SemaDecl.cpp revision 23a48cc69e7ed4f219996a8864cb7d3f24f1157f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  }
303
304  IdResolver.AddDecl(D);
305}
306
307void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
308  if (S->decl_empty()) return;
309  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
310	 "Scope shouldn't contain decls!");
311
312  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
313       I != E; ++I) {
314    Decl *TmpD = (*I).getAs<Decl>();
315    assert(TmpD && "This decl didn't get pushed??");
316
317    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
318    NamedDecl *D = cast<NamedDecl>(TmpD);
319
320    if (!D->getDeclName()) continue;
321
322    // Remove this name from our lexical scope.
323    IdResolver.RemoveDecl(D);
324  }
325}
326
327/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
328/// return 0 if one not found.
329ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
330  // The third "scope" argument is 0 since we aren't enabling lazy built-in
331  // creation from this context.
332  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
333
334  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
335}
336
337/// getNonFieldDeclScope - Retrieves the innermost scope, starting
338/// from S, where a non-field would be declared. This routine copes
339/// with the difference between C and C++ scoping rules in structs and
340/// unions. For example, the following code is well-formed in C but
341/// ill-formed in C++:
342/// @code
343/// struct S6 {
344///   enum { BAR } e;
345/// };
346///
347/// void test_S6() {
348///   struct S6 a;
349///   a.e = BAR;
350/// }
351/// @endcode
352/// For the declaration of BAR, this routine will return a different
353/// scope. The scope S will be the scope of the unnamed enumeration
354/// within S6. In C++, this routine will return the scope associated
355/// with S6, because the enumeration's scope is a transparent
356/// context but structures can contain non-field names. In C, this
357/// routine will return the translation unit scope, since the
358/// enumeration's scope is a transparent context and structures cannot
359/// contain non-field names.
360Scope *Sema::getNonFieldDeclScope(Scope *S) {
361  while (((S->getFlags() & Scope::DeclScope) == 0) ||
362         (S->getEntity() &&
363          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
364         (S->isClassScope() && !getLangOptions().CPlusPlus))
365    S = S->getParent();
366  return S;
367}
368
369void Sema::InitBuiltinVaListType() {
370  if (!Context.getBuiltinVaListType().isNull())
371    return;
372
373  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
374  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
375  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
376  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
377}
378
379/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
380/// file scope.  lazily create a decl for it. ForRedeclaration is true
381/// if we're creating this built-in in anticipation of redeclaring the
382/// built-in.
383NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
384                                     Scope *S, bool ForRedeclaration,
385                                     SourceLocation Loc) {
386  Builtin::ID BID = (Builtin::ID)bid;
387
388  if (Context.BuiltinInfo.hasVAListUse(BID))
389    InitBuiltinVaListType();
390
391  Builtin::Context::GetBuiltinTypeError Error;
392  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
393  switch (Error) {
394  case Builtin::Context::GE_None:
395    // Okay
396    break;
397
398  case Builtin::Context::GE_Missing_FILE:
399    if (ForRedeclaration)
400      Diag(Loc, diag::err_implicit_decl_requires_stdio)
401        << Context.BuiltinInfo.GetName(BID);
402    return 0;
403  }
404
405  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
406    Diag(Loc, diag::ext_implicit_lib_function_decl)
407      << Context.BuiltinInfo.GetName(BID)
408      << R;
409    if (Context.BuiltinInfo.getHeaderName(BID) &&
410        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
411          != Diagnostic::Ignored)
412      Diag(Loc, diag::note_please_include_header)
413        << Context.BuiltinInfo.getHeaderName(BID)
414        << Context.BuiltinInfo.GetName(BID);
415  }
416
417  FunctionDecl *New = FunctionDecl::Create(Context,
418                                           Context.getTranslationUnitDecl(),
419                                           Loc, II, R,
420                                           FunctionDecl::Extern, false,
421                                           /*hasPrototype=*/true);
422  New->setImplicit();
423
424  // Create Decl objects for each parameter, adding them to the
425  // FunctionDecl.
426  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
427    llvm::SmallVector<ParmVarDecl*, 16> Params;
428    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
429      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
430                                           FT->getArgType(i), VarDecl::None, 0));
431    New->setParams(Context, &Params[0], Params.size());
432  }
433
434  AddKnownFunctionAttributes(New);
435
436  // TUScope is the translation-unit scope to insert this function into.
437  // FIXME: This is hideous. We need to teach PushOnScopeChains to
438  // relate Scopes to DeclContexts, and probably eliminate CurContext
439  // entirely, but we're not there yet.
440  DeclContext *SavedContext = CurContext;
441  CurContext = Context.getTranslationUnitDecl();
442  PushOnScopeChains(New, TUScope);
443  CurContext = SavedContext;
444  return New;
445}
446
447/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
448/// everything from the standard library is defined.
449NamespaceDecl *Sema::GetStdNamespace() {
450  if (!StdNamespace) {
451    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
452    DeclContext *Global = Context.getTranslationUnitDecl();
453    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
454    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
455  }
456  return StdNamespace;
457}
458
459/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
460/// same name and scope as a previous declaration 'Old'.  Figure out
461/// how to resolve this situation, merging decls or emitting
462/// diagnostics as appropriate. Returns true if there was an error,
463/// false otherwise.
464///
465bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
466  bool objc_types = false;
467  // Allow multiple definitions for ObjC built-in typedefs.
468  // FIXME: Verify the underlying types are equivalent!
469  if (getLangOptions().ObjC1) {
470    const IdentifierInfo *TypeID = New->getIdentifier();
471    switch (TypeID->getLength()) {
472    default: break;
473    case 2:
474      if (!TypeID->isStr("id"))
475        break;
476      Context.setObjCIdType(New);
477      objc_types = true;
478      break;
479    case 5:
480      if (!TypeID->isStr("Class"))
481        break;
482      Context.setObjCClassType(New);
483      objc_types = true;
484      return false;
485    case 3:
486      if (!TypeID->isStr("SEL"))
487        break;
488      Context.setObjCSelType(New);
489      objc_types = true;
490      return false;
491    case 8:
492      if (!TypeID->isStr("Protocol"))
493        break;
494      Context.setObjCProtoType(New->getUnderlyingType());
495      objc_types = true;
496      return false;
497    }
498    // Fall through - the typedef name was not a builtin type.
499  }
500  // Verify the old decl was also a type.
501  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
502  if (!Old) {
503    Diag(New->getLocation(), diag::err_redefinition_different_kind)
504      << New->getDeclName();
505    if (!objc_types)
506      Diag(OldD->getLocation(), diag::note_previous_definition);
507    return true;
508  }
509
510  // Determine the "old" type we'll use for checking and diagnostics.
511  QualType OldType;
512  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
513    OldType = OldTypedef->getUnderlyingType();
514  else
515    OldType = Context.getTypeDeclType(Old);
516
517  // If the typedef types are not identical, reject them in all languages and
518  // with any extensions enabled.
519
520  if (OldType != New->getUnderlyingType() &&
521      Context.getCanonicalType(OldType) !=
522      Context.getCanonicalType(New->getUnderlyingType())) {
523    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
524      << New->getUnderlyingType() << OldType;
525    if (!objc_types)
526      Diag(Old->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529  if (objc_types) return false;
530  if (getLangOptions().Microsoft) return false;
531
532  // C++ [dcl.typedef]p2:
533  //   In a given non-class scope, a typedef specifier can be used to
534  //   redefine the name of any type declared in that scope to refer
535  //   to the type to which it already refers.
536  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
537    return false;
538
539  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
540  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
541  // *either* declaration is in a system header. The code below implements
542  // this adhoc compatibility rule. FIXME: The following code will not
543  // work properly when compiling ".i" files (containing preprocessed output).
544  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
545    SourceManager &SrcMgr = Context.getSourceManager();
546    if (SrcMgr.isInSystemHeader(Old->getLocation()))
547      return false;
548    if (SrcMgr.isInSystemHeader(New->getLocation()))
549      return false;
550  }
551
552  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
553  Diag(Old->getLocation(), diag::note_previous_definition);
554  return true;
555}
556
557/// DeclhasAttr - returns true if decl Declaration already has the target
558/// attribute.
559static bool DeclHasAttr(const Decl *decl, const Attr *target) {
560  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
561    if (attr->getKind() == target->getKind())
562      return true;
563
564  return false;
565}
566
567/// MergeAttributes - append attributes from the Old decl to the New one.
568static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
569  Attr *attr = const_cast<Attr*>(Old->getAttrs());
570
571  while (attr) {
572    Attr *tmp = attr;
573    attr = attr->getNext();
574
575    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
576      tmp->setInherited(true);
577      New->addAttr(tmp);
578    } else {
579      tmp->setNext(0);
580      tmp->Destroy(C);
581    }
582  }
583
584  Old->invalidateAttrs();
585}
586
587/// Used in MergeFunctionDecl to keep track of function parameters in
588/// C.
589struct GNUCompatibleParamWarning {
590  ParmVarDecl *OldParm;
591  ParmVarDecl *NewParm;
592  QualType PromotedType;
593};
594
595/// MergeFunctionDecl - We just parsed a function 'New' from
596/// declarator D which has the same name and scope as a previous
597/// declaration 'Old'.  Figure out how to resolve this situation,
598/// merging decls or emitting diagnostics as appropriate.
599///
600/// In C++, New and Old must be declarations that are not
601/// overloaded. Use IsOverload to determine whether New and Old are
602/// overloaded, and to select the Old declaration that New should be
603/// merged with.
604///
605/// Returns true if there was an error, false otherwise.
606bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
607  assert(!isa<OverloadedFunctionDecl>(OldD) &&
608         "Cannot merge with an overloaded function declaration");
609
610  // Verify the old decl was also a function.
611  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
612  if (!Old) {
613    Diag(New->getLocation(), diag::err_redefinition_different_kind)
614      << New->getDeclName();
615    Diag(OldD->getLocation(), diag::note_previous_definition);
616    return true;
617  }
618
619  // Determine whether the previous declaration was a definition,
620  // implicit declaration, or a declaration.
621  diag::kind PrevDiag;
622  if (Old->isThisDeclarationADefinition())
623    PrevDiag = diag::note_previous_definition;
624  else if (Old->isImplicit())
625    PrevDiag = diag::note_previous_implicit_declaration;
626  else
627    PrevDiag = diag::note_previous_declaration;
628
629  QualType OldQType = Context.getCanonicalType(Old->getType());
630  QualType NewQType = Context.getCanonicalType(New->getType());
631
632  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
633      New->getStorageClass() == FunctionDecl::Static &&
634      Old->getStorageClass() != FunctionDecl::Static) {
635    Diag(New->getLocation(), diag::err_static_non_static)
636      << New;
637    Diag(Old->getLocation(), PrevDiag);
638    return true;
639  }
640
641  if (getLangOptions().CPlusPlus) {
642    // (C++98 13.1p2):
643    //   Certain function declarations cannot be overloaded:
644    //     -- Function declarations that differ only in the return type
645    //        cannot be overloaded.
646    QualType OldReturnType
647      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
648    QualType NewReturnType
649      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
650    if (OldReturnType != NewReturnType) {
651      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
652      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
653      return true;
654    }
655
656    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
657    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
658    if (OldMethod && NewMethod &&
659        OldMethod->getLexicalDeclContext() ==
660          NewMethod->getLexicalDeclContext()) {
661      //    -- Member function declarations with the same name and the
662      //       same parameter types cannot be overloaded if any of them
663      //       is a static member function declaration.
664      if (OldMethod->isStatic() || NewMethod->isStatic()) {
665        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
666        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667        return true;
668      }
669
670      // C++ [class.mem]p1:
671      //   [...] A member shall not be declared twice in the
672      //   member-specification, except that a nested class or member
673      //   class template can be declared and then later defined.
674      unsigned NewDiag;
675      if (isa<CXXConstructorDecl>(OldMethod))
676        NewDiag = diag::err_constructor_redeclared;
677      else if (isa<CXXDestructorDecl>(NewMethod))
678        NewDiag = diag::err_destructor_redeclared;
679      else if (isa<CXXConversionDecl>(NewMethod))
680        NewDiag = diag::err_conv_function_redeclared;
681      else
682        NewDiag = diag::err_member_redeclared;
683
684      Diag(New->getLocation(), NewDiag);
685      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
686    }
687
688    // (C++98 8.3.5p3):
689    //   All declarations for a function shall agree exactly in both the
690    //   return type and the parameter-type-list.
691    if (OldQType == NewQType)
692      return MergeCompatibleFunctionDecls(New, Old);
693
694    // Fall through for conflicting redeclarations and redefinitions.
695  }
696
697  // C: Function types need to be compatible, not identical. This handles
698  // duplicate function decls like "void f(int); void f(enum X);" properly.
699  if (!getLangOptions().CPlusPlus &&
700      Context.typesAreCompatible(OldQType, NewQType)) {
701    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
702    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
703    const FunctionProtoType *OldProto = 0;
704    if (isa<FunctionNoProtoType>(NewFuncType) &&
705        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
706      // The old declaration provided a function prototype, but the
707      // new declaration does not. Merge in the prototype.
708      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
709                                                 OldProto->arg_type_end());
710      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
711                                         &ParamTypes[0], ParamTypes.size(),
712                                         OldProto->isVariadic(),
713                                         OldProto->getTypeQuals());
714      New->setType(NewQType);
715      New->setInheritedPrototype();
716
717      // Synthesize a parameter for each argument type.
718      llvm::SmallVector<ParmVarDecl*, 16> Params;
719      for (FunctionProtoType::arg_type_iterator
720             ParamType = OldProto->arg_type_begin(),
721             ParamEnd = OldProto->arg_type_end();
722           ParamType != ParamEnd; ++ParamType) {
723        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
724                                                 SourceLocation(), 0,
725                                                 *ParamType, VarDecl::None,
726                                                 0);
727        Param->setImplicit();
728        Params.push_back(Param);
729      }
730
731      New->setParams(Context, &Params[0], Params.size());
732    }
733
734    return MergeCompatibleFunctionDecls(New, Old);
735  }
736
737  // GNU C permits a K&R definition to follow a prototype declaration
738  // if the declared types of the parameters in the K&R definition
739  // match the types in the prototype declaration, even when the
740  // promoted types of the parameters from the K&R definition differ
741  // from the types in the prototype. GCC then keeps the types from
742  // the prototype.
743  if (!getLangOptions().CPlusPlus &&
744      !getLangOptions().NoExtensions &&
745      Old->hasPrototype() && !New->hasPrototype() &&
746      New->getType()->getAsFunctionProtoType() &&
747      Old->getNumParams() == New->getNumParams()) {
748    llvm::SmallVector<QualType, 16> ArgTypes;
749    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
750    const FunctionProtoType *OldProto
751      = Old->getType()->getAsFunctionProtoType();
752    const FunctionProtoType *NewProto
753      = New->getType()->getAsFunctionProtoType();
754
755    // Determine whether this is the GNU C extension.
756    bool GNUCompatible =
757      Context.typesAreCompatible(OldProto->getResultType(),
758                                 NewProto->getResultType()) &&
759      (OldProto->isVariadic() == NewProto->isVariadic());
760    for (unsigned Idx = 0, End = Old->getNumParams();
761         GNUCompatible && Idx != End; ++Idx) {
762      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
763      ParmVarDecl *NewParm = New->getParamDecl(Idx);
764      if (Context.typesAreCompatible(OldParm->getType(),
765                                     NewProto->getArgType(Idx))) {
766        ArgTypes.push_back(NewParm->getType());
767      } else if (Context.typesAreCompatible(OldParm->getType(),
768                                            NewParm->getType())) {
769        GNUCompatibleParamWarning Warn
770          = { OldParm, NewParm, NewProto->getArgType(Idx) };
771        Warnings.push_back(Warn);
772        ArgTypes.push_back(NewParm->getType());
773      } else
774        GNUCompatible = false;
775    }
776
777    if (GNUCompatible) {
778      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
779        Diag(Warnings[Warn].NewParm->getLocation(),
780             diag::ext_param_promoted_not_compatible_with_prototype)
781          << Warnings[Warn].PromotedType
782          << Warnings[Warn].OldParm->getType();
783        Diag(Warnings[Warn].OldParm->getLocation(),
784             diag::note_previous_declaration);
785      }
786
787      New->setType(Context.getFunctionType(NewProto->getResultType(),
788                                           &ArgTypes[0], ArgTypes.size(),
789                                           NewProto->isVariadic(),
790                                           NewProto->getTypeQuals()));
791      return MergeCompatibleFunctionDecls(New, Old);
792    }
793
794    // Fall through to diagnose conflicting types.
795  }
796
797  // A function that has already been declared has been redeclared or defined
798  // with a different type- show appropriate diagnostic
799  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
800    // The user has declared a builtin function with an incompatible
801    // signature.
802    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
803      // The function the user is redeclaring is a library-defined
804      // function like 'malloc' or 'printf'. Warn about the
805      // redeclaration, then pretend that we don't know about this
806      // library built-in.
807      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
808      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
809        << Old << Old->getType();
810      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
811      Old->setInvalidDecl();
812      return false;
813    }
814
815    PrevDiag = diag::note_previous_builtin_declaration;
816  }
817
818  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
819  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
820  return true;
821}
822
823/// \brief Completes the merge of two function declarations that are
824/// known to be compatible.
825///
826/// This routine handles the merging of attributes and other
827/// properties of function declarations form the old declaration to
828/// the new declaration, once we know that New is in fact a
829/// redeclaration of Old.
830///
831/// \returns false
832bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
833  // Merge the attributes
834  MergeAttributes(New, Old, Context);
835
836  // Merge the storage class.
837  New->setStorageClass(Old->getStorageClass());
838
839  // FIXME: need to implement inline semantics
840
841  // Merge "pure" flag.
842  if (Old->isPure())
843    New->setPure();
844
845  // Merge the "deleted" flag.
846  if (Old->isDeleted())
847    New->setDeleted();
848
849  if (getLangOptions().CPlusPlus)
850    return MergeCXXFunctionDecl(New, Old);
851
852  return false;
853}
854
855/// MergeVarDecl - We just parsed a variable 'New' which has the same name
856/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
857/// situation, merging decls or emitting diagnostics as appropriate.
858///
859/// Tentative definition rules (C99 6.9.2p2) are checked by
860/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
861/// definitions here, since the initializer hasn't been attached.
862///
863bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
864  // Verify the old decl was also a variable.
865  VarDecl *Old = dyn_cast<VarDecl>(OldD);
866  if (!Old) {
867    Diag(New->getLocation(), diag::err_redefinition_different_kind)
868      << New->getDeclName();
869    Diag(OldD->getLocation(), diag::note_previous_definition);
870    return true;
871  }
872
873  MergeAttributes(New, Old, Context);
874
875  // Merge the types
876  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
877  if (MergedT.isNull()) {
878    Diag(New->getLocation(), diag::err_redefinition_different_type)
879      << New->getDeclName();
880    Diag(Old->getLocation(), diag::note_previous_definition);
881    return true;
882  }
883  New->setType(MergedT);
884
885  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
886  if (New->getStorageClass() == VarDecl::Static &&
887      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
888    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
889    Diag(Old->getLocation(), diag::note_previous_definition);
890    return true;
891  }
892  // C99 6.2.2p4:
893  //   For an identifier declared with the storage-class specifier
894  //   extern in a scope in which a prior declaration of that
895  //   identifier is visible,23) if the prior declaration specifies
896  //   internal or external linkage, the linkage of the identifier at
897  //   the later declaration is the same as the linkage specified at
898  //   the prior declaration. If no prior declaration is visible, or
899  //   if the prior declaration specifies no linkage, then the
900  //   identifier has external linkage.
901  if (New->hasExternalStorage() && Old->hasLinkage())
902    /* Okay */;
903  else if (New->getStorageClass() != VarDecl::Static &&
904           Old->getStorageClass() == VarDecl::Static) {
905    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
906    Diag(Old->getLocation(), diag::note_previous_definition);
907    return true;
908  }
909
910  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
911
912  // FIXME: The test for external storage here seems wrong? We still
913  // need to check for mismatches.
914  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
915      // Don't complain about out-of-line definitions of static members.
916      !(Old->getLexicalDeclContext()->isRecord() &&
917        !New->getLexicalDeclContext()->isRecord())) {
918    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
919    Diag(Old->getLocation(), diag::note_previous_definition);
920    return true;
921  }
922
923  // Keep a chain of previous declarations.
924  New->setPreviousDeclaration(Old);
925
926  return false;
927}
928
929/// CheckParmsForFunctionDef - Check that the parameters of the given
930/// function are appropriate for the definition of a function. This
931/// takes care of any checks that cannot be performed on the
932/// declaration itself, e.g., that the types of each of the function
933/// parameters are complete.
934bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
935  bool HasInvalidParm = false;
936  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
937    ParmVarDecl *Param = FD->getParamDecl(p);
938
939    // C99 6.7.5.3p4: the parameters in a parameter type list in a
940    // function declarator that is part of a function definition of
941    // that function shall not have incomplete type.
942    //
943    // This is also C++ [dcl.fct]p6.
944    if (!Param->isInvalidDecl() &&
945        RequireCompleteType(Param->getLocation(), Param->getType(),
946                               diag::err_typecheck_decl_incomplete_type)) {
947      Param->setInvalidDecl();
948      HasInvalidParm = true;
949    }
950
951    // C99 6.9.1p5: If the declarator includes a parameter type list, the
952    // declaration of each parameter shall include an identifier.
953    if (Param->getIdentifier() == 0 &&
954        !Param->isImplicit() &&
955        !getLangOptions().CPlusPlus)
956      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
957  }
958
959  return HasInvalidParm;
960}
961
962/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
963/// no declarator (e.g. "struct foo;") is parsed.
964Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
965  // FIXME: Error on auto/register at file scope
966  // FIXME: Error on inline/virtual/explicit
967  // FIXME: Error on invalid restrict
968  // FIXME: Warn on useless const/volatile
969  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
970  // FIXME: Warn on useless attributes
971
972  TagDecl *Tag = 0;
973  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
974      DS.getTypeSpecType() == DeclSpec::TST_struct ||
975      DS.getTypeSpecType() == DeclSpec::TST_union ||
976      DS.getTypeSpecType() == DeclSpec::TST_enum)
977    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
978
979  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
980    if (!Record->getDeclName() && Record->isDefinition() &&
981        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
982      if (getLangOptions().CPlusPlus ||
983          Record->getDeclContext()->isRecord())
984        return BuildAnonymousStructOrUnion(S, DS, Record);
985
986      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
987        << DS.getSourceRange();
988    }
989
990    // Microsoft allows unnamed struct/union fields. Don't complain
991    // about them.
992    // FIXME: Should we support Microsoft's extensions in this area?
993    if (Record->getDeclName() && getLangOptions().Microsoft)
994      return DeclPtrTy::make(Tag);
995  }
996
997  if (!DS.isMissingDeclaratorOk() &&
998      DS.getTypeSpecType() != DeclSpec::TST_error) {
999    // Warn about typedefs of enums without names, since this is an
1000    // extension in both Microsoft an GNU.
1001    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1002        Tag && isa<EnumDecl>(Tag)) {
1003      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1004        << DS.getSourceRange();
1005      return DeclPtrTy::make(Tag);
1006    }
1007
1008    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1009      << DS.getSourceRange();
1010    return DeclPtrTy();
1011  }
1012
1013  return DeclPtrTy::make(Tag);
1014}
1015
1016/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1017/// anonymous struct or union AnonRecord into the owning context Owner
1018/// and scope S. This routine will be invoked just after we realize
1019/// that an unnamed union or struct is actually an anonymous union or
1020/// struct, e.g.,
1021///
1022/// @code
1023/// union {
1024///   int i;
1025///   float f;
1026/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1027///    // f into the surrounding scope.x
1028/// @endcode
1029///
1030/// This routine is recursive, injecting the names of nested anonymous
1031/// structs/unions into the owning context and scope as well.
1032bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1033                                               RecordDecl *AnonRecord) {
1034  bool Invalid = false;
1035  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1036                               FEnd = AnonRecord->field_end(Context);
1037       F != FEnd; ++F) {
1038    if ((*F)->getDeclName()) {
1039      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1040                                                LookupOrdinaryName, true);
1041      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1042        // C++ [class.union]p2:
1043        //   The names of the members of an anonymous union shall be
1044        //   distinct from the names of any other entity in the
1045        //   scope in which the anonymous union is declared.
1046        unsigned diagKind
1047          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1048                                 : diag::err_anonymous_struct_member_redecl;
1049        Diag((*F)->getLocation(), diagKind)
1050          << (*F)->getDeclName();
1051        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1052        Invalid = true;
1053      } else {
1054        // C++ [class.union]p2:
1055        //   For the purpose of name lookup, after the anonymous union
1056        //   definition, the members of the anonymous union are
1057        //   considered to have been defined in the scope in which the
1058        //   anonymous union is declared.
1059        Owner->makeDeclVisibleInContext(Context, *F);
1060        S->AddDecl(DeclPtrTy::make(*F));
1061        IdResolver.AddDecl(*F);
1062      }
1063    } else if (const RecordType *InnerRecordType
1064                 = (*F)->getType()->getAsRecordType()) {
1065      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1066      if (InnerRecord->isAnonymousStructOrUnion())
1067        Invalid = Invalid ||
1068          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1069    }
1070  }
1071
1072  return Invalid;
1073}
1074
1075/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1076/// anonymous structure or union. Anonymous unions are a C++ feature
1077/// (C++ [class.union]) and a GNU C extension; anonymous structures
1078/// are a GNU C and GNU C++ extension.
1079Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1080                                                  RecordDecl *Record) {
1081  DeclContext *Owner = Record->getDeclContext();
1082
1083  // Diagnose whether this anonymous struct/union is an extension.
1084  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1085    Diag(Record->getLocation(), diag::ext_anonymous_union);
1086  else if (!Record->isUnion())
1087    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1088
1089  // C and C++ require different kinds of checks for anonymous
1090  // structs/unions.
1091  bool Invalid = false;
1092  if (getLangOptions().CPlusPlus) {
1093    const char* PrevSpec = 0;
1094    // C++ [class.union]p3:
1095    //   Anonymous unions declared in a named namespace or in the
1096    //   global namespace shall be declared static.
1097    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1098        (isa<TranslationUnitDecl>(Owner) ||
1099         (isa<NamespaceDecl>(Owner) &&
1100          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1101      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1102      Invalid = true;
1103
1104      // Recover by adding 'static'.
1105      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1106    }
1107    // C++ [class.union]p3:
1108    //   A storage class is not allowed in a declaration of an
1109    //   anonymous union in a class scope.
1110    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1111             isa<RecordDecl>(Owner)) {
1112      Diag(DS.getStorageClassSpecLoc(),
1113           diag::err_anonymous_union_with_storage_spec);
1114      Invalid = true;
1115
1116      // Recover by removing the storage specifier.
1117      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1118                             PrevSpec);
1119    }
1120
1121    // C++ [class.union]p2:
1122    //   The member-specification of an anonymous union shall only
1123    //   define non-static data members. [Note: nested types and
1124    //   functions cannot be declared within an anonymous union. ]
1125    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1126                                 MemEnd = Record->decls_end(Context);
1127         Mem != MemEnd; ++Mem) {
1128      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1129        // C++ [class.union]p3:
1130        //   An anonymous union shall not have private or protected
1131        //   members (clause 11).
1132        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1133          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1134            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1135          Invalid = true;
1136        }
1137      } else if ((*Mem)->isImplicit()) {
1138        // Any implicit members are fine.
1139      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1140        // This is a type that showed up in an
1141        // elaborated-type-specifier inside the anonymous struct or
1142        // union, but which actually declares a type outside of the
1143        // anonymous struct or union. It's okay.
1144      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1145        if (!MemRecord->isAnonymousStructOrUnion() &&
1146            MemRecord->getDeclName()) {
1147          // This is a nested type declaration.
1148          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1149            << (int)Record->isUnion();
1150          Invalid = true;
1151        }
1152      } else {
1153        // We have something that isn't a non-static data
1154        // member. Complain about it.
1155        unsigned DK = diag::err_anonymous_record_bad_member;
1156        if (isa<TypeDecl>(*Mem))
1157          DK = diag::err_anonymous_record_with_type;
1158        else if (isa<FunctionDecl>(*Mem))
1159          DK = diag::err_anonymous_record_with_function;
1160        else if (isa<VarDecl>(*Mem))
1161          DK = diag::err_anonymous_record_with_static;
1162        Diag((*Mem)->getLocation(), DK)
1163            << (int)Record->isUnion();
1164          Invalid = true;
1165      }
1166    }
1167  }
1168
1169  if (!Record->isUnion() && !Owner->isRecord()) {
1170    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1171      << (int)getLangOptions().CPlusPlus;
1172    Invalid = true;
1173  }
1174
1175  // Create a declaration for this anonymous struct/union.
1176  NamedDecl *Anon = 0;
1177  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1178    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1179                             /*IdentifierInfo=*/0,
1180                             Context.getTypeDeclType(Record),
1181                             /*BitWidth=*/0, /*Mutable=*/false);
1182    Anon->setAccess(AS_public);
1183    if (getLangOptions().CPlusPlus)
1184      FieldCollector->Add(cast<FieldDecl>(Anon));
1185  } else {
1186    VarDecl::StorageClass SC;
1187    switch (DS.getStorageClassSpec()) {
1188    default: assert(0 && "Unknown storage class!");
1189    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1190    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1191    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1192    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1193    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1194    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1195    case DeclSpec::SCS_mutable:
1196      // mutable can only appear on non-static class members, so it's always
1197      // an error here
1198      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1199      Invalid = true;
1200      SC = VarDecl::None;
1201      break;
1202    }
1203
1204    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1205                           /*IdentifierInfo=*/0,
1206                           Context.getTypeDeclType(Record),
1207                           SC, DS.getSourceRange().getBegin());
1208  }
1209  Anon->setImplicit();
1210
1211  // Add the anonymous struct/union object to the current
1212  // context. We'll be referencing this object when we refer to one of
1213  // its members.
1214  Owner->addDecl(Context, Anon);
1215
1216  // Inject the members of the anonymous struct/union into the owning
1217  // context and into the identifier resolver chain for name lookup
1218  // purposes.
1219  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1220    Invalid = true;
1221
1222  // Mark this as an anonymous struct/union type. Note that we do not
1223  // do this until after we have already checked and injected the
1224  // members of this anonymous struct/union type, because otherwise
1225  // the members could be injected twice: once by DeclContext when it
1226  // builds its lookup table, and once by
1227  // InjectAnonymousStructOrUnionMembers.
1228  Record->setAnonymousStructOrUnion(true);
1229
1230  if (Invalid)
1231    Anon->setInvalidDecl();
1232
1233  return DeclPtrTy::make(Anon);
1234}
1235
1236
1237/// GetNameForDeclarator - Determine the full declaration name for the
1238/// given Declarator.
1239DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1240  switch (D.getKind()) {
1241  case Declarator::DK_Abstract:
1242    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1243    return DeclarationName();
1244
1245  case Declarator::DK_Normal:
1246    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1247    return DeclarationName(D.getIdentifier());
1248
1249  case Declarator::DK_Constructor: {
1250    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1251    Ty = Context.getCanonicalType(Ty);
1252    return Context.DeclarationNames.getCXXConstructorName(Ty);
1253  }
1254
1255  case Declarator::DK_Destructor: {
1256    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1257    Ty = Context.getCanonicalType(Ty);
1258    return Context.DeclarationNames.getCXXDestructorName(Ty);
1259  }
1260
1261  case Declarator::DK_Conversion: {
1262    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1263    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1264    Ty = Context.getCanonicalType(Ty);
1265    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1266  }
1267
1268  case Declarator::DK_Operator:
1269    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1270    return Context.DeclarationNames.getCXXOperatorName(
1271                                                D.getOverloadedOperator());
1272  }
1273
1274  assert(false && "Unknown name kind");
1275  return DeclarationName();
1276}
1277
1278/// isNearlyMatchingFunction - Determine whether the C++ functions
1279/// Declaration and Definition are "nearly" matching. This heuristic
1280/// is used to improve diagnostics in the case where an out-of-line
1281/// function definition doesn't match any declaration within
1282/// the class or namespace.
1283static bool isNearlyMatchingFunction(ASTContext &Context,
1284                                     FunctionDecl *Declaration,
1285                                     FunctionDecl *Definition) {
1286  if (Declaration->param_size() != Definition->param_size())
1287    return false;
1288  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1289    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1290    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1291
1292    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1293    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1294    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1295      return false;
1296  }
1297
1298  return true;
1299}
1300
1301Sema::DeclPtrTy
1302Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1303  DeclarationName Name = GetNameForDeclarator(D);
1304
1305  // All of these full declarators require an identifier.  If it doesn't have
1306  // one, the ParsedFreeStandingDeclSpec action should be used.
1307  if (!Name) {
1308    if (!D.getInvalidType())  // Reject this if we think it is valid.
1309      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1310           diag::err_declarator_need_ident)
1311        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1312    return DeclPtrTy();
1313  }
1314
1315  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1316  // we find one that is.
1317  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1318         (S->getFlags() & Scope::TemplateParamScope) != 0)
1319    S = S->getParent();
1320
1321  DeclContext *DC;
1322  NamedDecl *PrevDecl;
1323  NamedDecl *New;
1324  bool InvalidDecl = false;
1325
1326  QualType R = GetTypeForDeclarator(D, S);
1327  if (R.isNull()) {
1328    InvalidDecl = true;
1329    R = Context.IntTy;
1330    if (IsFunctionDefinition) // int(...)
1331      R = Context.getFunctionType(R, 0, 0, true, 0);
1332
1333  }
1334
1335  // See if this is a redefinition of a variable in the same scope.
1336  if (D.getCXXScopeSpec().isInvalid()) {
1337    DC = CurContext;
1338    PrevDecl = 0;
1339    InvalidDecl = true;
1340  } else if (!D.getCXXScopeSpec().isSet()) {
1341    LookupNameKind NameKind = LookupOrdinaryName;
1342
1343    // If the declaration we're planning to build will be a function
1344    // or object with linkage, then look for another declaration with
1345    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1346    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1347      /* Do nothing*/;
1348    else if (R->isFunctionType()) {
1349      if (CurContext->isFunctionOrMethod())
1350        NameKind = LookupRedeclarationWithLinkage;
1351    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1352      NameKind = LookupRedeclarationWithLinkage;
1353
1354    DC = CurContext;
1355    PrevDecl = LookupName(S, Name, NameKind, true,
1356                          D.getDeclSpec().getStorageClassSpec() !=
1357                            DeclSpec::SCS_static,
1358                          D.getIdentifierLoc());
1359  } else { // Something like "int foo::x;"
1360    DC = computeDeclContext(D.getCXXScopeSpec());
1361    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1362    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1363
1364    // C++ 7.3.1.2p2:
1365    // Members (including explicit specializations of templates) of a named
1366    // namespace can also be defined outside that namespace by explicit
1367    // qualification of the name being defined, provided that the entity being
1368    // defined was already declared in the namespace and the definition appears
1369    // after the point of declaration in a namespace that encloses the
1370    // declarations namespace.
1371    //
1372    // Note that we only check the context at this point. We don't yet
1373    // have enough information to make sure that PrevDecl is actually
1374    // the declaration we want to match. For example, given:
1375    //
1376    //   class X {
1377    //     void f();
1378    //     void f(float);
1379    //   };
1380    //
1381    //   void X::f(int) { } // ill-formed
1382    //
1383    // In this case, PrevDecl will point to the overload set
1384    // containing the two f's declared in X, but neither of them
1385    // matches.
1386
1387    // First check whether we named the global scope.
1388    if (isa<TranslationUnitDecl>(DC)) {
1389      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1390        << Name << D.getCXXScopeSpec().getRange();
1391    } else if (!CurContext->Encloses(DC)) {
1392      // The qualifying scope doesn't enclose the original declaration.
1393      // Emit diagnostic based on current scope.
1394      SourceLocation L = D.getIdentifierLoc();
1395      SourceRange R = D.getCXXScopeSpec().getRange();
1396      if (isa<FunctionDecl>(CurContext))
1397        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1398      else
1399        Diag(L, diag::err_invalid_declarator_scope)
1400          << Name << cast<NamedDecl>(DC) << R;
1401      InvalidDecl = true;
1402    }
1403  }
1404
1405  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1406    // Maybe we will complain about the shadowed template parameter.
1407    InvalidDecl = InvalidDecl
1408      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1409    // Just pretend that we didn't see the previous declaration.
1410    PrevDecl = 0;
1411  }
1412
1413  // In C++, the previous declaration we find might be a tag type
1414  // (class or enum). In this case, the new declaration will hide the
1415  // tag type. Note that this does does not apply if we're declaring a
1416  // typedef (C++ [dcl.typedef]p4).
1417  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1418      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1419    PrevDecl = 0;
1420
1421  bool Redeclaration = false;
1422  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1423    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1424                                 InvalidDecl, Redeclaration);
1425  } else if (R->isFunctionType()) {
1426    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1427                                  IsFunctionDefinition, InvalidDecl,
1428                                  Redeclaration);
1429  } else {
1430    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1431                                  InvalidDecl, Redeclaration);
1432  }
1433
1434  if (New == 0)
1435    return DeclPtrTy();
1436
1437  // If this has an identifier and is not an invalid redeclaration,
1438  // add it to the scope stack.
1439  if (Name && !(Redeclaration && InvalidDecl))
1440    PushOnScopeChains(New, S);
1441  // If any semantic error occurred, mark the decl as invalid.
1442  if (D.getInvalidType() || InvalidDecl)
1443    New->setInvalidDecl();
1444
1445  return DeclPtrTy::make(New);
1446}
1447
1448/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1449/// types into constant array types in certain situations which would otherwise
1450/// be errors (for GCC compatibility).
1451static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1452                                                    ASTContext &Context,
1453                                                    bool &SizeIsNegative) {
1454  // This method tries to turn a variable array into a constant
1455  // array even when the size isn't an ICE.  This is necessary
1456  // for compatibility with code that depends on gcc's buggy
1457  // constant expression folding, like struct {char x[(int)(char*)2];}
1458  SizeIsNegative = false;
1459
1460  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1461    QualType Pointee = PTy->getPointeeType();
1462    QualType FixedType =
1463        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1464    if (FixedType.isNull()) return FixedType;
1465    FixedType = Context.getPointerType(FixedType);
1466    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1467    return FixedType;
1468  }
1469
1470  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1471  if (!VLATy)
1472    return QualType();
1473  // FIXME: We should probably handle this case
1474  if (VLATy->getElementType()->isVariablyModifiedType())
1475    return QualType();
1476
1477  Expr::EvalResult EvalResult;
1478  if (!VLATy->getSizeExpr() ||
1479      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1480      !EvalResult.Val.isInt())
1481    return QualType();
1482
1483  llvm::APSInt &Res = EvalResult.Val.getInt();
1484  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1485    return Context.getConstantArrayType(VLATy->getElementType(),
1486                                        Res, ArrayType::Normal, 0);
1487
1488  SizeIsNegative = true;
1489  return QualType();
1490}
1491
1492/// \brief Register the given locally-scoped external C declaration so
1493/// that it can be found later for redeclarations
1494void
1495Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1496                                       Scope *S) {
1497  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1498         "Decl is not a locally-scoped decl!");
1499  // Note that we have a locally-scoped external with this name.
1500  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1501
1502  if (!PrevDecl)
1503    return;
1504
1505  // If there was a previous declaration of this variable, it may be
1506  // in our identifier chain. Update the identifier chain with the new
1507  // declaration.
1508  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1509    // The previous declaration was found on the identifer resolver
1510    // chain, so remove it from its scope.
1511    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1512      S = S->getParent();
1513
1514    if (S)
1515      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1516  }
1517}
1518
1519/// \brief Diagnose function specifiers on a declaration of an identifier that
1520/// does not identify a function.
1521void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1522  // FIXME: We should probably indicate the identifier in question to avoid
1523  // confusion for constructs like "inline int a(), b;"
1524  if (D.getDeclSpec().isInlineSpecified())
1525    Diag(D.getDeclSpec().getInlineSpecLoc(),
1526         diag::err_inline_non_function);
1527
1528  if (D.getDeclSpec().isVirtualSpecified())
1529    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1530         diag::err_virtual_non_function);
1531
1532  if (D.getDeclSpec().isExplicitSpecified())
1533    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1534         diag::err_explicit_non_function);
1535}
1536
1537NamedDecl*
1538Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1539                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1540                             bool &Redeclaration) {
1541  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1542  if (D.getCXXScopeSpec().isSet()) {
1543    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1544      << D.getCXXScopeSpec().getRange();
1545    InvalidDecl = true;
1546    // Pretend we didn't see the scope specifier.
1547    DC = 0;
1548  }
1549
1550  if (getLangOptions().CPlusPlus) {
1551    // Check that there are no default arguments (C++ only).
1552    CheckExtraCXXDefaultArguments(D);
1553  }
1554
1555  DiagnoseFunctionSpecifiers(D);
1556
1557  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1558  if (!NewTD) return 0;
1559
1560  // Handle attributes prior to checking for duplicates in MergeVarDecl
1561  ProcessDeclAttributes(NewTD, D);
1562  // Merge the decl with the existing one if appropriate. If the decl is
1563  // in an outer scope, it isn't the same thing.
1564  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1565    Redeclaration = true;
1566    if (MergeTypeDefDecl(NewTD, PrevDecl))
1567      InvalidDecl = true;
1568  }
1569
1570  if (S->getFnParent() == 0) {
1571    QualType T = NewTD->getUnderlyingType();
1572    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1573    // then it shall have block scope.
1574    if (T->isVariablyModifiedType()) {
1575      bool SizeIsNegative;
1576      QualType FixedTy =
1577          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1578      if (!FixedTy.isNull()) {
1579        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1580        NewTD->setUnderlyingType(FixedTy);
1581      } else {
1582        if (SizeIsNegative)
1583          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1584        else if (T->isVariableArrayType())
1585          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1586        else
1587          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1588        InvalidDecl = true;
1589      }
1590    }
1591  }
1592  return NewTD;
1593}
1594
1595/// \brief Determines whether the given declaration is an out-of-scope
1596/// previous declaration.
1597///
1598/// This routine should be invoked when name lookup has found a
1599/// previous declaration (PrevDecl) that is not in the scope where a
1600/// new declaration by the same name is being introduced. If the new
1601/// declaration occurs in a local scope, previous declarations with
1602/// linkage may still be considered previous declarations (C99
1603/// 6.2.2p4-5, C++ [basic.link]p6).
1604///
1605/// \param PrevDecl the previous declaration found by name
1606/// lookup
1607///
1608/// \param DC the context in which the new declaration is being
1609/// declared.
1610///
1611/// \returns true if PrevDecl is an out-of-scope previous declaration
1612/// for a new delcaration with the same name.
1613static bool
1614isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1615                                ASTContext &Context) {
1616  if (!PrevDecl)
1617    return 0;
1618
1619  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1620  // case we need to check each of the overloaded functions.
1621  if (!PrevDecl->hasLinkage())
1622    return false;
1623
1624  if (Context.getLangOptions().CPlusPlus) {
1625    // C++ [basic.link]p6:
1626    //   If there is a visible declaration of an entity with linkage
1627    //   having the same name and type, ignoring entities declared
1628    //   outside the innermost enclosing namespace scope, the block
1629    //   scope declaration declares that same entity and receives the
1630    //   linkage of the previous declaration.
1631    DeclContext *OuterContext = DC->getLookupContext();
1632    if (!OuterContext->isFunctionOrMethod())
1633      // This rule only applies to block-scope declarations.
1634      return false;
1635    else {
1636      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1637      if (PrevOuterContext->isRecord())
1638        // We found a member function: ignore it.
1639        return false;
1640      else {
1641        // Find the innermost enclosing namespace for the new and
1642        // previous declarations.
1643        while (!OuterContext->isFileContext())
1644          OuterContext = OuterContext->getParent();
1645        while (!PrevOuterContext->isFileContext())
1646          PrevOuterContext = PrevOuterContext->getParent();
1647
1648        // The previous declaration is in a different namespace, so it
1649        // isn't the same function.
1650        if (OuterContext->getPrimaryContext() !=
1651            PrevOuterContext->getPrimaryContext())
1652          return false;
1653      }
1654    }
1655  }
1656
1657  return true;
1658}
1659
1660NamedDecl*
1661Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1662                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1663                              bool &Redeclaration) {
1664  DeclarationName Name = GetNameForDeclarator(D);
1665
1666  // Check that there are no default arguments (C++ only).
1667  if (getLangOptions().CPlusPlus)
1668    CheckExtraCXXDefaultArguments(D);
1669
1670  VarDecl *NewVD;
1671  VarDecl::StorageClass SC;
1672  switch (D.getDeclSpec().getStorageClassSpec()) {
1673  default: assert(0 && "Unknown storage class!");
1674  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1675  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1676  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1677  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1678  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1679  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1680  case DeclSpec::SCS_mutable:
1681    // mutable can only appear on non-static class members, so it's always
1682    // an error here
1683    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1684    InvalidDecl = true;
1685    SC = VarDecl::None;
1686    break;
1687  }
1688
1689  IdentifierInfo *II = Name.getAsIdentifierInfo();
1690  if (!II) {
1691    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1692      << Name.getAsString();
1693    return 0;
1694  }
1695
1696  DiagnoseFunctionSpecifiers(D);
1697
1698  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1699  if (!DC->isRecord() && S->getFnParent() == 0) {
1700    // C99 6.9p2: The storage-class specifiers auto and register shall not
1701    // appear in the declaration specifiers in an external declaration.
1702    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1703      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1704      InvalidDecl = true;
1705    }
1706  }
1707  if (DC->isRecord() && !CurContext->isRecord()) {
1708    // This is an out-of-line definition of a static data member.
1709    if (SC == VarDecl::Static) {
1710      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1711           diag::err_static_out_of_line)
1712        << CodeModificationHint::CreateRemoval(
1713                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1714    } else if (SC == VarDecl::None)
1715      SC = VarDecl::Static;
1716  }
1717
1718  // The variable can not
1719  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1720                          II, R, SC,
1721                          // FIXME: Move to DeclGroup...
1722                          D.getDeclSpec().getSourceRange().getBegin());
1723  NewVD->setThreadSpecified(ThreadSpecified);
1724
1725  // Set the lexical context. If the declarator has a C++ scope specifier, the
1726  // lexical context will be different from the semantic context.
1727  NewVD->setLexicalDeclContext(CurContext);
1728
1729  // Handle attributes prior to checking for duplicates in MergeVarDecl
1730  ProcessDeclAttributes(NewVD, D);
1731
1732  // Handle GNU asm-label extension (encoded as an attribute).
1733  if (Expr *E = (Expr*) D.getAsmLabel()) {
1734    // The parser guarantees this is a string.
1735    StringLiteral *SE = cast<StringLiteral>(E);
1736    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1737                                                        SE->getByteLength())));
1738  }
1739
1740  // If name lookup finds a previous declaration that is not in the
1741  // same scope as the new declaration, this may still be an
1742  // acceptable redeclaration.
1743  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1744      !(NewVD->hasLinkage() &&
1745        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1746    PrevDecl = 0;
1747
1748  // Merge the decl with the existing one if appropriate.
1749  if (PrevDecl) {
1750    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1751      // The user tried to define a non-static data member
1752      // out-of-line (C++ [dcl.meaning]p1).
1753      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1754        << D.getCXXScopeSpec().getRange();
1755      PrevDecl = 0;
1756      InvalidDecl = true;
1757    }
1758  } else if (D.getCXXScopeSpec().isSet()) {
1759    // No previous declaration in the qualifying scope.
1760    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1761      << Name << D.getCXXScopeSpec().getRange();
1762    InvalidDecl = true;
1763  }
1764
1765  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1766    InvalidDecl = true;
1767
1768  // If this is a locally-scoped extern C variable, update the map of
1769  // such variables.
1770  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1771      !InvalidDecl)
1772    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1773
1774  return NewVD;
1775}
1776
1777/// \brief Perform semantic checking on a newly-created variable
1778/// declaration.
1779///
1780/// This routine performs all of the type-checking required for a
1781/// variable declaration once it has been build. It is used both to
1782/// check variables after they have been parsed and their declarators
1783/// have been translated into a declaration, and to check
1784///
1785/// \returns true if an error was encountered, false otherwise.
1786bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1787                                    bool &Redeclaration) {
1788  bool Invalid = false;
1789
1790  QualType T = NewVD->getType();
1791
1792  if (T->isObjCInterfaceType()) {
1793    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1794    Invalid = true;
1795  }
1796
1797  // The variable can not have an abstract class type.
1798  if (RequireNonAbstractType(NewVD->getLocation(), T,
1799                             diag::err_abstract_type_in_decl,
1800                             AbstractVariableType))
1801    Invalid = true;
1802
1803  // Emit an error if an address space was applied to decl with local storage.
1804  // This includes arrays of objects with address space qualifiers, but not
1805  // automatic variables that point to other address spaces.
1806  // ISO/IEC TR 18037 S5.1.2
1807  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1808    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1809    Invalid = true;
1810  }
1811
1812  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1813      && !NewVD->hasAttr<BlocksAttr>())
1814    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1815
1816  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1817  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1818  if (isIllegalVLA || isIllegalVM) {
1819    bool SizeIsNegative;
1820    QualType FixedTy =
1821        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1822    if (!FixedTy.isNull()) {
1823      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1824      NewVD->setType(FixedTy);
1825    } else if (T->isVariableArrayType()) {
1826      Invalid = true;
1827
1828      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1829      // FIXME: This won't give the correct result for
1830      // int a[10][n];
1831      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1832
1833      if (NewVD->isFileVarDecl())
1834        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1835          << SizeRange;
1836      else if (NewVD->getStorageClass() == VarDecl::Static)
1837        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1838          << SizeRange;
1839      else
1840        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1841            << SizeRange;
1842    } else {
1843      Invalid = true;
1844
1845      if (NewVD->isFileVarDecl())
1846        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1847      else
1848        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1849    }
1850  }
1851
1852  if (!PrevDecl && NewVD->isExternC(Context)) {
1853    // Since we did not find anything by this name and we're declaring
1854    // an extern "C" variable, look for a non-visible extern "C"
1855    // declaration with the same name.
1856    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1857      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1858    if (Pos != LocallyScopedExternalDecls.end())
1859      PrevDecl = Pos->second;
1860  }
1861
1862  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1863    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1864      << T;
1865    Invalid = true;
1866  }
1867
1868  if (PrevDecl) {
1869    Redeclaration = true;
1870    if (MergeVarDecl(NewVD, PrevDecl))
1871      Invalid = true;
1872  }
1873
1874  return NewVD->isInvalidDecl() || Invalid;
1875}
1876
1877NamedDecl*
1878Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1879                              QualType R, NamedDecl* PrevDecl,
1880                              bool IsFunctionDefinition,
1881                              bool& InvalidDecl, bool &Redeclaration) {
1882  assert(R.getTypePtr()->isFunctionType());
1883
1884  DeclarationName Name = GetNameForDeclarator(D);
1885  FunctionDecl::StorageClass SC = FunctionDecl::None;
1886  switch (D.getDeclSpec().getStorageClassSpec()) {
1887  default: assert(0 && "Unknown storage class!");
1888  case DeclSpec::SCS_auto:
1889  case DeclSpec::SCS_register:
1890  case DeclSpec::SCS_mutable:
1891    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1892         diag::err_typecheck_sclass_func);
1893    InvalidDecl = true;
1894    break;
1895  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1896  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1897  case DeclSpec::SCS_static: {
1898    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1899      // C99 6.7.1p5:
1900      //   The declaration of an identifier for a function that has
1901      //   block scope shall have no explicit storage-class specifier
1902      //   other than extern
1903      // See also (C++ [dcl.stc]p4).
1904      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1905           diag::err_static_block_func);
1906      SC = FunctionDecl::None;
1907    } else
1908      SC = FunctionDecl::Static;
1909    break;
1910  }
1911  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1912  }
1913
1914  bool isInline = D.getDeclSpec().isInlineSpecified();
1915  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1916  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1917
1918  // Check that the return type is not an abstract class type.
1919  // For record types, this is done by the AbstractClassUsageDiagnoser once
1920  // the class has been completely parsed.
1921  if (!DC->isRecord() &&
1922      RequireNonAbstractType(D.getIdentifierLoc(),
1923                             R->getAsFunctionType()->getResultType(),
1924                             diag::err_abstract_type_in_decl,
1925                             AbstractReturnType))
1926    InvalidDecl = true;
1927
1928  // Do not allow returning a objc interface by-value.
1929  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1930    Diag(D.getIdentifierLoc(),
1931         diag::err_object_cannot_be_passed_returned_by_value) << 0
1932      << R->getAsFunctionType()->getResultType();
1933    InvalidDecl = true;
1934  }
1935
1936  bool isVirtualOkay = false;
1937  FunctionDecl *NewFD;
1938  if (D.getKind() == Declarator::DK_Constructor) {
1939    // This is a C++ constructor declaration.
1940    assert(DC->isRecord() &&
1941           "Constructors can only be declared in a member context");
1942
1943    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1944
1945    // Create the new declaration
1946    NewFD = CXXConstructorDecl::Create(Context,
1947                                       cast<CXXRecordDecl>(DC),
1948                                       D.getIdentifierLoc(), Name, R,
1949                                       isExplicit, isInline,
1950                                       /*isImplicitlyDeclared=*/false);
1951
1952    if (InvalidDecl)
1953      NewFD->setInvalidDecl();
1954  } else if (D.getKind() == Declarator::DK_Destructor) {
1955    // This is a C++ destructor declaration.
1956    if (DC->isRecord()) {
1957      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1958
1959      NewFD = CXXDestructorDecl::Create(Context,
1960                                        cast<CXXRecordDecl>(DC),
1961                                        D.getIdentifierLoc(), Name, R,
1962                                        isInline,
1963                                        /*isImplicitlyDeclared=*/false);
1964
1965      if (InvalidDecl)
1966        NewFD->setInvalidDecl();
1967
1968      isVirtualOkay = true;
1969    } else {
1970      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1971
1972      // Create a FunctionDecl to satisfy the function definition parsing
1973      // code path.
1974      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1975                                   Name, R, SC, isInline,
1976                                   /*hasPrototype=*/true,
1977                                   // FIXME: Move to DeclGroup...
1978                                   D.getDeclSpec().getSourceRange().getBegin());
1979      InvalidDecl = true;
1980      NewFD->setInvalidDecl();
1981    }
1982  } else if (D.getKind() == Declarator::DK_Conversion) {
1983    if (!DC->isRecord()) {
1984      Diag(D.getIdentifierLoc(),
1985           diag::err_conv_function_not_member);
1986      return 0;
1987    } else {
1988      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1989
1990      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1991                                        D.getIdentifierLoc(), Name, R,
1992                                        isInline, isExplicit);
1993
1994      if (InvalidDecl)
1995        NewFD->setInvalidDecl();
1996
1997      isVirtualOkay = true;
1998    }
1999  } else if (DC->isRecord()) {
2000    // This is a C++ method declaration.
2001    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2002                                  D.getIdentifierLoc(), Name, R,
2003                                  (SC == FunctionDecl::Static), isInline);
2004
2005    isVirtualOkay = (SC != FunctionDecl::Static);
2006  } else {
2007    // Determine whether the function was written with a
2008    // prototype. This true when:
2009    //   - we're in C++ (where every function has a prototype),
2010    //   - there is a prototype in the declarator, or
2011    //   - the type R of the function is some kind of typedef or other reference
2012    //     to a type name (which eventually refers to a function type).
2013    bool HasPrototype =
2014       getLangOptions().CPlusPlus ||
2015       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2016       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2017
2018    NewFD = FunctionDecl::Create(Context, DC,
2019                                 D.getIdentifierLoc(),
2020                                 Name, R, SC, isInline, HasPrototype,
2021                                 // FIXME: Move to DeclGroup...
2022                                 D.getDeclSpec().getSourceRange().getBegin());
2023  }
2024
2025  // Set the lexical context. If the declarator has a C++
2026  // scope specifier, the lexical context will be different
2027  // from the semantic context.
2028  NewFD->setLexicalDeclContext(CurContext);
2029
2030  // C++ [dcl.fct.spec]p5:
2031  //   The virtual specifier shall only be used in declarations of
2032  //   nonstatic class member functions that appear within a
2033  //   member-specification of a class declaration; see 10.3.
2034  //
2035  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2036  // function is also virtual if it overrides an already virtual
2037  // function. This is important to do here because it's part of the
2038  // declaration.
2039  if (isVirtual && !InvalidDecl) {
2040    if (!isVirtualOkay) {
2041       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2042           diag::err_virtual_non_function);
2043    } else if (!CurContext->isRecord()) {
2044      // 'virtual' was specified outside of the class.
2045      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2046        << CodeModificationHint::CreateRemoval(
2047                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2048    } else {
2049      // Okay: Add virtual to the method.
2050      cast<CXXMethodDecl>(NewFD)->setVirtual();
2051      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2052      CurClass->setAggregate(false);
2053      CurClass->setPOD(false);
2054      CurClass->setPolymorphic(true);
2055      CurClass->setHasTrivialConstructor(false);
2056    }
2057  }
2058
2059  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2060      !CurContext->isRecord()) {
2061    // C++ [class.static]p1:
2062    //   A data or function member of a class may be declared static
2063    //   in a class definition, in which case it is a static member of
2064    //   the class.
2065
2066    // Complain about the 'static' specifier if it's on an out-of-line
2067    // member function definition.
2068    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2069         diag::err_static_out_of_line)
2070      << CodeModificationHint::CreateRemoval(
2071                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2072  }
2073
2074  // Handle GNU asm-label extension (encoded as an attribute).
2075  if (Expr *E = (Expr*) D.getAsmLabel()) {
2076    // The parser guarantees this is a string.
2077    StringLiteral *SE = cast<StringLiteral>(E);
2078    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2079                                                        SE->getByteLength())));
2080  }
2081
2082  // Copy the parameter declarations from the declarator D to
2083  // the function declaration NewFD, if they are available.
2084  if (D.getNumTypeObjects() > 0) {
2085    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2086
2087    // Create Decl objects for each parameter, adding them to the
2088    // FunctionDecl.
2089    llvm::SmallVector<ParmVarDecl*, 16> Params;
2090
2091    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2092    // function that takes no arguments, not a function that takes a
2093    // single void argument.
2094    // We let through "const void" here because Sema::GetTypeForDeclarator
2095    // already checks for that case.
2096    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2097        FTI.ArgInfo[0].Param &&
2098        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2099      // empty arg list, don't push any params.
2100      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2101
2102      // In C++, the empty parameter-type-list must be spelled "void"; a
2103      // typedef of void is not permitted.
2104      if (getLangOptions().CPlusPlus &&
2105          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2106        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2107      }
2108    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2109      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2110        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2111    }
2112
2113    NewFD->setParams(Context, &Params[0], Params.size());
2114  } else if (R->getAsTypedefType()) {
2115    // When we're declaring a function with a typedef, as in the
2116    // following example, we'll need to synthesize (unnamed)
2117    // parameters for use in the declaration.
2118    //
2119    // @code
2120    // typedef void fn(int);
2121    // fn f;
2122    // @endcode
2123    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2124    if (!FT) {
2125      // This is a typedef of a function with no prototype, so we
2126      // don't need to do anything.
2127    } else if ((FT->getNumArgs() == 0) ||
2128               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2129                FT->getArgType(0)->isVoidType())) {
2130      // This is a zero-argument function. We don't need to do anything.
2131    } else {
2132      // Synthesize a parameter for each argument type.
2133      llvm::SmallVector<ParmVarDecl*, 16> Params;
2134      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2135           ArgType != FT->arg_type_end(); ++ArgType) {
2136        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2137                                                 SourceLocation(), 0,
2138                                                 *ArgType, VarDecl::None,
2139                                                 0);
2140        Param->setImplicit();
2141        Params.push_back(Param);
2142      }
2143
2144      NewFD->setParams(Context, &Params[0], Params.size());
2145    }
2146  }
2147
2148  // If name lookup finds a previous declaration that is not in the
2149  // same scope as the new declaration, this may still be an
2150  // acceptable redeclaration.
2151  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2152      !(NewFD->hasLinkage() &&
2153        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2154    PrevDecl = 0;
2155
2156  // Perform semantic checking on the function declaration.
2157  bool OverloadableAttrRequired = false; // FIXME: HACK!
2158  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2159                               /*FIXME:*/OverloadableAttrRequired))
2160    InvalidDecl = true;
2161
2162  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2163    // An out-of-line member function declaration must also be a
2164    // definition (C++ [dcl.meaning]p1).
2165    if (!IsFunctionDefinition) {
2166      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2167        << D.getCXXScopeSpec().getRange();
2168      InvalidDecl = true;
2169    } else if (!Redeclaration) {
2170      // The user tried to provide an out-of-line definition for a
2171      // function that is a member of a class or namespace, but there
2172      // was no such member function declared (C++ [class.mfct]p2,
2173      // C++ [namespace.memdef]p2). For example:
2174      //
2175      // class X {
2176      //   void f() const;
2177      // };
2178      //
2179      // void X::f() { } // ill-formed
2180      //
2181      // Complain about this problem, and attempt to suggest close
2182      // matches (e.g., those that differ only in cv-qualifiers and
2183      // whether the parameter types are references).
2184      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2185        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2186      InvalidDecl = true;
2187
2188      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2189                                              true);
2190      assert(!Prev.isAmbiguous() &&
2191             "Cannot have an ambiguity in previous-declaration lookup");
2192      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2193           Func != FuncEnd; ++Func) {
2194        if (isa<FunctionDecl>(*Func) &&
2195            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2196          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2197      }
2198
2199      PrevDecl = 0;
2200    }
2201  }
2202
2203  // Handle attributes. We need to have merged decls when handling attributes
2204  // (for example to check for conflicts, etc).
2205  // FIXME: This needs to happen before we merge declarations. Then,
2206  // let attribute merging cope with attribute conflicts.
2207  ProcessDeclAttributes(NewFD, D);
2208  AddKnownFunctionAttributes(NewFD);
2209
2210  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2211    // If a function name is overloadable in C, then every function
2212    // with that name must be marked "overloadable".
2213    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2214      << Redeclaration << NewFD;
2215    if (PrevDecl)
2216      Diag(PrevDecl->getLocation(),
2217           diag::note_attribute_overloadable_prev_overload);
2218    NewFD->addAttr(::new (Context) OverloadableAttr());
2219  }
2220
2221  // If this is a locally-scoped extern C function, update the
2222  // map of such names.
2223  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2224      && !InvalidDecl)
2225    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2226
2227  return NewFD;
2228}
2229
2230/// \brief Perform semantic checking of a new function declaration.
2231///
2232/// Performs semantic analysis of the new function declaration
2233/// NewFD. This routine performs all semantic checking that does not
2234/// require the actual declarator involved in the declaration, and is
2235/// used both for the declaration of functions as they are parsed
2236/// (called via ActOnDeclarator) and for the declaration of functions
2237/// that have been instantiated via C++ template instantiation (called
2238/// via InstantiateDecl).
2239///
2240/// \returns true if there was an error, false otherwise.
2241bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2242                                    bool &Redeclaration,
2243                                    bool &OverloadableAttrRequired) {
2244  bool InvalidDecl = false;
2245
2246  // Semantic checking for this function declaration (in isolation).
2247  if (getLangOptions().CPlusPlus) {
2248    // C++-specific checks.
2249    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2250      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2251    else if (isa<CXXDestructorDecl>(NewFD)) {
2252      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2253      Record->setUserDeclaredDestructor(true);
2254      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2255      // user-defined destructor.
2256      Record->setPOD(false);
2257
2258      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2259      // declared destructor.
2260      Record->setHasTrivialDestructor(false);
2261    } else if (CXXConversionDecl *Conversion
2262               = dyn_cast<CXXConversionDecl>(NewFD))
2263      ActOnConversionDeclarator(Conversion);
2264
2265    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2266    if (NewFD->isOverloadedOperator() &&
2267        CheckOverloadedOperatorDeclaration(NewFD))
2268      InvalidDecl = true;
2269  }
2270
2271  // Check for a previous declaration of this name.
2272  if (!PrevDecl && NewFD->isExternC(Context)) {
2273    // Since we did not find anything by this name and we're declaring
2274    // an extern "C" function, look for a non-visible extern "C"
2275    // declaration with the same name.
2276    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2277      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2278    if (Pos != LocallyScopedExternalDecls.end())
2279      PrevDecl = Pos->second;
2280  }
2281
2282  // Merge or overload the declaration with an existing declaration of
2283  // the same name, if appropriate.
2284  if (PrevDecl) {
2285    // Determine whether NewFD is an overload of PrevDecl or
2286    // a declaration that requires merging. If it's an overload,
2287    // there's no more work to do here; we'll just add the new
2288    // function to the scope.
2289    OverloadedFunctionDecl::function_iterator MatchedDecl;
2290
2291    if (!getLangOptions().CPlusPlus &&
2292        AllowOverloadingOfFunction(PrevDecl, Context)) {
2293      OverloadableAttrRequired = true;
2294
2295      // Functions marked "overloadable" must have a prototype (that
2296      // we can't get through declaration merging).
2297      if (!NewFD->getType()->getAsFunctionProtoType()) {
2298        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2299          << NewFD;
2300        InvalidDecl = true;
2301        Redeclaration = true;
2302
2303        // Turn this into a variadic function with no parameters.
2304        QualType R = Context.getFunctionType(
2305                       NewFD->getType()->getAsFunctionType()->getResultType(),
2306                       0, 0, true, 0);
2307        NewFD->setType(R);
2308      }
2309    }
2310
2311    if (PrevDecl &&
2312        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2313         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2314      Redeclaration = true;
2315      Decl *OldDecl = PrevDecl;
2316
2317      // If PrevDecl was an overloaded function, extract the
2318      // FunctionDecl that matched.
2319      if (isa<OverloadedFunctionDecl>(PrevDecl))
2320        OldDecl = *MatchedDecl;
2321
2322      // NewFD and OldDecl represent declarations that need to be
2323      // merged.
2324      if (MergeFunctionDecl(NewFD, OldDecl))
2325        InvalidDecl = true;
2326
2327      if (!InvalidDecl)
2328        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2329    }
2330  }
2331
2332  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2333    // In C++, check default arguments now that we have merged decls. Unless
2334    // the lexical context is the class, because in this case this is done
2335    // during delayed parsing anyway.
2336    CheckCXXDefaultArguments(NewFD);
2337  }
2338
2339  return InvalidDecl || NewFD->isInvalidDecl();
2340}
2341
2342bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2343  // FIXME: Need strict checking.  In C89, we need to check for
2344  // any assignment, increment, decrement, function-calls, or
2345  // commas outside of a sizeof.  In C99, it's the same list,
2346  // except that the aforementioned are allowed in unevaluated
2347  // expressions.  Everything else falls under the
2348  // "may accept other forms of constant expressions" exception.
2349  // (We never end up here for C++, so the constant expression
2350  // rules there don't matter.)
2351  if (Init->isConstantInitializer(Context))
2352    return false;
2353  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2354    << Init->getSourceRange();
2355  return true;
2356}
2357
2358void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2359  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2360}
2361
2362/// AddInitializerToDecl - Adds the initializer Init to the
2363/// declaration dcl. If DirectInit is true, this is C++ direct
2364/// initialization rather than copy initialization.
2365void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2366  Decl *RealDecl = dcl.getAs<Decl>();
2367  // If there is no declaration, there was an error parsing it.  Just ignore
2368  // the initializer.
2369  if (RealDecl == 0)
2370    return;
2371
2372  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2373    // With declarators parsed the way they are, the parser cannot
2374    // distinguish between a normal initializer and a pure-specifier.
2375    // Thus this grotesque test.
2376    IntegerLiteral *IL;
2377    Expr *Init = static_cast<Expr *>(init.get());
2378    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2379        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2380      if (Method->isVirtual()) {
2381        Method->setPure();
2382
2383        // A class is abstract if at least one function is pure virtual.
2384        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2385      } else if (!Method->isInvalidDecl()) {
2386        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2387          << Method->getDeclName() << Init->getSourceRange();
2388        Method->setInvalidDecl();
2389      }
2390    } else {
2391      Diag(Method->getLocation(), diag::err_member_function_initialization)
2392        << Method->getDeclName() << Init->getSourceRange();
2393      Method->setInvalidDecl();
2394    }
2395    return;
2396  }
2397
2398  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2399  if (!VDecl) {
2400    if (getLangOptions().CPlusPlus &&
2401        RealDecl->getLexicalDeclContext()->isRecord() &&
2402        isa<NamedDecl>(RealDecl))
2403      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2404        << cast<NamedDecl>(RealDecl)->getDeclName();
2405    else
2406      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2407    RealDecl->setInvalidDecl();
2408    return;
2409  }
2410
2411  if (!VDecl->getType()->isArrayType() &&
2412      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2413                          diag::err_typecheck_decl_incomplete_type)) {
2414    RealDecl->setInvalidDecl();
2415    return;
2416  }
2417
2418  const VarDecl *Def = 0;
2419  if (VDecl->getDefinition(Def)) {
2420    Diag(VDecl->getLocation(), diag::err_redefinition)
2421      << VDecl->getDeclName();
2422    Diag(Def->getLocation(), diag::note_previous_definition);
2423    VDecl->setInvalidDecl();
2424    return;
2425  }
2426
2427  // Take ownership of the expression, now that we're sure we have somewhere
2428  // to put it.
2429  Expr *Init = static_cast<Expr *>(init.release());
2430  assert(Init && "missing initializer");
2431
2432  // Get the decls type and save a reference for later, since
2433  // CheckInitializerTypes may change it.
2434  QualType DclT = VDecl->getType(), SavT = DclT;
2435  if (VDecl->isBlockVarDecl()) {
2436    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2437      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2438      VDecl->setInvalidDecl();
2439    } else if (!VDecl->isInvalidDecl()) {
2440      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2441                                VDecl->getDeclName(), DirectInit))
2442        VDecl->setInvalidDecl();
2443
2444      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2445      // Don't check invalid declarations to avoid emitting useless diagnostics.
2446      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2447        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2448          CheckForConstantInitializer(Init, DclT);
2449      }
2450    }
2451  } else if (VDecl->isStaticDataMember() &&
2452             VDecl->getLexicalDeclContext()->isRecord()) {
2453    // This is an in-class initialization for a static data member, e.g.,
2454    //
2455    // struct S {
2456    //   static const int value = 17;
2457    // };
2458
2459    // Attach the initializer
2460    VDecl->setInit(Init);
2461
2462    // C++ [class.mem]p4:
2463    //   A member-declarator can contain a constant-initializer only
2464    //   if it declares a static member (9.4) of const integral or
2465    //   const enumeration type, see 9.4.2.
2466    QualType T = VDecl->getType();
2467    if (!T->isDependentType() &&
2468        (!Context.getCanonicalType(T).isConstQualified() ||
2469         !T->isIntegralType())) {
2470      Diag(VDecl->getLocation(), diag::err_member_initialization)
2471        << VDecl->getDeclName() << Init->getSourceRange();
2472      VDecl->setInvalidDecl();
2473    } else {
2474      // C++ [class.static.data]p4:
2475      //   If a static data member is of const integral or const
2476      //   enumeration type, its declaration in the class definition
2477      //   can specify a constant-initializer which shall be an
2478      //   integral constant expression (5.19).
2479      if (!Init->isTypeDependent() &&
2480          !Init->getType()->isIntegralType()) {
2481        // We have a non-dependent, non-integral or enumeration type.
2482        Diag(Init->getSourceRange().getBegin(),
2483             diag::err_in_class_initializer_non_integral_type)
2484          << Init->getType() << Init->getSourceRange();
2485        VDecl->setInvalidDecl();
2486      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2487        // Check whether the expression is a constant expression.
2488        llvm::APSInt Value;
2489        SourceLocation Loc;
2490        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2491          Diag(Loc, diag::err_in_class_initializer_non_constant)
2492            << Init->getSourceRange();
2493          VDecl->setInvalidDecl();
2494        } else if (!VDecl->getType()->isDependentType())
2495          ImpCastExprToType(Init, VDecl->getType());
2496      }
2497    }
2498  } else if (VDecl->isFileVarDecl()) {
2499    if (VDecl->getStorageClass() == VarDecl::Extern)
2500      Diag(VDecl->getLocation(), diag::warn_extern_init);
2501    if (!VDecl->isInvalidDecl())
2502      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2503                                VDecl->getDeclName(), DirectInit))
2504        VDecl->setInvalidDecl();
2505
2506    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2507    // Don't check invalid declarations to avoid emitting useless diagnostics.
2508    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2509      // C99 6.7.8p4. All file scoped initializers need to be constant.
2510      CheckForConstantInitializer(Init, DclT);
2511    }
2512  }
2513  // If the type changed, it means we had an incomplete type that was
2514  // completed by the initializer. For example:
2515  //   int ary[] = { 1, 3, 5 };
2516  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2517  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2518    VDecl->setType(DclT);
2519    Init->setType(DclT);
2520  }
2521
2522  // Attach the initializer to the decl.
2523  VDecl->setInit(Init);
2524  return;
2525}
2526
2527void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2528  Decl *RealDecl = dcl.getAs<Decl>();
2529
2530  // If there is no declaration, there was an error parsing it. Just ignore it.
2531  if (RealDecl == 0)
2532    return;
2533
2534  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2535    QualType Type = Var->getType();
2536    // C++ [dcl.init.ref]p3:
2537    //   The initializer can be omitted for a reference only in a
2538    //   parameter declaration (8.3.5), in the declaration of a
2539    //   function return type, in the declaration of a class member
2540    //   within its class declaration (9.2), and where the extern
2541    //   specifier is explicitly used.
2542    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2543      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2544        << Var->getDeclName()
2545        << SourceRange(Var->getLocation(), Var->getLocation());
2546      Var->setInvalidDecl();
2547      return;
2548    }
2549
2550    // C++ [dcl.init]p9:
2551    //
2552    //   If no initializer is specified for an object, and the object
2553    //   is of (possibly cv-qualified) non-POD class type (or array
2554    //   thereof), the object shall be default-initialized; if the
2555    //   object is of const-qualified type, the underlying class type
2556    //   shall have a user-declared default constructor.
2557    if (getLangOptions().CPlusPlus) {
2558      QualType InitType = Type;
2559      if (const ArrayType *Array = Context.getAsArrayType(Type))
2560        InitType = Array->getElementType();
2561      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2562        CXXRecordDecl *RD =
2563          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2564        CXXConstructorDecl *Constructor = 0;
2565        if (!RequireCompleteType(Var->getLocation(), InitType,
2566                                    diag::err_invalid_incomplete_type_use))
2567          Constructor
2568            = PerformInitializationByConstructor(InitType, 0, 0,
2569                                                 Var->getLocation(),
2570                                               SourceRange(Var->getLocation(),
2571                                                           Var->getLocation()),
2572                                                 Var->getDeclName(),
2573                                                 IK_Default);
2574        if (!Constructor)
2575          Var->setInvalidDecl();
2576        else if (!RD->hasTrivialConstructor())
2577          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2578      }
2579    }
2580
2581#if 0
2582    // FIXME: Temporarily disabled because we are not properly parsing
2583    // linkage specifications on declarations, e.g.,
2584    //
2585    //   extern "C" const CGPoint CGPointerZero;
2586    //
2587    // C++ [dcl.init]p9:
2588    //
2589    //     If no initializer is specified for an object, and the
2590    //     object is of (possibly cv-qualified) non-POD class type (or
2591    //     array thereof), the object shall be default-initialized; if
2592    //     the object is of const-qualified type, the underlying class
2593    //     type shall have a user-declared default
2594    //     constructor. Otherwise, if no initializer is specified for
2595    //     an object, the object and its subobjects, if any, have an
2596    //     indeterminate initial value; if the object or any of its
2597    //     subobjects are of const-qualified type, the program is
2598    //     ill-formed.
2599    //
2600    // This isn't technically an error in C, so we don't diagnose it.
2601    //
2602    // FIXME: Actually perform the POD/user-defined default
2603    // constructor check.
2604    if (getLangOptions().CPlusPlus &&
2605        Context.getCanonicalType(Type).isConstQualified() &&
2606        !Var->hasExternalStorage())
2607      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2608        << Var->getName()
2609        << SourceRange(Var->getLocation(), Var->getLocation());
2610#endif
2611  }
2612}
2613
2614Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2615                                                   unsigned NumDecls) {
2616  llvm::SmallVector<Decl*, 8> Decls;
2617
2618  for (unsigned i = 0; i != NumDecls; ++i)
2619    if (Decl *D = Group[i].getAs<Decl>())
2620      Decls.push_back(D);
2621
2622  // Perform semantic analysis that depends on having fully processed both
2623  // the declarator and initializer.
2624  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2625    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2626    if (!IDecl)
2627      continue;
2628    QualType T = IDecl->getType();
2629
2630    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2631    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2632    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2633      if (!IDecl->isInvalidDecl() &&
2634          RequireCompleteType(IDecl->getLocation(), T,
2635                              diag::err_typecheck_decl_incomplete_type))
2636        IDecl->setInvalidDecl();
2637    }
2638    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2639    // object that has file scope without an initializer, and without a
2640    // storage-class specifier or with the storage-class specifier "static",
2641    // constitutes a tentative definition. Note: A tentative definition with
2642    // external linkage is valid (C99 6.2.2p5).
2643    if (IDecl->isTentativeDefinition(Context)) {
2644      QualType CheckType = T;
2645      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2646
2647      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2648      if (ArrayT) {
2649        CheckType = ArrayT->getElementType();
2650        DiagID = diag::err_illegal_decl_array_incomplete_type;
2651      }
2652
2653      if (IDecl->isInvalidDecl()) {
2654        // Do nothing with invalid declarations
2655      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2656                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2657        // C99 6.9.2p3: If the declaration of an identifier for an object is
2658        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2659        // declared type shall not be an incomplete type.
2660        IDecl->setInvalidDecl();
2661      }
2662    }
2663  }
2664  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2665                                                   &Decls[0], Decls.size()));
2666}
2667
2668
2669/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2670/// to introduce parameters into function prototype scope.
2671Sema::DeclPtrTy
2672Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2673  const DeclSpec &DS = D.getDeclSpec();
2674
2675  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2676  VarDecl::StorageClass StorageClass = VarDecl::None;
2677  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2678    StorageClass = VarDecl::Register;
2679  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2680    Diag(DS.getStorageClassSpecLoc(),
2681         diag::err_invalid_storage_class_in_func_decl);
2682    D.getMutableDeclSpec().ClearStorageClassSpecs();
2683  }
2684  if (DS.isThreadSpecified()) {
2685    Diag(DS.getThreadSpecLoc(),
2686         diag::err_invalid_storage_class_in_func_decl);
2687    D.getMutableDeclSpec().ClearStorageClassSpecs();
2688  }
2689  DiagnoseFunctionSpecifiers(D);
2690
2691  // Check that there are no default arguments inside the type of this
2692  // parameter (C++ only).
2693  if (getLangOptions().CPlusPlus)
2694    CheckExtraCXXDefaultArguments(D);
2695
2696  // In this context, we *do not* check D.getInvalidType(). If the declarator
2697  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2698  // though it will not reflect the user specified type.
2699  QualType parmDeclType = GetTypeForDeclarator(D, S);
2700  if (parmDeclType.isNull()) {
2701    D.setInvalidType(true);
2702    parmDeclType = Context.IntTy;
2703  }
2704
2705  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2706  // Can this happen for params?  We already checked that they don't conflict
2707  // among each other.  Here they can only shadow globals, which is ok.
2708  IdentifierInfo *II = D.getIdentifier();
2709  if (II) {
2710    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2711      if (PrevDecl->isTemplateParameter()) {
2712        // Maybe we will complain about the shadowed template parameter.
2713        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2714        // Just pretend that we didn't see the previous declaration.
2715        PrevDecl = 0;
2716      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2717        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2718
2719        // Recover by removing the name
2720        II = 0;
2721        D.SetIdentifier(0, D.getIdentifierLoc());
2722      }
2723    }
2724  }
2725
2726  // Parameters can not be abstract class types.
2727  // For record types, this is done by the AbstractClassUsageDiagnoser once
2728  // the class has been completely parsed.
2729  if (!CurContext->isRecord() &&
2730      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2731                             diag::err_abstract_type_in_decl,
2732                             AbstractParamType))
2733    D.setInvalidType(true);
2734
2735  QualType T = adjustParameterType(parmDeclType);
2736
2737  ParmVarDecl *New;
2738  if (T == parmDeclType) // parameter type did not need adjustment
2739    New = ParmVarDecl::Create(Context, CurContext,
2740                              D.getIdentifierLoc(), II,
2741                              parmDeclType, StorageClass,
2742                              0);
2743  else // keep track of both the adjusted and unadjusted types
2744    New = OriginalParmVarDecl::Create(Context, CurContext,
2745                                      D.getIdentifierLoc(), II, T,
2746                                      parmDeclType, StorageClass, 0);
2747
2748  if (D.getInvalidType())
2749    New->setInvalidDecl();
2750
2751  // Parameter declarators cannot be interface types. All ObjC objects are
2752  // passed by reference.
2753  if (T->isObjCInterfaceType()) {
2754    Diag(D.getIdentifierLoc(),
2755         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2756    New->setInvalidDecl();
2757  }
2758
2759  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2760  if (D.getCXXScopeSpec().isSet()) {
2761    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2762      << D.getCXXScopeSpec().getRange();
2763    New->setInvalidDecl();
2764  }
2765
2766  // Add the parameter declaration into this scope.
2767  S->AddDecl(DeclPtrTy::make(New));
2768  if (II)
2769    IdResolver.AddDecl(New);
2770
2771  ProcessDeclAttributes(New, D);
2772  return DeclPtrTy::make(New);
2773}
2774
2775void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2776                                           SourceLocation LocAfterDecls) {
2777  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2778         "Not a function declarator!");
2779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2780
2781  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2782  // for a K&R function.
2783  if (!FTI.hasPrototype) {
2784    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2785      --i;
2786      if (FTI.ArgInfo[i].Param == 0) {
2787        std::string Code = "  int ";
2788        Code += FTI.ArgInfo[i].Ident->getName();
2789        Code += ";\n";
2790        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2791          << FTI.ArgInfo[i].Ident
2792          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2793
2794        // Implicitly declare the argument as type 'int' for lack of a better
2795        // type.
2796        DeclSpec DS;
2797        const char* PrevSpec; // unused
2798        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2799                           PrevSpec);
2800        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2801        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2802        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2803      }
2804    }
2805  }
2806}
2807
2808Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2809                                              Declarator &D) {
2810  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2811  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2812         "Not a function declarator!");
2813  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2814
2815  if (FTI.hasPrototype) {
2816    // FIXME: Diagnose arguments without names in C.
2817  }
2818
2819  Scope *ParentScope = FnBodyScope->getParent();
2820
2821  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2822  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2823}
2824
2825Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2826  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2827
2828  // See if this is a redefinition.
2829  const FunctionDecl *Definition;
2830  if (FD->getBody(Definition)) {
2831    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2832    Diag(Definition->getLocation(), diag::note_previous_definition);
2833  }
2834
2835  // Builtin functions cannot be defined.
2836  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2837    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2838      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2839      FD->setInvalidDecl();
2840    }
2841  }
2842
2843  // The return type of a function definition must be complete
2844  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2845  QualType ResultType = FD->getResultType();
2846  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2847      RequireCompleteType(FD->getLocation(), ResultType,
2848                          diag::err_func_def_incomplete_result))
2849    FD->setInvalidDecl();
2850
2851  // GNU warning -Wmissing-prototypes:
2852  //   Warn if a global function is defined without a previous
2853  //   prototype declaration. This warning is issued even if the
2854  //   definition itself provides a prototype. The aim is to detect
2855  //   global functions that fail to be declared in header files.
2856  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2857      !FD->isMain()) {
2858    bool MissingPrototype = true;
2859    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2860         Prev; Prev = Prev->getPreviousDeclaration()) {
2861      // Ignore any declarations that occur in function or method
2862      // scope, because they aren't visible from the header.
2863      if (Prev->getDeclContext()->isFunctionOrMethod())
2864        continue;
2865
2866      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2867      break;
2868    }
2869
2870    if (MissingPrototype)
2871      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2872  }
2873
2874  PushDeclContext(FnBodyScope, FD);
2875
2876  // Check the validity of our function parameters
2877  CheckParmsForFunctionDef(FD);
2878
2879  // Introduce our parameters into the function scope
2880  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2881    ParmVarDecl *Param = FD->getParamDecl(p);
2882    Param->setOwningFunction(FD);
2883
2884    // If this has an identifier, add it to the scope stack.
2885    if (Param->getIdentifier())
2886      PushOnScopeChains(Param, FnBodyScope);
2887  }
2888
2889  // Checking attributes of current function definition
2890  // dllimport attribute.
2891  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2892    // dllimport attribute cannot be applied to definition.
2893    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2894      Diag(FD->getLocation(),
2895           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2896        << "dllimport";
2897      FD->setInvalidDecl();
2898      return DeclPtrTy::make(FD);
2899    } else {
2900      // If a symbol previously declared dllimport is later defined, the
2901      // attribute is ignored in subsequent references, and a warning is
2902      // emitted.
2903      Diag(FD->getLocation(),
2904           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2905        << FD->getNameAsCString() << "dllimport";
2906    }
2907  }
2908  return DeclPtrTy::make(FD);
2909}
2910
2911static bool StatementCreatesScope(Stmt* S) {
2912
2913  if (DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
2914    for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
2915         I != E; ++I) {
2916      if (VarDecl *D = dyn_cast<VarDecl>(*I)) {
2917        if (D->getType()->isVariablyModifiedType() ||
2918            D->hasAttr<CleanupAttr>())
2919          return true;
2920      } else if (TypedefDecl *D = dyn_cast<TypedefDecl>(*I)) {
2921        if (D->getUnderlyingType()->isVariablyModifiedType())
2922          return true;
2923      }
2924    }
2925  }
2926  return false;
2927}
2928
2929
2930void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2931                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2932                                    std::vector<void*>& ScopeStack,
2933                                    Stmt* CurStmt,
2934                                    Stmt* ParentCompoundStmt) {
2935  for (Stmt::child_iterator i = CurStmt->child_begin();
2936       i != CurStmt->child_end(); ++i) {
2937    if (!*i) continue;
2938    if (StatementCreatesScope(*i))  {
2939      ScopeStack.push_back(*i);
2940      PopScopeMap[*i] = ParentCompoundStmt;
2941    } else if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(*i)) {
2942      ScopeStack.push_back(*i);
2943      PopScopeMap[*i] = AT->getTryBody();
2944    } else if (ObjCAtCatchStmt *AC = dyn_cast<ObjCAtCatchStmt>(*i)) {
2945      ScopeStack.push_back(*i);
2946      PopScopeMap[*i] = AC->getCatchBody();
2947    } else if (ObjCAtFinallyStmt *AF = dyn_cast<ObjCAtFinallyStmt>(*i)) {
2948      ScopeStack.push_back(*i);
2949      PopScopeMap[*i] = AF->getFinallyBody();
2950    } else if (isa<LabelStmt>(CurStmt)) {
2951      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2952    }
2953    if (isa<DeclStmt>(*i)) continue;
2954    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2955    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2956                             *i, CurCompound);
2957  }
2958  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2959    ScopeStack.pop_back();
2960  }
2961}
2962
2963void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2964                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2965                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2966                                   std::vector<void*>& ScopeStack,
2967                                   Stmt* CurStmt) {
2968  for (Stmt::child_iterator i = CurStmt->child_begin();
2969       i != CurStmt->child_end(); ++i) {
2970    if (!*i) continue;
2971    if (StatementCreatesScope(*i))  {
2972      ScopeStack.push_back(*i);
2973    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2974      void* LScope = LabelScopeMap[GS->getLabel()];
2975      if (LScope) {
2976        bool foundScopeInStack = false;
2977        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2978          if (LScope == ScopeStack[i-1]) {
2979            foundScopeInStack = true;
2980            break;
2981          }
2982        }
2983        if (!foundScopeInStack) {
2984          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2985        }
2986      }
2987    }
2988    if (isa<DeclStmt>(*i)) continue;
2989    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2990                            ScopeStack, *i);
2991  }
2992  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2993    ScopeStack.pop_back();
2994  }
2995}
2996
2997Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2998  Decl *dcl = D.getAs<Decl>();
2999  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
3000  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3001    FD->setBody(cast<CompoundStmt>(Body));
3002    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3003  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3004    assert(MD == getCurMethodDecl() && "Method parsing confused");
3005    MD->setBody(cast<CompoundStmt>(Body));
3006  } else {
3007    Body->Destroy(Context);
3008    return DeclPtrTy();
3009  }
3010  PopDeclContext();
3011  // Verify and clean out per-function state.
3012
3013  bool HaveLabels = !LabelMap.empty();
3014  // Check goto/label use.
3015  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3016       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
3017    // Verify that we have no forward references left.  If so, there was a goto
3018    // or address of a label taken, but no definition of it.  Label fwd
3019    // definitions are indicated with a null substmt.
3020    if (I->second->getSubStmt() == 0) {
3021      LabelStmt *L = I->second;
3022      // Emit error.
3023      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3024
3025      // At this point, we have gotos that use the bogus label.  Stitch it into
3026      // the function body so that they aren't leaked and that the AST is well
3027      // formed.
3028      if (Body) {
3029#if 0
3030        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3031        // and the AST is malformed anyway.  We should just blow away 'L'.
3032        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3033        cast<CompoundStmt>(Body)->push_back(L);
3034#else
3035        L->Destroy(Context);
3036#endif
3037      } else {
3038        // The whole function wasn't parsed correctly, just delete this.
3039        L->Destroy(Context);
3040      }
3041    }
3042  }
3043  LabelMap.clear();
3044
3045  if (!Body) return D;
3046
3047  if (HaveLabels) {
3048    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
3049    llvm::DenseMap<void*, Stmt*> PopScopeMap;
3050    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
3051    std::vector<void*> ScopeStack;
3052    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
3053    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
3054  }
3055
3056  return D;
3057}
3058
3059/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3060/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3061NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3062                                          IdentifierInfo &II, Scope *S) {
3063  // Before we produce a declaration for an implicitly defined
3064  // function, see whether there was a locally-scoped declaration of
3065  // this name as a function or variable. If so, use that
3066  // (non-visible) declaration, and complain about it.
3067  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3068    = LocallyScopedExternalDecls.find(&II);
3069  if (Pos != LocallyScopedExternalDecls.end()) {
3070    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3071    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3072    return Pos->second;
3073  }
3074
3075  // Extension in C99.  Legal in C90, but warn about it.
3076  if (getLangOptions().C99)
3077    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3078  else
3079    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3080
3081  // FIXME: handle stuff like:
3082  // void foo() { extern float X(); }
3083  // void bar() { X(); }  <-- implicit decl for X in another scope.
3084
3085  // Set a Declarator for the implicit definition: int foo();
3086  const char *Dummy;
3087  DeclSpec DS;
3088  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3089  Error = Error; // Silence warning.
3090  assert(!Error && "Error setting up implicit decl!");
3091  Declarator D(DS, Declarator::BlockContext);
3092  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3093                                             0, 0, 0, Loc, D),
3094                SourceLocation());
3095  D.SetIdentifier(&II, Loc);
3096
3097  // Insert this function into translation-unit scope.
3098
3099  DeclContext *PrevDC = CurContext;
3100  CurContext = Context.getTranslationUnitDecl();
3101
3102  FunctionDecl *FD =
3103 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3104  FD->setImplicit();
3105
3106  CurContext = PrevDC;
3107
3108  AddKnownFunctionAttributes(FD);
3109
3110  return FD;
3111}
3112
3113/// \brief Adds any function attributes that we know a priori based on
3114/// the declaration of this function.
3115///
3116/// These attributes can apply both to implicitly-declared builtins
3117/// (like __builtin___printf_chk) or to library-declared functions
3118/// like NSLog or printf.
3119void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3120  if (FD->isInvalidDecl())
3121    return;
3122
3123  // If this is a built-in function, map its builtin attributes to
3124  // actual attributes.
3125  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3126    // Handle printf-formatting attributes.
3127    unsigned FormatIdx;
3128    bool HasVAListArg;
3129    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3130      if (!FD->getAttr<FormatAttr>())
3131        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3132                                               FormatIdx + 2));
3133    }
3134
3135    // Mark const if we don't care about errno and that is the only
3136    // thing preventing the function from being const. This allows
3137    // IRgen to use LLVM intrinsics for such functions.
3138    if (!getLangOptions().MathErrno &&
3139        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3140      if (!FD->getAttr<ConstAttr>())
3141        FD->addAttr(::new (Context) ConstAttr());
3142    }
3143  }
3144
3145  IdentifierInfo *Name = FD->getIdentifier();
3146  if (!Name)
3147    return;
3148  if ((!getLangOptions().CPlusPlus &&
3149       FD->getDeclContext()->isTranslationUnit()) ||
3150      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3151       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3152       LinkageSpecDecl::lang_c)) {
3153    // Okay: this could be a libc/libm/Objective-C function we know
3154    // about.
3155  } else
3156    return;
3157
3158  unsigned KnownID;
3159  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3160    if (KnownFunctionIDs[KnownID] == Name)
3161      break;
3162
3163  switch (KnownID) {
3164  case id_NSLog:
3165  case id_NSLogv:
3166    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3167      // FIXME: We known better than our headers.
3168      const_cast<FormatAttr *>(Format)->setType("printf");
3169    } else
3170      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3171    break;
3172
3173  case id_asprintf:
3174  case id_vasprintf:
3175    if (!FD->getAttr<FormatAttr>())
3176      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3177    break;
3178
3179  default:
3180    // Unknown function or known function without any attributes to
3181    // add. Do nothing.
3182    break;
3183  }
3184}
3185
3186TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3187  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3188  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3189
3190  // Scope manipulation handled by caller.
3191  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3192                                           D.getIdentifierLoc(),
3193                                           D.getIdentifier(),
3194                                           T);
3195
3196  if (TagType *TT = dyn_cast<TagType>(T)) {
3197    TagDecl *TD = TT->getDecl();
3198
3199    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3200    // keep track of the TypedefDecl.
3201    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3202      TD->setTypedefForAnonDecl(NewTD);
3203  }
3204
3205  if (D.getInvalidType())
3206    NewTD->setInvalidDecl();
3207  return NewTD;
3208}
3209
3210/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3211/// former case, Name will be non-null.  In the later case, Name will be null.
3212/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3213/// reference/declaration/definition of a tag.
3214Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3215                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3216                               IdentifierInfo *Name, SourceLocation NameLoc,
3217                               AttributeList *Attr, AccessSpecifier AS) {
3218  // If this is not a definition, it must have a name.
3219  assert((Name != 0 || TK == TK_Definition) &&
3220         "Nameless record must be a definition!");
3221
3222  TagDecl::TagKind Kind;
3223  switch (TagSpec) {
3224  default: assert(0 && "Unknown tag type!");
3225  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3226  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3227  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3228  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3229  }
3230
3231  DeclContext *SearchDC = CurContext;
3232  DeclContext *DC = CurContext;
3233  NamedDecl *PrevDecl = 0;
3234
3235  bool Invalid = false;
3236
3237  if (Name && SS.isNotEmpty()) {
3238    // We have a nested-name tag ('struct foo::bar').
3239
3240    // Check for invalid 'foo::'.
3241    if (SS.isInvalid()) {
3242      Name = 0;
3243      goto CreateNewDecl;
3244    }
3245
3246    // FIXME: RequireCompleteDeclContext(SS)?
3247    DC = computeDeclContext(SS);
3248    SearchDC = DC;
3249    // Look-up name inside 'foo::'.
3250    PrevDecl = dyn_cast_or_null<TagDecl>(
3251                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3252
3253    // A tag 'foo::bar' must already exist.
3254    if (PrevDecl == 0) {
3255      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3256      Name = 0;
3257      goto CreateNewDecl;
3258    }
3259  } else if (Name) {
3260    // If this is a named struct, check to see if there was a previous forward
3261    // declaration or definition.
3262    // FIXME: We're looking into outer scopes here, even when we
3263    // shouldn't be. Doing so can result in ambiguities that we
3264    // shouldn't be diagnosing.
3265    LookupResult R = LookupName(S, Name, LookupTagName,
3266                                /*RedeclarationOnly=*/(TK != TK_Reference));
3267    if (R.isAmbiguous()) {
3268      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3269      // FIXME: This is not best way to recover from case like:
3270      //
3271      // struct S s;
3272      //
3273      // causes needless "incomplete type" error later.
3274      Name = 0;
3275      PrevDecl = 0;
3276      Invalid = true;
3277    }
3278    else
3279      PrevDecl = R;
3280
3281    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3282      // FIXME: This makes sure that we ignore the contexts associated
3283      // with C structs, unions, and enums when looking for a matching
3284      // tag declaration or definition. See the similar lookup tweak
3285      // in Sema::LookupName; is there a better way to deal with this?
3286      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3287        SearchDC = SearchDC->getParent();
3288    }
3289  }
3290
3291  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3292    // Maybe we will complain about the shadowed template parameter.
3293    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3294    // Just pretend that we didn't see the previous declaration.
3295    PrevDecl = 0;
3296  }
3297
3298  if (PrevDecl) {
3299    // Check whether the previous declaration is usable.
3300    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3301
3302    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3303      // If this is a use of a previous tag, or if the tag is already declared
3304      // in the same scope (so that the definition/declaration completes or
3305      // rementions the tag), reuse the decl.
3306      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3307        // Make sure that this wasn't declared as an enum and now used as a
3308        // struct or something similar.
3309        if (PrevTagDecl->getTagKind() != Kind) {
3310          bool SafeToContinue
3311            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3312               Kind != TagDecl::TK_enum);
3313          if (SafeToContinue)
3314            Diag(KWLoc, diag::err_use_with_wrong_tag)
3315              << Name
3316              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3317                                                  PrevTagDecl->getKindName());
3318          else
3319            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3320          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3321
3322          if (SafeToContinue)
3323            Kind = PrevTagDecl->getTagKind();
3324          else {
3325            // Recover by making this an anonymous redefinition.
3326            Name = 0;
3327            PrevDecl = 0;
3328            Invalid = true;
3329          }
3330        }
3331
3332        if (!Invalid) {
3333          // If this is a use, just return the declaration we found.
3334
3335          // FIXME: In the future, return a variant or some other clue
3336          // for the consumer of this Decl to know it doesn't own it.
3337          // For our current ASTs this shouldn't be a problem, but will
3338          // need to be changed with DeclGroups.
3339          if (TK == TK_Reference)
3340            return DeclPtrTy::make(PrevDecl);
3341
3342          // Diagnose attempts to redefine a tag.
3343          if (TK == TK_Definition) {
3344            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3345              Diag(NameLoc, diag::err_redefinition) << Name;
3346              Diag(Def->getLocation(), diag::note_previous_definition);
3347              // If this is a redefinition, recover by making this
3348              // struct be anonymous, which will make any later
3349              // references get the previous definition.
3350              Name = 0;
3351              PrevDecl = 0;
3352              Invalid = true;
3353            } else {
3354              // If the type is currently being defined, complain
3355              // about a nested redefinition.
3356              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3357              if (Tag->isBeingDefined()) {
3358                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3359                Diag(PrevTagDecl->getLocation(),
3360                     diag::note_previous_definition);
3361                Name = 0;
3362                PrevDecl = 0;
3363                Invalid = true;
3364              }
3365            }
3366
3367            // Okay, this is definition of a previously declared or referenced
3368            // tag PrevDecl. We're going to create a new Decl for it.
3369          }
3370        }
3371        // If we get here we have (another) forward declaration or we
3372        // have a definition.  Just create a new decl.
3373      } else {
3374        // If we get here, this is a definition of a new tag type in a nested
3375        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3376        // new decl/type.  We set PrevDecl to NULL so that the entities
3377        // have distinct types.
3378        PrevDecl = 0;
3379      }
3380      // If we get here, we're going to create a new Decl. If PrevDecl
3381      // is non-NULL, it's a definition of the tag declared by
3382      // PrevDecl. If it's NULL, we have a new definition.
3383    } else {
3384      // PrevDecl is a namespace, template, or anything else
3385      // that lives in the IDNS_Tag identifier namespace.
3386      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3387        // The tag name clashes with a namespace name, issue an error and
3388        // recover by making this tag be anonymous.
3389        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3390        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3391        Name = 0;
3392        PrevDecl = 0;
3393        Invalid = true;
3394      } else {
3395        // The existing declaration isn't relevant to us; we're in a
3396        // new scope, so clear out the previous declaration.
3397        PrevDecl = 0;
3398      }
3399    }
3400  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3401             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3402    // C.scope.pdecl]p5:
3403    //   -- for an elaborated-type-specifier of the form
3404    //
3405    //          class-key identifier
3406    //
3407    //      if the elaborated-type-specifier is used in the
3408    //      decl-specifier-seq or parameter-declaration-clause of a
3409    //      function defined in namespace scope, the identifier is
3410    //      declared as a class-name in the namespace that contains
3411    //      the declaration; otherwise, except as a friend
3412    //      declaration, the identifier is declared in the smallest
3413    //      non-class, non-function-prototype scope that contains the
3414    //      declaration.
3415    //
3416    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3417    // C structs and unions.
3418    //
3419    // GNU C also supports this behavior as part of its incomplete
3420    // enum types extension, while GNU C++ does not.
3421    //
3422    // Find the context where we'll be declaring the tag.
3423    // FIXME: We would like to maintain the current DeclContext as the
3424    // lexical context,
3425    while (SearchDC->isRecord())
3426      SearchDC = SearchDC->getParent();
3427
3428    // Find the scope where we'll be declaring the tag.
3429    while (S->isClassScope() ||
3430           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3431           ((S->getFlags() & Scope::DeclScope) == 0) ||
3432           (S->getEntity() &&
3433            ((DeclContext *)S->getEntity())->isTransparentContext()))
3434      S = S->getParent();
3435  }
3436
3437CreateNewDecl:
3438
3439  // If there is an identifier, use the location of the identifier as the
3440  // location of the decl, otherwise use the location of the struct/union
3441  // keyword.
3442  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3443
3444  // Otherwise, create a new declaration. If there is a previous
3445  // declaration of the same entity, the two will be linked via
3446  // PrevDecl.
3447  TagDecl *New;
3448
3449  if (Kind == TagDecl::TK_enum) {
3450    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3451    // enum X { A, B, C } D;    D should chain to X.
3452    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3453                           cast_or_null<EnumDecl>(PrevDecl));
3454    // If this is an undefined enum, warn.
3455    if (TK != TK_Definition && !Invalid)  {
3456      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3457                                              : diag::ext_forward_ref_enum;
3458      Diag(Loc, DK);
3459    }
3460  } else {
3461    // struct/union/class
3462
3463    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3464    // struct X { int A; } D;    D should chain to X.
3465    if (getLangOptions().CPlusPlus)
3466      // FIXME: Look for a way to use RecordDecl for simple structs.
3467      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3468                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3469    else
3470      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3471                               cast_or_null<RecordDecl>(PrevDecl));
3472  }
3473
3474  if (Kind != TagDecl::TK_enum) {
3475    // Handle #pragma pack: if the #pragma pack stack has non-default
3476    // alignment, make up a packed attribute for this decl. These
3477    // attributes are checked when the ASTContext lays out the
3478    // structure.
3479    //
3480    // It is important for implementing the correct semantics that this
3481    // happen here (in act on tag decl). The #pragma pack stack is
3482    // maintained as a result of parser callbacks which can occur at
3483    // many points during the parsing of a struct declaration (because
3484    // the #pragma tokens are effectively skipped over during the
3485    // parsing of the struct).
3486    if (unsigned Alignment = getPragmaPackAlignment())
3487      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3488  }
3489
3490  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3491    // C++ [dcl.typedef]p3:
3492    //   [...] Similarly, in a given scope, a class or enumeration
3493    //   shall not be declared with the same name as a typedef-name
3494    //   that is declared in that scope and refers to a type other
3495    //   than the class or enumeration itself.
3496    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3497    TypedefDecl *PrevTypedef = 0;
3498    if (Lookup.getKind() == LookupResult::Found)
3499      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3500
3501    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3502        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3503          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3504      Diag(Loc, diag::err_tag_definition_of_typedef)
3505        << Context.getTypeDeclType(New)
3506        << PrevTypedef->getUnderlyingType();
3507      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3508      Invalid = true;
3509    }
3510  }
3511
3512  if (Invalid)
3513    New->setInvalidDecl();
3514
3515  if (Attr)
3516    ProcessDeclAttributeList(New, Attr);
3517
3518  // If we're declaring or defining a tag in function prototype scope
3519  // in C, note that this type can only be used within the function.
3520  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3521    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3522
3523  // Set the lexical context. If the tag has a C++ scope specifier, the
3524  // lexical context will be different from the semantic context.
3525  New->setLexicalDeclContext(CurContext);
3526
3527  // Set the access specifier.
3528  SetMemberAccessSpecifier(New, PrevDecl, AS);
3529
3530  if (TK == TK_Definition)
3531    New->startDefinition();
3532
3533  // If this has an identifier, add it to the scope stack.
3534  if (Name) {
3535    S = getNonFieldDeclScope(S);
3536    PushOnScopeChains(New, S);
3537  } else {
3538    CurContext->addDecl(Context, New);
3539  }
3540
3541  return DeclPtrTy::make(New);
3542}
3543
3544void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3545  AdjustDeclIfTemplate(TagD);
3546  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3547
3548  // Enter the tag context.
3549  PushDeclContext(S, Tag);
3550
3551  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3552    FieldCollector->StartClass();
3553
3554    if (Record->getIdentifier()) {
3555      // C++ [class]p2:
3556      //   [...] The class-name is also inserted into the scope of the
3557      //   class itself; this is known as the injected-class-name. For
3558      //   purposes of access checking, the injected-class-name is treated
3559      //   as if it were a public member name.
3560      CXXRecordDecl *InjectedClassName
3561        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3562                                CurContext, Record->getLocation(),
3563                                Record->getIdentifier(), Record);
3564      InjectedClassName->setImplicit();
3565      InjectedClassName->setAccess(AS_public);
3566      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3567        InjectedClassName->setDescribedClassTemplate(Template);
3568      PushOnScopeChains(InjectedClassName, S);
3569      assert(InjectedClassName->isInjectedClassName() &&
3570             "Broken injected-class-name");
3571    }
3572  }
3573}
3574
3575void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3576  AdjustDeclIfTemplate(TagD);
3577  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3578
3579  if (isa<CXXRecordDecl>(Tag))
3580    FieldCollector->FinishClass();
3581
3582  // Exit this scope of this tag's definition.
3583  PopDeclContext();
3584
3585  // Notify the consumer that we've defined a tag.
3586  Consumer.HandleTagDeclDefinition(Tag);
3587}
3588
3589bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3590                          QualType FieldTy, const Expr *BitWidth) {
3591  // C99 6.7.2.1p4 - verify the field type.
3592  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3593  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3594    // Handle incomplete types with specific error.
3595    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3596      return true;
3597    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3598      << FieldName << FieldTy << BitWidth->getSourceRange();
3599  }
3600
3601  // If the bit-width is type- or value-dependent, don't try to check
3602  // it now.
3603  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3604    return false;
3605
3606  llvm::APSInt Value;
3607  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3608    return true;
3609
3610  // Zero-width bitfield is ok for anonymous field.
3611  if (Value == 0 && FieldName)
3612    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3613
3614  if (Value.isSigned() && Value.isNegative())
3615    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3616             << FieldName << Value.toString(10);
3617
3618  if (!FieldTy->isDependentType()) {
3619    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3620    // FIXME: We won't need the 0 size once we check that the field type is valid.
3621    if (TypeSize && Value.getZExtValue() > TypeSize)
3622      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3623        << FieldName << (unsigned)TypeSize;
3624  }
3625
3626  return false;
3627}
3628
3629/// ActOnField - Each field of a struct/union/class is passed into this in order
3630/// to create a FieldDecl object for it.
3631Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3632                                 SourceLocation DeclStart,
3633                                 Declarator &D, ExprTy *BitfieldWidth) {
3634  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3635                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3636                               AS_public);
3637  return DeclPtrTy::make(Res);
3638}
3639
3640/// HandleField - Analyze a field of a C struct or a C++ data member.
3641///
3642FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3643                             SourceLocation DeclStart,
3644                             Declarator &D, Expr *BitWidth,
3645                             AccessSpecifier AS) {
3646  IdentifierInfo *II = D.getIdentifier();
3647  SourceLocation Loc = DeclStart;
3648  if (II) Loc = D.getIdentifierLoc();
3649
3650  QualType T = GetTypeForDeclarator(D, S);
3651  if (getLangOptions().CPlusPlus)
3652    CheckExtraCXXDefaultArguments(D);
3653
3654  DiagnoseFunctionSpecifiers(D);
3655
3656  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3657  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3658    PrevDecl = 0;
3659
3660  FieldDecl *NewFD
3661    = CheckFieldDecl(II, T, Record, Loc,
3662               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3663                     BitWidth, AS, PrevDecl, &D);
3664  if (NewFD->isInvalidDecl() && PrevDecl) {
3665    // Don't introduce NewFD into scope; there's already something
3666    // with the same name in the same scope.
3667  } else if (II) {
3668    PushOnScopeChains(NewFD, S);
3669  } else
3670    Record->addDecl(Context, NewFD);
3671
3672  return NewFD;
3673}
3674
3675/// \brief Build a new FieldDecl and check its well-formedness.
3676///
3677/// This routine builds a new FieldDecl given the fields name, type,
3678/// record, etc. \p PrevDecl should refer to any previous declaration
3679/// with the same name and in the same scope as the field to be
3680/// created.
3681///
3682/// \returns a new FieldDecl.
3683///
3684/// \todo The Declarator argument is a hack. It will be removed once
3685FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3686                                RecordDecl *Record, SourceLocation Loc,
3687                                bool Mutable, Expr *BitWidth,
3688                                AccessSpecifier AS, NamedDecl *PrevDecl,
3689                                Declarator *D) {
3690  IdentifierInfo *II = Name.getAsIdentifierInfo();
3691  bool InvalidDecl = false;
3692
3693  // If we receive a broken type, recover by assuming 'int' and
3694  // marking this declaration as invalid.
3695  if (T.isNull()) {
3696    InvalidDecl = true;
3697    T = Context.IntTy;
3698  }
3699
3700  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3701  // than a variably modified type.
3702  if (T->isVariablyModifiedType()) {
3703    bool SizeIsNegative;
3704    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3705                                                           SizeIsNegative);
3706    if (!FixedTy.isNull()) {
3707      Diag(Loc, diag::warn_illegal_constant_array_size);
3708      T = FixedTy;
3709    } else {
3710      if (SizeIsNegative)
3711        Diag(Loc, diag::err_typecheck_negative_array_size);
3712      else
3713        Diag(Loc, diag::err_typecheck_field_variable_size);
3714      T = Context.IntTy;
3715      InvalidDecl = true;
3716    }
3717  }
3718
3719  // Fields can not have abstract class types
3720  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3721                             AbstractFieldType))
3722    InvalidDecl = true;
3723
3724  // If this is declared as a bit-field, check the bit-field.
3725  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3726    InvalidDecl = true;
3727    DeleteExpr(BitWidth);
3728    BitWidth = 0;
3729  }
3730
3731  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3732                                       Mutable);
3733
3734  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3735    Diag(Loc, diag::err_duplicate_member) << II;
3736    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3737    NewFD->setInvalidDecl();
3738    Record->setInvalidDecl();
3739  }
3740
3741  if (getLangOptions().CPlusPlus && !T->isPODType())
3742    cast<CXXRecordDecl>(Record)->setPOD(false);
3743
3744  // FIXME: We need to pass in the attributes given an AST
3745  // representation, not a parser representation.
3746  if (D)
3747    ProcessDeclAttributes(NewFD, *D);
3748
3749  if (T.isObjCGCWeak())
3750    Diag(Loc, diag::warn_attribute_weak_on_field);
3751
3752  if (InvalidDecl)
3753    NewFD->setInvalidDecl();
3754
3755  NewFD->setAccess(AS);
3756
3757  // C++ [dcl.init.aggr]p1:
3758  //   An aggregate is an array or a class (clause 9) with [...] no
3759  //   private or protected non-static data members (clause 11).
3760  // A POD must be an aggregate.
3761  if (getLangOptions().CPlusPlus &&
3762      (AS == AS_private || AS == AS_protected)) {
3763    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3764    CXXRecord->setAggregate(false);
3765    CXXRecord->setPOD(false);
3766  }
3767
3768  return NewFD;
3769}
3770
3771/// TranslateIvarVisibility - Translate visibility from a token ID to an
3772///  AST enum value.
3773static ObjCIvarDecl::AccessControl
3774TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3775  switch (ivarVisibility) {
3776  default: assert(0 && "Unknown visitibility kind");
3777  case tok::objc_private: return ObjCIvarDecl::Private;
3778  case tok::objc_public: return ObjCIvarDecl::Public;
3779  case tok::objc_protected: return ObjCIvarDecl::Protected;
3780  case tok::objc_package: return ObjCIvarDecl::Package;
3781  }
3782}
3783
3784/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3785/// in order to create an IvarDecl object for it.
3786Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3787                                SourceLocation DeclStart,
3788                                Declarator &D, ExprTy *BitfieldWidth,
3789                                tok::ObjCKeywordKind Visibility) {
3790
3791  IdentifierInfo *II = D.getIdentifier();
3792  Expr *BitWidth = (Expr*)BitfieldWidth;
3793  SourceLocation Loc = DeclStart;
3794  if (II) Loc = D.getIdentifierLoc();
3795
3796  // FIXME: Unnamed fields can be handled in various different ways, for
3797  // example, unnamed unions inject all members into the struct namespace!
3798
3799  QualType T = GetTypeForDeclarator(D, S);
3800  bool InvalidDecl = false;
3801  if (T.isNull()) {
3802    InvalidDecl = true;
3803    T = Context.IntTy;
3804  }
3805
3806  if (BitWidth) {
3807    // 6.7.2.1p3, 6.7.2.1p4
3808    if (VerifyBitField(Loc, II, T, BitWidth)) {
3809      InvalidDecl = true;
3810      DeleteExpr(BitWidth);
3811      BitWidth = 0;
3812    }
3813  } else {
3814    // Not a bitfield.
3815
3816    // validate II.
3817
3818  }
3819
3820  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3821  // than a variably modified type.
3822  if (T->isVariablyModifiedType()) {
3823    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3824    InvalidDecl = true;
3825  }
3826
3827  // Get the visibility (access control) for this ivar.
3828  ObjCIvarDecl::AccessControl ac =
3829    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3830                                        : ObjCIvarDecl::None;
3831
3832  // Construct the decl.
3833  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3834                                             (Expr *)BitfieldWidth);
3835
3836  if (II) {
3837    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3838    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3839        && !isa<TagDecl>(PrevDecl)) {
3840      Diag(Loc, diag::err_duplicate_member) << II;
3841      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3842      NewID->setInvalidDecl();
3843    }
3844  }
3845
3846  // Process attributes attached to the ivar.
3847  ProcessDeclAttributes(NewID, D);
3848
3849  if (D.getInvalidType() || InvalidDecl)
3850    NewID->setInvalidDecl();
3851
3852  if (II) {
3853    // FIXME: When interfaces are DeclContexts, we'll need to add
3854    // these to the interface.
3855    S->AddDecl(DeclPtrTy::make(NewID));
3856    IdResolver.AddDecl(NewID);
3857  }
3858
3859  return DeclPtrTy::make(NewID);
3860}
3861
3862void Sema::ActOnFields(Scope* S,
3863                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3864                       DeclPtrTy *Fields, unsigned NumFields,
3865                       SourceLocation LBrac, SourceLocation RBrac,
3866                       AttributeList *Attr) {
3867  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3868  assert(EnclosingDecl && "missing record or interface decl");
3869
3870  // If the decl this is being inserted into is invalid, then it may be a
3871  // redeclaration or some other bogus case.  Don't try to add fields to it.
3872  if (EnclosingDecl->isInvalidDecl()) {
3873    // FIXME: Deallocate fields?
3874    return;
3875  }
3876
3877
3878  // Verify that all the fields are okay.
3879  unsigned NumNamedMembers = 0;
3880  llvm::SmallVector<FieldDecl*, 32> RecFields;
3881
3882  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3883  for (unsigned i = 0; i != NumFields; ++i) {
3884    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3885
3886    // Get the type for the field.
3887    Type *FDTy = FD->getType().getTypePtr();
3888
3889    if (!FD->isAnonymousStructOrUnion()) {
3890      // Remember all fields written by the user.
3891      RecFields.push_back(FD);
3892    }
3893
3894    // If the field is already invalid for some reason, don't emit more
3895    // diagnostics about it.
3896    if (FD->isInvalidDecl())
3897      continue;
3898
3899    // C99 6.7.2.1p2:
3900    //   A structure or union shall not contain a member with
3901    //   incomplete or function type (hence, a structure shall not
3902    //   contain an instance of itself, but may contain a pointer to
3903    //   an instance of itself), except that the last member of a
3904    //   structure with more than one named member may have incomplete
3905    //   array type; such a structure (and any union containing,
3906    //   possibly recursively, a member that is such a structure)
3907    //   shall not be a member of a structure or an element of an
3908    //   array.
3909    if (FDTy->isFunctionType()) {
3910      // Field declared as a function.
3911      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3912        << FD->getDeclName();
3913      FD->setInvalidDecl();
3914      EnclosingDecl->setInvalidDecl();
3915      continue;
3916    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3917               Record && Record->isStruct()) {
3918      // Flexible array member.
3919      if (NumNamedMembers < 1) {
3920        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3921          << FD->getDeclName();
3922        FD->setInvalidDecl();
3923        EnclosingDecl->setInvalidDecl();
3924        continue;
3925      }
3926      // Okay, we have a legal flexible array member at the end of the struct.
3927      if (Record)
3928        Record->setHasFlexibleArrayMember(true);
3929    } else if (!FDTy->isDependentType() &&
3930               RequireCompleteType(FD->getLocation(), FD->getType(),
3931                                   diag::err_field_incomplete)) {
3932      // Incomplete type
3933      FD->setInvalidDecl();
3934      EnclosingDecl->setInvalidDecl();
3935      continue;
3936    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3937      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3938        // If this is a member of a union, then entire union becomes "flexible".
3939        if (Record && Record->isUnion()) {
3940          Record->setHasFlexibleArrayMember(true);
3941        } else {
3942          // If this is a struct/class and this is not the last element, reject
3943          // it.  Note that GCC supports variable sized arrays in the middle of
3944          // structures.
3945          if (i != NumFields-1)
3946            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3947              << FD->getDeclName();
3948          else {
3949            // We support flexible arrays at the end of structs in
3950            // other structs as an extension.
3951            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3952              << FD->getDeclName();
3953            if (Record)
3954              Record->setHasFlexibleArrayMember(true);
3955          }
3956        }
3957      }
3958    } else if (FDTy->isObjCInterfaceType()) {
3959      /// A field cannot be an Objective-c object
3960      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3961      FD->setInvalidDecl();
3962      EnclosingDecl->setInvalidDecl();
3963      continue;
3964    }
3965    // Keep track of the number of named members.
3966    if (FD->getIdentifier())
3967      ++NumNamedMembers;
3968  }
3969
3970  // Okay, we successfully defined 'Record'.
3971  if (Record) {
3972    Record->completeDefinition(Context);
3973  } else {
3974    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3975    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3976      ID->setIVarList(ClsFields, RecFields.size(), Context);
3977      ID->setLocEnd(RBrac);
3978
3979      // Must enforce the rule that ivars in the base classes may not be
3980      // duplicates.
3981      if (ID->getSuperClass()) {
3982        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3983             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3984          ObjCIvarDecl* Ivar = (*IVI);
3985          IdentifierInfo *II = Ivar->getIdentifier();
3986          ObjCIvarDecl* prevIvar =
3987            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3988          if (prevIvar) {
3989            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3990            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3991          }
3992        }
3993      }
3994    } else if (ObjCImplementationDecl *IMPDecl =
3995                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3996      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3997      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3998      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3999    }
4000  }
4001
4002  if (Attr)
4003    ProcessDeclAttributeList(Record, Attr);
4004}
4005
4006EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4007                                          EnumConstantDecl *LastEnumConst,
4008                                          SourceLocation IdLoc,
4009                                          IdentifierInfo *Id,
4010                                          ExprArg val) {
4011  Expr *Val = (Expr *)val.get();
4012
4013  llvm::APSInt EnumVal(32);
4014  QualType EltTy;
4015  if (Val && !Val->isTypeDependent()) {
4016    // Make sure to promote the operand type to int.
4017    UsualUnaryConversions(Val);
4018    if (Val != val.get()) {
4019      val.release();
4020      val = Val;
4021    }
4022
4023    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4024    SourceLocation ExpLoc;
4025    if (!Val->isValueDependent() &&
4026        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4027      Val = 0;
4028    } else {
4029      EltTy = Val->getType();
4030    }
4031  }
4032
4033  if (!Val) {
4034    if (LastEnumConst) {
4035      // Assign the last value + 1.
4036      EnumVal = LastEnumConst->getInitVal();
4037      ++EnumVal;
4038
4039      // Check for overflow on increment.
4040      if (EnumVal < LastEnumConst->getInitVal())
4041        Diag(IdLoc, diag::warn_enum_value_overflow);
4042
4043      EltTy = LastEnumConst->getType();
4044    } else {
4045      // First value, set to zero.
4046      EltTy = Context.IntTy;
4047      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4048    }
4049  }
4050
4051  val.release();
4052  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4053                                  Val, EnumVal);
4054}
4055
4056
4057Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4058                                        DeclPtrTy lastEnumConst,
4059                                        SourceLocation IdLoc,
4060                                        IdentifierInfo *Id,
4061                                        SourceLocation EqualLoc, ExprTy *val) {
4062  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4063  EnumConstantDecl *LastEnumConst =
4064    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4065  Expr *Val = static_cast<Expr*>(val);
4066
4067  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4068  // we find one that is.
4069  S = getNonFieldDeclScope(S);
4070
4071  // Verify that there isn't already something declared with this name in this
4072  // scope.
4073  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4074  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4075    // Maybe we will complain about the shadowed template parameter.
4076    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4077    // Just pretend that we didn't see the previous declaration.
4078    PrevDecl = 0;
4079  }
4080
4081  if (PrevDecl) {
4082    // When in C++, we may get a TagDecl with the same name; in this case the
4083    // enum constant will 'hide' the tag.
4084    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4085           "Received TagDecl when not in C++!");
4086    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4087      if (isa<EnumConstantDecl>(PrevDecl))
4088        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4089      else
4090        Diag(IdLoc, diag::err_redefinition) << Id;
4091      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4092      if (Val) Val->Destroy(Context);
4093      return DeclPtrTy();
4094    }
4095  }
4096
4097  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4098                                            IdLoc, Id, Owned(Val));
4099
4100  // Register this decl in the current scope stack.
4101  if (New)
4102    PushOnScopeChains(New, S);
4103
4104  return DeclPtrTy::make(New);
4105}
4106
4107// FIXME: For consistency with ActOnFields(), we should have the parser
4108// pass in the source location for the left/right braces.
4109void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4110                         DeclPtrTy *Elements, unsigned NumElements) {
4111  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4112  QualType EnumType = Context.getTypeDeclType(Enum);
4113
4114  // TODO: If the result value doesn't fit in an int, it must be a long or long
4115  // long value.  ISO C does not support this, but GCC does as an extension,
4116  // emit a warning.
4117  unsigned IntWidth = Context.Target.getIntWidth();
4118
4119  // Verify that all the values are okay, compute the size of the values, and
4120  // reverse the list.
4121  unsigned NumNegativeBits = 0;
4122  unsigned NumPositiveBits = 0;
4123
4124  // Keep track of whether all elements have type int.
4125  bool AllElementsInt = true;
4126
4127  for (unsigned i = 0; i != NumElements; ++i) {
4128    EnumConstantDecl *ECD =
4129      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4130    if (!ECD) continue;  // Already issued a diagnostic.
4131
4132    // If the enum value doesn't fit in an int, emit an extension warning.
4133    const llvm::APSInt &InitVal = ECD->getInitVal();
4134    assert(InitVal.getBitWidth() >= IntWidth &&
4135           "Should have promoted value to int");
4136    if (InitVal.getBitWidth() > IntWidth) {
4137      llvm::APSInt V(InitVal);
4138      V.trunc(IntWidth);
4139      V.extend(InitVal.getBitWidth());
4140      if (V != InitVal)
4141        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4142          << InitVal.toString(10);
4143    }
4144
4145    // Keep track of the size of positive and negative values.
4146    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4147      NumPositiveBits = std::max(NumPositiveBits,
4148                                 (unsigned)InitVal.getActiveBits());
4149    else
4150      NumNegativeBits = std::max(NumNegativeBits,
4151                                 (unsigned)InitVal.getMinSignedBits());
4152
4153    // Keep track of whether every enum element has type int (very commmon).
4154    if (AllElementsInt)
4155      AllElementsInt = ECD->getType() == Context.IntTy;
4156  }
4157
4158  // Figure out the type that should be used for this enum.
4159  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4160  QualType BestType;
4161  unsigned BestWidth;
4162
4163  if (NumNegativeBits) {
4164    // If there is a negative value, figure out the smallest integer type (of
4165    // int/long/longlong) that fits.
4166    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4167      BestType = Context.IntTy;
4168      BestWidth = IntWidth;
4169    } else {
4170      BestWidth = Context.Target.getLongWidth();
4171
4172      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4173        BestType = Context.LongTy;
4174      else {
4175        BestWidth = Context.Target.getLongLongWidth();
4176
4177        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4178          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4179        BestType = Context.LongLongTy;
4180      }
4181    }
4182  } else {
4183    // If there is no negative value, figure out which of uint, ulong, ulonglong
4184    // fits.
4185    if (NumPositiveBits <= IntWidth) {
4186      BestType = Context.UnsignedIntTy;
4187      BestWidth = IntWidth;
4188    } else if (NumPositiveBits <=
4189               (BestWidth = Context.Target.getLongWidth())) {
4190      BestType = Context.UnsignedLongTy;
4191    } else {
4192      BestWidth = Context.Target.getLongLongWidth();
4193      assert(NumPositiveBits <= BestWidth &&
4194             "How could an initializer get larger than ULL?");
4195      BestType = Context.UnsignedLongLongTy;
4196    }
4197  }
4198
4199  // Loop over all of the enumerator constants, changing their types to match
4200  // the type of the enum if needed.
4201  for (unsigned i = 0; i != NumElements; ++i) {
4202    EnumConstantDecl *ECD =
4203      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4204    if (!ECD) continue;  // Already issued a diagnostic.
4205
4206    // Standard C says the enumerators have int type, but we allow, as an
4207    // extension, the enumerators to be larger than int size.  If each
4208    // enumerator value fits in an int, type it as an int, otherwise type it the
4209    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4210    // that X has type 'int', not 'unsigned'.
4211    if (ECD->getType() == Context.IntTy) {
4212      // Make sure the init value is signed.
4213      llvm::APSInt IV = ECD->getInitVal();
4214      IV.setIsSigned(true);
4215      ECD->setInitVal(IV);
4216
4217      if (getLangOptions().CPlusPlus)
4218        // C++ [dcl.enum]p4: Following the closing brace of an
4219        // enum-specifier, each enumerator has the type of its
4220        // enumeration.
4221        ECD->setType(EnumType);
4222      continue;  // Already int type.
4223    }
4224
4225    // Determine whether the value fits into an int.
4226    llvm::APSInt InitVal = ECD->getInitVal();
4227    bool FitsInInt;
4228    if (InitVal.isUnsigned() || !InitVal.isNegative())
4229      FitsInInt = InitVal.getActiveBits() < IntWidth;
4230    else
4231      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4232
4233    // If it fits into an integer type, force it.  Otherwise force it to match
4234    // the enum decl type.
4235    QualType NewTy;
4236    unsigned NewWidth;
4237    bool NewSign;
4238    if (FitsInInt) {
4239      NewTy = Context.IntTy;
4240      NewWidth = IntWidth;
4241      NewSign = true;
4242    } else if (ECD->getType() == BestType) {
4243      // Already the right type!
4244      if (getLangOptions().CPlusPlus)
4245        // C++ [dcl.enum]p4: Following the closing brace of an
4246        // enum-specifier, each enumerator has the type of its
4247        // enumeration.
4248        ECD->setType(EnumType);
4249      continue;
4250    } else {
4251      NewTy = BestType;
4252      NewWidth = BestWidth;
4253      NewSign = BestType->isSignedIntegerType();
4254    }
4255
4256    // Adjust the APSInt value.
4257    InitVal.extOrTrunc(NewWidth);
4258    InitVal.setIsSigned(NewSign);
4259    ECD->setInitVal(InitVal);
4260
4261    // Adjust the Expr initializer and type.
4262    if (ECD->getInitExpr())
4263      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4264                                                      /*isLvalue=*/false));
4265    if (getLangOptions().CPlusPlus)
4266      // C++ [dcl.enum]p4: Following the closing brace of an
4267      // enum-specifier, each enumerator has the type of its
4268      // enumeration.
4269      ECD->setType(EnumType);
4270    else
4271      ECD->setType(NewTy);
4272  }
4273
4274  Enum->completeDefinition(Context, BestType);
4275}
4276
4277Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4278                                            ExprArg expr) {
4279  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4280
4281  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4282                                                  Loc, AsmString));
4283}
4284
4285