SemaDecl.cpp revision 260ad501d479ae610259272ad5ce13910b0cc0ac
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLineDefinition())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// \brief Determine whether we allow overloading of the function
223/// PrevDecl with another declaration.
224///
225/// This routine determines whether overloading is possible, not
226/// whether some new function is actually an overload. It will return
227/// true in C++ (where we can always provide overloads) or, as an
228/// extension, in C when the previous function is already an
229/// overloaded function declaration or has the "overloadable"
230/// attribute.
231static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
232  if (Context.getLangOptions().CPlusPlus)
233    return true;
234
235  if (isa<OverloadedFunctionDecl>(PrevDecl))
236    return true;
237
238  return PrevDecl->getAttr<OverloadableAttr>() != 0;
239}
240
241/// Add this decl to the scope shadowed decl chains.
242void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
243  // Move up the scope chain until we find the nearest enclosing
244  // non-transparent context. The declaration will be introduced into this
245  // scope.
246  while (S->getEntity() &&
247         ((DeclContext *)S->getEntity())->isTransparentContext())
248    S = S->getParent();
249
250  S->AddDecl(DeclPtrTy::make(D));
251
252  // Add scoped declarations into their context, so that they can be
253  // found later. Declarations without a context won't be inserted
254  // into any context.
255  CurContext->addDecl(Context, D);
256
257  // C++ [basic.scope]p4:
258  //   -- exactly one declaration shall declare a class name or
259  //   enumeration name that is not a typedef name and the other
260  //   declarations shall all refer to the same object or
261  //   enumerator, or all refer to functions and function templates;
262  //   in this case the class name or enumeration name is hidden.
263  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
264    // We are pushing the name of a tag (enum or class).
265    if (CurContext->getLookupContext()
266          == TD->getDeclContext()->getLookupContext()) {
267      // We're pushing the tag into the current context, which might
268      // require some reshuffling in the identifier resolver.
269      IdentifierResolver::iterator
270        I = IdResolver.begin(TD->getDeclName()),
271        IEnd = IdResolver.end();
272      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
273        NamedDecl *PrevDecl = *I;
274        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
275             PrevDecl = *I, ++I) {
276          if (TD->declarationReplaces(*I)) {
277            // This is a redeclaration. Remove it from the chain and
278            // break out, so that we'll add in the shadowed
279            // declaration.
280            S->RemoveDecl(DeclPtrTy::make(*I));
281            if (PrevDecl == *I) {
282              IdResolver.RemoveDecl(*I);
283              IdResolver.AddDecl(TD);
284              return;
285            } else {
286              IdResolver.RemoveDecl(*I);
287              break;
288            }
289          }
290        }
291
292        // There is already a declaration with the same name in the same
293        // scope, which is not a tag declaration. It must be found
294        // before we find the new declaration, so insert the new
295        // declaration at the end of the chain.
296        IdResolver.AddShadowedDecl(TD, PrevDecl);
297
298        return;
299      }
300    }
301  } else if (isa<FunctionDecl>(D) &&
302             AllowOverloadingOfFunction(D, Context)) {
303    // We are pushing the name of a function, which might be an
304    // overloaded name.
305    FunctionDecl *FD = cast<FunctionDecl>(D);
306    IdentifierResolver::iterator Redecl
307      = std::find_if(IdResolver.begin(FD->getDeclName()),
308                     IdResolver.end(),
309                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
310                                  FD));
311    if (Redecl != IdResolver.end() &&
312        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
313      // There is already a declaration of a function on our
314      // IdResolver chain. Replace it with this declaration.
315      S->RemoveDecl(DeclPtrTy::make(*Redecl));
316      IdResolver.RemoveDecl(*Redecl);
317    }
318  } else if (isa<ObjCInterfaceDecl>(D)) {
319    // We're pushing an Objective-C interface into the current
320    // context. If there is already an alias declaration, remove it first.
321    for (IdentifierResolver::iterator
322           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
323         I != IEnd; ++I) {
324      if (isa<ObjCCompatibleAliasDecl>(*I)) {
325        S->RemoveDecl(DeclPtrTy::make(*I));
326        IdResolver.RemoveDecl(*I);
327        break;
328      }
329    }
330  }
331
332  IdResolver.AddDecl(D);
333}
334
335void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
336  if (S->decl_empty()) return;
337  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
338	 "Scope shouldn't contain decls!");
339
340  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
341       I != E; ++I) {
342    Decl *TmpD = (*I).getAs<Decl>();
343    assert(TmpD && "This decl didn't get pushed??");
344
345    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
346    NamedDecl *D = cast<NamedDecl>(TmpD);
347
348    if (!D->getDeclName()) continue;
349
350    // Remove this name from our lexical scope.
351    IdResolver.RemoveDecl(D);
352  }
353}
354
355/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
356/// return 0 if one not found.
357ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
358  // The third "scope" argument is 0 since we aren't enabling lazy built-in
359  // creation from this context.
360  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
361
362  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
363}
364
365/// getNonFieldDeclScope - Retrieves the innermost scope, starting
366/// from S, where a non-field would be declared. This routine copes
367/// with the difference between C and C++ scoping rules in structs and
368/// unions. For example, the following code is well-formed in C but
369/// ill-formed in C++:
370/// @code
371/// struct S6 {
372///   enum { BAR } e;
373/// };
374///
375/// void test_S6() {
376///   struct S6 a;
377///   a.e = BAR;
378/// }
379/// @endcode
380/// For the declaration of BAR, this routine will return a different
381/// scope. The scope S will be the scope of the unnamed enumeration
382/// within S6. In C++, this routine will return the scope associated
383/// with S6, because the enumeration's scope is a transparent
384/// context but structures can contain non-field names. In C, this
385/// routine will return the translation unit scope, since the
386/// enumeration's scope is a transparent context and structures cannot
387/// contain non-field names.
388Scope *Sema::getNonFieldDeclScope(Scope *S) {
389  while (((S->getFlags() & Scope::DeclScope) == 0) ||
390         (S->getEntity() &&
391          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
392         (S->isClassScope() && !getLangOptions().CPlusPlus))
393    S = S->getParent();
394  return S;
395}
396
397void Sema::InitBuiltinVaListType() {
398  if (!Context.getBuiltinVaListType().isNull())
399    return;
400
401  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
402  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
403  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
404  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
405}
406
407/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
408/// file scope.  lazily create a decl for it. ForRedeclaration is true
409/// if we're creating this built-in in anticipation of redeclaring the
410/// built-in.
411NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
412                                     Scope *S, bool ForRedeclaration,
413                                     SourceLocation Loc) {
414  Builtin::ID BID = (Builtin::ID)bid;
415
416  if (Context.BuiltinInfo.hasVAListUse(BID))
417    InitBuiltinVaListType();
418
419  ASTContext::GetBuiltinTypeError Error;
420  QualType R = Context.GetBuiltinType(BID, Error);
421  switch (Error) {
422  case ASTContext::GE_None:
423    // Okay
424    break;
425
426  case ASTContext::GE_Missing_FILE:
427    if (ForRedeclaration)
428      Diag(Loc, diag::err_implicit_decl_requires_stdio)
429        << Context.BuiltinInfo.GetName(BID);
430    return 0;
431  }
432
433  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
434    Diag(Loc, diag::ext_implicit_lib_function_decl)
435      << Context.BuiltinInfo.GetName(BID)
436      << R;
437    if (Context.BuiltinInfo.getHeaderName(BID) &&
438        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
439          != Diagnostic::Ignored)
440      Diag(Loc, diag::note_please_include_header)
441        << Context.BuiltinInfo.getHeaderName(BID)
442        << Context.BuiltinInfo.GetName(BID);
443  }
444
445  FunctionDecl *New = FunctionDecl::Create(Context,
446                                           Context.getTranslationUnitDecl(),
447                                           Loc, II, R,
448                                           FunctionDecl::Extern, false,
449                                           /*hasPrototype=*/true);
450  New->setImplicit();
451
452  // Create Decl objects for each parameter, adding them to the
453  // FunctionDecl.
454  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
455    llvm::SmallVector<ParmVarDecl*, 16> Params;
456    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
457      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
458                                           FT->getArgType(i), VarDecl::None, 0));
459    New->setParams(Context, Params.data(), Params.size());
460  }
461
462  AddKnownFunctionAttributes(New);
463
464  // TUScope is the translation-unit scope to insert this function into.
465  // FIXME: This is hideous. We need to teach PushOnScopeChains to
466  // relate Scopes to DeclContexts, and probably eliminate CurContext
467  // entirely, but we're not there yet.
468  DeclContext *SavedContext = CurContext;
469  CurContext = Context.getTranslationUnitDecl();
470  PushOnScopeChains(New, TUScope);
471  CurContext = SavedContext;
472  return New;
473}
474
475/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
476/// everything from the standard library is defined.
477NamespaceDecl *Sema::GetStdNamespace() {
478  if (!StdNamespace) {
479    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
480    DeclContext *Global = Context.getTranslationUnitDecl();
481    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
482    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
483  }
484  return StdNamespace;
485}
486
487/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
488/// same name and scope as a previous declaration 'Old'.  Figure out
489/// how to resolve this situation, merging decls or emitting
490/// diagnostics as appropriate. If there was an error, set New to be invalid.
491///
492void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
493  // If either decl is known invalid already, set the new one to be invalid and
494  // don't bother doing any merging checks.
495  if (New->isInvalidDecl() || OldD->isInvalidDecl())
496    return New->setInvalidDecl();
497
498  bool objc_types = false;
499
500  // Allow multiple definitions for ObjC built-in typedefs.
501  // FIXME: Verify the underlying types are equivalent!
502  if (getLangOptions().ObjC1) {
503    const IdentifierInfo *TypeID = New->getIdentifier();
504    switch (TypeID->getLength()) {
505    default: break;
506    case 2:
507      if (!TypeID->isStr("id"))
508        break;
509      Context.setObjCIdType(Context.getTypeDeclType(New));
510      objc_types = true;
511      break;
512    case 5:
513      if (!TypeID->isStr("Class"))
514        break;
515      Context.setObjCClassType(Context.getTypeDeclType(New));
516      return;
517    case 3:
518      if (!TypeID->isStr("SEL"))
519        break;
520      Context.setObjCSelType(Context.getTypeDeclType(New));
521      return;
522    case 8:
523      if (!TypeID->isStr("Protocol"))
524        break;
525      Context.setObjCProtoType(New->getUnderlyingType());
526      return;
527    }
528    // Fall through - the typedef name was not a builtin type.
529  }
530  // Verify the old decl was also a type.
531  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind)
534      << New->getDeclName();
535    if (OldD->getLocation().isValid())
536      Diag(OldD->getLocation(), diag::note_previous_definition);
537    return New->setInvalidDecl();
538  }
539
540  // Determine the "old" type we'll use for checking and diagnostics.
541  QualType OldType;
542  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
543    OldType = OldTypedef->getUnderlyingType();
544  else
545    OldType = Context.getTypeDeclType(Old);
546
547  // If the typedef types are not identical, reject them in all languages and
548  // with any extensions enabled.
549
550  if (OldType != New->getUnderlyingType() &&
551      Context.getCanonicalType(OldType) !=
552      Context.getCanonicalType(New->getUnderlyingType())) {
553    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
554      << New->getUnderlyingType() << OldType;
555    if (Old->getLocation().isValid())
556      Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  if (objc_types || getLangOptions().Microsoft)
561    return;
562
563  // C++ [dcl.typedef]p2:
564  //   In a given non-class scope, a typedef specifier can be used to
565  //   redefine the name of any type declared in that scope to refer
566  //   to the type to which it already refers.
567  if (getLangOptions().CPlusPlus) {
568    if (!isa<CXXRecordDecl>(CurContext))
569      return;
570    Diag(New->getLocation(), diag::err_redefinition)
571      << New->getDeclName();
572    Diag(Old->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // If we have a redefinition of a typedef in C, emit a warning.  This warning
577  // is normally mapped to an error, but can be controlled with
578  // -Wtypedef-redefinition.  If either the original or the redefinition is
579  // in a system header, don't emit this for compatibility with GCC.
580  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
581      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
582       Context.getSourceManager().isInSystemHeader(New->getLocation())))
583    return;
584
585  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
586    << New->getDeclName();
587  Diag(Old->getLocation(), diag::note_previous_definition);
588  return;
589}
590
591/// DeclhasAttr - returns true if decl Declaration already has the target
592/// attribute.
593static bool DeclHasAttr(const Decl *decl, const Attr *target) {
594  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
595    if (attr->getKind() == target->getKind())
596      return true;
597
598  return false;
599}
600
601/// MergeAttributes - append attributes from the Old decl to the New one.
602static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
603  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
604    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
605      Attr *NewAttr = attr->clone(C);
606      NewAttr->setInherited(true);
607      New->addAttr(NewAttr);
608    }
609  }
610}
611
612/// Used in MergeFunctionDecl to keep track of function parameters in
613/// C.
614struct GNUCompatibleParamWarning {
615  ParmVarDecl *OldParm;
616  ParmVarDecl *NewParm;
617  QualType PromotedType;
618};
619
620/// MergeFunctionDecl - We just parsed a function 'New' from
621/// declarator D which has the same name and scope as a previous
622/// declaration 'Old'.  Figure out how to resolve this situation,
623/// merging decls or emitting diagnostics as appropriate.
624///
625/// In C++, New and Old must be declarations that are not
626/// overloaded. Use IsOverload to determine whether New and Old are
627/// overloaded, and to select the Old declaration that New should be
628/// merged with.
629///
630/// Returns true if there was an error, false otherwise.
631bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
632  assert(!isa<OverloadedFunctionDecl>(OldD) &&
633         "Cannot merge with an overloaded function declaration");
634
635  // Verify the old decl was also a function.
636  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
637  if (!Old) {
638    Diag(New->getLocation(), diag::err_redefinition_different_kind)
639      << New->getDeclName();
640    Diag(OldD->getLocation(), diag::note_previous_definition);
641    return true;
642  }
643
644  // Determine whether the previous declaration was a definition,
645  // implicit declaration, or a declaration.
646  diag::kind PrevDiag;
647  if (Old->isThisDeclarationADefinition())
648    PrevDiag = diag::note_previous_definition;
649  else if (Old->isImplicit())
650    PrevDiag = diag::note_previous_implicit_declaration;
651  else
652    PrevDiag = diag::note_previous_declaration;
653
654  QualType OldQType = Context.getCanonicalType(Old->getType());
655  QualType NewQType = Context.getCanonicalType(New->getType());
656
657  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
658      New->getStorageClass() == FunctionDecl::Static &&
659      Old->getStorageClass() != FunctionDecl::Static) {
660    Diag(New->getLocation(), diag::err_static_non_static)
661      << New;
662    Diag(Old->getLocation(), PrevDiag);
663    return true;
664  }
665
666  if (getLangOptions().CPlusPlus) {
667    // (C++98 13.1p2):
668    //   Certain function declarations cannot be overloaded:
669    //     -- Function declarations that differ only in the return type
670    //        cannot be overloaded.
671    QualType OldReturnType
672      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
673    QualType NewReturnType
674      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
675    if (OldReturnType != NewReturnType) {
676      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
677      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
678      return true;
679    }
680
681    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
682    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
683    if (OldMethod && NewMethod &&
684        OldMethod->getLexicalDeclContext() ==
685          NewMethod->getLexicalDeclContext()) {
686      //    -- Member function declarations with the same name and the
687      //       same parameter types cannot be overloaded if any of them
688      //       is a static member function declaration.
689      if (OldMethod->isStatic() || NewMethod->isStatic()) {
690        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
691        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
692        return true;
693      }
694
695      // C++ [class.mem]p1:
696      //   [...] A member shall not be declared twice in the
697      //   member-specification, except that a nested class or member
698      //   class template can be declared and then later defined.
699      unsigned NewDiag;
700      if (isa<CXXConstructorDecl>(OldMethod))
701        NewDiag = diag::err_constructor_redeclared;
702      else if (isa<CXXDestructorDecl>(NewMethod))
703        NewDiag = diag::err_destructor_redeclared;
704      else if (isa<CXXConversionDecl>(NewMethod))
705        NewDiag = diag::err_conv_function_redeclared;
706      else
707        NewDiag = diag::err_member_redeclared;
708
709      Diag(New->getLocation(), NewDiag);
710      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
711    }
712
713    // (C++98 8.3.5p3):
714    //   All declarations for a function shall agree exactly in both the
715    //   return type and the parameter-type-list.
716    if (OldQType == NewQType)
717      return MergeCompatibleFunctionDecls(New, Old);
718
719    // Fall through for conflicting redeclarations and redefinitions.
720  }
721
722  // C: Function types need to be compatible, not identical. This handles
723  // duplicate function decls like "void f(int); void f(enum X);" properly.
724  if (!getLangOptions().CPlusPlus &&
725      Context.typesAreCompatible(OldQType, NewQType)) {
726    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
727    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
728    const FunctionProtoType *OldProto = 0;
729    if (isa<FunctionNoProtoType>(NewFuncType) &&
730        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
731      // The old declaration provided a function prototype, but the
732      // new declaration does not. Merge in the prototype.
733      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
734      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
735                                                 OldProto->arg_type_end());
736      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
737                                         ParamTypes.data(), ParamTypes.size(),
738                                         OldProto->isVariadic(),
739                                         OldProto->getTypeQuals());
740      New->setType(NewQType);
741      New->setHasInheritedPrototype();
742
743      // Synthesize a parameter for each argument type.
744      llvm::SmallVector<ParmVarDecl*, 16> Params;
745      for (FunctionProtoType::arg_type_iterator
746             ParamType = OldProto->arg_type_begin(),
747             ParamEnd = OldProto->arg_type_end();
748           ParamType != ParamEnd; ++ParamType) {
749        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
750                                                 SourceLocation(), 0,
751                                                 *ParamType, VarDecl::None,
752                                                 0);
753        Param->setImplicit();
754        Params.push_back(Param);
755      }
756
757      New->setParams(Context, Params.data(), Params.size());
758    }
759
760    return MergeCompatibleFunctionDecls(New, Old);
761  }
762
763  // GNU C permits a K&R definition to follow a prototype declaration
764  // if the declared types of the parameters in the K&R definition
765  // match the types in the prototype declaration, even when the
766  // promoted types of the parameters from the K&R definition differ
767  // from the types in the prototype. GCC then keeps the types from
768  // the prototype.
769  //
770  // If a variadic prototype is followed by a non-variadic K&R definition,
771  // the K&R definition becomes variadic.  This is sort of an edge case, but
772  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
773  // C99 6.9.1p8.
774  if (!getLangOptions().CPlusPlus &&
775      Old->hasPrototype() && !New->hasPrototype() &&
776      New->getType()->getAsFunctionProtoType() &&
777      Old->getNumParams() == New->getNumParams()) {
778    llvm::SmallVector<QualType, 16> ArgTypes;
779    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
780    const FunctionProtoType *OldProto
781      = Old->getType()->getAsFunctionProtoType();
782    const FunctionProtoType *NewProto
783      = New->getType()->getAsFunctionProtoType();
784
785    // Determine whether this is the GNU C extension.
786    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
787                                               NewProto->getResultType());
788    bool LooseCompatible = !MergedReturn.isNull();
789    for (unsigned Idx = 0, End = Old->getNumParams();
790         LooseCompatible && Idx != End; ++Idx) {
791      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
792      ParmVarDecl *NewParm = New->getParamDecl(Idx);
793      if (Context.typesAreCompatible(OldParm->getType(),
794                                     NewProto->getArgType(Idx))) {
795        ArgTypes.push_back(NewParm->getType());
796      } else if (Context.typesAreCompatible(OldParm->getType(),
797                                            NewParm->getType())) {
798        GNUCompatibleParamWarning Warn
799          = { OldParm, NewParm, NewProto->getArgType(Idx) };
800        Warnings.push_back(Warn);
801        ArgTypes.push_back(NewParm->getType());
802      } else
803        LooseCompatible = false;
804    }
805
806    if (LooseCompatible) {
807      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
808        Diag(Warnings[Warn].NewParm->getLocation(),
809             diag::ext_param_promoted_not_compatible_with_prototype)
810          << Warnings[Warn].PromotedType
811          << Warnings[Warn].OldParm->getType();
812        Diag(Warnings[Warn].OldParm->getLocation(),
813             diag::note_previous_declaration);
814      }
815
816      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
817                                           ArgTypes.size(),
818                                           OldProto->isVariadic(), 0));
819      return MergeCompatibleFunctionDecls(New, Old);
820    }
821
822    // Fall through to diagnose conflicting types.
823  }
824
825  // A function that has already been declared has been redeclared or defined
826  // with a different type- show appropriate diagnostic
827  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
828    // The user has declared a builtin function with an incompatible
829    // signature.
830    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
831      // The function the user is redeclaring is a library-defined
832      // function like 'malloc' or 'printf'. Warn about the
833      // redeclaration, then pretend that we don't know about this
834      // library built-in.
835      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
836      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
837        << Old << Old->getType();
838      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
839      Old->setInvalidDecl();
840      return false;
841    }
842
843    PrevDiag = diag::note_previous_builtin_declaration;
844  }
845
846  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
847  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
848  return true;
849}
850
851/// \brief Completes the merge of two function declarations that are
852/// known to be compatible.
853///
854/// This routine handles the merging of attributes and other
855/// properties of function declarations form the old declaration to
856/// the new declaration, once we know that New is in fact a
857/// redeclaration of Old.
858///
859/// \returns false
860bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
861  // Merge the attributes
862  MergeAttributes(New, Old, Context);
863
864  // Merge the storage class.
865  if (Old->getStorageClass() != FunctionDecl::Extern)
866    New->setStorageClass(Old->getStorageClass());
867
868  // Merge "inline"
869  if (Old->isInline())
870    New->setInline(true);
871
872  // If this function declaration by itself qualifies as a C99 inline
873  // definition (C99 6.7.4p6), but the previous definition did not,
874  // then the function is not a C99 inline definition.
875  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
876    New->setC99InlineDefinition(false);
877  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
878    // Mark all preceding definitions as not being C99 inline definitions.
879    for (const FunctionDecl *Prev = Old; Prev;
880         Prev = Prev->getPreviousDeclaration())
881      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
882  }
883
884  // Merge "pure" flag.
885  if (Old->isPure())
886    New->setPure();
887
888  // Merge the "deleted" flag.
889  if (Old->isDeleted())
890    New->setDeleted();
891
892  if (getLangOptions().CPlusPlus)
893    return MergeCXXFunctionDecl(New, Old);
894
895  return false;
896}
897
898/// MergeVarDecl - We just parsed a variable 'New' which has the same name
899/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
900/// situation, merging decls or emitting diagnostics as appropriate.
901///
902/// Tentative definition rules (C99 6.9.2p2) are checked by
903/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
904/// definitions here, since the initializer hasn't been attached.
905///
906void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
907  // If either decl is invalid, make sure the new one is marked invalid and
908  // don't do any other checking.
909  if (New->isInvalidDecl() || OldD->isInvalidDecl())
910    return New->setInvalidDecl();
911
912  // Verify the old decl was also a variable.
913  VarDecl *Old = dyn_cast<VarDecl>(OldD);
914  if (!Old) {
915    Diag(New->getLocation(), diag::err_redefinition_different_kind)
916      << New->getDeclName();
917    Diag(OldD->getLocation(), diag::note_previous_definition);
918    return New->setInvalidDecl();
919  }
920
921  MergeAttributes(New, Old, Context);
922
923  // Merge the types
924  QualType MergedT;
925  if (getLangOptions().CPlusPlus) {
926    if (Context.hasSameType(New->getType(), Old->getType()))
927      MergedT = New->getType();
928  } else {
929    MergedT = Context.mergeTypes(New->getType(), Old->getType());
930  }
931  if (MergedT.isNull()) {
932    Diag(New->getLocation(), diag::err_redefinition_different_type)
933      << New->getDeclName();
934    Diag(Old->getLocation(), diag::note_previous_definition);
935    return New->setInvalidDecl();
936  }
937  New->setType(MergedT);
938
939  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
940  if (New->getStorageClass() == VarDecl::Static &&
941      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
942    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
943    Diag(Old->getLocation(), diag::note_previous_definition);
944    return New->setInvalidDecl();
945  }
946  // C99 6.2.2p4:
947  //   For an identifier declared with the storage-class specifier
948  //   extern in a scope in which a prior declaration of that
949  //   identifier is visible,23) if the prior declaration specifies
950  //   internal or external linkage, the linkage of the identifier at
951  //   the later declaration is the same as the linkage specified at
952  //   the prior declaration. If no prior declaration is visible, or
953  //   if the prior declaration specifies no linkage, then the
954  //   identifier has external linkage.
955  if (New->hasExternalStorage() && Old->hasLinkage())
956    /* Okay */;
957  else if (New->getStorageClass() != VarDecl::Static &&
958           Old->getStorageClass() == VarDecl::Static) {
959    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
960    Diag(Old->getLocation(), diag::note_previous_definition);
961    return New->setInvalidDecl();
962  }
963
964  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
965
966  // FIXME: The test for external storage here seems wrong? We still
967  // need to check for mismatches.
968  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
969      // Don't complain about out-of-line definitions of static members.
970      !(Old->getLexicalDeclContext()->isRecord() &&
971        !New->getLexicalDeclContext()->isRecord())) {
972    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
973    Diag(Old->getLocation(), diag::note_previous_definition);
974    return New->setInvalidDecl();
975  }
976
977  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
978    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
979    Diag(Old->getLocation(), diag::note_previous_definition);
980  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
981    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
982    Diag(Old->getLocation(), diag::note_previous_definition);
983  }
984
985  // Keep a chain of previous declarations.
986  New->setPreviousDeclaration(Old);
987}
988
989/// CheckParmsForFunctionDef - Check that the parameters of the given
990/// function are appropriate for the definition of a function. This
991/// takes care of any checks that cannot be performed on the
992/// declaration itself, e.g., that the types of each of the function
993/// parameters are complete.
994bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
995  bool HasInvalidParm = false;
996  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
997    ParmVarDecl *Param = FD->getParamDecl(p);
998
999    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1000    // function declarator that is part of a function definition of
1001    // that function shall not have incomplete type.
1002    //
1003    // This is also C++ [dcl.fct]p6.
1004    if (!Param->isInvalidDecl() &&
1005        RequireCompleteType(Param->getLocation(), Param->getType(),
1006                               diag::err_typecheck_decl_incomplete_type)) {
1007      Param->setInvalidDecl();
1008      HasInvalidParm = true;
1009    }
1010
1011    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1012    // declaration of each parameter shall include an identifier.
1013    if (Param->getIdentifier() == 0 &&
1014        !Param->isImplicit() &&
1015        !getLangOptions().CPlusPlus)
1016      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1017  }
1018
1019  return HasInvalidParm;
1020}
1021
1022/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1023/// no declarator (e.g. "struct foo;") is parsed.
1024Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1025  // FIXME: Error on auto/register at file scope
1026  // FIXME: Error on inline/virtual/explicit
1027  // FIXME: Error on invalid restrict
1028  // FIXME: Warn on useless __thread
1029  // FIXME: Warn on useless const/volatile
1030  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1031  // FIXME: Warn on useless attributes
1032  TagDecl *Tag = 0;
1033  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1034      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1035      DS.getTypeSpecType() == DeclSpec::TST_union ||
1036      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1037    if (!DS.getTypeRep()) // We probably had an error
1038      return DeclPtrTy();
1039
1040    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1041  }
1042
1043  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1044    if (!Record->getDeclName() && Record->isDefinition() &&
1045        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1046      if (getLangOptions().CPlusPlus ||
1047          Record->getDeclContext()->isRecord())
1048        return BuildAnonymousStructOrUnion(S, DS, Record);
1049
1050      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1051        << DS.getSourceRange();
1052    }
1053
1054    // Microsoft allows unnamed struct/union fields. Don't complain
1055    // about them.
1056    // FIXME: Should we support Microsoft's extensions in this area?
1057    if (Record->getDeclName() && getLangOptions().Microsoft)
1058      return DeclPtrTy::make(Tag);
1059  }
1060
1061  if (!DS.isMissingDeclaratorOk() &&
1062      DS.getTypeSpecType() != DeclSpec::TST_error) {
1063    // Warn about typedefs of enums without names, since this is an
1064    // extension in both Microsoft an GNU.
1065    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1066        Tag && isa<EnumDecl>(Tag)) {
1067      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1068        << DS.getSourceRange();
1069      return DeclPtrTy::make(Tag);
1070    }
1071
1072    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1073      << DS.getSourceRange();
1074    return DeclPtrTy();
1075  }
1076
1077  return DeclPtrTy::make(Tag);
1078}
1079
1080/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1081/// anonymous struct or union AnonRecord into the owning context Owner
1082/// and scope S. This routine will be invoked just after we realize
1083/// that an unnamed union or struct is actually an anonymous union or
1084/// struct, e.g.,
1085///
1086/// @code
1087/// union {
1088///   int i;
1089///   float f;
1090/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1091///    // f into the surrounding scope.x
1092/// @endcode
1093///
1094/// This routine is recursive, injecting the names of nested anonymous
1095/// structs/unions into the owning context and scope as well.
1096bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1097                                               RecordDecl *AnonRecord) {
1098  bool Invalid = false;
1099  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1100                               FEnd = AnonRecord->field_end(Context);
1101       F != FEnd; ++F) {
1102    if ((*F)->getDeclName()) {
1103      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1104                                                LookupOrdinaryName, true);
1105      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1106        // C++ [class.union]p2:
1107        //   The names of the members of an anonymous union shall be
1108        //   distinct from the names of any other entity in the
1109        //   scope in which the anonymous union is declared.
1110        unsigned diagKind
1111          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1112                                 : diag::err_anonymous_struct_member_redecl;
1113        Diag((*F)->getLocation(), diagKind)
1114          << (*F)->getDeclName();
1115        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1116        Invalid = true;
1117      } else {
1118        // C++ [class.union]p2:
1119        //   For the purpose of name lookup, after the anonymous union
1120        //   definition, the members of the anonymous union are
1121        //   considered to have been defined in the scope in which the
1122        //   anonymous union is declared.
1123        Owner->makeDeclVisibleInContext(Context, *F);
1124        S->AddDecl(DeclPtrTy::make(*F));
1125        IdResolver.AddDecl(*F);
1126      }
1127    } else if (const RecordType *InnerRecordType
1128                 = (*F)->getType()->getAsRecordType()) {
1129      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1130      if (InnerRecord->isAnonymousStructOrUnion())
1131        Invalid = Invalid ||
1132          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1133    }
1134  }
1135
1136  return Invalid;
1137}
1138
1139/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1140/// anonymous structure or union. Anonymous unions are a C++ feature
1141/// (C++ [class.union]) and a GNU C extension; anonymous structures
1142/// are a GNU C and GNU C++ extension.
1143Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1144                                                  RecordDecl *Record) {
1145  DeclContext *Owner = Record->getDeclContext();
1146
1147  // Diagnose whether this anonymous struct/union is an extension.
1148  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1149    Diag(Record->getLocation(), diag::ext_anonymous_union);
1150  else if (!Record->isUnion())
1151    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1152
1153  // C and C++ require different kinds of checks for anonymous
1154  // structs/unions.
1155  bool Invalid = false;
1156  if (getLangOptions().CPlusPlus) {
1157    const char* PrevSpec = 0;
1158    // C++ [class.union]p3:
1159    //   Anonymous unions declared in a named namespace or in the
1160    //   global namespace shall be declared static.
1161    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1162        (isa<TranslationUnitDecl>(Owner) ||
1163         (isa<NamespaceDecl>(Owner) &&
1164          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1165      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1166      Invalid = true;
1167
1168      // Recover by adding 'static'.
1169      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1170    }
1171    // C++ [class.union]p3:
1172    //   A storage class is not allowed in a declaration of an
1173    //   anonymous union in a class scope.
1174    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1175             isa<RecordDecl>(Owner)) {
1176      Diag(DS.getStorageClassSpecLoc(),
1177           diag::err_anonymous_union_with_storage_spec);
1178      Invalid = true;
1179
1180      // Recover by removing the storage specifier.
1181      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1182                             PrevSpec);
1183    }
1184
1185    // C++ [class.union]p2:
1186    //   The member-specification of an anonymous union shall only
1187    //   define non-static data members. [Note: nested types and
1188    //   functions cannot be declared within an anonymous union. ]
1189    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1190                                 MemEnd = Record->decls_end(Context);
1191         Mem != MemEnd; ++Mem) {
1192      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1193        // C++ [class.union]p3:
1194        //   An anonymous union shall not have private or protected
1195        //   members (clause 11).
1196        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1197          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1198            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1199          Invalid = true;
1200        }
1201      } else if ((*Mem)->isImplicit()) {
1202        // Any implicit members are fine.
1203      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1204        // This is a type that showed up in an
1205        // elaborated-type-specifier inside the anonymous struct or
1206        // union, but which actually declares a type outside of the
1207        // anonymous struct or union. It's okay.
1208      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1209        if (!MemRecord->isAnonymousStructOrUnion() &&
1210            MemRecord->getDeclName()) {
1211          // This is a nested type declaration.
1212          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1213            << (int)Record->isUnion();
1214          Invalid = true;
1215        }
1216      } else {
1217        // We have something that isn't a non-static data
1218        // member. Complain about it.
1219        unsigned DK = diag::err_anonymous_record_bad_member;
1220        if (isa<TypeDecl>(*Mem))
1221          DK = diag::err_anonymous_record_with_type;
1222        else if (isa<FunctionDecl>(*Mem))
1223          DK = diag::err_anonymous_record_with_function;
1224        else if (isa<VarDecl>(*Mem))
1225          DK = diag::err_anonymous_record_with_static;
1226        Diag((*Mem)->getLocation(), DK)
1227            << (int)Record->isUnion();
1228          Invalid = true;
1229      }
1230    }
1231  }
1232
1233  if (!Record->isUnion() && !Owner->isRecord()) {
1234    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1235      << (int)getLangOptions().CPlusPlus;
1236    Invalid = true;
1237  }
1238
1239  // Create a declaration for this anonymous struct/union.
1240  NamedDecl *Anon = 0;
1241  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1242    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1243                             /*IdentifierInfo=*/0,
1244                             Context.getTypeDeclType(Record),
1245                             /*BitWidth=*/0, /*Mutable=*/false);
1246    Anon->setAccess(AS_public);
1247    if (getLangOptions().CPlusPlus)
1248      FieldCollector->Add(cast<FieldDecl>(Anon));
1249  } else {
1250    VarDecl::StorageClass SC;
1251    switch (DS.getStorageClassSpec()) {
1252    default: assert(0 && "Unknown storage class!");
1253    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1254    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1255    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1256    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1257    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1258    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1259    case DeclSpec::SCS_mutable:
1260      // mutable can only appear on non-static class members, so it's always
1261      // an error here
1262      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1263      Invalid = true;
1264      SC = VarDecl::None;
1265      break;
1266    }
1267
1268    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1269                           /*IdentifierInfo=*/0,
1270                           Context.getTypeDeclType(Record),
1271                           SC, DS.getSourceRange().getBegin());
1272  }
1273  Anon->setImplicit();
1274
1275  // Add the anonymous struct/union object to the current
1276  // context. We'll be referencing this object when we refer to one of
1277  // its members.
1278  Owner->addDecl(Context, Anon);
1279
1280  // Inject the members of the anonymous struct/union into the owning
1281  // context and into the identifier resolver chain for name lookup
1282  // purposes.
1283  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1284    Invalid = true;
1285
1286  // Mark this as an anonymous struct/union type. Note that we do not
1287  // do this until after we have already checked and injected the
1288  // members of this anonymous struct/union type, because otherwise
1289  // the members could be injected twice: once by DeclContext when it
1290  // builds its lookup table, and once by
1291  // InjectAnonymousStructOrUnionMembers.
1292  Record->setAnonymousStructOrUnion(true);
1293
1294  if (Invalid)
1295    Anon->setInvalidDecl();
1296
1297  return DeclPtrTy::make(Anon);
1298}
1299
1300
1301/// GetNameForDeclarator - Determine the full declaration name for the
1302/// given Declarator.
1303DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1304  switch (D.getKind()) {
1305  case Declarator::DK_Abstract:
1306    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1307    return DeclarationName();
1308
1309  case Declarator::DK_Normal:
1310    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1311    return DeclarationName(D.getIdentifier());
1312
1313  case Declarator::DK_Constructor: {
1314    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1315    Ty = Context.getCanonicalType(Ty);
1316    return Context.DeclarationNames.getCXXConstructorName(Ty);
1317  }
1318
1319  case Declarator::DK_Destructor: {
1320    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1321    Ty = Context.getCanonicalType(Ty);
1322    return Context.DeclarationNames.getCXXDestructorName(Ty);
1323  }
1324
1325  case Declarator::DK_Conversion: {
1326    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1327    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1328    Ty = Context.getCanonicalType(Ty);
1329    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1330  }
1331
1332  case Declarator::DK_Operator:
1333    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1334    return Context.DeclarationNames.getCXXOperatorName(
1335                                                D.getOverloadedOperator());
1336  }
1337
1338  assert(false && "Unknown name kind");
1339  return DeclarationName();
1340}
1341
1342/// isNearlyMatchingFunction - Determine whether the C++ functions
1343/// Declaration and Definition are "nearly" matching. This heuristic
1344/// is used to improve diagnostics in the case where an out-of-line
1345/// function definition doesn't match any declaration within
1346/// the class or namespace.
1347static bool isNearlyMatchingFunction(ASTContext &Context,
1348                                     FunctionDecl *Declaration,
1349                                     FunctionDecl *Definition) {
1350  if (Declaration->param_size() != Definition->param_size())
1351    return false;
1352  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1353    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1354    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1355
1356    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1357    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1358    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1359      return false;
1360  }
1361
1362  return true;
1363}
1364
1365Sema::DeclPtrTy
1366Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1367  DeclarationName Name = GetNameForDeclarator(D);
1368
1369  // All of these full declarators require an identifier.  If it doesn't have
1370  // one, the ParsedFreeStandingDeclSpec action should be used.
1371  if (!Name) {
1372    if (!D.isInvalidType())  // Reject this if we think it is valid.
1373      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1374           diag::err_declarator_need_ident)
1375        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1376    return DeclPtrTy();
1377  }
1378
1379  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1380  // we find one that is.
1381  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1382         (S->getFlags() & Scope::TemplateParamScope) != 0)
1383    S = S->getParent();
1384
1385  DeclContext *DC;
1386  NamedDecl *PrevDecl;
1387  NamedDecl *New;
1388
1389  QualType R = GetTypeForDeclarator(D, S);
1390
1391  // See if this is a redefinition of a variable in the same scope.
1392  if (D.getCXXScopeSpec().isInvalid()) {
1393    DC = CurContext;
1394    PrevDecl = 0;
1395    D.setInvalidType();
1396  } else if (!D.getCXXScopeSpec().isSet()) {
1397    LookupNameKind NameKind = LookupOrdinaryName;
1398
1399    // If the declaration we're planning to build will be a function
1400    // or object with linkage, then look for another declaration with
1401    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1402    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1403      /* Do nothing*/;
1404    else if (R->isFunctionType()) {
1405      if (CurContext->isFunctionOrMethod())
1406        NameKind = LookupRedeclarationWithLinkage;
1407    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1408      NameKind = LookupRedeclarationWithLinkage;
1409
1410    DC = CurContext;
1411    PrevDecl = LookupName(S, Name, NameKind, true,
1412                          D.getDeclSpec().getStorageClassSpec() !=
1413                            DeclSpec::SCS_static,
1414                          D.getIdentifierLoc());
1415  } else { // Something like "int foo::x;"
1416    DC = computeDeclContext(D.getCXXScopeSpec());
1417    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1418    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1419
1420    // C++ 7.3.1.2p2:
1421    // Members (including explicit specializations of templates) of a named
1422    // namespace can also be defined outside that namespace by explicit
1423    // qualification of the name being defined, provided that the entity being
1424    // defined was already declared in the namespace and the definition appears
1425    // after the point of declaration in a namespace that encloses the
1426    // declarations namespace.
1427    //
1428    // Note that we only check the context at this point. We don't yet
1429    // have enough information to make sure that PrevDecl is actually
1430    // the declaration we want to match. For example, given:
1431    //
1432    //   class X {
1433    //     void f();
1434    //     void f(float);
1435    //   };
1436    //
1437    //   void X::f(int) { } // ill-formed
1438    //
1439    // In this case, PrevDecl will point to the overload set
1440    // containing the two f's declared in X, but neither of them
1441    // matches.
1442
1443    // First check whether we named the global scope.
1444    if (isa<TranslationUnitDecl>(DC)) {
1445      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1446        << Name << D.getCXXScopeSpec().getRange();
1447    } else if (!CurContext->Encloses(DC)) {
1448      // The qualifying scope doesn't enclose the original declaration.
1449      // Emit diagnostic based on current scope.
1450      SourceLocation L = D.getIdentifierLoc();
1451      SourceRange R = D.getCXXScopeSpec().getRange();
1452      if (isa<FunctionDecl>(CurContext))
1453        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1454      else
1455        Diag(L, diag::err_invalid_declarator_scope)
1456          << Name << cast<NamedDecl>(DC) << R;
1457      D.setInvalidType();
1458    }
1459  }
1460
1461  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1462    // Maybe we will complain about the shadowed template parameter.
1463    if (!D.isInvalidType())
1464      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1465        D.setInvalidType();
1466
1467    // Just pretend that we didn't see the previous declaration.
1468    PrevDecl = 0;
1469  }
1470
1471  // In C++, the previous declaration we find might be a tag type
1472  // (class or enum). In this case, the new declaration will hide the
1473  // tag type. Note that this does does not apply if we're declaring a
1474  // typedef (C++ [dcl.typedef]p4).
1475  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1476      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1477    PrevDecl = 0;
1478
1479  bool Redeclaration = false;
1480  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1481    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1482  } else if (R->isFunctionType()) {
1483    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1484                                  IsFunctionDefinition, Redeclaration);
1485  } else {
1486    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1487  }
1488
1489  if (New == 0)
1490    return DeclPtrTy();
1491
1492  // If this has an identifier and is not an invalid redeclaration,
1493  // add it to the scope stack.
1494  if (Name && !(Redeclaration && New->isInvalidDecl()))
1495    PushOnScopeChains(New, S);
1496
1497  return DeclPtrTy::make(New);
1498}
1499
1500/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1501/// types into constant array types in certain situations which would otherwise
1502/// be errors (for GCC compatibility).
1503static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1504                                                    ASTContext &Context,
1505                                                    bool &SizeIsNegative) {
1506  // This method tries to turn a variable array into a constant
1507  // array even when the size isn't an ICE.  This is necessary
1508  // for compatibility with code that depends on gcc's buggy
1509  // constant expression folding, like struct {char x[(int)(char*)2];}
1510  SizeIsNegative = false;
1511
1512  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1513    QualType Pointee = PTy->getPointeeType();
1514    QualType FixedType =
1515        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1516    if (FixedType.isNull()) return FixedType;
1517    FixedType = Context.getPointerType(FixedType);
1518    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1519    return FixedType;
1520  }
1521
1522  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1523  if (!VLATy)
1524    return QualType();
1525  // FIXME: We should probably handle this case
1526  if (VLATy->getElementType()->isVariablyModifiedType())
1527    return QualType();
1528
1529  Expr::EvalResult EvalResult;
1530  if (!VLATy->getSizeExpr() ||
1531      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1532      !EvalResult.Val.isInt())
1533    return QualType();
1534
1535  llvm::APSInt &Res = EvalResult.Val.getInt();
1536  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1537    return Context.getConstantArrayType(VLATy->getElementType(),
1538                                        Res, ArrayType::Normal, 0);
1539
1540  SizeIsNegative = true;
1541  return QualType();
1542}
1543
1544/// \brief Register the given locally-scoped external C declaration so
1545/// that it can be found later for redeclarations
1546void
1547Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1548                                       Scope *S) {
1549  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1550         "Decl is not a locally-scoped decl!");
1551  // Note that we have a locally-scoped external with this name.
1552  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1553
1554  if (!PrevDecl)
1555    return;
1556
1557  // If there was a previous declaration of this variable, it may be
1558  // in our identifier chain. Update the identifier chain with the new
1559  // declaration.
1560  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1561    // The previous declaration was found on the identifer resolver
1562    // chain, so remove it from its scope.
1563    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1564      S = S->getParent();
1565
1566    if (S)
1567      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1568  }
1569}
1570
1571/// \brief Diagnose function specifiers on a declaration of an identifier that
1572/// does not identify a function.
1573void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1574  // FIXME: We should probably indicate the identifier in question to avoid
1575  // confusion for constructs like "inline int a(), b;"
1576  if (D.getDeclSpec().isInlineSpecified())
1577    Diag(D.getDeclSpec().getInlineSpecLoc(),
1578         diag::err_inline_non_function);
1579
1580  if (D.getDeclSpec().isVirtualSpecified())
1581    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1582         diag::err_virtual_non_function);
1583
1584  if (D.getDeclSpec().isExplicitSpecified())
1585    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1586         diag::err_explicit_non_function);
1587}
1588
1589NamedDecl*
1590Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1591                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1592  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1593  if (D.getCXXScopeSpec().isSet()) {
1594    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1595      << D.getCXXScopeSpec().getRange();
1596    D.setInvalidType();
1597    // Pretend we didn't see the scope specifier.
1598    DC = 0;
1599  }
1600
1601  if (getLangOptions().CPlusPlus) {
1602    // Check that there are no default arguments (C++ only).
1603    CheckExtraCXXDefaultArguments(D);
1604  }
1605
1606  DiagnoseFunctionSpecifiers(D);
1607
1608  if (D.getDeclSpec().isThreadSpecified())
1609    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1610
1611  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1612  if (!NewTD) return 0;
1613
1614  if (D.isInvalidType())
1615    NewTD->setInvalidDecl();
1616
1617  // Handle attributes prior to checking for duplicates in MergeVarDecl
1618  ProcessDeclAttributes(NewTD, D);
1619  // Merge the decl with the existing one if appropriate. If the decl is
1620  // in an outer scope, it isn't the same thing.
1621  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1622    Redeclaration = true;
1623    MergeTypeDefDecl(NewTD, PrevDecl);
1624  }
1625
1626  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1627  // then it shall have block scope.
1628  QualType T = NewTD->getUnderlyingType();
1629  if (T->isVariablyModifiedType()) {
1630    CurFunctionNeedsScopeChecking = true;
1631
1632    if (S->getFnParent() == 0) {
1633      bool SizeIsNegative;
1634      QualType FixedTy =
1635          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1636      if (!FixedTy.isNull()) {
1637        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1638        NewTD->setUnderlyingType(FixedTy);
1639      } else {
1640        if (SizeIsNegative)
1641          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1642        else if (T->isVariableArrayType())
1643          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1644        else
1645          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1646        NewTD->setInvalidDecl();
1647      }
1648    }
1649  }
1650  return NewTD;
1651}
1652
1653/// \brief Determines whether the given declaration is an out-of-scope
1654/// previous declaration.
1655///
1656/// This routine should be invoked when name lookup has found a
1657/// previous declaration (PrevDecl) that is not in the scope where a
1658/// new declaration by the same name is being introduced. If the new
1659/// declaration occurs in a local scope, previous declarations with
1660/// linkage may still be considered previous declarations (C99
1661/// 6.2.2p4-5, C++ [basic.link]p6).
1662///
1663/// \param PrevDecl the previous declaration found by name
1664/// lookup
1665///
1666/// \param DC the context in which the new declaration is being
1667/// declared.
1668///
1669/// \returns true if PrevDecl is an out-of-scope previous declaration
1670/// for a new delcaration with the same name.
1671static bool
1672isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1673                                ASTContext &Context) {
1674  if (!PrevDecl)
1675    return 0;
1676
1677  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1678  // case we need to check each of the overloaded functions.
1679  if (!PrevDecl->hasLinkage())
1680    return false;
1681
1682  if (Context.getLangOptions().CPlusPlus) {
1683    // C++ [basic.link]p6:
1684    //   If there is a visible declaration of an entity with linkage
1685    //   having the same name and type, ignoring entities declared
1686    //   outside the innermost enclosing namespace scope, the block
1687    //   scope declaration declares that same entity and receives the
1688    //   linkage of the previous declaration.
1689    DeclContext *OuterContext = DC->getLookupContext();
1690    if (!OuterContext->isFunctionOrMethod())
1691      // This rule only applies to block-scope declarations.
1692      return false;
1693    else {
1694      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1695      if (PrevOuterContext->isRecord())
1696        // We found a member function: ignore it.
1697        return false;
1698      else {
1699        // Find the innermost enclosing namespace for the new and
1700        // previous declarations.
1701        while (!OuterContext->isFileContext())
1702          OuterContext = OuterContext->getParent();
1703        while (!PrevOuterContext->isFileContext())
1704          PrevOuterContext = PrevOuterContext->getParent();
1705
1706        // The previous declaration is in a different namespace, so it
1707        // isn't the same function.
1708        if (OuterContext->getPrimaryContext() !=
1709            PrevOuterContext->getPrimaryContext())
1710          return false;
1711      }
1712    }
1713  }
1714
1715  return true;
1716}
1717
1718NamedDecl*
1719Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1720                              QualType R,NamedDecl* PrevDecl,
1721                              bool &Redeclaration) {
1722  DeclarationName Name = GetNameForDeclarator(D);
1723
1724  // Check that there are no default arguments (C++ only).
1725  if (getLangOptions().CPlusPlus)
1726    CheckExtraCXXDefaultArguments(D);
1727
1728  VarDecl *NewVD;
1729  VarDecl::StorageClass SC;
1730  switch (D.getDeclSpec().getStorageClassSpec()) {
1731  default: assert(0 && "Unknown storage class!");
1732  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1733  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1734  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1735  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1736  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1737  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1738  case DeclSpec::SCS_mutable:
1739    // mutable can only appear on non-static class members, so it's always
1740    // an error here
1741    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1742    D.setInvalidType();
1743    SC = VarDecl::None;
1744    break;
1745  }
1746
1747  IdentifierInfo *II = Name.getAsIdentifierInfo();
1748  if (!II) {
1749    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1750      << Name.getAsString();
1751    return 0;
1752  }
1753
1754  DiagnoseFunctionSpecifiers(D);
1755
1756  if (!DC->isRecord() && S->getFnParent() == 0) {
1757    // C99 6.9p2: The storage-class specifiers auto and register shall not
1758    // appear in the declaration specifiers in an external declaration.
1759    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1760
1761      // If this is a register variable with an asm label specified, then this
1762      // is a GNU extension.
1763      if (SC == VarDecl::Register && D.getAsmLabel())
1764        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1765      else
1766        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1767      D.setInvalidType();
1768    }
1769  }
1770  if (DC->isRecord() && !CurContext->isRecord()) {
1771    // This is an out-of-line definition of a static data member.
1772    if (SC == VarDecl::Static) {
1773      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1774           diag::err_static_out_of_line)
1775        << CodeModificationHint::CreateRemoval(
1776                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1777    } else if (SC == VarDecl::None)
1778      SC = VarDecl::Static;
1779  }
1780
1781  // The variable can not
1782  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1783                          II, R, SC,
1784                          // FIXME: Move to DeclGroup...
1785                          D.getDeclSpec().getSourceRange().getBegin());
1786
1787  if (D.isInvalidType())
1788    NewVD->setInvalidDecl();
1789
1790  if (D.getDeclSpec().isThreadSpecified()) {
1791    if (NewVD->hasLocalStorage())
1792      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1793    else if (!Context.Target.isTLSSupported())
1794      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1795    else
1796      NewVD->setThreadSpecified(true);
1797  }
1798
1799  // Set the lexical context. If the declarator has a C++ scope specifier, the
1800  // lexical context will be different from the semantic context.
1801  NewVD->setLexicalDeclContext(CurContext);
1802
1803  // Handle attributes prior to checking for duplicates in MergeVarDecl
1804  ProcessDeclAttributes(NewVD, D);
1805
1806  // Handle GNU asm-label extension (encoded as an attribute).
1807  if (Expr *E = (Expr*) D.getAsmLabel()) {
1808    // The parser guarantees this is a string.
1809    StringLiteral *SE = cast<StringLiteral>(E);
1810    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1811                                                        SE->getByteLength())));
1812  }
1813
1814  // If name lookup finds a previous declaration that is not in the
1815  // same scope as the new declaration, this may still be an
1816  // acceptable redeclaration.
1817  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1818      !(NewVD->hasLinkage() &&
1819        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1820    PrevDecl = 0;
1821
1822  // Merge the decl with the existing one if appropriate.
1823  if (PrevDecl) {
1824    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1825      // The user tried to define a non-static data member
1826      // out-of-line (C++ [dcl.meaning]p1).
1827      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1828        << D.getCXXScopeSpec().getRange();
1829      PrevDecl = 0;
1830      NewVD->setInvalidDecl();
1831    }
1832  } else if (D.getCXXScopeSpec().isSet()) {
1833    // No previous declaration in the qualifying scope.
1834    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1835      << Name << D.getCXXScopeSpec().getRange();
1836    NewVD->setInvalidDecl();
1837  }
1838
1839  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1840
1841  // If this is a locally-scoped extern C variable, update the map of
1842  // such variables.
1843  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1844      !NewVD->isInvalidDecl())
1845    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1846
1847  return NewVD;
1848}
1849
1850/// \brief Perform semantic checking on a newly-created variable
1851/// declaration.
1852///
1853/// This routine performs all of the type-checking required for a
1854/// variable declaration once it has been built. It is used both to
1855/// check variables after they have been parsed and their declarators
1856/// have been translated into a declaration, and to check variables
1857/// that have been instantiated from a template.
1858///
1859/// Sets NewVD->isInvalidDecl() if an error was encountered.
1860void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1861                                    bool &Redeclaration) {
1862  // If the decl is already known invalid, don't check it.
1863  if (NewVD->isInvalidDecl())
1864    return;
1865
1866  QualType T = NewVD->getType();
1867
1868  if (T->isObjCInterfaceType()) {
1869    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1870    return NewVD->setInvalidDecl();
1871  }
1872
1873  // The variable can not have an abstract class type.
1874  if (RequireNonAbstractType(NewVD->getLocation(), T,
1875                             diag::err_abstract_type_in_decl,
1876                             AbstractVariableType))
1877    return NewVD->setInvalidDecl();
1878
1879  // Emit an error if an address space was applied to decl with local storage.
1880  // This includes arrays of objects with address space qualifiers, but not
1881  // automatic variables that point to other address spaces.
1882  // ISO/IEC TR 18037 S5.1.2
1883  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1884    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1885    return NewVD->setInvalidDecl();
1886  }
1887
1888  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1889      && !NewVD->hasAttr<BlocksAttr>())
1890    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1891
1892  bool isVM = T->isVariablyModifiedType();
1893  if (isVM || NewVD->hasAttr<CleanupAttr>())
1894    CurFunctionNeedsScopeChecking = true;
1895
1896  if ((isVM && NewVD->hasLinkage()) ||
1897      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1898    bool SizeIsNegative;
1899    QualType FixedTy =
1900        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1901
1902    if (FixedTy.isNull() && T->isVariableArrayType()) {
1903      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1904      // FIXME: This won't give the correct result for
1905      // int a[10][n];
1906      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1907
1908      if (NewVD->isFileVarDecl())
1909        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1910        << SizeRange;
1911      else if (NewVD->getStorageClass() == VarDecl::Static)
1912        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1913        << SizeRange;
1914      else
1915        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1916        << SizeRange;
1917      return NewVD->setInvalidDecl();
1918    }
1919
1920    if (FixedTy.isNull()) {
1921      if (NewVD->isFileVarDecl())
1922        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1923      else
1924        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1925      return NewVD->setInvalidDecl();
1926    }
1927
1928    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1929    NewVD->setType(FixedTy);
1930  }
1931
1932  if (!PrevDecl && NewVD->isExternC(Context)) {
1933    // Since we did not find anything by this name and we're declaring
1934    // an extern "C" variable, look for a non-visible extern "C"
1935    // declaration with the same name.
1936    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1937      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1938    if (Pos != LocallyScopedExternalDecls.end())
1939      PrevDecl = Pos->second;
1940  }
1941
1942  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1943    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1944      << T;
1945    return NewVD->setInvalidDecl();
1946  }
1947
1948  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1949    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1950    return NewVD->setInvalidDecl();
1951  }
1952
1953  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1954    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1955    return NewVD->setInvalidDecl();
1956  }
1957
1958  if (PrevDecl) {
1959    Redeclaration = true;
1960    MergeVarDecl(NewVD, PrevDecl);
1961  }
1962}
1963
1964NamedDecl*
1965Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1966                              QualType R, NamedDecl* PrevDecl,
1967                              bool IsFunctionDefinition, bool &Redeclaration) {
1968  assert(R.getTypePtr()->isFunctionType());
1969
1970  DeclarationName Name = GetNameForDeclarator(D);
1971  FunctionDecl::StorageClass SC = FunctionDecl::None;
1972  switch (D.getDeclSpec().getStorageClassSpec()) {
1973  default: assert(0 && "Unknown storage class!");
1974  case DeclSpec::SCS_auto:
1975  case DeclSpec::SCS_register:
1976  case DeclSpec::SCS_mutable:
1977    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1978         diag::err_typecheck_sclass_func);
1979    D.setInvalidType();
1980    break;
1981  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1982  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1983  case DeclSpec::SCS_static: {
1984    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1985      // C99 6.7.1p5:
1986      //   The declaration of an identifier for a function that has
1987      //   block scope shall have no explicit storage-class specifier
1988      //   other than extern
1989      // See also (C++ [dcl.stc]p4).
1990      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1991           diag::err_static_block_func);
1992      SC = FunctionDecl::None;
1993    } else
1994      SC = FunctionDecl::Static;
1995    break;
1996  }
1997  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1998  }
1999
2000  if (D.getDeclSpec().isThreadSpecified())
2001    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2002
2003  bool isInline = D.getDeclSpec().isInlineSpecified();
2004  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2005  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2006
2007  // Check that the return type is not an abstract class type.
2008  // For record types, this is done by the AbstractClassUsageDiagnoser once
2009  // the class has been completely parsed.
2010  if (!DC->isRecord() &&
2011      RequireNonAbstractType(D.getIdentifierLoc(),
2012                             R->getAsFunctionType()->getResultType(),
2013                             diag::err_abstract_type_in_decl,
2014                             AbstractReturnType))
2015    D.setInvalidType();
2016
2017  // Do not allow returning a objc interface by-value.
2018  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2019    Diag(D.getIdentifierLoc(),
2020         diag::err_object_cannot_be_passed_returned_by_value) << 0
2021      << R->getAsFunctionType()->getResultType();
2022    D.setInvalidType();
2023  }
2024
2025  bool isVirtualOkay = false;
2026  FunctionDecl *NewFD;
2027  if (D.getKind() == Declarator::DK_Constructor) {
2028    // This is a C++ constructor declaration.
2029    assert(DC->isRecord() &&
2030           "Constructors can only be declared in a member context");
2031
2032    R = CheckConstructorDeclarator(D, R, SC);
2033
2034    // Create the new declaration
2035    NewFD = CXXConstructorDecl::Create(Context,
2036                                       cast<CXXRecordDecl>(DC),
2037                                       D.getIdentifierLoc(), Name, R,
2038                                       isExplicit, isInline,
2039                                       /*isImplicitlyDeclared=*/false);
2040  } else if (D.getKind() == Declarator::DK_Destructor) {
2041    // This is a C++ destructor declaration.
2042    if (DC->isRecord()) {
2043      R = CheckDestructorDeclarator(D, SC);
2044
2045      NewFD = CXXDestructorDecl::Create(Context,
2046                                        cast<CXXRecordDecl>(DC),
2047                                        D.getIdentifierLoc(), Name, R,
2048                                        isInline,
2049                                        /*isImplicitlyDeclared=*/false);
2050
2051      isVirtualOkay = true;
2052    } else {
2053      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2054
2055      // Create a FunctionDecl to satisfy the function definition parsing
2056      // code path.
2057      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2058                                   Name, R, SC, isInline,
2059                                   /*hasPrototype=*/true,
2060                                   // FIXME: Move to DeclGroup...
2061                                   D.getDeclSpec().getSourceRange().getBegin());
2062      D.setInvalidType();
2063    }
2064  } else if (D.getKind() == Declarator::DK_Conversion) {
2065    if (!DC->isRecord()) {
2066      Diag(D.getIdentifierLoc(),
2067           diag::err_conv_function_not_member);
2068      return 0;
2069    }
2070
2071    CheckConversionDeclarator(D, R, SC);
2072    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2073                                      D.getIdentifierLoc(), Name, R,
2074                                      isInline, isExplicit);
2075
2076    isVirtualOkay = true;
2077  } else if (DC->isRecord()) {
2078    // If the of the function is the same as the name of the record, then this
2079    // must be an invalid constructor that has a return type.
2080    // (The parser checks for a return type and makes the declarator a
2081    // constructor if it has no return type).
2082    // must have an invalid constructor that has a return type
2083    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2084      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2085        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2086        << SourceRange(D.getIdentifierLoc());
2087      return 0;
2088    }
2089
2090    // This is a C++ method declaration.
2091    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2092                                  D.getIdentifierLoc(), Name, R,
2093                                  (SC == FunctionDecl::Static), isInline);
2094
2095    isVirtualOkay = (SC != FunctionDecl::Static);
2096  } else {
2097    // Determine whether the function was written with a
2098    // prototype. This true when:
2099    //   - we're in C++ (where every function has a prototype),
2100    //   - there is a prototype in the declarator, or
2101    //   - the type R of the function is some kind of typedef or other reference
2102    //     to a type name (which eventually refers to a function type).
2103    bool HasPrototype =
2104       getLangOptions().CPlusPlus ||
2105       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2106       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2107
2108    NewFD = FunctionDecl::Create(Context, DC,
2109                                 D.getIdentifierLoc(),
2110                                 Name, R, SC, isInline, HasPrototype,
2111                                 // FIXME: Move to DeclGroup...
2112                                 D.getDeclSpec().getSourceRange().getBegin());
2113  }
2114
2115  if (D.isInvalidType())
2116    NewFD->setInvalidDecl();
2117
2118  // Set the lexical context. If the declarator has a C++
2119  // scope specifier, the lexical context will be different
2120  // from the semantic context.
2121  NewFD->setLexicalDeclContext(CurContext);
2122
2123  // C++ [dcl.fct.spec]p5:
2124  //   The virtual specifier shall only be used in declarations of
2125  //   nonstatic class member functions that appear within a
2126  //   member-specification of a class declaration; see 10.3.
2127  //
2128  if (isVirtual && !NewFD->isInvalidDecl()) {
2129    if (!isVirtualOkay) {
2130       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2131           diag::err_virtual_non_function);
2132    } else if (!CurContext->isRecord()) {
2133      // 'virtual' was specified outside of the class.
2134      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2135        << CodeModificationHint::CreateRemoval(
2136                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2137    } else {
2138      // Okay: Add virtual to the method.
2139      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2140      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2141      CurClass->setAggregate(false);
2142      CurClass->setPOD(false);
2143      CurClass->setPolymorphic(true);
2144      CurClass->setHasTrivialConstructor(false);
2145    }
2146  }
2147
2148  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2149    // Look for virtual methods in base classes that this method might override.
2150
2151    BasePaths Paths;
2152    if (LookupInBases(cast<CXXRecordDecl>(DC),
2153                      MemberLookupCriteria(NewMD), Paths)) {
2154      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2155           E = Paths.found_decls_end(); I != E; ++I) {
2156        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2157          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2158            NewMD->addOverriddenMethod(OldMD);
2159        }
2160      }
2161    }
2162  }
2163
2164  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2165      !CurContext->isRecord()) {
2166    // C++ [class.static]p1:
2167    //   A data or function member of a class may be declared static
2168    //   in a class definition, in which case it is a static member of
2169    //   the class.
2170
2171    // Complain about the 'static' specifier if it's on an out-of-line
2172    // member function definition.
2173    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2174         diag::err_static_out_of_line)
2175      << CodeModificationHint::CreateRemoval(
2176                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2177  }
2178
2179  // Handle GNU asm-label extension (encoded as an attribute).
2180  if (Expr *E = (Expr*) D.getAsmLabel()) {
2181    // The parser guarantees this is a string.
2182    StringLiteral *SE = cast<StringLiteral>(E);
2183    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2184                                                        SE->getByteLength())));
2185  }
2186
2187  // Copy the parameter declarations from the declarator D to the function
2188  // declaration NewFD, if they are available.  First scavenge them into Params.
2189  llvm::SmallVector<ParmVarDecl*, 16> Params;
2190  if (D.getNumTypeObjects() > 0) {
2191    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2192
2193    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2194    // function that takes no arguments, not a function that takes a
2195    // single void argument.
2196    // We let through "const void" here because Sema::GetTypeForDeclarator
2197    // already checks for that case.
2198    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2199        FTI.ArgInfo[0].Param &&
2200        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2201      // Empty arg list, don't push any params.
2202      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2203
2204      // In C++, the empty parameter-type-list must be spelled "void"; a
2205      // typedef of void is not permitted.
2206      if (getLangOptions().CPlusPlus &&
2207          Param->getType().getUnqualifiedType() != Context.VoidTy)
2208        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2209      // FIXME: Leaks decl?
2210    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2211      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2212        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2213    }
2214
2215  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2216    // When we're declaring a function with a typedef, typeof, etc as in the
2217    // following example, we'll need to synthesize (unnamed)
2218    // parameters for use in the declaration.
2219    //
2220    // @code
2221    // typedef void fn(int);
2222    // fn f;
2223    // @endcode
2224
2225    // Synthesize a parameter for each argument type.
2226    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2227         AE = FT->arg_type_end(); AI != AE; ++AI) {
2228      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2229                                               SourceLocation(), 0,
2230                                               *AI, VarDecl::None, 0);
2231      Param->setImplicit();
2232      Params.push_back(Param);
2233    }
2234  } else {
2235    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2236           "Should not need args for typedef of non-prototype fn");
2237  }
2238  // Finally, we know we have the right number of parameters, install them.
2239  NewFD->setParams(Context, Params.data(), Params.size());
2240
2241
2242
2243  // If name lookup finds a previous declaration that is not in the
2244  // same scope as the new declaration, this may still be an
2245  // acceptable redeclaration.
2246  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2247      !(NewFD->hasLinkage() &&
2248        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2249    PrevDecl = 0;
2250
2251  // Perform semantic checking on the function declaration.
2252  bool OverloadableAttrRequired = false; // FIXME: HACK!
2253  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2254                           /*FIXME:*/OverloadableAttrRequired);
2255
2256  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2257    // An out-of-line member function declaration must also be a
2258    // definition (C++ [dcl.meaning]p1).
2259    if (!IsFunctionDefinition) {
2260      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2261        << D.getCXXScopeSpec().getRange();
2262      NewFD->setInvalidDecl();
2263    } else if (!Redeclaration) {
2264      // The user tried to provide an out-of-line definition for a
2265      // function that is a member of a class or namespace, but there
2266      // was no such member function declared (C++ [class.mfct]p2,
2267      // C++ [namespace.memdef]p2). For example:
2268      //
2269      // class X {
2270      //   void f() const;
2271      // };
2272      //
2273      // void X::f() { } // ill-formed
2274      //
2275      // Complain about this problem, and attempt to suggest close
2276      // matches (e.g., those that differ only in cv-qualifiers and
2277      // whether the parameter types are references).
2278      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2279        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2280      NewFD->setInvalidDecl();
2281
2282      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2283                                              true);
2284      assert(!Prev.isAmbiguous() &&
2285             "Cannot have an ambiguity in previous-declaration lookup");
2286      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2287           Func != FuncEnd; ++Func) {
2288        if (isa<FunctionDecl>(*Func) &&
2289            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2290          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2291      }
2292
2293      PrevDecl = 0;
2294    }
2295  }
2296
2297  // Handle attributes. We need to have merged decls when handling attributes
2298  // (for example to check for conflicts, etc).
2299  // FIXME: This needs to happen before we merge declarations. Then,
2300  // let attribute merging cope with attribute conflicts.
2301  ProcessDeclAttributes(NewFD, D);
2302  AddKnownFunctionAttributes(NewFD);
2303
2304  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2305    // If a function name is overloadable in C, then every function
2306    // with that name must be marked "overloadable".
2307    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2308      << Redeclaration << NewFD;
2309    if (PrevDecl)
2310      Diag(PrevDecl->getLocation(),
2311           diag::note_attribute_overloadable_prev_overload);
2312    NewFD->addAttr(::new (Context) OverloadableAttr());
2313  }
2314
2315  // If this is a locally-scoped extern C function, update the
2316  // map of such names.
2317  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2318      && !NewFD->isInvalidDecl())
2319    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2320
2321  return NewFD;
2322}
2323
2324/// \brief Perform semantic checking of a new function declaration.
2325///
2326/// Performs semantic analysis of the new function declaration
2327/// NewFD. This routine performs all semantic checking that does not
2328/// require the actual declarator involved in the declaration, and is
2329/// used both for the declaration of functions as they are parsed
2330/// (called via ActOnDeclarator) and for the declaration of functions
2331/// that have been instantiated via C++ template instantiation (called
2332/// via InstantiateDecl).
2333///
2334/// This sets NewFD->isInvalidDecl() to true if there was an error.
2335void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2336                                    bool &Redeclaration,
2337                                    bool &OverloadableAttrRequired) {
2338  // If NewFD is already known erroneous, don't do any of this checking.
2339  if (NewFD->isInvalidDecl())
2340    return;
2341
2342  if (NewFD->getResultType()->isVariablyModifiedType()) {
2343    // Functions returning a variably modified type violate C99 6.7.5.2p2
2344    // because all functions have linkage.
2345    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2346    return NewFD->setInvalidDecl();
2347  }
2348
2349  // Semantic checking for this function declaration (in isolation).
2350  if (getLangOptions().CPlusPlus) {
2351    // C++-specific checks.
2352    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2353      CheckConstructor(Constructor);
2354    } else if (isa<CXXDestructorDecl>(NewFD)) {
2355      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2356      Record->setUserDeclaredDestructor(true);
2357      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2358      // user-defined destructor.
2359      Record->setPOD(false);
2360
2361      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2362      // declared destructor.
2363      Record->setHasTrivialDestructor(false);
2364    } else if (CXXConversionDecl *Conversion
2365               = dyn_cast<CXXConversionDecl>(NewFD))
2366      ActOnConversionDeclarator(Conversion);
2367
2368    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2369    if (NewFD->isOverloadedOperator() &&
2370        CheckOverloadedOperatorDeclaration(NewFD))
2371      return NewFD->setInvalidDecl();
2372  }
2373
2374  // C99 6.7.4p6:
2375  //   [... ] For a function with external linkage, the following
2376  //   restrictions apply: [...] If all of the file scope declarations
2377  //   for a function in a translation unit include the inline
2378  //   function specifier without extern, then the definition in that
2379  //   translation unit is an inline definition. An inline definition
2380  //   does not provide an external definition for the function, and
2381  //   does not forbid an external definition in another translation
2382  //   unit.
2383  //
2384  // Here we determine whether this function, in isolation, would be a
2385  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2386  // previous declarations.
2387  if (NewFD->isInline() && getLangOptions().C99 &&
2388      NewFD->getStorageClass() == FunctionDecl::None &&
2389      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2390    NewFD->setC99InlineDefinition(true);
2391
2392  // Check for a previous declaration of this name.
2393  if (!PrevDecl && NewFD->isExternC(Context)) {
2394    // Since we did not find anything by this name and we're declaring
2395    // an extern "C" function, look for a non-visible extern "C"
2396    // declaration with the same name.
2397    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2398      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2399    if (Pos != LocallyScopedExternalDecls.end())
2400      PrevDecl = Pos->second;
2401  }
2402
2403  // Merge or overload the declaration with an existing declaration of
2404  // the same name, if appropriate.
2405  if (PrevDecl) {
2406    // Determine whether NewFD is an overload of PrevDecl or
2407    // a declaration that requires merging. If it's an overload,
2408    // there's no more work to do here; we'll just add the new
2409    // function to the scope.
2410    OverloadedFunctionDecl::function_iterator MatchedDecl;
2411
2412    if (!getLangOptions().CPlusPlus &&
2413        AllowOverloadingOfFunction(PrevDecl, Context)) {
2414      OverloadableAttrRequired = true;
2415
2416      // Functions marked "overloadable" must have a prototype (that
2417      // we can't get through declaration merging).
2418      if (!NewFD->getType()->getAsFunctionProtoType()) {
2419        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2420          << NewFD;
2421        Redeclaration = true;
2422
2423        // Turn this into a variadic function with no parameters.
2424        QualType R = Context.getFunctionType(
2425                       NewFD->getType()->getAsFunctionType()->getResultType(),
2426                       0, 0, true, 0);
2427        NewFD->setType(R);
2428        return NewFD->setInvalidDecl();
2429      }
2430    }
2431
2432    if (PrevDecl &&
2433        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2434         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2435      Redeclaration = true;
2436      Decl *OldDecl = PrevDecl;
2437
2438      // If PrevDecl was an overloaded function, extract the
2439      // FunctionDecl that matched.
2440      if (isa<OverloadedFunctionDecl>(PrevDecl))
2441        OldDecl = *MatchedDecl;
2442
2443      // NewFD and OldDecl represent declarations that need to be
2444      // merged.
2445      if (MergeFunctionDecl(NewFD, OldDecl))
2446        return NewFD->setInvalidDecl();
2447
2448      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2449    }
2450  }
2451
2452  // In C++, check default arguments now that we have merged decls. Unless
2453  // the lexical context is the class, because in this case this is done
2454  // during delayed parsing anyway.
2455  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2456    CheckCXXDefaultArguments(NewFD);
2457}
2458
2459bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2460  // FIXME: Need strict checking.  In C89, we need to check for
2461  // any assignment, increment, decrement, function-calls, or
2462  // commas outside of a sizeof.  In C99, it's the same list,
2463  // except that the aforementioned are allowed in unevaluated
2464  // expressions.  Everything else falls under the
2465  // "may accept other forms of constant expressions" exception.
2466  // (We never end up here for C++, so the constant expression
2467  // rules there don't matter.)
2468  if (Init->isConstantInitializer(Context))
2469    return false;
2470  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2471    << Init->getSourceRange();
2472  return true;
2473}
2474
2475void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2476  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2477}
2478
2479/// AddInitializerToDecl - Adds the initializer Init to the
2480/// declaration dcl. If DirectInit is true, this is C++ direct
2481/// initialization rather than copy initialization.
2482void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2483  Decl *RealDecl = dcl.getAs<Decl>();
2484  // If there is no declaration, there was an error parsing it.  Just ignore
2485  // the initializer.
2486  if (RealDecl == 0)
2487    return;
2488
2489  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2490    // With declarators parsed the way they are, the parser cannot
2491    // distinguish between a normal initializer and a pure-specifier.
2492    // Thus this grotesque test.
2493    IntegerLiteral *IL;
2494    Expr *Init = static_cast<Expr *>(init.get());
2495    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2496        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2497      if (Method->isVirtualAsWritten()) {
2498        Method->setPure();
2499
2500        // A class is abstract if at least one function is pure virtual.
2501        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2502      } else if (!Method->isInvalidDecl()) {
2503        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2504          << Method->getDeclName() << Init->getSourceRange();
2505        Method->setInvalidDecl();
2506      }
2507    } else {
2508      Diag(Method->getLocation(), diag::err_member_function_initialization)
2509        << Method->getDeclName() << Init->getSourceRange();
2510      Method->setInvalidDecl();
2511    }
2512    return;
2513  }
2514
2515  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2516  if (!VDecl) {
2517    if (getLangOptions().CPlusPlus &&
2518        RealDecl->getLexicalDeclContext()->isRecord() &&
2519        isa<NamedDecl>(RealDecl))
2520      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2521        << cast<NamedDecl>(RealDecl)->getDeclName();
2522    else
2523      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2524    RealDecl->setInvalidDecl();
2525    return;
2526  }
2527
2528  if (!VDecl->getType()->isArrayType() &&
2529      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2530                          diag::err_typecheck_decl_incomplete_type)) {
2531    RealDecl->setInvalidDecl();
2532    return;
2533  }
2534
2535  const VarDecl *Def = 0;
2536  if (VDecl->getDefinition(Def)) {
2537    Diag(VDecl->getLocation(), diag::err_redefinition)
2538      << VDecl->getDeclName();
2539    Diag(Def->getLocation(), diag::note_previous_definition);
2540    VDecl->setInvalidDecl();
2541    return;
2542  }
2543
2544  // Take ownership of the expression, now that we're sure we have somewhere
2545  // to put it.
2546  Expr *Init = init.takeAs<Expr>();
2547  assert(Init && "missing initializer");
2548
2549  // Get the decls type and save a reference for later, since
2550  // CheckInitializerTypes may change it.
2551  QualType DclT = VDecl->getType(), SavT = DclT;
2552  if (VDecl->isBlockVarDecl()) {
2553    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2554      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2555      VDecl->setInvalidDecl();
2556    } else if (!VDecl->isInvalidDecl()) {
2557      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2558                                VDecl->getDeclName(), DirectInit))
2559        VDecl->setInvalidDecl();
2560
2561      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2562      // Don't check invalid declarations to avoid emitting useless diagnostics.
2563      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2564        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2565          CheckForConstantInitializer(Init, DclT);
2566      }
2567    }
2568  } else if (VDecl->isStaticDataMember() &&
2569             VDecl->getLexicalDeclContext()->isRecord()) {
2570    // This is an in-class initialization for a static data member, e.g.,
2571    //
2572    // struct S {
2573    //   static const int value = 17;
2574    // };
2575
2576    // Attach the initializer
2577    VDecl->setInit(Context, Init);
2578
2579    // C++ [class.mem]p4:
2580    //   A member-declarator can contain a constant-initializer only
2581    //   if it declares a static member (9.4) of const integral or
2582    //   const enumeration type, see 9.4.2.
2583    QualType T = VDecl->getType();
2584    if (!T->isDependentType() &&
2585        (!Context.getCanonicalType(T).isConstQualified() ||
2586         !T->isIntegralType())) {
2587      Diag(VDecl->getLocation(), diag::err_member_initialization)
2588        << VDecl->getDeclName() << Init->getSourceRange();
2589      VDecl->setInvalidDecl();
2590    } else {
2591      // C++ [class.static.data]p4:
2592      //   If a static data member is of const integral or const
2593      //   enumeration type, its declaration in the class definition
2594      //   can specify a constant-initializer which shall be an
2595      //   integral constant expression (5.19).
2596      if (!Init->isTypeDependent() &&
2597          !Init->getType()->isIntegralType()) {
2598        // We have a non-dependent, non-integral or enumeration type.
2599        Diag(Init->getSourceRange().getBegin(),
2600             diag::err_in_class_initializer_non_integral_type)
2601          << Init->getType() << Init->getSourceRange();
2602        VDecl->setInvalidDecl();
2603      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2604        // Check whether the expression is a constant expression.
2605        llvm::APSInt Value;
2606        SourceLocation Loc;
2607        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2608          Diag(Loc, diag::err_in_class_initializer_non_constant)
2609            << Init->getSourceRange();
2610          VDecl->setInvalidDecl();
2611        } else if (!VDecl->getType()->isDependentType())
2612          ImpCastExprToType(Init, VDecl->getType());
2613      }
2614    }
2615  } else if (VDecl->isFileVarDecl()) {
2616    if (VDecl->getStorageClass() == VarDecl::Extern)
2617      Diag(VDecl->getLocation(), diag::warn_extern_init);
2618    if (!VDecl->isInvalidDecl())
2619      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2620                                VDecl->getDeclName(), DirectInit))
2621        VDecl->setInvalidDecl();
2622
2623    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2624    // Don't check invalid declarations to avoid emitting useless diagnostics.
2625    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2626      // C99 6.7.8p4. All file scoped initializers need to be constant.
2627      CheckForConstantInitializer(Init, DclT);
2628    }
2629  }
2630  // If the type changed, it means we had an incomplete type that was
2631  // completed by the initializer. For example:
2632  //   int ary[] = { 1, 3, 5 };
2633  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2634  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2635    VDecl->setType(DclT);
2636    Init->setType(DclT);
2637  }
2638
2639  // Attach the initializer to the decl.
2640  VDecl->setInit(Context, Init);
2641
2642  // If the previous declaration of VDecl was a tentative definition,
2643  // remove it from the set of tentative definitions.
2644  if (VDecl->getPreviousDeclaration() &&
2645      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2646    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2647      = TentativeDefinitions.find(VDecl->getDeclName());
2648    assert(Pos != TentativeDefinitions.end() &&
2649           "Unrecorded tentative definition?");
2650    TentativeDefinitions.erase(Pos);
2651  }
2652
2653  return;
2654}
2655
2656void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2657  Decl *RealDecl = dcl.getAs<Decl>();
2658
2659  // If there is no declaration, there was an error parsing it. Just ignore it.
2660  if (RealDecl == 0)
2661    return;
2662
2663  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2664    QualType Type = Var->getType();
2665
2666    // Record tentative definitions.
2667    if (Var->isTentativeDefinition(Context))
2668      TentativeDefinitions[Var->getDeclName()] = Var;
2669
2670    // C++ [dcl.init.ref]p3:
2671    //   The initializer can be omitted for a reference only in a
2672    //   parameter declaration (8.3.5), in the declaration of a
2673    //   function return type, in the declaration of a class member
2674    //   within its class declaration (9.2), and where the extern
2675    //   specifier is explicitly used.
2676    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2677      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2678        << Var->getDeclName()
2679        << SourceRange(Var->getLocation(), Var->getLocation());
2680      Var->setInvalidDecl();
2681      return;
2682    }
2683
2684    // C++ [dcl.init]p9:
2685    //
2686    //   If no initializer is specified for an object, and the object
2687    //   is of (possibly cv-qualified) non-POD class type (or array
2688    //   thereof), the object shall be default-initialized; if the
2689    //   object is of const-qualified type, the underlying class type
2690    //   shall have a user-declared default constructor.
2691    if (getLangOptions().CPlusPlus) {
2692      QualType InitType = Type;
2693      if (const ArrayType *Array = Context.getAsArrayType(Type))
2694        InitType = Array->getElementType();
2695      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2696          InitType->isRecordType() && !InitType->isDependentType()) {
2697        CXXRecordDecl *RD =
2698          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2699        CXXConstructorDecl *Constructor = 0;
2700        if (!RequireCompleteType(Var->getLocation(), InitType,
2701                                    diag::err_invalid_incomplete_type_use))
2702          Constructor
2703            = PerformInitializationByConstructor(InitType, 0, 0,
2704                                                 Var->getLocation(),
2705                                               SourceRange(Var->getLocation(),
2706                                                           Var->getLocation()),
2707                                                 Var->getDeclName(),
2708                                                 IK_Default);
2709        if (!Constructor)
2710          Var->setInvalidDecl();
2711        else if (!RD->hasTrivialConstructor())
2712          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2713      }
2714    }
2715
2716#if 0
2717    // FIXME: Temporarily disabled because we are not properly parsing
2718    // linkage specifications on declarations, e.g.,
2719    //
2720    //   extern "C" const CGPoint CGPointerZero;
2721    //
2722    // C++ [dcl.init]p9:
2723    //
2724    //     If no initializer is specified for an object, and the
2725    //     object is of (possibly cv-qualified) non-POD class type (or
2726    //     array thereof), the object shall be default-initialized; if
2727    //     the object is of const-qualified type, the underlying class
2728    //     type shall have a user-declared default
2729    //     constructor. Otherwise, if no initializer is specified for
2730    //     an object, the object and its subobjects, if any, have an
2731    //     indeterminate initial value; if the object or any of its
2732    //     subobjects are of const-qualified type, the program is
2733    //     ill-formed.
2734    //
2735    // This isn't technically an error in C, so we don't diagnose it.
2736    //
2737    // FIXME: Actually perform the POD/user-defined default
2738    // constructor check.
2739    if (getLangOptions().CPlusPlus &&
2740        Context.getCanonicalType(Type).isConstQualified() &&
2741        !Var->hasExternalStorage())
2742      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2743        << Var->getName()
2744        << SourceRange(Var->getLocation(), Var->getLocation());
2745#endif
2746  }
2747}
2748
2749Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2750                                                   DeclPtrTy *Group,
2751                                                   unsigned NumDecls) {
2752  llvm::SmallVector<Decl*, 8> Decls;
2753
2754  if (DS.isTypeSpecOwned())
2755    Decls.push_back((Decl*)DS.getTypeRep());
2756
2757  for (unsigned i = 0; i != NumDecls; ++i)
2758    if (Decl *D = Group[i].getAs<Decl>())
2759      Decls.push_back(D);
2760
2761  // Perform semantic analysis that depends on having fully processed both
2762  // the declarator and initializer.
2763  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2764    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2765    if (!IDecl)
2766      continue;
2767    QualType T = IDecl->getType();
2768
2769    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2770    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2771    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2772      if (!IDecl->isInvalidDecl() &&
2773          RequireCompleteType(IDecl->getLocation(), T,
2774                              diag::err_typecheck_decl_incomplete_type))
2775        IDecl->setInvalidDecl();
2776    }
2777    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2778    // object that has file scope without an initializer, and without a
2779    // storage-class specifier or with the storage-class specifier "static",
2780    // constitutes a tentative definition. Note: A tentative definition with
2781    // external linkage is valid (C99 6.2.2p5).
2782    if (IDecl->isTentativeDefinition(Context)) {
2783      QualType CheckType = T;
2784      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2785
2786      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2787      if (ArrayT) {
2788        CheckType = ArrayT->getElementType();
2789        DiagID = diag::err_illegal_decl_array_incomplete_type;
2790      }
2791
2792      if (IDecl->isInvalidDecl()) {
2793        // Do nothing with invalid declarations
2794      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2795                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2796        // C99 6.9.2p3: If the declaration of an identifier for an object is
2797        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2798        // declared type shall not be an incomplete type.
2799        IDecl->setInvalidDecl();
2800      }
2801    }
2802  }
2803  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2804                                                   Decls.data(), Decls.size()));
2805}
2806
2807
2808/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2809/// to introduce parameters into function prototype scope.
2810Sema::DeclPtrTy
2811Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2812  const DeclSpec &DS = D.getDeclSpec();
2813
2814  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2815  VarDecl::StorageClass StorageClass = VarDecl::None;
2816  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2817    StorageClass = VarDecl::Register;
2818  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2819    Diag(DS.getStorageClassSpecLoc(),
2820         diag::err_invalid_storage_class_in_func_decl);
2821    D.getMutableDeclSpec().ClearStorageClassSpecs();
2822  }
2823
2824  if (D.getDeclSpec().isThreadSpecified())
2825    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2826
2827  DiagnoseFunctionSpecifiers(D);
2828
2829  // Check that there are no default arguments inside the type of this
2830  // parameter (C++ only).
2831  if (getLangOptions().CPlusPlus)
2832    CheckExtraCXXDefaultArguments(D);
2833
2834  TagDecl *OwnedDecl = 0;
2835  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2836
2837  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2838    // C++ [dcl.fct]p6:
2839    //   Types shall not be defined in return or parameter types.
2840    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2841      << Context.getTypeDeclType(OwnedDecl);
2842  }
2843
2844  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2845  // Can this happen for params?  We already checked that they don't conflict
2846  // among each other.  Here they can only shadow globals, which is ok.
2847  IdentifierInfo *II = D.getIdentifier();
2848  if (II) {
2849    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2850      if (PrevDecl->isTemplateParameter()) {
2851        // Maybe we will complain about the shadowed template parameter.
2852        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2853        // Just pretend that we didn't see the previous declaration.
2854        PrevDecl = 0;
2855      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2856        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2857
2858        // Recover by removing the name
2859        II = 0;
2860        D.SetIdentifier(0, D.getIdentifierLoc());
2861      }
2862    }
2863  }
2864
2865  // Parameters can not be abstract class types.
2866  // For record types, this is done by the AbstractClassUsageDiagnoser once
2867  // the class has been completely parsed.
2868  if (!CurContext->isRecord() &&
2869      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2870                             diag::err_abstract_type_in_decl,
2871                             AbstractParamType))
2872    D.setInvalidType(true);
2873
2874  QualType T = adjustParameterType(parmDeclType);
2875
2876  ParmVarDecl *New;
2877  if (T == parmDeclType) // parameter type did not need adjustment
2878    New = ParmVarDecl::Create(Context, CurContext,
2879                              D.getIdentifierLoc(), II,
2880                              parmDeclType, StorageClass,
2881                              0);
2882  else // keep track of both the adjusted and unadjusted types
2883    New = OriginalParmVarDecl::Create(Context, CurContext,
2884                                      D.getIdentifierLoc(), II, T,
2885                                      parmDeclType, StorageClass, 0);
2886
2887  if (D.isInvalidType())
2888    New->setInvalidDecl();
2889
2890  // Parameter declarators cannot be interface types. All ObjC objects are
2891  // passed by reference.
2892  if (T->isObjCInterfaceType()) {
2893    Diag(D.getIdentifierLoc(),
2894         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2895    New->setInvalidDecl();
2896  }
2897
2898  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2899  if (D.getCXXScopeSpec().isSet()) {
2900    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2901      << D.getCXXScopeSpec().getRange();
2902    New->setInvalidDecl();
2903  }
2904
2905  // Add the parameter declaration into this scope.
2906  S->AddDecl(DeclPtrTy::make(New));
2907  if (II)
2908    IdResolver.AddDecl(New);
2909
2910  ProcessDeclAttributes(New, D);
2911
2912  if (New->hasAttr<BlocksAttr>()) {
2913    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2914  }
2915  return DeclPtrTy::make(New);
2916}
2917
2918void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2919                                           SourceLocation LocAfterDecls) {
2920  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2921         "Not a function declarator!");
2922  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2923
2924  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2925  // for a K&R function.
2926  if (!FTI.hasPrototype) {
2927    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2928      --i;
2929      if (FTI.ArgInfo[i].Param == 0) {
2930        std::string Code = "  int ";
2931        Code += FTI.ArgInfo[i].Ident->getName();
2932        Code += ";\n";
2933        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2934          << FTI.ArgInfo[i].Ident
2935          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2936
2937        // Implicitly declare the argument as type 'int' for lack of a better
2938        // type.
2939        DeclSpec DS;
2940        const char* PrevSpec; // unused
2941        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2942                           PrevSpec);
2943        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2944        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2945        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2946      }
2947    }
2948  }
2949}
2950
2951Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2952                                              Declarator &D) {
2953  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2954  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2955         "Not a function declarator!");
2956  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2957
2958  if (FTI.hasPrototype) {
2959    // FIXME: Diagnose arguments without names in C.
2960  }
2961
2962  Scope *ParentScope = FnBodyScope->getParent();
2963
2964  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2965  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2966}
2967
2968Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2969  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2970
2971  CurFunctionNeedsScopeChecking = false;
2972
2973  // See if this is a redefinition.
2974  const FunctionDecl *Definition;
2975  if (FD->getBody(Context, Definition)) {
2976    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2977    Diag(Definition->getLocation(), diag::note_previous_definition);
2978  }
2979
2980  // Builtin functions cannot be defined.
2981  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2982    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2983      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2984      FD->setInvalidDecl();
2985    }
2986  }
2987
2988  // The return type of a function definition must be complete
2989  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2990  QualType ResultType = FD->getResultType();
2991  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2992      !FD->isInvalidDecl() &&
2993      RequireCompleteType(FD->getLocation(), ResultType,
2994                          diag::err_func_def_incomplete_result))
2995    FD->setInvalidDecl();
2996
2997  // GNU warning -Wmissing-prototypes:
2998  //   Warn if a global function is defined without a previous
2999  //   prototype declaration. This warning is issued even if the
3000  //   definition itself provides a prototype. The aim is to detect
3001  //   global functions that fail to be declared in header files.
3002  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3003      !FD->isMain()) {
3004    bool MissingPrototype = true;
3005    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3006         Prev; Prev = Prev->getPreviousDeclaration()) {
3007      // Ignore any declarations that occur in function or method
3008      // scope, because they aren't visible from the header.
3009      if (Prev->getDeclContext()->isFunctionOrMethod())
3010        continue;
3011
3012      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3013      break;
3014    }
3015
3016    if (MissingPrototype)
3017      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3018  }
3019
3020  if (FnBodyScope)
3021    PushDeclContext(FnBodyScope, FD);
3022
3023  // Check the validity of our function parameters
3024  CheckParmsForFunctionDef(FD);
3025
3026  // Introduce our parameters into the function scope
3027  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3028    ParmVarDecl *Param = FD->getParamDecl(p);
3029    Param->setOwningFunction(FD);
3030
3031    // If this has an identifier, add it to the scope stack.
3032    if (Param->getIdentifier() && FnBodyScope)
3033      PushOnScopeChains(Param, FnBodyScope);
3034  }
3035
3036  // Checking attributes of current function definition
3037  // dllimport attribute.
3038  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3039    // dllimport attribute cannot be applied to definition.
3040    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3041      Diag(FD->getLocation(),
3042           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3043        << "dllimport";
3044      FD->setInvalidDecl();
3045      return DeclPtrTy::make(FD);
3046    } else {
3047      // If a symbol previously declared dllimport is later defined, the
3048      // attribute is ignored in subsequent references, and a warning is
3049      // emitted.
3050      Diag(FD->getLocation(),
3051           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3052        << FD->getNameAsCString() << "dllimport";
3053    }
3054  }
3055  return DeclPtrTy::make(FD);
3056}
3057
3058Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3059  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3060}
3061
3062Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3063                                              bool IsInstantiation) {
3064  Decl *dcl = D.getAs<Decl>();
3065  Stmt *Body = BodyArg.takeAs<Stmt>();
3066  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3067    FD->setBody(Body);
3068    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3069  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3070    assert(MD == getCurMethodDecl() && "Method parsing confused");
3071    MD->setBody(Body);
3072  } else {
3073    Body->Destroy(Context);
3074    return DeclPtrTy();
3075  }
3076  if (!IsInstantiation)
3077    PopDeclContext();
3078
3079  // Verify and clean out per-function state.
3080
3081  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3082
3083  // Check goto/label use.
3084  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3085       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3086    LabelStmt *L = I->second;
3087
3088    // Verify that we have no forward references left.  If so, there was a goto
3089    // or address of a label taken, but no definition of it.  Label fwd
3090    // definitions are indicated with a null substmt.
3091    if (L->getSubStmt() != 0)
3092      continue;
3093
3094    // Emit error.
3095    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3096
3097    // At this point, we have gotos that use the bogus label.  Stitch it into
3098    // the function body so that they aren't leaked and that the AST is well
3099    // formed.
3100    if (Body == 0) {
3101      // The whole function wasn't parsed correctly, just delete this.
3102      L->Destroy(Context);
3103      continue;
3104    }
3105
3106    // Otherwise, the body is valid: we want to stitch the label decl into the
3107    // function somewhere so that it is properly owned and so that the goto
3108    // has a valid target.  Do this by creating a new compound stmt with the
3109    // label in it.
3110
3111    // Give the label a sub-statement.
3112    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3113
3114    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3115                               cast<CXXTryStmt>(Body)->getTryBlock() :
3116                               cast<CompoundStmt>(Body);
3117    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3118    Elements.push_back(L);
3119    Compound->setStmts(Context, &Elements[0], Elements.size());
3120  }
3121  FunctionLabelMap.clear();
3122
3123  if (!Body) return D;
3124
3125  // Verify that that gotos and switch cases don't jump into scopes illegally.
3126  if (CurFunctionNeedsScopeChecking)
3127    DiagnoseInvalidJumps(Body);
3128
3129  // C++ constructors that have function-try-blocks can't have return statements
3130  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3131  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3132    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3133
3134  return D;
3135}
3136
3137/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3138/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3139NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3140                                          IdentifierInfo &II, Scope *S) {
3141  // Before we produce a declaration for an implicitly defined
3142  // function, see whether there was a locally-scoped declaration of
3143  // this name as a function or variable. If so, use that
3144  // (non-visible) declaration, and complain about it.
3145  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3146    = LocallyScopedExternalDecls.find(&II);
3147  if (Pos != LocallyScopedExternalDecls.end()) {
3148    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3149    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3150    return Pos->second;
3151  }
3152
3153  // Extension in C99.  Legal in C90, but warn about it.
3154  if (getLangOptions().C99)
3155    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3156  else
3157    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3158
3159  // FIXME: handle stuff like:
3160  // void foo() { extern float X(); }
3161  // void bar() { X(); }  <-- implicit decl for X in another scope.
3162
3163  // Set a Declarator for the implicit definition: int foo();
3164  const char *Dummy;
3165  DeclSpec DS;
3166  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3167  Error = Error; // Silence warning.
3168  assert(!Error && "Error setting up implicit decl!");
3169  Declarator D(DS, Declarator::BlockContext);
3170  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3171                                             0, 0, false, SourceLocation(),
3172                                             false, 0,0,0, Loc, D),
3173                SourceLocation());
3174  D.SetIdentifier(&II, Loc);
3175
3176  // Insert this function into translation-unit scope.
3177
3178  DeclContext *PrevDC = CurContext;
3179  CurContext = Context.getTranslationUnitDecl();
3180
3181  FunctionDecl *FD =
3182 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3183  FD->setImplicit();
3184
3185  CurContext = PrevDC;
3186
3187  AddKnownFunctionAttributes(FD);
3188
3189  return FD;
3190}
3191
3192/// \brief Adds any function attributes that we know a priori based on
3193/// the declaration of this function.
3194///
3195/// These attributes can apply both to implicitly-declared builtins
3196/// (like __builtin___printf_chk) or to library-declared functions
3197/// like NSLog or printf.
3198void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3199  if (FD->isInvalidDecl())
3200    return;
3201
3202  // If this is a built-in function, map its builtin attributes to
3203  // actual attributes.
3204  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3205    // Handle printf-formatting attributes.
3206    unsigned FormatIdx;
3207    bool HasVAListArg;
3208    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3209      if (!FD->getAttr<FormatAttr>())
3210        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3211                                             HasVAListArg ? 0 : FormatIdx + 2));
3212    }
3213
3214    // Mark const if we don't care about errno and that is the only
3215    // thing preventing the function from being const. This allows
3216    // IRgen to use LLVM intrinsics for such functions.
3217    if (!getLangOptions().MathErrno &&
3218        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3219      if (!FD->getAttr<ConstAttr>())
3220        FD->addAttr(::new (Context) ConstAttr());
3221    }
3222  }
3223
3224  IdentifierInfo *Name = FD->getIdentifier();
3225  if (!Name)
3226    return;
3227  if ((!getLangOptions().CPlusPlus &&
3228       FD->getDeclContext()->isTranslationUnit()) ||
3229      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3230       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3231       LinkageSpecDecl::lang_c)) {
3232    // Okay: this could be a libc/libm/Objective-C function we know
3233    // about.
3234  } else
3235    return;
3236
3237  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3238    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3239      // FIXME: We known better than our headers.
3240      const_cast<FormatAttr *>(Format)->setType("printf");
3241    } else
3242      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3243                                             Name->isStr("NSLogv") ? 0 : 2));
3244  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3245    if (!FD->getAttr<FormatAttr>())
3246      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3247                                             Name->isStr("vasprintf") ? 0 : 3));
3248  }
3249}
3250
3251TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3252  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3253  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3254
3255  // Scope manipulation handled by caller.
3256  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3257                                           D.getIdentifierLoc(),
3258                                           D.getIdentifier(),
3259                                           T);
3260
3261  if (TagType *TT = dyn_cast<TagType>(T)) {
3262    TagDecl *TD = TT->getDecl();
3263
3264    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3265    // keep track of the TypedefDecl.
3266    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3267      TD->setTypedefForAnonDecl(NewTD);
3268  }
3269
3270  if (D.isInvalidType())
3271    NewTD->setInvalidDecl();
3272  return NewTD;
3273}
3274
3275
3276/// \brief Determine whether a tag with a given kind is acceptable
3277/// as a redeclaration of the given tag declaration.
3278///
3279/// \returns true if the new tag kind is acceptable, false otherwise.
3280bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3281                                        TagDecl::TagKind NewTag,
3282                                        SourceLocation NewTagLoc,
3283                                        const IdentifierInfo &Name) {
3284  // C++ [dcl.type.elab]p3:
3285  //   The class-key or enum keyword present in the
3286  //   elaborated-type-specifier shall agree in kind with the
3287  //   declaration to which the name in theelaborated-type-specifier
3288  //   refers. This rule also applies to the form of
3289  //   elaborated-type-specifier that declares a class-name or
3290  //   friend class since it can be construed as referring to the
3291  //   definition of the class. Thus, in any
3292  //   elaborated-type-specifier, the enum keyword shall be used to
3293  //   refer to an enumeration (7.2), the union class-keyshall be
3294  //   used to refer to a union (clause 9), and either the class or
3295  //   struct class-key shall be used to refer to a class (clause 9)
3296  //   declared using the class or struct class-key.
3297  TagDecl::TagKind OldTag = Previous->getTagKind();
3298  if (OldTag == NewTag)
3299    return true;
3300
3301  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3302      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3303    // Warn about the struct/class tag mismatch.
3304    bool isTemplate = false;
3305    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3306      isTemplate = Record->getDescribedClassTemplate();
3307
3308    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3309      << (NewTag == TagDecl::TK_class)
3310      << isTemplate << &Name
3311      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3312                              OldTag == TagDecl::TK_class? "class" : "struct");
3313    Diag(Previous->getLocation(), diag::note_previous_use);
3314    return true;
3315  }
3316  return false;
3317}
3318
3319/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3320/// former case, Name will be non-null.  In the later case, Name will be null.
3321/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3322/// reference/declaration/definition of a tag.
3323Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3324                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3325                               IdentifierInfo *Name, SourceLocation NameLoc,
3326                               AttributeList *Attr, AccessSpecifier AS,
3327                               bool &OwnedDecl) {
3328  // If this is not a definition, it must have a name.
3329  assert((Name != 0 || TK == TK_Definition) &&
3330         "Nameless record must be a definition!");
3331
3332  OwnedDecl = false;
3333  TagDecl::TagKind Kind;
3334  switch (TagSpec) {
3335  default: assert(0 && "Unknown tag type!");
3336  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3337  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3338  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3339  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3340  }
3341
3342  DeclContext *SearchDC = CurContext;
3343  DeclContext *DC = CurContext;
3344  NamedDecl *PrevDecl = 0;
3345
3346  bool Invalid = false;
3347
3348  if (Name && SS.isNotEmpty()) {
3349    // We have a nested-name tag ('struct foo::bar').
3350
3351    // Check for invalid 'foo::'.
3352    if (SS.isInvalid()) {
3353      Name = 0;
3354      goto CreateNewDecl;
3355    }
3356
3357    if (RequireCompleteDeclContext(SS))
3358      return DeclPtrTy::make((Decl *)0);
3359
3360    DC = computeDeclContext(SS);
3361    SearchDC = DC;
3362    // Look-up name inside 'foo::'.
3363    PrevDecl
3364      = dyn_cast_or_null<TagDecl>(
3365               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3366
3367    // A tag 'foo::bar' must already exist.
3368    if (PrevDecl == 0) {
3369      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3370      Name = 0;
3371      Invalid = true;
3372      goto CreateNewDecl;
3373    }
3374  } else if (Name) {
3375    // If this is a named struct, check to see if there was a previous forward
3376    // declaration or definition.
3377    // FIXME: We're looking into outer scopes here, even when we
3378    // shouldn't be. Doing so can result in ambiguities that we
3379    // shouldn't be diagnosing.
3380    LookupResult R = LookupName(S, Name, LookupTagName,
3381                                /*RedeclarationOnly=*/(TK != TK_Reference));
3382    if (R.isAmbiguous()) {
3383      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3384      // FIXME: This is not best way to recover from case like:
3385      //
3386      // struct S s;
3387      //
3388      // causes needless "incomplete type" error later.
3389      Name = 0;
3390      PrevDecl = 0;
3391      Invalid = true;
3392    }
3393    else
3394      PrevDecl = R;
3395
3396    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3397      // FIXME: This makes sure that we ignore the contexts associated
3398      // with C structs, unions, and enums when looking for a matching
3399      // tag declaration or definition. See the similar lookup tweak
3400      // in Sema::LookupName; is there a better way to deal with this?
3401      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3402        SearchDC = SearchDC->getParent();
3403    }
3404  }
3405
3406  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3407    // Maybe we will complain about the shadowed template parameter.
3408    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3409    // Just pretend that we didn't see the previous declaration.
3410    PrevDecl = 0;
3411  }
3412
3413  if (PrevDecl) {
3414    // Check whether the previous declaration is usable.
3415    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3416
3417    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3418      // If this is a use of a previous tag, or if the tag is already declared
3419      // in the same scope (so that the definition/declaration completes or
3420      // rementions the tag), reuse the decl.
3421      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3422        // Make sure that this wasn't declared as an enum and now used as a
3423        // struct or something similar.
3424        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3425          bool SafeToContinue
3426            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3427               Kind != TagDecl::TK_enum);
3428          if (SafeToContinue)
3429            Diag(KWLoc, diag::err_use_with_wrong_tag)
3430              << Name
3431              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3432                                                  PrevTagDecl->getKindName());
3433          else
3434            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3435          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3436
3437          if (SafeToContinue)
3438            Kind = PrevTagDecl->getTagKind();
3439          else {
3440            // Recover by making this an anonymous redefinition.
3441            Name = 0;
3442            PrevDecl = 0;
3443            Invalid = true;
3444          }
3445        }
3446
3447        if (!Invalid) {
3448          // If this is a use, just return the declaration we found.
3449
3450          // FIXME: In the future, return a variant or some other clue
3451          // for the consumer of this Decl to know it doesn't own it.
3452          // For our current ASTs this shouldn't be a problem, but will
3453          // need to be changed with DeclGroups.
3454          if (TK == TK_Reference)
3455            return DeclPtrTy::make(PrevDecl);
3456
3457          // Diagnose attempts to redefine a tag.
3458          if (TK == TK_Definition) {
3459            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3460              Diag(NameLoc, diag::err_redefinition) << Name;
3461              Diag(Def->getLocation(), diag::note_previous_definition);
3462              // If this is a redefinition, recover by making this
3463              // struct be anonymous, which will make any later
3464              // references get the previous definition.
3465              Name = 0;
3466              PrevDecl = 0;
3467              Invalid = true;
3468            } else {
3469              // If the type is currently being defined, complain
3470              // about a nested redefinition.
3471              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3472              if (Tag->isBeingDefined()) {
3473                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3474                Diag(PrevTagDecl->getLocation(),
3475                     diag::note_previous_definition);
3476                Name = 0;
3477                PrevDecl = 0;
3478                Invalid = true;
3479              }
3480            }
3481
3482            // Okay, this is definition of a previously declared or referenced
3483            // tag PrevDecl. We're going to create a new Decl for it.
3484          }
3485        }
3486        // If we get here we have (another) forward declaration or we
3487        // have a definition.  Just create a new decl.
3488      } else {
3489        // If we get here, this is a definition of a new tag type in a nested
3490        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3491        // new decl/type.  We set PrevDecl to NULL so that the entities
3492        // have distinct types.
3493        PrevDecl = 0;
3494      }
3495      // If we get here, we're going to create a new Decl. If PrevDecl
3496      // is non-NULL, it's a definition of the tag declared by
3497      // PrevDecl. If it's NULL, we have a new definition.
3498    } else {
3499      // PrevDecl is a namespace, template, or anything else
3500      // that lives in the IDNS_Tag identifier namespace.
3501      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3502        // The tag name clashes with a namespace name, issue an error and
3503        // recover by making this tag be anonymous.
3504        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3505        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3506        Name = 0;
3507        PrevDecl = 0;
3508        Invalid = true;
3509      } else {
3510        // The existing declaration isn't relevant to us; we're in a
3511        // new scope, so clear out the previous declaration.
3512        PrevDecl = 0;
3513      }
3514    }
3515  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3516             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3517    // C++ [basic.scope.pdecl]p5:
3518    //   -- for an elaborated-type-specifier of the form
3519    //
3520    //          class-key identifier
3521    //
3522    //      if the elaborated-type-specifier is used in the
3523    //      decl-specifier-seq or parameter-declaration-clause of a
3524    //      function defined in namespace scope, the identifier is
3525    //      declared as a class-name in the namespace that contains
3526    //      the declaration; otherwise, except as a friend
3527    //      declaration, the identifier is declared in the smallest
3528    //      non-class, non-function-prototype scope that contains the
3529    //      declaration.
3530    //
3531    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3532    // C structs and unions.
3533    //
3534    // GNU C also supports this behavior as part of its incomplete
3535    // enum types extension, while GNU C++ does not.
3536    //
3537    // Find the context where we'll be declaring the tag.
3538    // FIXME: We would like to maintain the current DeclContext as the
3539    // lexical context,
3540    while (SearchDC->isRecord())
3541      SearchDC = SearchDC->getParent();
3542
3543    // Find the scope where we'll be declaring the tag.
3544    while (S->isClassScope() ||
3545           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3546           ((S->getFlags() & Scope::DeclScope) == 0) ||
3547           (S->getEntity() &&
3548            ((DeclContext *)S->getEntity())->isTransparentContext()))
3549      S = S->getParent();
3550  }
3551
3552CreateNewDecl:
3553
3554  // If there is an identifier, use the location of the identifier as the
3555  // location of the decl, otherwise use the location of the struct/union
3556  // keyword.
3557  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3558
3559  // Otherwise, create a new declaration. If there is a previous
3560  // declaration of the same entity, the two will be linked via
3561  // PrevDecl.
3562  TagDecl *New;
3563
3564  if (Kind == TagDecl::TK_enum) {
3565    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3566    // enum X { A, B, C } D;    D should chain to X.
3567    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3568                           cast_or_null<EnumDecl>(PrevDecl));
3569    // If this is an undefined enum, warn.
3570    if (TK != TK_Definition && !Invalid)  {
3571      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3572                                              : diag::ext_forward_ref_enum;
3573      Diag(Loc, DK);
3574    }
3575  } else {
3576    // struct/union/class
3577
3578    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3579    // struct X { int A; } D;    D should chain to X.
3580    if (getLangOptions().CPlusPlus)
3581      // FIXME: Look for a way to use RecordDecl for simple structs.
3582      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3583                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3584    else
3585      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3586                               cast_or_null<RecordDecl>(PrevDecl));
3587  }
3588
3589  if (Kind != TagDecl::TK_enum) {
3590    // Handle #pragma pack: if the #pragma pack stack has non-default
3591    // alignment, make up a packed attribute for this decl. These
3592    // attributes are checked when the ASTContext lays out the
3593    // structure.
3594    //
3595    // It is important for implementing the correct semantics that this
3596    // happen here (in act on tag decl). The #pragma pack stack is
3597    // maintained as a result of parser callbacks which can occur at
3598    // many points during the parsing of a struct declaration (because
3599    // the #pragma tokens are effectively skipped over during the
3600    // parsing of the struct).
3601    if (unsigned Alignment = getPragmaPackAlignment())
3602      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3603  }
3604
3605  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3606    // C++ [dcl.typedef]p3:
3607    //   [...] Similarly, in a given scope, a class or enumeration
3608    //   shall not be declared with the same name as a typedef-name
3609    //   that is declared in that scope and refers to a type other
3610    //   than the class or enumeration itself.
3611    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3612    TypedefDecl *PrevTypedef = 0;
3613    if (Lookup.getKind() == LookupResult::Found)
3614      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3615
3616    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3617        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3618          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3619      Diag(Loc, diag::err_tag_definition_of_typedef)
3620        << Context.getTypeDeclType(New)
3621        << PrevTypedef->getUnderlyingType();
3622      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3623      Invalid = true;
3624    }
3625  }
3626
3627  if (Invalid)
3628    New->setInvalidDecl();
3629
3630  if (Attr)
3631    ProcessDeclAttributeList(New, Attr);
3632
3633  // If we're declaring or defining a tag in function prototype scope
3634  // in C, note that this type can only be used within the function.
3635  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3636    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3637
3638  // Set the lexical context. If the tag has a C++ scope specifier, the
3639  // lexical context will be different from the semantic context.
3640  New->setLexicalDeclContext(CurContext);
3641
3642  // Set the access specifier.
3643  if (!Invalid)
3644    SetMemberAccessSpecifier(New, PrevDecl, AS);
3645
3646  if (TK == TK_Definition)
3647    New->startDefinition();
3648
3649  // If this has an identifier, add it to the scope stack.
3650  if (Name) {
3651    S = getNonFieldDeclScope(S);
3652    PushOnScopeChains(New, S);
3653  } else {
3654    CurContext->addDecl(Context, New);
3655  }
3656
3657  OwnedDecl = true;
3658  return DeclPtrTy::make(New);
3659}
3660
3661void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3662  AdjustDeclIfTemplate(TagD);
3663  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3664
3665  // Enter the tag context.
3666  PushDeclContext(S, Tag);
3667
3668  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3669    FieldCollector->StartClass();
3670
3671    if (Record->getIdentifier()) {
3672      // C++ [class]p2:
3673      //   [...] The class-name is also inserted into the scope of the
3674      //   class itself; this is known as the injected-class-name. For
3675      //   purposes of access checking, the injected-class-name is treated
3676      //   as if it were a public member name.
3677      CXXRecordDecl *InjectedClassName
3678        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3679                                CurContext, Record->getLocation(),
3680                                Record->getIdentifier(), Record);
3681      InjectedClassName->setImplicit();
3682      InjectedClassName->setAccess(AS_public);
3683      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3684        InjectedClassName->setDescribedClassTemplate(Template);
3685      PushOnScopeChains(InjectedClassName, S);
3686      assert(InjectedClassName->isInjectedClassName() &&
3687             "Broken injected-class-name");
3688    }
3689  }
3690}
3691
3692void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3693  AdjustDeclIfTemplate(TagD);
3694  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3695
3696  if (isa<CXXRecordDecl>(Tag))
3697    FieldCollector->FinishClass();
3698
3699  // Exit this scope of this tag's definition.
3700  PopDeclContext();
3701
3702  // Notify the consumer that we've defined a tag.
3703  Consumer.HandleTagDeclDefinition(Tag);
3704}
3705
3706// Note that FieldName may be null for anonymous bitfields.
3707bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3708                          QualType FieldTy, const Expr *BitWidth) {
3709
3710  // C99 6.7.2.1p4 - verify the field type.
3711  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3712  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3713    // Handle incomplete types with specific error.
3714    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3715      return true;
3716    if (FieldName)
3717      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3718        << FieldName << FieldTy << BitWidth->getSourceRange();
3719    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3720      << FieldTy << BitWidth->getSourceRange();
3721  }
3722
3723  // If the bit-width is type- or value-dependent, don't try to check
3724  // it now.
3725  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3726    return false;
3727
3728  llvm::APSInt Value;
3729  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3730    return true;
3731
3732  // Zero-width bitfield is ok for anonymous field.
3733  if (Value == 0 && FieldName)
3734    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3735
3736  if (Value.isSigned() && Value.isNegative()) {
3737    if (FieldName)
3738      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3739               << FieldName << Value.toString(10);
3740    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3741      << Value.toString(10);
3742  }
3743
3744  if (!FieldTy->isDependentType()) {
3745    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3746    if (Value.getZExtValue() > TypeSize) {
3747      if (FieldName)
3748        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3749          << FieldName << (unsigned)TypeSize;
3750      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3751        << (unsigned)TypeSize;
3752    }
3753  }
3754
3755  return false;
3756}
3757
3758/// ActOnField - Each field of a struct/union/class is passed into this in order
3759/// to create a FieldDecl object for it.
3760Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3761                                 SourceLocation DeclStart,
3762                                 Declarator &D, ExprTy *BitfieldWidth) {
3763  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3764                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3765                               AS_public);
3766  return DeclPtrTy::make(Res);
3767}
3768
3769/// HandleField - Analyze a field of a C struct or a C++ data member.
3770///
3771FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3772                             SourceLocation DeclStart,
3773                             Declarator &D, Expr *BitWidth,
3774                             AccessSpecifier AS) {
3775  IdentifierInfo *II = D.getIdentifier();
3776  SourceLocation Loc = DeclStart;
3777  if (II) Loc = D.getIdentifierLoc();
3778
3779  QualType T = GetTypeForDeclarator(D, S);
3780  if (getLangOptions().CPlusPlus)
3781    CheckExtraCXXDefaultArguments(D);
3782
3783  DiagnoseFunctionSpecifiers(D);
3784
3785  if (D.getDeclSpec().isThreadSpecified())
3786    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3787
3788  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3789  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3790    PrevDecl = 0;
3791
3792  FieldDecl *NewFD
3793    = CheckFieldDecl(II, T, Record, Loc,
3794               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3795                     BitWidth, AS, PrevDecl, &D);
3796  if (NewFD->isInvalidDecl() && PrevDecl) {
3797    // Don't introduce NewFD into scope; there's already something
3798    // with the same name in the same scope.
3799  } else if (II) {
3800    PushOnScopeChains(NewFD, S);
3801  } else
3802    Record->addDecl(Context, NewFD);
3803
3804  return NewFD;
3805}
3806
3807/// \brief Build a new FieldDecl and check its well-formedness.
3808///
3809/// This routine builds a new FieldDecl given the fields name, type,
3810/// record, etc. \p PrevDecl should refer to any previous declaration
3811/// with the same name and in the same scope as the field to be
3812/// created.
3813///
3814/// \returns a new FieldDecl.
3815///
3816/// \todo The Declarator argument is a hack. It will be removed once
3817FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3818                                RecordDecl *Record, SourceLocation Loc,
3819                                bool Mutable, Expr *BitWidth,
3820                                AccessSpecifier AS, NamedDecl *PrevDecl,
3821                                Declarator *D) {
3822  IdentifierInfo *II = Name.getAsIdentifierInfo();
3823  bool InvalidDecl = false;
3824  if (D) InvalidDecl = D->isInvalidType();
3825
3826  // If we receive a broken type, recover by assuming 'int' and
3827  // marking this declaration as invalid.
3828  if (T.isNull()) {
3829    InvalidDecl = true;
3830    T = Context.IntTy;
3831  }
3832
3833  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3834  // than a variably modified type.
3835  if (T->isVariablyModifiedType()) {
3836    bool SizeIsNegative;
3837    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3838                                                           SizeIsNegative);
3839    if (!FixedTy.isNull()) {
3840      Diag(Loc, diag::warn_illegal_constant_array_size);
3841      T = FixedTy;
3842    } else {
3843      if (SizeIsNegative)
3844        Diag(Loc, diag::err_typecheck_negative_array_size);
3845      else
3846        Diag(Loc, diag::err_typecheck_field_variable_size);
3847      T = Context.IntTy;
3848      InvalidDecl = true;
3849    }
3850  }
3851
3852  // Fields can not have abstract class types
3853  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3854                             AbstractFieldType))
3855    InvalidDecl = true;
3856
3857  // If this is declared as a bit-field, check the bit-field.
3858  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3859    InvalidDecl = true;
3860    DeleteExpr(BitWidth);
3861    BitWidth = 0;
3862  }
3863
3864  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3865                                       Mutable);
3866  if (InvalidDecl)
3867    NewFD->setInvalidDecl();
3868
3869  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3870    Diag(Loc, diag::err_duplicate_member) << II;
3871    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3872    NewFD->setInvalidDecl();
3873  }
3874
3875  if (getLangOptions().CPlusPlus && !T->isPODType())
3876    cast<CXXRecordDecl>(Record)->setPOD(false);
3877
3878  // FIXME: We need to pass in the attributes given an AST
3879  // representation, not a parser representation.
3880  if (D)
3881    ProcessDeclAttributes(NewFD, *D);
3882
3883  if (T.isObjCGCWeak())
3884    Diag(Loc, diag::warn_attribute_weak_on_field);
3885
3886  NewFD->setAccess(AS);
3887
3888  // C++ [dcl.init.aggr]p1:
3889  //   An aggregate is an array or a class (clause 9) with [...] no
3890  //   private or protected non-static data members (clause 11).
3891  // A POD must be an aggregate.
3892  if (getLangOptions().CPlusPlus &&
3893      (AS == AS_private || AS == AS_protected)) {
3894    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3895    CXXRecord->setAggregate(false);
3896    CXXRecord->setPOD(false);
3897  }
3898
3899  return NewFD;
3900}
3901
3902/// TranslateIvarVisibility - Translate visibility from a token ID to an
3903///  AST enum value.
3904static ObjCIvarDecl::AccessControl
3905TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3906  switch (ivarVisibility) {
3907  default: assert(0 && "Unknown visitibility kind");
3908  case tok::objc_private: return ObjCIvarDecl::Private;
3909  case tok::objc_public: return ObjCIvarDecl::Public;
3910  case tok::objc_protected: return ObjCIvarDecl::Protected;
3911  case tok::objc_package: return ObjCIvarDecl::Package;
3912  }
3913}
3914
3915/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3916/// in order to create an IvarDecl object for it.
3917Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3918                                SourceLocation DeclStart,
3919                                DeclPtrTy IntfDecl,
3920                                Declarator &D, ExprTy *BitfieldWidth,
3921                                tok::ObjCKeywordKind Visibility) {
3922
3923  IdentifierInfo *II = D.getIdentifier();
3924  Expr *BitWidth = (Expr*)BitfieldWidth;
3925  SourceLocation Loc = DeclStart;
3926  if (II) Loc = D.getIdentifierLoc();
3927
3928  // FIXME: Unnamed fields can be handled in various different ways, for
3929  // example, unnamed unions inject all members into the struct namespace!
3930
3931  QualType T = GetTypeForDeclarator(D, S);
3932
3933  if (BitWidth) {
3934    // 6.7.2.1p3, 6.7.2.1p4
3935    if (VerifyBitField(Loc, II, T, BitWidth)) {
3936      D.setInvalidType();
3937      DeleteExpr(BitWidth);
3938      BitWidth = 0;
3939    }
3940  } else {
3941    // Not a bitfield.
3942
3943    // validate II.
3944
3945  }
3946
3947  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3948  // than a variably modified type.
3949  if (T->isVariablyModifiedType()) {
3950    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3951    D.setInvalidType();
3952  }
3953
3954  // Get the visibility (access control) for this ivar.
3955  ObjCIvarDecl::AccessControl ac =
3956    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3957                                        : ObjCIvarDecl::None;
3958  // Must set ivar's DeclContext to its enclosing interface.
3959  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
3960  DeclContext *EnclosingContext;
3961  if (ObjCImplementationDecl *IMPDecl =
3962      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3963    // Case of ivar declared in an implementation. Context is that of its class.
3964    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
3965    assert(IDecl && "No class- ActOnIvar");
3966    EnclosingContext = cast_or_null<DeclContext>(IDecl);
3967  }
3968  else
3969    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
3970  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
3971
3972  // Construct the decl.
3973  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
3974                                             EnclosingContext, Loc, II, T,ac,
3975                                             (Expr *)BitfieldWidth);
3976
3977  if (II) {
3978    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3979    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
3980        && !isa<TagDecl>(PrevDecl)) {
3981      Diag(Loc, diag::err_duplicate_member) << II;
3982      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3983      NewID->setInvalidDecl();
3984    }
3985  }
3986
3987  // Process attributes attached to the ivar.
3988  ProcessDeclAttributes(NewID, D);
3989
3990  if (D.isInvalidType())
3991    NewID->setInvalidDecl();
3992
3993  if (II) {
3994    // FIXME: When interfaces are DeclContexts, we'll need to add
3995    // these to the interface.
3996    S->AddDecl(DeclPtrTy::make(NewID));
3997    IdResolver.AddDecl(NewID);
3998  }
3999
4000  return DeclPtrTy::make(NewID);
4001}
4002
4003void Sema::ActOnFields(Scope* S,
4004                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4005                       DeclPtrTy *Fields, unsigned NumFields,
4006                       SourceLocation LBrac, SourceLocation RBrac,
4007                       AttributeList *Attr) {
4008  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4009  assert(EnclosingDecl && "missing record or interface decl");
4010
4011  // If the decl this is being inserted into is invalid, then it may be a
4012  // redeclaration or some other bogus case.  Don't try to add fields to it.
4013  if (EnclosingDecl->isInvalidDecl()) {
4014    // FIXME: Deallocate fields?
4015    return;
4016  }
4017
4018
4019  // Verify that all the fields are okay.
4020  unsigned NumNamedMembers = 0;
4021  llvm::SmallVector<FieldDecl*, 32> RecFields;
4022
4023  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4024  for (unsigned i = 0; i != NumFields; ++i) {
4025    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4026
4027    // Get the type for the field.
4028    Type *FDTy = FD->getType().getTypePtr();
4029
4030    if (!FD->isAnonymousStructOrUnion()) {
4031      // Remember all fields written by the user.
4032      RecFields.push_back(FD);
4033    }
4034
4035    // If the field is already invalid for some reason, don't emit more
4036    // diagnostics about it.
4037    if (FD->isInvalidDecl())
4038      continue;
4039
4040    // C99 6.7.2.1p2:
4041    //   A structure or union shall not contain a member with
4042    //   incomplete or function type (hence, a structure shall not
4043    //   contain an instance of itself, but may contain a pointer to
4044    //   an instance of itself), except that the last member of a
4045    //   structure with more than one named member may have incomplete
4046    //   array type; such a structure (and any union containing,
4047    //   possibly recursively, a member that is such a structure)
4048    //   shall not be a member of a structure or an element of an
4049    //   array.
4050    if (FDTy->isFunctionType()) {
4051      // Field declared as a function.
4052      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4053        << FD->getDeclName();
4054      FD->setInvalidDecl();
4055      EnclosingDecl->setInvalidDecl();
4056      continue;
4057    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4058               Record && Record->isStruct()) {
4059      // Flexible array member.
4060      if (NumNamedMembers < 1) {
4061        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4062          << FD->getDeclName();
4063        FD->setInvalidDecl();
4064        EnclosingDecl->setInvalidDecl();
4065        continue;
4066      }
4067      // Okay, we have a legal flexible array member at the end of the struct.
4068      if (Record)
4069        Record->setHasFlexibleArrayMember(true);
4070    } else if (!FDTy->isDependentType() &&
4071               RequireCompleteType(FD->getLocation(), FD->getType(),
4072                                   diag::err_field_incomplete)) {
4073      // Incomplete type
4074      FD->setInvalidDecl();
4075      EnclosingDecl->setInvalidDecl();
4076      continue;
4077    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4078      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4079        // If this is a member of a union, then entire union becomes "flexible".
4080        if (Record && Record->isUnion()) {
4081          Record->setHasFlexibleArrayMember(true);
4082        } else {
4083          // If this is a struct/class and this is not the last element, reject
4084          // it.  Note that GCC supports variable sized arrays in the middle of
4085          // structures.
4086          if (i != NumFields-1)
4087            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4088              << FD->getDeclName() << FD->getType();
4089          else {
4090            // We support flexible arrays at the end of structs in
4091            // other structs as an extension.
4092            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4093              << FD->getDeclName();
4094            if (Record)
4095              Record->setHasFlexibleArrayMember(true);
4096          }
4097        }
4098      }
4099    } else if (FDTy->isObjCInterfaceType()) {
4100      /// A field cannot be an Objective-c object
4101      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4102      FD->setInvalidDecl();
4103      EnclosingDecl->setInvalidDecl();
4104      continue;
4105    }
4106    // Keep track of the number of named members.
4107    if (FD->getIdentifier())
4108      ++NumNamedMembers;
4109  }
4110
4111  // Okay, we successfully defined 'Record'.
4112  if (Record) {
4113    Record->completeDefinition(Context);
4114  } else {
4115    ObjCIvarDecl **ClsFields =
4116      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4117    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4118      ID->setIVarList(ClsFields, RecFields.size(), Context);
4119      ID->setLocEnd(RBrac);
4120      // Add ivar's to class's DeclContext.
4121      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4122        ClsFields[i]->setLexicalDeclContext(ID);
4123        ID->addDecl(Context, ClsFields[i]);
4124      }
4125      // Must enforce the rule that ivars in the base classes may not be
4126      // duplicates.
4127      if (ID->getSuperClass()) {
4128        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4129             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4130          ObjCIvarDecl* Ivar = (*IVI);
4131
4132          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4133            ObjCIvarDecl* prevIvar =
4134              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4135            if (prevIvar) {
4136              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4137              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4138            }
4139          }
4140        }
4141      }
4142    } else if (ObjCImplementationDecl *IMPDecl =
4143                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4144      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4145      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4146        // Ivar declared in @implementation never belongs to the implementation.
4147        // Only it is in implementation's lexical context.
4148        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4149      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4150    }
4151  }
4152
4153  if (Attr)
4154    ProcessDeclAttributeList(Record, Attr);
4155}
4156
4157EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4158                                          EnumConstantDecl *LastEnumConst,
4159                                          SourceLocation IdLoc,
4160                                          IdentifierInfo *Id,
4161                                          ExprArg val) {
4162  Expr *Val = (Expr *)val.get();
4163
4164  llvm::APSInt EnumVal(32);
4165  QualType EltTy;
4166  if (Val && !Val->isTypeDependent()) {
4167    // Make sure to promote the operand type to int.
4168    UsualUnaryConversions(Val);
4169    if (Val != val.get()) {
4170      val.release();
4171      val = Val;
4172    }
4173
4174    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4175    SourceLocation ExpLoc;
4176    if (!Val->isValueDependent() &&
4177        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4178      Val = 0;
4179    } else {
4180      EltTy = Val->getType();
4181    }
4182  }
4183
4184  if (!Val) {
4185    if (LastEnumConst) {
4186      // Assign the last value + 1.
4187      EnumVal = LastEnumConst->getInitVal();
4188      ++EnumVal;
4189
4190      // Check for overflow on increment.
4191      if (EnumVal < LastEnumConst->getInitVal())
4192        Diag(IdLoc, diag::warn_enum_value_overflow);
4193
4194      EltTy = LastEnumConst->getType();
4195    } else {
4196      // First value, set to zero.
4197      EltTy = Context.IntTy;
4198      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4199    }
4200  }
4201
4202  val.release();
4203  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4204                                  Val, EnumVal);
4205}
4206
4207
4208Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4209                                        DeclPtrTy lastEnumConst,
4210                                        SourceLocation IdLoc,
4211                                        IdentifierInfo *Id,
4212                                        SourceLocation EqualLoc, ExprTy *val) {
4213  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4214  EnumConstantDecl *LastEnumConst =
4215    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4216  Expr *Val = static_cast<Expr*>(val);
4217
4218  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4219  // we find one that is.
4220  S = getNonFieldDeclScope(S);
4221
4222  // Verify that there isn't already something declared with this name in this
4223  // scope.
4224  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4225  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4226    // Maybe we will complain about the shadowed template parameter.
4227    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4228    // Just pretend that we didn't see the previous declaration.
4229    PrevDecl = 0;
4230  }
4231
4232  if (PrevDecl) {
4233    // When in C++, we may get a TagDecl with the same name; in this case the
4234    // enum constant will 'hide' the tag.
4235    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4236           "Received TagDecl when not in C++!");
4237    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4238      if (isa<EnumConstantDecl>(PrevDecl))
4239        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4240      else
4241        Diag(IdLoc, diag::err_redefinition) << Id;
4242      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4243      if (Val) Val->Destroy(Context);
4244      return DeclPtrTy();
4245    }
4246  }
4247
4248  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4249                                            IdLoc, Id, Owned(Val));
4250
4251  // Register this decl in the current scope stack.
4252  if (New)
4253    PushOnScopeChains(New, S);
4254
4255  return DeclPtrTy::make(New);
4256}
4257
4258void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4259                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4260                         DeclPtrTy *Elements, unsigned NumElements) {
4261  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4262  QualType EnumType = Context.getTypeDeclType(Enum);
4263
4264  // TODO: If the result value doesn't fit in an int, it must be a long or long
4265  // long value.  ISO C does not support this, but GCC does as an extension,
4266  // emit a warning.
4267  unsigned IntWidth = Context.Target.getIntWidth();
4268
4269  // Verify that all the values are okay, compute the size of the values, and
4270  // reverse the list.
4271  unsigned NumNegativeBits = 0;
4272  unsigned NumPositiveBits = 0;
4273
4274  // Keep track of whether all elements have type int.
4275  bool AllElementsInt = true;
4276
4277  for (unsigned i = 0; i != NumElements; ++i) {
4278    EnumConstantDecl *ECD =
4279      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4280    if (!ECD) continue;  // Already issued a diagnostic.
4281
4282    // If the enum value doesn't fit in an int, emit an extension warning.
4283    const llvm::APSInt &InitVal = ECD->getInitVal();
4284    assert(InitVal.getBitWidth() >= IntWidth &&
4285           "Should have promoted value to int");
4286    if (InitVal.getBitWidth() > IntWidth) {
4287      llvm::APSInt V(InitVal);
4288      V.trunc(IntWidth);
4289      V.extend(InitVal.getBitWidth());
4290      if (V != InitVal)
4291        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4292          << InitVal.toString(10);
4293    }
4294
4295    // Keep track of the size of positive and negative values.
4296    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4297      NumPositiveBits = std::max(NumPositiveBits,
4298                                 (unsigned)InitVal.getActiveBits());
4299    else
4300      NumNegativeBits = std::max(NumNegativeBits,
4301                                 (unsigned)InitVal.getMinSignedBits());
4302
4303    // Keep track of whether every enum element has type int (very commmon).
4304    if (AllElementsInt)
4305      AllElementsInt = ECD->getType() == Context.IntTy;
4306  }
4307
4308  // Figure out the type that should be used for this enum.
4309  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4310  QualType BestType;
4311  unsigned BestWidth;
4312
4313  if (NumNegativeBits) {
4314    // If there is a negative value, figure out the smallest integer type (of
4315    // int/long/longlong) that fits.
4316    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4317      BestType = Context.IntTy;
4318      BestWidth = IntWidth;
4319    } else {
4320      BestWidth = Context.Target.getLongWidth();
4321
4322      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4323        BestType = Context.LongTy;
4324      else {
4325        BestWidth = Context.Target.getLongLongWidth();
4326
4327        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4328          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4329        BestType = Context.LongLongTy;
4330      }
4331    }
4332  } else {
4333    // If there is no negative value, figure out which of uint, ulong, ulonglong
4334    // fits.
4335    if (NumPositiveBits <= IntWidth) {
4336      BestType = Context.UnsignedIntTy;
4337      BestWidth = IntWidth;
4338    } else if (NumPositiveBits <=
4339               (BestWidth = Context.Target.getLongWidth())) {
4340      BestType = Context.UnsignedLongTy;
4341    } else {
4342      BestWidth = Context.Target.getLongLongWidth();
4343      assert(NumPositiveBits <= BestWidth &&
4344             "How could an initializer get larger than ULL?");
4345      BestType = Context.UnsignedLongLongTy;
4346    }
4347  }
4348
4349  // Loop over all of the enumerator constants, changing their types to match
4350  // the type of the enum if needed.
4351  for (unsigned i = 0; i != NumElements; ++i) {
4352    EnumConstantDecl *ECD =
4353      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4354    if (!ECD) continue;  // Already issued a diagnostic.
4355
4356    // Standard C says the enumerators have int type, but we allow, as an
4357    // extension, the enumerators to be larger than int size.  If each
4358    // enumerator value fits in an int, type it as an int, otherwise type it the
4359    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4360    // that X has type 'int', not 'unsigned'.
4361    if (ECD->getType() == Context.IntTy) {
4362      // Make sure the init value is signed.
4363      llvm::APSInt IV = ECD->getInitVal();
4364      IV.setIsSigned(true);
4365      ECD->setInitVal(IV);
4366
4367      if (getLangOptions().CPlusPlus)
4368        // C++ [dcl.enum]p4: Following the closing brace of an
4369        // enum-specifier, each enumerator has the type of its
4370        // enumeration.
4371        ECD->setType(EnumType);
4372      continue;  // Already int type.
4373    }
4374
4375    // Determine whether the value fits into an int.
4376    llvm::APSInt InitVal = ECD->getInitVal();
4377    bool FitsInInt;
4378    if (InitVal.isUnsigned() || !InitVal.isNegative())
4379      FitsInInt = InitVal.getActiveBits() < IntWidth;
4380    else
4381      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4382
4383    // If it fits into an integer type, force it.  Otherwise force it to match
4384    // the enum decl type.
4385    QualType NewTy;
4386    unsigned NewWidth;
4387    bool NewSign;
4388    if (FitsInInt) {
4389      NewTy = Context.IntTy;
4390      NewWidth = IntWidth;
4391      NewSign = true;
4392    } else if (ECD->getType() == BestType) {
4393      // Already the right type!
4394      if (getLangOptions().CPlusPlus)
4395        // C++ [dcl.enum]p4: Following the closing brace of an
4396        // enum-specifier, each enumerator has the type of its
4397        // enumeration.
4398        ECD->setType(EnumType);
4399      continue;
4400    } else {
4401      NewTy = BestType;
4402      NewWidth = BestWidth;
4403      NewSign = BestType->isSignedIntegerType();
4404    }
4405
4406    // Adjust the APSInt value.
4407    InitVal.extOrTrunc(NewWidth);
4408    InitVal.setIsSigned(NewSign);
4409    ECD->setInitVal(InitVal);
4410
4411    // Adjust the Expr initializer and type.
4412    if (ECD->getInitExpr())
4413      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4414                                                      /*isLvalue=*/false));
4415    if (getLangOptions().CPlusPlus)
4416      // C++ [dcl.enum]p4: Following the closing brace of an
4417      // enum-specifier, each enumerator has the type of its
4418      // enumeration.
4419      ECD->setType(EnumType);
4420    else
4421      ECD->setType(NewTy);
4422  }
4423
4424  Enum->completeDefinition(Context, BestType);
4425}
4426
4427Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4428                                            ExprArg expr) {
4429  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4430
4431  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4432                                                   Loc, AsmString);
4433  CurContext->addDecl(Context, New);
4434  return DeclPtrTy::make(New);
4435}
4436
4437void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4438                             SourceLocation PragmaLoc,
4439                             SourceLocation NameLoc) {
4440  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4441
4442  // FIXME: This implementation is an ugly hack!
4443  if (PrevDecl) {
4444    PrevDecl->addAttr(::new (Context) WeakAttr());
4445    return;
4446  }
4447  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4448  return;
4449}
4450
4451void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4452                                IdentifierInfo* AliasName,
4453                                SourceLocation PragmaLoc,
4454                                SourceLocation NameLoc,
4455                                SourceLocation AliasNameLoc) {
4456  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4457
4458  // FIXME: This implementation is an ugly hack!
4459  if (PrevDecl) {
4460    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4461    PrevDecl->addAttr(::new (Context) WeakAttr());
4462    return;
4463  }
4464  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4465  return;
4466}
4467