EltTy->isDependentType() &&
6062      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6063    // Fields of incomplete type force their record to be invalid.
6064    Record->setInvalidDecl();
6065    InvalidDecl = true;
6066  }
6067
6068  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6069  // than a variably modified type.
6070  if (!InvalidDecl && T->isVariablyModifiedType()) {
6071    bool SizeIsNegative;
6072    llvm::APSInt Oversized;
6073    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6074                                                           SizeIsNegative,
6075                                                           Oversized);
6076    if (!FixedTy.isNull()) {
6077      Diag(Loc, diag::warn_illegal_constant_array_size);
6078      T = FixedTy;
6079    } else {
6080      if (SizeIsNegative)
6081        Diag(Loc, diag::err_typecheck_negative_array_size);
6082      else if (Oversized.getBoolValue())
6083        Diag(Loc, diag::err_array_too_large)
6084          << Oversized.toString(10);
6085      else
6086        Diag(Loc, diag::err_typecheck_field_variable_size);
6087      InvalidDecl = true;
6088    }
6089  }
6090
6091  // Fields can not have abstract class types
6092  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6093                                             diag::err_abstract_type_in_decl,
6094                                             AbstractFieldType))
6095    InvalidDecl = true;
6096
6097  bool ZeroWidth = false;
6098  // If this is declared as a bit-field, check the bit-field.
6099  if (!InvalidDecl && BitWidth &&
6100      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6101    InvalidDecl = true;
6102    BitWidth = 0;
6103    ZeroWidth = false;
6104  }
6105
6106  // Check that 'mutable' is consistent with the type of the declaration.
6107  if (!InvalidDecl && Mutable) {
6108    unsigned DiagID = 0;
6109    if (T->isReferenceType())
6110      DiagID = diag::err_mutable_reference;
6111    else if (T.isConstQualified())
6112      DiagID = diag::err_mutable_const;
6113
6114    if (DiagID) {
6115      SourceLocation ErrLoc = Loc;
6116      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6117        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6118      Diag(ErrLoc, DiagID);
6119      Mutable = false;
6120      InvalidDecl = true;
6121    }
6122  }
6123
6124  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6125                                       BitWidth, Mutable);
6126  if (InvalidDecl)
6127    NewFD->setInvalidDecl();
6128
6129  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6130    Diag(Loc, diag::err_duplicate_member) << II;
6131    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6132    NewFD->setInvalidDecl();
6133  }
6134
6135  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6136    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6137
6138    if (!T->isPODType())
6139      CXXRecord->setPOD(false);
6140    if (!ZeroWidth)
6141      CXXRecord->setEmpty(false);
6142    if (T->isReferenceType())
6143      CXXRecord->setHasTrivialConstructor(false);
6144
6145    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6146      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6147      if (RDecl->getDefinition()) {
6148        if (!RDecl->hasTrivialConstructor())
6149          CXXRecord->setHasTrivialConstructor(false);
6150        if (!RDecl->hasTrivialCopyConstructor())
6151          CXXRecord->setHasTrivialCopyConstructor(false);
6152        if (!RDecl->hasTrivialCopyAssignment())
6153          CXXRecord->setHasTrivialCopyAssignment(false);
6154        if (!RDecl->hasTrivialDestructor())
6155          CXXRecord->setHasTrivialDestructor(false);
6156
6157        // C++ 9.5p1: An object of a class with a non-trivial
6158        // constructor, a non-trivial copy constructor, a non-trivial
6159        // destructor, or a non-trivial copy assignment operator
6160        // cannot be a member of a union, nor can an array of such
6161        // objects.
6162        // TODO: C++0x alters this restriction significantly.
6163        if (Record->isUnion() && CheckNontrivialField(NewFD))
6164          NewFD->setInvalidDecl();
6165      }
6166    }
6167  }
6168
6169  // FIXME: We need to pass in the attributes given an AST
6170  // representation, not a parser representation.
6171  if (D)
6172    // FIXME: What to pass instead of TUScope?
6173    ProcessDeclAttributes(TUScope, NewFD, *D);
6174
6175  if (T.isObjCGCWeak())
6176    Diag(Loc, diag::warn_attribute_weak_on_field);
6177
6178  NewFD->setAccess(AS);
6179
6180  // C++ [dcl.init.aggr]p1:
6181  //   An aggregate is an array or a class (clause 9) with [...] no
6182  //   private or protected non-static data members (clause 11).
6183  // A POD must be an aggregate.
6184  if (getLangOptions().CPlusPlus &&
6185      (AS == AS_private || AS == AS_protected)) {
6186    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6187    CXXRecord->setAggregate(false);
6188    CXXRecord->setPOD(false);
6189  }
6190
6191  return NewFD;
6192}
6193
6194bool Sema::CheckNontrivialField(FieldDecl *FD) {
6195  assert(FD);
6196  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6197
6198  if (FD->isInvalidDecl())
6199    return true;
6200
6201  QualType EltTy = Context.getBaseElementType(FD->getType());
6202  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6203    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6204    if (RDecl->getDefinition()) {
6205      // We check for copy constructors before constructors
6206      // because otherwise we'll never get complaints about
6207      // copy constructors.
6208
6209      CXXSpecialMember member = CXXInvalid;
6210      if (!RDecl->hasTrivialCopyConstructor())
6211        member = CXXCopyConstructor;
6212      else if (!RDecl->hasTrivialConstructor())
6213        member = CXXConstructor;
6214      else if (!RDecl->hasTrivialCopyAssignment())
6215        member = CXXCopyAssignment;
6216      else if (!RDecl->hasTrivialDestructor())
6217        member = CXXDestructor;
6218
6219      if (member != CXXInvalid) {
6220        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6221              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6222        DiagnoseNontrivial(RT, member);
6223        return true;
6224      }
6225    }
6226  }
6227
6228  return false;
6229}
6230
6231/// DiagnoseNontrivial - Given that a class has a non-trivial
6232/// special member, figure out why.
6233void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6234  QualType QT(T, 0U);
6235  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6236
6237  // Check whether the member was user-declared.
6238  switch (member) {
6239  case CXXInvalid:
6240    break;
6241
6242  case CXXConstructor:
6243    if (RD->hasUserDeclaredConstructor()) {
6244      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6245      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6246        const FunctionDecl *body = 0;
6247        ci->hasBody(body);
6248        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6249          SourceLocation CtorLoc = ci->getLocation();
6250          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6251          return;
6252        }
6253      }
6254
6255      assert(0 && "found no user-declared constructors");
6256      return;
6257    }
6258    break;
6259
6260  case CXXCopyConstructor:
6261    if (RD->hasUserDeclaredCopyConstructor()) {
6262      SourceLocation CtorLoc =
6263        RD->getCopyConstructor(Context, 0)->getLocation();
6264      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6265      return;
6266    }
6267    break;
6268
6269  case CXXCopyAssignment:
6270    if (RD->hasUserDeclaredCopyAssignment()) {
6271      // FIXME: this should use the location of the copy
6272      // assignment, not the type.
6273      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6274      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6275      return;
6276    }
6277    break;
6278
6279  case CXXDestructor:
6280    if (RD->hasUserDeclaredDestructor()) {
6281      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6282      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6283      return;
6284    }
6285    break;
6286  }
6287
6288  typedef CXXRecordDecl::base_class_iterator base_iter;
6289
6290  // Virtual bases and members inhibit trivial copying/construction,
6291  // but not trivial destruction.
6292  if (member != CXXDestructor) {
6293    // Check for virtual bases.  vbases includes indirect virtual bases,
6294    // so we just iterate through the direct bases.
6295    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6296      if (bi->isVirtual()) {
6297        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6298        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6299        return;
6300      }
6301
6302    // Check for virtual methods.
6303    typedef CXXRecordDecl::method_iterator meth_iter;
6304    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6305         ++mi) {
6306      if (mi->isVirtual()) {
6307        SourceLocation MLoc = mi->getSourceRange().getBegin();
6308        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6309        return;
6310      }
6311    }
6312  }
6313
6314  bool (CXXRecordDecl::*hasTrivial)() const;
6315  switch (member) {
6316  case CXXConstructor:
6317    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6318  case CXXCopyConstructor:
6319    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6320  case CXXCopyAssignment:
6321    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6322  case CXXDestructor:
6323    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6324  default:
6325    assert(0 && "unexpected special member"); return;
6326  }
6327
6328  // Check for nontrivial bases (and recurse).
6329  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6330    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6331    assert(BaseRT && "Don't know how to handle dependent bases");
6332    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6333    if (!(BaseRecTy->*hasTrivial)()) {
6334      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6335      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6336      DiagnoseNontrivial(BaseRT, member);
6337      return;
6338    }
6339  }
6340
6341  // Check for nontrivial members (and recurse).
6342  typedef RecordDecl::field_iterator field_iter;
6343  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6344       ++fi) {
6345    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6346    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6347      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6348
6349      if (!(EltRD->*hasTrivial)()) {
6350        SourceLocation FLoc = (*fi)->getLocation();
6351        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6352        DiagnoseNontrivial(EltRT, member);
6353        return;
6354      }
6355    }
6356  }
6357
6358  assert(0 && "found no explanation for non-trivial member");
6359}
6360
6361/// TranslateIvarVisibility - Translate visibility from a token ID to an
6362///  AST enum value.
6363static ObjCIvarDecl::AccessControl
6364TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6365  switch (ivarVisibility) {
6366  default: assert(0 && "Unknown visitibility kind");
6367  case tok::objc_private: return ObjCIvarDecl::Private;
6368  case tok::objc_public: return ObjCIvarDecl::Public;
6369  case tok::objc_protected: return ObjCIvarDecl::Protected;
6370  case tok::objc_package: return ObjCIvarDecl::Package;
6371  }
6372}
6373
6374/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6375/// in order to create an IvarDecl object for it.
6376Decl *Sema::ActOnIvar(Scope *S,
6377                                SourceLocation DeclStart,
6378                                Decl *IntfDecl,
6379                                Declarator &D, ExprTy *BitfieldWidth,
6380                                tok::ObjCKeywordKind Visibility) {
6381
6382  IdentifierInfo *II = D.getIdentifier();
6383  Expr *BitWidth = (Expr*)BitfieldWidth;
6384  SourceLocation Loc = DeclStart;
6385  if (II) Loc = D.getIdentifierLoc();
6386
6387  // FIXME: Unnamed fields can be handled in various different ways, for
6388  // example, unnamed unions inject all members into the struct namespace!
6389
6390  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6391  QualType T = TInfo->getType();
6392
6393  if (BitWidth) {
6394    // 6.7.2.1p3, 6.7.2.1p4
6395    if (VerifyBitField(Loc, II, T, BitWidth)) {
6396      D.setInvalidType();
6397      BitWidth = 0;
6398    }
6399  } else {
6400    // Not a bitfield.
6401
6402    // validate II.
6403
6404  }
6405  if (T->isReferenceType()) {
6406    Diag(Loc, diag::err_ivar_reference_type);
6407    D.setInvalidType();
6408  }
6409  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6410  // than a variably modified type.
6411  else if (T->isVariablyModifiedType()) {
6412    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6413    D.setInvalidType();
6414  }
6415
6416  // Get the visibility (access control) for this ivar.
6417  ObjCIvarDecl::AccessControl ac =
6418    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6419                                        : ObjCIvarDecl::None;
6420  // Must set ivar's DeclContext to its enclosing interface.
6421  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6422  ObjCContainerDecl *EnclosingContext;
6423  if (ObjCImplementationDecl *IMPDecl =
6424      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6425    if (!LangOpts.ObjCNonFragileABI2) {
6426    // Case of ivar declared in an implementation. Context is that of its class.
6427      EnclosingContext = IMPDecl->getClassInterface();
6428      assert(EnclosingContext && "Implementation has no class interface!");
6429    }
6430    else
6431      EnclosingContext = EnclosingDecl;
6432  } else {
6433    if (ObjCCategoryDecl *CDecl =
6434        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6435      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6436        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6437        return 0;
6438      }
6439    }
6440    EnclosingContext = EnclosingDecl;
6441  }
6442
6443  // Construct the decl.
6444  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6445                                             EnclosingContext, Loc, II, T,
6446                                             TInfo, ac, (Expr *)BitfieldWidth);
6447
6448  if (II) {
6449    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6450                                           ForRedeclaration);
6451    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6452        && !isa<TagDecl>(PrevDecl)) {
6453      Diag(Loc, diag::err_duplicate_member) << II;
6454      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6455      NewID->setInvalidDecl();
6456    }
6457  }
6458
6459  // Process attributes attached to the ivar.
6460  ProcessDeclAttributes(S, NewID, D);
6461
6462  if (D.isInvalidType())
6463    NewID->setInvalidDecl();
6464
6465  if (II) {
6466    // FIXME: When interfaces are DeclContexts, we'll need to add
6467    // these to the interface.
6468    S->AddDecl(NewID);
6469    IdResolver.AddDecl(NewID);
6470  }
6471
6472  return NewID;
6473}
6474
6475/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6476/// class and class extensions. For every class @interface and class
6477/// extension @interface, if the last ivar is a bitfield of any type,
6478/// then add an implicit `char :0` ivar to the end of that interface.
6479void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6480                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6481  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6482    return;
6483
6484  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6485  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6486
6487  if (!Ivar->isBitField())
6488    return;
6489  uint64_t BitFieldSize =
6490    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6491  if (BitFieldSize == 0)
6492    return;
6493  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6494  if (!ID) {
6495    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6496      if (!CD->IsClassExtension())
6497        return;
6498    }
6499    // No need to add this to end of @implementation.
6500    else
6501      return;
6502  }
6503  // All conditions are met. Add a new bitfield to the tail end of ivars.
6504  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6505  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6506
6507  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6508                              DeclLoc, 0,
6509                              Context.CharTy,
6510                              Context.CreateTypeSourceInfo(Context.CharTy),
6511                              ObjCIvarDecl::Private, BW,
6512                              true);
6513  AllIvarDecls.push_back(Ivar);
6514}
6515
6516void Sema::ActOnFields(Scope* S,
6517                       SourceLocation RecLoc, Decl *EnclosingDecl,
6518                       Decl **Fields, unsigned NumFields,
6519                       SourceLocation LBrac, SourceLocation RBrac,
6520                       AttributeList *Attr) {
6521  assert(EnclosingDecl && "missing record or interface decl");
6522
6523  // If the decl this is being inserted into is invalid, then it may be a
6524  // redeclaration or some other bogus case.  Don't try to add fields to it.
6525  if (EnclosingDecl->isInvalidDecl()) {
6526    // FIXME: Deallocate fields?
6527    return;
6528  }
6529
6530
6531  // Verify that all the fields are okay.
6532  unsigned NumNamedMembers = 0;
6533  llvm::SmallVector<FieldDecl*, 32> RecFields;
6534
6535  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6536  for (unsigned i = 0; i != NumFields; ++i) {
6537    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6538
6539    // Get the type for the field.
6540    Type *FDTy = FD->getType().getTypePtr();
6541
6542    if (!FD->isAnonymousStructOrUnion()) {
6543      // Remember all fields written by the user.
6544      RecFields.push_back(FD);
6545    }
6546
6547    // If the field is already invalid for some reason, don't emit more
6548    // diagnostics about it.
6549    if (FD->isInvalidDecl()) {
6550      EnclosingDecl->setInvalidDecl();
6551      continue;
6552    }
6553
6554    // C99 6.7.2.1p2:
6555    //   A structure or union shall not contain a member with
6556    //   incomplete or function type (hence, a structure shall not
6557    //   contain an instance of itself, but may contain a pointer to
6558    //   an instance of itself), except that the last member of a
6559    //   structure with more than one named member may have incomplete
6560    //   array type; such a structure (and any union containing,
6561    //   possibly recursively, a member that is such a structure)
6562    //   shall not be a member of a structure or an element of an
6563    //   array.
6564    if (FDTy->isFunctionType()) {
6565      // Field declared as a function.
6566      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6567        << FD->getDeclName();
6568      FD->setInvalidDecl();
6569      EnclosingDecl->setInvalidDecl();
6570      continue;
6571    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6572               Record && !Record->isUnion()) {
6573      // Flexible array member.
6574      if (NumNamedMembers < 1) {
6575        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6576          << FD->getDeclName();
6577        FD->setInvalidDecl();
6578        EnclosingDecl->setInvalidDecl();
6579        continue;
6580      }
6581      if (!FD->getType()->isDependentType() &&
6582          !Context.getBaseElementType(FD->getType())->isPODType()) {
6583        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6584          << FD->getDeclName() << FD->getType();
6585        FD->setInvalidDecl();
6586        EnclosingDecl->setInvalidDecl();
6587        continue;
6588      }
6589
6590      // Okay, we have a legal flexible array member at the end of the struct.
6591      if (Record)
6592        Record->setHasFlexibleArrayMember(true);
6593    } else if (!FDTy->isDependentType() &&
6594               RequireCompleteType(FD->getLocation(), FD->getType(),
6595                                   diag::err_field_incomplete)) {
6596      // Incomplete type
6597      FD->setInvalidDecl();
6598      EnclosingDecl->setInvalidDecl();
6599      continue;
6600    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6601      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6602        // If this is a member of a union, then entire union becomes "flexible".
6603        if (Record && Record->isUnion()) {
6604          Record->setHasFlexibleArrayMember(true);
6605        } else {
6606          // If this is a struct/class and this is not the last element, reject
6607          // it.  Note that GCC supports variable sized arrays in the middle of
6608          // structures.
6609          if (i != NumFields-1)
6610            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6611              << FD->getDeclName() << FD->getType();
6612          else {
6613            // We support flexible arrays at the end of structs in
6614            // other structs as an extension.
6615            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6616              << FD->getDeclName();
6617            if (Record)
6618              Record->setHasFlexibleArrayMember(true);
6619          }
6620        }
6621      }
6622      if (Record && FDTTy->getDecl()->hasObjectMember())
6623        Record->setHasObjectMember(true);
6624    } else if (FDTy->isObjCObjectType()) {
6625      /// A field cannot be an Objective-c object
6626      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6627      FD->setInvalidDecl();
6628      EnclosingDecl->setInvalidDecl();
6629      continue;
6630    } else if (getLangOptions().ObjC1 &&
6631               getLangOptions().getGCMode() != LangOptions::NonGC &&
6632               Record &&
6633               (FD->getType()->isObjCObjectPointerType() ||
6634                FD->getType().isObjCGCStrong()))
6635      Record->setHasObjectMember(true);
6636    else if (Context.getAsArrayType(FD->getType())) {
6637      QualType BaseType = Context.getBaseElementType(FD->getType());
6638      if (Record && BaseType->isRecordType() &&
6639          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6640        Record->setHasObjectMember(true);
6641    }
6642    // Keep track of the number of named members.
6643    if (FD->getIdentifier())
6644      ++NumNamedMembers;
6645  }
6646
6647  // Okay, we successfully defined 'Record'.
6648  if (Record) {
6649    Record->completeDefinition();
6650  } else {
6651    ObjCIvarDecl **ClsFields =
6652      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6653    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6654      ID->setLocEnd(RBrac);
6655      // Add ivar's to class's DeclContext.
6656      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6657        ClsFields[i]->setLexicalDeclContext(ID);
6658        ID->addDecl(ClsFields[i]);
6659      }
6660      // Must enforce the rule that ivars in the base classes may not be
6661      // duplicates.
6662      if (ID->getSuperClass())
6663        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6664    } else if (ObjCImplementationDecl *IMPDecl =
6665                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6666      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6667      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6668        // Ivar declared in @implementation never belongs to the implementation.
6669        // Only it is in implementation's lexical context.
6670        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6671      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6672    } else if (ObjCCategoryDecl *CDecl =
6673                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6674      // case of ivars in class extension; all other cases have been
6675      // reported as errors elsewhere.
6676      // FIXME. Class extension does not have a LocEnd field.
6677      // CDecl->setLocEnd(RBrac);
6678      // Add ivar's to class extension's DeclContext.
6679      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6680        ClsFields[i]->setLexicalDeclContext(CDecl);
6681        CDecl->addDecl(ClsFields[i]);
6682      }
6683    }
6684  }
6685
6686  if (Attr)
6687    ProcessDeclAttributeList(S, Record, Attr);
6688
6689  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6690  // set the visibility of this record.
6691  if (Record && !Record->getDeclContext()->isRecord())
6692    AddPushedVisibilityAttribute(Record);
6693}
6694
6695/// \brief Determine whether the given integral value is representable within
6696/// the given type T.
6697static bool isRepresentableIntegerValue(ASTContext &Context,
6698                                        llvm::APSInt &Value,
6699                                        QualType T) {
6700  assert(T->isIntegralType(Context) && "Integral type required!");
6701  unsigned BitWidth = Context.getIntWidth(T);
6702
6703  if (Value.isUnsigned() || Value.isNonNegative())
6704    return Value.getActiveBits() < BitWidth;
6705
6706  return Value.getMinSignedBits() <= BitWidth;
6707}
6708
6709// \brief Given an integral type, return the next larger integral type
6710// (or a NULL type of no such type exists).
6711static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6712  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6713  // enum checking below.
6714  assert(T->isIntegralType(Context) && "Integral type required!");
6715  const unsigned NumTypes = 4;
6716  QualType SignedIntegralTypes[NumTypes] = {
6717    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6718  };
6719  QualType UnsignedIntegralTypes[NumTypes] = {
6720    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6721    Context.UnsignedLongLongTy
6722  };
6723
6724  unsigned BitWidth = Context.getTypeSize(T);
6725  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6726                                            : UnsignedIntegralTypes;
6727  for (unsigned I = 0; I != NumTypes; ++I)
6728    if (Context.getTypeSize(Types[I]) > BitWidth)
6729      return Types[I];
6730
6731  return QualType();
6732}
6733
6734EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6735                                          EnumConstantDecl *LastEnumConst,
6736                                          SourceLocation IdLoc,
6737                                          IdentifierInfo *Id,
6738                                          Expr *Val) {
6739  unsigned IntWidth = Context.Target.getIntWidth();
6740  llvm::APSInt EnumVal(IntWidth);
6741  QualType EltTy;
6742  if (Val) {
6743    if (Enum->isDependentType() || Val->isTypeDependent())
6744      EltTy = Context.DependentTy;
6745    else {
6746      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6747      SourceLocation ExpLoc;
6748      if (!Val->isValueDependent() &&
6749          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6750        Val = 0;
6751      } else {
6752        if (!getLangOptions().CPlusPlus) {
6753          // C99 6.7.2.2p2:
6754          //   The expression that defines the value of an enumeration constant
6755          //   shall be an integer constant expression that has a value
6756          //   representable as an int.
6757
6758          // Complain if the value is not representable in an int.
6759          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6760            Diag(IdLoc, diag::ext_enum_value_not_int)
6761              << EnumVal.toString(10) << Val->getSourceRange()
6762              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6763          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6764            // Force the type of the expression to 'int'.
6765            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6766          }
6767        }
6768
6769        // C++0x [dcl.enum]p5:
6770        //   If the underlying type is not fixed, the type of each enumerator
6771        //   is the type of its initializing value:
6772        //     - If an initializer is specified for an enumerator, the
6773        //       initializing value has the same type as the expression.
6774        EltTy = Val->getType();
6775      }
6776    }
6777  }
6778
6779  if (!Val) {
6780    if (Enum->isDependentType())
6781      EltTy = Context.DependentTy;
6782    else if (!LastEnumConst) {
6783      // C++0x [dcl.enum]p5:
6784      //   If the underlying type is not fixed, the type of each enumerator
6785      //   is the type of its initializing value:
6786      //     - If no initializer is specified for the first enumerator, the
6787      //       initializing value has an unspecified integral type.
6788      //
6789      // GCC uses 'int' for its unspecified integral type, as does
6790      // C99 6.7.2.2p3.
6791      EltTy = Context.IntTy;
6792    } else {
6793      // Assign the last value + 1.
6794      EnumVal = LastEnumConst->getInitVal();
6795      ++EnumVal;
6796      EltTy = LastEnumConst->getType();
6797
6798      // Check for overflow on increment.
6799      if (EnumVal < LastEnumConst->getInitVal()) {
6800        // C++0x [dcl.enum]p5:
6801        //   If the underlying type is not fixed, the type of each enumerator
6802        //   is the type of its initializing value:
6803        //
6804        //     - Otherwise the type of the initializing value is the same as
6805        //       the type of the initializing value of the preceding enumerator
6806        //       unless the incremented value is not representable in that type,
6807        //       in which case the type is an unspecified integral type
6808        //       sufficient to contain the incremented value. If no such type
6809        //       exists, the program is ill-formed.
6810        QualType T = getNextLargerIntegralType(Context, EltTy);
6811        if (T.isNull()) {
6812          // There is no integral type larger enough to represent this
6813          // value. Complain, then allow the value to wrap around.
6814          EnumVal = LastEnumConst->getInitVal();
6815          EnumVal.zext(EnumVal.getBitWidth() * 2);
6816          Diag(IdLoc, diag::warn_enumerator_too_large)
6817            << EnumVal.toString(10);
6818        } else {
6819          EltTy = T;
6820        }
6821
6822        // Retrieve the last enumerator's value, extent that type to the
6823        // type that is supposed to be large enough to represent the incremented
6824        // value, then increment.
6825        EnumVal = LastEnumConst->getInitVal();
6826        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6827        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6828        ++EnumVal;
6829
6830        // If we're not in C++, diagnose the overflow of enumerator values,
6831        // which in C99 means that the enumerator value is not representable in
6832        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6833        // permits enumerator values that are representable in some larger
6834        // integral type.
6835        if (!getLangOptions().CPlusPlus && !T.isNull())
6836          Diag(IdLoc, diag::warn_enum_value_overflow);
6837      } else if (!getLangOptions().CPlusPlus &&
6838                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6839        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6840        Diag(IdLoc, diag::ext_enum_value_not_int)
6841          << EnumVal.toString(10) << 1;
6842      }
6843    }
6844  }
6845
6846  if (!EltTy->isDependentType()) {
6847    // Make the enumerator value match the signedness and size of the
6848    // enumerator's type.
6849    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6850    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6851  }
6852
6853  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6854                                  Val, EnumVal);
6855}
6856
6857
6858Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6859                                        Decl *lastEnumConst,
6860                                        SourceLocation IdLoc,
6861                                        IdentifierInfo *Id,
6862                                        SourceLocation EqualLoc, ExprTy *val) {
6863  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6864  EnumConstantDecl *LastEnumConst =
6865    cast_or_null<EnumConstantDecl>(lastEnumConst);
6866  Expr *Val = static_cast<Expr*>(val);
6867
6868  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6869  // we find one that is.
6870  S = getNonFieldDeclScope(S);
6871
6872  // Verify that there isn't already something declared with this name in this
6873  // scope.
6874  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6875                                         ForRedeclaration);
6876  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6877    // Maybe we will complain about the shadowed template parameter.
6878    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6879    // Just pretend that we didn't see the previous declaration.
6880    PrevDecl = 0;
6881  }
6882
6883  if (PrevDecl) {
6884    // When in C++, we may get a TagDecl with the same name; in this case the
6885    // enum constant will 'hide' the tag.
6886    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6887           "Received TagDecl when not in C++!");
6888    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6889      if (isa<EnumConstantDecl>(PrevDecl))
6890        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6891      else
6892        Diag(IdLoc, diag::err_redefinition) << Id;
6893      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6894      return 0;
6895    }
6896  }
6897
6898  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6899                                            IdLoc, Id, Val);
6900
6901  // Register this decl in the current scope stack.
6902  if (New) {
6903    New->setAccess(TheEnumDecl->getAccess());
6904    PushOnScopeChains(New, S);
6905  }
6906
6907  return New;
6908}
6909
6910void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6911                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6912                         Decl **Elements, unsigned NumElements,
6913                         Scope *S, AttributeList *Attr) {
6914  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6915  QualType EnumType = Context.getTypeDeclType(Enum);
6916
6917  if (Attr)
6918    ProcessDeclAttributeList(S, Enum, Attr);
6919
6920  if (Enum->isDependentType()) {
6921    for (unsigned i = 0; i != NumElements; ++i) {
6922      EnumConstantDecl *ECD =
6923        cast_or_null<EnumConstantDecl>(Elements[i]);
6924      if (!ECD) continue;
6925
6926      ECD->setType(EnumType);
6927    }
6928
6929    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6930    return;
6931  }
6932
6933  // TODO: If the result value doesn't fit in an int, it must be a long or long
6934  // long value.  ISO C does not support this, but GCC does as an extension,
6935  // emit a warning.
6936  unsigned IntWidth = Context.Target.getIntWidth();
6937  unsigned CharWidth = Context.Target.getCharWidth();
6938  unsigned ShortWidth = Context.Target.getShortWidth();
6939
6940  // Verify that all the values are okay, compute the size of the values, and
6941  // reverse the list.
6942  unsigned NumNegativeBits = 0;
6943  unsigned NumPositiveBits = 0;
6944
6945  // Keep track of whether all elements have type int.
6946  bool AllElementsInt = true;
6947
6948  for (unsigned i = 0; i != NumElements; ++i) {
6949    EnumConstantDecl *ECD =
6950      cast_or_null<EnumConstantDecl>(Elements[i]);
6951    if (!ECD) continue;  // Already issued a diagnostic.
6952
6953    const llvm::APSInt &InitVal = ECD->getInitVal();
6954
6955    // Keep track of the size of positive and negative values.
6956    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6957      NumPositiveBits = std::max(NumPositiveBits,
6958                                 (unsigned)InitVal.getActiveBits());
6959    else
6960      NumNegativeBits = std::max(NumNegativeBits,
6961                                 (unsigned)InitVal.getMinSignedBits());
6962
6963    // Keep track of whether every enum element has type int (very commmon).
6964    if (AllElementsInt)
6965      AllElementsInt = ECD->getType() == Context.IntTy;
6966  }
6967
6968  // Figure out the type that should be used for this enum.
6969  // FIXME: Support -fshort-enums.
6970  QualType BestType;
6971  unsigned BestWidth;
6972
6973  // C++0x N3000 [conv.prom]p3:
6974  //   An rvalue of an unscoped enumeration type whose underlying
6975  //   type is not fixed can be converted to an rvalue of the first
6976  //   of the following types that can represent all the values of
6977  //   the enumeration: int, unsigned int, long int, unsigned long
6978  //   int, long long int, or unsigned long long int.
6979  // C99 6.4.4.3p2:
6980  //   An identifier declared as an enumeration constant has type int.
6981  // The C99 rule is modified by a gcc extension
6982  QualType BestPromotionType;
6983
6984  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6985
6986  if (NumNegativeBits) {
6987    // If there is a negative value, figure out the smallest integer type (of
6988    // int/long/longlong) that fits.
6989    // If it's packed, check also if it fits a char or a short.
6990    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6991      BestType = Context.SignedCharTy;
6992      BestWidth = CharWidth;
6993    } else if (Packed && NumNegativeBits <= ShortWidth &&
6994               NumPositiveBits < ShortWidth) {
6995      BestType = Context.ShortTy;
6996      BestWidth = ShortWidth;
6997    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6998      BestType = Context.IntTy;
6999      BestWidth = IntWidth;
7000    } else {
7001      BestWidth = Context.Target.getLongWidth();
7002
7003      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7004        BestType = Context.LongTy;
7005      } else {
7006        BestWidth = Context.Target.getLongLongWidth();
7007
7008        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7009          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7010        BestType = Context.LongLongTy;
7011      }
7012    }
7013    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7014  } else {
7015    // If there is no negative value, figure out the smallest type that fits
7016    // all of the enumerator values.
7017    // If it's packed, check also if it fits a char or a short.
7018    if (Packed && NumPositiveBits <= CharWidth) {
7019      BestType = Context.UnsignedCharTy;
7020      BestPromotionType = Context.IntTy;
7021      BestWidth = CharWidth;
7022    } else if (Packed && NumPositiveBits <= ShortWidth) {
7023      BestType = Context.UnsignedShortTy;
7024      BestPromotionType = Context.IntTy;
7025      BestWidth = ShortWidth;
7026    } else if (NumPositiveBits <= IntWidth) {
7027      BestType = Context.UnsignedIntTy;
7028      BestWidth = IntWidth;
7029      BestPromotionType
7030        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7031                           ? Context.UnsignedIntTy : Context.IntTy;
7032    } else if (NumPositiveBits <=
7033               (BestWidth = Context.Target.getLongWidth())) {
7034      BestType = Context.UnsignedLongTy;
7035      BestPromotionType
7036        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7037                           ? Context.UnsignedLongTy : Context.LongTy;
7038    } else {
7039      BestWidth = Context.Target.getLongLongWidth();
7040      assert(NumPositiveBits <= BestWidth &&
7041             "How could an initializer get larger than ULL?");
7042      BestType = Context.UnsignedLongLongTy;
7043      BestPromotionType
7044        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7045                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7046    }
7047  }
7048
7049  // Loop over all of the enumerator constants, changing their types to match
7050  // the type of the enum if needed.
7051  for (unsigned i = 0; i != NumElements; ++i) {
7052    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7053    if (!ECD) continue;  // Already issued a diagnostic.
7054
7055    // Standard C says the enumerators have int type, but we allow, as an
7056    // extension, the enumerators to be larger than int size.  If each
7057    // enumerator value fits in an int, type it as an int, otherwise type it the
7058    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7059    // that X has type 'int', not 'unsigned'.
7060
7061    // Determine whether the value fits into an int.
7062    llvm::APSInt InitVal = ECD->getInitVal();
7063
7064    // If it fits into an integer type, force it.  Otherwise force it to match
7065    // the enum decl type.
7066    QualType NewTy;
7067    unsigned NewWidth;
7068    bool NewSign;
7069    if (!getLangOptions().CPlusPlus &&
7070        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7071      NewTy = Context.IntTy;
7072      NewWidth = IntWidth;
7073      NewSign = true;
7074    } else if (ECD->getType() == BestType) {
7075      // Already the right type!
7076      if (getLangOptions().CPlusPlus)
7077        // C++ [dcl.enum]p4: Following the closing brace of an
7078        // enum-specifier, each enumerator has the type of its
7079        // enumeration.
7080        ECD->setType(EnumType);
7081      continue;
7082    } else {
7083      NewTy = BestType;
7084      NewWidth = BestWidth;
7085      NewSign = BestType->isSignedIntegerType();
7086    }
7087
7088    // Adjust the APSInt value.
7089    InitVal.extOrTrunc(NewWidth);
7090    InitVal.setIsSigned(NewSign);
7091    ECD->setInitVal(InitVal);
7092
7093    // Adjust the Expr initializer and type.
7094    if (ECD->getInitExpr())
7095      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7096                                                CK_IntegralCast,
7097                                                ECD->getInitExpr(),
7098                                                /*base paths*/ 0,
7099                                                VK_RValue));
7100    if (getLangOptions().CPlusPlus)
7101      // C++ [dcl.enum]p4: Following the closing brace of an
7102      // enum-specifier, each enumerator has the type of its
7103      // enumeration.
7104      ECD->setType(EnumType);
7105    else
7106      ECD->setType(NewTy);
7107  }
7108
7109  Enum->completeDefinition(BestType, BestPromotionType,
7110                           NumPositiveBits, NumNegativeBits);
7111}
7112
7113Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7114  StringLiteral *AsmString = cast<StringLiteral>(expr);
7115
7116  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7117                                                   Loc, AsmString);
7118  CurContext->addDecl(New);
7119  return New;
7120}
7121
7122void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7123                             SourceLocation PragmaLoc,
7124                             SourceLocation NameLoc) {
7125  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7126
7127  if (PrevDecl) {
7128    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7129  } else {
7130    (void)WeakUndeclaredIdentifiers.insert(
7131      std::pair<IdentifierInfo*,WeakInfo>
7132        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7133  }
7134}
7135
7136void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7137                                IdentifierInfo* AliasName,
7138                                SourceLocation PragmaLoc,
7139                                SourceLocation NameLoc,
7140                                SourceLocation AliasNameLoc) {
7141  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7142                                    LookupOrdinaryName);
7143  WeakInfo W = WeakInfo(Name, NameLoc);
7144
7145  if (PrevDecl) {
7146    if (!PrevDecl->hasAttr<AliasAttr>())
7147      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7148        DeclApplyPragmaWeak(TUScope, ND, W);
7149  } else {
7150    (void)WeakUndeclaredIdentifiers.insert(
7151      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7152  }
7153}
7154