SemaDecl.cpp revision 21ff9c99d3df1e4a13e6820fc2aa7a8cc6673198
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// MergeFunctionDecl - We just parsed a function 'New' from
514/// declarator D which has the same name and scope as a previous
515/// declaration 'Old'.  Figure out how to resolve this situation,
516/// merging decls or emitting diagnostics as appropriate.
517///
518/// In C++, New and Old must be declarations that are not
519/// overloaded. Use IsOverload to determine whether New and Old are
520/// overloaded, and to select the Old declaration that New should be
521/// merged with.
522///
523/// Returns true if there was an error, false otherwise.
524bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
525  assert(!isa<OverloadedFunctionDecl>(OldD) &&
526         "Cannot merge with an overloaded function declaration");
527
528  // Verify the old decl was also a function.
529  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
530  if (!Old) {
531    Diag(New->getLocation(), diag::err_redefinition_different_kind)
532      << New->getDeclName();
533    Diag(OldD->getLocation(), diag::note_previous_definition);
534    return true;
535  }
536
537  // Determine whether the previous declaration was a definition,
538  // implicit declaration, or a declaration.
539  diag::kind PrevDiag;
540  if (Old->isThisDeclarationADefinition())
541    PrevDiag = diag::note_previous_definition;
542  else if (Old->isImplicit())
543    PrevDiag = diag::note_previous_implicit_declaration;
544  else
545    PrevDiag = diag::note_previous_declaration;
546
547  QualType OldQType = Context.getCanonicalType(Old->getType());
548  QualType NewQType = Context.getCanonicalType(New->getType());
549
550  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
551      New->getStorageClass() == FunctionDecl::Static &&
552      Old->getStorageClass() != FunctionDecl::Static) {
553    Diag(New->getLocation(), diag::err_static_non_static)
554      << New;
555    Diag(Old->getLocation(), PrevDiag);
556    return true;
557  }
558
559  if (getLangOptions().CPlusPlus) {
560    // (C++98 13.1p2):
561    //   Certain function declarations cannot be overloaded:
562    //     -- Function declarations that differ only in the return type
563    //        cannot be overloaded.
564    QualType OldReturnType
565      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
566    QualType NewReturnType
567      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
568    if (OldReturnType != NewReturnType) {
569      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
570      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
571      return true;
572    }
573
574    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
575    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
576    if (OldMethod && NewMethod) {
577      //    -- Member function declarations with the same name and the
578      //       same parameter types cannot be overloaded if any of them
579      //       is a static member function declaration.
580      if (OldMethod->isStatic() || NewMethod->isStatic()) {
581        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
582        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
583        return true;
584      }
585
586      // C++ [class.mem]p1:
587      //   [...] A member shall not be declared twice in the
588      //   member-specification, except that a nested class or member
589      //   class template can be declared and then later defined.
590      if (OldMethod->getLexicalDeclContext() ==
591            NewMethod->getLexicalDeclContext()) {
592        unsigned NewDiag;
593        if (isa<CXXConstructorDecl>(OldMethod))
594          NewDiag = diag::err_constructor_redeclared;
595        else if (isa<CXXDestructorDecl>(NewMethod))
596          NewDiag = diag::err_destructor_redeclared;
597        else if (isa<CXXConversionDecl>(NewMethod))
598          NewDiag = diag::err_conv_function_redeclared;
599        else
600          NewDiag = diag::err_member_redeclared;
601
602        Diag(New->getLocation(), NewDiag);
603        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
604      }
605    }
606
607    // (C++98 8.3.5p3):
608    //   All declarations for a function shall agree exactly in both the
609    //   return type and the parameter-type-list.
610    if (OldQType == NewQType)
611      return MergeCompatibleFunctionDecls(New, Old);
612
613    // Fall through for conflicting redeclarations and redefinitions.
614  }
615
616  // C: Function types need to be compatible, not identical. This handles
617  // duplicate function decls like "void f(int); void f(enum X);" properly.
618  if (!getLangOptions().CPlusPlus &&
619      Context.typesAreCompatible(OldQType, NewQType)) {
620    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
621    const FunctionProtoType *OldProto = 0;
622    if (isa<FunctionNoProtoType>(NewFuncType) &&
623        (OldProto = OldQType->getAsFunctionProtoType())) {
624      // The old declaration provided a function prototype, but the
625      // new declaration does not. Merge in the prototype.
626      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
627                                                 OldProto->arg_type_end());
628      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
629                                         &ParamTypes[0], ParamTypes.size(),
630                                         OldProto->isVariadic(),
631                                         OldProto->getTypeQuals());
632      New->setType(NewQType);
633      New->setInheritedPrototype();
634
635      // Synthesize a parameter for each argument type.
636      llvm::SmallVector<ParmVarDecl*, 16> Params;
637      for (FunctionProtoType::arg_type_iterator
638             ParamType = OldProto->arg_type_begin(),
639             ParamEnd = OldProto->arg_type_end();
640           ParamType != ParamEnd; ++ParamType) {
641        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
642                                                 SourceLocation(), 0,
643                                                 *ParamType, VarDecl::None,
644                                                 0);
645        Param->setImplicit();
646        Params.push_back(Param);
647      }
648
649      New->setParams(Context, &Params[0], Params.size());
650
651    }
652
653    return MergeCompatibleFunctionDecls(New, Old);
654  }
655
656  // A function that has already been declared has been redeclared or defined
657  // with a different type- show appropriate diagnostic
658  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
659    // The user has declared a builtin function with an incompatible
660    // signature.
661    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
662      // The function the user is redeclaring is a library-defined
663      // function like 'malloc' or 'printf'. Warn about the
664      // redeclaration, then ignore it.
665      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
666      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
667        << Old << Old->getType();
668      return true;
669    }
670
671    PrevDiag = diag::note_previous_builtin_declaration;
672  }
673
674  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
675  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676  return true;
677}
678
679/// \brief Completes the merge of two function declarations that are
680/// known to be compatible.
681///
682/// This routine handles the merging of attributes and other
683/// properties of function declarations form the old declaration to
684/// the new declaration, once we know that New is in fact a
685/// redeclaration of Old.
686///
687/// \returns false
688bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
689  // Merge the attributes
690  MergeAttributes(New, Old, Context);
691
692  // Merge the storage class.
693  New->setStorageClass(Old->getStorageClass());
694
695  // FIXME: need to implement inline semantics
696
697  // Merge "pure" flag.
698  if (Old->isPure())
699    New->setPure();
700
701  // Merge the "deleted" flag.
702  if (Old->isDeleted())
703    New->setDeleted();
704
705  if (getLangOptions().CPlusPlus)
706    return MergeCXXFunctionDecl(New, Old);
707
708  return false;
709}
710
711/// Predicate for C "tentative" external object definitions (C99 6.9.2).
712static bool isTentativeDefinition(VarDecl *VD) {
713  if (VD->isFileVarDecl())
714    return (!VD->getInit() &&
715            (VD->getStorageClass() == VarDecl::None ||
716             VD->getStorageClass() == VarDecl::Static));
717  return false;
718}
719
720/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
721/// when dealing with C "tentative" external object definitions (C99 6.9.2).
722void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
723  bool VDIsTentative = isTentativeDefinition(VD);
724  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
725
726  // FIXME: I don't think this will actually see all of the
727  // redefinitions. Can't we check this property on-the-fly?
728  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
729                                    E = IdResolver.end();
730       I != E; ++I) {
731    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
732      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
733
734      // Handle the following case:
735      //   int a[10];
736      //   int a[];   - the code below makes sure we set the correct type.
737      //   int a[11]; - this is an error, size isn't 10.
738      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
739          OldDecl->getType()->isConstantArrayType())
740        VD->setType(OldDecl->getType());
741
742      // Check for "tentative" definitions. We can't accomplish this in
743      // MergeVarDecl since the initializer hasn't been attached.
744      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
745        continue;
746
747      // Handle __private_extern__ just like extern.
748      if (OldDecl->getStorageClass() != VarDecl::Extern &&
749          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
750          VD->getStorageClass() != VarDecl::Extern &&
751          VD->getStorageClass() != VarDecl::PrivateExtern) {
752        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
753        Diag(OldDecl->getLocation(), diag::note_previous_definition);
754        // One redefinition error is enough.
755        break;
756      }
757    }
758  }
759}
760
761/// MergeVarDecl - We just parsed a variable 'New' which has the same name
762/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
763/// situation, merging decls or emitting diagnostics as appropriate.
764///
765/// Tentative definition rules (C99 6.9.2p2) are checked by
766/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
767/// definitions here, since the initializer hasn't been attached.
768///
769bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
770  // Verify the old decl was also a variable.
771  VarDecl *Old = dyn_cast<VarDecl>(OldD);
772  if (!Old) {
773    Diag(New->getLocation(), diag::err_redefinition_different_kind)
774      << New->getDeclName();
775    Diag(OldD->getLocation(), diag::note_previous_definition);
776    return true;
777  }
778
779  MergeAttributes(New, Old, Context);
780
781  // Merge the types
782  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
783  if (MergedT.isNull()) {
784    Diag(New->getLocation(), diag::err_redefinition_different_type)
785      << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  New->setType(MergedT);
790  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
791  if (New->getStorageClass() == VarDecl::Static &&
792      (Old->getStorageClass() == VarDecl::None ||
793       Old->getStorageClass() == VarDecl::Extern)) {
794    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
795    Diag(Old->getLocation(), diag::note_previous_definition);
796    return true;
797  }
798  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
799  if (New->getStorageClass() != VarDecl::Static &&
800      Old->getStorageClass() == VarDecl::Static) {
801    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
802    Diag(Old->getLocation(), diag::note_previous_definition);
803    return true;
804  }
805  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
806  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
807    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
808    Diag(Old->getLocation(), diag::note_previous_definition);
809    return true;
810  }
811  return false;
812}
813
814/// CheckParmsForFunctionDef - Check that the parameters of the given
815/// function are appropriate for the definition of a function. This
816/// takes care of any checks that cannot be performed on the
817/// declaration itself, e.g., that the types of each of the function
818/// parameters are complete.
819bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
820  bool HasInvalidParm = false;
821  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
822    ParmVarDecl *Param = FD->getParamDecl(p);
823
824    // C99 6.7.5.3p4: the parameters in a parameter type list in a
825    // function declarator that is part of a function definition of
826    // that function shall not have incomplete type.
827    if (!Param->isInvalidDecl() &&
828        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
829                               diag::err_typecheck_decl_incomplete_type)) {
830      Param->setInvalidDecl();
831      HasInvalidParm = true;
832    }
833
834    // C99 6.9.1p5: If the declarator includes a parameter type list, the
835    // declaration of each parameter shall include an identifier.
836    if (Param->getIdentifier() == 0 &&
837        !Param->isImplicit() &&
838        !getLangOptions().CPlusPlus)
839      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
840  }
841
842  return HasInvalidParm;
843}
844
845/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
846/// no declarator (e.g. "struct foo;") is parsed.
847Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
848  TagDecl *Tag = 0;
849  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
850      DS.getTypeSpecType() == DeclSpec::TST_struct ||
851      DS.getTypeSpecType() == DeclSpec::TST_union ||
852      DS.getTypeSpecType() == DeclSpec::TST_enum)
853    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
854
855  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
856    if (!Record->getDeclName() && Record->isDefinition() &&
857        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
858      return BuildAnonymousStructOrUnion(S, DS, Record);
859
860    // Microsoft allows unnamed struct/union fields. Don't complain
861    // about them.
862    // FIXME: Should we support Microsoft's extensions in this area?
863    if (Record->getDeclName() && getLangOptions().Microsoft)
864      return Tag;
865  }
866
867  if (!DS.isMissingDeclaratorOk() &&
868      DS.getTypeSpecType() != DeclSpec::TST_error) {
869    // Warn about typedefs of enums without names, since this is an
870    // extension in both Microsoft an GNU.
871    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
872        Tag && isa<EnumDecl>(Tag)) {
873      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
874        << DS.getSourceRange();
875      return Tag;
876    }
877
878    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
879      << DS.getSourceRange();
880    return 0;
881  }
882
883  return Tag;
884}
885
886/// InjectAnonymousStructOrUnionMembers - Inject the members of the
887/// anonymous struct or union AnonRecord into the owning context Owner
888/// and scope S. This routine will be invoked just after we realize
889/// that an unnamed union or struct is actually an anonymous union or
890/// struct, e.g.,
891///
892/// @code
893/// union {
894///   int i;
895///   float f;
896/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
897///    // f into the surrounding scope.x
898/// @endcode
899///
900/// This routine is recursive, injecting the names of nested anonymous
901/// structs/unions into the owning context and scope as well.
902bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
903                                               RecordDecl *AnonRecord) {
904  bool Invalid = false;
905  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
906                               FEnd = AnonRecord->field_end();
907       F != FEnd; ++F) {
908    if ((*F)->getDeclName()) {
909      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
910                                                LookupOrdinaryName, true);
911      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
912        // C++ [class.union]p2:
913        //   The names of the members of an anonymous union shall be
914        //   distinct from the names of any other entity in the
915        //   scope in which the anonymous union is declared.
916        unsigned diagKind
917          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
918                                 : diag::err_anonymous_struct_member_redecl;
919        Diag((*F)->getLocation(), diagKind)
920          << (*F)->getDeclName();
921        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
922        Invalid = true;
923      } else {
924        // C++ [class.union]p2:
925        //   For the purpose of name lookup, after the anonymous union
926        //   definition, the members of the anonymous union are
927        //   considered to have been defined in the scope in which the
928        //   anonymous union is declared.
929        Owner->makeDeclVisibleInContext(*F);
930        S->AddDecl(*F);
931        IdResolver.AddDecl(*F);
932      }
933    } else if (const RecordType *InnerRecordType
934                 = (*F)->getType()->getAsRecordType()) {
935      RecordDecl *InnerRecord = InnerRecordType->getDecl();
936      if (InnerRecord->isAnonymousStructOrUnion())
937        Invalid = Invalid ||
938          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
939    }
940  }
941
942  return Invalid;
943}
944
945/// ActOnAnonymousStructOrUnion - Handle the declaration of an
946/// anonymous structure or union. Anonymous unions are a C++ feature
947/// (C++ [class.union]) and a GNU C extension; anonymous structures
948/// are a GNU C and GNU C++ extension.
949Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
950                                                RecordDecl *Record) {
951  DeclContext *Owner = Record->getDeclContext();
952
953  // Diagnose whether this anonymous struct/union is an extension.
954  if (Record->isUnion() && !getLangOptions().CPlusPlus)
955    Diag(Record->getLocation(), diag::ext_anonymous_union);
956  else if (!Record->isUnion())
957    Diag(Record->getLocation(), diag::ext_anonymous_struct);
958
959  // C and C++ require different kinds of checks for anonymous
960  // structs/unions.
961  bool Invalid = false;
962  if (getLangOptions().CPlusPlus) {
963    const char* PrevSpec = 0;
964    // C++ [class.union]p3:
965    //   Anonymous unions declared in a named namespace or in the
966    //   global namespace shall be declared static.
967    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
968        (isa<TranslationUnitDecl>(Owner) ||
969         (isa<NamespaceDecl>(Owner) &&
970          cast<NamespaceDecl>(Owner)->getDeclName()))) {
971      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
972      Invalid = true;
973
974      // Recover by adding 'static'.
975      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
976    }
977    // C++ [class.union]p3:
978    //   A storage class is not allowed in a declaration of an
979    //   anonymous union in a class scope.
980    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
981             isa<RecordDecl>(Owner)) {
982      Diag(DS.getStorageClassSpecLoc(),
983           diag::err_anonymous_union_with_storage_spec);
984      Invalid = true;
985
986      // Recover by removing the storage specifier.
987      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
988                             PrevSpec);
989    }
990
991    // C++ [class.union]p2:
992    //   The member-specification of an anonymous union shall only
993    //   define non-static data members. [Note: nested types and
994    //   functions cannot be declared within an anonymous union. ]
995    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
996                                 MemEnd = Record->decls_end();
997         Mem != MemEnd; ++Mem) {
998      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
999        // C++ [class.union]p3:
1000        //   An anonymous union shall not have private or protected
1001        //   members (clause 11).
1002        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1003          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1004            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1005          Invalid = true;
1006        }
1007      } else if ((*Mem)->isImplicit()) {
1008        // Any implicit members are fine.
1009      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1010        // This is a type that showed up in an
1011        // elaborated-type-specifier inside the anonymous struct or
1012        // union, but which actually declares a type outside of the
1013        // anonymous struct or union. It's okay.
1014      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1015        if (!MemRecord->isAnonymousStructOrUnion() &&
1016            MemRecord->getDeclName()) {
1017          // This is a nested type declaration.
1018          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1019            << (int)Record->isUnion();
1020          Invalid = true;
1021        }
1022      } else {
1023        // We have something that isn't a non-static data
1024        // member. Complain about it.
1025        unsigned DK = diag::err_anonymous_record_bad_member;
1026        if (isa<TypeDecl>(*Mem))
1027          DK = diag::err_anonymous_record_with_type;
1028        else if (isa<FunctionDecl>(*Mem))
1029          DK = diag::err_anonymous_record_with_function;
1030        else if (isa<VarDecl>(*Mem))
1031          DK = diag::err_anonymous_record_with_static;
1032        Diag((*Mem)->getLocation(), DK)
1033            << (int)Record->isUnion();
1034          Invalid = true;
1035      }
1036    }
1037  } else {
1038    // FIXME: Check GNU C semantics
1039    if (Record->isUnion() && !Owner->isRecord()) {
1040      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1041        << (int)getLangOptions().CPlusPlus;
1042      Invalid = true;
1043    }
1044  }
1045
1046  if (!Record->isUnion() && !Owner->isRecord()) {
1047    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1048      << (int)getLangOptions().CPlusPlus;
1049    Invalid = true;
1050  }
1051
1052  // Create a declaration for this anonymous struct/union.
1053  NamedDecl *Anon = 0;
1054  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1055    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1056                             /*IdentifierInfo=*/0,
1057                             Context.getTypeDeclType(Record),
1058                             /*BitWidth=*/0, /*Mutable=*/false);
1059    Anon->setAccess(AS_public);
1060    if (getLangOptions().CPlusPlus)
1061      FieldCollector->Add(cast<FieldDecl>(Anon));
1062  } else {
1063    VarDecl::StorageClass SC;
1064    switch (DS.getStorageClassSpec()) {
1065    default: assert(0 && "Unknown storage class!");
1066    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1067    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1068    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1069    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1070    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1071    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1072    case DeclSpec::SCS_mutable:
1073      // mutable can only appear on non-static class members, so it's always
1074      // an error here
1075      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1076      Invalid = true;
1077      SC = VarDecl::None;
1078      break;
1079    }
1080
1081    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1082                           /*IdentifierInfo=*/0,
1083                           Context.getTypeDeclType(Record),
1084                           SC, DS.getSourceRange().getBegin());
1085  }
1086  Anon->setImplicit();
1087
1088  // Add the anonymous struct/union object to the current
1089  // context. We'll be referencing this object when we refer to one of
1090  // its members.
1091  Owner->addDecl(Anon);
1092
1093  // Inject the members of the anonymous struct/union into the owning
1094  // context and into the identifier resolver chain for name lookup
1095  // purposes.
1096  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1097    Invalid = true;
1098
1099  // Mark this as an anonymous struct/union type. Note that we do not
1100  // do this until after we have already checked and injected the
1101  // members of this anonymous struct/union type, because otherwise
1102  // the members could be injected twice: once by DeclContext when it
1103  // builds its lookup table, and once by
1104  // InjectAnonymousStructOrUnionMembers.
1105  Record->setAnonymousStructOrUnion(true);
1106
1107  if (Invalid)
1108    Anon->setInvalidDecl();
1109
1110  return Anon;
1111}
1112
1113
1114/// GetNameForDeclarator - Determine the full declaration name for the
1115/// given Declarator.
1116DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1117  switch (D.getKind()) {
1118  case Declarator::DK_Abstract:
1119    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1120    return DeclarationName();
1121
1122  case Declarator::DK_Normal:
1123    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1124    return DeclarationName(D.getIdentifier());
1125
1126  case Declarator::DK_Constructor: {
1127    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1128    Ty = Context.getCanonicalType(Ty);
1129    return Context.DeclarationNames.getCXXConstructorName(Ty);
1130  }
1131
1132  case Declarator::DK_Destructor: {
1133    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1134    Ty = Context.getCanonicalType(Ty);
1135    return Context.DeclarationNames.getCXXDestructorName(Ty);
1136  }
1137
1138  case Declarator::DK_Conversion: {
1139    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1140    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1141    Ty = Context.getCanonicalType(Ty);
1142    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1143  }
1144
1145  case Declarator::DK_Operator:
1146    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1147    return Context.DeclarationNames.getCXXOperatorName(
1148                                                D.getOverloadedOperator());
1149  }
1150
1151  assert(false && "Unknown name kind");
1152  return DeclarationName();
1153}
1154
1155/// isNearlyMatchingFunction - Determine whether the C++ functions
1156/// Declaration and Definition are "nearly" matching. This heuristic
1157/// is used to improve diagnostics in the case where an out-of-line
1158/// function definition doesn't match any declaration within
1159/// the class or namespace.
1160static bool isNearlyMatchingFunction(ASTContext &Context,
1161                                     FunctionDecl *Declaration,
1162                                     FunctionDecl *Definition) {
1163  if (Declaration->param_size() != Definition->param_size())
1164    return false;
1165  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1166    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1167    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1168
1169    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1170    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1171    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1172      return false;
1173  }
1174
1175  return true;
1176}
1177
1178Sema::DeclTy *
1179Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1180                      bool IsFunctionDefinition) {
1181  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1182  DeclarationName Name = GetNameForDeclarator(D);
1183
1184  // All of these full declarators require an identifier.  If it doesn't have
1185  // one, the ParsedFreeStandingDeclSpec action should be used.
1186  if (!Name) {
1187    if (!D.getInvalidType())  // Reject this if we think it is valid.
1188      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1189           diag::err_declarator_need_ident)
1190        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1191    return 0;
1192  }
1193
1194  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1195  // we find one that is.
1196  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1197         (S->getFlags() & Scope::TemplateParamScope) != 0)
1198    S = S->getParent();
1199
1200  DeclContext *DC;
1201  NamedDecl *PrevDecl;
1202  NamedDecl *New;
1203  bool InvalidDecl = false;
1204
1205  QualType R = GetTypeForDeclarator(D, S);
1206  if (R.isNull()) {
1207    InvalidDecl = true;
1208    R = Context.IntTy;
1209  }
1210
1211  // See if this is a redefinition of a variable in the same scope.
1212  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1213    LookupNameKind NameKind = LookupOrdinaryName;
1214
1215    // If the declaration we're planning to build will be a function
1216    // or object with linkage, then look for another declaration with
1217    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1218    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1219      /* Do nothing*/;
1220    else if (R->isFunctionType()) {
1221      if (CurContext->isFunctionOrMethod())
1222        NameKind = LookupRedeclarationWithLinkage;
1223    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1224      NameKind = LookupRedeclarationWithLinkage;
1225
1226    DC = CurContext;
1227    PrevDecl = LookupName(S, Name, NameKind, true,
1228                          D.getDeclSpec().getStorageClassSpec() !=
1229                            DeclSpec::SCS_static,
1230                          D.getIdentifierLoc());
1231  } else { // Something like "int foo::x;"
1232    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1233    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1234
1235    // C++ 7.3.1.2p2:
1236    // Members (including explicit specializations of templates) of a named
1237    // namespace can also be defined outside that namespace by explicit
1238    // qualification of the name being defined, provided that the entity being
1239    // defined was already declared in the namespace and the definition appears
1240    // after the point of declaration in a namespace that encloses the
1241    // declarations namespace.
1242    //
1243    // Note that we only check the context at this point. We don't yet
1244    // have enough information to make sure that PrevDecl is actually
1245    // the declaration we want to match. For example, given:
1246    //
1247    //   class X {
1248    //     void f();
1249    //     void f(float);
1250    //   };
1251    //
1252    //   void X::f(int) { } // ill-formed
1253    //
1254    // In this case, PrevDecl will point to the overload set
1255    // containing the two f's declared in X, but neither of them
1256    // matches.
1257
1258    // First check whether we named the global scope.
1259    if (isa<TranslationUnitDecl>(DC)) {
1260      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1261        << Name << D.getCXXScopeSpec().getRange();
1262    } else if (!CurContext->Encloses(DC)) {
1263      // The qualifying scope doesn't enclose the original declaration.
1264      // Emit diagnostic based on current scope.
1265      SourceLocation L = D.getIdentifierLoc();
1266      SourceRange R = D.getCXXScopeSpec().getRange();
1267      if (isa<FunctionDecl>(CurContext))
1268        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1269      else
1270        Diag(L, diag::err_invalid_declarator_scope)
1271          << Name << cast<NamedDecl>(DC) << R;
1272      InvalidDecl = true;
1273    }
1274  }
1275
1276  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1277    // Maybe we will complain about the shadowed template parameter.
1278    InvalidDecl = InvalidDecl
1279      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1280    // Just pretend that we didn't see the previous declaration.
1281    PrevDecl = 0;
1282  }
1283
1284  // In C++, the previous declaration we find might be a tag type
1285  // (class or enum). In this case, the new declaration will hide the
1286  // tag type. Note that this does does not apply if we're declaring a
1287  // typedef (C++ [dcl.typedef]p4).
1288  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1289      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1290    PrevDecl = 0;
1291
1292  bool Redeclaration = false;
1293  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1294    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1295                                 InvalidDecl, Redeclaration);
1296  } else if (R->isFunctionType()) {
1297    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1298                                  IsFunctionDefinition, InvalidDecl,
1299                                  Redeclaration);
1300  } else {
1301    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1302                                  InvalidDecl, Redeclaration);
1303  }
1304
1305  if (New == 0)
1306    return 0;
1307
1308  // Set the lexical context. If the declarator has a C++ scope specifier, the
1309  // lexical context will be different from the semantic context.
1310  New->setLexicalDeclContext(CurContext);
1311
1312  // If this has an identifier and is not an invalid redeclaration,
1313  // add it to the scope stack.
1314  if (Name && !(Redeclaration && InvalidDecl))
1315    PushOnScopeChains(New, S);
1316  // If any semantic error occurred, mark the decl as invalid.
1317  if (D.getInvalidType() || InvalidDecl)
1318    New->setInvalidDecl();
1319
1320  return New;
1321}
1322
1323/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1324/// types into constant array types in certain situations which would otherwise
1325/// be errors (for GCC compatibility).
1326static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1327                                                    ASTContext &Context,
1328                                                    bool &SizeIsNegative) {
1329  // This method tries to turn a variable array into a constant
1330  // array even when the size isn't an ICE.  This is necessary
1331  // for compatibility with code that depends on gcc's buggy
1332  // constant expression folding, like struct {char x[(int)(char*)2];}
1333  SizeIsNegative = false;
1334
1335  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1336    QualType Pointee = PTy->getPointeeType();
1337    QualType FixedType =
1338        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1339    if (FixedType.isNull()) return FixedType;
1340    FixedType = Context.getPointerType(FixedType);
1341    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1342    return FixedType;
1343  }
1344
1345  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1346  if (!VLATy)
1347    return QualType();
1348  // FIXME: We should probably handle this case
1349  if (VLATy->getElementType()->isVariablyModifiedType())
1350    return QualType();
1351
1352  Expr::EvalResult EvalResult;
1353  if (!VLATy->getSizeExpr() ||
1354      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1355      !EvalResult.Val.isInt())
1356    return QualType();
1357
1358  llvm::APSInt &Res = EvalResult.Val.getInt();
1359  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1360    return Context.getConstantArrayType(VLATy->getElementType(),
1361                                        Res, ArrayType::Normal, 0);
1362
1363  SizeIsNegative = true;
1364  return QualType();
1365}
1366
1367/// \brief Register the given locally-scoped external C declaration so
1368/// that it can be found later for redeclarations
1369void
1370Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1371                                       Scope *S) {
1372  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1373         "Decl is not a locally-scoped decl!");
1374  // Note that we have a locally-scoped external with this name.
1375  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1376
1377  if (!PrevDecl)
1378    return;
1379
1380  // If there was a previous declaration of this variable, it may be
1381  // in our identifier chain. Update the identifier chain with the new
1382  // declaration.
1383  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1384    // The previous declaration was found on the identifer resolver
1385    // chain, so remove it from its scope.
1386    while (S && !S->isDeclScope(PrevDecl))
1387      S = S->getParent();
1388
1389    if (S)
1390      S->RemoveDecl(PrevDecl);
1391  }
1392}
1393
1394NamedDecl*
1395Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1396                             QualType R, Decl* LastDeclarator,
1397                             Decl* PrevDecl, bool& InvalidDecl,
1398                             bool &Redeclaration) {
1399  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1400  if (D.getCXXScopeSpec().isSet()) {
1401    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1402      << D.getCXXScopeSpec().getRange();
1403    InvalidDecl = true;
1404    // Pretend we didn't see the scope specifier.
1405    DC = 0;
1406  }
1407
1408  // Check that there are no default arguments (C++ only).
1409  if (getLangOptions().CPlusPlus)
1410    CheckExtraCXXDefaultArguments(D);
1411
1412  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1413  if (!NewTD) return 0;
1414
1415  // Handle attributes prior to checking for duplicates in MergeVarDecl
1416  ProcessDeclAttributes(NewTD, D);
1417  // Merge the decl with the existing one if appropriate. If the decl is
1418  // in an outer scope, it isn't the same thing.
1419  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1420    Redeclaration = true;
1421    if (MergeTypeDefDecl(NewTD, PrevDecl))
1422      InvalidDecl = true;
1423  }
1424
1425  if (S->getFnParent() == 0) {
1426    QualType T = NewTD->getUnderlyingType();
1427    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1428    // then it shall have block scope.
1429    if (T->isVariablyModifiedType()) {
1430      bool SizeIsNegative;
1431      QualType FixedTy =
1432          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1433      if (!FixedTy.isNull()) {
1434        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1435        NewTD->setUnderlyingType(FixedTy);
1436      } else {
1437        if (SizeIsNegative)
1438          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1439        else if (T->isVariableArrayType())
1440          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1441        else
1442          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1443        InvalidDecl = true;
1444      }
1445    }
1446  }
1447  return NewTD;
1448}
1449
1450/// \brief Determines whether the given declaration is an out-of-scope
1451/// previous declaration.
1452///
1453/// This routine should be invoked when name lookup has found a
1454/// previous declaration (PrevDecl) that is not in the scope where a
1455/// new declaration by the same name is being introduced. If the new
1456/// declaration occurs in a local scope, previous declarations with
1457/// linkage may still be considered previous declarations (C99
1458/// 6.2.2p4-5, C++ [basic.link]p6).
1459///
1460/// \param PrevDecl the previous declaration found by name
1461/// lookup
1462///
1463/// \param DC the context in which the new declaration is being
1464/// declared.
1465///
1466/// \returns true if PrevDecl is an out-of-scope previous declaration
1467/// for a new delcaration with the same name.
1468static bool
1469isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1470                                ASTContext &Context) {
1471  if (!PrevDecl)
1472    return 0;
1473
1474  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1475  // case we need to check each of the overloaded functions.
1476  if (!PrevDecl->hasLinkage())
1477    return false;
1478
1479  if (Context.getLangOptions().CPlusPlus) {
1480    // C++ [basic.link]p6:
1481    //   If there is a visible declaration of an entity with linkage
1482    //   having the same name and type, ignoring entities declared
1483    //   outside the innermost enclosing namespace scope, the block
1484    //   scope declaration declares that same entity and receives the
1485    //   linkage of the previous declaration.
1486    DeclContext *OuterContext = DC->getLookupContext();
1487    if (!OuterContext->isFunctionOrMethod())
1488      // This rule only applies to block-scope declarations.
1489      return false;
1490    else {
1491      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1492      if (PrevOuterContext->isRecord())
1493        // We found a member function: ignore it.
1494        return false;
1495      else {
1496        // Find the innermost enclosing namespace for the new and
1497        // previous declarations.
1498        while (!OuterContext->isFileContext())
1499          OuterContext = OuterContext->getParent();
1500        while (!PrevOuterContext->isFileContext())
1501          PrevOuterContext = PrevOuterContext->getParent();
1502
1503        // The previous declaration is in a different namespace, so it
1504        // isn't the same function.
1505        if (OuterContext->getPrimaryContext() !=
1506            PrevOuterContext->getPrimaryContext())
1507          return false;
1508      }
1509    }
1510  }
1511
1512  return true;
1513}
1514
1515NamedDecl*
1516Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1517                              QualType R, Decl* LastDeclarator,
1518                              NamedDecl* PrevDecl, bool& InvalidDecl,
1519                              bool &Redeclaration) {
1520  DeclarationName Name = GetNameForDeclarator(D);
1521
1522  // Check that there are no default arguments (C++ only).
1523  if (getLangOptions().CPlusPlus)
1524    CheckExtraCXXDefaultArguments(D);
1525
1526  if (R.getTypePtr()->isObjCInterfaceType()) {
1527    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1528    InvalidDecl = true;
1529  }
1530
1531  VarDecl *NewVD;
1532  VarDecl::StorageClass SC;
1533  switch (D.getDeclSpec().getStorageClassSpec()) {
1534  default: assert(0 && "Unknown storage class!");
1535  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1536  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1537  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1538  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1539  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1540  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1541  case DeclSpec::SCS_mutable:
1542    // mutable can only appear on non-static class members, so it's always
1543    // an error here
1544    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1545    InvalidDecl = true;
1546    SC = VarDecl::None;
1547    break;
1548  }
1549
1550  IdentifierInfo *II = Name.getAsIdentifierInfo();
1551  if (!II) {
1552    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1553      << Name.getAsString();
1554    return 0;
1555  }
1556
1557  if (DC->isRecord()) {
1558    // This is a static data member for a C++ class.
1559    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1560                                    D.getIdentifierLoc(), II,
1561                                    R);
1562  } else {
1563    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1564    if (S->getFnParent() == 0) {
1565      // C99 6.9p2: The storage-class specifiers auto and register shall not
1566      // appear in the declaration specifiers in an external declaration.
1567      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1568        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1569        InvalidDecl = true;
1570      }
1571    }
1572    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1573                            II, R, SC,
1574                            // FIXME: Move to DeclGroup...
1575                            D.getDeclSpec().getSourceRange().getBegin());
1576    NewVD->setThreadSpecified(ThreadSpecified);
1577  }
1578  NewVD->setNextDeclarator(LastDeclarator);
1579
1580  // Handle attributes prior to checking for duplicates in MergeVarDecl
1581  ProcessDeclAttributes(NewVD, D);
1582
1583  // Handle GNU asm-label extension (encoded as an attribute).
1584  if (Expr *E = (Expr*) D.getAsmLabel()) {
1585    // The parser guarantees this is a string.
1586    StringLiteral *SE = cast<StringLiteral>(E);
1587    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1588                                                        SE->getByteLength())));
1589  }
1590
1591  // Emit an error if an address space was applied to decl with local storage.
1592  // This includes arrays of objects with address space qualifiers, but not
1593  // automatic variables that point to other address spaces.
1594  // ISO/IEC TR 18037 S5.1.2
1595  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1596    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1597    InvalidDecl = true;
1598  }
1599
1600  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1601    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1602  }
1603
1604  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1605  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1606  if (isIllegalVLA || isIllegalVM) {
1607    bool SizeIsNegative;
1608    QualType FixedTy =
1609        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1610    if (!FixedTy.isNull()) {
1611      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1612      NewVD->setType(FixedTy);
1613    } else if (R->isVariableArrayType()) {
1614      NewVD->setInvalidDecl();
1615
1616      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1617      // FIXME: This won't give the correct result for
1618      // int a[10][n];
1619      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1620
1621      if (NewVD->isFileVarDecl())
1622        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1623          << SizeRange;
1624      else if (NewVD->getStorageClass() == VarDecl::Static)
1625        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1626          << SizeRange;
1627      else
1628        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1629            << SizeRange;
1630    } else {
1631      InvalidDecl = true;
1632
1633      if (NewVD->isFileVarDecl())
1634        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1635      else
1636        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1637    }
1638  }
1639
1640  // If name lookup finds a previous declaration that is not in the
1641  // same scope as the new declaration, this may still be an
1642  // acceptable redeclaration.
1643  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1644      !(NewVD->hasLinkage() &&
1645        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1646    PrevDecl = 0;
1647
1648  if (!PrevDecl && NewVD->isExternC(Context)) {
1649    // Since we did not find anything by this name and we're declaring
1650    // an extern "C" variable, look for a non-visible extern "C"
1651    // declaration with the same name.
1652    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1653      = LocallyScopedExternalDecls.find(Name);
1654    if (Pos != LocallyScopedExternalDecls.end())
1655      PrevDecl = Pos->second;
1656  }
1657
1658  // Merge the decl with the existing one if appropriate.
1659  if (PrevDecl) {
1660    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1661      // The user tried to define a non-static data member
1662      // out-of-line (C++ [dcl.meaning]p1).
1663      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1664        << D.getCXXScopeSpec().getRange();
1665      NewVD->Destroy(Context);
1666      return 0;
1667    }
1668
1669    Redeclaration = true;
1670    if (MergeVarDecl(NewVD, PrevDecl))
1671      InvalidDecl = true;
1672
1673    if (D.getCXXScopeSpec().isSet()) {
1674      // No previous declaration in the qualifying scope.
1675      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1676        << Name << D.getCXXScopeSpec().getRange();
1677      InvalidDecl = true;
1678    }
1679  }
1680
1681  // If this is a locally-scoped extern C variable, update the map of
1682  // such variables.
1683  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1684      !InvalidDecl)
1685    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1686
1687  return NewVD;
1688}
1689
1690NamedDecl*
1691Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1692                              QualType R, Decl *LastDeclarator,
1693                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1694                              bool& InvalidDecl, bool &Redeclaration) {
1695  assert(R.getTypePtr()->isFunctionType());
1696
1697  DeclarationName Name = GetNameForDeclarator(D);
1698  FunctionDecl::StorageClass SC = FunctionDecl::None;
1699  switch (D.getDeclSpec().getStorageClassSpec()) {
1700  default: assert(0 && "Unknown storage class!");
1701  case DeclSpec::SCS_auto:
1702  case DeclSpec::SCS_register:
1703  case DeclSpec::SCS_mutable:
1704    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1705         diag::err_typecheck_sclass_func);
1706    InvalidDecl = true;
1707    break;
1708  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1709  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1710  case DeclSpec::SCS_static: {
1711    if (DC->getLookupContext()->isFunctionOrMethod()) {
1712      // C99 6.7.1p5:
1713      //   The declaration of an identifier for a function that has
1714      //   block scope shall have no explicit storage-class specifier
1715      //   other than extern
1716      // See also (C++ [dcl.stc]p4).
1717      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1718           diag::err_static_block_func);
1719      SC = FunctionDecl::None;
1720    } else
1721      SC = FunctionDecl::Static;
1722    break;
1723  }
1724  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1725  }
1726
1727  bool isInline = D.getDeclSpec().isInlineSpecified();
1728  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1729  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1730
1731  FunctionDecl *NewFD;
1732  if (D.getKind() == Declarator::DK_Constructor) {
1733    // This is a C++ constructor declaration.
1734    assert(DC->isRecord() &&
1735           "Constructors can only be declared in a member context");
1736
1737    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1738
1739    // Create the new declaration
1740    NewFD = CXXConstructorDecl::Create(Context,
1741                                       cast<CXXRecordDecl>(DC),
1742                                       D.getIdentifierLoc(), Name, R,
1743                                       isExplicit, isInline,
1744                                       /*isImplicitlyDeclared=*/false);
1745
1746    if (InvalidDecl)
1747      NewFD->setInvalidDecl();
1748  } else if (D.getKind() == Declarator::DK_Destructor) {
1749    // This is a C++ destructor declaration.
1750    if (DC->isRecord()) {
1751      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1752
1753      NewFD = CXXDestructorDecl::Create(Context,
1754                                        cast<CXXRecordDecl>(DC),
1755                                        D.getIdentifierLoc(), Name, R,
1756                                        isInline,
1757                                        /*isImplicitlyDeclared=*/false);
1758
1759      if (InvalidDecl)
1760        NewFD->setInvalidDecl();
1761    } else {
1762      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1763
1764      // Create a FunctionDecl to satisfy the function definition parsing
1765      // code path.
1766      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1767                                   Name, R, SC, isInline,
1768                                   /*hasPrototype=*/true,
1769                                   // FIXME: Move to DeclGroup...
1770                                   D.getDeclSpec().getSourceRange().getBegin());
1771      InvalidDecl = true;
1772      NewFD->setInvalidDecl();
1773    }
1774  } else if (D.getKind() == Declarator::DK_Conversion) {
1775    if (!DC->isRecord()) {
1776      Diag(D.getIdentifierLoc(),
1777           diag::err_conv_function_not_member);
1778      return 0;
1779    } else {
1780      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1781
1782      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1783                                        D.getIdentifierLoc(), Name, R,
1784                                        isInline, isExplicit);
1785
1786      if (InvalidDecl)
1787        NewFD->setInvalidDecl();
1788    }
1789  } else if (DC->isRecord()) {
1790    // This is a C++ method declaration.
1791    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1792                                  D.getIdentifierLoc(), Name, R,
1793                                  (SC == FunctionDecl::Static), isInline);
1794  } else {
1795    NewFD = FunctionDecl::Create(Context, DC,
1796                                 D.getIdentifierLoc(),
1797                                 Name, R, SC, isInline,
1798                                 /*hasPrototype=*/
1799                                   (getLangOptions().CPlusPlus ||
1800                                    (D.getNumTypeObjects() &&
1801                                     D.getTypeObject(0).Fun.hasPrototype)),
1802                                 // FIXME: Move to DeclGroup...
1803                                 D.getDeclSpec().getSourceRange().getBegin());
1804  }
1805  NewFD->setNextDeclarator(LastDeclarator);
1806
1807  // Set the lexical context. If the declarator has a C++
1808  // scope specifier, the lexical context will be different
1809  // from the semantic context.
1810  NewFD->setLexicalDeclContext(CurContext);
1811
1812  // Handle GNU asm-label extension (encoded as an attribute).
1813  if (Expr *E = (Expr*) D.getAsmLabel()) {
1814    // The parser guarantees this is a string.
1815    StringLiteral *SE = cast<StringLiteral>(E);
1816    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1817                                                        SE->getByteLength())));
1818  }
1819
1820  // Copy the parameter declarations from the declarator D to
1821  // the function declaration NewFD, if they are available.
1822  if (D.getNumTypeObjects() > 0) {
1823    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1824
1825    // Create Decl objects for each parameter, adding them to the
1826    // FunctionDecl.
1827    llvm::SmallVector<ParmVarDecl*, 16> Params;
1828
1829    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1830    // function that takes no arguments, not a function that takes a
1831    // single void argument.
1832    // We let through "const void" here because Sema::GetTypeForDeclarator
1833    // already checks for that case.
1834    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1835        FTI.ArgInfo[0].Param &&
1836        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1837      // empty arg list, don't push any params.
1838      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1839
1840      // In C++, the empty parameter-type-list must be spelled "void"; a
1841      // typedef of void is not permitted.
1842      if (getLangOptions().CPlusPlus &&
1843          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1844        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1845      }
1846    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1847      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1848        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1849    }
1850
1851    NewFD->setParams(Context, &Params[0], Params.size());
1852  } else if (R->getAsTypedefType()) {
1853    // When we're declaring a function with a typedef, as in the
1854    // following example, we'll need to synthesize (unnamed)
1855    // parameters for use in the declaration.
1856    //
1857    // @code
1858    // typedef void fn(int);
1859    // fn f;
1860    // @endcode
1861    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1862    if (!FT) {
1863      // This is a typedef of a function with no prototype, so we
1864      // don't need to do anything.
1865    } else if ((FT->getNumArgs() == 0) ||
1866               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1867                FT->getArgType(0)->isVoidType())) {
1868      // This is a zero-argument function. We don't need to do anything.
1869    } else {
1870      // Synthesize a parameter for each argument type.
1871      llvm::SmallVector<ParmVarDecl*, 16> Params;
1872      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1873           ArgType != FT->arg_type_end(); ++ArgType) {
1874        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1875                                                 SourceLocation(), 0,
1876                                                 *ArgType, VarDecl::None,
1877                                                 0);
1878        Param->setImplicit();
1879        Params.push_back(Param);
1880      }
1881
1882      NewFD->setParams(Context, &Params[0], Params.size());
1883    }
1884  }
1885
1886  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1887    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1888  else if (isa<CXXDestructorDecl>(NewFD)) {
1889    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1890    Record->setUserDeclaredDestructor(true);
1891    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1892    // user-defined destructor.
1893    Record->setPOD(false);
1894  } else if (CXXConversionDecl *Conversion =
1895             dyn_cast<CXXConversionDecl>(NewFD))
1896    ActOnConversionDeclarator(Conversion);
1897
1898  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1899  if (NewFD->isOverloadedOperator() &&
1900      CheckOverloadedOperatorDeclaration(NewFD))
1901    NewFD->setInvalidDecl();
1902
1903  // If name lookup finds a previous declaration that is not in the
1904  // same scope as the new declaration, this may still be an
1905  // acceptable redeclaration.
1906  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1907      !(NewFD->hasLinkage() &&
1908        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1909    PrevDecl = 0;
1910
1911  if (!PrevDecl && NewFD->isExternC(Context)) {
1912    // Since we did not find anything by this name and we're declaring
1913    // an extern "C" function, look for a non-visible extern "C"
1914    // declaration with the same name.
1915    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1916      = LocallyScopedExternalDecls.find(Name);
1917    if (Pos != LocallyScopedExternalDecls.end())
1918      PrevDecl = Pos->second;
1919  }
1920
1921  // Merge or overload the declaration with an existing declaration of
1922  // the same name, if appropriate.
1923  bool OverloadableAttrRequired = false;
1924  if (PrevDecl) {
1925    // Determine whether NewFD is an overload of PrevDecl or
1926    // a declaration that requires merging. If it's an overload,
1927    // there's no more work to do here; we'll just add the new
1928    // function to the scope.
1929    OverloadedFunctionDecl::function_iterator MatchedDecl;
1930
1931    if (!getLangOptions().CPlusPlus &&
1932        AllowOverloadingOfFunction(PrevDecl, Context)) {
1933      OverloadableAttrRequired = true;
1934
1935      // Functions marked "overloadable" must have a prototype (that
1936      // we can't get through declaration merging).
1937      if (!R->getAsFunctionProtoType()) {
1938        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1939          << NewFD;
1940        InvalidDecl = true;
1941        Redeclaration = true;
1942
1943        // Turn this into a variadic function with no parameters.
1944        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1945                                    0, 0, true, 0);
1946        NewFD->setType(R);
1947      }
1948    }
1949
1950    if (PrevDecl &&
1951        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1952         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1953      Redeclaration = true;
1954      Decl *OldDecl = PrevDecl;
1955
1956      // If PrevDecl was an overloaded function, extract the
1957      // FunctionDecl that matched.
1958      if (isa<OverloadedFunctionDecl>(PrevDecl))
1959        OldDecl = *MatchedDecl;
1960
1961      // NewFD and PrevDecl represent declarations that need to be
1962      // merged.
1963      if (MergeFunctionDecl(NewFD, OldDecl))
1964        InvalidDecl = true;
1965
1966      if (!InvalidDecl) {
1967        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1968
1969        // An out-of-line member function declaration must also be a
1970        // definition (C++ [dcl.meaning]p1).
1971        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1972            !InvalidDecl) {
1973          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1974            << D.getCXXScopeSpec().getRange();
1975          NewFD->setInvalidDecl();
1976        }
1977      }
1978    }
1979  }
1980
1981  if (D.getCXXScopeSpec().isSet() &&
1982      (!PrevDecl || !Redeclaration)) {
1983    // The user tried to provide an out-of-line definition for a
1984    // function that is a member of a class or namespace, but there
1985    // was no such member function declared (C++ [class.mfct]p2,
1986    // C++ [namespace.memdef]p2). For example:
1987    //
1988    // class X {
1989    //   void f() const;
1990    // };
1991    //
1992    // void X::f() { } // ill-formed
1993    //
1994    // Complain about this problem, and attempt to suggest close
1995    // matches (e.g., those that differ only in cv-qualifiers and
1996    // whether the parameter types are references).
1997    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1998      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1999    InvalidDecl = true;
2000
2001    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2002                                            true);
2003    assert(!Prev.isAmbiguous() &&
2004           "Cannot have an ambiguity in previous-declaration lookup");
2005    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2006         Func != FuncEnd; ++Func) {
2007      if (isa<FunctionDecl>(*Func) &&
2008          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2009        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2010    }
2011
2012    PrevDecl = 0;
2013  }
2014
2015  // Handle attributes. We need to have merged decls when handling attributes
2016  // (for example to check for conflicts, etc).
2017  ProcessDeclAttributes(NewFD, D);
2018  AddKnownFunctionAttributes(NewFD);
2019
2020  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2021    // If a function name is overloadable in C, then every function
2022    // with that name must be marked "overloadable".
2023    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2024      << Redeclaration << NewFD;
2025    if (PrevDecl)
2026      Diag(PrevDecl->getLocation(),
2027           diag::note_attribute_overloadable_prev_overload);
2028    NewFD->addAttr(::new (Context) OverloadableAttr());
2029  }
2030
2031  if (getLangOptions().CPlusPlus) {
2032    // In C++, check default arguments now that we have merged decls. Unless
2033    // the lexical context is the class, because in this case this is done
2034    // during delayed parsing anyway.
2035    if (!CurContext->isRecord())
2036      CheckCXXDefaultArguments(NewFD);
2037
2038    // An out-of-line member function declaration must also be a
2039    // definition (C++ [dcl.meaning]p1).
2040    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2041      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2042        << D.getCXXScopeSpec().getRange();
2043      InvalidDecl = true;
2044    }
2045  }
2046
2047  // If this is a locally-scoped extern C function, update the
2048  // map of such names.
2049  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2050      && !InvalidDecl)
2051    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2052
2053  return NewFD;
2054}
2055
2056bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2057  // FIXME: Need strict checking.  In C89, we need to check for
2058  // any assignment, increment, decrement, function-calls, or
2059  // commas outside of a sizeof.  In C99, it's the same list,
2060  // except that the aforementioned are allowed in unevaluated
2061  // expressions.  Everything else falls under the
2062  // "may accept other forms of constant expressions" exception.
2063  // (We never end up here for C++, so the constant expression
2064  // rules there don't matter.)
2065  if (Init->isConstantInitializer(Context))
2066    return false;
2067  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2068    << Init->getSourceRange();
2069  return true;
2070}
2071
2072void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2073  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2074}
2075
2076/// AddInitializerToDecl - Adds the initializer Init to the
2077/// declaration dcl. If DirectInit is true, this is C++ direct
2078/// initialization rather than copy initialization.
2079void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2080  Decl *RealDecl = static_cast<Decl *>(dcl);
2081  // If there is no declaration, there was an error parsing it.  Just ignore
2082  // the initializer.
2083  if (RealDecl == 0)
2084    return;
2085
2086  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2087  if (!VDecl) {
2088    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2089    RealDecl->setInvalidDecl();
2090    return;
2091  }
2092
2093  // Take ownership of the expression, now that we're sure we have somewhere
2094  // to put it.
2095  Expr *Init = static_cast<Expr *>(init.release());
2096  assert(Init && "missing initializer");
2097
2098  // Get the decls type and save a reference for later, since
2099  // CheckInitializerTypes may change it.
2100  QualType DclT = VDecl->getType(), SavT = DclT;
2101  if (VDecl->isBlockVarDecl()) {
2102    VarDecl::StorageClass SC = VDecl->getStorageClass();
2103    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2104      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2105      VDecl->setInvalidDecl();
2106    } else if (!VDecl->isInvalidDecl()) {
2107      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2108                                VDecl->getDeclName(), DirectInit))
2109        VDecl->setInvalidDecl();
2110
2111      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2112      // Don't check invalid declarations to avoid emitting useless diagnostics.
2113      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2114        if (SC == VarDecl::Static) // C99 6.7.8p4.
2115          CheckForConstantInitializer(Init, DclT);
2116      }
2117    }
2118  } else if (VDecl->isFileVarDecl()) {
2119    if (VDecl->getStorageClass() == VarDecl::Extern)
2120      Diag(VDecl->getLocation(), diag::warn_extern_init);
2121    if (!VDecl->isInvalidDecl())
2122      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2123                                VDecl->getDeclName(), DirectInit))
2124        VDecl->setInvalidDecl();
2125
2126    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2127    // Don't check invalid declarations to avoid emitting useless diagnostics.
2128    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2129      // C99 6.7.8p4. All file scoped initializers need to be constant.
2130      CheckForConstantInitializer(Init, DclT);
2131    }
2132  }
2133  // If the type changed, it means we had an incomplete type that was
2134  // completed by the initializer. For example:
2135  //   int ary[] = { 1, 3, 5 };
2136  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2137  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2138    VDecl->setType(DclT);
2139    Init->setType(DclT);
2140  }
2141
2142  // Attach the initializer to the decl.
2143  VDecl->setInit(Init);
2144  return;
2145}
2146
2147void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2148  Decl *RealDecl = static_cast<Decl *>(dcl);
2149
2150  // If there is no declaration, there was an error parsing it. Just ignore it.
2151  if (RealDecl == 0)
2152    return;
2153
2154  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2155    QualType Type = Var->getType();
2156    // C++ [dcl.init.ref]p3:
2157    //   The initializer can be omitted for a reference only in a
2158    //   parameter declaration (8.3.5), in the declaration of a
2159    //   function return type, in the declaration of a class member
2160    //   within its class declaration (9.2), and where the extern
2161    //   specifier is explicitly used.
2162    if (Type->isReferenceType() &&
2163        Var->getStorageClass() != VarDecl::Extern &&
2164        Var->getStorageClass() != VarDecl::PrivateExtern) {
2165      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2166        << Var->getDeclName()
2167        << SourceRange(Var->getLocation(), Var->getLocation());
2168      Var->setInvalidDecl();
2169      return;
2170    }
2171
2172    // C++ [dcl.init]p9:
2173    //
2174    //   If no initializer is specified for an object, and the object
2175    //   is of (possibly cv-qualified) non-POD class type (or array
2176    //   thereof), the object shall be default-initialized; if the
2177    //   object is of const-qualified type, the underlying class type
2178    //   shall have a user-declared default constructor.
2179    if (getLangOptions().CPlusPlus) {
2180      QualType InitType = Type;
2181      if (const ArrayType *Array = Context.getAsArrayType(Type))
2182        InitType = Array->getElementType();
2183      if (Var->getStorageClass() != VarDecl::Extern &&
2184          Var->getStorageClass() != VarDecl::PrivateExtern &&
2185          InitType->isRecordType()) {
2186        const CXXConstructorDecl *Constructor = 0;
2187        if (!DiagnoseIncompleteType(Var->getLocation(), InitType,
2188                                    diag::err_invalid_incomplete_type_use))
2189          Constructor
2190            = PerformInitializationByConstructor(InitType, 0, 0,
2191                                                 Var->getLocation(),
2192                                               SourceRange(Var->getLocation(),
2193                                                           Var->getLocation()),
2194                                                 Var->getDeclName(),
2195                                                 IK_Default);
2196        if (!Constructor)
2197          Var->setInvalidDecl();
2198      }
2199    }
2200
2201#if 0
2202    // FIXME: Temporarily disabled because we are not properly parsing
2203    // linkage specifications on declarations, e.g.,
2204    //
2205    //   extern "C" const CGPoint CGPointerZero;
2206    //
2207    // C++ [dcl.init]p9:
2208    //
2209    //     If no initializer is specified for an object, and the
2210    //     object is of (possibly cv-qualified) non-POD class type (or
2211    //     array thereof), the object shall be default-initialized; if
2212    //     the object is of const-qualified type, the underlying class
2213    //     type shall have a user-declared default
2214    //     constructor. Otherwise, if no initializer is specified for
2215    //     an object, the object and its subobjects, if any, have an
2216    //     indeterminate initial value; if the object or any of its
2217    //     subobjects are of const-qualified type, the program is
2218    //     ill-formed.
2219    //
2220    // This isn't technically an error in C, so we don't diagnose it.
2221    //
2222    // FIXME: Actually perform the POD/user-defined default
2223    // constructor check.
2224    if (getLangOptions().CPlusPlus &&
2225        Context.getCanonicalType(Type).isConstQualified() &&
2226        Var->getStorageClass() != VarDecl::Extern)
2227      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2228        << Var->getName()
2229        << SourceRange(Var->getLocation(), Var->getLocation());
2230#endif
2231  }
2232}
2233
2234/// The declarators are chained together backwards, reverse the list.
2235Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2236  // Often we have single declarators, handle them quickly.
2237  Decl *Group = static_cast<Decl*>(group);
2238  if (Group == 0)
2239    return 0;
2240
2241  Decl *NewGroup = 0;
2242  if (Group->getNextDeclarator() == 0)
2243    NewGroup = Group;
2244  else { // reverse the list.
2245    while (Group) {
2246      Decl *Next = Group->getNextDeclarator();
2247      Group->setNextDeclarator(NewGroup);
2248      NewGroup = Group;
2249      Group = Next;
2250    }
2251  }
2252  // Perform semantic analysis that depends on having fully processed both
2253  // the declarator and initializer.
2254  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2255    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2256    if (!IDecl)
2257      continue;
2258    QualType T = IDecl->getType();
2259
2260    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2261    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2262    if (IDecl->isBlockVarDecl() &&
2263        IDecl->getStorageClass() != VarDecl::Extern) {
2264      if (!IDecl->isInvalidDecl() &&
2265          DiagnoseIncompleteType(IDecl->getLocation(), T,
2266                                 diag::err_typecheck_decl_incomplete_type))
2267        IDecl->setInvalidDecl();
2268    }
2269    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2270    // object that has file scope without an initializer, and without a
2271    // storage-class specifier or with the storage-class specifier "static",
2272    // constitutes a tentative definition. Note: A tentative definition with
2273    // external linkage is valid (C99 6.2.2p5).
2274    if (isTentativeDefinition(IDecl)) {
2275      if (T->isIncompleteArrayType()) {
2276        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2277        // array to be completed. Don't issue a diagnostic.
2278      } else if (!IDecl->isInvalidDecl() &&
2279                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2280                                        diag::err_typecheck_decl_incomplete_type))
2281        // C99 6.9.2p3: If the declaration of an identifier for an object is
2282        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2283        // declared type shall not be an incomplete type.
2284        IDecl->setInvalidDecl();
2285    }
2286    if (IDecl->isFileVarDecl())
2287      CheckForFileScopedRedefinitions(S, IDecl);
2288  }
2289  return NewGroup;
2290}
2291
2292/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2293/// to introduce parameters into function prototype scope.
2294Sema::DeclTy *
2295Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2296  const DeclSpec &DS = D.getDeclSpec();
2297
2298  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2299  VarDecl::StorageClass StorageClass = VarDecl::None;
2300  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2301    StorageClass = VarDecl::Register;
2302  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2303    Diag(DS.getStorageClassSpecLoc(),
2304         diag::err_invalid_storage_class_in_func_decl);
2305    D.getMutableDeclSpec().ClearStorageClassSpecs();
2306  }
2307  if (DS.isThreadSpecified()) {
2308    Diag(DS.getThreadSpecLoc(),
2309         diag::err_invalid_storage_class_in_func_decl);
2310    D.getMutableDeclSpec().ClearStorageClassSpecs();
2311  }
2312
2313  // Check that there are no default arguments inside the type of this
2314  // parameter (C++ only).
2315  if (getLangOptions().CPlusPlus)
2316    CheckExtraCXXDefaultArguments(D);
2317
2318  // In this context, we *do not* check D.getInvalidType(). If the declarator
2319  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2320  // though it will not reflect the user specified type.
2321  QualType parmDeclType = GetTypeForDeclarator(D, S);
2322
2323  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2324
2325  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2326  // Can this happen for params?  We already checked that they don't conflict
2327  // among each other.  Here they can only shadow globals, which is ok.
2328  IdentifierInfo *II = D.getIdentifier();
2329  if (II) {
2330    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2331      if (PrevDecl->isTemplateParameter()) {
2332        // Maybe we will complain about the shadowed template parameter.
2333        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2334        // Just pretend that we didn't see the previous declaration.
2335        PrevDecl = 0;
2336      } else if (S->isDeclScope(PrevDecl)) {
2337        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2338
2339        // Recover by removing the name
2340        II = 0;
2341        D.SetIdentifier(0, D.getIdentifierLoc());
2342      }
2343    }
2344  }
2345
2346  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2347  // Doing the promotion here has a win and a loss. The win is the type for
2348  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2349  // code generator). The loss is the orginal type isn't preserved. For example:
2350  //
2351  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2352  //    int blockvardecl[5];
2353  //    sizeof(parmvardecl);  // size == 4
2354  //    sizeof(blockvardecl); // size == 20
2355  // }
2356  //
2357  // For expressions, all implicit conversions are captured using the
2358  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2359  //
2360  // FIXME: If a source translation tool needs to see the original type, then
2361  // we need to consider storing both types (in ParmVarDecl)...
2362  //
2363  if (parmDeclType->isArrayType()) {
2364    // int x[restrict 4] ->  int *restrict
2365    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2366  } else if (parmDeclType->isFunctionType())
2367    parmDeclType = Context.getPointerType(parmDeclType);
2368
2369  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2370                                         D.getIdentifierLoc(), II,
2371                                         parmDeclType, StorageClass,
2372                                         0);
2373
2374  if (D.getInvalidType())
2375    New->setInvalidDecl();
2376
2377  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2378  if (D.getCXXScopeSpec().isSet()) {
2379    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2380      << D.getCXXScopeSpec().getRange();
2381    New->setInvalidDecl();
2382  }
2383  // Parameter declarators cannot be interface types. All ObjC objects are
2384  // passed by reference.
2385  if (parmDeclType->isObjCInterfaceType()) {
2386    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2387         << "passed";
2388    New->setInvalidDecl();
2389  }
2390
2391  // Add the parameter declaration into this scope.
2392  S->AddDecl(New);
2393  if (II)
2394    IdResolver.AddDecl(New);
2395
2396  ProcessDeclAttributes(New, D);
2397  return New;
2398
2399}
2400
2401void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2402  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2403         "Not a function declarator!");
2404  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2405
2406  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2407  // for a K&R function.
2408  if (!FTI.hasPrototype) {
2409    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2410      if (FTI.ArgInfo[i].Param == 0) {
2411        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2412          << FTI.ArgInfo[i].Ident;
2413        // Implicitly declare the argument as type 'int' for lack of a better
2414        // type.
2415        DeclSpec DS;
2416        const char* PrevSpec; // unused
2417        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2418                           PrevSpec);
2419        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2420        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2421        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2422      }
2423    }
2424  }
2425}
2426
2427Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2428  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2429  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2430         "Not a function declarator!");
2431  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2432
2433  if (FTI.hasPrototype) {
2434    // FIXME: Diagnose arguments without names in C.
2435  }
2436
2437  Scope *ParentScope = FnBodyScope->getParent();
2438
2439  return ActOnStartOfFunctionDef(FnBodyScope,
2440                                 ActOnDeclarator(ParentScope, D, 0,
2441                                                 /*IsFunctionDefinition=*/true));
2442}
2443
2444Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2445  Decl *decl = static_cast<Decl*>(D);
2446  FunctionDecl *FD = cast<FunctionDecl>(decl);
2447
2448  ActiveScope = FnBodyScope;
2449
2450  // See if this is a redefinition.
2451  const FunctionDecl *Definition;
2452  if (FD->getBody(Definition)) {
2453    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2454    Diag(Definition->getLocation(), diag::note_previous_definition);
2455  }
2456
2457  // Builtin functions cannot be defined.
2458  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2459    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2460      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2461      FD->setInvalidDecl();
2462    }
2463  }
2464
2465  // The return type of a function definition must be complete
2466  // (C99 6.9.1p3)
2467  if (FD->getResultType()->isIncompleteType() &&
2468      !FD->getResultType()->isVoidType()) {
2469    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2470    FD->setInvalidDecl();
2471  }
2472
2473  PushDeclContext(FnBodyScope, FD);
2474
2475  // Check the validity of our function parameters
2476  CheckParmsForFunctionDef(FD);
2477
2478  // Introduce our parameters into the function scope
2479  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2480    ParmVarDecl *Param = FD->getParamDecl(p);
2481    Param->setOwningFunction(FD);
2482
2483    // If this has an identifier, add it to the scope stack.
2484    if (Param->getIdentifier())
2485      PushOnScopeChains(Param, FnBodyScope);
2486  }
2487
2488  // Checking attributes of current function definition
2489  // dllimport attribute.
2490  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2491    // dllimport attribute cannot be applied to definition.
2492    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2493      Diag(FD->getLocation(),
2494           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2495        << "dllimport";
2496      FD->setInvalidDecl();
2497      return FD;
2498    } else {
2499      // If a symbol previously declared dllimport is later defined, the
2500      // attribute is ignored in subsequent references, and a warning is
2501      // emitted.
2502      Diag(FD->getLocation(),
2503           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2504        << FD->getNameAsCString() << "dllimport";
2505    }
2506  }
2507  return FD;
2508}
2509
2510static bool StatementCreatesScope(Stmt* S) {
2511  bool result = false;
2512  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2513    for (DeclStmt::decl_iterator i = DS->decl_begin();
2514         i != DS->decl_end(); ++i) {
2515      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2516        result |= D->getType()->isVariablyModifiedType();
2517        result |= !!D->getAttr<CleanupAttr>();
2518      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2519        result |= D->getUnderlyingType()->isVariablyModifiedType();
2520      }
2521    }
2522  }
2523
2524  return result;
2525}
2526
2527void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2528                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2529                                    std::vector<void*>& ScopeStack,
2530                                    Stmt* CurStmt,
2531                                    Stmt* ParentCompoundStmt) {
2532  for (Stmt::child_iterator i = CurStmt->child_begin();
2533       i != CurStmt->child_end(); ++i) {
2534    if (!*i) continue;
2535    if (StatementCreatesScope(*i))  {
2536      ScopeStack.push_back(*i);
2537      PopScopeMap[*i] = ParentCompoundStmt;
2538    } else if (isa<LabelStmt>(CurStmt)) {
2539      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2540    }
2541    if (isa<DeclStmt>(*i)) continue;
2542    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2543    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2544                             *i, CurCompound);
2545  }
2546
2547  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2548    ScopeStack.pop_back();
2549  }
2550}
2551
2552void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2553                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2554                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2555                                   std::vector<void*>& ScopeStack,
2556                                   Stmt* CurStmt) {
2557  for (Stmt::child_iterator i = CurStmt->child_begin();
2558       i != CurStmt->child_end(); ++i) {
2559    if (!*i) continue;
2560    if (StatementCreatesScope(*i))  {
2561      ScopeStack.push_back(*i);
2562    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2563      void* LScope = LabelScopeMap[GS->getLabel()];
2564      if (LScope) {
2565        bool foundScopeInStack = false;
2566        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2567          if (LScope == ScopeStack[i-1]) {
2568            foundScopeInStack = true;
2569            break;
2570          }
2571        }
2572        if (!foundScopeInStack) {
2573          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2574        }
2575      }
2576    }
2577    if (isa<DeclStmt>(*i)) continue;
2578    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, *i);
2579  }
2580
2581  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2582    ScopeStack.pop_back();
2583  }
2584}
2585
2586Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2587  Decl *dcl = static_cast<Decl *>(D);
2588  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2589  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2590    FD->setBody(Body);
2591    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2592  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2593    assert(MD == getCurMethodDecl() && "Method parsing confused");
2594    MD->setBody((Stmt*)Body);
2595  } else {
2596    Body->Destroy(Context);
2597    return 0;
2598  }
2599  PopDeclContext();
2600
2601  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2602  // class C2 {
2603  //   void f() {
2604  //     class LC1 {
2605  //       int m() { return 1; }
2606  //     };
2607  //   }
2608  // };
2609  if (ActiveScope == 0)
2610    return D;
2611
2612  // Verify and clean out per-function state.
2613
2614  bool HaveLabels = !ActiveScope->LabelMap.empty();
2615  // Check goto/label use.
2616  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2617       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2618    // Verify that we have no forward references left.  If so, there was a goto
2619    // or address of a label taken, but no definition of it.  Label fwd
2620    // definitions are indicated with a null substmt.
2621    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2622    if (L->getSubStmt() == 0) {
2623      // Emit error.
2624      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2625
2626      // At this point, we have gotos that use the bogus label.  Stitch it into
2627      // the function body so that they aren't leaked and that the AST is well
2628      // formed.
2629      if (Body) {
2630#if 0
2631        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2632        // and the AST is malformed anyway.  We should just blow away 'L'.
2633        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2634        cast<CompoundStmt>(Body)->push_back(L);
2635#else
2636        L->Destroy(Context);
2637#endif
2638      } else {
2639        // The whole function wasn't parsed correctly, just delete this.
2640        L->Destroy(Context);
2641      }
2642    }
2643  }
2644  // This reset is for both functions and methods.
2645  ActiveScope = 0;
2646
2647  if (!Body) return D;
2648
2649  if (HaveLabels) {
2650    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2651    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2652    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2653    std::vector<void*> ScopeStack;
2654    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2655    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2656  }
2657
2658  return D;
2659}
2660
2661/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2662/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2663NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2664                                          IdentifierInfo &II, Scope *S) {
2665  // Before we produce a declaration for an implicitly defined
2666  // function, see whether there was a locally-scoped declaration of
2667  // this name as a function or variable. If so, use that
2668  // (non-visible) declaration, and complain about it.
2669  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2670    = LocallyScopedExternalDecls.find(&II);
2671  if (Pos != LocallyScopedExternalDecls.end()) {
2672    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2673    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2674    return Pos->second;
2675  }
2676
2677  // Extension in C99.  Legal in C90, but warn about it.
2678  if (getLangOptions().C99)
2679    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2680  else
2681    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2682
2683  // FIXME: handle stuff like:
2684  // void foo() { extern float X(); }
2685  // void bar() { X(); }  <-- implicit decl for X in another scope.
2686
2687  // Set a Declarator for the implicit definition: int foo();
2688  const char *Dummy;
2689  DeclSpec DS;
2690  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2691  Error = Error; // Silence warning.
2692  assert(!Error && "Error setting up implicit decl!");
2693  Declarator D(DS, Declarator::BlockContext);
2694  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2695                                             0, 0, 0, Loc, D),
2696                SourceLocation());
2697  D.SetIdentifier(&II, Loc);
2698
2699  // Insert this function into translation-unit scope.
2700
2701  DeclContext *PrevDC = CurContext;
2702  CurContext = Context.getTranslationUnitDecl();
2703
2704  FunctionDecl *FD =
2705    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2706  FD->setImplicit();
2707
2708  CurContext = PrevDC;
2709
2710  AddKnownFunctionAttributes(FD);
2711
2712  return FD;
2713}
2714
2715/// \brief Adds any function attributes that we know a priori based on
2716/// the declaration of this function.
2717///
2718/// These attributes can apply both to implicitly-declared builtins
2719/// (like __builtin___printf_chk) or to library-declared functions
2720/// like NSLog or printf.
2721void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2722  if (FD->isInvalidDecl())
2723    return;
2724
2725  // If this is a built-in function, map its builtin attributes to
2726  // actual attributes.
2727  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2728    // Handle printf-formatting attributes.
2729    unsigned FormatIdx;
2730    bool HasVAListArg;
2731    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2732      if (!FD->getAttr<FormatAttr>())
2733        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2734                                               FormatIdx + 2));
2735    }
2736
2737    // Mark const if we don't care about errno and that is the only
2738    // thing preventing the function from being const. This allows
2739    // IRgen to use LLVM intrinsics for such functions.
2740    if (!getLangOptions().MathErrno &&
2741        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2742      if (!FD->getAttr<ConstAttr>())
2743        FD->addAttr(::new (Context) ConstAttr());
2744    }
2745  }
2746
2747  IdentifierInfo *Name = FD->getIdentifier();
2748  if (!Name)
2749    return;
2750  if ((!getLangOptions().CPlusPlus &&
2751       FD->getDeclContext()->isTranslationUnit()) ||
2752      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2753       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2754       LinkageSpecDecl::lang_c)) {
2755    // Okay: this could be a libc/libm/Objective-C function we know
2756    // about.
2757  } else
2758    return;
2759
2760  unsigned KnownID;
2761  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2762    if (KnownFunctionIDs[KnownID] == Name)
2763      break;
2764
2765  switch (KnownID) {
2766  case id_NSLog:
2767  case id_NSLogv:
2768    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2769      // FIXME: We known better than our headers.
2770      const_cast<FormatAttr *>(Format)->setType("printf");
2771    } else
2772      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2773    break;
2774
2775  case id_asprintf:
2776  case id_vasprintf:
2777    if (!FD->getAttr<FormatAttr>())
2778      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2779    break;
2780
2781  default:
2782    // Unknown function or known function without any attributes to
2783    // add. Do nothing.
2784    break;
2785  }
2786}
2787
2788TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2789                                    Decl *LastDeclarator) {
2790  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2791  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2792
2793  // Scope manipulation handled by caller.
2794  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2795                                           D.getIdentifierLoc(),
2796                                           D.getIdentifier(),
2797                                           T);
2798  NewTD->setNextDeclarator(LastDeclarator);
2799  if (D.getInvalidType())
2800    NewTD->setInvalidDecl();
2801  return NewTD;
2802}
2803
2804/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2805/// former case, Name will be non-null.  In the later case, Name will be null.
2806/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2807/// reference/declaration/definition of a tag.
2808Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2809                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2810                             IdentifierInfo *Name, SourceLocation NameLoc,
2811                             AttributeList *Attr) {
2812  // If this is not a definition, it must have a name.
2813  assert((Name != 0 || TK == TK_Definition) &&
2814         "Nameless record must be a definition!");
2815
2816  TagDecl::TagKind Kind;
2817  switch (TagSpec) {
2818  default: assert(0 && "Unknown tag type!");
2819  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2820  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2821  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2822  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2823  }
2824
2825  DeclContext *SearchDC = CurContext;
2826  DeclContext *DC = CurContext;
2827  NamedDecl *PrevDecl = 0;
2828
2829  bool Invalid = false;
2830
2831  if (Name && SS.isNotEmpty()) {
2832    // We have a nested-name tag ('struct foo::bar').
2833
2834    // Check for invalid 'foo::'.
2835    if (SS.isInvalid()) {
2836      Name = 0;
2837      goto CreateNewDecl;
2838    }
2839
2840    DC = static_cast<DeclContext*>(SS.getScopeRep());
2841    SearchDC = DC;
2842    // Look-up name inside 'foo::'.
2843    PrevDecl = dyn_cast_or_null<TagDecl>(
2844                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2845
2846    // A tag 'foo::bar' must already exist.
2847    if (PrevDecl == 0) {
2848      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2849      Name = 0;
2850      goto CreateNewDecl;
2851    }
2852  } else if (Name) {
2853    // If this is a named struct, check to see if there was a previous forward
2854    // declaration or definition.
2855    // FIXME: We're looking into outer scopes here, even when we
2856    // shouldn't be. Doing so can result in ambiguities that we
2857    // shouldn't be diagnosing.
2858    LookupResult R = LookupName(S, Name, LookupTagName,
2859                                /*RedeclarationOnly=*/(TK != TK_Reference));
2860    if (R.isAmbiguous()) {
2861      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2862      // FIXME: This is not best way to recover from case like:
2863      //
2864      // struct S s;
2865      //
2866      // causes needless err_ovl_no_viable_function_in_init latter.
2867      Name = 0;
2868      PrevDecl = 0;
2869      Invalid = true;
2870    }
2871    else
2872      PrevDecl = R;
2873
2874    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2875      // FIXME: This makes sure that we ignore the contexts associated
2876      // with C structs, unions, and enums when looking for a matching
2877      // tag declaration or definition. See the similar lookup tweak
2878      // in Sema::LookupName; is there a better way to deal with this?
2879      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2880        SearchDC = SearchDC->getParent();
2881    }
2882  }
2883
2884  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2885    // Maybe we will complain about the shadowed template parameter.
2886    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2887    // Just pretend that we didn't see the previous declaration.
2888    PrevDecl = 0;
2889  }
2890
2891  if (PrevDecl) {
2892    // Check whether the previous declaration is usable.
2893    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2894
2895    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2896      // If this is a use of a previous tag, or if the tag is already declared
2897      // in the same scope (so that the definition/declaration completes or
2898      // rementions the tag), reuse the decl.
2899      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2900        // Make sure that this wasn't declared as an enum and now used as a
2901        // struct or something similar.
2902        if (PrevTagDecl->getTagKind() != Kind) {
2903          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2904          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2905          // Recover by making this an anonymous redefinition.
2906          Name = 0;
2907          PrevDecl = 0;
2908          Invalid = true;
2909        } else {
2910          // If this is a use, just return the declaration we found.
2911
2912          // FIXME: In the future, return a variant or some other clue
2913          // for the consumer of this Decl to know it doesn't own it.
2914          // For our current ASTs this shouldn't be a problem, but will
2915          // need to be changed with DeclGroups.
2916          if (TK == TK_Reference)
2917            return PrevDecl;
2918
2919          // Diagnose attempts to redefine a tag.
2920          if (TK == TK_Definition) {
2921            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2922              Diag(NameLoc, diag::err_redefinition) << Name;
2923              Diag(Def->getLocation(), diag::note_previous_definition);
2924              // If this is a redefinition, recover by making this
2925              // struct be anonymous, which will make any later
2926              // references get the previous definition.
2927              Name = 0;
2928              PrevDecl = 0;
2929              Invalid = true;
2930            } else {
2931              // If the type is currently being defined, complain
2932              // about a nested redefinition.
2933              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2934              if (Tag->isBeingDefined()) {
2935                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2936                Diag(PrevTagDecl->getLocation(),
2937                     diag::note_previous_definition);
2938                Name = 0;
2939                PrevDecl = 0;
2940                Invalid = true;
2941              }
2942            }
2943
2944            // Okay, this is definition of a previously declared or referenced
2945            // tag PrevDecl. We're going to create a new Decl for it.
2946          }
2947        }
2948        // If we get here we have (another) forward declaration or we
2949        // have a definition.  Just create a new decl.
2950      } else {
2951        // If we get here, this is a definition of a new tag type in a nested
2952        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2953        // new decl/type.  We set PrevDecl to NULL so that the entities
2954        // have distinct types.
2955        PrevDecl = 0;
2956      }
2957      // If we get here, we're going to create a new Decl. If PrevDecl
2958      // is non-NULL, it's a definition of the tag declared by
2959      // PrevDecl. If it's NULL, we have a new definition.
2960    } else {
2961      // PrevDecl is a namespace, template, or anything else
2962      // that lives in the IDNS_Tag identifier namespace.
2963      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2964        // The tag name clashes with a namespace name, issue an error and
2965        // recover by making this tag be anonymous.
2966        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2967        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2968        Name = 0;
2969        PrevDecl = 0;
2970        Invalid = true;
2971      } else {
2972        // The existing declaration isn't relevant to us; we're in a
2973        // new scope, so clear out the previous declaration.
2974        PrevDecl = 0;
2975      }
2976    }
2977  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2978             (Kind != TagDecl::TK_enum))  {
2979    // C++ [basic.scope.pdecl]p5:
2980    //   -- for an elaborated-type-specifier of the form
2981    //
2982    //          class-key identifier
2983    //
2984    //      if the elaborated-type-specifier is used in the
2985    //      decl-specifier-seq or parameter-declaration-clause of a
2986    //      function defined in namespace scope, the identifier is
2987    //      declared as a class-name in the namespace that contains
2988    //      the declaration; otherwise, except as a friend
2989    //      declaration, the identifier is declared in the smallest
2990    //      non-class, non-function-prototype scope that contains the
2991    //      declaration.
2992    //
2993    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2994    // C structs and unions.
2995
2996    // Find the context where we'll be declaring the tag.
2997    // FIXME: We would like to maintain the current DeclContext as the
2998    // lexical context,
2999    while (SearchDC->isRecord())
3000      SearchDC = SearchDC->getParent();
3001
3002    // Find the scope where we'll be declaring the tag.
3003    while (S->isClassScope() ||
3004           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3005           ((S->getFlags() & Scope::DeclScope) == 0) ||
3006           (S->getEntity() &&
3007            ((DeclContext *)S->getEntity())->isTransparentContext()))
3008      S = S->getParent();
3009  }
3010
3011CreateNewDecl:
3012
3013  // If there is an identifier, use the location of the identifier as the
3014  // location of the decl, otherwise use the location of the struct/union
3015  // keyword.
3016  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3017
3018  // Otherwise, create a new declaration. If there is a previous
3019  // declaration of the same entity, the two will be linked via
3020  // PrevDecl.
3021  TagDecl *New;
3022
3023  if (Kind == TagDecl::TK_enum) {
3024    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3025    // enum X { A, B, C } D;    D should chain to X.
3026    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3027                           cast_or_null<EnumDecl>(PrevDecl));
3028    // If this is an undefined enum, warn.
3029    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3030  } else {
3031    // struct/union/class
3032
3033    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3034    // struct X { int A; } D;    D should chain to X.
3035    if (getLangOptions().CPlusPlus)
3036      // FIXME: Look for a way to use RecordDecl for simple structs.
3037      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3038                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3039    else
3040      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3041                               cast_or_null<RecordDecl>(PrevDecl));
3042  }
3043
3044  if (Kind != TagDecl::TK_enum) {
3045    // Handle #pragma pack: if the #pragma pack stack has non-default
3046    // alignment, make up a packed attribute for this decl. These
3047    // attributes are checked when the ASTContext lays out the
3048    // structure.
3049    //
3050    // It is important for implementing the correct semantics that this
3051    // happen here (in act on tag decl). The #pragma pack stack is
3052    // maintained as a result of parser callbacks which can occur at
3053    // many points during the parsing of a struct declaration (because
3054    // the #pragma tokens are effectively skipped over during the
3055    // parsing of the struct).
3056    if (unsigned Alignment = getPragmaPackAlignment())
3057      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3058  }
3059
3060  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3061    // C++ [dcl.typedef]p3:
3062    //   [...] Similarly, in a given scope, a class or enumeration
3063    //   shall not be declared with the same name as a typedef-name
3064    //   that is declared in that scope and refers to a type other
3065    //   than the class or enumeration itself.
3066    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3067    TypedefDecl *PrevTypedef = 0;
3068    if (Lookup.getKind() == LookupResult::Found)
3069      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3070
3071    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3072        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3073          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3074      Diag(Loc, diag::err_tag_definition_of_typedef)
3075        << Context.getTypeDeclType(New)
3076        << PrevTypedef->getUnderlyingType();
3077      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3078      Invalid = true;
3079    }
3080  }
3081
3082  if (Invalid)
3083    New->setInvalidDecl();
3084
3085  if (Attr)
3086    ProcessDeclAttributeList(New, Attr);
3087
3088  // If we're declaring or defining a tag in function prototype scope
3089  // in C, note that this type can only be used within the function.
3090  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3091    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3092
3093  // Set the lexical context. If the tag has a C++ scope specifier, the
3094  // lexical context will be different from the semantic context.
3095  New->setLexicalDeclContext(CurContext);
3096
3097  if (TK == TK_Definition)
3098    New->startDefinition();
3099
3100  // If this has an identifier, add it to the scope stack.
3101  if (Name) {
3102    S = getNonFieldDeclScope(S);
3103    PushOnScopeChains(New, S);
3104  } else {
3105    CurContext->addDecl(New);
3106  }
3107
3108  return New;
3109}
3110
3111void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3112  AdjustDeclIfTemplate(TagD);
3113  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3114
3115  // Enter the tag context.
3116  PushDeclContext(S, Tag);
3117
3118  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3119    FieldCollector->StartClass();
3120
3121    if (Record->getIdentifier()) {
3122      // C++ [class]p2:
3123      //   [...] The class-name is also inserted into the scope of the
3124      //   class itself; this is known as the injected-class-name. For
3125      //   purposes of access checking, the injected-class-name is treated
3126      //   as if it were a public member name.
3127      RecordDecl *InjectedClassName
3128        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3129                                CurContext, Record->getLocation(),
3130                                Record->getIdentifier(), Record);
3131      InjectedClassName->setImplicit();
3132      PushOnScopeChains(InjectedClassName, S);
3133    }
3134  }
3135}
3136
3137void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3138  AdjustDeclIfTemplate(TagD);
3139  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3140
3141  if (isa<CXXRecordDecl>(Tag))
3142    FieldCollector->FinishClass();
3143
3144  // Exit this scope of this tag's definition.
3145  PopDeclContext();
3146
3147  // Notify the consumer that we've defined a tag.
3148  Consumer.HandleTagDeclDefinition(Tag);
3149}
3150
3151bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3152                          QualType FieldTy, const Expr *BitWidth) {
3153  // FIXME: 6.7.2.1p4 - verify the field type.
3154
3155  llvm::APSInt Value;
3156  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3157    return true;
3158
3159  // Zero-width bitfield is ok for anonymous field.
3160  if (Value == 0 && FieldName)
3161    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3162
3163  if (Value.isNegative())
3164    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3165
3166  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3167  // FIXME: We won't need the 0 size once we check that the field type is valid.
3168  if (TypeSize && Value.getZExtValue() > TypeSize)
3169    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3170       << FieldName << (unsigned)TypeSize;
3171
3172  return false;
3173}
3174
3175/// ActOnField - Each field of a struct/union/class is passed into this in order
3176/// to create a FieldDecl object for it.
3177Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3178                               SourceLocation DeclStart,
3179                               Declarator &D, ExprTy *BitfieldWidth) {
3180  IdentifierInfo *II = D.getIdentifier();
3181  Expr *BitWidth = (Expr*)BitfieldWidth;
3182  SourceLocation Loc = DeclStart;
3183  RecordDecl *Record = (RecordDecl *)TagD;
3184  if (II) Loc = D.getIdentifierLoc();
3185
3186  // FIXME: Unnamed fields can be handled in various different ways, for
3187  // example, unnamed unions inject all members into the struct namespace!
3188
3189  QualType T = GetTypeForDeclarator(D, S);
3190  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3191  bool InvalidDecl = false;
3192
3193  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3194  // than a variably modified type.
3195  if (T->isVariablyModifiedType()) {
3196    bool SizeIsNegative;
3197    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3198                                                           SizeIsNegative);
3199    if (!FixedTy.isNull()) {
3200      Diag(Loc, diag::warn_illegal_constant_array_size);
3201      T = FixedTy;
3202    } else {
3203      if (SizeIsNegative)
3204        Diag(Loc, diag::err_typecheck_negative_array_size);
3205      else
3206        Diag(Loc, diag::err_typecheck_field_variable_size);
3207      T = Context.IntTy;
3208      InvalidDecl = true;
3209    }
3210  }
3211
3212  if (BitWidth) {
3213    if (VerifyBitField(Loc, II, T, BitWidth))
3214      InvalidDecl = true;
3215  } else {
3216    // Not a bitfield.
3217
3218    // validate II.
3219
3220  }
3221
3222  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3223                                       Loc, II, T, BitWidth,
3224                                       D.getDeclSpec().getStorageClassSpec() ==
3225                                       DeclSpec::SCS_mutable);
3226
3227  if (II) {
3228    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3229    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3230        && !isa<TagDecl>(PrevDecl)) {
3231      Diag(Loc, diag::err_duplicate_member) << II;
3232      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3233      NewFD->setInvalidDecl();
3234      Record->setInvalidDecl();
3235    }
3236  }
3237
3238  if (getLangOptions().CPlusPlus) {
3239    CheckExtraCXXDefaultArguments(D);
3240    if (!T->isPODType())
3241      cast<CXXRecordDecl>(Record)->setPOD(false);
3242  }
3243
3244  ProcessDeclAttributes(NewFD, D);
3245  if (T.isObjCGCWeak())
3246    Diag(Loc, diag::warn_attribute_weak_on_field);
3247
3248  if (D.getInvalidType() || InvalidDecl)
3249    NewFD->setInvalidDecl();
3250
3251  if (II) {
3252    PushOnScopeChains(NewFD, S);
3253  } else
3254    Record->addDecl(NewFD);
3255
3256  return NewFD;
3257}
3258
3259/// TranslateIvarVisibility - Translate visibility from a token ID to an
3260///  AST enum value.
3261static ObjCIvarDecl::AccessControl
3262TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3263  switch (ivarVisibility) {
3264  default: assert(0 && "Unknown visitibility kind");
3265  case tok::objc_private: return ObjCIvarDecl::Private;
3266  case tok::objc_public: return ObjCIvarDecl::Public;
3267  case tok::objc_protected: return ObjCIvarDecl::Protected;
3268  case tok::objc_package: return ObjCIvarDecl::Package;
3269  }
3270}
3271
3272/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3273/// in order to create an IvarDecl object for it.
3274Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3275                              SourceLocation DeclStart,
3276                              Declarator &D, ExprTy *BitfieldWidth,
3277                              tok::ObjCKeywordKind Visibility) {
3278
3279  IdentifierInfo *II = D.getIdentifier();
3280  Expr *BitWidth = (Expr*)BitfieldWidth;
3281  SourceLocation Loc = DeclStart;
3282  if (II) Loc = D.getIdentifierLoc();
3283
3284  // FIXME: Unnamed fields can be handled in various different ways, for
3285  // example, unnamed unions inject all members into the struct namespace!
3286
3287  QualType T = GetTypeForDeclarator(D, S);
3288  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3289  bool InvalidDecl = false;
3290
3291  if (BitWidth) {
3292    // 6.7.2.1p3, 6.7.2.1p4
3293    if (VerifyBitField(Loc, II, T, BitWidth))
3294      InvalidDecl = true;
3295  } else {
3296    // Not a bitfield.
3297
3298    // validate II.
3299
3300  }
3301
3302  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3303  // than a variably modified type.
3304  if (T->isVariablyModifiedType()) {
3305    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3306    InvalidDecl = true;
3307  }
3308
3309  // Get the visibility (access control) for this ivar.
3310  ObjCIvarDecl::AccessControl ac =
3311    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3312                                        : ObjCIvarDecl::None;
3313
3314  // Construct the decl.
3315  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3316                                             (Expr *)BitfieldWidth);
3317
3318  if (II) {
3319    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3320    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3321        && !isa<TagDecl>(PrevDecl)) {
3322      Diag(Loc, diag::err_duplicate_member) << II;
3323      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3324      NewID->setInvalidDecl();
3325    }
3326  }
3327
3328  // Process attributes attached to the ivar.
3329  ProcessDeclAttributes(NewID, D);
3330
3331  if (D.getInvalidType() || InvalidDecl)
3332    NewID->setInvalidDecl();
3333
3334  if (II) {
3335    // FIXME: When interfaces are DeclContexts, we'll need to add
3336    // these to the interface.
3337    S->AddDecl(NewID);
3338    IdResolver.AddDecl(NewID);
3339  }
3340
3341  return NewID;
3342}
3343
3344void Sema::ActOnFields(Scope* S,
3345                       SourceLocation RecLoc, DeclTy *RecDecl,
3346                       DeclTy **Fields, unsigned NumFields,
3347                       SourceLocation LBrac, SourceLocation RBrac,
3348                       AttributeList *Attr) {
3349  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3350  assert(EnclosingDecl && "missing record or interface decl");
3351
3352  // If the decl this is being inserted into is invalid, then it may be a
3353  // redeclaration or some other bogus case.  Don't try to add fields to it.
3354  if (EnclosingDecl->isInvalidDecl()) {
3355    // FIXME: Deallocate fields?
3356    return;
3357  }
3358
3359
3360  // Verify that all the fields are okay.
3361  unsigned NumNamedMembers = 0;
3362  llvm::SmallVector<FieldDecl*, 32> RecFields;
3363
3364  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3365  for (unsigned i = 0; i != NumFields; ++i) {
3366    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3367    assert(FD && "missing field decl");
3368
3369    // Get the type for the field.
3370    Type *FDTy = FD->getType().getTypePtr();
3371
3372    if (!FD->isAnonymousStructOrUnion()) {
3373      // Remember all fields written by the user.
3374      RecFields.push_back(FD);
3375    }
3376
3377    // C99 6.7.2.1p2 - A field may not be a function type.
3378    if (FDTy->isFunctionType()) {
3379      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3380        << FD->getDeclName();
3381      FD->setInvalidDecl();
3382      EnclosingDecl->setInvalidDecl();
3383      continue;
3384    }
3385    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3386    if (FDTy->isIncompleteType()) {
3387      if (!Record) {  // Incomplete ivar type is always an error.
3388        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3389                               diag::err_field_incomplete);
3390        FD->setInvalidDecl();
3391        EnclosingDecl->setInvalidDecl();
3392        continue;
3393      }
3394      if (i != NumFields-1 ||                   // ... that the last member ...
3395          !Record->isStruct() ||  // ... of a structure ...
3396          !FDTy->isArrayType()) {         //... may have incomplete array type.
3397        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3398                               diag::err_field_incomplete);
3399        FD->setInvalidDecl();
3400        EnclosingDecl->setInvalidDecl();
3401        continue;
3402      }
3403      if (NumNamedMembers < 1) {  //... must have more than named member ...
3404        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3405          << FD->getDeclName();
3406        FD->setInvalidDecl();
3407        EnclosingDecl->setInvalidDecl();
3408        continue;
3409      }
3410      // Okay, we have a legal flexible array member at the end of the struct.
3411      if (Record)
3412        Record->setHasFlexibleArrayMember(true);
3413    }
3414    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3415    /// field of another structure or the element of an array.
3416    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3417      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3418        // If this is a member of a union, then entire union becomes "flexible".
3419        if (Record && Record->isUnion()) {
3420          Record->setHasFlexibleArrayMember(true);
3421        } else {
3422          // If this is a struct/class and this is not the last element, reject
3423          // it.  Note that GCC supports variable sized arrays in the middle of
3424          // structures.
3425          if (i != NumFields-1) {
3426            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3427              << FD->getDeclName();
3428            FD->setInvalidDecl();
3429            EnclosingDecl->setInvalidDecl();
3430            continue;
3431          }
3432          // We support flexible arrays at the end of structs in other structs
3433          // as an extension.
3434          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3435            << FD->getDeclName();
3436          if (Record)
3437            Record->setHasFlexibleArrayMember(true);
3438        }
3439      }
3440    }
3441    /// A field cannot be an Objective-c object
3442    if (FDTy->isObjCInterfaceType()) {
3443      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3444      FD->setInvalidDecl();
3445      EnclosingDecl->setInvalidDecl();
3446      continue;
3447    }
3448    // Keep track of the number of named members.
3449    if (FD->getIdentifier())
3450      ++NumNamedMembers;
3451  }
3452
3453  // Okay, we successfully defined 'Record'.
3454  if (Record) {
3455    Record->completeDefinition(Context);
3456  } else {
3457    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3458    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3459      ID->setIVarList(ClsFields, RecFields.size(), Context);
3460      ID->setLocEnd(RBrac);
3461
3462      // Must enforce the rule that ivars in the base classes may not be
3463      // duplicates.
3464      if (ID->getSuperClass()) {
3465        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3466             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3467          ObjCIvarDecl* Ivar = (*IVI);
3468          IdentifierInfo *II = Ivar->getIdentifier();
3469          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3470          if (prevIvar) {
3471            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3472            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3473          }
3474        }
3475      }
3476    } else if (ObjCImplementationDecl *IMPDecl =
3477                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3478      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3479      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3480      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3481    }
3482  }
3483
3484  if (Attr)
3485    ProcessDeclAttributeList(Record, Attr);
3486}
3487
3488Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3489                                      DeclTy *lastEnumConst,
3490                                      SourceLocation IdLoc, IdentifierInfo *Id,
3491                                      SourceLocation EqualLoc, ExprTy *val) {
3492  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3493  EnumConstantDecl *LastEnumConst =
3494    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3495  Expr *Val = static_cast<Expr*>(val);
3496
3497  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3498  // we find one that is.
3499  S = getNonFieldDeclScope(S);
3500
3501  // Verify that there isn't already something declared with this name in this
3502  // scope.
3503  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3504  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3505    // Maybe we will complain about the shadowed template parameter.
3506    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3507    // Just pretend that we didn't see the previous declaration.
3508    PrevDecl = 0;
3509  }
3510
3511  if (PrevDecl) {
3512    // When in C++, we may get a TagDecl with the same name; in this case the
3513    // enum constant will 'hide' the tag.
3514    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3515           "Received TagDecl when not in C++!");
3516    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3517      if (isa<EnumConstantDecl>(PrevDecl))
3518        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3519      else
3520        Diag(IdLoc, diag::err_redefinition) << Id;
3521      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3522      if (Val) Val->Destroy(Context);
3523      return 0;
3524    }
3525  }
3526
3527  llvm::APSInt EnumVal(32);
3528  QualType EltTy;
3529  if (Val) {
3530    // Make sure to promote the operand type to int.
3531    UsualUnaryConversions(Val);
3532
3533    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3534    SourceLocation ExpLoc;
3535    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3536      Val->Destroy(Context);
3537      Val = 0;  // Just forget about it.
3538    } else {
3539      EltTy = Val->getType();
3540    }
3541  }
3542
3543  if (!Val) {
3544    if (LastEnumConst) {
3545      // Assign the last value + 1.
3546      EnumVal = LastEnumConst->getInitVal();
3547      ++EnumVal;
3548
3549      // Check for overflow on increment.
3550      if (EnumVal < LastEnumConst->getInitVal())
3551        Diag(IdLoc, diag::warn_enum_value_overflow);
3552
3553      EltTy = LastEnumConst->getType();
3554    } else {
3555      // First value, set to zero.
3556      EltTy = Context.IntTy;
3557      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3558    }
3559  }
3560
3561  EnumConstantDecl *New =
3562    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3563                             Val, EnumVal);
3564
3565  // Register this decl in the current scope stack.
3566  PushOnScopeChains(New, S);
3567
3568  return New;
3569}
3570
3571// FIXME: For consistency with ActOnFields(), we should have the parser
3572// pass in the source location for the left/right braces.
3573void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3574                         DeclTy **Elements, unsigned NumElements) {
3575  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3576  QualType EnumType = Context.getTypeDeclType(Enum);
3577
3578  // TODO: If the result value doesn't fit in an int, it must be a long or long
3579  // long value.  ISO C does not support this, but GCC does as an extension,
3580  // emit a warning.
3581  unsigned IntWidth = Context.Target.getIntWidth();
3582
3583  // Verify that all the values are okay, compute the size of the values, and
3584  // reverse the list.
3585  unsigned NumNegativeBits = 0;
3586  unsigned NumPositiveBits = 0;
3587
3588  // Keep track of whether all elements have type int.
3589  bool AllElementsInt = true;
3590
3591  for (unsigned i = 0; i != NumElements; ++i) {
3592    EnumConstantDecl *ECD =
3593      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3594    if (!ECD) continue;  // Already issued a diagnostic.
3595
3596    // If the enum value doesn't fit in an int, emit an extension warning.
3597    const llvm::APSInt &InitVal = ECD->getInitVal();
3598    assert(InitVal.getBitWidth() >= IntWidth &&
3599           "Should have promoted value to int");
3600    if (InitVal.getBitWidth() > IntWidth) {
3601      llvm::APSInt V(InitVal);
3602      V.trunc(IntWidth);
3603      V.extend(InitVal.getBitWidth());
3604      if (V != InitVal)
3605        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3606          << InitVal.toString(10);
3607    }
3608
3609    // Keep track of the size of positive and negative values.
3610    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3611      NumPositiveBits = std::max(NumPositiveBits,
3612                                 (unsigned)InitVal.getActiveBits());
3613    else
3614      NumNegativeBits = std::max(NumNegativeBits,
3615                                 (unsigned)InitVal.getMinSignedBits());
3616
3617    // Keep track of whether every enum element has type int (very commmon).
3618    if (AllElementsInt)
3619      AllElementsInt = ECD->getType() == Context.IntTy;
3620  }
3621
3622  // Figure out the type that should be used for this enum.
3623  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3624  QualType BestType;
3625  unsigned BestWidth;
3626
3627  if (NumNegativeBits) {
3628    // If there is a negative value, figure out the smallest integer type (of
3629    // int/long/longlong) that fits.
3630    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3631      BestType = Context.IntTy;
3632      BestWidth = IntWidth;
3633    } else {
3634      BestWidth = Context.Target.getLongWidth();
3635
3636      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3637        BestType = Context.LongTy;
3638      else {
3639        BestWidth = Context.Target.getLongLongWidth();
3640
3641        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3642          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3643        BestType = Context.LongLongTy;
3644      }
3645    }
3646  } else {
3647    // If there is no negative value, figure out which of uint, ulong, ulonglong
3648    // fits.
3649    if (NumPositiveBits <= IntWidth) {
3650      BestType = Context.UnsignedIntTy;
3651      BestWidth = IntWidth;
3652    } else if (NumPositiveBits <=
3653               (BestWidth = Context.Target.getLongWidth())) {
3654      BestType = Context.UnsignedLongTy;
3655    } else {
3656      BestWidth = Context.Target.getLongLongWidth();
3657      assert(NumPositiveBits <= BestWidth &&
3658             "How could an initializer get larger than ULL?");
3659      BestType = Context.UnsignedLongLongTy;
3660    }
3661  }
3662
3663  // Loop over all of the enumerator constants, changing their types to match
3664  // the type of the enum if needed.
3665  for (unsigned i = 0; i != NumElements; ++i) {
3666    EnumConstantDecl *ECD =
3667      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3668    if (!ECD) continue;  // Already issued a diagnostic.
3669
3670    // Standard C says the enumerators have int type, but we allow, as an
3671    // extension, the enumerators to be larger than int size.  If each
3672    // enumerator value fits in an int, type it as an int, otherwise type it the
3673    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3674    // that X has type 'int', not 'unsigned'.
3675    if (ECD->getType() == Context.IntTy) {
3676      // Make sure the init value is signed.
3677      llvm::APSInt IV = ECD->getInitVal();
3678      IV.setIsSigned(true);
3679      ECD->setInitVal(IV);
3680
3681      if (getLangOptions().CPlusPlus)
3682        // C++ [dcl.enum]p4: Following the closing brace of an
3683        // enum-specifier, each enumerator has the type of its
3684        // enumeration.
3685        ECD->setType(EnumType);
3686      continue;  // Already int type.
3687    }
3688
3689    // Determine whether the value fits into an int.
3690    llvm::APSInt InitVal = ECD->getInitVal();
3691    bool FitsInInt;
3692    if (InitVal.isUnsigned() || !InitVal.isNegative())
3693      FitsInInt = InitVal.getActiveBits() < IntWidth;
3694    else
3695      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3696
3697    // If it fits into an integer type, force it.  Otherwise force it to match
3698    // the enum decl type.
3699    QualType NewTy;
3700    unsigned NewWidth;
3701    bool NewSign;
3702    if (FitsInInt) {
3703      NewTy = Context.IntTy;
3704      NewWidth = IntWidth;
3705      NewSign = true;
3706    } else if (ECD->getType() == BestType) {
3707      // Already the right type!
3708      if (getLangOptions().CPlusPlus)
3709        // C++ [dcl.enum]p4: Following the closing brace of an
3710        // enum-specifier, each enumerator has the type of its
3711        // enumeration.
3712        ECD->setType(EnumType);
3713      continue;
3714    } else {
3715      NewTy = BestType;
3716      NewWidth = BestWidth;
3717      NewSign = BestType->isSignedIntegerType();
3718    }
3719
3720    // Adjust the APSInt value.
3721    InitVal.extOrTrunc(NewWidth);
3722    InitVal.setIsSigned(NewSign);
3723    ECD->setInitVal(InitVal);
3724
3725    // Adjust the Expr initializer and type.
3726    if (ECD->getInitExpr())
3727      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3728                                                      /*isLvalue=*/false));
3729    if (getLangOptions().CPlusPlus)
3730      // C++ [dcl.enum]p4: Following the closing brace of an
3731      // enum-specifier, each enumerator has the type of its
3732      // enumeration.
3733      ECD->setType(EnumType);
3734    else
3735      ECD->setType(NewTy);
3736  }
3737
3738  Enum->completeDefinition(Context, BestType);
3739}
3740
3741Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3742                                          ExprArg expr) {
3743  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3744
3745  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3746}
3747
3748