SemaDecl.cpp revision 1d78cc443084134428c4c333fab25148900c3ca4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
36  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
37
38  if (IIDecl && (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl)))
39    return IIDecl;
40  return 0;
41}
42
43void Sema::PushDeclContext(DeclContext *CD) {
44  assert(CD->getParent() == CurContext &&
45      "The next DeclContext should be directly contained in the current one.");
46  CurContext = CD;
47}
48
49void Sema::PopDeclContext() {
50  assert(CurContext && "DeclContext imbalance!");
51  CurContext = CurContext->getParent();
52}
53
54void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
55  if (S->decl_empty()) return;
56  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
57
58  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
59       I != E; ++I) {
60    Decl *TmpD = static_cast<Decl*>(*I);
61    assert(TmpD && "This decl didn't get pushed??");
62    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
63    assert(D && "This decl isn't a ScopedDecl?");
64
65    IdentifierInfo *II = D->getIdentifier();
66    if (!II) continue;
67
68    // Unlink this decl from the identifier.  Because the scope contains decls
69    // in an unordered collection, and because we have multiple identifier
70    // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
71    if (II->getFETokenInfo<Decl>() == D) {
72      // Normal case, no multiple decls in different namespaces.
73      II->setFETokenInfo(D->getNext());
74    } else {
75      // Scan ahead.  There are only three namespaces in C, so this loop can
76      // never execute more than 3 times.
77      ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
78      while (SomeDecl->getNext() != D) {
79        SomeDecl = SomeDecl->getNext();
80        assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
81      }
82      SomeDecl->setNext(D->getNext());
83    }
84
85    // This will have to be revisited for C++: there we want to nest stuff in
86    // namespace decls etc.  Even for C, we might want a top-level translation
87    // unit decl or something.
88    if (!CurFunctionDecl)
89      continue;
90
91    // Chain this decl to the containing function, it now owns the memory for
92    // the decl.
93    D->setNext(CurFunctionDecl->getDeclChain());
94    CurFunctionDecl->setDeclChain(D);
95  }
96}
97
98/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
99/// return 0 if one not found.
100ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
101  // The third "scope" argument is 0 since we aren't enabling lazy built-in
102  // creation from this context.
103  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
104
105  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
106}
107
108/// LookupDecl - Look up the inner-most declaration in the specified
109/// namespace.
110Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
111                       Scope *S, bool enableLazyBuiltinCreation) {
112  if (II == 0) return 0;
113  Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
114
115  // Scan up the scope chain looking for a decl that matches this identifier
116  // that is in the appropriate namespace.  This search should not take long, as
117  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
118  for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
119    if (D->getIdentifierNamespace() == NS)
120      return D;
121
122  // If we didn't find a use of this identifier, and if the identifier
123  // corresponds to a compiler builtin, create the decl object for the builtin
124  // now, injecting it into translation unit scope, and return it.
125  if (NS == Decl::IDNS_Ordinary) {
126    if (enableLazyBuiltinCreation) {
127      // If this is a builtin on this (or all) targets, create the decl.
128      if (unsigned BuiltinID = II->getBuiltinID())
129        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
130    }
131    if (getLangOptions().ObjC1) {
132      // @interface and @compatibility_alias introduce typedef-like names.
133      // Unlike typedef's, they can only be introduced at file-scope (and are
134      // therefore not scoped decls). They can, however, be shadowed by
135      // other names in IDNS_Ordinary.
136      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
137      if (IDI != ObjCInterfaceDecls.end())
138        return IDI->second;
139      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
140      if (I != ObjCAliasDecls.end())
141        return I->second->getClassInterface();
142    }
143  }
144  return 0;
145}
146
147void Sema::InitBuiltinVaListType()
148{
149  if (!Context.getBuiltinVaListType().isNull())
150    return;
151
152  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
153  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
154  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
155  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
156}
157
158/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
159/// lazily create a decl for it.
160ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
161                                      Scope *S) {
162  Builtin::ID BID = (Builtin::ID)bid;
163
164  if (BID == Builtin::BI__builtin_va_start ||
165       BID == Builtin::BI__builtin_va_copy ||
166       BID == Builtin::BI__builtin_va_end)
167    InitBuiltinVaListType();
168
169  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
170  FunctionDecl *New = FunctionDecl::Create(Context, CurContext,
171                                           SourceLocation(), II, R,
172                                           FunctionDecl::Extern, false, 0);
173
174  // Find translation-unit scope to insert this function into.
175  if (Scope *FnS = S->getFnParent())
176    S = FnS->getParent();   // Skip all scopes in a function at once.
177  while (S->getParent())
178    S = S->getParent();
179  S->AddDecl(New);
180
181  // Add this decl to the end of the identifier info.
182  if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
183    // Scan until we find the last (outermost) decl in the id chain.
184    while (LastDecl->getNext())
185      LastDecl = LastDecl->getNext();
186    // Insert before (outside) it.
187    LastDecl->setNext(New);
188  } else {
189    II->setFETokenInfo(New);
190  }
191  return New;
192}
193
194/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
195/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
196/// situation, merging decls or emitting diagnostics as appropriate.
197///
198TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
199  // Verify the old decl was also a typedef.
200  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
201  if (!Old) {
202    Diag(New->getLocation(), diag::err_redefinition_different_kind,
203         New->getName());
204    Diag(OldD->getLocation(), diag::err_previous_definition);
205    return New;
206  }
207
208  // Allow multiple definitions for ObjC built-in typedefs.
209  // FIXME: Verify the underlying types are equivalent!
210  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
211    return Old;
212
213  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
214  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
215  // *either* declaration is in a system header. The code below implements
216  // this adhoc compatibility rule. FIXME: The following code will not
217  // work properly when compiling ".i" files (containing preprocessed output).
218  SourceManager &SrcMgr = Context.getSourceManager();
219  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
220  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
221  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
222  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
223  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
224
225  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
226  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
227       NewDirType != DirectoryLookup::NormalHeaderDir) ||
228      getLangOptions().Microsoft)
229    return New;
230
231  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
232  // TODO: This is totally simplistic.  It should handle merging functions
233  // together etc, merging extern int X; int X; ...
234  Diag(New->getLocation(), diag::err_redefinition, New->getName());
235  Diag(Old->getLocation(), diag::err_previous_definition);
236  return New;
237}
238
239/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
240static bool DeclHasAttr(const Decl *decl, const Attr *target) {
241  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
242    if (attr->getKind() == target->getKind())
243      return true;
244
245  return false;
246}
247
248/// MergeAttributes - append attributes from the Old decl to the New one.
249static void MergeAttributes(Decl *New, Decl *Old) {
250  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
251
252// FIXME: fix this code to cleanup the Old attrs correctly
253  while (attr) {
254     tmp = attr;
255     attr = attr->getNext();
256
257    if (!DeclHasAttr(New, tmp)) {
258       New->addAttr(tmp);
259    } else {
260       tmp->setNext(0);
261       delete(tmp);
262    }
263  }
264}
265
266/// MergeFunctionDecl - We just parsed a function 'New' from
267/// declarator D which has the same name and scope as a previous
268/// declaration 'Old'.  Figure out how to resolve this situation,
269/// merging decls or emitting diagnostics as appropriate.
270///
271FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
272  // Verify the old decl was also a function.
273  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
274  if (!Old) {
275    Diag(New->getLocation(), diag::err_redefinition_different_kind,
276         New->getName());
277    Diag(OldD->getLocation(), diag::err_previous_definition);
278    return New;
279  }
280
281  MergeAttributes(New, Old);
282
283  QualType OldQType = Context.getCanonicalType(Old->getType());
284  QualType NewQType = Context.getCanonicalType(New->getType());
285
286  // C++ [dcl.fct]p3:
287  //   All declarations for a function shall agree exactly in both the
288  //   return type and the parameter-type-list.
289  if (getLangOptions().CPlusPlus && OldQType == NewQType)
290    return MergeCXXFunctionDecl(New, Old);
291
292  // C: Function types need to be compatible, not identical. This handles
293  // duplicate function decls like "void f(int); void f(enum X);" properly.
294  if (!getLangOptions().CPlusPlus &&
295      Context.functionTypesAreCompatible(OldQType, NewQType)) {
296    return New;
297  }
298
299  // A function that has already been declared has been redeclared or defined
300  // with a different type- show appropriate diagnostic
301  diag::kind PrevDiag;
302  if (Old->getBody())
303    PrevDiag = diag::err_previous_definition;
304  else if (Old->isImplicit())
305    PrevDiag = diag::err_previous_implicit_declaration;
306  else
307    PrevDiag = diag::err_previous_declaration;
308
309  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
310  // TODO: This is totally simplistic.  It should handle merging functions
311  // together etc, merging extern int X; int X; ...
312  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
313  Diag(Old->getLocation(), PrevDiag);
314  return New;
315}
316
317/// equivalentArrayTypes - Used to determine whether two array types are
318/// equivalent.
319/// We need to check this explicitly as an incomplete array definition is
320/// considered a VariableArrayType, so will not match a complete array
321/// definition that would be otherwise equivalent.
322static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
323  const ArrayType *NewAT = NewQType->getAsArrayType();
324  const ArrayType *OldAT = OldQType->getAsArrayType();
325
326  if (!NewAT || !OldAT)
327    return false;
328
329  // If either (or both) array types in incomplete we need to strip off the
330  // outer VariableArrayType.  Once the outer VAT is removed the remaining
331  // types must be identical if the array types are to be considered
332  // equivalent.
333  // eg. int[][1] and int[1][1] become
334  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
335  // removing the outermost VAT gives
336  //     CAT(1, int) and CAT(1, int)
337  // which are equal, therefore the array types are equivalent.
338  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
339    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
340      return false;
341    NewQType = NewAT->getElementType().getCanonicalType();
342    OldQType = OldAT->getElementType().getCanonicalType();
343  }
344
345  return NewQType == OldQType;
346}
347
348/// MergeVarDecl - We just parsed a variable 'New' which has the same name
349/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
350/// situation, merging decls or emitting diagnostics as appropriate.
351///
352/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
353/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
354///
355VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
356  // Verify the old decl was also a variable.
357  VarDecl *Old = dyn_cast<VarDecl>(OldD);
358  if (!Old) {
359    Diag(New->getLocation(), diag::err_redefinition_different_kind,
360         New->getName());
361    Diag(OldD->getLocation(), diag::err_previous_definition);
362    return New;
363  }
364
365  MergeAttributes(New, Old);
366
367  // Verify the types match.
368  QualType OldCType = Context.getCanonicalType(Old->getType());
369  QualType NewCType = Context.getCanonicalType(New->getType());
370  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
371    Diag(New->getLocation(), diag::err_redefinition, New->getName());
372    Diag(Old->getLocation(), diag::err_previous_definition);
373    return New;
374  }
375  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
376  if (New->getStorageClass() == VarDecl::Static &&
377      (Old->getStorageClass() == VarDecl::None ||
378       Old->getStorageClass() == VarDecl::Extern)) {
379    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
380    Diag(Old->getLocation(), diag::err_previous_definition);
381    return New;
382  }
383  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
384  if (New->getStorageClass() != VarDecl::Static &&
385      Old->getStorageClass() == VarDecl::Static) {
386    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
387    Diag(Old->getLocation(), diag::err_previous_definition);
388    return New;
389  }
390  // We've verified the types match, now handle "tentative" definitions.
391  FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
392  FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
393
394  if (OldFSDecl && NewFSDecl) {
395    // Handle C "tentative" external object definitions (C99 6.9.2).
396    bool OldIsTentative = false;
397    bool NewIsTentative = false;
398
399    if (!OldFSDecl->getInit() &&
400        (OldFSDecl->getStorageClass() == VarDecl::None ||
401         OldFSDecl->getStorageClass() == VarDecl::Static))
402      OldIsTentative = true;
403
404    // FIXME: this check doesn't work (since the initializer hasn't been
405    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
406    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
407    // thrown out the old decl.
408    if (!NewFSDecl->getInit() &&
409        (NewFSDecl->getStorageClass() == VarDecl::None ||
410         NewFSDecl->getStorageClass() == VarDecl::Static))
411      ; // change to NewIsTentative = true; once the code is moved.
412
413    if (NewIsTentative || OldIsTentative)
414      return New;
415  }
416  if (Old->getStorageClass() != VarDecl::Extern &&
417      New->getStorageClass() != VarDecl::Extern) {
418    Diag(New->getLocation(), diag::err_redefinition, New->getName());
419    Diag(Old->getLocation(), diag::err_previous_definition);
420  }
421  return New;
422}
423
424/// CheckParmsForFunctionDef - Check that the parameters of the given
425/// function are appropriate for the definition of a function. This
426/// takes care of any checks that cannot be performed on the
427/// declaration itself, e.g., that the types of each of the function
428/// parameters are complete.
429bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
430  bool HasInvalidParm = false;
431  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
432    ParmVarDecl *Param = FD->getParamDecl(p);
433
434    // C99 6.7.5.3p4: the parameters in a parameter type list in a
435    // function declarator that is part of a function definition of
436    // that function shall not have incomplete type.
437    if (Param->getType()->isIncompleteType() &&
438        !Param->isInvalidDecl()) {
439      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
440           Param->getType().getAsString());
441      Param->setInvalidDecl();
442      HasInvalidParm = true;
443    }
444  }
445
446  return HasInvalidParm;
447}
448
449/// CreateImplicitParameter - Creates an implicit function parameter
450/// in the scope S and with the given type. This routine is used, for
451/// example, to create the implicit "self" parameter in an Objective-C
452/// method.
453ParmVarDecl *
454Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
455                              SourceLocation IdLoc, QualType Type) {
456  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
457                                         VarDecl::None, 0, 0);
458  if (Id) {
459    New->setNext(Id->getFETokenInfo<ScopedDecl>());
460    Id->setFETokenInfo(New);
461    S->AddDecl(New);
462  }
463
464  return New;
465}
466
467/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
468/// no declarator (e.g. "struct foo;") is parsed.
469Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
470  // TODO: emit error on 'int;' or 'const enum foo;'.
471  // TODO: emit error on 'typedef int;'
472  // if (!DS.isMissingDeclaratorOk()) Diag(...);
473
474  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
475}
476
477bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
478  // Get the type before calling CheckSingleAssignmentConstraints(), since
479  // it can promote the expression.
480  QualType InitType = Init->getType();
481
482  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
483  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
484                                  InitType, Init, "initializing");
485}
486
487bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
488                         QualType ElementType) {
489  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
490  if (CheckSingleInitializer(expr, ElementType))
491    return true; // types weren't compatible.
492
493  if (savExpr != expr) // The type was promoted, update initializer list.
494    IList->setInit(slot, expr);
495  return false;
496}
497
498bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
499  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
500    // C99 6.7.8p14. We have an array of character type with unknown size
501    // being initialized to a string literal.
502    llvm::APSInt ConstVal(32);
503    ConstVal = strLiteral->getByteLength() + 1;
504    // Return a new array type (C99 6.7.8p22).
505    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
506                                         ArrayType::Normal, 0);
507  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
508    // C99 6.7.8p14. We have an array of character type with known size.
509    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
510      Diag(strLiteral->getSourceRange().getBegin(),
511           diag::warn_initializer_string_for_char_array_too_long,
512           strLiteral->getSourceRange());
513  } else {
514    assert(0 && "HandleStringLiteralInit(): Invalid array type");
515  }
516  // Set type from "char *" to "constant array of char".
517  strLiteral->setType(DeclT);
518  // For now, we always return false (meaning success).
519  return false;
520}
521
522StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
523  const ArrayType *AT = DeclType->getAsArrayType();
524  if (AT && AT->getElementType()->isCharType()) {
525    return dyn_cast<StringLiteral>(Init);
526  }
527  return 0;
528}
529
530// CheckInitializerListTypes - Checks the types of elements of an initializer
531// list. This function is recursive: it calls itself to initialize subelements
532// of aggregate types.  Note that the topLevel parameter essentially refers to
533// whether this expression "owns" the initializer list passed in, or if this
534// initialization is taking elements out of a parent initializer.  Each
535// call to this function adds zero or more to startIndex, reports any errors,
536// and returns true if it found any inconsistent types.
537bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
538                                     bool topLevel, unsigned& startIndex) {
539  bool hadError = false;
540
541  if (DeclType->isScalarType()) {
542    // The simplest case: initializing a single scalar
543    if (topLevel) {
544      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
545           IList->getSourceRange());
546    }
547    if (startIndex < IList->getNumInits()) {
548      Expr* expr = IList->getInit(startIndex);
549      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
550        // FIXME: Should an error be reported here instead?
551        unsigned newIndex = 0;
552        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
553      } else {
554        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
555      }
556      ++startIndex;
557    }
558    // FIXME: Should an error be reported for empty initializer list + scalar?
559  } else if (DeclType->isVectorType()) {
560    if (startIndex < IList->getNumInits()) {
561      const VectorType *VT = DeclType->getAsVectorType();
562      int maxElements = VT->getNumElements();
563      QualType elementType = VT->getElementType();
564
565      for (int i = 0; i < maxElements; ++i) {
566        // Don't attempt to go past the end of the init list
567        if (startIndex >= IList->getNumInits())
568          break;
569        Expr* expr = IList->getInit(startIndex);
570        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
571          unsigned newIndex = 0;
572          hadError |= CheckInitializerListTypes(SubInitList, elementType,
573                                                true, newIndex);
574          ++startIndex;
575        } else {
576          hadError |= CheckInitializerListTypes(IList, elementType,
577                                                false, startIndex);
578        }
579      }
580    }
581  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
582    if (DeclType->isStructureType() || DeclType->isUnionType()) {
583      if (startIndex < IList->getNumInits() && !topLevel &&
584          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
585                                     DeclType)) {
586        // We found a compatible struct; per the standard, this initializes the
587        // struct.  (The C standard technically says that this only applies for
588        // initializers for declarations with automatic scope; however, this
589        // construct is unambiguous anyway because a struct cannot contain
590        // a type compatible with itself. We'll output an error when we check
591        // if the initializer is constant.)
592        // FIXME: Is a call to CheckSingleInitializer required here?
593        ++startIndex;
594      } else {
595        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
596
597        // If the record is invalid, some of it's members are invalid. To avoid
598        // confusion, we forgo checking the intializer for the entire record.
599        if (structDecl->isInvalidDecl())
600          return true;
601
602        // If structDecl is a forward declaration, this loop won't do anything;
603        // That's okay, because an error should get printed out elsewhere. It
604        // might be worthwhile to skip over the rest of the initializer, though.
605        int numMembers = structDecl->getNumMembers() -
606                         structDecl->hasFlexibleArrayMember();
607        for (int i = 0; i < numMembers; i++) {
608          // Don't attempt to go past the end of the init list
609          if (startIndex >= IList->getNumInits())
610            break;
611          FieldDecl * curField = structDecl->getMember(i);
612          if (!curField->getIdentifier()) {
613            // Don't initialize unnamed fields, e.g. "int : 20;"
614            continue;
615          }
616          QualType fieldType = curField->getType();
617          Expr* expr = IList->getInit(startIndex);
618          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
619            unsigned newStart = 0;
620            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
621                                                  true, newStart);
622            ++startIndex;
623          } else {
624            hadError |= CheckInitializerListTypes(IList, fieldType,
625                                                  false, startIndex);
626          }
627          if (DeclType->isUnionType())
628            break;
629        }
630        // FIXME: Implement flexible array initialization GCC extension (it's a
631        // really messy extension to implement, unfortunately...the necessary
632        // information isn't actually even here!)
633      }
634    } else if (DeclType->isArrayType()) {
635      // Check for the special-case of initializing an array with a string.
636      if (startIndex < IList->getNumInits()) {
637        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
638                                                     DeclType)) {
639          CheckStringLiteralInit(lit, DeclType);
640          ++startIndex;
641          if (topLevel && startIndex < IList->getNumInits()) {
642            // We have leftover initializers; warn
643            Diag(IList->getInit(startIndex)->getLocStart(),
644                 diag::err_excess_initializers_in_char_array_initializer,
645                 IList->getInit(startIndex)->getSourceRange());
646          }
647          return false;
648        }
649      }
650      int maxElements;
651      if (DeclType->isIncompleteArrayType()) {
652        // FIXME: use a proper constant
653        maxElements = 0x7FFFFFFF;
654      } else if (const VariableArrayType *VAT =
655                                DeclType->getAsVariableArrayType()) {
656        // Check for VLAs; in standard C it would be possible to check this
657        // earlier, but I don't know where clang accepts VLAs (gcc accepts
658        // them in all sorts of strange places).
659        Diag(VAT->getSizeExpr()->getLocStart(),
660             diag::err_variable_object_no_init,
661             VAT->getSizeExpr()->getSourceRange());
662        hadError = true;
663        maxElements = 0x7FFFFFFF;
664      } else {
665        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
666        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
667      }
668      QualType elementType = DeclType->getAsArrayType()->getElementType();
669      int numElements = 0;
670      for (int i = 0; i < maxElements; ++i, ++numElements) {
671        // Don't attempt to go past the end of the init list
672        if (startIndex >= IList->getNumInits())
673          break;
674        Expr* expr = IList->getInit(startIndex);
675        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
676          unsigned newIndex = 0;
677          hadError |= CheckInitializerListTypes(SubInitList, elementType,
678                                                true, newIndex);
679          ++startIndex;
680        } else {
681          hadError |= CheckInitializerListTypes(IList, elementType,
682                                                false, startIndex);
683        }
684      }
685      if (DeclType->isIncompleteArrayType()) {
686        // If this is an incomplete array type, the actual type needs to
687        // be calculated here
688        if (numElements == 0) {
689          // Sizing an array implicitly to zero is not allowed
690          // (It could in theory be allowed, but it doesn't really matter.)
691          Diag(IList->getLocStart(),
692               diag::err_at_least_one_initializer_needed_to_size_array);
693          hadError = true;
694        } else {
695          llvm::APSInt ConstVal(32);
696          ConstVal = numElements;
697          DeclType = Context.getConstantArrayType(elementType, ConstVal,
698                                                  ArrayType::Normal, 0);
699        }
700      }
701    } else {
702      assert(0 && "Aggregate that isn't a function or array?!");
703    }
704  } else {
705    // In C, all types are either scalars or aggregates, but
706    // additional handling is needed here for C++ (and possibly others?).
707    assert(0 && "Unsupported initializer type");
708  }
709
710  // If this init list is a base list, we set the type; an initializer doesn't
711  // fundamentally have a type, but this makes the ASTs a bit easier to read
712  if (topLevel)
713    IList->setType(DeclType);
714
715  if (topLevel && startIndex < IList->getNumInits()) {
716    // We have leftover initializers; warn
717    Diag(IList->getInit(startIndex)->getLocStart(),
718         diag::warn_excess_initializers,
719         IList->getInit(startIndex)->getSourceRange());
720  }
721  return hadError;
722}
723
724bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
725  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
726  // of unknown size ("[]") or an object type that is not a variable array type.
727  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
728    return Diag(VAT->getSizeExpr()->getLocStart(),
729                diag::err_variable_object_no_init,
730                VAT->getSizeExpr()->getSourceRange());
731
732  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
733  if (!InitList) {
734    // FIXME: Handle wide strings
735    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
736      return CheckStringLiteralInit(strLiteral, DeclType);
737
738    if (DeclType->isArrayType())
739      return Diag(Init->getLocStart(),
740                  diag::err_array_init_list_required,
741                  Init->getSourceRange());
742
743    return CheckSingleInitializer(Init, DeclType);
744  }
745  unsigned newIndex = 0;
746  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
747}
748
749Sema::DeclTy *
750Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
751  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
752  IdentifierInfo *II = D.getIdentifier();
753
754  // All of these full declarators require an identifier.  If it doesn't have
755  // one, the ParsedFreeStandingDeclSpec action should be used.
756  if (II == 0) {
757    Diag(D.getDeclSpec().getSourceRange().getBegin(),
758         diag::err_declarator_need_ident,
759         D.getDeclSpec().getSourceRange(), D.getSourceRange());
760    return 0;
761  }
762
763  // The scope passed in may not be a decl scope.  Zip up the scope tree until
764  // we find one that is.
765  while ((S->getFlags() & Scope::DeclScope) == 0)
766    S = S->getParent();
767
768  // See if this is a redefinition of a variable in the same scope.
769  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
770  ScopedDecl *New;
771  bool InvalidDecl = false;
772
773  QualType R = GetTypeForDeclarator(D, S);
774  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
775
776  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
777    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
778    if (!NewTD) return 0;
779
780    // Handle attributes prior to checking for duplicates in MergeVarDecl
781    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
782                         D.getAttributes());
783    // Merge the decl with the existing one if appropriate. If the decl is
784    // in an outer scope, it isn't the same thing.
785    if (PrevDecl && S->isDeclScope(PrevDecl)) {
786      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
787      if (NewTD == 0) return 0;
788    }
789    New = NewTD;
790    if (S->getParent() == 0) {
791      // C99 6.7.7p2: If a typedef name specifies a variably modified type
792      // then it shall have block scope.
793      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
794        // FIXME: Diagnostic needs to be fixed.
795        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
796        InvalidDecl = true;
797      }
798    }
799  } else if (R.getTypePtr()->isFunctionType()) {
800    FunctionDecl::StorageClass SC = FunctionDecl::None;
801    switch (D.getDeclSpec().getStorageClassSpec()) {
802      default: assert(0 && "Unknown storage class!");
803      case DeclSpec::SCS_auto:
804      case DeclSpec::SCS_register:
805        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
806             R.getAsString());
807        InvalidDecl = true;
808        break;
809      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
810      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
811      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
812      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
813    }
814
815    bool isInline = D.getDeclSpec().isInlineSpecified();
816    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
817                                               D.getIdentifierLoc(),
818                                               II, R, SC, isInline,
819                                               LastDeclarator);
820    // Handle attributes.
821    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
822                         D.getAttributes());
823
824    // Copy the parameter declarations from the declarator D to
825    // the function declaration NewFD, if they are available.
826    if (D.getNumTypeObjects() > 0 &&
827        D.getTypeObject(0).Fun.hasPrototype) {
828      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
829
830      // Create Decl objects for each parameter, adding them to the
831      // FunctionDecl.
832      llvm::SmallVector<ParmVarDecl*, 16> Params;
833
834      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
835      // function that takes no arguments, not a function that takes a
836      // single void argument.
837      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
838          FTI.ArgInfo[0].Param &&
839          !((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
840          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
841        // empty arg list, don't push any params.
842        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
843
844        // In C++, the empty parameter-type-list must be spelled "void"; a
845        // typedef of void is not permitted.
846        if (getLangOptions().CPlusPlus &&
847            Param->getType() != Context.VoidTy) {
848          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
849        }
850
851      } else {
852        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
853          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
854      }
855
856      NewFD->setParams(&Params[0], Params.size());
857    }
858
859    // Merge the decl with the existing one if appropriate. Since C functions
860    // are in a flat namespace, make sure we consider decls in outer scopes.
861    if (PrevDecl) {
862      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
863      if (NewFD == 0) return 0;
864    }
865    New = NewFD;
866
867    // In C++, check default arguments now that we have merged decls.
868    if (getLangOptions().CPlusPlus)
869      CheckCXXDefaultArguments(NewFD);
870  } else {
871    if (R.getTypePtr()->isObjCInterfaceType()) {
872      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
873           D.getIdentifier()->getName());
874      InvalidDecl = true;
875    }
876
877    VarDecl *NewVD;
878    VarDecl::StorageClass SC;
879    switch (D.getDeclSpec().getStorageClassSpec()) {
880    default: assert(0 && "Unknown storage class!");
881    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
882    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
883    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
884    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
885    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
886    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
887    }
888    if (S->getParent() == 0) {
889      // C99 6.9p2: The storage-class specifiers auto and register shall not
890      // appear in the declaration specifiers in an external declaration.
891      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
892        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
893             R.getAsString());
894        InvalidDecl = true;
895      }
896      NewVD = FileVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
897                                  II, R, SC,
898                                  LastDeclarator);
899    } else {
900      NewVD = BlockVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
901                                   II, R, SC,
902                                   LastDeclarator);
903    }
904    // Handle attributes prior to checking for duplicates in MergeVarDecl
905    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
906                         D.getAttributes());
907
908    // Emit an error if an address space was applied to decl with local storage.
909    // This includes arrays of objects with address space qualifiers, but not
910    // automatic variables that point to other address spaces.
911    // ISO/IEC TR 18037 S5.1.2
912    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
913      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
914      InvalidDecl = true;
915    }
916    // Merge the decl with the existing one if appropriate. If the decl is
917    // in an outer scope, it isn't the same thing.
918    if (PrevDecl && S->isDeclScope(PrevDecl)) {
919      NewVD = MergeVarDecl(NewVD, PrevDecl);
920      if (NewVD == 0) return 0;
921    }
922    New = NewVD;
923  }
924
925  // If this has an identifier, add it to the scope stack.
926  if (II) {
927    New->setNext(II->getFETokenInfo<ScopedDecl>());
928    II->setFETokenInfo(New);
929    S->AddDecl(New);
930  }
931  // If any semantic error occurred, mark the decl as invalid.
932  if (D.getInvalidType() || InvalidDecl)
933    New->setInvalidDecl();
934
935  return New;
936}
937
938bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
939  SourceLocation loc;
940  // FIXME: Remove the isReference check and handle assignment to a reference.
941  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
942    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
943    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
944    return true;
945  }
946  return false;
947}
948
949void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
950  Decl *RealDecl = static_cast<Decl *>(dcl);
951  Expr *Init = static_cast<Expr *>(init);
952  assert(Init && "missing initializer");
953
954  // If there is no declaration, there was an error parsing it.  Just ignore
955  // the initializer.
956  if (RealDecl == 0) {
957    delete Init;
958    return;
959  }
960
961  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
962  if (!VDecl) {
963    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
964         diag::err_illegal_initializer);
965    RealDecl->setInvalidDecl();
966    return;
967  }
968  // Get the decls type and save a reference for later, since
969  // CheckInitializerTypes may change it.
970  QualType DclT = VDecl->getType(), SavT = DclT;
971  if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
972    VarDecl::StorageClass SC = BVD->getStorageClass();
973    if (SC == VarDecl::Extern) { // C99 6.7.8p5
974      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
975      BVD->setInvalidDecl();
976    } else if (!BVD->isInvalidDecl()) {
977      if (CheckInitializerTypes(Init, DclT))
978        BVD->setInvalidDecl();
979      if (SC == VarDecl::Static) // C99 6.7.8p4.
980        CheckForConstantInitializer(Init, DclT);
981    }
982  } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
983    if (FVD->getStorageClass() == VarDecl::Extern)
984      Diag(VDecl->getLocation(), diag::warn_extern_init);
985    if (!FVD->isInvalidDecl())
986      if (CheckInitializerTypes(Init, DclT))
987        FVD->setInvalidDecl();
988
989    // C99 6.7.8p4. All file scoped initializers need to be constant.
990    CheckForConstantInitializer(Init, DclT);
991  }
992  // If the type changed, it means we had an incomplete type that was
993  // completed by the initializer. For example:
994  //   int ary[] = { 1, 3, 5 };
995  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
996  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
997    VDecl->setType(DclT);
998    Init->setType(DclT);
999  }
1000
1001  // Attach the initializer to the decl.
1002  VDecl->setInit(Init);
1003  return;
1004}
1005
1006/// The declarators are chained together backwards, reverse the list.
1007Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1008  // Often we have single declarators, handle them quickly.
1009  Decl *GroupDecl = static_cast<Decl*>(group);
1010  if (GroupDecl == 0)
1011    return 0;
1012
1013  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1014  ScopedDecl *NewGroup = 0;
1015  if (Group->getNextDeclarator() == 0)
1016    NewGroup = Group;
1017  else { // reverse the list.
1018    while (Group) {
1019      ScopedDecl *Next = Group->getNextDeclarator();
1020      Group->setNextDeclarator(NewGroup);
1021      NewGroup = Group;
1022      Group = Next;
1023    }
1024  }
1025  // Perform semantic analysis that depends on having fully processed both
1026  // the declarator and initializer.
1027  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1028    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1029    if (!IDecl)
1030      continue;
1031    FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
1032    BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
1033    QualType T = IDecl->getType();
1034
1035    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1036    // static storage duration, it shall not have a variable length array.
1037    if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
1038      if (T->getAsVariableArrayType()) {
1039        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1040        IDecl->setInvalidDecl();
1041      }
1042    }
1043    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1044    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1045    if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
1046      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1047        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1048             T.getAsString());
1049        IDecl->setInvalidDecl();
1050      }
1051    }
1052    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1053    // object that has file scope without an initializer, and without a
1054    // storage-class specifier or with the storage-class specifier "static",
1055    // constitutes a tentative definition. Note: A tentative definition with
1056    // external linkage is valid (C99 6.2.2p5).
1057    if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
1058                                   FVD->getStorageClass() == VarDecl::None)) {
1059      if (T->isIncompleteArrayType()) {
1060        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1061        // array to be completed. Don't issue a diagnostic.
1062      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1063        // C99 6.9.2p3: If the declaration of an identifier for an object is
1064        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1065        // declared type shall not be an incomplete type.
1066        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1067             T.getAsString());
1068        IDecl->setInvalidDecl();
1069      }
1070    }
1071  }
1072  return NewGroup;
1073}
1074
1075/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1076/// to introduce parameters into function prototype scope.
1077Sema::DeclTy *
1078Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1079  DeclSpec &DS = D.getDeclSpec();
1080
1081  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1082  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1083      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1084    Diag(DS.getStorageClassSpecLoc(),
1085         diag::err_invalid_storage_class_in_func_decl);
1086    DS.ClearStorageClassSpecs();
1087  }
1088  if (DS.isThreadSpecified()) {
1089    Diag(DS.getThreadSpecLoc(),
1090         diag::err_invalid_storage_class_in_func_decl);
1091    DS.ClearStorageClassSpecs();
1092  }
1093
1094
1095  // In this context, we *do not* check D.getInvalidType(). If the declarator
1096  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1097  // though it will not reflect the user specified type.
1098  QualType parmDeclType = GetTypeForDeclarator(D, S);
1099
1100  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1101
1102  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1103  // Can this happen for params?  We already checked that they don't conflict
1104  // among each other.  Here they can only shadow globals, which is ok.
1105  IdentifierInfo *II = D.getIdentifier();
1106  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1107    if (S->isDeclScope(PrevDecl)) {
1108      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1109           dyn_cast<NamedDecl>(PrevDecl)->getName());
1110
1111      // Recover by removing the name
1112      II = 0;
1113      D.SetIdentifier(0, D.getIdentifierLoc());
1114    }
1115  }
1116
1117  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1118  // Doing the promotion here has a win and a loss. The win is the type for
1119  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1120  // code generator). The loss is the orginal type isn't preserved. For example:
1121  //
1122  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1123  //    int blockvardecl[5];
1124  //    sizeof(parmvardecl);  // size == 4
1125  //    sizeof(blockvardecl); // size == 20
1126  // }
1127  //
1128  // For expressions, all implicit conversions are captured using the
1129  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1130  //
1131  // FIXME: If a source translation tool needs to see the original type, then
1132  // we need to consider storing both types (in ParmVarDecl)...
1133  //
1134  if (parmDeclType->isArrayType()) {
1135    // int x[restrict 4] ->  int *restrict
1136    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1137  } else if (parmDeclType->isFunctionType())
1138    parmDeclType = Context.getPointerType(parmDeclType);
1139
1140  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1141                                         D.getIdentifierLoc(), II,
1142                                         parmDeclType, VarDecl::None,
1143                                         0, 0);
1144
1145  if (D.getInvalidType())
1146    New->setInvalidDecl();
1147
1148  if (II) {
1149    New->setNext(II->getFETokenInfo<ScopedDecl>());
1150    II->setFETokenInfo(New);
1151    S->AddDecl(New);
1152  }
1153
1154  HandleDeclAttributes(New, D.getAttributes(), 0);
1155  return New;
1156
1157}
1158
1159Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1160  assert(CurFunctionDecl == 0 && "Function parsing confused");
1161  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1162         "Not a function declarator!");
1163  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1164
1165  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1166  // for a K&R function.
1167  if (!FTI.hasPrototype) {
1168    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1169      if (FTI.ArgInfo[i].Param == 0) {
1170        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1171             FTI.ArgInfo[i].Ident->getName());
1172        // Implicitly declare the argument as type 'int' for lack of a better
1173        // type.
1174        DeclSpec DS;
1175        const char* PrevSpec; // unused
1176        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1177                           PrevSpec);
1178        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1179        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1180        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1181      }
1182    }
1183
1184    // Since this is a function definition, act as though we have information
1185    // about the arguments.
1186    if (FTI.NumArgs)
1187      FTI.hasPrototype = true;
1188  } else {
1189    // FIXME: Diagnose arguments without names in C.
1190  }
1191
1192  Scope *GlobalScope = FnBodyScope->getParent();
1193
1194  // See if this is a redefinition.
1195  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1196                             GlobalScope);
1197  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1198    if (FD->getBody()) {
1199      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1200           D.getIdentifier()->getName());
1201      Diag(FD->getLocation(), diag::err_previous_definition);
1202    }
1203  }
1204  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1205  FunctionDecl *FD = cast<FunctionDecl>(decl);
1206  CurFunctionDecl = FD;
1207  PushDeclContext(FD);
1208
1209  // Check the validity of our function parameters
1210  CheckParmsForFunctionDef(FD);
1211
1212  // Introduce our parameters into the function scope
1213  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1214    ParmVarDecl *Param = FD->getParamDecl(p);
1215    // If this has an identifier, add it to the scope stack.
1216    if (IdentifierInfo *II = Param->getIdentifier()) {
1217      Param->setNext(II->getFETokenInfo<ScopedDecl>());
1218      II->setFETokenInfo(Param);
1219      FnBodyScope->AddDecl(Param);
1220    }
1221  }
1222
1223  return FD;
1224}
1225
1226Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1227  Decl *dcl = static_cast<Decl *>(D);
1228  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1229    FD->setBody((Stmt*)Body);
1230    assert(FD == CurFunctionDecl && "Function parsing confused");
1231    CurFunctionDecl = 0;
1232  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1233    MD->setBody((Stmt*)Body);
1234    CurMethodDecl = 0;
1235  }
1236  PopDeclContext();
1237  // Verify and clean out per-function state.
1238
1239  // Check goto/label use.
1240  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1241       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1242    // Verify that we have no forward references left.  If so, there was a goto
1243    // or address of a label taken, but no definition of it.  Label fwd
1244    // definitions are indicated with a null substmt.
1245    if (I->second->getSubStmt() == 0) {
1246      LabelStmt *L = I->second;
1247      // Emit error.
1248      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1249
1250      // At this point, we have gotos that use the bogus label.  Stitch it into
1251      // the function body so that they aren't leaked and that the AST is well
1252      // formed.
1253      if (Body) {
1254        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1255        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1256      } else {
1257        // The whole function wasn't parsed correctly, just delete this.
1258        delete L;
1259      }
1260    }
1261  }
1262  LabelMap.clear();
1263
1264  return D;
1265}
1266
1267/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1268/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1269ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1270                                           IdentifierInfo &II, Scope *S) {
1271  if (getLangOptions().C99)  // Extension in C99.
1272    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1273  else  // Legal in C90, but warn about it.
1274    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1275
1276  // FIXME: handle stuff like:
1277  // void foo() { extern float X(); }
1278  // void bar() { X(); }  <-- implicit decl for X in another scope.
1279
1280  // Set a Declarator for the implicit definition: int foo();
1281  const char *Dummy;
1282  DeclSpec DS;
1283  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1284  Error = Error; // Silence warning.
1285  assert(!Error && "Error setting up implicit decl!");
1286  Declarator D(DS, Declarator::BlockContext);
1287  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1288  D.SetIdentifier(&II, Loc);
1289
1290  // Find translation-unit scope to insert this function into.
1291  if (Scope *FnS = S->getFnParent())
1292    S = FnS->getParent();   // Skip all scopes in a function at once.
1293  while (S->getParent())
1294    S = S->getParent();
1295
1296  FunctionDecl *FD =
1297    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1298  FD->setImplicit();
1299  return FD;
1300}
1301
1302
1303TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1304                                    ScopedDecl *LastDeclarator) {
1305  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1306  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1307
1308  // Scope manipulation handled by caller.
1309  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1310                                           D.getIdentifierLoc(),
1311                                           D.getIdentifier(),
1312                                           T, LastDeclarator);
1313  if (D.getInvalidType())
1314    NewTD->setInvalidDecl();
1315  return NewTD;
1316}
1317
1318/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1319/// former case, Name will be non-null.  In the later case, Name will be null.
1320/// TagType indicates what kind of tag this is. TK indicates whether this is a
1321/// reference/declaration/definition of a tag.
1322Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1323                             SourceLocation KWLoc, IdentifierInfo *Name,
1324                             SourceLocation NameLoc, AttributeList *Attr) {
1325  // If this is a use of an existing tag, it must have a name.
1326  assert((Name != 0 || TK == TK_Definition) &&
1327         "Nameless record must be a definition!");
1328
1329  Decl::Kind Kind;
1330  switch (TagType) {
1331  default: assert(0 && "Unknown tag type!");
1332  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1333  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1334//case DeclSpec::TST_class:  Kind = Decl::Class; break;
1335  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1336  }
1337
1338  // If this is a named struct, check to see if there was a previous forward
1339  // declaration or definition.
1340  if (TagDecl *PrevDecl =
1341          dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1342
1343    // If this is a use of a previous tag, or if the tag is already declared in
1344    // the same scope (so that the definition/declaration completes or
1345    // rementions the tag), reuse the decl.
1346    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1347      // Make sure that this wasn't declared as an enum and now used as a struct
1348      // or something similar.
1349      if (PrevDecl->getKind() != Kind) {
1350        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1351        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1352      }
1353
1354      // If this is a use or a forward declaration, we're good.
1355      if (TK != TK_Definition)
1356        return PrevDecl;
1357
1358      // Diagnose attempts to redefine a tag.
1359      if (PrevDecl->isDefinition()) {
1360        Diag(NameLoc, diag::err_redefinition, Name->getName());
1361        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1362        // If this is a redefinition, recover by making this struct be
1363        // anonymous, which will make any later references get the previous
1364        // definition.
1365        Name = 0;
1366      } else {
1367        // Okay, this is definition of a previously declared or referenced tag.
1368        // Move the location of the decl to be the definition site.
1369        PrevDecl->setLocation(NameLoc);
1370        return PrevDecl;
1371      }
1372    }
1373    // If we get here, this is a definition of a new struct type in a nested
1374    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1375    // type.
1376  }
1377
1378  // If there is an identifier, use the location of the identifier as the
1379  // location of the decl, otherwise use the location of the struct/union
1380  // keyword.
1381  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1382
1383  // Otherwise, if this is the first time we've seen this tag, create the decl.
1384  TagDecl *New;
1385  switch (Kind) {
1386  default: assert(0 && "Unknown tag kind!");
1387  case Decl::Enum:
1388    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1389    // enum X { A, B, C } D;    D should chain to X.
1390    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1391    // If this is an undefined enum, warn.
1392    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1393    break;
1394  case Decl::Union:
1395  case Decl::Struct:
1396  case Decl::Class:
1397    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1398    // struct X { int A; } D;    D should chain to X.
1399    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1400    break;
1401  }
1402
1403  // If this has an identifier, add it to the scope stack.
1404  if (Name) {
1405    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1406    // we find one that is.
1407    while ((S->getFlags() & Scope::DeclScope) == 0)
1408      S = S->getParent();
1409
1410    // Add it to the decl chain.
1411    New->setNext(Name->getFETokenInfo<ScopedDecl>());
1412    Name->setFETokenInfo(New);
1413    S->AddDecl(New);
1414  }
1415
1416  HandleDeclAttributes(New, Attr, 0);
1417  return New;
1418}
1419
1420/// ActOnField - Each field of a struct/union/class is passed into this in order
1421/// to create a FieldDecl object for it.
1422Sema::DeclTy *Sema::ActOnField(Scope *S,
1423                               SourceLocation DeclStart,
1424                               Declarator &D, ExprTy *BitfieldWidth) {
1425  IdentifierInfo *II = D.getIdentifier();
1426  Expr *BitWidth = (Expr*)BitfieldWidth;
1427  SourceLocation Loc = DeclStart;
1428  if (II) Loc = D.getIdentifierLoc();
1429
1430  // FIXME: Unnamed fields can be handled in various different ways, for
1431  // example, unnamed unions inject all members into the struct namespace!
1432
1433
1434  if (BitWidth) {
1435    // TODO: Validate.
1436    //printf("WARNING: BITFIELDS IGNORED!\n");
1437
1438    // 6.7.2.1p3
1439    // 6.7.2.1p4
1440
1441  } else {
1442    // Not a bitfield.
1443
1444    // validate II.
1445
1446  }
1447
1448  QualType T = GetTypeForDeclarator(D, S);
1449  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1450  bool InvalidDecl = false;
1451
1452  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1453  // than a variably modified type.
1454  if (T->isVariablyModifiedType()) {
1455    // FIXME: This diagnostic needs work
1456    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1457    InvalidDecl = true;
1458  }
1459  // FIXME: Chain fielddecls together.
1460  FieldDecl *NewFD;
1461
1462  NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1463  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1464                       D.getAttributes());
1465
1466  if (D.getInvalidType() || InvalidDecl)
1467    NewFD->setInvalidDecl();
1468  return NewFD;
1469}
1470
1471/// TranslateIvarVisibility - Translate visibility from a token ID to an
1472///  AST enum value.
1473static ObjCIvarDecl::AccessControl
1474TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1475  switch (ivarVisibility) {
1476    case tok::objc_private: return ObjCIvarDecl::Private;
1477    case tok::objc_public: return ObjCIvarDecl::Public;
1478    case tok::objc_protected: return ObjCIvarDecl::Protected;
1479    case tok::objc_package: return ObjCIvarDecl::Package;
1480    default: assert(false && "Unknown visitibility kind");
1481  }
1482}
1483
1484/// ActOnIvar - Each field of a struct/union/class is passed into this in order
1485/// to create an IvarDecl object for it.
1486Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1487                               SourceLocation DeclStart,
1488                               Declarator &D, ExprTy *BitfieldWidth,
1489                              tok::ObjCKeywordKind visibility) {
1490  IdentifierInfo *II = D.getIdentifier();
1491  Expr *BitWidth = (Expr*)BitfieldWidth;
1492  SourceLocation Loc = DeclStart;
1493  if (II) Loc = D.getIdentifierLoc();
1494
1495  // FIXME: Unnamed fields can be handled in various different ways, for
1496  // example, unnamed unions inject all members into the struct namespace!
1497
1498
1499  if (BitWidth) {
1500    // TODO: Validate.
1501    //printf("WARNING: BITFIELDS IGNORED!\n");
1502
1503    // 6.7.2.1p3
1504    // 6.7.2.1p4
1505
1506  } else {
1507    // Not a bitfield.
1508
1509    // validate II.
1510
1511  }
1512
1513  QualType T = GetTypeForDeclarator(D, S);
1514  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1515  bool InvalidDecl = false;
1516
1517  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1518  // than a variably modified type.
1519  if (T->isVariablyModifiedType()) {
1520    // FIXME: This diagnostic needs work
1521    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1522    InvalidDecl = true;
1523  }
1524
1525  ObjCIvarDecl *NewID;
1526
1527  NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1528
1529  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1530                       D.getAttributes());
1531
1532  if (D.getInvalidType() || InvalidDecl)
1533    NewID->setInvalidDecl();
1534  // If we have visibility info, make sure the AST is set accordingly.
1535  if (visibility != tok::objc_not_keyword)
1536    NewID ->setAccessControl(TranslateIvarVisibility(visibility));
1537  return NewID;
1538}
1539
1540void Sema::ActOnFields(Scope* S,
1541                       SourceLocation RecLoc, DeclTy *RecDecl,
1542                       DeclTy **Fields, unsigned NumFields,
1543                       SourceLocation LBrac, SourceLocation RBrac) {
1544  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1545  assert(EnclosingDecl && "missing record or interface decl");
1546  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1547
1548  if (Record && Record->isDefinition()) {
1549    // Diagnose code like:
1550    //     struct S { struct S {} X; };
1551    // We discover this when we complete the outer S.  Reject and ignore the
1552    // outer S.
1553    Diag(Record->getLocation(), diag::err_nested_redefinition,
1554         Record->getKindName());
1555    Diag(RecLoc, diag::err_previous_definition);
1556    Record->setInvalidDecl();
1557    return;
1558  }
1559  // Verify that all the fields are okay.
1560  unsigned NumNamedMembers = 0;
1561  llvm::SmallVector<FieldDecl*, 32> RecFields;
1562  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1563
1564  for (unsigned i = 0; i != NumFields; ++i) {
1565
1566    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1567    assert(FD && "missing field decl");
1568
1569    // Remember all fields.
1570    RecFields.push_back(FD);
1571
1572    // Get the type for the field.
1573    Type *FDTy = FD->getType().getTypePtr();
1574
1575    // C99 6.7.2.1p2 - A field may not be a function type.
1576    if (FDTy->isFunctionType()) {
1577      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1578           FD->getName());
1579      FD->setInvalidDecl();
1580      EnclosingDecl->setInvalidDecl();
1581      continue;
1582    }
1583    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1584    if (FDTy->isIncompleteType()) {
1585      if (!Record) {  // Incomplete ivar type is always an error.
1586        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1587        FD->setInvalidDecl();
1588        EnclosingDecl->setInvalidDecl();
1589        continue;
1590      }
1591      if (i != NumFields-1 ||                   // ... that the last member ...
1592          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1593          !FDTy->isArrayType()) {         //... may have incomplete array type.
1594        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1595        FD->setInvalidDecl();
1596        EnclosingDecl->setInvalidDecl();
1597        continue;
1598      }
1599      if (NumNamedMembers < 1) {  //... must have more than named member ...
1600        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1601             FD->getName());
1602        FD->setInvalidDecl();
1603        EnclosingDecl->setInvalidDecl();
1604        continue;
1605      }
1606      // Okay, we have a legal flexible array member at the end of the struct.
1607      if (Record)
1608        Record->setHasFlexibleArrayMember(true);
1609    }
1610    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1611    /// field of another structure or the element of an array.
1612    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1613      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1614        // If this is a member of a union, then entire union becomes "flexible".
1615        if (Record && Record->getKind() == Decl::Union) {
1616          Record->setHasFlexibleArrayMember(true);
1617        } else {
1618          // If this is a struct/class and this is not the last element, reject
1619          // it.  Note that GCC supports variable sized arrays in the middle of
1620          // structures.
1621          if (i != NumFields-1) {
1622            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1623                 FD->getName());
1624            FD->setInvalidDecl();
1625            EnclosingDecl->setInvalidDecl();
1626            continue;
1627          }
1628          // We support flexible arrays at the end of structs in other structs
1629          // as an extension.
1630          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1631               FD->getName());
1632          if (Record)
1633            Record->setHasFlexibleArrayMember(true);
1634        }
1635      }
1636    }
1637    /// A field cannot be an Objective-c object
1638    if (FDTy->isObjCInterfaceType()) {
1639      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1640           FD->getName());
1641      FD->setInvalidDecl();
1642      EnclosingDecl->setInvalidDecl();
1643      continue;
1644    }
1645    // Keep track of the number of named members.
1646    if (IdentifierInfo *II = FD->getIdentifier()) {
1647      // Detect duplicate member names.
1648      if (!FieldIDs.insert(II)) {
1649        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1650        // Find the previous decl.
1651        SourceLocation PrevLoc;
1652        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1653          assert(i != e && "Didn't find previous def!");
1654          if (RecFields[i]->getIdentifier() == II) {
1655            PrevLoc = RecFields[i]->getLocation();
1656            break;
1657          }
1658        }
1659        Diag(PrevLoc, diag::err_previous_definition);
1660        FD->setInvalidDecl();
1661        EnclosingDecl->setInvalidDecl();
1662        continue;
1663      }
1664      ++NumNamedMembers;
1665    }
1666  }
1667
1668  // Okay, we successfully defined 'Record'.
1669  if (Record) {
1670    Record->defineBody(&RecFields[0], RecFields.size());
1671    Consumer.HandleTagDeclDefinition(Record);
1672  } else {
1673    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1674    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1675      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1676    else if (ObjCImplementationDecl *IMPDecl =
1677               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1678      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1679      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1680      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1681    }
1682  }
1683}
1684
1685Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1686                                      DeclTy *lastEnumConst,
1687                                      SourceLocation IdLoc, IdentifierInfo *Id,
1688                                      SourceLocation EqualLoc, ExprTy *val) {
1689  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
1690  EnumConstantDecl *LastEnumConst =
1691    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1692  Expr *Val = static_cast<Expr*>(val);
1693
1694  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1695  // we find one that is.
1696  while ((S->getFlags() & Scope::DeclScope) == 0)
1697    S = S->getParent();
1698
1699  // Verify that there isn't already something declared with this name in this
1700  // scope.
1701  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
1702    if (S->isDeclScope(PrevDecl)) {
1703      if (isa<EnumConstantDecl>(PrevDecl))
1704        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1705      else
1706        Diag(IdLoc, diag::err_redefinition, Id->getName());
1707      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1708      delete Val;
1709      return 0;
1710    }
1711  }
1712
1713  llvm::APSInt EnumVal(32);
1714  QualType EltTy;
1715  if (Val) {
1716    // Make sure to promote the operand type to int.
1717    UsualUnaryConversions(Val);
1718
1719    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1720    SourceLocation ExpLoc;
1721    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1722      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1723           Id->getName());
1724      delete Val;
1725      Val = 0;  // Just forget about it.
1726    } else {
1727      EltTy = Val->getType();
1728    }
1729  }
1730
1731  if (!Val) {
1732    if (LastEnumConst) {
1733      // Assign the last value + 1.
1734      EnumVal = LastEnumConst->getInitVal();
1735      ++EnumVal;
1736
1737      // Check for overflow on increment.
1738      if (EnumVal < LastEnumConst->getInitVal())
1739        Diag(IdLoc, diag::warn_enum_value_overflow);
1740
1741      EltTy = LastEnumConst->getType();
1742    } else {
1743      // First value, set to zero.
1744      EltTy = Context.IntTy;
1745      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1746    }
1747  }
1748
1749  EnumConstantDecl *New =
1750    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
1751                             Val, EnumVal,
1752                             LastEnumConst);
1753
1754  // Register this decl in the current scope stack.
1755  New->setNext(Id->getFETokenInfo<ScopedDecl>());
1756  Id->setFETokenInfo(New);
1757  S->AddDecl(New);
1758  return New;
1759}
1760
1761void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1762                         DeclTy **Elements, unsigned NumElements) {
1763  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1764  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1765
1766  // TODO: If the result value doesn't fit in an int, it must be a long or long
1767  // long value.  ISO C does not support this, but GCC does as an extension,
1768  // emit a warning.
1769  unsigned IntWidth = Context.Target.getIntWidth();
1770
1771  // Verify that all the values are okay, compute the size of the values, and
1772  // reverse the list.
1773  unsigned NumNegativeBits = 0;
1774  unsigned NumPositiveBits = 0;
1775
1776  // Keep track of whether all elements have type int.
1777  bool AllElementsInt = true;
1778
1779  EnumConstantDecl *EltList = 0;
1780  for (unsigned i = 0; i != NumElements; ++i) {
1781    EnumConstantDecl *ECD =
1782      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1783    if (!ECD) continue;  // Already issued a diagnostic.
1784
1785    // If the enum value doesn't fit in an int, emit an extension warning.
1786    const llvm::APSInt &InitVal = ECD->getInitVal();
1787    assert(InitVal.getBitWidth() >= IntWidth &&
1788           "Should have promoted value to int");
1789    if (InitVal.getBitWidth() > IntWidth) {
1790      llvm::APSInt V(InitVal);
1791      V.trunc(IntWidth);
1792      V.extend(InitVal.getBitWidth());
1793      if (V != InitVal)
1794        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1795             InitVal.toString());
1796    }
1797
1798    // Keep track of the size of positive and negative values.
1799    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1800      NumPositiveBits = std::max(NumPositiveBits,
1801                                 (unsigned)InitVal.getActiveBits());
1802    else
1803      NumNegativeBits = std::max(NumNegativeBits,
1804                                 (unsigned)InitVal.getMinSignedBits());
1805
1806    // Keep track of whether every enum element has type int (very commmon).
1807    if (AllElementsInt)
1808      AllElementsInt = ECD->getType() == Context.IntTy;
1809
1810    ECD->setNextDeclarator(EltList);
1811    EltList = ECD;
1812  }
1813
1814  // Figure out the type that should be used for this enum.
1815  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1816  QualType BestType;
1817  unsigned BestWidth;
1818
1819  if (NumNegativeBits) {
1820    // If there is a negative value, figure out the smallest integer type (of
1821    // int/long/longlong) that fits.
1822    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1823      BestType = Context.IntTy;
1824      BestWidth = IntWidth;
1825    } else {
1826      BestWidth = Context.Target.getLongWidth();
1827
1828      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1829        BestType = Context.LongTy;
1830      else {
1831        BestWidth = Context.Target.getLongLongWidth();
1832
1833        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1834          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1835        BestType = Context.LongLongTy;
1836      }
1837    }
1838  } else {
1839    // If there is no negative value, figure out which of uint, ulong, ulonglong
1840    // fits.
1841    if (NumPositiveBits <= IntWidth) {
1842      BestType = Context.UnsignedIntTy;
1843      BestWidth = IntWidth;
1844    } else if (NumPositiveBits <=
1845               (BestWidth = Context.Target.getLongWidth())) {
1846      BestType = Context.UnsignedLongTy;
1847    } else {
1848      BestWidth = Context.Target.getLongLongWidth();
1849      assert(NumPositiveBits <= BestWidth &&
1850             "How could an initializer get larger than ULL?");
1851      BestType = Context.UnsignedLongLongTy;
1852    }
1853  }
1854
1855  // Loop over all of the enumerator constants, changing their types to match
1856  // the type of the enum if needed.
1857  for (unsigned i = 0; i != NumElements; ++i) {
1858    EnumConstantDecl *ECD =
1859      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1860    if (!ECD) continue;  // Already issued a diagnostic.
1861
1862    // Standard C says the enumerators have int type, but we allow, as an
1863    // extension, the enumerators to be larger than int size.  If each
1864    // enumerator value fits in an int, type it as an int, otherwise type it the
1865    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1866    // that X has type 'int', not 'unsigned'.
1867    if (ECD->getType() == Context.IntTy) {
1868      // Make sure the init value is signed.
1869      llvm::APSInt IV = ECD->getInitVal();
1870      IV.setIsSigned(true);
1871      ECD->setInitVal(IV);
1872      continue;  // Already int type.
1873    }
1874
1875    // Determine whether the value fits into an int.
1876    llvm::APSInt InitVal = ECD->getInitVal();
1877    bool FitsInInt;
1878    if (InitVal.isUnsigned() || !InitVal.isNegative())
1879      FitsInInt = InitVal.getActiveBits() < IntWidth;
1880    else
1881      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1882
1883    // If it fits into an integer type, force it.  Otherwise force it to match
1884    // the enum decl type.
1885    QualType NewTy;
1886    unsigned NewWidth;
1887    bool NewSign;
1888    if (FitsInInt) {
1889      NewTy = Context.IntTy;
1890      NewWidth = IntWidth;
1891      NewSign = true;
1892    } else if (ECD->getType() == BestType) {
1893      // Already the right type!
1894      continue;
1895    } else {
1896      NewTy = BestType;
1897      NewWidth = BestWidth;
1898      NewSign = BestType->isSignedIntegerType();
1899    }
1900
1901    // Adjust the APSInt value.
1902    InitVal.extOrTrunc(NewWidth);
1903    InitVal.setIsSigned(NewSign);
1904    ECD->setInitVal(InitVal);
1905
1906    // Adjust the Expr initializer and type.
1907    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1908    ECD->setType(NewTy);
1909  }
1910
1911  Enum->defineElements(EltList, BestType);
1912  Consumer.HandleTagDeclDefinition(Enum);
1913}
1914
1915Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1916                                          ExprTy *expr) {
1917  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1918
1919  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1920}
1921
1922Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1923                                     SourceLocation LBrace,
1924                                     SourceLocation RBrace,
1925                                     const char *Lang,
1926                                     unsigned StrSize,
1927                                     DeclTy *D) {
1928  LinkageSpecDecl::LanguageIDs Language;
1929  Decl *dcl = static_cast<Decl *>(D);
1930  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1931    Language = LinkageSpecDecl::lang_c;
1932  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1933    Language = LinkageSpecDecl::lang_cxx;
1934  else {
1935    Diag(Loc, diag::err_bad_language);
1936    return 0;
1937  }
1938
1939  // FIXME: Add all the various semantics of linkage specifications
1940  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
1941}
1942
1943void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1944
1945  switch (Attr->getKind()) {
1946  case AttributeList::AT_vector_size:
1947    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1948      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1949      if (!newType.isNull()) // install the new vector type into the decl
1950        vDecl->setType(newType);
1951    }
1952    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1953      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1954                                                   Attr);
1955      if (!newType.isNull()) // install the new vector type into the decl
1956        tDecl->setUnderlyingType(newType);
1957    }
1958    break;
1959  case AttributeList::AT_ocu_vector_type:
1960    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1961      HandleOCUVectorTypeAttribute(tDecl, Attr);
1962    else
1963      Diag(Attr->getLoc(),
1964           diag::err_typecheck_ocu_vector_not_typedef);
1965    break;
1966  case AttributeList::AT_address_space:
1967    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1968      QualType newType = HandleAddressSpaceTypeAttribute(
1969                                                  tDecl->getUnderlyingType(),
1970                                                  Attr);
1971      tDecl->setUnderlyingType(newType);
1972    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1973      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1974                                                         Attr);
1975      // install the new addr spaced type into the decl
1976      vDecl->setType(newType);
1977    }
1978    break;
1979  case AttributeList::AT_deprecated:
1980    HandleDeprecatedAttribute(New, Attr);
1981    break;
1982  case AttributeList::AT_visibility:
1983    HandleVisibilityAttribute(New, Attr);
1984    break;
1985  case AttributeList::AT_weak:
1986    HandleWeakAttribute(New, Attr);
1987    break;
1988  case AttributeList::AT_dllimport:
1989    HandleDLLImportAttribute(New, Attr);
1990    break;
1991  case AttributeList::AT_dllexport:
1992    HandleDLLExportAttribute(New, Attr);
1993    break;
1994  case AttributeList::AT_nothrow:
1995    HandleNothrowAttribute(New, Attr);
1996    break;
1997  case AttributeList::AT_stdcall:
1998    HandleStdCallAttribute(New, Attr);
1999    break;
2000  case AttributeList::AT_fastcall:
2001    HandleFastCallAttribute(New, Attr);
2002    break;
2003  case AttributeList::AT_aligned:
2004    HandleAlignedAttribute(New, Attr);
2005    break;
2006  case AttributeList::AT_packed:
2007    HandlePackedAttribute(New, Attr);
2008    break;
2009  case AttributeList::AT_annotate:
2010    HandleAnnotateAttribute(New, Attr);
2011    break;
2012  case AttributeList::AT_noreturn:
2013    HandleNoReturnAttribute(New, Attr);
2014    break;
2015  case AttributeList::AT_format:
2016    HandleFormatAttribute(New, Attr);
2017    break;
2018  default:
2019#if 0
2020    // TODO: when we have the full set of attributes, warn about unknown ones.
2021    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2022         Attr->getName()->getName());
2023#endif
2024    break;
2025  }
2026}
2027
2028void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2029                                AttributeList *declarator_postfix) {
2030  while (declspec_prefix) {
2031    HandleDeclAttribute(New, declspec_prefix);
2032    declspec_prefix = declspec_prefix->getNext();
2033  }
2034  while (declarator_postfix) {
2035    HandleDeclAttribute(New, declarator_postfix);
2036    declarator_postfix = declarator_postfix->getNext();
2037  }
2038}
2039
2040void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
2041                                        AttributeList *rawAttr) {
2042  QualType curType = tDecl->getUnderlyingType();
2043  // check the attribute arguments.
2044  if (rawAttr->getNumArgs() != 1) {
2045    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2046         std::string("1"));
2047    return;
2048  }
2049  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2050  llvm::APSInt vecSize(32);
2051  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2052    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2053         "ocu_vector_type", sizeExpr->getSourceRange());
2054    return;
2055  }
2056  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2057  // in conjunction with complex types (pointers, arrays, functions, etc.).
2058  Type *canonType = curType.getCanonicalType().getTypePtr();
2059  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2060    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2061         curType.getCanonicalType().getAsString());
2062    return;
2063  }
2064  // unlike gcc's vector_size attribute, the size is specified as the
2065  // number of elements, not the number of bytes.
2066  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2067
2068  if (vectorSize == 0) {
2069    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2070         sizeExpr->getSourceRange());
2071    return;
2072  }
2073  // Instantiate/Install the vector type, the number of elements is > 0.
2074  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
2075  // Remember this typedef decl, we will need it later for diagnostics.
2076  OCUVectorDecls.push_back(tDecl);
2077}
2078
2079QualType Sema::HandleVectorTypeAttribute(QualType curType,
2080                                         AttributeList *rawAttr) {
2081  // check the attribute arugments.
2082  if (rawAttr->getNumArgs() != 1) {
2083    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2084         std::string("1"));
2085    return QualType();
2086  }
2087  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2088  llvm::APSInt vecSize(32);
2089  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2090    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2091         "vector_size", sizeExpr->getSourceRange());
2092    return QualType();
2093  }
2094  // navigate to the base type - we need to provide for vector pointers,
2095  // vector arrays, and functions returning vectors.
2096  Type *canonType = curType.getCanonicalType().getTypePtr();
2097
2098  if (canonType->isPointerType() || canonType->isArrayType() ||
2099      canonType->isFunctionType()) {
2100    assert(0 && "HandleVector(): Complex type construction unimplemented");
2101    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2102        do {
2103          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2104            canonType = PT->getPointeeType().getTypePtr();
2105          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2106            canonType = AT->getElementType().getTypePtr();
2107          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2108            canonType = FT->getResultType().getTypePtr();
2109        } while (canonType->isPointerType() || canonType->isArrayType() ||
2110                 canonType->isFunctionType());
2111    */
2112  }
2113  // the base type must be integer or float.
2114  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2115    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2116         curType.getCanonicalType().getAsString());
2117    return QualType();
2118  }
2119  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2120  // vecSize is specified in bytes - convert to bits.
2121  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2122
2123  // the vector size needs to be an integral multiple of the type size.
2124  if (vectorSize % typeSize) {
2125    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2126         sizeExpr->getSourceRange());
2127    return QualType();
2128  }
2129  if (vectorSize == 0) {
2130    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2131         sizeExpr->getSourceRange());
2132    return QualType();
2133  }
2134  // Instantiate the vector type, the number of elements is > 0, and not
2135  // required to be a power of 2, unlike GCC.
2136  return Context.getVectorType(curType, vectorSize/typeSize);
2137}
2138
2139void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2140  // check the attribute arguments.
2141  if (rawAttr->getNumArgs() > 0) {
2142    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2143         std::string("0"));
2144    return;
2145  }
2146
2147  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2148    TD->addAttr(new PackedAttr);
2149  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2150    // If the alignment is less than or equal to 8 bits, the packed attribute
2151    // has no effect.
2152    if (Context.getTypeAlign(FD->getType()) <= 8)
2153      Diag(rawAttr->getLoc(),
2154           diag::warn_attribute_ignored_for_field_of_type,
2155           rawAttr->getName()->getName(), FD->getType().getAsString());
2156    else
2157      FD->addAttr(new PackedAttr);
2158  } else
2159    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2160         rawAttr->getName()->getName());
2161}
2162
2163void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2164  // check the attribute arguments.
2165  if (rawAttr->getNumArgs() != 0) {
2166    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2167         std::string("0"));
2168    return;
2169  }
2170
2171  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2172
2173  if (!Fn) {
2174    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2175         "noreturn", "function");
2176    return;
2177  }
2178
2179  d->addAttr(new NoReturnAttr());
2180}
2181
2182void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2183  // check the attribute arguments.
2184  if (rawAttr->getNumArgs() != 0) {
2185    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2186         std::string("0"));
2187    return;
2188  }
2189
2190  d->addAttr(new DeprecatedAttr());
2191}
2192
2193void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2194  // check the attribute arguments.
2195  if (rawAttr->getNumArgs() != 1) {
2196    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2197         std::string("1"));
2198    return;
2199  }
2200
2201  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2202  Arg = Arg->IgnoreParenCasts();
2203  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2204
2205  if (Str == 0 || Str->isWide()) {
2206    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2207         "visibility", std::string("1"));
2208    return;
2209  }
2210
2211  const char *TypeStr = Str->getStrData();
2212  unsigned TypeLen = Str->getByteLength();
2213  llvm::GlobalValue::VisibilityTypes type;
2214
2215  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2216    type = llvm::GlobalValue::DefaultVisibility;
2217  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2218    type = llvm::GlobalValue::HiddenVisibility;
2219  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2220    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2221  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2222    type = llvm::GlobalValue::ProtectedVisibility;
2223  else {
2224    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2225           "visibility", TypeStr);
2226    return;
2227  }
2228
2229  d->addAttr(new VisibilityAttr(type));
2230}
2231
2232void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2233  // check the attribute arguments.
2234  if (rawAttr->getNumArgs() != 0) {
2235    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2236         std::string("0"));
2237    return;
2238  }
2239
2240  d->addAttr(new WeakAttr());
2241}
2242
2243void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2244  // check the attribute arguments.
2245  if (rawAttr->getNumArgs() != 0) {
2246    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2247         std::string("0"));
2248    return;
2249  }
2250
2251  d->addAttr(new DLLImportAttr());
2252}
2253
2254void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2255  // check the attribute arguments.
2256  if (rawAttr->getNumArgs() != 0) {
2257    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2258         std::string("0"));
2259    return;
2260  }
2261
2262  d->addAttr(new DLLExportAttr());
2263}
2264
2265void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2266  // check the attribute arguments.
2267  if (rawAttr->getNumArgs() != 0) {
2268    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2269         std::string("0"));
2270    return;
2271  }
2272
2273  d->addAttr(new StdCallAttr());
2274}
2275
2276void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2277  // check the attribute arguments.
2278  if (rawAttr->getNumArgs() != 0) {
2279    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2280         std::string("0"));
2281    return;
2282  }
2283
2284  d->addAttr(new FastCallAttr());
2285}
2286
2287void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2288  // check the attribute arguments.
2289  if (rawAttr->getNumArgs() != 0) {
2290    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2291         std::string("0"));
2292    return;
2293  }
2294
2295  d->addAttr(new NoThrowAttr());
2296}
2297
2298static const FunctionTypeProto *getFunctionProto(Decl *d) {
2299  ValueDecl *decl = dyn_cast<ValueDecl>(d);
2300  if (!decl) return 0;
2301
2302  QualType Ty = decl->getType();
2303
2304  if (Ty->isFunctionPointerType()) {
2305    const PointerType *PtrTy = Ty->getAsPointerType();
2306    Ty = PtrTy->getPointeeType();
2307  }
2308
2309  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2310    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2311
2312  return 0;
2313}
2314
2315
2316/// Handle __attribute__((format(type,idx,firstarg))) attributes
2317/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2318void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2319
2320  if (!rawAttr->getParameterName()) {
2321    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2322           "format", std::string("1"));
2323    return;
2324  }
2325
2326  if (rawAttr->getNumArgs() != 2) {
2327    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2328         std::string("3"));
2329    return;
2330  }
2331
2332  // GCC ignores the format attribute on K&R style function
2333  // prototypes, so we ignore it as well
2334  const FunctionTypeProto *proto = getFunctionProto(d);
2335
2336  if (!proto) {
2337    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2338           "format", "function");
2339    return;
2340  }
2341
2342  // FIXME: in C++ the implicit 'this' function parameter also counts.
2343  // this is needed in order to be compatible with GCC
2344  // the index must start in 1 and the limit is numargs+1
2345  unsigned NumArgs  = proto->getNumArgs();
2346  unsigned FirstIdx = 1;
2347
2348  const char *Format = rawAttr->getParameterName()->getName();
2349  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2350
2351  // Normalize the argument, __foo__ becomes foo.
2352  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2353      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2354    Format += 2;
2355    FormatLen -= 4;
2356  }
2357
2358  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2359     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2360     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2361     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2362    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2363           "format", rawAttr->getParameterName()->getName());
2364    return;
2365  }
2366
2367  // checks for the 2nd argument
2368  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2369  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2370  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2371    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2372           "format", std::string("2"), IdxExpr->getSourceRange());
2373    return;
2374  }
2375
2376  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2377    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2378           "format", std::string("2"), IdxExpr->getSourceRange());
2379    return;
2380  }
2381
2382  // make sure the format string is really a string
2383  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2384  if (!Ty->isPointerType() ||
2385      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2386    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2387         IdxExpr->getSourceRange());
2388    return;
2389  }
2390
2391
2392  // check the 3rd argument
2393  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2394  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2395  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2396    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2397           "format", std::string("3"), FirstArgExpr->getSourceRange());
2398    return;
2399  }
2400
2401  // check if the function is variadic if the 3rd argument non-zero
2402  if (FirstArg != 0) {
2403    if (proto->isVariadic()) {
2404      ++NumArgs; // +1 for ...
2405    } else {
2406      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2407      return;
2408    }
2409  }
2410
2411  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2412  // the input is just the current time + the format string
2413  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2414    if (FirstArg != 0) {
2415      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2416             FirstArgExpr->getSourceRange());
2417      return;
2418    }
2419  // if 0 it disables parameter checking (to use with e.g. va_list)
2420  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2421    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2422           "format", std::string("3"), FirstArgExpr->getSourceRange());
2423    return;
2424  }
2425
2426  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2427                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2428}
2429
2430void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2431  // check the attribute arguments.
2432  if (rawAttr->getNumArgs() != 1) {
2433    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2434         std::string("1"));
2435    return;
2436  }
2437  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2438  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2439
2440  // Make sure that there is a string literal as the annotation's single
2441  // argument.
2442  if (!SE) {
2443    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2444    return;
2445  }
2446  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2447                                          SE->getByteLength())));
2448}
2449
2450void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2451{
2452  // check the attribute arguments.
2453  if (rawAttr->getNumArgs() > 1) {
2454    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2455         std::string("1"));
2456    return;
2457  }
2458
2459  unsigned Align = 0;
2460
2461  if (rawAttr->getNumArgs() == 0) {
2462    // FIXME: This should be the target specific maximum alignment.
2463    // (For now we just use 128 bits which is the maximum on X86.
2464    Align = 128;
2465    return;
2466  } else {
2467    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2468    llvm::APSInt alignment(32);
2469    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2470      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2471           "aligned", alignmentExpr->getSourceRange());
2472      return;
2473    }
2474
2475    Align = alignment.getZExtValue() * 8;
2476  }
2477
2478  d->addAttr(new AlignedAttr(Align));
2479}
2480