SemaDecl.cpp revision 2352180cbc20abaf98da00cd49f01d037e313541
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(Context, D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if (isa<FunctionDecl>(D) &&
323             AllowOverloadingOfFunction(D, Context)) {
324    // We are pushing the name of a function, which might be an
325    // overloaded name.
326    FunctionDecl *FD = cast<FunctionDecl>(D);
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(FD->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  FD));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool DeclHasAttr(const Decl *decl, const Attr *target) {
615  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
616    if (attr->getKind() == target->getKind())
617      return true;
618
619  return false;
620}
621
622/// MergeAttributes - append attributes from the Old decl to the New one.
623static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
624  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
625    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
626      Attr *NewAttr = attr->clone(C);
627      NewAttr->setInherited(true);
628      New->addAttr(NewAttr);
629    }
630  }
631}
632
633/// Used in MergeFunctionDecl to keep track of function parameters in
634/// C.
635struct GNUCompatibleParamWarning {
636  ParmVarDecl *OldParm;
637  ParmVarDecl *NewParm;
638  QualType PromotedType;
639};
640
641/// MergeFunctionDecl - We just parsed a function 'New' from
642/// declarator D which has the same name and scope as a previous
643/// declaration 'Old'.  Figure out how to resolve this situation,
644/// merging decls or emitting diagnostics as appropriate.
645///
646/// In C++, New and Old must be declarations that are not
647/// overloaded. Use IsOverload to determine whether New and Old are
648/// overloaded, and to select the Old declaration that New should be
649/// merged with.
650///
651/// Returns true if there was an error, false otherwise.
652bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
653  assert(!isa<OverloadedFunctionDecl>(OldD) &&
654         "Cannot merge with an overloaded function declaration");
655
656  // Verify the old decl was also a function.
657  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
658  if (!Old) {
659    Diag(New->getLocation(), diag::err_redefinition_different_kind)
660      << New->getDeclName();
661    Diag(OldD->getLocation(), diag::note_previous_definition);
662    return true;
663  }
664
665  // Determine whether the previous declaration was a definition,
666  // implicit declaration, or a declaration.
667  diag::kind PrevDiag;
668  if (Old->isThisDeclarationADefinition())
669    PrevDiag = diag::note_previous_definition;
670  else if (Old->isImplicit())
671    PrevDiag = diag::note_previous_implicit_declaration;
672  else
673    PrevDiag = diag::note_previous_declaration;
674
675  QualType OldQType = Context.getCanonicalType(Old->getType());
676  QualType NewQType = Context.getCanonicalType(New->getType());
677
678  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
679      New->getStorageClass() == FunctionDecl::Static &&
680      Old->getStorageClass() != FunctionDecl::Static) {
681    Diag(New->getLocation(), diag::err_static_non_static)
682      << New;
683    Diag(Old->getLocation(), PrevDiag);
684    return true;
685  }
686
687  if (getLangOptions().CPlusPlus) {
688    // (C++98 13.1p2):
689    //   Certain function declarations cannot be overloaded:
690    //     -- Function declarations that differ only in the return type
691    //        cannot be overloaded.
692    QualType OldReturnType
693      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
694    QualType NewReturnType
695      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
696    if (OldReturnType != NewReturnType) {
697      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
698      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
699      return true;
700    }
701
702    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
703    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
704    if (OldMethod && NewMethod &&
705        OldMethod->getLexicalDeclContext() ==
706          NewMethod->getLexicalDeclContext()) {
707      //    -- Member function declarations with the same name and the
708      //       same parameter types cannot be overloaded if any of them
709      //       is a static member function declaration.
710      if (OldMethod->isStatic() || NewMethod->isStatic()) {
711        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
712        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
713        return true;
714      }
715
716      // C++ [class.mem]p1:
717      //   [...] A member shall not be declared twice in the
718      //   member-specification, except that a nested class or member
719      //   class template can be declared and then later defined.
720      unsigned NewDiag;
721      if (isa<CXXConstructorDecl>(OldMethod))
722        NewDiag = diag::err_constructor_redeclared;
723      else if (isa<CXXDestructorDecl>(NewMethod))
724        NewDiag = diag::err_destructor_redeclared;
725      else if (isa<CXXConversionDecl>(NewMethod))
726        NewDiag = diag::err_conv_function_redeclared;
727      else
728        NewDiag = diag::err_member_redeclared;
729
730      Diag(New->getLocation(), NewDiag);
731      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
732    }
733
734    // (C++98 8.3.5p3):
735    //   All declarations for a function shall agree exactly in both the
736    //   return type and the parameter-type-list.
737    if (OldQType == NewQType)
738      return MergeCompatibleFunctionDecls(New, Old);
739
740    // Fall through for conflicting redeclarations and redefinitions.
741  }
742
743  // C: Function types need to be compatible, not identical. This handles
744  // duplicate function decls like "void f(int); void f(enum X);" properly.
745  if (!getLangOptions().CPlusPlus &&
746      Context.typesAreCompatible(OldQType, NewQType)) {
747    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
748    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
749    const FunctionProtoType *OldProto = 0;
750    if (isa<FunctionNoProtoType>(NewFuncType) &&
751        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
752      // The old declaration provided a function prototype, but the
753      // new declaration does not. Merge in the prototype.
754      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
755      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
756                                                 OldProto->arg_type_end());
757      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
758                                         ParamTypes.data(), ParamTypes.size(),
759                                         OldProto->isVariadic(),
760                                         OldProto->getTypeQuals());
761      New->setType(NewQType);
762      New->setHasInheritedPrototype();
763
764      // Synthesize a parameter for each argument type.
765      llvm::SmallVector<ParmVarDecl*, 16> Params;
766      for (FunctionProtoType::arg_type_iterator
767             ParamType = OldProto->arg_type_begin(),
768             ParamEnd = OldProto->arg_type_end();
769           ParamType != ParamEnd; ++ParamType) {
770        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
771                                                 SourceLocation(), 0,
772                                                 *ParamType, VarDecl::None,
773                                                 0);
774        Param->setImplicit();
775        Params.push_back(Param);
776      }
777
778      New->setParams(Context, Params.data(), Params.size());
779    }
780
781    return MergeCompatibleFunctionDecls(New, Old);
782  }
783
784  // GNU C permits a K&R definition to follow a prototype declaration
785  // if the declared types of the parameters in the K&R definition
786  // match the types in the prototype declaration, even when the
787  // promoted types of the parameters from the K&R definition differ
788  // from the types in the prototype. GCC then keeps the types from
789  // the prototype.
790  //
791  // If a variadic prototype is followed by a non-variadic K&R definition,
792  // the K&R definition becomes variadic.  This is sort of an edge case, but
793  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
794  // C99 6.9.1p8.
795  if (!getLangOptions().CPlusPlus &&
796      Old->hasPrototype() && !New->hasPrototype() &&
797      New->getType()->getAsFunctionProtoType() &&
798      Old->getNumParams() == New->getNumParams()) {
799    llvm::SmallVector<QualType, 16> ArgTypes;
800    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
801    const FunctionProtoType *OldProto
802      = Old->getType()->getAsFunctionProtoType();
803    const FunctionProtoType *NewProto
804      = New->getType()->getAsFunctionProtoType();
805
806    // Determine whether this is the GNU C extension.
807    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
808                                               NewProto->getResultType());
809    bool LooseCompatible = !MergedReturn.isNull();
810    for (unsigned Idx = 0, End = Old->getNumParams();
811         LooseCompatible && Idx != End; ++Idx) {
812      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
813      ParmVarDecl *NewParm = New->getParamDecl(Idx);
814      if (Context.typesAreCompatible(OldParm->getType(),
815                                     NewProto->getArgType(Idx))) {
816        ArgTypes.push_back(NewParm->getType());
817      } else if (Context.typesAreCompatible(OldParm->getType(),
818                                            NewParm->getType())) {
819        GNUCompatibleParamWarning Warn
820          = { OldParm, NewParm, NewProto->getArgType(Idx) };
821        Warnings.push_back(Warn);
822        ArgTypes.push_back(NewParm->getType());
823      } else
824        LooseCompatible = false;
825    }
826
827    if (LooseCompatible) {
828      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
829        Diag(Warnings[Warn].NewParm->getLocation(),
830             diag::ext_param_promoted_not_compatible_with_prototype)
831          << Warnings[Warn].PromotedType
832          << Warnings[Warn].OldParm->getType();
833        Diag(Warnings[Warn].OldParm->getLocation(),
834             diag::note_previous_declaration);
835      }
836
837      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
838                                           ArgTypes.size(),
839                                           OldProto->isVariadic(), 0));
840      return MergeCompatibleFunctionDecls(New, Old);
841    }
842
843    // Fall through to diagnose conflicting types.
844  }
845
846  // A function that has already been declared has been redeclared or defined
847  // with a different type- show appropriate diagnostic
848  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
849    // The user has declared a builtin function with an incompatible
850    // signature.
851    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
852      // The function the user is redeclaring is a library-defined
853      // function like 'malloc' or 'printf'. Warn about the
854      // redeclaration, then pretend that we don't know about this
855      // library built-in.
856      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
857      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
858        << Old << Old->getType();
859      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
860      Old->setInvalidDecl();
861      return false;
862    }
863
864    PrevDiag = diag::note_previous_builtin_declaration;
865  }
866
867  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
868  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869  return true;
870}
871
872/// \brief Completes the merge of two function declarations that are
873/// known to be compatible.
874///
875/// This routine handles the merging of attributes and other
876/// properties of function declarations form the old declaration to
877/// the new declaration, once we know that New is in fact a
878/// redeclaration of Old.
879///
880/// \returns false
881bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
882  // Merge the attributes
883  MergeAttributes(New, Old, Context);
884
885  // Merge the storage class.
886  if (Old->getStorageClass() != FunctionDecl::Extern)
887    New->setStorageClass(Old->getStorageClass());
888
889  // Merge "inline"
890  if (Old->isInline())
891    New->setInline(true);
892
893  // If this function declaration by itself qualifies as a C99 inline
894  // definition (C99 6.7.4p6), but the previous definition did not,
895  // then the function is not a C99 inline definition.
896  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
897    New->setC99InlineDefinition(false);
898  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
899    // Mark all preceding definitions as not being C99 inline definitions.
900    for (const FunctionDecl *Prev = Old; Prev;
901         Prev = Prev->getPreviousDeclaration())
902      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
903  }
904
905  // Merge "pure" flag.
906  if (Old->isPure())
907    New->setPure();
908
909  // Merge the "deleted" flag.
910  if (Old->isDeleted())
911    New->setDeleted();
912
913  if (getLangOptions().CPlusPlus)
914    return MergeCXXFunctionDecl(New, Old);
915
916  return false;
917}
918
919/// MergeVarDecl - We just parsed a variable 'New' which has the same name
920/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
921/// situation, merging decls or emitting diagnostics as appropriate.
922///
923/// Tentative definition rules (C99 6.9.2p2) are checked by
924/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
925/// definitions here, since the initializer hasn't been attached.
926///
927void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
928  // If either decl is invalid, make sure the new one is marked invalid and
929  // don't do any other checking.
930  if (New->isInvalidDecl() || OldD->isInvalidDecl())
931    return New->setInvalidDecl();
932
933  // Verify the old decl was also a variable.
934  VarDecl *Old = dyn_cast<VarDecl>(OldD);
935  if (!Old) {
936    Diag(New->getLocation(), diag::err_redefinition_different_kind)
937      << New->getDeclName();
938    Diag(OldD->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  MergeAttributes(New, Old, Context);
943
944  // Merge the types
945  QualType MergedT;
946  if (getLangOptions().CPlusPlus) {
947    if (Context.hasSameType(New->getType(), Old->getType()))
948      MergedT = New->getType();
949  } else {
950    MergedT = Context.mergeTypes(New->getType(), Old->getType());
951  }
952  if (MergedT.isNull()) {
953    Diag(New->getLocation(), diag::err_redefinition_different_type)
954      << New->getDeclName();
955    Diag(Old->getLocation(), diag::note_previous_definition);
956    return New->setInvalidDecl();
957  }
958  New->setType(MergedT);
959
960  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
961  if (New->getStorageClass() == VarDecl::Static &&
962      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
963    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
964    Diag(Old->getLocation(), diag::note_previous_definition);
965    return New->setInvalidDecl();
966  }
967  // C99 6.2.2p4:
968  //   For an identifier declared with the storage-class specifier
969  //   extern in a scope in which a prior declaration of that
970  //   identifier is visible,23) if the prior declaration specifies
971  //   internal or external linkage, the linkage of the identifier at
972  //   the later declaration is the same as the linkage specified at
973  //   the prior declaration. If no prior declaration is visible, or
974  //   if the prior declaration specifies no linkage, then the
975  //   identifier has external linkage.
976  if (New->hasExternalStorage() && Old->hasLinkage())
977    /* Okay */;
978  else if (New->getStorageClass() != VarDecl::Static &&
979           Old->getStorageClass() == VarDecl::Static) {
980    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
981    Diag(Old->getLocation(), diag::note_previous_definition);
982    return New->setInvalidDecl();
983  }
984
985  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
986
987  // FIXME: The test for external storage here seems wrong? We still
988  // need to check for mismatches.
989  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
990      // Don't complain about out-of-line definitions of static members.
991      !(Old->getLexicalDeclContext()->isRecord() &&
992        !New->getLexicalDeclContext()->isRecord())) {
993    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
994    Diag(Old->getLocation(), diag::note_previous_definition);
995    return New->setInvalidDecl();
996  }
997
998  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
999    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1000    Diag(Old->getLocation(), diag::note_previous_definition);
1001  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1002    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1003    Diag(Old->getLocation(), diag::note_previous_definition);
1004  }
1005
1006  // Keep a chain of previous declarations.
1007  New->setPreviousDeclaration(Old);
1008}
1009
1010/// CheckParmsForFunctionDef - Check that the parameters of the given
1011/// function are appropriate for the definition of a function. This
1012/// takes care of any checks that cannot be performed on the
1013/// declaration itself, e.g., that the types of each of the function
1014/// parameters are complete.
1015bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1016  bool HasInvalidParm = false;
1017  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1018    ParmVarDecl *Param = FD->getParamDecl(p);
1019
1020    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1021    // function declarator that is part of a function definition of
1022    // that function shall not have incomplete type.
1023    //
1024    // This is also C++ [dcl.fct]p6.
1025    if (!Param->isInvalidDecl() &&
1026        RequireCompleteType(Param->getLocation(), Param->getType(),
1027                               diag::err_typecheck_decl_incomplete_type)) {
1028      Param->setInvalidDecl();
1029      HasInvalidParm = true;
1030    }
1031
1032    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1033    // declaration of each parameter shall include an identifier.
1034    if (Param->getIdentifier() == 0 &&
1035        !Param->isImplicit() &&
1036        !getLangOptions().CPlusPlus)
1037      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1038  }
1039
1040  return HasInvalidParm;
1041}
1042
1043/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1044/// no declarator (e.g. "struct foo;") is parsed.
1045Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1046  // FIXME: Error on auto/register at file scope
1047  // FIXME: Error on inline/virtual/explicit
1048  // FIXME: Error on invalid restrict
1049  // FIXME: Warn on useless __thread
1050  // FIXME: Warn on useless const/volatile
1051  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1052  // FIXME: Warn on useless attributes
1053  TagDecl *Tag = 0;
1054  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1055      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1056      DS.getTypeSpecType() == DeclSpec::TST_union ||
1057      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1058    if (!DS.getTypeRep()) // We probably had an error
1059      return DeclPtrTy();
1060
1061    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1062  }
1063
1064  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1065    if (!Record->getDeclName() && Record->isDefinition() &&
1066        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1067      if (getLangOptions().CPlusPlus ||
1068          Record->getDeclContext()->isRecord())
1069        return BuildAnonymousStructOrUnion(S, DS, Record);
1070
1071      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1072        << DS.getSourceRange();
1073    }
1074
1075    // Microsoft allows unnamed struct/union fields. Don't complain
1076    // about them.
1077    // FIXME: Should we support Microsoft's extensions in this area?
1078    if (Record->getDeclName() && getLangOptions().Microsoft)
1079      return DeclPtrTy::make(Tag);
1080  }
1081
1082  if (!DS.isMissingDeclaratorOk() &&
1083      DS.getTypeSpecType() != DeclSpec::TST_error) {
1084    // Warn about typedefs of enums without names, since this is an
1085    // extension in both Microsoft an GNU.
1086    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1087        Tag && isa<EnumDecl>(Tag)) {
1088      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1089        << DS.getSourceRange();
1090      return DeclPtrTy::make(Tag);
1091    }
1092
1093    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1094      << DS.getSourceRange();
1095    return DeclPtrTy();
1096  }
1097
1098  return DeclPtrTy::make(Tag);
1099}
1100
1101/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1102/// anonymous struct or union AnonRecord into the owning context Owner
1103/// and scope S. This routine will be invoked just after we realize
1104/// that an unnamed union or struct is actually an anonymous union or
1105/// struct, e.g.,
1106///
1107/// @code
1108/// union {
1109///   int i;
1110///   float f;
1111/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1112///    // f into the surrounding scope.x
1113/// @endcode
1114///
1115/// This routine is recursive, injecting the names of nested anonymous
1116/// structs/unions into the owning context and scope as well.
1117bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1118                                               RecordDecl *AnonRecord) {
1119  bool Invalid = false;
1120  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1121                               FEnd = AnonRecord->field_end(Context);
1122       F != FEnd; ++F) {
1123    if ((*F)->getDeclName()) {
1124      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1125                                                LookupOrdinaryName, true);
1126      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1127        // C++ [class.union]p2:
1128        //   The names of the members of an anonymous union shall be
1129        //   distinct from the names of any other entity in the
1130        //   scope in which the anonymous union is declared.
1131        unsigned diagKind
1132          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1133                                 : diag::err_anonymous_struct_member_redecl;
1134        Diag((*F)->getLocation(), diagKind)
1135          << (*F)->getDeclName();
1136        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1137        Invalid = true;
1138      } else {
1139        // C++ [class.union]p2:
1140        //   For the purpose of name lookup, after the anonymous union
1141        //   definition, the members of the anonymous union are
1142        //   considered to have been defined in the scope in which the
1143        //   anonymous union is declared.
1144        Owner->makeDeclVisibleInContext(Context, *F);
1145        S->AddDecl(DeclPtrTy::make(*F));
1146        IdResolver.AddDecl(*F);
1147      }
1148    } else if (const RecordType *InnerRecordType
1149                 = (*F)->getType()->getAsRecordType()) {
1150      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1151      if (InnerRecord->isAnonymousStructOrUnion())
1152        Invalid = Invalid ||
1153          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1154    }
1155  }
1156
1157  return Invalid;
1158}
1159
1160/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1161/// anonymous structure or union. Anonymous unions are a C++ feature
1162/// (C++ [class.union]) and a GNU C extension; anonymous structures
1163/// are a GNU C and GNU C++ extension.
1164Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1165                                                  RecordDecl *Record) {
1166  DeclContext *Owner = Record->getDeclContext();
1167
1168  // Diagnose whether this anonymous struct/union is an extension.
1169  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1170    Diag(Record->getLocation(), diag::ext_anonymous_union);
1171  else if (!Record->isUnion())
1172    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1173
1174  // C and C++ require different kinds of checks for anonymous
1175  // structs/unions.
1176  bool Invalid = false;
1177  if (getLangOptions().CPlusPlus) {
1178    const char* PrevSpec = 0;
1179    // C++ [class.union]p3:
1180    //   Anonymous unions declared in a named namespace or in the
1181    //   global namespace shall be declared static.
1182    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1183        (isa<TranslationUnitDecl>(Owner) ||
1184         (isa<NamespaceDecl>(Owner) &&
1185          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1186      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1187      Invalid = true;
1188
1189      // Recover by adding 'static'.
1190      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1191    }
1192    // C++ [class.union]p3:
1193    //   A storage class is not allowed in a declaration of an
1194    //   anonymous union in a class scope.
1195    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1196             isa<RecordDecl>(Owner)) {
1197      Diag(DS.getStorageClassSpecLoc(),
1198           diag::err_anonymous_union_with_storage_spec);
1199      Invalid = true;
1200
1201      // Recover by removing the storage specifier.
1202      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1203                             PrevSpec);
1204    }
1205
1206    // C++ [class.union]p2:
1207    //   The member-specification of an anonymous union shall only
1208    //   define non-static data members. [Note: nested types and
1209    //   functions cannot be declared within an anonymous union. ]
1210    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1211                                 MemEnd = Record->decls_end(Context);
1212         Mem != MemEnd; ++Mem) {
1213      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1214        // C++ [class.union]p3:
1215        //   An anonymous union shall not have private or protected
1216        //   members (clause 11).
1217        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1218          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1219            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1220          Invalid = true;
1221        }
1222      } else if ((*Mem)->isImplicit()) {
1223        // Any implicit members are fine.
1224      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1225        // This is a type that showed up in an
1226        // elaborated-type-specifier inside the anonymous struct or
1227        // union, but which actually declares a type outside of the
1228        // anonymous struct or union. It's okay.
1229      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1230        if (!MemRecord->isAnonymousStructOrUnion() &&
1231            MemRecord->getDeclName()) {
1232          // This is a nested type declaration.
1233          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1234            << (int)Record->isUnion();
1235          Invalid = true;
1236        }
1237      } else {
1238        // We have something that isn't a non-static data
1239        // member. Complain about it.
1240        unsigned DK = diag::err_anonymous_record_bad_member;
1241        if (isa<TypeDecl>(*Mem))
1242          DK = diag::err_anonymous_record_with_type;
1243        else if (isa<FunctionDecl>(*Mem))
1244          DK = diag::err_anonymous_record_with_function;
1245        else if (isa<VarDecl>(*Mem))
1246          DK = diag::err_anonymous_record_with_static;
1247        Diag((*Mem)->getLocation(), DK)
1248            << (int)Record->isUnion();
1249          Invalid = true;
1250      }
1251    }
1252  }
1253
1254  if (!Record->isUnion() && !Owner->isRecord()) {
1255    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1256      << (int)getLangOptions().CPlusPlus;
1257    Invalid = true;
1258  }
1259
1260  // Create a declaration for this anonymous struct/union.
1261  NamedDecl *Anon = 0;
1262  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1263    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1264                             /*IdentifierInfo=*/0,
1265                             Context.getTypeDeclType(Record),
1266                             /*BitWidth=*/0, /*Mutable=*/false);
1267    Anon->setAccess(AS_public);
1268    if (getLangOptions().CPlusPlus)
1269      FieldCollector->Add(cast<FieldDecl>(Anon));
1270  } else {
1271    VarDecl::StorageClass SC;
1272    switch (DS.getStorageClassSpec()) {
1273    default: assert(0 && "Unknown storage class!");
1274    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1275    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1276    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1277    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1278    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1279    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1280    case DeclSpec::SCS_mutable:
1281      // mutable can only appear on non-static class members, so it's always
1282      // an error here
1283      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1284      Invalid = true;
1285      SC = VarDecl::None;
1286      break;
1287    }
1288
1289    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1290                           /*IdentifierInfo=*/0,
1291                           Context.getTypeDeclType(Record),
1292                           SC, DS.getSourceRange().getBegin());
1293  }
1294  Anon->setImplicit();
1295
1296  // Add the anonymous struct/union object to the current
1297  // context. We'll be referencing this object when we refer to one of
1298  // its members.
1299  Owner->addDecl(Context, Anon);
1300
1301  // Inject the members of the anonymous struct/union into the owning
1302  // context and into the identifier resolver chain for name lookup
1303  // purposes.
1304  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1305    Invalid = true;
1306
1307  // Mark this as an anonymous struct/union type. Note that we do not
1308  // do this until after we have already checked and injected the
1309  // members of this anonymous struct/union type, because otherwise
1310  // the members could be injected twice: once by DeclContext when it
1311  // builds its lookup table, and once by
1312  // InjectAnonymousStructOrUnionMembers.
1313  Record->setAnonymousStructOrUnion(true);
1314
1315  if (Invalid)
1316    Anon->setInvalidDecl();
1317
1318  return DeclPtrTy::make(Anon);
1319}
1320
1321
1322/// GetNameForDeclarator - Determine the full declaration name for the
1323/// given Declarator.
1324DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1325  switch (D.getKind()) {
1326  case Declarator::DK_Abstract:
1327    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1328    return DeclarationName();
1329
1330  case Declarator::DK_Normal:
1331    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1332    return DeclarationName(D.getIdentifier());
1333
1334  case Declarator::DK_Constructor: {
1335    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1336    Ty = Context.getCanonicalType(Ty);
1337    return Context.DeclarationNames.getCXXConstructorName(Ty);
1338  }
1339
1340  case Declarator::DK_Destructor: {
1341    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1342    Ty = Context.getCanonicalType(Ty);
1343    return Context.DeclarationNames.getCXXDestructorName(Ty);
1344  }
1345
1346  case Declarator::DK_Conversion: {
1347    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1348    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1349    Ty = Context.getCanonicalType(Ty);
1350    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1351  }
1352
1353  case Declarator::DK_Operator:
1354    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1355    return Context.DeclarationNames.getCXXOperatorName(
1356                                                D.getOverloadedOperator());
1357  }
1358
1359  assert(false && "Unknown name kind");
1360  return DeclarationName();
1361}
1362
1363/// isNearlyMatchingFunction - Determine whether the C++ functions
1364/// Declaration and Definition are "nearly" matching. This heuristic
1365/// is used to improve diagnostics in the case where an out-of-line
1366/// function definition doesn't match any declaration within
1367/// the class or namespace.
1368static bool isNearlyMatchingFunction(ASTContext &Context,
1369                                     FunctionDecl *Declaration,
1370                                     FunctionDecl *Definition) {
1371  if (Declaration->param_size() != Definition->param_size())
1372    return false;
1373  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1374    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1375    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1376
1377    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1378    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1379    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1380      return false;
1381  }
1382
1383  return true;
1384}
1385
1386Sema::DeclPtrTy
1387Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1388  DeclarationName Name = GetNameForDeclarator(D);
1389
1390  // All of these full declarators require an identifier.  If it doesn't have
1391  // one, the ParsedFreeStandingDeclSpec action should be used.
1392  if (!Name) {
1393    if (!D.isInvalidType())  // Reject this if we think it is valid.
1394      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1395           diag::err_declarator_need_ident)
1396        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1397    return DeclPtrTy();
1398  }
1399
1400  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1401  // we find one that is.
1402  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1403         (S->getFlags() & Scope::TemplateParamScope) != 0)
1404    S = S->getParent();
1405
1406  DeclContext *DC;
1407  NamedDecl *PrevDecl;
1408  NamedDecl *New;
1409
1410  QualType R = GetTypeForDeclarator(D, S);
1411
1412  // See if this is a redefinition of a variable in the same scope.
1413  if (D.getCXXScopeSpec().isInvalid()) {
1414    DC = CurContext;
1415    PrevDecl = 0;
1416    D.setInvalidType();
1417  } else if (!D.getCXXScopeSpec().isSet()) {
1418    LookupNameKind NameKind = LookupOrdinaryName;
1419
1420    // If the declaration we're planning to build will be a function
1421    // or object with linkage, then look for another declaration with
1422    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1423    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1424      /* Do nothing*/;
1425    else if (R->isFunctionType()) {
1426      if (CurContext->isFunctionOrMethod())
1427        NameKind = LookupRedeclarationWithLinkage;
1428    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1429      NameKind = LookupRedeclarationWithLinkage;
1430
1431    DC = CurContext;
1432    PrevDecl = LookupName(S, Name, NameKind, true,
1433                          D.getDeclSpec().getStorageClassSpec() !=
1434                            DeclSpec::SCS_static,
1435                          D.getIdentifierLoc());
1436  } else { // Something like "int foo::x;"
1437    DC = computeDeclContext(D.getCXXScopeSpec());
1438    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1439    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1440
1441    // C++ 7.3.1.2p2:
1442    // Members (including explicit specializations of templates) of a named
1443    // namespace can also be defined outside that namespace by explicit
1444    // qualification of the name being defined, provided that the entity being
1445    // defined was already declared in the namespace and the definition appears
1446    // after the point of declaration in a namespace that encloses the
1447    // declarations namespace.
1448    //
1449    // Note that we only check the context at this point. We don't yet
1450    // have enough information to make sure that PrevDecl is actually
1451    // the declaration we want to match. For example, given:
1452    //
1453    //   class X {
1454    //     void f();
1455    //     void f(float);
1456    //   };
1457    //
1458    //   void X::f(int) { } // ill-formed
1459    //
1460    // In this case, PrevDecl will point to the overload set
1461    // containing the two f's declared in X, but neither of them
1462    // matches.
1463
1464    // First check whether we named the global scope.
1465    if (isa<TranslationUnitDecl>(DC)) {
1466      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1467        << Name << D.getCXXScopeSpec().getRange();
1468    } else if (!CurContext->Encloses(DC)) {
1469      // The qualifying scope doesn't enclose the original declaration.
1470      // Emit diagnostic based on current scope.
1471      SourceLocation L = D.getIdentifierLoc();
1472      SourceRange R = D.getCXXScopeSpec().getRange();
1473      if (isa<FunctionDecl>(CurContext))
1474        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1475      else
1476        Diag(L, diag::err_invalid_declarator_scope)
1477          << Name << cast<NamedDecl>(DC) << R;
1478      D.setInvalidType();
1479    }
1480  }
1481
1482  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1483    // Maybe we will complain about the shadowed template parameter.
1484    if (!D.isInvalidType())
1485      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1486        D.setInvalidType();
1487
1488    // Just pretend that we didn't see the previous declaration.
1489    PrevDecl = 0;
1490  }
1491
1492  // In C++, the previous declaration we find might be a tag type
1493  // (class or enum). In this case, the new declaration will hide the
1494  // tag type. Note that this does does not apply if we're declaring a
1495  // typedef (C++ [dcl.typedef]p4).
1496  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1497      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1498    PrevDecl = 0;
1499
1500  bool Redeclaration = false;
1501  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1502    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1503  } else if (R->isFunctionType()) {
1504    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1505                                  IsFunctionDefinition, Redeclaration);
1506  } else {
1507    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1508  }
1509
1510  if (New == 0)
1511    return DeclPtrTy();
1512
1513  // If this has an identifier and is not an invalid redeclaration,
1514  // add it to the scope stack.
1515  if (Name && !(Redeclaration && New->isInvalidDecl()))
1516    PushOnScopeChains(New, S);
1517
1518  return DeclPtrTy::make(New);
1519}
1520
1521/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1522/// types into constant array types in certain situations which would otherwise
1523/// be errors (for GCC compatibility).
1524static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1525                                                    ASTContext &Context,
1526                                                    bool &SizeIsNegative) {
1527  // This method tries to turn a variable array into a constant
1528  // array even when the size isn't an ICE.  This is necessary
1529  // for compatibility with code that depends on gcc's buggy
1530  // constant expression folding, like struct {char x[(int)(char*)2];}
1531  SizeIsNegative = false;
1532
1533  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1534    QualType Pointee = PTy->getPointeeType();
1535    QualType FixedType =
1536        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1537    if (FixedType.isNull()) return FixedType;
1538    FixedType = Context.getPointerType(FixedType);
1539    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1540    return FixedType;
1541  }
1542
1543  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1544  if (!VLATy)
1545    return QualType();
1546  // FIXME: We should probably handle this case
1547  if (VLATy->getElementType()->isVariablyModifiedType())
1548    return QualType();
1549
1550  Expr::EvalResult EvalResult;
1551  if (!VLATy->getSizeExpr() ||
1552      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1553      !EvalResult.Val.isInt())
1554    return QualType();
1555
1556  llvm::APSInt &Res = EvalResult.Val.getInt();
1557  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1558    return Context.getConstantArrayType(VLATy->getElementType(),
1559                                        Res, ArrayType::Normal, 0);
1560
1561  SizeIsNegative = true;
1562  return QualType();
1563}
1564
1565/// \brief Register the given locally-scoped external C declaration so
1566/// that it can be found later for redeclarations
1567void
1568Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1569                                       Scope *S) {
1570  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1571         "Decl is not a locally-scoped decl!");
1572  // Note that we have a locally-scoped external with this name.
1573  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1574
1575  if (!PrevDecl)
1576    return;
1577
1578  // If there was a previous declaration of this variable, it may be
1579  // in our identifier chain. Update the identifier chain with the new
1580  // declaration.
1581  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1582    // The previous declaration was found on the identifer resolver
1583    // chain, so remove it from its scope.
1584    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1585      S = S->getParent();
1586
1587    if (S)
1588      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1589  }
1590}
1591
1592/// \brief Diagnose function specifiers on a declaration of an identifier that
1593/// does not identify a function.
1594void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1595  // FIXME: We should probably indicate the identifier in question to avoid
1596  // confusion for constructs like "inline int a(), b;"
1597  if (D.getDeclSpec().isInlineSpecified())
1598    Diag(D.getDeclSpec().getInlineSpecLoc(),
1599         diag::err_inline_non_function);
1600
1601  if (D.getDeclSpec().isVirtualSpecified())
1602    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1603         diag::err_virtual_non_function);
1604
1605  if (D.getDeclSpec().isExplicitSpecified())
1606    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1607         diag::err_explicit_non_function);
1608}
1609
1610NamedDecl*
1611Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1612                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1613  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1614  if (D.getCXXScopeSpec().isSet()) {
1615    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1616      << D.getCXXScopeSpec().getRange();
1617    D.setInvalidType();
1618    // Pretend we didn't see the scope specifier.
1619    DC = 0;
1620  }
1621
1622  if (getLangOptions().CPlusPlus) {
1623    // Check that there are no default arguments (C++ only).
1624    CheckExtraCXXDefaultArguments(D);
1625  }
1626
1627  DiagnoseFunctionSpecifiers(D);
1628
1629  if (D.getDeclSpec().isThreadSpecified())
1630    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1631
1632  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1633  if (!NewTD) return 0;
1634
1635  if (D.isInvalidType())
1636    NewTD->setInvalidDecl();
1637
1638  // Handle attributes prior to checking for duplicates in MergeVarDecl
1639  ProcessDeclAttributes(S, NewTD, D);
1640  // Merge the decl with the existing one if appropriate. If the decl is
1641  // in an outer scope, it isn't the same thing.
1642  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1643    Redeclaration = true;
1644    MergeTypeDefDecl(NewTD, PrevDecl);
1645  }
1646
1647  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1648  // then it shall have block scope.
1649  QualType T = NewTD->getUnderlyingType();
1650  if (T->isVariablyModifiedType()) {
1651    CurFunctionNeedsScopeChecking = true;
1652
1653    if (S->getFnParent() == 0) {
1654      bool SizeIsNegative;
1655      QualType FixedTy =
1656          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1657      if (!FixedTy.isNull()) {
1658        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1659        NewTD->setUnderlyingType(FixedTy);
1660      } else {
1661        if (SizeIsNegative)
1662          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1663        else if (T->isVariableArrayType())
1664          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1665        else
1666          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1667        NewTD->setInvalidDecl();
1668      }
1669    }
1670  }
1671  return NewTD;
1672}
1673
1674/// \brief Determines whether the given declaration is an out-of-scope
1675/// previous declaration.
1676///
1677/// This routine should be invoked when name lookup has found a
1678/// previous declaration (PrevDecl) that is not in the scope where a
1679/// new declaration by the same name is being introduced. If the new
1680/// declaration occurs in a local scope, previous declarations with
1681/// linkage may still be considered previous declarations (C99
1682/// 6.2.2p4-5, C++ [basic.link]p6).
1683///
1684/// \param PrevDecl the previous declaration found by name
1685/// lookup
1686///
1687/// \param DC the context in which the new declaration is being
1688/// declared.
1689///
1690/// \returns true if PrevDecl is an out-of-scope previous declaration
1691/// for a new delcaration with the same name.
1692static bool
1693isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1694                                ASTContext &Context) {
1695  if (!PrevDecl)
1696    return 0;
1697
1698  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1699  // case we need to check each of the overloaded functions.
1700  if (!PrevDecl->hasLinkage())
1701    return false;
1702
1703  if (Context.getLangOptions().CPlusPlus) {
1704    // C++ [basic.link]p6:
1705    //   If there is a visible declaration of an entity with linkage
1706    //   having the same name and type, ignoring entities declared
1707    //   outside the innermost enclosing namespace scope, the block
1708    //   scope declaration declares that same entity and receives the
1709    //   linkage of the previous declaration.
1710    DeclContext *OuterContext = DC->getLookupContext();
1711    if (!OuterContext->isFunctionOrMethod())
1712      // This rule only applies to block-scope declarations.
1713      return false;
1714    else {
1715      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1716      if (PrevOuterContext->isRecord())
1717        // We found a member function: ignore it.
1718        return false;
1719      else {
1720        // Find the innermost enclosing namespace for the new and
1721        // previous declarations.
1722        while (!OuterContext->isFileContext())
1723          OuterContext = OuterContext->getParent();
1724        while (!PrevOuterContext->isFileContext())
1725          PrevOuterContext = PrevOuterContext->getParent();
1726
1727        // The previous declaration is in a different namespace, so it
1728        // isn't the same function.
1729        if (OuterContext->getPrimaryContext() !=
1730            PrevOuterContext->getPrimaryContext())
1731          return false;
1732      }
1733    }
1734  }
1735
1736  return true;
1737}
1738
1739NamedDecl*
1740Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1741                              QualType R,NamedDecl* PrevDecl,
1742                              bool &Redeclaration) {
1743  DeclarationName Name = GetNameForDeclarator(D);
1744
1745  // Check that there are no default arguments (C++ only).
1746  if (getLangOptions().CPlusPlus)
1747    CheckExtraCXXDefaultArguments(D);
1748
1749  VarDecl *NewVD;
1750  VarDecl::StorageClass SC;
1751  switch (D.getDeclSpec().getStorageClassSpec()) {
1752  default: assert(0 && "Unknown storage class!");
1753  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1754  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1755  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1756  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1757  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1758  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1759  case DeclSpec::SCS_mutable:
1760    // mutable can only appear on non-static class members, so it's always
1761    // an error here
1762    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1763    D.setInvalidType();
1764    SC = VarDecl::None;
1765    break;
1766  }
1767
1768  IdentifierInfo *II = Name.getAsIdentifierInfo();
1769  if (!II) {
1770    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1771      << Name.getAsString();
1772    return 0;
1773  }
1774
1775  DiagnoseFunctionSpecifiers(D);
1776
1777  if (!DC->isRecord() && S->getFnParent() == 0) {
1778    // C99 6.9p2: The storage-class specifiers auto and register shall not
1779    // appear in the declaration specifiers in an external declaration.
1780    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1781
1782      // If this is a register variable with an asm label specified, then this
1783      // is a GNU extension.
1784      if (SC == VarDecl::Register && D.getAsmLabel())
1785        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1786      else
1787        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1788      D.setInvalidType();
1789    }
1790  }
1791  if (DC->isRecord() && !CurContext->isRecord()) {
1792    // This is an out-of-line definition of a static data member.
1793    if (SC == VarDecl::Static) {
1794      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1795           diag::err_static_out_of_line)
1796        << CodeModificationHint::CreateRemoval(
1797                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1798    } else if (SC == VarDecl::None)
1799      SC = VarDecl::Static;
1800  }
1801
1802  // The variable can not
1803  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1804                          II, R, SC,
1805                          // FIXME: Move to DeclGroup...
1806                          D.getDeclSpec().getSourceRange().getBegin());
1807
1808  if (D.isInvalidType())
1809    NewVD->setInvalidDecl();
1810
1811  if (D.getDeclSpec().isThreadSpecified()) {
1812    if (NewVD->hasLocalStorage())
1813      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1814    else if (!Context.Target.isTLSSupported())
1815      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1816    else
1817      NewVD->setThreadSpecified(true);
1818  }
1819
1820  // Set the lexical context. If the declarator has a C++ scope specifier, the
1821  // lexical context will be different from the semantic context.
1822  NewVD->setLexicalDeclContext(CurContext);
1823
1824  // Handle attributes prior to checking for duplicates in MergeVarDecl
1825  ProcessDeclAttributes(S, NewVD, D);
1826
1827  // Handle GNU asm-label extension (encoded as an attribute).
1828  if (Expr *E = (Expr*) D.getAsmLabel()) {
1829    // The parser guarantees this is a string.
1830    StringLiteral *SE = cast<StringLiteral>(E);
1831    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1832                                                        SE->getByteLength())));
1833  }
1834
1835  // If name lookup finds a previous declaration that is not in the
1836  // same scope as the new declaration, this may still be an
1837  // acceptable redeclaration.
1838  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1839      !(NewVD->hasLinkage() &&
1840        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1841    PrevDecl = 0;
1842
1843  // Merge the decl with the existing one if appropriate.
1844  if (PrevDecl) {
1845    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1846      // The user tried to define a non-static data member
1847      // out-of-line (C++ [dcl.meaning]p1).
1848      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1849        << D.getCXXScopeSpec().getRange();
1850      PrevDecl = 0;
1851      NewVD->setInvalidDecl();
1852    }
1853  } else if (D.getCXXScopeSpec().isSet()) {
1854    // No previous declaration in the qualifying scope.
1855    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1856      << Name << D.getCXXScopeSpec().getRange();
1857    NewVD->setInvalidDecl();
1858  }
1859
1860  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1861
1862  // If this is a locally-scoped extern C variable, update the map of
1863  // such variables.
1864  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1865      !NewVD->isInvalidDecl())
1866    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1867
1868  return NewVD;
1869}
1870
1871/// \brief Perform semantic checking on a newly-created variable
1872/// declaration.
1873///
1874/// This routine performs all of the type-checking required for a
1875/// variable declaration once it has been built. It is used both to
1876/// check variables after they have been parsed and their declarators
1877/// have been translated into a declaration, and to check variables
1878/// that have been instantiated from a template.
1879///
1880/// Sets NewVD->isInvalidDecl() if an error was encountered.
1881void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1882                                    bool &Redeclaration) {
1883  // If the decl is already known invalid, don't check it.
1884  if (NewVD->isInvalidDecl())
1885    return;
1886
1887  QualType T = NewVD->getType();
1888
1889  if (T->isObjCInterfaceType()) {
1890    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1891    return NewVD->setInvalidDecl();
1892  }
1893
1894  // The variable can not have an abstract class type.
1895  if (RequireNonAbstractType(NewVD->getLocation(), T,
1896                             diag::err_abstract_type_in_decl,
1897                             AbstractVariableType))
1898    return NewVD->setInvalidDecl();
1899
1900  // Emit an error if an address space was applied to decl with local storage.
1901  // This includes arrays of objects with address space qualifiers, but not
1902  // automatic variables that point to other address spaces.
1903  // ISO/IEC TR 18037 S5.1.2
1904  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1905    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1906    return NewVD->setInvalidDecl();
1907  }
1908
1909  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1910      && !NewVD->hasAttr<BlocksAttr>())
1911    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1912
1913  bool isVM = T->isVariablyModifiedType();
1914  if (isVM || NewVD->hasAttr<CleanupAttr>())
1915    CurFunctionNeedsScopeChecking = true;
1916
1917  if ((isVM && NewVD->hasLinkage()) ||
1918      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1919    bool SizeIsNegative;
1920    QualType FixedTy =
1921        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1922
1923    if (FixedTy.isNull() && T->isVariableArrayType()) {
1924      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1925      // FIXME: This won't give the correct result for
1926      // int a[10][n];
1927      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1928
1929      if (NewVD->isFileVarDecl())
1930        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1931        << SizeRange;
1932      else if (NewVD->getStorageClass() == VarDecl::Static)
1933        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1934        << SizeRange;
1935      else
1936        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1937        << SizeRange;
1938      return NewVD->setInvalidDecl();
1939    }
1940
1941    if (FixedTy.isNull()) {
1942      if (NewVD->isFileVarDecl())
1943        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1944      else
1945        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1946      return NewVD->setInvalidDecl();
1947    }
1948
1949    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1950    NewVD->setType(FixedTy);
1951  }
1952
1953  if (!PrevDecl && NewVD->isExternC(Context)) {
1954    // Since we did not find anything by this name and we're declaring
1955    // an extern "C" variable, look for a non-visible extern "C"
1956    // declaration with the same name.
1957    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1958      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1959    if (Pos != LocallyScopedExternalDecls.end())
1960      PrevDecl = Pos->second;
1961  }
1962
1963  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1964    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1965      << T;
1966    return NewVD->setInvalidDecl();
1967  }
1968
1969  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1970    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1971    return NewVD->setInvalidDecl();
1972  }
1973
1974  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1975    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1976    return NewVD->setInvalidDecl();
1977  }
1978
1979  if (PrevDecl) {
1980    Redeclaration = true;
1981    MergeVarDecl(NewVD, PrevDecl);
1982  }
1983}
1984
1985NamedDecl*
1986Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1987                              QualType R, NamedDecl* PrevDecl,
1988                              bool IsFunctionDefinition, bool &Redeclaration) {
1989  assert(R.getTypePtr()->isFunctionType());
1990
1991  DeclarationName Name = GetNameForDeclarator(D);
1992  FunctionDecl::StorageClass SC = FunctionDecl::None;
1993  switch (D.getDeclSpec().getStorageClassSpec()) {
1994  default: assert(0 && "Unknown storage class!");
1995  case DeclSpec::SCS_auto:
1996  case DeclSpec::SCS_register:
1997  case DeclSpec::SCS_mutable:
1998    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1999         diag::err_typecheck_sclass_func);
2000    D.setInvalidType();
2001    break;
2002  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2003  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2004  case DeclSpec::SCS_static: {
2005    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2006      // C99 6.7.1p5:
2007      //   The declaration of an identifier for a function that has
2008      //   block scope shall have no explicit storage-class specifier
2009      //   other than extern
2010      // See also (C++ [dcl.stc]p4).
2011      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2012           diag::err_static_block_func);
2013      SC = FunctionDecl::None;
2014    } else
2015      SC = FunctionDecl::Static;
2016    break;
2017  }
2018  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2019  }
2020
2021  if (D.getDeclSpec().isThreadSpecified())
2022    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2023
2024  bool isInline = D.getDeclSpec().isInlineSpecified();
2025  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2026  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2027
2028  // Check that the return type is not an abstract class type.
2029  // For record types, this is done by the AbstractClassUsageDiagnoser once
2030  // the class has been completely parsed.
2031  if (!DC->isRecord() &&
2032      RequireNonAbstractType(D.getIdentifierLoc(),
2033                             R->getAsFunctionType()->getResultType(),
2034                             diag::err_abstract_type_in_decl,
2035                             AbstractReturnType))
2036    D.setInvalidType();
2037
2038  // Do not allow returning a objc interface by-value.
2039  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2040    Diag(D.getIdentifierLoc(),
2041         diag::err_object_cannot_be_passed_returned_by_value) << 0
2042      << R->getAsFunctionType()->getResultType();
2043    D.setInvalidType();
2044  }
2045
2046  bool isVirtualOkay = false;
2047  FunctionDecl *NewFD;
2048  if (D.getKind() == Declarator::DK_Constructor) {
2049    // This is a C++ constructor declaration.
2050    assert(DC->isRecord() &&
2051           "Constructors can only be declared in a member context");
2052
2053    R = CheckConstructorDeclarator(D, R, SC);
2054
2055    // Create the new declaration
2056    NewFD = CXXConstructorDecl::Create(Context,
2057                                       cast<CXXRecordDecl>(DC),
2058                                       D.getIdentifierLoc(), Name, R,
2059                                       isExplicit, isInline,
2060                                       /*isImplicitlyDeclared=*/false);
2061  } else if (D.getKind() == Declarator::DK_Destructor) {
2062    // This is a C++ destructor declaration.
2063    if (DC->isRecord()) {
2064      R = CheckDestructorDeclarator(D, SC);
2065
2066      NewFD = CXXDestructorDecl::Create(Context,
2067                                        cast<CXXRecordDecl>(DC),
2068                                        D.getIdentifierLoc(), Name, R,
2069                                        isInline,
2070                                        /*isImplicitlyDeclared=*/false);
2071
2072      isVirtualOkay = true;
2073    } else {
2074      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2075
2076      // Create a FunctionDecl to satisfy the function definition parsing
2077      // code path.
2078      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2079                                   Name, R, SC, isInline,
2080                                   /*hasPrototype=*/true,
2081                                   // FIXME: Move to DeclGroup...
2082                                   D.getDeclSpec().getSourceRange().getBegin());
2083      D.setInvalidType();
2084    }
2085  } else if (D.getKind() == Declarator::DK_Conversion) {
2086    if (!DC->isRecord()) {
2087      Diag(D.getIdentifierLoc(),
2088           diag::err_conv_function_not_member);
2089      return 0;
2090    }
2091
2092    CheckConversionDeclarator(D, R, SC);
2093    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2094                                      D.getIdentifierLoc(), Name, R,
2095                                      isInline, isExplicit);
2096
2097    isVirtualOkay = true;
2098  } else if (DC->isRecord()) {
2099    // If the of the function is the same as the name of the record, then this
2100    // must be an invalid constructor that has a return type.
2101    // (The parser checks for a return type and makes the declarator a
2102    // constructor if it has no return type).
2103    // must have an invalid constructor that has a return type
2104    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2105      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2106        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2107        << SourceRange(D.getIdentifierLoc());
2108      return 0;
2109    }
2110
2111    // This is a C++ method declaration.
2112    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2113                                  D.getIdentifierLoc(), Name, R,
2114                                  (SC == FunctionDecl::Static), isInline);
2115
2116    isVirtualOkay = (SC != FunctionDecl::Static);
2117  } else {
2118    // Determine whether the function was written with a
2119    // prototype. This true when:
2120    //   - we're in C++ (where every function has a prototype),
2121    //   - there is a prototype in the declarator, or
2122    //   - the type R of the function is some kind of typedef or other reference
2123    //     to a type name (which eventually refers to a function type).
2124    bool HasPrototype =
2125       getLangOptions().CPlusPlus ||
2126       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2127       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2128
2129    NewFD = FunctionDecl::Create(Context, DC,
2130                                 D.getIdentifierLoc(),
2131                                 Name, R, SC, isInline, HasPrototype,
2132                                 // FIXME: Move to DeclGroup...
2133                                 D.getDeclSpec().getSourceRange().getBegin());
2134  }
2135
2136  if (D.isInvalidType())
2137    NewFD->setInvalidDecl();
2138
2139  // Set the lexical context. If the declarator has a C++
2140  // scope specifier, the lexical context will be different
2141  // from the semantic context.
2142  NewFD->setLexicalDeclContext(CurContext);
2143
2144  // C++ [dcl.fct.spec]p5:
2145  //   The virtual specifier shall only be used in declarations of
2146  //   nonstatic class member functions that appear within a
2147  //   member-specification of a class declaration; see 10.3.
2148  //
2149  if (isVirtual && !NewFD->isInvalidDecl()) {
2150    if (!isVirtualOkay) {
2151       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2152           diag::err_virtual_non_function);
2153    } else if (!CurContext->isRecord()) {
2154      // 'virtual' was specified outside of the class.
2155      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2156        << CodeModificationHint::CreateRemoval(
2157                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2158    } else {
2159      // Okay: Add virtual to the method.
2160      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2161      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2162      CurClass->setAggregate(false);
2163      CurClass->setPOD(false);
2164      CurClass->setPolymorphic(true);
2165      CurClass->setHasTrivialConstructor(false);
2166    }
2167  }
2168
2169  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2170    // Look for virtual methods in base classes that this method might override.
2171
2172    BasePaths Paths;
2173    if (LookupInBases(cast<CXXRecordDecl>(DC),
2174                      MemberLookupCriteria(NewMD), Paths)) {
2175      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2176           E = Paths.found_decls_end(); I != E; ++I) {
2177        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2178          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2179            NewMD->addOverriddenMethod(OldMD);
2180        }
2181      }
2182    }
2183  }
2184
2185  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2186      !CurContext->isRecord()) {
2187    // C++ [class.static]p1:
2188    //   A data or function member of a class may be declared static
2189    //   in a class definition, in which case it is a static member of
2190    //   the class.
2191
2192    // Complain about the 'static' specifier if it's on an out-of-line
2193    // member function definition.
2194    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2195         diag::err_static_out_of_line)
2196      << CodeModificationHint::CreateRemoval(
2197                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2198  }
2199
2200  // Handle GNU asm-label extension (encoded as an attribute).
2201  if (Expr *E = (Expr*) D.getAsmLabel()) {
2202    // The parser guarantees this is a string.
2203    StringLiteral *SE = cast<StringLiteral>(E);
2204    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2205                                                        SE->getByteLength())));
2206  }
2207
2208  // Copy the parameter declarations from the declarator D to the function
2209  // declaration NewFD, if they are available.  First scavenge them into Params.
2210  llvm::SmallVector<ParmVarDecl*, 16> Params;
2211  if (D.getNumTypeObjects() > 0) {
2212    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2213
2214    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2215    // function that takes no arguments, not a function that takes a
2216    // single void argument.
2217    // We let through "const void" here because Sema::GetTypeForDeclarator
2218    // already checks for that case.
2219    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2220        FTI.ArgInfo[0].Param &&
2221        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2222      // Empty arg list, don't push any params.
2223      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2224
2225      // In C++, the empty parameter-type-list must be spelled "void"; a
2226      // typedef of void is not permitted.
2227      if (getLangOptions().CPlusPlus &&
2228          Param->getType().getUnqualifiedType() != Context.VoidTy)
2229        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2230      // FIXME: Leaks decl?
2231    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2232      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2233        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2234    }
2235
2236  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2237    // When we're declaring a function with a typedef, typeof, etc as in the
2238    // following example, we'll need to synthesize (unnamed)
2239    // parameters for use in the declaration.
2240    //
2241    // @code
2242    // typedef void fn(int);
2243    // fn f;
2244    // @endcode
2245
2246    // Synthesize a parameter for each argument type.
2247    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2248         AE = FT->arg_type_end(); AI != AE; ++AI) {
2249      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2250                                               SourceLocation(), 0,
2251                                               *AI, VarDecl::None, 0);
2252      Param->setImplicit();
2253      Params.push_back(Param);
2254    }
2255  } else {
2256    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2257           "Should not need args for typedef of non-prototype fn");
2258  }
2259  // Finally, we know we have the right number of parameters, install them.
2260  NewFD->setParams(Context, Params.data(), Params.size());
2261
2262
2263
2264  // If name lookup finds a previous declaration that is not in the
2265  // same scope as the new declaration, this may still be an
2266  // acceptable redeclaration.
2267  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2268      !(NewFD->hasLinkage() &&
2269        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2270    PrevDecl = 0;
2271
2272  // Perform semantic checking on the function declaration.
2273  bool OverloadableAttrRequired = false; // FIXME: HACK!
2274  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2275                           /*FIXME:*/OverloadableAttrRequired);
2276
2277  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2278    // An out-of-line member function declaration must also be a
2279    // definition (C++ [dcl.meaning]p1).
2280    if (!IsFunctionDefinition) {
2281      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2282        << D.getCXXScopeSpec().getRange();
2283      NewFD->setInvalidDecl();
2284    } else if (!Redeclaration) {
2285      // The user tried to provide an out-of-line definition for a
2286      // function that is a member of a class or namespace, but there
2287      // was no such member function declared (C++ [class.mfct]p2,
2288      // C++ [namespace.memdef]p2). For example:
2289      //
2290      // class X {
2291      //   void f() const;
2292      // };
2293      //
2294      // void X::f() { } // ill-formed
2295      //
2296      // Complain about this problem, and attempt to suggest close
2297      // matches (e.g., those that differ only in cv-qualifiers and
2298      // whether the parameter types are references).
2299      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2300        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2301      NewFD->setInvalidDecl();
2302
2303      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2304                                              true);
2305      assert(!Prev.isAmbiguous() &&
2306             "Cannot have an ambiguity in previous-declaration lookup");
2307      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2308           Func != FuncEnd; ++Func) {
2309        if (isa<FunctionDecl>(*Func) &&
2310            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2311          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2312      }
2313
2314      PrevDecl = 0;
2315    }
2316  }
2317
2318  // Handle attributes. We need to have merged decls when handling attributes
2319  // (for example to check for conflicts, etc).
2320  // FIXME: This needs to happen before we merge declarations. Then,
2321  // let attribute merging cope with attribute conflicts.
2322  ProcessDeclAttributes(S, NewFD, D);
2323  AddKnownFunctionAttributes(NewFD);
2324
2325  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2326    // If a function name is overloadable in C, then every function
2327    // with that name must be marked "overloadable".
2328    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2329      << Redeclaration << NewFD;
2330    if (PrevDecl)
2331      Diag(PrevDecl->getLocation(),
2332           diag::note_attribute_overloadable_prev_overload);
2333    NewFD->addAttr(::new (Context) OverloadableAttr());
2334  }
2335
2336  // If this is a locally-scoped extern C function, update the
2337  // map of such names.
2338  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2339      && !NewFD->isInvalidDecl())
2340    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2341
2342  return NewFD;
2343}
2344
2345/// \brief Perform semantic checking of a new function declaration.
2346///
2347/// Performs semantic analysis of the new function declaration
2348/// NewFD. This routine performs all semantic checking that does not
2349/// require the actual declarator involved in the declaration, and is
2350/// used both for the declaration of functions as they are parsed
2351/// (called via ActOnDeclarator) and for the declaration of functions
2352/// that have been instantiated via C++ template instantiation (called
2353/// via InstantiateDecl).
2354///
2355/// This sets NewFD->isInvalidDecl() to true if there was an error.
2356void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2357                                    bool &Redeclaration,
2358                                    bool &OverloadableAttrRequired) {
2359  // If NewFD is already known erroneous, don't do any of this checking.
2360  if (NewFD->isInvalidDecl())
2361    return;
2362
2363  if (NewFD->getResultType()->isVariablyModifiedType()) {
2364    // Functions returning a variably modified type violate C99 6.7.5.2p2
2365    // because all functions have linkage.
2366    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2367    return NewFD->setInvalidDecl();
2368  }
2369
2370  // Semantic checking for this function declaration (in isolation).
2371  if (getLangOptions().CPlusPlus) {
2372    // C++-specific checks.
2373    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2374      CheckConstructor(Constructor);
2375    } else if (isa<CXXDestructorDecl>(NewFD)) {
2376      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2377      Record->setUserDeclaredDestructor(true);
2378      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2379      // user-defined destructor.
2380      Record->setPOD(false);
2381
2382      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2383      // declared destructor.
2384      Record->setHasTrivialDestructor(false);
2385    } else if (CXXConversionDecl *Conversion
2386               = dyn_cast<CXXConversionDecl>(NewFD))
2387      ActOnConversionDeclarator(Conversion);
2388
2389    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2390    if (NewFD->isOverloadedOperator() &&
2391        CheckOverloadedOperatorDeclaration(NewFD))
2392      return NewFD->setInvalidDecl();
2393  }
2394
2395  // C99 6.7.4p6:
2396  //   [... ] For a function with external linkage, the following
2397  //   restrictions apply: [...] If all of the file scope declarations
2398  //   for a function in a translation unit include the inline
2399  //   function specifier without extern, then the definition in that
2400  //   translation unit is an inline definition. An inline definition
2401  //   does not provide an external definition for the function, and
2402  //   does not forbid an external definition in another translation
2403  //   unit.
2404  //
2405  // Here we determine whether this function, in isolation, would be a
2406  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2407  // previous declarations.
2408  if (NewFD->isInline() && getLangOptions().C99 &&
2409      NewFD->getStorageClass() == FunctionDecl::None &&
2410      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2411    NewFD->setC99InlineDefinition(true);
2412
2413  // Check for a previous declaration of this name.
2414  if (!PrevDecl && NewFD->isExternC(Context)) {
2415    // Since we did not find anything by this name and we're declaring
2416    // an extern "C" function, look for a non-visible extern "C"
2417    // declaration with the same name.
2418    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2419      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2420    if (Pos != LocallyScopedExternalDecls.end())
2421      PrevDecl = Pos->second;
2422  }
2423
2424  // Merge or overload the declaration with an existing declaration of
2425  // the same name, if appropriate.
2426  if (PrevDecl) {
2427    // Determine whether NewFD is an overload of PrevDecl or
2428    // a declaration that requires merging. If it's an overload,
2429    // there's no more work to do here; we'll just add the new
2430    // function to the scope.
2431    OverloadedFunctionDecl::function_iterator MatchedDecl;
2432
2433    if (!getLangOptions().CPlusPlus &&
2434        AllowOverloadingOfFunction(PrevDecl, Context)) {
2435      OverloadableAttrRequired = true;
2436
2437      // Functions marked "overloadable" must have a prototype (that
2438      // we can't get through declaration merging).
2439      if (!NewFD->getType()->getAsFunctionProtoType()) {
2440        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2441          << NewFD;
2442        Redeclaration = true;
2443
2444        // Turn this into a variadic function with no parameters.
2445        QualType R = Context.getFunctionType(
2446                       NewFD->getType()->getAsFunctionType()->getResultType(),
2447                       0, 0, true, 0);
2448        NewFD->setType(R);
2449        return NewFD->setInvalidDecl();
2450      }
2451    }
2452
2453    if (PrevDecl &&
2454        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2455         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2456      Redeclaration = true;
2457      Decl *OldDecl = PrevDecl;
2458
2459      // If PrevDecl was an overloaded function, extract the
2460      // FunctionDecl that matched.
2461      if (isa<OverloadedFunctionDecl>(PrevDecl))
2462        OldDecl = *MatchedDecl;
2463
2464      // NewFD and OldDecl represent declarations that need to be
2465      // merged.
2466      if (MergeFunctionDecl(NewFD, OldDecl))
2467        return NewFD->setInvalidDecl();
2468
2469      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2470    }
2471  }
2472
2473  // In C++, check default arguments now that we have merged decls. Unless
2474  // the lexical context is the class, because in this case this is done
2475  // during delayed parsing anyway.
2476  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2477    CheckCXXDefaultArguments(NewFD);
2478}
2479
2480bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2481  // FIXME: Need strict checking.  In C89, we need to check for
2482  // any assignment, increment, decrement, function-calls, or
2483  // commas outside of a sizeof.  In C99, it's the same list,
2484  // except that the aforementioned are allowed in unevaluated
2485  // expressions.  Everything else falls under the
2486  // "may accept other forms of constant expressions" exception.
2487  // (We never end up here for C++, so the constant expression
2488  // rules there don't matter.)
2489  if (Init->isConstantInitializer(Context))
2490    return false;
2491  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2492    << Init->getSourceRange();
2493  return true;
2494}
2495
2496void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2497  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2498}
2499
2500/// AddInitializerToDecl - Adds the initializer Init to the
2501/// declaration dcl. If DirectInit is true, this is C++ direct
2502/// initialization rather than copy initialization.
2503void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2504  Decl *RealDecl = dcl.getAs<Decl>();
2505  // If there is no declaration, there was an error parsing it.  Just ignore
2506  // the initializer.
2507  if (RealDecl == 0)
2508    return;
2509
2510  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2511    // With declarators parsed the way they are, the parser cannot
2512    // distinguish between a normal initializer and a pure-specifier.
2513    // Thus this grotesque test.
2514    IntegerLiteral *IL;
2515    Expr *Init = static_cast<Expr *>(init.get());
2516    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2517        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2518      if (Method->isVirtualAsWritten()) {
2519        Method->setPure();
2520
2521        // A class is abstract if at least one function is pure virtual.
2522        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2523      } else if (!Method->isInvalidDecl()) {
2524        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2525          << Method->getDeclName() << Init->getSourceRange();
2526        Method->setInvalidDecl();
2527      }
2528    } else {
2529      Diag(Method->getLocation(), diag::err_member_function_initialization)
2530        << Method->getDeclName() << Init->getSourceRange();
2531      Method->setInvalidDecl();
2532    }
2533    return;
2534  }
2535
2536  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2537  if (!VDecl) {
2538    if (getLangOptions().CPlusPlus &&
2539        RealDecl->getLexicalDeclContext()->isRecord() &&
2540        isa<NamedDecl>(RealDecl))
2541      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2542        << cast<NamedDecl>(RealDecl)->getDeclName();
2543    else
2544      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2545    RealDecl->setInvalidDecl();
2546    return;
2547  }
2548
2549  if (!VDecl->getType()->isArrayType() &&
2550      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2551                          diag::err_typecheck_decl_incomplete_type)) {
2552    RealDecl->setInvalidDecl();
2553    return;
2554  }
2555
2556  const VarDecl *Def = 0;
2557  if (VDecl->getDefinition(Def)) {
2558    Diag(VDecl->getLocation(), diag::err_redefinition)
2559      << VDecl->getDeclName();
2560    Diag(Def->getLocation(), diag::note_previous_definition);
2561    VDecl->setInvalidDecl();
2562    return;
2563  }
2564
2565  // Take ownership of the expression, now that we're sure we have somewhere
2566  // to put it.
2567  Expr *Init = init.takeAs<Expr>();
2568  assert(Init && "missing initializer");
2569
2570  // Get the decls type and save a reference for later, since
2571  // CheckInitializerTypes may change it.
2572  QualType DclT = VDecl->getType(), SavT = DclT;
2573  if (VDecl->isBlockVarDecl()) {
2574    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2575      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2576      VDecl->setInvalidDecl();
2577    } else if (!VDecl->isInvalidDecl()) {
2578      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2579                                VDecl->getDeclName(), DirectInit))
2580        VDecl->setInvalidDecl();
2581
2582      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2583      // Don't check invalid declarations to avoid emitting useless diagnostics.
2584      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2585        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2586          CheckForConstantInitializer(Init, DclT);
2587      }
2588    }
2589  } else if (VDecl->isStaticDataMember() &&
2590             VDecl->getLexicalDeclContext()->isRecord()) {
2591    // This is an in-class initialization for a static data member, e.g.,
2592    //
2593    // struct S {
2594    //   static const int value = 17;
2595    // };
2596
2597    // Attach the initializer
2598    VDecl->setInit(Context, Init);
2599
2600    // C++ [class.mem]p4:
2601    //   A member-declarator can contain a constant-initializer only
2602    //   if it declares a static member (9.4) of const integral or
2603    //   const enumeration type, see 9.4.2.
2604    QualType T = VDecl->getType();
2605    if (!T->isDependentType() &&
2606        (!Context.getCanonicalType(T).isConstQualified() ||
2607         !T->isIntegralType())) {
2608      Diag(VDecl->getLocation(), diag::err_member_initialization)
2609        << VDecl->getDeclName() << Init->getSourceRange();
2610      VDecl->setInvalidDecl();
2611    } else {
2612      // C++ [class.static.data]p4:
2613      //   If a static data member is of const integral or const
2614      //   enumeration type, its declaration in the class definition
2615      //   can specify a constant-initializer which shall be an
2616      //   integral constant expression (5.19).
2617      if (!Init->isTypeDependent() &&
2618          !Init->getType()->isIntegralType()) {
2619        // We have a non-dependent, non-integral or enumeration type.
2620        Diag(Init->getSourceRange().getBegin(),
2621             diag::err_in_class_initializer_non_integral_type)
2622          << Init->getType() << Init->getSourceRange();
2623        VDecl->setInvalidDecl();
2624      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2625        // Check whether the expression is a constant expression.
2626        llvm::APSInt Value;
2627        SourceLocation Loc;
2628        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2629          Diag(Loc, diag::err_in_class_initializer_non_constant)
2630            << Init->getSourceRange();
2631          VDecl->setInvalidDecl();
2632        } else if (!VDecl->getType()->isDependentType())
2633          ImpCastExprToType(Init, VDecl->getType());
2634      }
2635    }
2636  } else if (VDecl->isFileVarDecl()) {
2637    if (VDecl->getStorageClass() == VarDecl::Extern)
2638      Diag(VDecl->getLocation(), diag::warn_extern_init);
2639    if (!VDecl->isInvalidDecl())
2640      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2641                                VDecl->getDeclName(), DirectInit))
2642        VDecl->setInvalidDecl();
2643
2644    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2645    // Don't check invalid declarations to avoid emitting useless diagnostics.
2646    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2647      // C99 6.7.8p4. All file scoped initializers need to be constant.
2648      CheckForConstantInitializer(Init, DclT);
2649    }
2650  }
2651  // If the type changed, it means we had an incomplete type that was
2652  // completed by the initializer. For example:
2653  //   int ary[] = { 1, 3, 5 };
2654  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2655  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2656    VDecl->setType(DclT);
2657    Init->setType(DclT);
2658  }
2659
2660  // Attach the initializer to the decl.
2661  VDecl->setInit(Context, Init);
2662
2663  // If the previous declaration of VDecl was a tentative definition,
2664  // remove it from the set of tentative definitions.
2665  if (VDecl->getPreviousDeclaration() &&
2666      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2667    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2668      = TentativeDefinitions.find(VDecl->getDeclName());
2669    assert(Pos != TentativeDefinitions.end() &&
2670           "Unrecorded tentative definition?");
2671    TentativeDefinitions.erase(Pos);
2672  }
2673
2674  return;
2675}
2676
2677void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2678  Decl *RealDecl = dcl.getAs<Decl>();
2679
2680  // If there is no declaration, there was an error parsing it. Just ignore it.
2681  if (RealDecl == 0)
2682    return;
2683
2684  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2685    QualType Type = Var->getType();
2686
2687    // Record tentative definitions.
2688    if (Var->isTentativeDefinition(Context))
2689      TentativeDefinitions[Var->getDeclName()] = Var;
2690
2691    // C++ [dcl.init.ref]p3:
2692    //   The initializer can be omitted for a reference only in a
2693    //   parameter declaration (8.3.5), in the declaration of a
2694    //   function return type, in the declaration of a class member
2695    //   within its class declaration (9.2), and where the extern
2696    //   specifier is explicitly used.
2697    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2698      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2699        << Var->getDeclName()
2700        << SourceRange(Var->getLocation(), Var->getLocation());
2701      Var->setInvalidDecl();
2702      return;
2703    }
2704
2705    // C++ [dcl.init]p9:
2706    //
2707    //   If no initializer is specified for an object, and the object
2708    //   is of (possibly cv-qualified) non-POD class type (or array
2709    //   thereof), the object shall be default-initialized; if the
2710    //   object is of const-qualified type, the underlying class type
2711    //   shall have a user-declared default constructor.
2712    if (getLangOptions().CPlusPlus) {
2713      QualType InitType = Type;
2714      if (const ArrayType *Array = Context.getAsArrayType(Type))
2715        InitType = Array->getElementType();
2716      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2717          InitType->isRecordType() && !InitType->isDependentType()) {
2718        CXXRecordDecl *RD =
2719          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2720        CXXConstructorDecl *Constructor = 0;
2721        if (!RequireCompleteType(Var->getLocation(), InitType,
2722                                    diag::err_invalid_incomplete_type_use))
2723          Constructor
2724            = PerformInitializationByConstructor(InitType, 0, 0,
2725                                                 Var->getLocation(),
2726                                               SourceRange(Var->getLocation(),
2727                                                           Var->getLocation()),
2728                                                 Var->getDeclName(),
2729                                                 IK_Default);
2730        if (!Constructor)
2731          Var->setInvalidDecl();
2732        else if (!RD->hasTrivialConstructor())
2733          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2734      }
2735    }
2736
2737#if 0
2738    // FIXME: Temporarily disabled because we are not properly parsing
2739    // linkage specifications on declarations, e.g.,
2740    //
2741    //   extern "C" const CGPoint CGPointerZero;
2742    //
2743    // C++ [dcl.init]p9:
2744    //
2745    //     If no initializer is specified for an object, and the
2746    //     object is of (possibly cv-qualified) non-POD class type (or
2747    //     array thereof), the object shall be default-initialized; if
2748    //     the object is of const-qualified type, the underlying class
2749    //     type shall have a user-declared default
2750    //     constructor. Otherwise, if no initializer is specified for
2751    //     an object, the object and its subobjects, if any, have an
2752    //     indeterminate initial value; if the object or any of its
2753    //     subobjects are of const-qualified type, the program is
2754    //     ill-formed.
2755    //
2756    // This isn't technically an error in C, so we don't diagnose it.
2757    //
2758    // FIXME: Actually perform the POD/user-defined default
2759    // constructor check.
2760    if (getLangOptions().CPlusPlus &&
2761        Context.getCanonicalType(Type).isConstQualified() &&
2762        !Var->hasExternalStorage())
2763      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2764        << Var->getName()
2765        << SourceRange(Var->getLocation(), Var->getLocation());
2766#endif
2767  }
2768}
2769
2770Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2771                                                   DeclPtrTy *Group,
2772                                                   unsigned NumDecls) {
2773  llvm::SmallVector<Decl*, 8> Decls;
2774
2775  if (DS.isTypeSpecOwned())
2776    Decls.push_back((Decl*)DS.getTypeRep());
2777
2778  for (unsigned i = 0; i != NumDecls; ++i)
2779    if (Decl *D = Group[i].getAs<Decl>())
2780      Decls.push_back(D);
2781
2782  // Perform semantic analysis that depends on having fully processed both
2783  // the declarator and initializer.
2784  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2785    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2786    if (!IDecl)
2787      continue;
2788    QualType T = IDecl->getType();
2789
2790    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2791    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2792    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2793      if (!IDecl->isInvalidDecl() &&
2794          RequireCompleteType(IDecl->getLocation(), T,
2795                              diag::err_typecheck_decl_incomplete_type))
2796        IDecl->setInvalidDecl();
2797    }
2798    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2799    // object that has file scope without an initializer, and without a
2800    // storage-class specifier or with the storage-class specifier "static",
2801    // constitutes a tentative definition. Note: A tentative definition with
2802    // external linkage is valid (C99 6.2.2p5).
2803    if (IDecl->isTentativeDefinition(Context)) {
2804      QualType CheckType = T;
2805      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2806
2807      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2808      if (ArrayT) {
2809        CheckType = ArrayT->getElementType();
2810        DiagID = diag::err_illegal_decl_array_incomplete_type;
2811      }
2812
2813      if (IDecl->isInvalidDecl()) {
2814        // Do nothing with invalid declarations
2815      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2816                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2817        // C99 6.9.2p3: If the declaration of an identifier for an object is
2818        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2819        // declared type shall not be an incomplete type.
2820        IDecl->setInvalidDecl();
2821      }
2822    }
2823  }
2824  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2825                                                   Decls.data(), Decls.size()));
2826}
2827
2828
2829/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2830/// to introduce parameters into function prototype scope.
2831Sema::DeclPtrTy
2832Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2833  const DeclSpec &DS = D.getDeclSpec();
2834
2835  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2836  VarDecl::StorageClass StorageClass = VarDecl::None;
2837  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2838    StorageClass = VarDecl::Register;
2839  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2840    Diag(DS.getStorageClassSpecLoc(),
2841         diag::err_invalid_storage_class_in_func_decl);
2842    D.getMutableDeclSpec().ClearStorageClassSpecs();
2843  }
2844
2845  if (D.getDeclSpec().isThreadSpecified())
2846    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2847
2848  DiagnoseFunctionSpecifiers(D);
2849
2850  // Check that there are no default arguments inside the type of this
2851  // parameter (C++ only).
2852  if (getLangOptions().CPlusPlus)
2853    CheckExtraCXXDefaultArguments(D);
2854
2855  TagDecl *OwnedDecl = 0;
2856  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2857
2858  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2859    // C++ [dcl.fct]p6:
2860    //   Types shall not be defined in return or parameter types.
2861    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2862      << Context.getTypeDeclType(OwnedDecl);
2863  }
2864
2865  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2866  // Can this happen for params?  We already checked that they don't conflict
2867  // among each other.  Here they can only shadow globals, which is ok.
2868  IdentifierInfo *II = D.getIdentifier();
2869  if (II) {
2870    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2871      if (PrevDecl->isTemplateParameter()) {
2872        // Maybe we will complain about the shadowed template parameter.
2873        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2874        // Just pretend that we didn't see the previous declaration.
2875        PrevDecl = 0;
2876      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2877        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2878
2879        // Recover by removing the name
2880        II = 0;
2881        D.SetIdentifier(0, D.getIdentifierLoc());
2882      }
2883    }
2884  }
2885
2886  // Parameters can not be abstract class types.
2887  // For record types, this is done by the AbstractClassUsageDiagnoser once
2888  // the class has been completely parsed.
2889  if (!CurContext->isRecord() &&
2890      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2891                             diag::err_abstract_type_in_decl,
2892                             AbstractParamType))
2893    D.setInvalidType(true);
2894
2895  QualType T = adjustParameterType(parmDeclType);
2896
2897  ParmVarDecl *New;
2898  if (T == parmDeclType) // parameter type did not need adjustment
2899    New = ParmVarDecl::Create(Context, CurContext,
2900                              D.getIdentifierLoc(), II,
2901                              parmDeclType, StorageClass,
2902                              0);
2903  else // keep track of both the adjusted and unadjusted types
2904    New = OriginalParmVarDecl::Create(Context, CurContext,
2905                                      D.getIdentifierLoc(), II, T,
2906                                      parmDeclType, StorageClass, 0);
2907
2908  if (D.isInvalidType())
2909    New->setInvalidDecl();
2910
2911  // Parameter declarators cannot be interface types. All ObjC objects are
2912  // passed by reference.
2913  if (T->isObjCInterfaceType()) {
2914    Diag(D.getIdentifierLoc(),
2915         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2916    New->setInvalidDecl();
2917  }
2918
2919  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2920  if (D.getCXXScopeSpec().isSet()) {
2921    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2922      << D.getCXXScopeSpec().getRange();
2923    New->setInvalidDecl();
2924  }
2925
2926  // Add the parameter declaration into this scope.
2927  S->AddDecl(DeclPtrTy::make(New));
2928  if (II)
2929    IdResolver.AddDecl(New);
2930
2931  ProcessDeclAttributes(S, New, D);
2932
2933  if (New->hasAttr<BlocksAttr>()) {
2934    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2935  }
2936  return DeclPtrTy::make(New);
2937}
2938
2939void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2940                                           SourceLocation LocAfterDecls) {
2941  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2942         "Not a function declarator!");
2943  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2944
2945  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2946  // for a K&R function.
2947  if (!FTI.hasPrototype) {
2948    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2949      --i;
2950      if (FTI.ArgInfo[i].Param == 0) {
2951        std::string Code = "  int ";
2952        Code += FTI.ArgInfo[i].Ident->getName();
2953        Code += ";\n";
2954        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2955          << FTI.ArgInfo[i].Ident
2956          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2957
2958        // Implicitly declare the argument as type 'int' for lack of a better
2959        // type.
2960        DeclSpec DS;
2961        const char* PrevSpec; // unused
2962        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2963                           PrevSpec);
2964        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2965        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2966        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2967      }
2968    }
2969  }
2970}
2971
2972Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2973                                              Declarator &D) {
2974  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2975  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2976         "Not a function declarator!");
2977  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2978
2979  if (FTI.hasPrototype) {
2980    // FIXME: Diagnose arguments without names in C.
2981  }
2982
2983  Scope *ParentScope = FnBodyScope->getParent();
2984
2985  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2986  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2987}
2988
2989Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2990  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2991
2992  CurFunctionNeedsScopeChecking = false;
2993
2994  // See if this is a redefinition.
2995  const FunctionDecl *Definition;
2996  if (FD->getBody(Context, Definition)) {
2997    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2998    Diag(Definition->getLocation(), diag::note_previous_definition);
2999  }
3000
3001  // Builtin functions cannot be defined.
3002  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3003    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3004      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3005      FD->setInvalidDecl();
3006    }
3007  }
3008
3009  // The return type of a function definition must be complete
3010  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3011  QualType ResultType = FD->getResultType();
3012  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3013      !FD->isInvalidDecl() &&
3014      RequireCompleteType(FD->getLocation(), ResultType,
3015                          diag::err_func_def_incomplete_result))
3016    FD->setInvalidDecl();
3017
3018  // GNU warning -Wmissing-prototypes:
3019  //   Warn if a global function is defined without a previous
3020  //   prototype declaration. This warning is issued even if the
3021  //   definition itself provides a prototype. The aim is to detect
3022  //   global functions that fail to be declared in header files.
3023  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3024      !FD->isMain()) {
3025    bool MissingPrototype = true;
3026    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3027         Prev; Prev = Prev->getPreviousDeclaration()) {
3028      // Ignore any declarations that occur in function or method
3029      // scope, because they aren't visible from the header.
3030      if (Prev->getDeclContext()->isFunctionOrMethod())
3031        continue;
3032
3033      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3034      break;
3035    }
3036
3037    if (MissingPrototype)
3038      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3039  }
3040
3041  if (FnBodyScope)
3042    PushDeclContext(FnBodyScope, FD);
3043
3044  // Check the validity of our function parameters
3045  CheckParmsForFunctionDef(FD);
3046
3047  // Introduce our parameters into the function scope
3048  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3049    ParmVarDecl *Param = FD->getParamDecl(p);
3050    Param->setOwningFunction(FD);
3051
3052    // If this has an identifier, add it to the scope stack.
3053    if (Param->getIdentifier() && FnBodyScope)
3054      PushOnScopeChains(Param, FnBodyScope);
3055  }
3056
3057  // Checking attributes of current function definition
3058  // dllimport attribute.
3059  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3060    // dllimport attribute cannot be applied to definition.
3061    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3062      Diag(FD->getLocation(),
3063           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3064        << "dllimport";
3065      FD->setInvalidDecl();
3066      return DeclPtrTy::make(FD);
3067    } else {
3068      // If a symbol previously declared dllimport is later defined, the
3069      // attribute is ignored in subsequent references, and a warning is
3070      // emitted.
3071      Diag(FD->getLocation(),
3072           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3073        << FD->getNameAsCString() << "dllimport";
3074    }
3075  }
3076  return DeclPtrTy::make(FD);
3077}
3078
3079Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3080  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3081}
3082
3083Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3084                                              bool IsInstantiation) {
3085  Decl *dcl = D.getAs<Decl>();
3086  Stmt *Body = BodyArg.takeAs<Stmt>();
3087  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3088    FD->setBody(Body);
3089    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3090  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3091    assert(MD == getCurMethodDecl() && "Method parsing confused");
3092    MD->setBody(Body);
3093  } else {
3094    Body->Destroy(Context);
3095    return DeclPtrTy();
3096  }
3097  if (!IsInstantiation)
3098    PopDeclContext();
3099
3100  // Verify and clean out per-function state.
3101
3102  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3103
3104  // Check goto/label use.
3105  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3106       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3107    LabelStmt *L = I->second;
3108
3109    // Verify that we have no forward references left.  If so, there was a goto
3110    // or address of a label taken, but no definition of it.  Label fwd
3111    // definitions are indicated with a null substmt.
3112    if (L->getSubStmt() != 0)
3113      continue;
3114
3115    // Emit error.
3116    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3117
3118    // At this point, we have gotos that use the bogus label.  Stitch it into
3119    // the function body so that they aren't leaked and that the AST is well
3120    // formed.
3121    if (Body == 0) {
3122      // The whole function wasn't parsed correctly, just delete this.
3123      L->Destroy(Context);
3124      continue;
3125    }
3126
3127    // Otherwise, the body is valid: we want to stitch the label decl into the
3128    // function somewhere so that it is properly owned and so that the goto
3129    // has a valid target.  Do this by creating a new compound stmt with the
3130    // label in it.
3131
3132    // Give the label a sub-statement.
3133    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3134
3135    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3136                               cast<CXXTryStmt>(Body)->getTryBlock() :
3137                               cast<CompoundStmt>(Body);
3138    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3139    Elements.push_back(L);
3140    Compound->setStmts(Context, &Elements[0], Elements.size());
3141  }
3142  FunctionLabelMap.clear();
3143
3144  if (!Body) return D;
3145
3146  // Verify that that gotos and switch cases don't jump into scopes illegally.
3147  if (CurFunctionNeedsScopeChecking)
3148    DiagnoseInvalidJumps(Body);
3149
3150  // C++ constructors that have function-try-blocks can't have return statements
3151  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3152  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3153    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3154
3155  return D;
3156}
3157
3158/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3159/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3160NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3161                                          IdentifierInfo &II, Scope *S) {
3162  // Before we produce a declaration for an implicitly defined
3163  // function, see whether there was a locally-scoped declaration of
3164  // this name as a function or variable. If so, use that
3165  // (non-visible) declaration, and complain about it.
3166  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3167    = LocallyScopedExternalDecls.find(&II);
3168  if (Pos != LocallyScopedExternalDecls.end()) {
3169    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3170    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3171    return Pos->second;
3172  }
3173
3174  // Extension in C99.  Legal in C90, but warn about it.
3175  if (getLangOptions().C99)
3176    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3177  else
3178    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3179
3180  // FIXME: handle stuff like:
3181  // void foo() { extern float X(); }
3182  // void bar() { X(); }  <-- implicit decl for X in another scope.
3183
3184  // Set a Declarator for the implicit definition: int foo();
3185  const char *Dummy;
3186  DeclSpec DS;
3187  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3188  Error = Error; // Silence warning.
3189  assert(!Error && "Error setting up implicit decl!");
3190  Declarator D(DS, Declarator::BlockContext);
3191  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3192                                             0, 0, false, SourceLocation(),
3193                                             false, 0,0,0, Loc, D),
3194                SourceLocation());
3195  D.SetIdentifier(&II, Loc);
3196
3197  // Insert this function into translation-unit scope.
3198
3199  DeclContext *PrevDC = CurContext;
3200  CurContext = Context.getTranslationUnitDecl();
3201
3202  FunctionDecl *FD =
3203 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3204  FD->setImplicit();
3205
3206  CurContext = PrevDC;
3207
3208  AddKnownFunctionAttributes(FD);
3209
3210  return FD;
3211}
3212
3213/// \brief Adds any function attributes that we know a priori based on
3214/// the declaration of this function.
3215///
3216/// These attributes can apply both to implicitly-declared builtins
3217/// (like __builtin___printf_chk) or to library-declared functions
3218/// like NSLog or printf.
3219void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3220  if (FD->isInvalidDecl())
3221    return;
3222
3223  // If this is a built-in function, map its builtin attributes to
3224  // actual attributes.
3225  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3226    // Handle printf-formatting attributes.
3227    unsigned FormatIdx;
3228    bool HasVAListArg;
3229    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3230      if (!FD->getAttr<FormatAttr>())
3231        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3232                                             HasVAListArg ? 0 : FormatIdx + 2));
3233    }
3234
3235    // Mark const if we don't care about errno and that is the only
3236    // thing preventing the function from being const. This allows
3237    // IRgen to use LLVM intrinsics for such functions.
3238    if (!getLangOptions().MathErrno &&
3239        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3240      if (!FD->getAttr<ConstAttr>())
3241        FD->addAttr(::new (Context) ConstAttr());
3242    }
3243  }
3244
3245  IdentifierInfo *Name = FD->getIdentifier();
3246  if (!Name)
3247    return;
3248  if ((!getLangOptions().CPlusPlus &&
3249       FD->getDeclContext()->isTranslationUnit()) ||
3250      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3251       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3252       LinkageSpecDecl::lang_c)) {
3253    // Okay: this could be a libc/libm/Objective-C function we know
3254    // about.
3255  } else
3256    return;
3257
3258  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3259    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3260      // FIXME: We known better than our headers.
3261      const_cast<FormatAttr *>(Format)->setType("printf");
3262    } else
3263      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3264                                             Name->isStr("NSLogv") ? 0 : 2));
3265  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3266    if (!FD->getAttr<FormatAttr>())
3267      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3268                                             Name->isStr("vasprintf") ? 0 : 3));
3269  }
3270}
3271
3272TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3273  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3274  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3275
3276  // Scope manipulation handled by caller.
3277  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3278                                           D.getIdentifierLoc(),
3279                                           D.getIdentifier(),
3280                                           T);
3281
3282  if (TagType *TT = dyn_cast<TagType>(T)) {
3283    TagDecl *TD = TT->getDecl();
3284
3285    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3286    // keep track of the TypedefDecl.
3287    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3288      TD->setTypedefForAnonDecl(NewTD);
3289  }
3290
3291  if (D.isInvalidType())
3292    NewTD->setInvalidDecl();
3293  return NewTD;
3294}
3295
3296
3297/// \brief Determine whether a tag with a given kind is acceptable
3298/// as a redeclaration of the given tag declaration.
3299///
3300/// \returns true if the new tag kind is acceptable, false otherwise.
3301bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3302                                        TagDecl::TagKind NewTag,
3303                                        SourceLocation NewTagLoc,
3304                                        const IdentifierInfo &Name) {
3305  // C++ [dcl.type.elab]p3:
3306  //   The class-key or enum keyword present in the
3307  //   elaborated-type-specifier shall agree in kind with the
3308  //   declaration to which the name in theelaborated-type-specifier
3309  //   refers. This rule also applies to the form of
3310  //   elaborated-type-specifier that declares a class-name or
3311  //   friend class since it can be construed as referring to the
3312  //   definition of the class. Thus, in any
3313  //   elaborated-type-specifier, the enum keyword shall be used to
3314  //   refer to an enumeration (7.2), the union class-keyshall be
3315  //   used to refer to a union (clause 9), and either the class or
3316  //   struct class-key shall be used to refer to a class (clause 9)
3317  //   declared using the class or struct class-key.
3318  TagDecl::TagKind OldTag = Previous->getTagKind();
3319  if (OldTag == NewTag)
3320    return true;
3321
3322  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3323      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3324    // Warn about the struct/class tag mismatch.
3325    bool isTemplate = false;
3326    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3327      isTemplate = Record->getDescribedClassTemplate();
3328
3329    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3330      << (NewTag == TagDecl::TK_class)
3331      << isTemplate << &Name
3332      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3333                              OldTag == TagDecl::TK_class? "class" : "struct");
3334    Diag(Previous->getLocation(), diag::note_previous_use);
3335    return true;
3336  }
3337  return false;
3338}
3339
3340/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3341/// former case, Name will be non-null.  In the later case, Name will be null.
3342/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3343/// reference/declaration/definition of a tag.
3344Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3345                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3346                               IdentifierInfo *Name, SourceLocation NameLoc,
3347                               AttributeList *Attr, AccessSpecifier AS,
3348                               bool &OwnedDecl) {
3349  // If this is not a definition, it must have a name.
3350  assert((Name != 0 || TK == TK_Definition) &&
3351         "Nameless record must be a definition!");
3352
3353  OwnedDecl = false;
3354  TagDecl::TagKind Kind;
3355  switch (TagSpec) {
3356  default: assert(0 && "Unknown tag type!");
3357  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3358  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3359  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3360  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3361  }
3362
3363  DeclContext *SearchDC = CurContext;
3364  DeclContext *DC = CurContext;
3365  NamedDecl *PrevDecl = 0;
3366
3367  bool Invalid = false;
3368
3369  if (Name && SS.isNotEmpty()) {
3370    // We have a nested-name tag ('struct foo::bar').
3371
3372    // Check for invalid 'foo::'.
3373    if (SS.isInvalid()) {
3374      Name = 0;
3375      goto CreateNewDecl;
3376    }
3377
3378    if (RequireCompleteDeclContext(SS))
3379      return DeclPtrTy::make((Decl *)0);
3380
3381    DC = computeDeclContext(SS);
3382    SearchDC = DC;
3383    // Look-up name inside 'foo::'.
3384    PrevDecl
3385      = dyn_cast_or_null<TagDecl>(
3386               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3387
3388    // A tag 'foo::bar' must already exist.
3389    if (PrevDecl == 0) {
3390      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3391      Name = 0;
3392      Invalid = true;
3393      goto CreateNewDecl;
3394    }
3395  } else if (Name) {
3396    // If this is a named struct, check to see if there was a previous forward
3397    // declaration or definition.
3398    // FIXME: We're looking into outer scopes here, even when we
3399    // shouldn't be. Doing so can result in ambiguities that we
3400    // shouldn't be diagnosing.
3401    LookupResult R = LookupName(S, Name, LookupTagName,
3402                                /*RedeclarationOnly=*/(TK != TK_Reference));
3403    if (R.isAmbiguous()) {
3404      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3405      // FIXME: This is not best way to recover from case like:
3406      //
3407      // struct S s;
3408      //
3409      // causes needless "incomplete type" error later.
3410      Name = 0;
3411      PrevDecl = 0;
3412      Invalid = true;
3413    }
3414    else
3415      PrevDecl = R;
3416
3417    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3418      // FIXME: This makes sure that we ignore the contexts associated
3419      // with C structs, unions, and enums when looking for a matching
3420      // tag declaration or definition. See the similar lookup tweak
3421      // in Sema::LookupName; is there a better way to deal with this?
3422      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3423        SearchDC = SearchDC->getParent();
3424    }
3425  }
3426
3427  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3428    // Maybe we will complain about the shadowed template parameter.
3429    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3430    // Just pretend that we didn't see the previous declaration.
3431    PrevDecl = 0;
3432  }
3433
3434  if (PrevDecl) {
3435    // Check whether the previous declaration is usable.
3436    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3437
3438    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3439      // If this is a use of a previous tag, or if the tag is already declared
3440      // in the same scope (so that the definition/declaration completes or
3441      // rementions the tag), reuse the decl.
3442      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3443        // Make sure that this wasn't declared as an enum and now used as a
3444        // struct or something similar.
3445        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3446          bool SafeToContinue
3447            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3448               Kind != TagDecl::TK_enum);
3449          if (SafeToContinue)
3450            Diag(KWLoc, diag::err_use_with_wrong_tag)
3451              << Name
3452              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3453                                                  PrevTagDecl->getKindName());
3454          else
3455            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3456          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3457
3458          if (SafeToContinue)
3459            Kind = PrevTagDecl->getTagKind();
3460          else {
3461            // Recover by making this an anonymous redefinition.
3462            Name = 0;
3463            PrevDecl = 0;
3464            Invalid = true;
3465          }
3466        }
3467
3468        if (!Invalid) {
3469          // If this is a use, just return the declaration we found.
3470
3471          // FIXME: In the future, return a variant or some other clue
3472          // for the consumer of this Decl to know it doesn't own it.
3473          // For our current ASTs this shouldn't be a problem, but will
3474          // need to be changed with DeclGroups.
3475          if (TK == TK_Reference)
3476            return DeclPtrTy::make(PrevDecl);
3477
3478          // Diagnose attempts to redefine a tag.
3479          if (TK == TK_Definition) {
3480            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3481              Diag(NameLoc, diag::err_redefinition) << Name;
3482              Diag(Def->getLocation(), diag::note_previous_definition);
3483              // If this is a redefinition, recover by making this
3484              // struct be anonymous, which will make any later
3485              // references get the previous definition.
3486              Name = 0;
3487              PrevDecl = 0;
3488              Invalid = true;
3489            } else {
3490              // If the type is currently being defined, complain
3491              // about a nested redefinition.
3492              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3493              if (Tag->isBeingDefined()) {
3494                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3495                Diag(PrevTagDecl->getLocation(),
3496                     diag::note_previous_definition);
3497                Name = 0;
3498                PrevDecl = 0;
3499                Invalid = true;
3500              }
3501            }
3502
3503            // Okay, this is definition of a previously declared or referenced
3504            // tag PrevDecl. We're going to create a new Decl for it.
3505          }
3506        }
3507        // If we get here we have (another) forward declaration or we
3508        // have a definition.  Just create a new decl.
3509      } else {
3510        // If we get here, this is a definition of a new tag type in a nested
3511        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3512        // new decl/type.  We set PrevDecl to NULL so that the entities
3513        // have distinct types.
3514        PrevDecl = 0;
3515      }
3516      // If we get here, we're going to create a new Decl. If PrevDecl
3517      // is non-NULL, it's a definition of the tag declared by
3518      // PrevDecl. If it's NULL, we have a new definition.
3519    } else {
3520      // PrevDecl is a namespace, template, or anything else
3521      // that lives in the IDNS_Tag identifier namespace.
3522      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3523        // The tag name clashes with a namespace name, issue an error and
3524        // recover by making this tag be anonymous.
3525        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3526        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3527        Name = 0;
3528        PrevDecl = 0;
3529        Invalid = true;
3530      } else {
3531        // The existing declaration isn't relevant to us; we're in a
3532        // new scope, so clear out the previous declaration.
3533        PrevDecl = 0;
3534      }
3535    }
3536  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3537             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3538    // C++ [basic.scope.pdecl]p5:
3539    //   -- for an elaborated-type-specifier of the form
3540    //
3541    //          class-key identifier
3542    //
3543    //      if the elaborated-type-specifier is used in the
3544    //      decl-specifier-seq or parameter-declaration-clause of a
3545    //      function defined in namespace scope, the identifier is
3546    //      declared as a class-name in the namespace that contains
3547    //      the declaration; otherwise, except as a friend
3548    //      declaration, the identifier is declared in the smallest
3549    //      non-class, non-function-prototype scope that contains the
3550    //      declaration.
3551    //
3552    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3553    // C structs and unions.
3554    //
3555    // GNU C also supports this behavior as part of its incomplete
3556    // enum types extension, while GNU C++ does not.
3557    //
3558    // Find the context where we'll be declaring the tag.
3559    // FIXME: We would like to maintain the current DeclContext as the
3560    // lexical context,
3561    while (SearchDC->isRecord())
3562      SearchDC = SearchDC->getParent();
3563
3564    // Find the scope where we'll be declaring the tag.
3565    while (S->isClassScope() ||
3566           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3567           ((S->getFlags() & Scope::DeclScope) == 0) ||
3568           (S->getEntity() &&
3569            ((DeclContext *)S->getEntity())->isTransparentContext()))
3570      S = S->getParent();
3571  }
3572
3573CreateNewDecl:
3574
3575  // If there is an identifier, use the location of the identifier as the
3576  // location of the decl, otherwise use the location of the struct/union
3577  // keyword.
3578  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3579
3580  // Otherwise, create a new declaration. If there is a previous
3581  // declaration of the same entity, the two will be linked via
3582  // PrevDecl.
3583  TagDecl *New;
3584
3585  if (Kind == TagDecl::TK_enum) {
3586    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3587    // enum X { A, B, C } D;    D should chain to X.
3588    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3589                           cast_or_null<EnumDecl>(PrevDecl));
3590    // If this is an undefined enum, warn.
3591    if (TK != TK_Definition && !Invalid)  {
3592      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3593                                              : diag::ext_forward_ref_enum;
3594      Diag(Loc, DK);
3595    }
3596  } else {
3597    // struct/union/class
3598
3599    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3600    // struct X { int A; } D;    D should chain to X.
3601    if (getLangOptions().CPlusPlus)
3602      // FIXME: Look for a way to use RecordDecl for simple structs.
3603      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3604                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3605    else
3606      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3607                               cast_or_null<RecordDecl>(PrevDecl));
3608  }
3609
3610  if (Kind != TagDecl::TK_enum) {
3611    // Handle #pragma pack: if the #pragma pack stack has non-default
3612    // alignment, make up a packed attribute for this decl. These
3613    // attributes are checked when the ASTContext lays out the
3614    // structure.
3615    //
3616    // It is important for implementing the correct semantics that this
3617    // happen here (in act on tag decl). The #pragma pack stack is
3618    // maintained as a result of parser callbacks which can occur at
3619    // many points during the parsing of a struct declaration (because
3620    // the #pragma tokens are effectively skipped over during the
3621    // parsing of the struct).
3622    if (unsigned Alignment = getPragmaPackAlignment())
3623      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3624  }
3625
3626  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3627    // C++ [dcl.typedef]p3:
3628    //   [...] Similarly, in a given scope, a class or enumeration
3629    //   shall not be declared with the same name as a typedef-name
3630    //   that is declared in that scope and refers to a type other
3631    //   than the class or enumeration itself.
3632    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3633    TypedefDecl *PrevTypedef = 0;
3634    if (Lookup.getKind() == LookupResult::Found)
3635      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3636
3637    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3638        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3639          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3640      Diag(Loc, diag::err_tag_definition_of_typedef)
3641        << Context.getTypeDeclType(New)
3642        << PrevTypedef->getUnderlyingType();
3643      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3644      Invalid = true;
3645    }
3646  }
3647
3648  if (Invalid)
3649    New->setInvalidDecl();
3650
3651  if (Attr)
3652    ProcessDeclAttributeList(S, New, Attr);
3653
3654  // If we're declaring or defining a tag in function prototype scope
3655  // in C, note that this type can only be used within the function.
3656  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3657    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3658
3659  // Set the lexical context. If the tag has a C++ scope specifier, the
3660  // lexical context will be different from the semantic context.
3661  New->setLexicalDeclContext(CurContext);
3662
3663  // Set the access specifier.
3664  if (!Invalid)
3665    SetMemberAccessSpecifier(New, PrevDecl, AS);
3666
3667  if (TK == TK_Definition)
3668    New->startDefinition();
3669
3670  // If this has an identifier, add it to the scope stack.
3671  if (Name) {
3672    S = getNonFieldDeclScope(S);
3673    PushOnScopeChains(New, S);
3674  } else {
3675    CurContext->addDecl(Context, New);
3676  }
3677
3678  OwnedDecl = true;
3679  return DeclPtrTy::make(New);
3680}
3681
3682void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3683  AdjustDeclIfTemplate(TagD);
3684  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3685
3686  // Enter the tag context.
3687  PushDeclContext(S, Tag);
3688
3689  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3690    FieldCollector->StartClass();
3691
3692    if (Record->getIdentifier()) {
3693      // C++ [class]p2:
3694      //   [...] The class-name is also inserted into the scope of the
3695      //   class itself; this is known as the injected-class-name. For
3696      //   purposes of access checking, the injected-class-name is treated
3697      //   as if it were a public member name.
3698      CXXRecordDecl *InjectedClassName
3699        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3700                                CurContext, Record->getLocation(),
3701                                Record->getIdentifier(), Record);
3702      InjectedClassName->setImplicit();
3703      InjectedClassName->setAccess(AS_public);
3704      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3705        InjectedClassName->setDescribedClassTemplate(Template);
3706      PushOnScopeChains(InjectedClassName, S);
3707      assert(InjectedClassName->isInjectedClassName() &&
3708             "Broken injected-class-name");
3709    }
3710  }
3711}
3712
3713void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3714  AdjustDeclIfTemplate(TagD);
3715  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3716
3717  if (isa<CXXRecordDecl>(Tag))
3718    FieldCollector->FinishClass();
3719
3720  // Exit this scope of this tag's definition.
3721  PopDeclContext();
3722
3723  // Notify the consumer that we've defined a tag.
3724  Consumer.HandleTagDeclDefinition(Tag);
3725}
3726
3727// Note that FieldName may be null for anonymous bitfields.
3728bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3729                          QualType FieldTy, const Expr *BitWidth) {
3730
3731  // C99 6.7.2.1p4 - verify the field type.
3732  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3733  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3734    // Handle incomplete types with specific error.
3735    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3736      return true;
3737    if (FieldName)
3738      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3739        << FieldName << FieldTy << BitWidth->getSourceRange();
3740    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3741      << FieldTy << BitWidth->getSourceRange();
3742  }
3743
3744  // If the bit-width is type- or value-dependent, don't try to check
3745  // it now.
3746  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3747    return false;
3748
3749  llvm::APSInt Value;
3750  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3751    return true;
3752
3753  // Zero-width bitfield is ok for anonymous field.
3754  if (Value == 0 && FieldName)
3755    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3756
3757  if (Value.isSigned() && Value.isNegative()) {
3758    if (FieldName)
3759      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3760               << FieldName << Value.toString(10);
3761    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3762      << Value.toString(10);
3763  }
3764
3765  if (!FieldTy->isDependentType()) {
3766    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3767    if (Value.getZExtValue() > TypeSize) {
3768      if (FieldName)
3769        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3770          << FieldName << (unsigned)TypeSize;
3771      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3772        << (unsigned)TypeSize;
3773    }
3774  }
3775
3776  return false;
3777}
3778
3779/// ActOnField - Each field of a struct/union/class is passed into this in order
3780/// to create a FieldDecl object for it.
3781Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3782                                 SourceLocation DeclStart,
3783                                 Declarator &D, ExprTy *BitfieldWidth) {
3784  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3785                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3786                               AS_public);
3787  return DeclPtrTy::make(Res);
3788}
3789
3790/// HandleField - Analyze a field of a C struct or a C++ data member.
3791///
3792FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3793                             SourceLocation DeclStart,
3794                             Declarator &D, Expr *BitWidth,
3795                             AccessSpecifier AS) {
3796  IdentifierInfo *II = D.getIdentifier();
3797  SourceLocation Loc = DeclStart;
3798  if (II) Loc = D.getIdentifierLoc();
3799
3800  QualType T = GetTypeForDeclarator(D, S);
3801  if (getLangOptions().CPlusPlus)
3802    CheckExtraCXXDefaultArguments(D);
3803
3804  DiagnoseFunctionSpecifiers(D);
3805
3806  if (D.getDeclSpec().isThreadSpecified())
3807    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3808
3809  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3810
3811  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3812    // Maybe we will complain about the shadowed template parameter.
3813    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3814    // Just pretend that we didn't see the previous declaration.
3815    PrevDecl = 0;
3816  }
3817
3818  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3819    PrevDecl = 0;
3820
3821  FieldDecl *NewFD
3822    = CheckFieldDecl(II, T, Record, Loc,
3823               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3824                     BitWidth, AS, PrevDecl, &D);
3825  if (NewFD->isInvalidDecl() && PrevDecl) {
3826    // Don't introduce NewFD into scope; there's already something
3827    // with the same name in the same scope.
3828  } else if (II) {
3829    PushOnScopeChains(NewFD, S);
3830  } else
3831    Record->addDecl(Context, NewFD);
3832
3833  return NewFD;
3834}
3835
3836/// \brief Build a new FieldDecl and check its well-formedness.
3837///
3838/// This routine builds a new FieldDecl given the fields name, type,
3839/// record, etc. \p PrevDecl should refer to any previous declaration
3840/// with the same name and in the same scope as the field to be
3841/// created.
3842///
3843/// \returns a new FieldDecl.
3844///
3845/// \todo The Declarator argument is a hack. It will be removed once
3846FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3847                                RecordDecl *Record, SourceLocation Loc,
3848                                bool Mutable, Expr *BitWidth,
3849                                AccessSpecifier AS, NamedDecl *PrevDecl,
3850                                Declarator *D) {
3851  IdentifierInfo *II = Name.getAsIdentifierInfo();
3852  bool InvalidDecl = false;
3853  if (D) InvalidDecl = D->isInvalidType();
3854
3855  // If we receive a broken type, recover by assuming 'int' and
3856  // marking this declaration as invalid.
3857  if (T.isNull()) {
3858    InvalidDecl = true;
3859    T = Context.IntTy;
3860  }
3861
3862  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3863  // than a variably modified type.
3864  if (T->isVariablyModifiedType()) {
3865    bool SizeIsNegative;
3866    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3867                                                           SizeIsNegative);
3868    if (!FixedTy.isNull()) {
3869      Diag(Loc, diag::warn_illegal_constant_array_size);
3870      T = FixedTy;
3871    } else {
3872      if (SizeIsNegative)
3873        Diag(Loc, diag::err_typecheck_negative_array_size);
3874      else
3875        Diag(Loc, diag::err_typecheck_field_variable_size);
3876      T = Context.IntTy;
3877      InvalidDecl = true;
3878    }
3879  }
3880
3881  // Fields can not have abstract class types
3882  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3883                             AbstractFieldType))
3884    InvalidDecl = true;
3885
3886  // If this is declared as a bit-field, check the bit-field.
3887  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3888    InvalidDecl = true;
3889    DeleteExpr(BitWidth);
3890    BitWidth = 0;
3891  }
3892
3893  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3894                                       Mutable);
3895  if (InvalidDecl)
3896    NewFD->setInvalidDecl();
3897
3898  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3899    Diag(Loc, diag::err_duplicate_member) << II;
3900    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3901    NewFD->setInvalidDecl();
3902  }
3903
3904  if (getLangOptions().CPlusPlus && !T->isPODType())
3905    cast<CXXRecordDecl>(Record)->setPOD(false);
3906
3907  // FIXME: We need to pass in the attributes given an AST
3908  // representation, not a parser representation.
3909  if (D)
3910    // FIXME: What to pass instead of TUScope?
3911    ProcessDeclAttributes(TUScope, NewFD, *D);
3912
3913  if (T.isObjCGCWeak())
3914    Diag(Loc, diag::warn_attribute_weak_on_field);
3915
3916  NewFD->setAccess(AS);
3917
3918  // C++ [dcl.init.aggr]p1:
3919  //   An aggregate is an array or a class (clause 9) with [...] no
3920  //   private or protected non-static data members (clause 11).
3921  // A POD must be an aggregate.
3922  if (getLangOptions().CPlusPlus &&
3923      (AS == AS_private || AS == AS_protected)) {
3924    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3925    CXXRecord->setAggregate(false);
3926    CXXRecord->setPOD(false);
3927  }
3928
3929  return NewFD;
3930}
3931
3932/// TranslateIvarVisibility - Translate visibility from a token ID to an
3933///  AST enum value.
3934static ObjCIvarDecl::AccessControl
3935TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3936  switch (ivarVisibility) {
3937  default: assert(0 && "Unknown visitibility kind");
3938  case tok::objc_private: return ObjCIvarDecl::Private;
3939  case tok::objc_public: return ObjCIvarDecl::Public;
3940  case tok::objc_protected: return ObjCIvarDecl::Protected;
3941  case tok::objc_package: return ObjCIvarDecl::Package;
3942  }
3943}
3944
3945/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3946/// in order to create an IvarDecl object for it.
3947Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3948                                SourceLocation DeclStart,
3949                                DeclPtrTy IntfDecl,
3950                                Declarator &D, ExprTy *BitfieldWidth,
3951                                tok::ObjCKeywordKind Visibility) {
3952
3953  IdentifierInfo *II = D.getIdentifier();
3954  Expr *BitWidth = (Expr*)BitfieldWidth;
3955  SourceLocation Loc = DeclStart;
3956  if (II) Loc = D.getIdentifierLoc();
3957
3958  // FIXME: Unnamed fields can be handled in various different ways, for
3959  // example, unnamed unions inject all members into the struct namespace!
3960
3961  QualType T = GetTypeForDeclarator(D, S);
3962
3963  if (BitWidth) {
3964    // 6.7.2.1p3, 6.7.2.1p4
3965    if (VerifyBitField(Loc, II, T, BitWidth)) {
3966      D.setInvalidType();
3967      DeleteExpr(BitWidth);
3968      BitWidth = 0;
3969    }
3970  } else {
3971    // Not a bitfield.
3972
3973    // validate II.
3974
3975  }
3976
3977  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3978  // than a variably modified type.
3979  if (T->isVariablyModifiedType()) {
3980    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3981    D.setInvalidType();
3982  }
3983
3984  // Get the visibility (access control) for this ivar.
3985  ObjCIvarDecl::AccessControl ac =
3986    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3987                                        : ObjCIvarDecl::None;
3988  // Must set ivar's DeclContext to its enclosing interface.
3989  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
3990  DeclContext *EnclosingContext;
3991  if (ObjCImplementationDecl *IMPDecl =
3992      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3993    // Case of ivar declared in an implementation. Context is that of its class.
3994    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
3995    assert(IDecl && "No class- ActOnIvar");
3996    EnclosingContext = cast_or_null<DeclContext>(IDecl);
3997  }
3998  else
3999    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4000  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4001
4002  // Construct the decl.
4003  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4004                                             EnclosingContext, Loc, II, T,ac,
4005                                             (Expr *)BitfieldWidth);
4006
4007  if (II) {
4008    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4009    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4010        && !isa<TagDecl>(PrevDecl)) {
4011      Diag(Loc, diag::err_duplicate_member) << II;
4012      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4013      NewID->setInvalidDecl();
4014    }
4015  }
4016
4017  // Process attributes attached to the ivar.
4018  ProcessDeclAttributes(S, NewID, D);
4019
4020  if (D.isInvalidType())
4021    NewID->setInvalidDecl();
4022
4023  if (II) {
4024    // FIXME: When interfaces are DeclContexts, we'll need to add
4025    // these to the interface.
4026    S->AddDecl(DeclPtrTy::make(NewID));
4027    IdResolver.AddDecl(NewID);
4028  }
4029
4030  return DeclPtrTy::make(NewID);
4031}
4032
4033void Sema::ActOnFields(Scope* S,
4034                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4035                       DeclPtrTy *Fields, unsigned NumFields,
4036                       SourceLocation LBrac, SourceLocation RBrac,
4037                       AttributeList *Attr) {
4038  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4039  assert(EnclosingDecl && "missing record or interface decl");
4040
4041  // If the decl this is being inserted into is invalid, then it may be a
4042  // redeclaration or some other bogus case.  Don't try to add fields to it.
4043  if (EnclosingDecl->isInvalidDecl()) {
4044    // FIXME: Deallocate fields?
4045    return;
4046  }
4047
4048
4049  // Verify that all the fields are okay.
4050  unsigned NumNamedMembers = 0;
4051  llvm::SmallVector<FieldDecl*, 32> RecFields;
4052
4053  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4054  for (unsigned i = 0; i != NumFields; ++i) {
4055    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4056
4057    // Get the type for the field.
4058    Type *FDTy = FD->getType().getTypePtr();
4059
4060    if (!FD->isAnonymousStructOrUnion()) {
4061      // Remember all fields written by the user.
4062      RecFields.push_back(FD);
4063    }
4064
4065    // If the field is already invalid for some reason, don't emit more
4066    // diagnostics about it.
4067    if (FD->isInvalidDecl())
4068      continue;
4069
4070    // C99 6.7.2.1p2:
4071    //   A structure or union shall not contain a member with
4072    //   incomplete or function type (hence, a structure shall not
4073    //   contain an instance of itself, but may contain a pointer to
4074    //   an instance of itself), except that the last member of a
4075    //   structure with more than one named member may have incomplete
4076    //   array type; such a structure (and any union containing,
4077    //   possibly recursively, a member that is such a structure)
4078    //   shall not be a member of a structure or an element of an
4079    //   array.
4080    if (FDTy->isFunctionType()) {
4081      // Field declared as a function.
4082      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4083        << FD->getDeclName();
4084      FD->setInvalidDecl();
4085      EnclosingDecl->setInvalidDecl();
4086      continue;
4087    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4088               Record && Record->isStruct()) {
4089      // Flexible array member.
4090      if (NumNamedMembers < 1) {
4091        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4092          << FD->getDeclName();
4093        FD->setInvalidDecl();
4094        EnclosingDecl->setInvalidDecl();
4095        continue;
4096      }
4097      // Okay, we have a legal flexible array member at the end of the struct.
4098      if (Record)
4099        Record->setHasFlexibleArrayMember(true);
4100    } else if (!FDTy->isDependentType() &&
4101               RequireCompleteType(FD->getLocation(), FD->getType(),
4102                                   diag::err_field_incomplete)) {
4103      // Incomplete type
4104      FD->setInvalidDecl();
4105      EnclosingDecl->setInvalidDecl();
4106      continue;
4107    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4108      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4109        // If this is a member of a union, then entire union becomes "flexible".
4110        if (Record && Record->isUnion()) {
4111          Record->setHasFlexibleArrayMember(true);
4112        } else {
4113          // If this is a struct/class and this is not the last element, reject
4114          // it.  Note that GCC supports variable sized arrays in the middle of
4115          // structures.
4116          if (i != NumFields-1)
4117            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4118              << FD->getDeclName() << FD->getType();
4119          else {
4120            // We support flexible arrays at the end of structs in
4121            // other structs as an extension.
4122            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4123              << FD->getDeclName();
4124            if (Record)
4125              Record->setHasFlexibleArrayMember(true);
4126          }
4127        }
4128      }
4129    } else if (FDTy->isObjCInterfaceType()) {
4130      /// A field cannot be an Objective-c object
4131      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4132      FD->setInvalidDecl();
4133      EnclosingDecl->setInvalidDecl();
4134      continue;
4135    }
4136    // Keep track of the number of named members.
4137    if (FD->getIdentifier())
4138      ++NumNamedMembers;
4139  }
4140
4141  // Okay, we successfully defined 'Record'.
4142  if (Record) {
4143    Record->completeDefinition(Context);
4144  } else {
4145    ObjCIvarDecl **ClsFields =
4146      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4147    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4148      ID->setIVarList(ClsFields, RecFields.size(), Context);
4149      ID->setLocEnd(RBrac);
4150      // Add ivar's to class's DeclContext.
4151      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4152        ClsFields[i]->setLexicalDeclContext(ID);
4153        ID->addDecl(Context, ClsFields[i]);
4154      }
4155      // Must enforce the rule that ivars in the base classes may not be
4156      // duplicates.
4157      if (ID->getSuperClass()) {
4158        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4159             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4160          ObjCIvarDecl* Ivar = (*IVI);
4161
4162          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4163            ObjCIvarDecl* prevIvar =
4164              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4165            if (prevIvar) {
4166              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4167              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4168            }
4169          }
4170        }
4171      }
4172    } else if (ObjCImplementationDecl *IMPDecl =
4173                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4174      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4175      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4176        // Ivar declared in @implementation never belongs to the implementation.
4177        // Only it is in implementation's lexical context.
4178        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4179      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4180    }
4181  }
4182
4183  if (Attr)
4184    ProcessDeclAttributeList(S, Record, Attr);
4185}
4186
4187EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4188                                          EnumConstantDecl *LastEnumConst,
4189                                          SourceLocation IdLoc,
4190                                          IdentifierInfo *Id,
4191                                          ExprArg val) {
4192  Expr *Val = (Expr *)val.get();
4193
4194  llvm::APSInt EnumVal(32);
4195  QualType EltTy;
4196  if (Val && !Val->isTypeDependent()) {
4197    // Make sure to promote the operand type to int.
4198    UsualUnaryConversions(Val);
4199    if (Val != val.get()) {
4200      val.release();
4201      val = Val;
4202    }
4203
4204    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4205    SourceLocation ExpLoc;
4206    if (!Val->isValueDependent() &&
4207        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4208      Val = 0;
4209    } else {
4210      EltTy = Val->getType();
4211    }
4212  }
4213
4214  if (!Val) {
4215    if (LastEnumConst) {
4216      // Assign the last value + 1.
4217      EnumVal = LastEnumConst->getInitVal();
4218      ++EnumVal;
4219
4220      // Check for overflow on increment.
4221      if (EnumVal < LastEnumConst->getInitVal())
4222        Diag(IdLoc, diag::warn_enum_value_overflow);
4223
4224      EltTy = LastEnumConst->getType();
4225    } else {
4226      // First value, set to zero.
4227      EltTy = Context.IntTy;
4228      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4229    }
4230  }
4231
4232  val.release();
4233  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4234                                  Val, EnumVal);
4235}
4236
4237
4238Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4239                                        DeclPtrTy lastEnumConst,
4240                                        SourceLocation IdLoc,
4241                                        IdentifierInfo *Id,
4242                                        SourceLocation EqualLoc, ExprTy *val) {
4243  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4244  EnumConstantDecl *LastEnumConst =
4245    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4246  Expr *Val = static_cast<Expr*>(val);
4247
4248  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4249  // we find one that is.
4250  S = getNonFieldDeclScope(S);
4251
4252  // Verify that there isn't already something declared with this name in this
4253  // scope.
4254  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4255  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4256    // Maybe we will complain about the shadowed template parameter.
4257    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4258    // Just pretend that we didn't see the previous declaration.
4259    PrevDecl = 0;
4260  }
4261
4262  if (PrevDecl) {
4263    // When in C++, we may get a TagDecl with the same name; in this case the
4264    // enum constant will 'hide' the tag.
4265    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4266           "Received TagDecl when not in C++!");
4267    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4268      if (isa<EnumConstantDecl>(PrevDecl))
4269        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4270      else
4271        Diag(IdLoc, diag::err_redefinition) << Id;
4272      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4273      if (Val) Val->Destroy(Context);
4274      return DeclPtrTy();
4275    }
4276  }
4277
4278  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4279                                            IdLoc, Id, Owned(Val));
4280
4281  // Register this decl in the current scope stack.
4282  if (New)
4283    PushOnScopeChains(New, S);
4284
4285  return DeclPtrTy::make(New);
4286}
4287
4288void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4289                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4290                         DeclPtrTy *Elements, unsigned NumElements) {
4291  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4292  QualType EnumType = Context.getTypeDeclType(Enum);
4293
4294  // TODO: If the result value doesn't fit in an int, it must be a long or long
4295  // long value.  ISO C does not support this, but GCC does as an extension,
4296  // emit a warning.
4297  unsigned IntWidth = Context.Target.getIntWidth();
4298
4299  // Verify that all the values are okay, compute the size of the values, and
4300  // reverse the list.
4301  unsigned NumNegativeBits = 0;
4302  unsigned NumPositiveBits = 0;
4303
4304  // Keep track of whether all elements have type int.
4305  bool AllElementsInt = true;
4306
4307  for (unsigned i = 0; i != NumElements; ++i) {
4308    EnumConstantDecl *ECD =
4309      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4310    if (!ECD) continue;  // Already issued a diagnostic.
4311
4312    // If the enum value doesn't fit in an int, emit an extension warning.
4313    const llvm::APSInt &InitVal = ECD->getInitVal();
4314    assert(InitVal.getBitWidth() >= IntWidth &&
4315           "Should have promoted value to int");
4316    if (InitVal.getBitWidth() > IntWidth) {
4317      llvm::APSInt V(InitVal);
4318      V.trunc(IntWidth);
4319      V.extend(InitVal.getBitWidth());
4320      if (V != InitVal)
4321        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4322          << InitVal.toString(10);
4323    }
4324
4325    // Keep track of the size of positive and negative values.
4326    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4327      NumPositiveBits = std::max(NumPositiveBits,
4328                                 (unsigned)InitVal.getActiveBits());
4329    else
4330      NumNegativeBits = std::max(NumNegativeBits,
4331                                 (unsigned)InitVal.getMinSignedBits());
4332
4333    // Keep track of whether every enum element has type int (very commmon).
4334    if (AllElementsInt)
4335      AllElementsInt = ECD->getType() == Context.IntTy;
4336  }
4337
4338  // Figure out the type that should be used for this enum.
4339  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4340  QualType BestType;
4341  unsigned BestWidth;
4342
4343  if (NumNegativeBits) {
4344    // If there is a negative value, figure out the smallest integer type (of
4345    // int/long/longlong) that fits.
4346    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4347      BestType = Context.IntTy;
4348      BestWidth = IntWidth;
4349    } else {
4350      BestWidth = Context.Target.getLongWidth();
4351
4352      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4353        BestType = Context.LongTy;
4354      else {
4355        BestWidth = Context.Target.getLongLongWidth();
4356
4357        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4358          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4359        BestType = Context.LongLongTy;
4360      }
4361    }
4362  } else {
4363    // If there is no negative value, figure out which of uint, ulong, ulonglong
4364    // fits.
4365    if (NumPositiveBits <= IntWidth) {
4366      BestType = Context.UnsignedIntTy;
4367      BestWidth = IntWidth;
4368    } else if (NumPositiveBits <=
4369               (BestWidth = Context.Target.getLongWidth())) {
4370      BestType = Context.UnsignedLongTy;
4371    } else {
4372      BestWidth = Context.Target.getLongLongWidth();
4373      assert(NumPositiveBits <= BestWidth &&
4374             "How could an initializer get larger than ULL?");
4375      BestType = Context.UnsignedLongLongTy;
4376    }
4377  }
4378
4379  // Loop over all of the enumerator constants, changing their types to match
4380  // the type of the enum if needed.
4381  for (unsigned i = 0; i != NumElements; ++i) {
4382    EnumConstantDecl *ECD =
4383      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4384    if (!ECD) continue;  // Already issued a diagnostic.
4385
4386    // Standard C says the enumerators have int type, but we allow, as an
4387    // extension, the enumerators to be larger than int size.  If each
4388    // enumerator value fits in an int, type it as an int, otherwise type it the
4389    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4390    // that X has type 'int', not 'unsigned'.
4391    if (ECD->getType() == Context.IntTy) {
4392      // Make sure the init value is signed.
4393      llvm::APSInt IV = ECD->getInitVal();
4394      IV.setIsSigned(true);
4395      ECD->setInitVal(IV);
4396
4397      if (getLangOptions().CPlusPlus)
4398        // C++ [dcl.enum]p4: Following the closing brace of an
4399        // enum-specifier, each enumerator has the type of its
4400        // enumeration.
4401        ECD->setType(EnumType);
4402      continue;  // Already int type.
4403    }
4404
4405    // Determine whether the value fits into an int.
4406    llvm::APSInt InitVal = ECD->getInitVal();
4407    bool FitsInInt;
4408    if (InitVal.isUnsigned() || !InitVal.isNegative())
4409      FitsInInt = InitVal.getActiveBits() < IntWidth;
4410    else
4411      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4412
4413    // If it fits into an integer type, force it.  Otherwise force it to match
4414    // the enum decl type.
4415    QualType NewTy;
4416    unsigned NewWidth;
4417    bool NewSign;
4418    if (FitsInInt) {
4419      NewTy = Context.IntTy;
4420      NewWidth = IntWidth;
4421      NewSign = true;
4422    } else if (ECD->getType() == BestType) {
4423      // Already the right type!
4424      if (getLangOptions().CPlusPlus)
4425        // C++ [dcl.enum]p4: Following the closing brace of an
4426        // enum-specifier, each enumerator has the type of its
4427        // enumeration.
4428        ECD->setType(EnumType);
4429      continue;
4430    } else {
4431      NewTy = BestType;
4432      NewWidth = BestWidth;
4433      NewSign = BestType->isSignedIntegerType();
4434    }
4435
4436    // Adjust the APSInt value.
4437    InitVal.extOrTrunc(NewWidth);
4438    InitVal.setIsSigned(NewSign);
4439    ECD->setInitVal(InitVal);
4440
4441    // Adjust the Expr initializer and type.
4442    if (ECD->getInitExpr())
4443      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4444                                                      /*isLvalue=*/false));
4445    if (getLangOptions().CPlusPlus)
4446      // C++ [dcl.enum]p4: Following the closing brace of an
4447      // enum-specifier, each enumerator has the type of its
4448      // enumeration.
4449      ECD->setType(EnumType);
4450    else
4451      ECD->setType(NewTy);
4452  }
4453
4454  Enum->completeDefinition(Context, BestType);
4455}
4456
4457Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4458                                            ExprArg expr) {
4459  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4460
4461  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4462                                                   Loc, AsmString);
4463  CurContext->addDecl(Context, New);
4464  return DeclPtrTy::make(New);
4465}
4466
4467void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4468                             SourceLocation PragmaLoc,
4469                             SourceLocation NameLoc) {
4470  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4471
4472  // FIXME: This implementation is an ugly hack!
4473  if (PrevDecl) {
4474    PrevDecl->addAttr(::new (Context) WeakAttr());
4475    return;
4476  }
4477  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4478  return;
4479}
4480
4481void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4482                                IdentifierInfo* AliasName,
4483                                SourceLocation PragmaLoc,
4484                                SourceLocation NameLoc,
4485                                SourceLocation AliasNameLoc) {
4486  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4487
4488  // FIXME: This implementation is an ugly hack!
4489  if (PrevDecl) {
4490    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4491    PrevDecl->addAttr(::new (Context) WeakAttr());
4492    return;
4493  }
4494  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4495  return;
4496}
4497