SemaDecl.cpp revision 275313cbb0847f1f117f60d144d113804d4fa42d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isSet()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // TypenameType node to describe the type.
92        // FIXME: Record somewhere that this TypenameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
202  } else {
203    // If it's not plausibly a type, suppress diagnostics.
204    Result.suppressDiagnostics();
205    return 0;
206  }
207
208  return T.getAsOpaquePtr();
209}
210
211/// isTagName() - This method is called *for error recovery purposes only*
212/// to determine if the specified name is a valid tag name ("struct foo").  If
213/// so, this returns the TST for the tag corresponding to it (TST_enum,
214/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
215/// where the user forgot to specify the tag.
216DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
217  // Do a tag name lookup in this scope.
218  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
219  LookupName(R, S, false);
220  R.suppressDiagnostics();
221  if (R.getResultKind() == LookupResult::Found)
222    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
223      switch (TD->getTagKind()) {
224      case TagDecl::TK_struct: return DeclSpec::TST_struct;
225      case TagDecl::TK_union:  return DeclSpec::TST_union;
226      case TagDecl::TK_class:  return DeclSpec::TST_class;
227      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
228      }
229    }
230
231  return DeclSpec::TST_unspecified;
232}
233
234bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
235                                   SourceLocation IILoc,
236                                   Scope *S,
237                                   const CXXScopeSpec *SS,
238                                   TypeTy *&SuggestedType) {
239  // We don't have anything to suggest (yet).
240  SuggestedType = 0;
241
242  // There may have been a typo in the name of the type. Look up typo
243  // results, in case we have something that we can suggest.
244  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
245                      NotForRedeclaration);
246
247  // FIXME: It would be nice if we could correct for typos in built-in
248  // names, such as "itn" for "int".
249
250  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
251    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
252    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
253        !Result->isInvalidDecl()) {
254      // We found a similarly-named type or interface; suggest that.
255      if (!SS || !SS->isSet())
256        Diag(IILoc, diag::err_unknown_typename_suggest)
257          << &II << Lookup.getLookupName()
258          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
259                                                     Result->getNameAsString());
260      else if (DeclContext *DC = computeDeclContext(*SS, false))
261        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
262          << &II << DC << Lookup.getLookupName() << SS->getRange()
263          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
264                                                     Result->getNameAsString());
265      else
266        llvm_unreachable("could not have corrected a typo here");
267
268      Diag(Result->getLocation(), diag::note_previous_decl)
269        << Result->getDeclName();
270
271      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
272      return true;
273    }
274  }
275
276  // FIXME: Should we move the logic that tries to recover from a missing tag
277  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
278
279  if (!SS || (!SS->isSet() && !SS->isInvalid()))
280    Diag(IILoc, diag::err_unknown_typename) << &II;
281  else if (DeclContext *DC = computeDeclContext(*SS, false))
282    Diag(IILoc, diag::err_typename_nested_not_found)
283      << &II << DC << SS->getRange();
284  else if (isDependentScopeSpecifier(*SS)) {
285    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
286      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
287      << SourceRange(SS->getRange().getBegin(), IILoc)
288      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
289                                               "typename ");
290    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
291  } else {
292    assert(SS && SS->isInvalid() &&
293           "Invalid scope specifier has already been diagnosed");
294  }
295
296  return true;
297}
298
299// Determines the context to return to after temporarily entering a
300// context.  This depends in an unnecessarily complicated way on the
301// exact ordering of callbacks from the parser.
302DeclContext *Sema::getContainingDC(DeclContext *DC) {
303
304  // Functions defined inline within classes aren't parsed until we've
305  // finished parsing the top-level class, so the top-level class is
306  // the context we'll need to return to.
307  if (isa<FunctionDecl>(DC)) {
308    DC = DC->getLexicalParent();
309
310    // A function not defined within a class will always return to its
311    // lexical context.
312    if (!isa<CXXRecordDecl>(DC))
313      return DC;
314
315    // A C++ inline method/friend is parsed *after* the topmost class
316    // it was declared in is fully parsed ("complete");  the topmost
317    // class is the context we need to return to.
318    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
319      DC = RD;
320
321    // Return the declaration context of the topmost class the inline method is
322    // declared in.
323    return DC;
324  }
325
326  if (isa<ObjCMethodDecl>(DC))
327    return Context.getTranslationUnitDecl();
328
329  return DC->getLexicalParent();
330}
331
332void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
333  assert(getContainingDC(DC) == CurContext &&
334      "The next DeclContext should be lexically contained in the current one.");
335  CurContext = DC;
336  S->setEntity(DC);
337}
338
339void Sema::PopDeclContext() {
340  assert(CurContext && "DeclContext imbalance!");
341
342  CurContext = getContainingDC(CurContext);
343}
344
345/// EnterDeclaratorContext - Used when we must lookup names in the context
346/// of a declarator's nested name specifier.
347///
348void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
349  // C++0x [basic.lookup.unqual]p13:
350  //   A name used in the definition of a static data member of class
351  //   X (after the qualified-id of the static member) is looked up as
352  //   if the name was used in a member function of X.
353  // C++0x [basic.lookup.unqual]p14:
354  //   If a variable member of a namespace is defined outside of the
355  //   scope of its namespace then any name used in the definition of
356  //   the variable member (after the declarator-id) is looked up as
357  //   if the definition of the variable member occurred in its
358  //   namespace.
359  // Both of these imply that we should push a scope whose context
360  // is the semantic context of the declaration.  We can't use
361  // PushDeclContext here because that context is not necessarily
362  // lexically contained in the current context.  Fortunately,
363  // the containing scope should have the appropriate information.
364
365  assert(!S->getEntity() && "scope already has entity");
366
367#ifndef NDEBUG
368  Scope *Ancestor = S->getParent();
369  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
370  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
371#endif
372
373  CurContext = DC;
374  S->setEntity(DC);
375}
376
377void Sema::ExitDeclaratorContext(Scope *S) {
378  assert(S->getEntity() == CurContext && "Context imbalance!");
379
380  // Switch back to the lexical context.  The safety of this is
381  // enforced by an assert in EnterDeclaratorContext.
382  Scope *Ancestor = S->getParent();
383  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
384  CurContext = (DeclContext*) Ancestor->getEntity();
385
386  // We don't need to do anything with the scope, which is going to
387  // disappear.
388}
389
390/// \brief Determine whether we allow overloading of the function
391/// PrevDecl with another declaration.
392///
393/// This routine determines whether overloading is possible, not
394/// whether some new function is actually an overload. It will return
395/// true in C++ (where we can always provide overloads) or, as an
396/// extension, in C when the previous function is already an
397/// overloaded function declaration or has the "overloadable"
398/// attribute.
399static bool AllowOverloadingOfFunction(LookupResult &Previous,
400                                       ASTContext &Context) {
401  if (Context.getLangOptions().CPlusPlus)
402    return true;
403
404  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
405    return true;
406
407  return (Previous.getResultKind() == LookupResult::Found
408          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
409}
410
411/// Add this decl to the scope shadowed decl chains.
412void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
413  // Move up the scope chain until we find the nearest enclosing
414  // non-transparent context. The declaration will be introduced into this
415  // scope.
416  while (S->getEntity() &&
417         ((DeclContext *)S->getEntity())->isTransparentContext())
418    S = S->getParent();
419
420  // Add scoped declarations into their context, so that they can be
421  // found later. Declarations without a context won't be inserted
422  // into any context.
423  if (AddToContext)
424    CurContext->addDecl(D);
425
426  // Out-of-line definitions shouldn't be pushed into scope in C++.
427  // Out-of-line variable and function definitions shouldn't even in C.
428  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
429      D->isOutOfLine())
430    return;
431
432  // Template instantiations should also not be pushed into scope.
433  if (isa<FunctionDecl>(D) &&
434      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
435    return;
436
437  // If this replaces anything in the current scope,
438  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
439                               IEnd = IdResolver.end();
440  for (; I != IEnd; ++I) {
441    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
442      S->RemoveDecl(DeclPtrTy::make(*I));
443      IdResolver.RemoveDecl(*I);
444
445      // Should only need to replace one decl.
446      break;
447    }
448  }
449
450  S->AddDecl(DeclPtrTy::make(D));
451  IdResolver.AddDecl(D);
452}
453
454bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
455  return IdResolver.isDeclInScope(D, Ctx, Context, S);
456}
457
458static bool isOutOfScopePreviousDeclaration(NamedDecl *,
459                                            DeclContext*,
460                                            ASTContext&);
461
462/// Filters out lookup results that don't fall within the given scope
463/// as determined by isDeclInScope.
464static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
465                                 DeclContext *Ctx, Scope *S,
466                                 bool ConsiderLinkage) {
467  LookupResult::Filter F = R.makeFilter();
468  while (F.hasNext()) {
469    NamedDecl *D = F.next();
470
471    if (SemaRef.isDeclInScope(D, Ctx, S))
472      continue;
473
474    if (ConsiderLinkage &&
475        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
476      continue;
477
478    F.erase();
479  }
480
481  F.done();
482}
483
484static bool isUsingDecl(NamedDecl *D) {
485  return isa<UsingShadowDecl>(D) ||
486         isa<UnresolvedUsingTypenameDecl>(D) ||
487         isa<UnresolvedUsingValueDecl>(D);
488}
489
490/// Removes using shadow declarations from the lookup results.
491static void RemoveUsingDecls(LookupResult &R) {
492  LookupResult::Filter F = R.makeFilter();
493  while (F.hasNext())
494    if (isUsingDecl(F.next()))
495      F.erase();
496
497  F.done();
498}
499
500static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
501  if (D->isInvalidDecl())
502    return false;
503
504  if (D->isUsed() || D->hasAttr<UnusedAttr>())
505    return false;
506
507  // White-list anything that isn't a local variable.
508  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
509      !D->getDeclContext()->isFunctionOrMethod())
510    return false;
511
512  // Types of valid local variables should be complete, so this should succeed.
513  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
514
515    // White-list anything with an __attribute__((unused)) type.
516    QualType Ty = VD->getType();
517
518    // Only look at the outermost level of typedef.
519    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
520      if (TT->getDecl()->hasAttr<UnusedAttr>())
521        return false;
522    }
523
524    if (const TagType *TT = Ty->getAs<TagType>()) {
525      const TagDecl *Tag = TT->getDecl();
526      if (Tag->hasAttr<UnusedAttr>())
527        return false;
528
529      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
530        if (!RD->hasTrivialConstructor())
531          return false;
532        if (!RD->hasTrivialDestructor())
533          return false;
534      }
535    }
536
537    // TODO: __attribute__((unused)) templates?
538  }
539
540  return true;
541}
542
543void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
544  if (S->decl_empty()) return;
545  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
546         "Scope shouldn't contain decls!");
547
548  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
549       I != E; ++I) {
550    Decl *TmpD = (*I).getAs<Decl>();
551    assert(TmpD && "This decl didn't get pushed??");
552
553    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
554    NamedDecl *D = cast<NamedDecl>(TmpD);
555
556    if (!D->getDeclName()) continue;
557
558    // Diagnose unused variables in this scope.
559    if (ShouldDiagnoseUnusedDecl(D) &&
560        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
561      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
562
563    // Remove this name from our lexical scope.
564    IdResolver.RemoveDecl(D);
565  }
566}
567
568/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
569/// return 0 if one not found.
570///
571/// \param Id the name of the Objective-C class we're looking for. If
572/// typo-correction fixes this name, the Id will be updated
573/// to the fixed name.
574///
575/// \param RecoverLoc if provided, this routine will attempt to
576/// recover from a typo in the name of an existing Objective-C class
577/// and, if successful, will return the lookup that results from
578/// typo-correction.
579ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
580                                              SourceLocation RecoverLoc) {
581  // The third "scope" argument is 0 since we aren't enabling lazy built-in
582  // creation from this context.
583  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
584
585  if (!IDecl && !RecoverLoc.isInvalid()) {
586    // Perform typo correction at the given location, but only if we
587    // find an Objective-C class name.
588    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
589    if (CorrectTypo(R, TUScope, 0) &&
590        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
591      Diag(RecoverLoc, diag::err_undef_interface_suggest)
592        << Id << IDecl->getDeclName()
593        << CodeModificationHint::CreateReplacement(RecoverLoc,
594                                                   IDecl->getNameAsString());
595      Diag(IDecl->getLocation(), diag::note_previous_decl)
596        << IDecl->getDeclName();
597
598      Id = IDecl->getIdentifier();
599    }
600  }
601
602  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
603}
604
605/// getNonFieldDeclScope - Retrieves the innermost scope, starting
606/// from S, where a non-field would be declared. This routine copes
607/// with the difference between C and C++ scoping rules in structs and
608/// unions. For example, the following code is well-formed in C but
609/// ill-formed in C++:
610/// @code
611/// struct S6 {
612///   enum { BAR } e;
613/// };
614///
615/// void test_S6() {
616///   struct S6 a;
617///   a.e = BAR;
618/// }
619/// @endcode
620/// For the declaration of BAR, this routine will return a different
621/// scope. The scope S will be the scope of the unnamed enumeration
622/// within S6. In C++, this routine will return the scope associated
623/// with S6, because the enumeration's scope is a transparent
624/// context but structures can contain non-field names. In C, this
625/// routine will return the translation unit scope, since the
626/// enumeration's scope is a transparent context and structures cannot
627/// contain non-field names.
628Scope *Sema::getNonFieldDeclScope(Scope *S) {
629  while (((S->getFlags() & Scope::DeclScope) == 0) ||
630         (S->getEntity() &&
631          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
632         (S->isClassScope() && !getLangOptions().CPlusPlus))
633    S = S->getParent();
634  return S;
635}
636
637void Sema::InitBuiltinVaListType() {
638  if (!Context.getBuiltinVaListType().isNull())
639    return;
640
641  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
642  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
643  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
644  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
645}
646
647/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
648/// file scope.  lazily create a decl for it. ForRedeclaration is true
649/// if we're creating this built-in in anticipation of redeclaring the
650/// built-in.
651NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
652                                     Scope *S, bool ForRedeclaration,
653                                     SourceLocation Loc) {
654  Builtin::ID BID = (Builtin::ID)bid;
655
656  if (Context.BuiltinInfo.hasVAListUse(BID))
657    InitBuiltinVaListType();
658
659  ASTContext::GetBuiltinTypeError Error;
660  QualType R = Context.GetBuiltinType(BID, Error);
661  switch (Error) {
662  case ASTContext::GE_None:
663    // Okay
664    break;
665
666  case ASTContext::GE_Missing_stdio:
667    if (ForRedeclaration)
668      Diag(Loc, diag::err_implicit_decl_requires_stdio)
669        << Context.BuiltinInfo.GetName(BID);
670    return 0;
671
672  case ASTContext::GE_Missing_setjmp:
673    if (ForRedeclaration)
674      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
675        << Context.BuiltinInfo.GetName(BID);
676    return 0;
677  }
678
679  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
680    Diag(Loc, diag::ext_implicit_lib_function_decl)
681      << Context.BuiltinInfo.GetName(BID)
682      << R;
683    if (Context.BuiltinInfo.getHeaderName(BID) &&
684        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
685          != Diagnostic::Ignored)
686      Diag(Loc, diag::note_please_include_header)
687        << Context.BuiltinInfo.getHeaderName(BID)
688        << Context.BuiltinInfo.GetName(BID);
689  }
690
691  FunctionDecl *New = FunctionDecl::Create(Context,
692                                           Context.getTranslationUnitDecl(),
693                                           Loc, II, R, /*TInfo=*/0,
694                                           FunctionDecl::Extern, false,
695                                           /*hasPrototype=*/true);
696  New->setImplicit();
697
698  // Create Decl objects for each parameter, adding them to the
699  // FunctionDecl.
700  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
701    llvm::SmallVector<ParmVarDecl*, 16> Params;
702    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
703      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
704                                           FT->getArgType(i), /*TInfo=*/0,
705                                           VarDecl::None, 0));
706    New->setParams(Params.data(), Params.size());
707  }
708
709  AddKnownFunctionAttributes(New);
710
711  // TUScope is the translation-unit scope to insert this function into.
712  // FIXME: This is hideous. We need to teach PushOnScopeChains to
713  // relate Scopes to DeclContexts, and probably eliminate CurContext
714  // entirely, but we're not there yet.
715  DeclContext *SavedContext = CurContext;
716  CurContext = Context.getTranslationUnitDecl();
717  PushOnScopeChains(New, TUScope);
718  CurContext = SavedContext;
719  return New;
720}
721
722/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
723/// same name and scope as a previous declaration 'Old'.  Figure out
724/// how to resolve this situation, merging decls or emitting
725/// diagnostics as appropriate. If there was an error, set New to be invalid.
726///
727void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
728  // If the new decl is known invalid already, don't bother doing any
729  // merging checks.
730  if (New->isInvalidDecl()) return;
731
732  // Allow multiple definitions for ObjC built-in typedefs.
733  // FIXME: Verify the underlying types are equivalent!
734  if (getLangOptions().ObjC1) {
735    const IdentifierInfo *TypeID = New->getIdentifier();
736    switch (TypeID->getLength()) {
737    default: break;
738    case 2:
739      if (!TypeID->isStr("id"))
740        break;
741      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
742      // Install the built-in type for 'id', ignoring the current definition.
743      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
744      return;
745    case 5:
746      if (!TypeID->isStr("Class"))
747        break;
748      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
749      // Install the built-in type for 'Class', ignoring the current definition.
750      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
751      return;
752    case 3:
753      if (!TypeID->isStr("SEL"))
754        break;
755      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
756      // Install the built-in type for 'SEL', ignoring the current definition.
757      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
758      return;
759    case 8:
760      if (!TypeID->isStr("Protocol"))
761        break;
762      Context.setObjCProtoType(New->getUnderlyingType());
763      return;
764    }
765    // Fall through - the typedef name was not a builtin type.
766  }
767
768  // Verify the old decl was also a type.
769  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
770  if (!Old) {
771    Diag(New->getLocation(), diag::err_redefinition_different_kind)
772      << New->getDeclName();
773
774    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
775    if (OldD->getLocation().isValid())
776      Diag(OldD->getLocation(), diag::note_previous_definition);
777
778    return New->setInvalidDecl();
779  }
780
781  // If the old declaration is invalid, just give up here.
782  if (Old->isInvalidDecl())
783    return New->setInvalidDecl();
784
785  // Determine the "old" type we'll use for checking and diagnostics.
786  QualType OldType;
787  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
788    OldType = OldTypedef->getUnderlyingType();
789  else
790    OldType = Context.getTypeDeclType(Old);
791
792  // If the typedef types are not identical, reject them in all languages and
793  // with any extensions enabled.
794
795  if (OldType != New->getUnderlyingType() &&
796      Context.getCanonicalType(OldType) !=
797      Context.getCanonicalType(New->getUnderlyingType())) {
798    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
799      << New->getUnderlyingType() << OldType;
800    if (Old->getLocation().isValid())
801      Diag(Old->getLocation(), diag::note_previous_definition);
802    return New->setInvalidDecl();
803  }
804
805  // The types match.  Link up the redeclaration chain if the old
806  // declaration was a typedef.
807  // FIXME: this is a potential source of wierdness if the type
808  // spellings don't match exactly.
809  if (isa<TypedefDecl>(Old))
810    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
811
812  if (getLangOptions().Microsoft)
813    return;
814
815  if (getLangOptions().CPlusPlus) {
816    // C++ [dcl.typedef]p2:
817    //   In a given non-class scope, a typedef specifier can be used to
818    //   redefine the name of any type declared in that scope to refer
819    //   to the type to which it already refers.
820    if (!isa<CXXRecordDecl>(CurContext))
821      return;
822
823    // C++0x [dcl.typedef]p4:
824    //   In a given class scope, a typedef specifier can be used to redefine
825    //   any class-name declared in that scope that is not also a typedef-name
826    //   to refer to the type to which it already refers.
827    //
828    // This wording came in via DR424, which was a correction to the
829    // wording in DR56, which accidentally banned code like:
830    //
831    //   struct S {
832    //     typedef struct A { } A;
833    //   };
834    //
835    // in the C++03 standard. We implement the C++0x semantics, which
836    // allow the above but disallow
837    //
838    //   struct S {
839    //     typedef int I;
840    //     typedef int I;
841    //   };
842    //
843    // since that was the intent of DR56.
844    if (!isa<TypedefDecl >(Old))
845      return;
846
847    Diag(New->getLocation(), diag::err_redefinition)
848      << New->getDeclName();
849    Diag(Old->getLocation(), diag::note_previous_definition);
850    return New->setInvalidDecl();
851  }
852
853  // If we have a redefinition of a typedef in C, emit a warning.  This warning
854  // is normally mapped to an error, but can be controlled with
855  // -Wtypedef-redefinition.  If either the original or the redefinition is
856  // in a system header, don't emit this for compatibility with GCC.
857  if (getDiagnostics().getSuppressSystemWarnings() &&
858      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
859       Context.getSourceManager().isInSystemHeader(New->getLocation())))
860    return;
861
862  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
863    << New->getDeclName();
864  Diag(Old->getLocation(), diag::note_previous_definition);
865  return;
866}
867
868/// DeclhasAttr - returns true if decl Declaration already has the target
869/// attribute.
870static bool
871DeclHasAttr(const Decl *decl, const Attr *target) {
872  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
873    if (attr->getKind() == target->getKind())
874      return true;
875
876  return false;
877}
878
879/// MergeAttributes - append attributes from the Old decl to the New one.
880static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
881  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
882    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
883      Attr *NewAttr = attr->clone(C);
884      NewAttr->setInherited(true);
885      New->addAttr(NewAttr);
886    }
887  }
888}
889
890/// Used in MergeFunctionDecl to keep track of function parameters in
891/// C.
892struct GNUCompatibleParamWarning {
893  ParmVarDecl *OldParm;
894  ParmVarDecl *NewParm;
895  QualType PromotedType;
896};
897
898
899/// getSpecialMember - get the special member enum for a method.
900static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
901                                               const CXXMethodDecl *MD) {
902  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
903    if (Ctor->isDefaultConstructor())
904      return Sema::CXXDefaultConstructor;
905    if (Ctor->isCopyConstructor())
906      return Sema::CXXCopyConstructor;
907  }
908
909  if (isa<CXXDestructorDecl>(MD))
910    return Sema::CXXDestructor;
911
912  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
913  return Sema::CXXCopyAssignment;
914}
915
916/// canREdefineFunction - checks if a function can be redefined. Currently,
917/// only extern inline functions can be redefined, and even then only in
918/// GNU89 mode.
919static bool canRedefineFunction(const FunctionDecl *FD,
920                                const LangOptions& LangOpts) {
921  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
922          FD->isInlineSpecified() &&
923          FD->getStorageClass() == FunctionDecl::Extern);
924}
925
926/// MergeFunctionDecl - We just parsed a function 'New' from
927/// declarator D which has the same name and scope as a previous
928/// declaration 'Old'.  Figure out how to resolve this situation,
929/// merging decls or emitting diagnostics as appropriate.
930///
931/// In C++, New and Old must be declarations that are not
932/// overloaded. Use IsOverload to determine whether New and Old are
933/// overloaded, and to select the Old declaration that New should be
934/// merged with.
935///
936/// Returns true if there was an error, false otherwise.
937bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
938  // Verify the old decl was also a function.
939  FunctionDecl *Old = 0;
940  if (FunctionTemplateDecl *OldFunctionTemplate
941        = dyn_cast<FunctionTemplateDecl>(OldD))
942    Old = OldFunctionTemplate->getTemplatedDecl();
943  else
944    Old = dyn_cast<FunctionDecl>(OldD);
945  if (!Old) {
946    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
947      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
948      Diag(Shadow->getTargetDecl()->getLocation(),
949           diag::note_using_decl_target);
950      Diag(Shadow->getUsingDecl()->getLocation(),
951           diag::note_using_decl) << 0;
952      return true;
953    }
954
955    Diag(New->getLocation(), diag::err_redefinition_different_kind)
956      << New->getDeclName();
957    Diag(OldD->getLocation(), diag::note_previous_definition);
958    return true;
959  }
960
961  // Determine whether the previous declaration was a definition,
962  // implicit declaration, or a declaration.
963  diag::kind PrevDiag;
964  if (Old->isThisDeclarationADefinition())
965    PrevDiag = diag::note_previous_definition;
966  else if (Old->isImplicit())
967    PrevDiag = diag::note_previous_implicit_declaration;
968  else
969    PrevDiag = diag::note_previous_declaration;
970
971  QualType OldQType = Context.getCanonicalType(Old->getType());
972  QualType NewQType = Context.getCanonicalType(New->getType());
973
974  // Don't complain about this if we're in GNU89 mode and the old function
975  // is an extern inline function.
976  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
977      New->getStorageClass() == FunctionDecl::Static &&
978      Old->getStorageClass() != FunctionDecl::Static &&
979      !canRedefineFunction(Old, getLangOptions())) {
980    Diag(New->getLocation(), diag::err_static_non_static)
981      << New;
982    Diag(Old->getLocation(), PrevDiag);
983    return true;
984  }
985
986  // If a function is first declared with a calling convention, but is
987  // later declared or defined without one, the second decl assumes the
988  // calling convention of the first.
989  //
990  // For the new decl, we have to look at the NON-canonical type to tell the
991  // difference between a function that really doesn't have a calling
992  // convention and one that is declared cdecl. That's because in
993  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
994  // because it is the default calling convention.
995  //
996  // Note also that we DO NOT return at this point, because we still have
997  // other tests to run.
998  const FunctionType *OldType = OldQType->getAs<FunctionType>();
999  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1000  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1001  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1002  if (OldTypeInfo.getCC() != CC_Default &&
1003      NewTypeInfo.getCC() == CC_Default) {
1004    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1005    New->setType(NewQType);
1006    NewQType = Context.getCanonicalType(NewQType);
1007  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1008                                     NewTypeInfo.getCC())) {
1009    // Calling conventions really aren't compatible, so complain.
1010    Diag(New->getLocation(), diag::err_cconv_change)
1011      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1012      << (OldTypeInfo.getCC() == CC_Default)
1013      << (OldTypeInfo.getCC() == CC_Default ? "" :
1014          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1015    Diag(Old->getLocation(), diag::note_previous_declaration);
1016    return true;
1017  }
1018
1019  // FIXME: diagnose the other way around?
1020  if (OldType->getNoReturnAttr() &&
1021      !NewType->getNoReturnAttr()) {
1022    NewQType = Context.getNoReturnType(NewQType);
1023    New->setType(NewQType);
1024    assert(NewQType.isCanonical());
1025  }
1026
1027  if (getLangOptions().CPlusPlus) {
1028    // (C++98 13.1p2):
1029    //   Certain function declarations cannot be overloaded:
1030    //     -- Function declarations that differ only in the return type
1031    //        cannot be overloaded.
1032    QualType OldReturnType
1033      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1034    QualType NewReturnType
1035      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1036    if (OldReturnType != NewReturnType) {
1037      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1038      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1039      return true;
1040    }
1041
1042    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1043    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1044    if (OldMethod && NewMethod) {
1045      if (!NewMethod->getFriendObjectKind() &&
1046          NewMethod->getLexicalDeclContext()->isRecord()) {
1047        //    -- Member function declarations with the same name and the
1048        //       same parameter types cannot be overloaded if any of them
1049        //       is a static member function declaration.
1050        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1051          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1052          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1053          return true;
1054        }
1055
1056        // C++ [class.mem]p1:
1057        //   [...] A member shall not be declared twice in the
1058        //   member-specification, except that a nested class or member
1059        //   class template can be declared and then later defined.
1060        unsigned NewDiag;
1061        if (isa<CXXConstructorDecl>(OldMethod))
1062          NewDiag = diag::err_constructor_redeclared;
1063        else if (isa<CXXDestructorDecl>(NewMethod))
1064          NewDiag = diag::err_destructor_redeclared;
1065        else if (isa<CXXConversionDecl>(NewMethod))
1066          NewDiag = diag::err_conv_function_redeclared;
1067        else
1068          NewDiag = diag::err_member_redeclared;
1069
1070        Diag(New->getLocation(), NewDiag);
1071        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1072      } else {
1073        if (OldMethod->isImplicit()) {
1074          Diag(NewMethod->getLocation(),
1075               diag::err_definition_of_implicitly_declared_member)
1076          << New << getSpecialMember(Context, OldMethod);
1077
1078          Diag(OldMethod->getLocation(),
1079               diag::note_previous_implicit_declaration);
1080          return true;
1081        }
1082      }
1083    }
1084
1085    // (C++98 8.3.5p3):
1086    //   All declarations for a function shall agree exactly in both the
1087    //   return type and the parameter-type-list.
1088    // attributes should be ignored when comparing.
1089    if (Context.getNoReturnType(OldQType, false) ==
1090        Context.getNoReturnType(NewQType, false))
1091      return MergeCompatibleFunctionDecls(New, Old);
1092
1093    // Fall through for conflicting redeclarations and redefinitions.
1094  }
1095
1096  // C: Function types need to be compatible, not identical. This handles
1097  // duplicate function decls like "void f(int); void f(enum X);" properly.
1098  if (!getLangOptions().CPlusPlus &&
1099      Context.typesAreCompatible(OldQType, NewQType)) {
1100    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1101    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1102    const FunctionProtoType *OldProto = 0;
1103    if (isa<FunctionNoProtoType>(NewFuncType) &&
1104        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1105      // The old declaration provided a function prototype, but the
1106      // new declaration does not. Merge in the prototype.
1107      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1108      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1109                                                 OldProto->arg_type_end());
1110      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1111                                         ParamTypes.data(), ParamTypes.size(),
1112                                         OldProto->isVariadic(),
1113                                         OldProto->getTypeQuals(),
1114                                         false, false, 0, 0,
1115                                         OldProto->getExtInfo());
1116      New->setType(NewQType);
1117      New->setHasInheritedPrototype();
1118
1119      // Synthesize a parameter for each argument type.
1120      llvm::SmallVector<ParmVarDecl*, 16> Params;
1121      for (FunctionProtoType::arg_type_iterator
1122             ParamType = OldProto->arg_type_begin(),
1123             ParamEnd = OldProto->arg_type_end();
1124           ParamType != ParamEnd; ++ParamType) {
1125        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1126                                                 SourceLocation(), 0,
1127                                                 *ParamType, /*TInfo=*/0,
1128                                                 VarDecl::None, 0);
1129        Param->setImplicit();
1130        Params.push_back(Param);
1131      }
1132
1133      New->setParams(Params.data(), Params.size());
1134    }
1135
1136    return MergeCompatibleFunctionDecls(New, Old);
1137  }
1138
1139  // GNU C permits a K&R definition to follow a prototype declaration
1140  // if the declared types of the parameters in the K&R definition
1141  // match the types in the prototype declaration, even when the
1142  // promoted types of the parameters from the K&R definition differ
1143  // from the types in the prototype. GCC then keeps the types from
1144  // the prototype.
1145  //
1146  // If a variadic prototype is followed by a non-variadic K&R definition,
1147  // the K&R definition becomes variadic.  This is sort of an edge case, but
1148  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1149  // C99 6.9.1p8.
1150  if (!getLangOptions().CPlusPlus &&
1151      Old->hasPrototype() && !New->hasPrototype() &&
1152      New->getType()->getAs<FunctionProtoType>() &&
1153      Old->getNumParams() == New->getNumParams()) {
1154    llvm::SmallVector<QualType, 16> ArgTypes;
1155    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1156    const FunctionProtoType *OldProto
1157      = Old->getType()->getAs<FunctionProtoType>();
1158    const FunctionProtoType *NewProto
1159      = New->getType()->getAs<FunctionProtoType>();
1160
1161    // Determine whether this is the GNU C extension.
1162    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1163                                               NewProto->getResultType());
1164    bool LooseCompatible = !MergedReturn.isNull();
1165    for (unsigned Idx = 0, End = Old->getNumParams();
1166         LooseCompatible && Idx != End; ++Idx) {
1167      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1168      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1169      if (Context.typesAreCompatible(OldParm->getType(),
1170                                     NewProto->getArgType(Idx))) {
1171        ArgTypes.push_back(NewParm->getType());
1172      } else if (Context.typesAreCompatible(OldParm->getType(),
1173                                            NewParm->getType())) {
1174        GNUCompatibleParamWarning Warn
1175          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1176        Warnings.push_back(Warn);
1177        ArgTypes.push_back(NewParm->getType());
1178      } else
1179        LooseCompatible = false;
1180    }
1181
1182    if (LooseCompatible) {
1183      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1184        Diag(Warnings[Warn].NewParm->getLocation(),
1185             diag::ext_param_promoted_not_compatible_with_prototype)
1186          << Warnings[Warn].PromotedType
1187          << Warnings[Warn].OldParm->getType();
1188        Diag(Warnings[Warn].OldParm->getLocation(),
1189             diag::note_previous_declaration);
1190      }
1191
1192      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1193                                           ArgTypes.size(),
1194                                           OldProto->isVariadic(), 0,
1195                                           false, false, 0, 0,
1196                                           OldProto->getExtInfo()));
1197      return MergeCompatibleFunctionDecls(New, Old);
1198    }
1199
1200    // Fall through to diagnose conflicting types.
1201  }
1202
1203  // A function that has already been declared has been redeclared or defined
1204  // with a different type- show appropriate diagnostic
1205  if (unsigned BuiltinID = Old->getBuiltinID()) {
1206    // The user has declared a builtin function with an incompatible
1207    // signature.
1208    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1209      // The function the user is redeclaring is a library-defined
1210      // function like 'malloc' or 'printf'. Warn about the
1211      // redeclaration, then pretend that we don't know about this
1212      // library built-in.
1213      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1214      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1215        << Old << Old->getType();
1216      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1217      Old->setInvalidDecl();
1218      return false;
1219    }
1220
1221    PrevDiag = diag::note_previous_builtin_declaration;
1222  }
1223
1224  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1225  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1226  return true;
1227}
1228
1229/// \brief Completes the merge of two function declarations that are
1230/// known to be compatible.
1231///
1232/// This routine handles the merging of attributes and other
1233/// properties of function declarations form the old declaration to
1234/// the new declaration, once we know that New is in fact a
1235/// redeclaration of Old.
1236///
1237/// \returns false
1238bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1239  // Merge the attributes
1240  MergeAttributes(New, Old, Context);
1241
1242  // Merge the storage class.
1243  if (Old->getStorageClass() != FunctionDecl::Extern &&
1244      Old->getStorageClass() != FunctionDecl::None)
1245    New->setStorageClass(Old->getStorageClass());
1246
1247  // Merge "pure" flag.
1248  if (Old->isPure())
1249    New->setPure();
1250
1251  // Merge the "deleted" flag.
1252  if (Old->isDeleted())
1253    New->setDeleted();
1254
1255  if (getLangOptions().CPlusPlus)
1256    return MergeCXXFunctionDecl(New, Old);
1257
1258  return false;
1259}
1260
1261/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1262/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1263/// situation, merging decls or emitting diagnostics as appropriate.
1264///
1265/// Tentative definition rules (C99 6.9.2p2) are checked by
1266/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1267/// definitions here, since the initializer hasn't been attached.
1268///
1269void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1270  // If the new decl is already invalid, don't do any other checking.
1271  if (New->isInvalidDecl())
1272    return;
1273
1274  // Verify the old decl was also a variable.
1275  VarDecl *Old = 0;
1276  if (!Previous.isSingleResult() ||
1277      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1278    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1279      << New->getDeclName();
1280    Diag(Previous.getRepresentativeDecl()->getLocation(),
1281         diag::note_previous_definition);
1282    return New->setInvalidDecl();
1283  }
1284
1285  MergeAttributes(New, Old, Context);
1286
1287  // Merge the types
1288  QualType MergedT;
1289  if (getLangOptions().CPlusPlus) {
1290    if (Context.hasSameType(New->getType(), Old->getType()))
1291      MergedT = New->getType();
1292    // C++ [basic.link]p10:
1293    //   [...] the types specified by all declarations referring to a given
1294    //   object or function shall be identical, except that declarations for an
1295    //   array object can specify array types that differ by the presence or
1296    //   absence of a major array bound (8.3.4).
1297    else if (Old->getType()->isIncompleteArrayType() &&
1298             New->getType()->isArrayType()) {
1299      CanQual<ArrayType> OldArray
1300        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1301      CanQual<ArrayType> NewArray
1302        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1303      if (OldArray->getElementType() == NewArray->getElementType())
1304        MergedT = New->getType();
1305    } else if (Old->getType()->isArrayType() &&
1306             New->getType()->isIncompleteArrayType()) {
1307      CanQual<ArrayType> OldArray
1308        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1309      CanQual<ArrayType> NewArray
1310        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1311      if (OldArray->getElementType() == NewArray->getElementType())
1312        MergedT = Old->getType();
1313    }
1314  } else {
1315    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1316  }
1317  if (MergedT.isNull()) {
1318    Diag(New->getLocation(), diag::err_redefinition_different_type)
1319      << New->getDeclName();
1320    Diag(Old->getLocation(), diag::note_previous_definition);
1321    return New->setInvalidDecl();
1322  }
1323  New->setType(MergedT);
1324
1325  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1326  if (New->getStorageClass() == VarDecl::Static &&
1327      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1328    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1329    Diag(Old->getLocation(), diag::note_previous_definition);
1330    return New->setInvalidDecl();
1331  }
1332  // C99 6.2.2p4:
1333  //   For an identifier declared with the storage-class specifier
1334  //   extern in a scope in which a prior declaration of that
1335  //   identifier is visible,23) if the prior declaration specifies
1336  //   internal or external linkage, the linkage of the identifier at
1337  //   the later declaration is the same as the linkage specified at
1338  //   the prior declaration. If no prior declaration is visible, or
1339  //   if the prior declaration specifies no linkage, then the
1340  //   identifier has external linkage.
1341  if (New->hasExternalStorage() && Old->hasLinkage())
1342    /* Okay */;
1343  else if (New->getStorageClass() != VarDecl::Static &&
1344           Old->getStorageClass() == VarDecl::Static) {
1345    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1346    Diag(Old->getLocation(), diag::note_previous_definition);
1347    return New->setInvalidDecl();
1348  }
1349
1350  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1351
1352  // FIXME: The test for external storage here seems wrong? We still
1353  // need to check for mismatches.
1354  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1355      // Don't complain about out-of-line definitions of static members.
1356      !(Old->getLexicalDeclContext()->isRecord() &&
1357        !New->getLexicalDeclContext()->isRecord())) {
1358    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1359    Diag(Old->getLocation(), diag::note_previous_definition);
1360    return New->setInvalidDecl();
1361  }
1362
1363  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1364    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1365    Diag(Old->getLocation(), diag::note_previous_definition);
1366  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1367    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1368    Diag(Old->getLocation(), diag::note_previous_definition);
1369  }
1370
1371  // C++ doesn't have tentative definitions, so go right ahead and check here.
1372  const VarDecl *Def;
1373  if (getLangOptions().CPlusPlus &&
1374      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1375      (Def = Old->getDefinition())) {
1376    Diag(New->getLocation(), diag::err_redefinition)
1377      << New->getDeclName();
1378    Diag(Def->getLocation(), diag::note_previous_definition);
1379    New->setInvalidDecl();
1380    return;
1381  }
1382
1383  // Keep a chain of previous declarations.
1384  New->setPreviousDeclaration(Old);
1385
1386  // Inherit access appropriately.
1387  New->setAccess(Old->getAccess());
1388}
1389
1390/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1391/// no declarator (e.g. "struct foo;") is parsed.
1392Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1393  // FIXME: Error on auto/register at file scope
1394  // FIXME: Error on inline/virtual/explicit
1395  // FIXME: Warn on useless __thread
1396  // FIXME: Warn on useless const/volatile
1397  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1398  // FIXME: Warn on useless attributes
1399  Decl *TagD = 0;
1400  TagDecl *Tag = 0;
1401  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1402      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1403      DS.getTypeSpecType() == DeclSpec::TST_union ||
1404      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1405    TagD = static_cast<Decl *>(DS.getTypeRep());
1406
1407    if (!TagD) // We probably had an error
1408      return DeclPtrTy();
1409
1410    // Note that the above type specs guarantee that the
1411    // type rep is a Decl, whereas in many of the others
1412    // it's a Type.
1413    Tag = dyn_cast<TagDecl>(TagD);
1414  }
1415
1416  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1417    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1418    // or incomplete types shall not be restrict-qualified."
1419    if (TypeQuals & DeclSpec::TQ_restrict)
1420      Diag(DS.getRestrictSpecLoc(),
1421           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1422           << DS.getSourceRange();
1423  }
1424
1425  if (DS.isFriendSpecified()) {
1426    // If we're dealing with a class template decl, assume that the
1427    // template routines are handling it.
1428    if (TagD && isa<ClassTemplateDecl>(TagD))
1429      return DeclPtrTy();
1430    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1431  }
1432
1433  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1434    // If there are attributes in the DeclSpec, apply them to the record.
1435    if (const AttributeList *AL = DS.getAttributes())
1436      ProcessDeclAttributeList(S, Record, AL);
1437
1438    if (!Record->getDeclName() && Record->isDefinition() &&
1439        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1440      if (getLangOptions().CPlusPlus ||
1441          Record->getDeclContext()->isRecord())
1442        return BuildAnonymousStructOrUnion(S, DS, Record);
1443
1444      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1445        << DS.getSourceRange();
1446    }
1447
1448    // Microsoft allows unnamed struct/union fields. Don't complain
1449    // about them.
1450    // FIXME: Should we support Microsoft's extensions in this area?
1451    if (Record->getDeclName() && getLangOptions().Microsoft)
1452      return DeclPtrTy::make(Tag);
1453  }
1454
1455  if (!DS.isMissingDeclaratorOk() &&
1456      DS.getTypeSpecType() != DeclSpec::TST_error) {
1457    // Warn about typedefs of enums without names, since this is an
1458    // extension in both Microsoft an GNU.
1459    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1460        Tag && isa<EnumDecl>(Tag)) {
1461      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1462        << DS.getSourceRange();
1463      return DeclPtrTy::make(Tag);
1464    }
1465
1466    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1467      << DS.getSourceRange();
1468    return DeclPtrTy();
1469  }
1470
1471  return DeclPtrTy::make(Tag);
1472}
1473
1474/// We are trying to inject an anonymous member into the given scope;
1475/// check if there's an existing declaration that can't be overloaded.
1476///
1477/// \return true if this is a forbidden redeclaration
1478static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1479                                         Scope *S,
1480                                         DeclContext *Owner,
1481                                         DeclarationName Name,
1482                                         SourceLocation NameLoc,
1483                                         unsigned diagnostic) {
1484  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1485                 Sema::ForRedeclaration);
1486  if (!SemaRef.LookupName(R, S)) return false;
1487
1488  if (R.getAsSingle<TagDecl>())
1489    return false;
1490
1491  // Pick a representative declaration.
1492  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1493  if (PrevDecl && Owner->isRecord()) {
1494    RecordDecl *Record = cast<RecordDecl>(Owner);
1495    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1496      return false;
1497  }
1498
1499  SemaRef.Diag(NameLoc, diagnostic) << Name;
1500  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1501
1502  return true;
1503}
1504
1505/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1506/// anonymous struct or union AnonRecord into the owning context Owner
1507/// and scope S. This routine will be invoked just after we realize
1508/// that an unnamed union or struct is actually an anonymous union or
1509/// struct, e.g.,
1510///
1511/// @code
1512/// union {
1513///   int i;
1514///   float f;
1515/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1516///    // f into the surrounding scope.x
1517/// @endcode
1518///
1519/// This routine is recursive, injecting the names of nested anonymous
1520/// structs/unions into the owning context and scope as well.
1521bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1522                                               RecordDecl *AnonRecord) {
1523  unsigned diagKind
1524    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1525                            : diag::err_anonymous_struct_member_redecl;
1526
1527  bool Invalid = false;
1528  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1529                               FEnd = AnonRecord->field_end();
1530       F != FEnd; ++F) {
1531    if ((*F)->getDeclName()) {
1532      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1533                                       (*F)->getLocation(), diagKind)) {
1534        // C++ [class.union]p2:
1535        //   The names of the members of an anonymous union shall be
1536        //   distinct from the names of any other entity in the
1537        //   scope in which the anonymous union is declared.
1538        Invalid = true;
1539      } else {
1540        // C++ [class.union]p2:
1541        //   For the purpose of name lookup, after the anonymous union
1542        //   definition, the members of the anonymous union are
1543        //   considered to have been defined in the scope in which the
1544        //   anonymous union is declared.
1545        Owner->makeDeclVisibleInContext(*F);
1546        S->AddDecl(DeclPtrTy::make(*F));
1547        IdResolver.AddDecl(*F);
1548      }
1549    } else if (const RecordType *InnerRecordType
1550                 = (*F)->getType()->getAs<RecordType>()) {
1551      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1552      if (InnerRecord->isAnonymousStructOrUnion())
1553        Invalid = Invalid ||
1554          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1555    }
1556  }
1557
1558  return Invalid;
1559}
1560
1561/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1562/// anonymous structure or union. Anonymous unions are a C++ feature
1563/// (C++ [class.union]) and a GNU C extension; anonymous structures
1564/// are a GNU C and GNU C++ extension.
1565Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1566                                                  RecordDecl *Record) {
1567  DeclContext *Owner = Record->getDeclContext();
1568
1569  // Diagnose whether this anonymous struct/union is an extension.
1570  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1571    Diag(Record->getLocation(), diag::ext_anonymous_union);
1572  else if (!Record->isUnion())
1573    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1574
1575  // C and C++ require different kinds of checks for anonymous
1576  // structs/unions.
1577  bool Invalid = false;
1578  if (getLangOptions().CPlusPlus) {
1579    const char* PrevSpec = 0;
1580    unsigned DiagID;
1581    // C++ [class.union]p3:
1582    //   Anonymous unions declared in a named namespace or in the
1583    //   global namespace shall be declared static.
1584    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1585        (isa<TranslationUnitDecl>(Owner) ||
1586         (isa<NamespaceDecl>(Owner) &&
1587          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1588      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1589      Invalid = true;
1590
1591      // Recover by adding 'static'.
1592      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1593                             PrevSpec, DiagID);
1594    }
1595    // C++ [class.union]p3:
1596    //   A storage class is not allowed in a declaration of an
1597    //   anonymous union in a class scope.
1598    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1599             isa<RecordDecl>(Owner)) {
1600      Diag(DS.getStorageClassSpecLoc(),
1601           diag::err_anonymous_union_with_storage_spec);
1602      Invalid = true;
1603
1604      // Recover by removing the storage specifier.
1605      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1606                             PrevSpec, DiagID);
1607    }
1608
1609    // C++ [class.union]p2:
1610    //   The member-specification of an anonymous union shall only
1611    //   define non-static data members. [Note: nested types and
1612    //   functions cannot be declared within an anonymous union. ]
1613    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1614                                 MemEnd = Record->decls_end();
1615         Mem != MemEnd; ++Mem) {
1616      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1617        // C++ [class.union]p3:
1618        //   An anonymous union shall not have private or protected
1619        //   members (clause 11).
1620        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1621          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1622            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1623          Invalid = true;
1624        }
1625      } else if ((*Mem)->isImplicit()) {
1626        // Any implicit members are fine.
1627      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1628        // This is a type that showed up in an
1629        // elaborated-type-specifier inside the anonymous struct or
1630        // union, but which actually declares a type outside of the
1631        // anonymous struct or union. It's okay.
1632      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1633        if (!MemRecord->isAnonymousStructOrUnion() &&
1634            MemRecord->getDeclName()) {
1635          // This is a nested type declaration.
1636          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1637            << (int)Record->isUnion();
1638          Invalid = true;
1639        }
1640      } else {
1641        // We have something that isn't a non-static data
1642        // member. Complain about it.
1643        unsigned DK = diag::err_anonymous_record_bad_member;
1644        if (isa<TypeDecl>(*Mem))
1645          DK = diag::err_anonymous_record_with_type;
1646        else if (isa<FunctionDecl>(*Mem))
1647          DK = diag::err_anonymous_record_with_function;
1648        else if (isa<VarDecl>(*Mem))
1649          DK = diag::err_anonymous_record_with_static;
1650        Diag((*Mem)->getLocation(), DK)
1651            << (int)Record->isUnion();
1652          Invalid = true;
1653      }
1654    }
1655  }
1656
1657  if (!Record->isUnion() && !Owner->isRecord()) {
1658    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1659      << (int)getLangOptions().CPlusPlus;
1660    Invalid = true;
1661  }
1662
1663  // Mock up a declarator.
1664  Declarator Dc(DS, Declarator::TypeNameContext);
1665  TypeSourceInfo *TInfo = 0;
1666  GetTypeForDeclarator(Dc, S, &TInfo);
1667  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1668
1669  // Create a declaration for this anonymous struct/union.
1670  NamedDecl *Anon = 0;
1671  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1672    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1673                             /*IdentifierInfo=*/0,
1674                             Context.getTypeDeclType(Record),
1675                             TInfo,
1676                             /*BitWidth=*/0, /*Mutable=*/false);
1677    Anon->setAccess(AS_public);
1678    if (getLangOptions().CPlusPlus)
1679      FieldCollector->Add(cast<FieldDecl>(Anon));
1680  } else {
1681    VarDecl::StorageClass SC;
1682    switch (DS.getStorageClassSpec()) {
1683    default: assert(0 && "Unknown storage class!");
1684    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1685    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1686    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1687    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1688    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1689    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1690    case DeclSpec::SCS_mutable:
1691      // mutable can only appear on non-static class members, so it's always
1692      // an error here
1693      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1694      Invalid = true;
1695      SC = VarDecl::None;
1696      break;
1697    }
1698
1699    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1700                           /*IdentifierInfo=*/0,
1701                           Context.getTypeDeclType(Record),
1702                           TInfo,
1703                           SC);
1704  }
1705  Anon->setImplicit();
1706
1707  // Add the anonymous struct/union object to the current
1708  // context. We'll be referencing this object when we refer to one of
1709  // its members.
1710  Owner->addDecl(Anon);
1711
1712  // Inject the members of the anonymous struct/union into the owning
1713  // context and into the identifier resolver chain for name lookup
1714  // purposes.
1715  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1716    Invalid = true;
1717
1718  // Mark this as an anonymous struct/union type. Note that we do not
1719  // do this until after we have already checked and injected the
1720  // members of this anonymous struct/union type, because otherwise
1721  // the members could be injected twice: once by DeclContext when it
1722  // builds its lookup table, and once by
1723  // InjectAnonymousStructOrUnionMembers.
1724  Record->setAnonymousStructOrUnion(true);
1725
1726  if (Invalid)
1727    Anon->setInvalidDecl();
1728
1729  return DeclPtrTy::make(Anon);
1730}
1731
1732
1733/// GetNameForDeclarator - Determine the full declaration name for the
1734/// given Declarator.
1735DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1736  return GetNameFromUnqualifiedId(D.getName());
1737}
1738
1739/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1740DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1741  switch (Name.getKind()) {
1742    case UnqualifiedId::IK_Identifier:
1743      return DeclarationName(Name.Identifier);
1744
1745    case UnqualifiedId::IK_OperatorFunctionId:
1746      return Context.DeclarationNames.getCXXOperatorName(
1747                                              Name.OperatorFunctionId.Operator);
1748
1749    case UnqualifiedId::IK_LiteralOperatorId:
1750      return Context.DeclarationNames.getCXXLiteralOperatorName(
1751                                                               Name.Identifier);
1752
1753    case UnqualifiedId::IK_ConversionFunctionId: {
1754      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1755      if (Ty.isNull())
1756        return DeclarationName();
1757
1758      return Context.DeclarationNames.getCXXConversionFunctionName(
1759                                                  Context.getCanonicalType(Ty));
1760    }
1761
1762    case UnqualifiedId::IK_ConstructorName: {
1763      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1764      if (Ty.isNull())
1765        return DeclarationName();
1766
1767      return Context.DeclarationNames.getCXXConstructorName(
1768                                                  Context.getCanonicalType(Ty));
1769    }
1770
1771    case UnqualifiedId::IK_ConstructorTemplateId: {
1772      // In well-formed code, we can only have a constructor
1773      // template-id that refers to the current context, so go there
1774      // to find the actual type being constructed.
1775      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1776      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1777        return DeclarationName();
1778
1779      // Determine the type of the class being constructed.
1780      QualType CurClassType = Context.getTypeDeclType(CurClass);
1781
1782      // FIXME: Check two things: that the template-id names the same type as
1783      // CurClassType, and that the template-id does not occur when the name
1784      // was qualified.
1785
1786      return Context.DeclarationNames.getCXXConstructorName(
1787                                       Context.getCanonicalType(CurClassType));
1788    }
1789
1790    case UnqualifiedId::IK_DestructorName: {
1791      QualType Ty = GetTypeFromParser(Name.DestructorName);
1792      if (Ty.isNull())
1793        return DeclarationName();
1794
1795      return Context.DeclarationNames.getCXXDestructorName(
1796                                                           Context.getCanonicalType(Ty));
1797    }
1798
1799    case UnqualifiedId::IK_TemplateId: {
1800      TemplateName TName
1801        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1802      return Context.getNameForTemplate(TName);
1803    }
1804  }
1805
1806  assert(false && "Unknown name kind");
1807  return DeclarationName();
1808}
1809
1810/// isNearlyMatchingFunction - Determine whether the C++ functions
1811/// Declaration and Definition are "nearly" matching. This heuristic
1812/// is used to improve diagnostics in the case where an out-of-line
1813/// function definition doesn't match any declaration within
1814/// the class or namespace.
1815static bool isNearlyMatchingFunction(ASTContext &Context,
1816                                     FunctionDecl *Declaration,
1817                                     FunctionDecl *Definition) {
1818  if (Declaration->param_size() != Definition->param_size())
1819    return false;
1820  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1821    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1822    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1823
1824    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1825                                        DefParamTy.getNonReferenceType()))
1826      return false;
1827  }
1828
1829  return true;
1830}
1831
1832Sema::DeclPtrTy
1833Sema::HandleDeclarator(Scope *S, Declarator &D,
1834                       MultiTemplateParamsArg TemplateParamLists,
1835                       bool IsFunctionDefinition) {
1836  DeclarationName Name = GetNameForDeclarator(D);
1837
1838  // All of these full declarators require an identifier.  If it doesn't have
1839  // one, the ParsedFreeStandingDeclSpec action should be used.
1840  if (!Name) {
1841    if (!D.isInvalidType())  // Reject this if we think it is valid.
1842      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1843           diag::err_declarator_need_ident)
1844        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1845    return DeclPtrTy();
1846  }
1847
1848  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1849  // we find one that is.
1850  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1851         (S->getFlags() & Scope::TemplateParamScope) != 0)
1852    S = S->getParent();
1853
1854  // If this is an out-of-line definition of a member of a class template
1855  // or class template partial specialization, we may need to rebuild the
1856  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1857  // for more information.
1858  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1859  // handle expressions properly.
1860  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1861  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1862      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1863      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1864       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1865       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1866       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1867    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1868      // FIXME: Preserve type source info.
1869      QualType T = GetTypeFromParser(DS.getTypeRep());
1870
1871      DeclContext *SavedContext = CurContext;
1872      CurContext = DC;
1873      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1874      CurContext = SavedContext;
1875
1876      if (T.isNull())
1877        return DeclPtrTy();
1878      DS.UpdateTypeRep(T.getAsOpaquePtr());
1879    }
1880  }
1881
1882  DeclContext *DC;
1883  NamedDecl *New;
1884
1885  TypeSourceInfo *TInfo = 0;
1886  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1887
1888  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1889                        ForRedeclaration);
1890
1891  // See if this is a redefinition of a variable in the same scope.
1892  if (D.getCXXScopeSpec().isInvalid()) {
1893    DC = CurContext;
1894    D.setInvalidType();
1895  } else if (!D.getCXXScopeSpec().isSet()) {
1896    bool IsLinkageLookup = false;
1897
1898    // If the declaration we're planning to build will be a function
1899    // or object with linkage, then look for another declaration with
1900    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1901    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1902      /* Do nothing*/;
1903    else if (R->isFunctionType()) {
1904      if (CurContext->isFunctionOrMethod() ||
1905          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1906        IsLinkageLookup = true;
1907    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1908      IsLinkageLookup = true;
1909    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1910             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1911      IsLinkageLookup = true;
1912
1913    if (IsLinkageLookup)
1914      Previous.clear(LookupRedeclarationWithLinkage);
1915
1916    DC = CurContext;
1917    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1918  } else { // Something like "int foo::x;"
1919    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1920
1921    if (!DC) {
1922      // If we could not compute the declaration context, it's because the
1923      // declaration context is dependent but does not refer to a class,
1924      // class template, or class template partial specialization. Complain
1925      // and return early, to avoid the coming semantic disaster.
1926      Diag(D.getIdentifierLoc(),
1927           diag::err_template_qualified_declarator_no_match)
1928        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1929        << D.getCXXScopeSpec().getRange();
1930      return DeclPtrTy();
1931    }
1932
1933    if (!DC->isDependentContext() &&
1934        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1935      return DeclPtrTy();
1936
1937    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1938      Diag(D.getIdentifierLoc(),
1939           diag::err_member_def_undefined_record)
1940        << Name << DC << D.getCXXScopeSpec().getRange();
1941      D.setInvalidType();
1942    }
1943
1944    LookupQualifiedName(Previous, DC);
1945
1946    // Don't consider using declarations as previous declarations for
1947    // out-of-line members.
1948    RemoveUsingDecls(Previous);
1949
1950    // C++ 7.3.1.2p2:
1951    // Members (including explicit specializations of templates) of a named
1952    // namespace can also be defined outside that namespace by explicit
1953    // qualification of the name being defined, provided that the entity being
1954    // defined was already declared in the namespace and the definition appears
1955    // after the point of declaration in a namespace that encloses the
1956    // declarations namespace.
1957    //
1958    // Note that we only check the context at this point. We don't yet
1959    // have enough information to make sure that PrevDecl is actually
1960    // the declaration we want to match. For example, given:
1961    //
1962    //   class X {
1963    //     void f();
1964    //     void f(float);
1965    //   };
1966    //
1967    //   void X::f(int) { } // ill-formed
1968    //
1969    // In this case, PrevDecl will point to the overload set
1970    // containing the two f's declared in X, but neither of them
1971    // matches.
1972
1973    // First check whether we named the global scope.
1974    if (isa<TranslationUnitDecl>(DC)) {
1975      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1976        << Name << D.getCXXScopeSpec().getRange();
1977    } else {
1978      DeclContext *Cur = CurContext;
1979      while (isa<LinkageSpecDecl>(Cur))
1980        Cur = Cur->getParent();
1981      if (!Cur->Encloses(DC)) {
1982        // The qualifying scope doesn't enclose the original declaration.
1983        // Emit diagnostic based on current scope.
1984        SourceLocation L = D.getIdentifierLoc();
1985        SourceRange R = D.getCXXScopeSpec().getRange();
1986        if (isa<FunctionDecl>(Cur))
1987          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1988        else
1989          Diag(L, diag::err_invalid_declarator_scope)
1990            << Name << cast<NamedDecl>(DC) << R;
1991        D.setInvalidType();
1992      }
1993    }
1994  }
1995
1996  if (Previous.isSingleResult() &&
1997      Previous.getFoundDecl()->isTemplateParameter()) {
1998    // Maybe we will complain about the shadowed template parameter.
1999    if (!D.isInvalidType())
2000      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2001                                          Previous.getFoundDecl()))
2002        D.setInvalidType();
2003
2004    // Just pretend that we didn't see the previous declaration.
2005    Previous.clear();
2006  }
2007
2008  // In C++, the previous declaration we find might be a tag type
2009  // (class or enum). In this case, the new declaration will hide the
2010  // tag type. Note that this does does not apply if we're declaring a
2011  // typedef (C++ [dcl.typedef]p4).
2012  if (Previous.isSingleTagDecl() &&
2013      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2014    Previous.clear();
2015
2016  bool Redeclaration = false;
2017  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2018    if (TemplateParamLists.size()) {
2019      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2020      return DeclPtrTy();
2021    }
2022
2023    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2024  } else if (R->isFunctionType()) {
2025    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2026                                  move(TemplateParamLists),
2027                                  IsFunctionDefinition, Redeclaration);
2028  } else {
2029    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2030                                  move(TemplateParamLists),
2031                                  Redeclaration);
2032  }
2033
2034  if (New == 0)
2035    return DeclPtrTy();
2036
2037  // If this has an identifier and is not an invalid redeclaration or
2038  // function template specialization, add it to the scope stack.
2039  if (Name && !(Redeclaration && New->isInvalidDecl()))
2040    PushOnScopeChains(New, S);
2041
2042  return DeclPtrTy::make(New);
2043}
2044
2045/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2046/// types into constant array types in certain situations which would otherwise
2047/// be errors (for GCC compatibility).
2048static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2049                                                    ASTContext &Context,
2050                                                    bool &SizeIsNegative) {
2051  // This method tries to turn a variable array into a constant
2052  // array even when the size isn't an ICE.  This is necessary
2053  // for compatibility with code that depends on gcc's buggy
2054  // constant expression folding, like struct {char x[(int)(char*)2];}
2055  SizeIsNegative = false;
2056
2057  QualifierCollector Qs;
2058  const Type *Ty = Qs.strip(T);
2059
2060  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2061    QualType Pointee = PTy->getPointeeType();
2062    QualType FixedType =
2063        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2064    if (FixedType.isNull()) return FixedType;
2065    FixedType = Context.getPointerType(FixedType);
2066    return Qs.apply(FixedType);
2067  }
2068
2069  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2070  if (!VLATy)
2071    return QualType();
2072  // FIXME: We should probably handle this case
2073  if (VLATy->getElementType()->isVariablyModifiedType())
2074    return QualType();
2075
2076  Expr::EvalResult EvalResult;
2077  if (!VLATy->getSizeExpr() ||
2078      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2079      !EvalResult.Val.isInt())
2080    return QualType();
2081
2082  llvm::APSInt &Res = EvalResult.Val.getInt();
2083  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2084    // TODO: preserve the size expression in declarator info
2085    return Context.getConstantArrayType(VLATy->getElementType(),
2086                                        Res, ArrayType::Normal, 0);
2087  }
2088
2089  SizeIsNegative = true;
2090  return QualType();
2091}
2092
2093/// \brief Register the given locally-scoped external C declaration so
2094/// that it can be found later for redeclarations
2095void
2096Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2097                                       const LookupResult &Previous,
2098                                       Scope *S) {
2099  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2100         "Decl is not a locally-scoped decl!");
2101  // Note that we have a locally-scoped external with this name.
2102  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2103
2104  if (!Previous.isSingleResult())
2105    return;
2106
2107  NamedDecl *PrevDecl = Previous.getFoundDecl();
2108
2109  // If there was a previous declaration of this variable, it may be
2110  // in our identifier chain. Update the identifier chain with the new
2111  // declaration.
2112  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2113    // The previous declaration was found on the identifer resolver
2114    // chain, so remove it from its scope.
2115    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2116      S = S->getParent();
2117
2118    if (S)
2119      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2120  }
2121}
2122
2123/// \brief Diagnose function specifiers on a declaration of an identifier that
2124/// does not identify a function.
2125void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2126  // FIXME: We should probably indicate the identifier in question to avoid
2127  // confusion for constructs like "inline int a(), b;"
2128  if (D.getDeclSpec().isInlineSpecified())
2129    Diag(D.getDeclSpec().getInlineSpecLoc(),
2130         diag::err_inline_non_function);
2131
2132  if (D.getDeclSpec().isVirtualSpecified())
2133    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2134         diag::err_virtual_non_function);
2135
2136  if (D.getDeclSpec().isExplicitSpecified())
2137    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2138         diag::err_explicit_non_function);
2139}
2140
2141NamedDecl*
2142Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2143                             QualType R,  TypeSourceInfo *TInfo,
2144                             LookupResult &Previous, bool &Redeclaration) {
2145  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2146  if (D.getCXXScopeSpec().isSet()) {
2147    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2148      << D.getCXXScopeSpec().getRange();
2149    D.setInvalidType();
2150    // Pretend we didn't see the scope specifier.
2151    DC = CurContext;
2152    Previous.clear();
2153  }
2154
2155  if (getLangOptions().CPlusPlus) {
2156    // Check that there are no default arguments (C++ only).
2157    CheckExtraCXXDefaultArguments(D);
2158  }
2159
2160  DiagnoseFunctionSpecifiers(D);
2161
2162  if (D.getDeclSpec().isThreadSpecified())
2163    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2164
2165  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2166  if (!NewTD) return 0;
2167
2168  // Handle attributes prior to checking for duplicates in MergeVarDecl
2169  ProcessDeclAttributes(S, NewTD, D);
2170
2171  // Merge the decl with the existing one if appropriate. If the decl is
2172  // in an outer scope, it isn't the same thing.
2173  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2174  if (!Previous.empty()) {
2175    Redeclaration = true;
2176    MergeTypeDefDecl(NewTD, Previous);
2177  }
2178
2179  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2180  // then it shall have block scope.
2181  QualType T = NewTD->getUnderlyingType();
2182  if (T->isVariablyModifiedType()) {
2183    FunctionNeedsScopeChecking() = true;
2184
2185    if (S->getFnParent() == 0) {
2186      bool SizeIsNegative;
2187      QualType FixedTy =
2188          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2189      if (!FixedTy.isNull()) {
2190        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2191        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2192      } else {
2193        if (SizeIsNegative)
2194          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2195        else if (T->isVariableArrayType())
2196          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2197        else
2198          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2199        NewTD->setInvalidDecl();
2200      }
2201    }
2202  }
2203
2204  // If this is the C FILE type, notify the AST context.
2205  if (IdentifierInfo *II = NewTD->getIdentifier())
2206    if (!NewTD->isInvalidDecl() &&
2207        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2208      if (II->isStr("FILE"))
2209        Context.setFILEDecl(NewTD);
2210      else if (II->isStr("jmp_buf"))
2211        Context.setjmp_bufDecl(NewTD);
2212      else if (II->isStr("sigjmp_buf"))
2213        Context.setsigjmp_bufDecl(NewTD);
2214    }
2215
2216  return NewTD;
2217}
2218
2219/// \brief Determines whether the given declaration is an out-of-scope
2220/// previous declaration.
2221///
2222/// This routine should be invoked when name lookup has found a
2223/// previous declaration (PrevDecl) that is not in the scope where a
2224/// new declaration by the same name is being introduced. If the new
2225/// declaration occurs in a local scope, previous declarations with
2226/// linkage may still be considered previous declarations (C99
2227/// 6.2.2p4-5, C++ [basic.link]p6).
2228///
2229/// \param PrevDecl the previous declaration found by name
2230/// lookup
2231///
2232/// \param DC the context in which the new declaration is being
2233/// declared.
2234///
2235/// \returns true if PrevDecl is an out-of-scope previous declaration
2236/// for a new delcaration with the same name.
2237static bool
2238isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2239                                ASTContext &Context) {
2240  if (!PrevDecl)
2241    return 0;
2242
2243  if (!PrevDecl->hasLinkage())
2244    return false;
2245
2246  if (Context.getLangOptions().CPlusPlus) {
2247    // C++ [basic.link]p6:
2248    //   If there is a visible declaration of an entity with linkage
2249    //   having the same name and type, ignoring entities declared
2250    //   outside the innermost enclosing namespace scope, the block
2251    //   scope declaration declares that same entity and receives the
2252    //   linkage of the previous declaration.
2253    DeclContext *OuterContext = DC->getLookupContext();
2254    if (!OuterContext->isFunctionOrMethod())
2255      // This rule only applies to block-scope declarations.
2256      return false;
2257    else {
2258      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2259      if (PrevOuterContext->isRecord())
2260        // We found a member function: ignore it.
2261        return false;
2262      else {
2263        // Find the innermost enclosing namespace for the new and
2264        // previous declarations.
2265        while (!OuterContext->isFileContext())
2266          OuterContext = OuterContext->getParent();
2267        while (!PrevOuterContext->isFileContext())
2268          PrevOuterContext = PrevOuterContext->getParent();
2269
2270        // The previous declaration is in a different namespace, so it
2271        // isn't the same function.
2272        if (OuterContext->getPrimaryContext() !=
2273            PrevOuterContext->getPrimaryContext())
2274          return false;
2275      }
2276    }
2277  }
2278
2279  return true;
2280}
2281
2282static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2283  CXXScopeSpec &SS = D.getCXXScopeSpec();
2284  if (!SS.isSet()) return;
2285  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2286                       SS.getRange());
2287}
2288
2289NamedDecl*
2290Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2291                              QualType R, TypeSourceInfo *TInfo,
2292                              LookupResult &Previous,
2293                              MultiTemplateParamsArg TemplateParamLists,
2294                              bool &Redeclaration) {
2295  DeclarationName Name = GetNameForDeclarator(D);
2296
2297  // Check that there are no default arguments (C++ only).
2298  if (getLangOptions().CPlusPlus)
2299    CheckExtraCXXDefaultArguments(D);
2300
2301  VarDecl *NewVD;
2302  VarDecl::StorageClass SC;
2303  switch (D.getDeclSpec().getStorageClassSpec()) {
2304  default: assert(0 && "Unknown storage class!");
2305  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2306  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2307  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2308  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2309  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2310  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2311  case DeclSpec::SCS_mutable:
2312    // mutable can only appear on non-static class members, so it's always
2313    // an error here
2314    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2315    D.setInvalidType();
2316    SC = VarDecl::None;
2317    break;
2318  }
2319
2320  IdentifierInfo *II = Name.getAsIdentifierInfo();
2321  if (!II) {
2322    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2323      << Name.getAsString();
2324    return 0;
2325  }
2326
2327  DiagnoseFunctionSpecifiers(D);
2328
2329  if (!DC->isRecord() && S->getFnParent() == 0) {
2330    // C99 6.9p2: The storage-class specifiers auto and register shall not
2331    // appear in the declaration specifiers in an external declaration.
2332    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2333
2334      // If this is a register variable with an asm label specified, then this
2335      // is a GNU extension.
2336      if (SC == VarDecl::Register && D.getAsmLabel())
2337        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2338      else
2339        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2340      D.setInvalidType();
2341    }
2342  }
2343  if (DC->isRecord() && !CurContext->isRecord()) {
2344    // This is an out-of-line definition of a static data member.
2345    if (SC == VarDecl::Static) {
2346      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2347           diag::err_static_out_of_line)
2348        << CodeModificationHint::CreateRemoval(
2349                                      D.getDeclSpec().getStorageClassSpecLoc());
2350    } else if (SC == VarDecl::None)
2351      SC = VarDecl::Static;
2352  }
2353  if (SC == VarDecl::Static) {
2354    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2355      if (RD->isLocalClass())
2356        Diag(D.getIdentifierLoc(),
2357             diag::err_static_data_member_not_allowed_in_local_class)
2358          << Name << RD->getDeclName();
2359    }
2360  }
2361
2362  // Match up the template parameter lists with the scope specifier, then
2363  // determine whether we have a template or a template specialization.
2364  bool isExplicitSpecialization = false;
2365  if (TemplateParameterList *TemplateParams
2366        = MatchTemplateParametersToScopeSpecifier(
2367                                  D.getDeclSpec().getSourceRange().getBegin(),
2368                                                  D.getCXXScopeSpec(),
2369                        (TemplateParameterList**)TemplateParamLists.get(),
2370                                                   TemplateParamLists.size(),
2371                                                  isExplicitSpecialization)) {
2372    if (TemplateParams->size() > 0) {
2373      // There is no such thing as a variable template.
2374      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2375        << II
2376        << SourceRange(TemplateParams->getTemplateLoc(),
2377                       TemplateParams->getRAngleLoc());
2378      return 0;
2379    } else {
2380      // There is an extraneous 'template<>' for this variable. Complain
2381      // about it, but allow the declaration of the variable.
2382      Diag(TemplateParams->getTemplateLoc(),
2383           diag::err_template_variable_noparams)
2384        << II
2385        << SourceRange(TemplateParams->getTemplateLoc(),
2386                       TemplateParams->getRAngleLoc());
2387
2388      isExplicitSpecialization = true;
2389    }
2390  }
2391
2392  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2393                          II, R, TInfo, SC);
2394
2395  if (D.isInvalidType())
2396    NewVD->setInvalidDecl();
2397
2398  SetNestedNameSpecifier(NewVD, D);
2399
2400  if (D.getDeclSpec().isThreadSpecified()) {
2401    if (NewVD->hasLocalStorage())
2402      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2403    else if (!Context.Target.isTLSSupported())
2404      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2405    else
2406      NewVD->setThreadSpecified(true);
2407  }
2408
2409  // Set the lexical context. If the declarator has a C++ scope specifier, the
2410  // lexical context will be different from the semantic context.
2411  NewVD->setLexicalDeclContext(CurContext);
2412
2413  // Handle attributes prior to checking for duplicates in MergeVarDecl
2414  ProcessDeclAttributes(S, NewVD, D);
2415
2416  // Handle GNU asm-label extension (encoded as an attribute).
2417  if (Expr *E = (Expr*) D.getAsmLabel()) {
2418    // The parser guarantees this is a string.
2419    StringLiteral *SE = cast<StringLiteral>(E);
2420    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2421  }
2422
2423  // Diagnose shadowed variables before filtering for scope.
2424  if (!D.getCXXScopeSpec().isSet())
2425    CheckShadow(S, NewVD, Previous);
2426
2427  // Don't consider existing declarations that are in a different
2428  // scope and are out-of-semantic-context declarations (if the new
2429  // declaration has linkage).
2430  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2431
2432  // Merge the decl with the existing one if appropriate.
2433  if (!Previous.empty()) {
2434    if (Previous.isSingleResult() &&
2435        isa<FieldDecl>(Previous.getFoundDecl()) &&
2436        D.getCXXScopeSpec().isSet()) {
2437      // The user tried to define a non-static data member
2438      // out-of-line (C++ [dcl.meaning]p1).
2439      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2440        << D.getCXXScopeSpec().getRange();
2441      Previous.clear();
2442      NewVD->setInvalidDecl();
2443    }
2444  } else if (D.getCXXScopeSpec().isSet()) {
2445    // No previous declaration in the qualifying scope.
2446    Diag(D.getIdentifierLoc(), diag::err_no_member)
2447      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2448      << D.getCXXScopeSpec().getRange();
2449    NewVD->setInvalidDecl();
2450  }
2451
2452  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2453
2454  // This is an explicit specialization of a static data member. Check it.
2455  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2456      CheckMemberSpecialization(NewVD, Previous))
2457    NewVD->setInvalidDecl();
2458
2459  // attributes declared post-definition are currently ignored
2460  if (Previous.isSingleResult()) {
2461    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2462    if (Def && (Def = Def->getDefinition()) &&
2463        Def != NewVD && D.hasAttributes()) {
2464      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2465      Diag(Def->getLocation(), diag::note_previous_definition);
2466    }
2467  }
2468
2469  // If this is a locally-scoped extern C variable, update the map of
2470  // such variables.
2471  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2472      !NewVD->isInvalidDecl())
2473    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2474
2475  return NewVD;
2476}
2477
2478/// \brief Diagnose variable or built-in function shadowing.  Implements
2479/// -Wshadow.
2480///
2481/// This method is called whenever a VarDecl is added to a "useful"
2482/// scope.
2483///
2484/// \param S the scope in which the shadowing name is being declared
2485/// \param R the lookup of the name
2486///
2487void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2488  // Return if warning is ignored.
2489  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2490    return;
2491
2492  // Don't diagnose declarations at file scope.  The scope might not
2493  // have a DeclContext if (e.g.) we're parsing a function prototype.
2494  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2495  if (NewDC && NewDC->isFileContext())
2496    return;
2497
2498  // Only diagnose if we're shadowing an unambiguous field or variable.
2499  if (R.getResultKind() != LookupResult::Found)
2500    return;
2501
2502  NamedDecl* ShadowedDecl = R.getFoundDecl();
2503  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2504    return;
2505
2506  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2507
2508  // Only warn about certain kinds of shadowing for class members.
2509  if (NewDC && NewDC->isRecord()) {
2510    // In particular, don't warn about shadowing non-class members.
2511    if (!OldDC->isRecord())
2512      return;
2513
2514    // TODO: should we warn about static data members shadowing
2515    // static data members from base classes?
2516
2517    // TODO: don't diagnose for inaccessible shadowed members.
2518    // This is hard to do perfectly because we might friend the
2519    // shadowing context, but that's just a false negative.
2520  }
2521
2522  // Determine what kind of declaration we're shadowing.
2523  unsigned Kind;
2524  if (isa<RecordDecl>(OldDC)) {
2525    if (isa<FieldDecl>(ShadowedDecl))
2526      Kind = 3; // field
2527    else
2528      Kind = 2; // static data member
2529  } else if (OldDC->isFileContext())
2530    Kind = 1; // global
2531  else
2532    Kind = 0; // local
2533
2534  DeclarationName Name = R.getLookupName();
2535
2536  // Emit warning and note.
2537  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2538  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2539}
2540
2541/// \brief Check -Wshadow without the advantage of a previous lookup.
2542void Sema::CheckShadow(Scope *S, VarDecl *D) {
2543  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2544                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2545  LookupName(R, S);
2546  CheckShadow(S, D, R);
2547}
2548
2549/// \brief Perform semantic checking on a newly-created variable
2550/// declaration.
2551///
2552/// This routine performs all of the type-checking required for a
2553/// variable declaration once it has been built. It is used both to
2554/// check variables after they have been parsed and their declarators
2555/// have been translated into a declaration, and to check variables
2556/// that have been instantiated from a template.
2557///
2558/// Sets NewVD->isInvalidDecl() if an error was encountered.
2559void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2560                                    LookupResult &Previous,
2561                                    bool &Redeclaration) {
2562  // If the decl is already known invalid, don't check it.
2563  if (NewVD->isInvalidDecl())
2564    return;
2565
2566  QualType T = NewVD->getType();
2567
2568  if (T->isObjCInterfaceType()) {
2569    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2570    return NewVD->setInvalidDecl();
2571  }
2572
2573  // Emit an error if an address space was applied to decl with local storage.
2574  // This includes arrays of objects with address space qualifiers, but not
2575  // automatic variables that point to other address spaces.
2576  // ISO/IEC TR 18037 S5.1.2
2577  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2578    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2579    return NewVD->setInvalidDecl();
2580  }
2581
2582  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2583      && !NewVD->hasAttr<BlocksAttr>())
2584    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2585
2586  bool isVM = T->isVariablyModifiedType();
2587  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2588      NewVD->hasAttr<BlocksAttr>() ||
2589      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2590      // However, this turns on the scope checker for everything with a variable
2591      // which may impact compile time.  See if we can find a better solution
2592      // to this, perhaps only checking functions that contain gotos in C++?
2593      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2594    FunctionNeedsScopeChecking() = true;
2595
2596  if ((isVM && NewVD->hasLinkage()) ||
2597      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2598    bool SizeIsNegative;
2599    QualType FixedTy =
2600        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2601
2602    if (FixedTy.isNull() && T->isVariableArrayType()) {
2603      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2604      // FIXME: This won't give the correct result for
2605      // int a[10][n];
2606      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2607
2608      if (NewVD->isFileVarDecl())
2609        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2610        << SizeRange;
2611      else if (NewVD->getStorageClass() == VarDecl::Static)
2612        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2613        << SizeRange;
2614      else
2615        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2616        << SizeRange;
2617      return NewVD->setInvalidDecl();
2618    }
2619
2620    if (FixedTy.isNull()) {
2621      if (NewVD->isFileVarDecl())
2622        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2623      else
2624        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2625      return NewVD->setInvalidDecl();
2626    }
2627
2628    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2629    NewVD->setType(FixedTy);
2630  }
2631
2632  if (Previous.empty() && NewVD->isExternC()) {
2633    // Since we did not find anything by this name and we're declaring
2634    // an extern "C" variable, look for a non-visible extern "C"
2635    // declaration with the same name.
2636    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2637      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2638    if (Pos != LocallyScopedExternalDecls.end())
2639      Previous.addDecl(Pos->second);
2640  }
2641
2642  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2643    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2644      << T;
2645    return NewVD->setInvalidDecl();
2646  }
2647
2648  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2649    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2650    return NewVD->setInvalidDecl();
2651  }
2652
2653  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2654    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2655    return NewVD->setInvalidDecl();
2656  }
2657
2658  if (!Previous.empty()) {
2659    Redeclaration = true;
2660    MergeVarDecl(NewVD, Previous);
2661  }
2662}
2663
2664/// \brief Data used with FindOverriddenMethod
2665struct FindOverriddenMethodData {
2666  Sema *S;
2667  CXXMethodDecl *Method;
2668};
2669
2670/// \brief Member lookup function that determines whether a given C++
2671/// method overrides a method in a base class, to be used with
2672/// CXXRecordDecl::lookupInBases().
2673static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2674                                 CXXBasePath &Path,
2675                                 void *UserData) {
2676  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2677
2678  FindOverriddenMethodData *Data
2679    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2680
2681  DeclarationName Name = Data->Method->getDeclName();
2682
2683  // FIXME: Do we care about other names here too?
2684  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2685    // We really want to find the base class constructor here.
2686    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2687    CanQualType CT = Data->S->Context.getCanonicalType(T);
2688
2689    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2690  }
2691
2692  for (Path.Decls = BaseRecord->lookup(Name);
2693       Path.Decls.first != Path.Decls.second;
2694       ++Path.Decls.first) {
2695    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2696      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2697        return true;
2698    }
2699  }
2700
2701  return false;
2702}
2703
2704/// AddOverriddenMethods - See if a method overrides any in the base classes,
2705/// and if so, check that it's a valid override and remember it.
2706void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2707  // Look for virtual methods in base classes that this method might override.
2708  CXXBasePaths Paths;
2709  FindOverriddenMethodData Data;
2710  Data.Method = MD;
2711  Data.S = this;
2712  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2713    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2714         E = Paths.found_decls_end(); I != E; ++I) {
2715      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2716        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2717            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2718            !CheckOverridingFunctionAttributes(MD, OldMD))
2719          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2720      }
2721    }
2722  }
2723}
2724
2725NamedDecl*
2726Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2727                              QualType R, TypeSourceInfo *TInfo,
2728                              LookupResult &Previous,
2729                              MultiTemplateParamsArg TemplateParamLists,
2730                              bool IsFunctionDefinition, bool &Redeclaration) {
2731  assert(R.getTypePtr()->isFunctionType());
2732
2733  DeclarationName Name = GetNameForDeclarator(D);
2734  FunctionDecl::StorageClass SC = FunctionDecl::None;
2735  switch (D.getDeclSpec().getStorageClassSpec()) {
2736  default: assert(0 && "Unknown storage class!");
2737  case DeclSpec::SCS_auto:
2738  case DeclSpec::SCS_register:
2739  case DeclSpec::SCS_mutable:
2740    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2741         diag::err_typecheck_sclass_func);
2742    D.setInvalidType();
2743    break;
2744  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2745  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2746  case DeclSpec::SCS_static: {
2747    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2748      // C99 6.7.1p5:
2749      //   The declaration of an identifier for a function that has
2750      //   block scope shall have no explicit storage-class specifier
2751      //   other than extern
2752      // See also (C++ [dcl.stc]p4).
2753      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2754           diag::err_static_block_func);
2755      SC = FunctionDecl::None;
2756    } else
2757      SC = FunctionDecl::Static;
2758    break;
2759  }
2760  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2761  }
2762
2763  if (D.getDeclSpec().isThreadSpecified())
2764    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2765
2766  bool isFriend = D.getDeclSpec().isFriendSpecified();
2767  bool isInline = D.getDeclSpec().isInlineSpecified();
2768  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2769  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2770
2771  // Check that the return type is not an abstract class type.
2772  // For record types, this is done by the AbstractClassUsageDiagnoser once
2773  // the class has been completely parsed.
2774  if (!DC->isRecord() &&
2775      RequireNonAbstractType(D.getIdentifierLoc(),
2776                             R->getAs<FunctionType>()->getResultType(),
2777                             diag::err_abstract_type_in_decl,
2778                             AbstractReturnType))
2779    D.setInvalidType();
2780
2781  // Do not allow returning a objc interface by-value.
2782  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2783    Diag(D.getIdentifierLoc(),
2784         diag::err_object_cannot_be_passed_returned_by_value) << 0
2785      << R->getAs<FunctionType>()->getResultType();
2786    D.setInvalidType();
2787  }
2788
2789  bool isVirtualOkay = false;
2790  FunctionDecl *NewFD;
2791
2792  if (isFriend) {
2793    // C++ [class.friend]p5
2794    //   A function can be defined in a friend declaration of a
2795    //   class . . . . Such a function is implicitly inline.
2796    isInline |= IsFunctionDefinition;
2797  }
2798
2799  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2800    // This is a C++ constructor declaration.
2801    assert(DC->isRecord() &&
2802           "Constructors can only be declared in a member context");
2803
2804    R = CheckConstructorDeclarator(D, R, SC);
2805
2806    // Create the new declaration
2807    NewFD = CXXConstructorDecl::Create(Context,
2808                                       cast<CXXRecordDecl>(DC),
2809                                       D.getIdentifierLoc(), Name, R, TInfo,
2810                                       isExplicit, isInline,
2811                                       /*isImplicitlyDeclared=*/false);
2812  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2813    // This is a C++ destructor declaration.
2814    if (DC->isRecord()) {
2815      R = CheckDestructorDeclarator(D, SC);
2816
2817      NewFD = CXXDestructorDecl::Create(Context,
2818                                        cast<CXXRecordDecl>(DC),
2819                                        D.getIdentifierLoc(), Name, R,
2820                                        isInline,
2821                                        /*isImplicitlyDeclared=*/false);
2822      NewFD->setTypeSourceInfo(TInfo);
2823
2824      isVirtualOkay = true;
2825    } else {
2826      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2827
2828      // Create a FunctionDecl to satisfy the function definition parsing
2829      // code path.
2830      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2831                                   Name, R, TInfo, SC, isInline,
2832                                   /*hasPrototype=*/true);
2833      D.setInvalidType();
2834    }
2835  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2836    if (!DC->isRecord()) {
2837      Diag(D.getIdentifierLoc(),
2838           diag::err_conv_function_not_member);
2839      return 0;
2840    }
2841
2842    CheckConversionDeclarator(D, R, SC);
2843    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2844                                      D.getIdentifierLoc(), Name, R, TInfo,
2845                                      isInline, isExplicit);
2846
2847    isVirtualOkay = true;
2848  } else if (DC->isRecord()) {
2849    // If the of the function is the same as the name of the record, then this
2850    // must be an invalid constructor that has a return type.
2851    // (The parser checks for a return type and makes the declarator a
2852    // constructor if it has no return type).
2853    // must have an invalid constructor that has a return type
2854    if (Name.getAsIdentifierInfo() &&
2855        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2856      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2857        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2858        << SourceRange(D.getIdentifierLoc());
2859      return 0;
2860    }
2861
2862    bool isStatic = SC == FunctionDecl::Static;
2863
2864    // [class.free]p1:
2865    // Any allocation function for a class T is a static member
2866    // (even if not explicitly declared static).
2867    if (Name.getCXXOverloadedOperator() == OO_New ||
2868        Name.getCXXOverloadedOperator() == OO_Array_New)
2869      isStatic = true;
2870
2871    // [class.free]p6 Any deallocation function for a class X is a static member
2872    // (even if not explicitly declared static).
2873    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2874        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2875      isStatic = true;
2876
2877    // This is a C++ method declaration.
2878    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2879                                  D.getIdentifierLoc(), Name, R, TInfo,
2880                                  isStatic, isInline);
2881
2882    isVirtualOkay = !isStatic;
2883  } else {
2884    // Determine whether the function was written with a
2885    // prototype. This true when:
2886    //   - we're in C++ (where every function has a prototype),
2887    //   - there is a prototype in the declarator, or
2888    //   - the type R of the function is some kind of typedef or other reference
2889    //     to a type name (which eventually refers to a function type).
2890    bool HasPrototype =
2891       getLangOptions().CPlusPlus ||
2892       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2893       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2894
2895    NewFD = FunctionDecl::Create(Context, DC,
2896                                 D.getIdentifierLoc(),
2897                                 Name, R, TInfo, SC, isInline, HasPrototype);
2898  }
2899
2900  if (D.isInvalidType())
2901    NewFD->setInvalidDecl();
2902
2903  SetNestedNameSpecifier(NewFD, D);
2904
2905  // Set the lexical context. If the declarator has a C++
2906  // scope specifier, or is the object of a friend declaration, the
2907  // lexical context will be different from the semantic context.
2908  NewFD->setLexicalDeclContext(CurContext);
2909
2910  // Match up the template parameter lists with the scope specifier, then
2911  // determine whether we have a template or a template specialization.
2912  FunctionTemplateDecl *FunctionTemplate = 0;
2913  bool isExplicitSpecialization = false;
2914  bool isFunctionTemplateSpecialization = false;
2915  if (TemplateParameterList *TemplateParams
2916        = MatchTemplateParametersToScopeSpecifier(
2917                                  D.getDeclSpec().getSourceRange().getBegin(),
2918                                  D.getCXXScopeSpec(),
2919                           (TemplateParameterList**)TemplateParamLists.get(),
2920                                                  TemplateParamLists.size(),
2921                                                  isExplicitSpecialization)) {
2922    if (TemplateParams->size() > 0) {
2923      // This is a function template
2924
2925      // Check that we can declare a template here.
2926      if (CheckTemplateDeclScope(S, TemplateParams))
2927        return 0;
2928
2929      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2930                                                      NewFD->getLocation(),
2931                                                      Name, TemplateParams,
2932                                                      NewFD);
2933      FunctionTemplate->setLexicalDeclContext(CurContext);
2934      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2935    } else {
2936      // This is a function template specialization.
2937      isFunctionTemplateSpecialization = true;
2938
2939      // C++0x [temp.expl.spec]p20 forbids "template<> void foo(int);".
2940      if (isFriend && isFunctionTemplateSpecialization) {
2941        // We want to remove the "template<>", found here.
2942        SourceRange RemoveRange = TemplateParams->getSourceRange();
2943
2944        // If we remove the template<> and the name is not a
2945        // template-id, we're actually silently creating a problem:
2946        // the friend declaration will refer to an untemplated decl,
2947        // and clearly the user wants a template specialization.  So
2948        // we need to insert '<>' after the name.
2949        SourceLocation InsertLoc;
2950        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2951          InsertLoc = D.getName().getSourceRange().getEnd();
2952          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2953        }
2954
2955        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2956          << Name << RemoveRange
2957          << CodeModificationHint::CreateRemoval(RemoveRange)
2958          << CodeModificationHint::CreateInsertion(InsertLoc, "<>");
2959      }
2960    }
2961
2962    // FIXME: Free this memory properly.
2963    TemplateParamLists.release();
2964  }
2965
2966  // C++ [dcl.fct.spec]p5:
2967  //   The virtual specifier shall only be used in declarations of
2968  //   nonstatic class member functions that appear within a
2969  //   member-specification of a class declaration; see 10.3.
2970  //
2971  if (isVirtual && !NewFD->isInvalidDecl()) {
2972    if (!isVirtualOkay) {
2973       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2974           diag::err_virtual_non_function);
2975    } else if (!CurContext->isRecord()) {
2976      // 'virtual' was specified outside of the class.
2977      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2978        << CodeModificationHint::CreateRemoval(
2979                                           D.getDeclSpec().getVirtualSpecLoc());
2980    } else {
2981      // Okay: Add virtual to the method.
2982      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2983      CurClass->setMethodAsVirtual(NewFD);
2984    }
2985  }
2986
2987  // C++ [dcl.fct.spec]p6:
2988  //  The explicit specifier shall be used only in the declaration of a
2989  //  constructor or conversion function within its class definition; see 12.3.1
2990  //  and 12.3.2.
2991  if (isExplicit && !NewFD->isInvalidDecl()) {
2992    if (!CurContext->isRecord()) {
2993      // 'explicit' was specified outside of the class.
2994      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2995           diag::err_explicit_out_of_class)
2996        << CodeModificationHint::CreateRemoval(
2997                                          D.getDeclSpec().getExplicitSpecLoc());
2998    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2999               !isa<CXXConversionDecl>(NewFD)) {
3000      // 'explicit' was specified on a function that wasn't a constructor
3001      // or conversion function.
3002      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3003           diag::err_explicit_non_ctor_or_conv_function)
3004        << CodeModificationHint::CreateRemoval(
3005                                          D.getDeclSpec().getExplicitSpecLoc());
3006    }
3007  }
3008
3009  // Filter out previous declarations that don't match the scope.
3010  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3011
3012  if (isFriend) {
3013    // DC is the namespace in which the function is being declared.
3014    assert((DC->isFileContext() || !Previous.empty()) &&
3015           "previously-undeclared friend function being created "
3016           "in a non-namespace context");
3017
3018    // For now, claim that the objects have no previous declaration.
3019    if (FunctionTemplate) {
3020      FunctionTemplate->setObjectOfFriendDecl(false);
3021      FunctionTemplate->setAccess(AS_public);
3022    } else {
3023      NewFD->setObjectOfFriendDecl(false);
3024    }
3025
3026    NewFD->setAccess(AS_public);
3027  }
3028
3029  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3030      !CurContext->isRecord()) {
3031    // C++ [class.static]p1:
3032    //   A data or function member of a class may be declared static
3033    //   in a class definition, in which case it is a static member of
3034    //   the class.
3035
3036    // Complain about the 'static' specifier if it's on an out-of-line
3037    // member function definition.
3038    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3039         diag::err_static_out_of_line)
3040      << CodeModificationHint::CreateRemoval(
3041                                      D.getDeclSpec().getStorageClassSpecLoc());
3042  }
3043
3044  // Handle GNU asm-label extension (encoded as an attribute).
3045  if (Expr *E = (Expr*) D.getAsmLabel()) {
3046    // The parser guarantees this is a string.
3047    StringLiteral *SE = cast<StringLiteral>(E);
3048    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3049  }
3050
3051  // Copy the parameter declarations from the declarator D to the function
3052  // declaration NewFD, if they are available.  First scavenge them into Params.
3053  llvm::SmallVector<ParmVarDecl*, 16> Params;
3054  if (D.getNumTypeObjects() > 0) {
3055    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3056
3057    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3058    // function that takes no arguments, not a function that takes a
3059    // single void argument.
3060    // We let through "const void" here because Sema::GetTypeForDeclarator
3061    // already checks for that case.
3062    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3063        FTI.ArgInfo[0].Param &&
3064        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3065      // Empty arg list, don't push any params.
3066      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3067
3068      // In C++, the empty parameter-type-list must be spelled "void"; a
3069      // typedef of void is not permitted.
3070      if (getLangOptions().CPlusPlus &&
3071          Param->getType().getUnqualifiedType() != Context.VoidTy)
3072        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3073      // FIXME: Leaks decl?
3074    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3075      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3076        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3077        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3078        Param->setDeclContext(NewFD);
3079        Params.push_back(Param);
3080      }
3081    }
3082
3083  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3084    // When we're declaring a function with a typedef, typeof, etc as in the
3085    // following example, we'll need to synthesize (unnamed)
3086    // parameters for use in the declaration.
3087    //
3088    // @code
3089    // typedef void fn(int);
3090    // fn f;
3091    // @endcode
3092
3093    // Synthesize a parameter for each argument type.
3094    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3095         AE = FT->arg_type_end(); AI != AE; ++AI) {
3096      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3097                                               SourceLocation(), 0,
3098                                               *AI, /*TInfo=*/0,
3099                                               VarDecl::None, 0);
3100      Param->setImplicit();
3101      Params.push_back(Param);
3102    }
3103  } else {
3104    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3105           "Should not need args for typedef of non-prototype fn");
3106  }
3107  // Finally, we know we have the right number of parameters, install them.
3108  NewFD->setParams(Params.data(), Params.size());
3109
3110  // If the declarator is a template-id, translate the parser's template
3111  // argument list into our AST format.
3112  bool HasExplicitTemplateArgs = false;
3113  TemplateArgumentListInfo TemplateArgs;
3114  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3115    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3116    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3117    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3118    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3119                                       TemplateId->getTemplateArgs(),
3120                                       TemplateId->NumArgs);
3121    translateTemplateArguments(TemplateArgsPtr,
3122                               TemplateArgs);
3123    TemplateArgsPtr.release();
3124
3125    HasExplicitTemplateArgs = true;
3126
3127    if (FunctionTemplate) {
3128      // FIXME: Diagnose function template with explicit template
3129      // arguments.
3130      HasExplicitTemplateArgs = false;
3131    } else if (!isFunctionTemplateSpecialization &&
3132               !D.getDeclSpec().isFriendSpecified()) {
3133      // We have encountered something that the user meant to be a
3134      // specialization (because it has explicitly-specified template
3135      // arguments) but that was not introduced with a "template<>" (or had
3136      // too few of them).
3137      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3138        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3139        << CodeModificationHint::CreateInsertion(
3140                                   D.getDeclSpec().getSourceRange().getBegin(),
3141                                                 "template<> ");
3142      isFunctionTemplateSpecialization = true;
3143    } else {
3144      // "friend void foo<>(int);" is an implicit specialization decl.
3145      isFunctionTemplateSpecialization = true;
3146    }
3147  }
3148
3149  if (isFunctionTemplateSpecialization) {
3150    if (isFriend && NewFD->getType()->isDependentType()) {
3151      // FIXME: When we see a friend of a function template
3152      // specialization with a dependent type, we can't match it now;
3153      // for now, we just drop it, until we have a reasonable way to
3154      // represent the parsed-but-not-matched friend function template
3155      // specialization in the AST.
3156      return 0;
3157    } else if (CheckFunctionTemplateSpecialization(NewFD,
3158                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3159                                                 Previous))
3160      NewFD->setInvalidDecl();
3161  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3162             CheckMemberSpecialization(NewFD, Previous))
3163    NewFD->setInvalidDecl();
3164
3165  // Perform semantic checking on the function declaration.
3166  bool OverloadableAttrRequired = false; // FIXME: HACK!
3167  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3168                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3169
3170  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3171          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3172         "previous declaration set still overloaded");
3173
3174  if (isFriend && Redeclaration) {
3175    AccessSpecifier Access = NewFD->getPreviousDeclaration()->getAccess();
3176    if (FunctionTemplate) {
3177      FunctionTemplate->setObjectOfFriendDecl(true);
3178      FunctionTemplate->setAccess(Access);
3179    } else {
3180      NewFD->setObjectOfFriendDecl(true);
3181    }
3182    NewFD->setAccess(Access);
3183  }
3184
3185  // If we have a function template, check the template parameter
3186  // list. This will check and merge default template arguments.
3187  if (FunctionTemplate) {
3188    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3189    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3190                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3191             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3192                                                : TPC_FunctionTemplate);
3193  }
3194
3195  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3196    // Fake up an access specifier if it's supposed to be a class member.
3197    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3198      NewFD->setAccess(AS_public);
3199
3200    // An out-of-line member function declaration must also be a
3201    // definition (C++ [dcl.meaning]p1).
3202    // Note that this is not the case for explicit specializations of
3203    // function templates or member functions of class templates, per
3204    // C++ [temp.expl.spec]p2.
3205    if (!IsFunctionDefinition && !isFriend &&
3206        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3207      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3208        << D.getCXXScopeSpec().getRange();
3209      NewFD->setInvalidDecl();
3210    } else if (!Redeclaration &&
3211               !(isFriend && CurContext->isDependentContext())) {
3212      // The user tried to provide an out-of-line definition for a
3213      // function that is a member of a class or namespace, but there
3214      // was no such member function declared (C++ [class.mfct]p2,
3215      // C++ [namespace.memdef]p2). For example:
3216      //
3217      // class X {
3218      //   void f() const;
3219      // };
3220      //
3221      // void X::f() { } // ill-formed
3222      //
3223      // Complain about this problem, and attempt to suggest close
3224      // matches (e.g., those that differ only in cv-qualifiers and
3225      // whether the parameter types are references).
3226      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3227        << Name << DC << D.getCXXScopeSpec().getRange();
3228      NewFD->setInvalidDecl();
3229
3230      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3231                        ForRedeclaration);
3232      LookupQualifiedName(Prev, DC);
3233      assert(!Prev.isAmbiguous() &&
3234             "Cannot have an ambiguity in previous-declaration lookup");
3235      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3236           Func != FuncEnd; ++Func) {
3237        if (isa<FunctionDecl>(*Func) &&
3238            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3239          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3240      }
3241    }
3242  }
3243
3244  // Handle attributes. We need to have merged decls when handling attributes
3245  // (for example to check for conflicts, etc).
3246  // FIXME: This needs to happen before we merge declarations. Then,
3247  // let attribute merging cope with attribute conflicts.
3248  ProcessDeclAttributes(S, NewFD, D);
3249
3250  // attributes declared post-definition are currently ignored
3251  if (Redeclaration && Previous.isSingleResult()) {
3252    const FunctionDecl *Def;
3253    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3254    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3255      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3256      Diag(Def->getLocation(), diag::note_previous_definition);
3257    }
3258  }
3259
3260  AddKnownFunctionAttributes(NewFD);
3261
3262  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3263    // If a function name is overloadable in C, then every function
3264    // with that name must be marked "overloadable".
3265    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3266      << Redeclaration << NewFD;
3267    if (!Previous.empty())
3268      Diag(Previous.getRepresentativeDecl()->getLocation(),
3269           diag::note_attribute_overloadable_prev_overload);
3270    NewFD->addAttr(::new (Context) OverloadableAttr());
3271  }
3272
3273  // If this is a locally-scoped extern C function, update the
3274  // map of such names.
3275  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3276      && !NewFD->isInvalidDecl())
3277    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3278
3279  // Set this FunctionDecl's range up to the right paren.
3280  NewFD->setLocEnd(D.getSourceRange().getEnd());
3281
3282  if (FunctionTemplate && NewFD->isInvalidDecl())
3283    FunctionTemplate->setInvalidDecl();
3284
3285  if (FunctionTemplate)
3286    return FunctionTemplate;
3287
3288
3289  // Keep track of static, non-inlined function definitions that
3290  // have not been used. We will warn later.
3291  // FIXME: Also include static functions declared but not defined.
3292  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3293      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3294      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3295    UnusedStaticFuncs.push_back(NewFD);
3296
3297  return NewFD;
3298}
3299
3300/// \brief Perform semantic checking of a new function declaration.
3301///
3302/// Performs semantic analysis of the new function declaration
3303/// NewFD. This routine performs all semantic checking that does not
3304/// require the actual declarator involved in the declaration, and is
3305/// used both for the declaration of functions as they are parsed
3306/// (called via ActOnDeclarator) and for the declaration of functions
3307/// that have been instantiated via C++ template instantiation (called
3308/// via InstantiateDecl).
3309///
3310/// \param IsExplicitSpecialiation whether this new function declaration is
3311/// an explicit specialization of the previous declaration.
3312///
3313/// This sets NewFD->isInvalidDecl() to true if there was an error.
3314void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3315                                    LookupResult &Previous,
3316                                    bool IsExplicitSpecialization,
3317                                    bool &Redeclaration,
3318                                    bool &OverloadableAttrRequired) {
3319  // If NewFD is already known erroneous, don't do any of this checking.
3320  if (NewFD->isInvalidDecl())
3321    return;
3322
3323  if (NewFD->getResultType()->isVariablyModifiedType()) {
3324    // Functions returning a variably modified type violate C99 6.7.5.2p2
3325    // because all functions have linkage.
3326    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3327    return NewFD->setInvalidDecl();
3328  }
3329
3330  if (NewFD->isMain())
3331    CheckMain(NewFD);
3332
3333  // Check for a previous declaration of this name.
3334  if (Previous.empty() && NewFD->isExternC()) {
3335    // Since we did not find anything by this name and we're declaring
3336    // an extern "C" function, look for a non-visible extern "C"
3337    // declaration with the same name.
3338    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3339      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3340    if (Pos != LocallyScopedExternalDecls.end())
3341      Previous.addDecl(Pos->second);
3342  }
3343
3344  // Merge or overload the declaration with an existing declaration of
3345  // the same name, if appropriate.
3346  if (!Previous.empty()) {
3347    // Determine whether NewFD is an overload of PrevDecl or
3348    // a declaration that requires merging. If it's an overload,
3349    // there's no more work to do here; we'll just add the new
3350    // function to the scope.
3351
3352    NamedDecl *OldDecl = 0;
3353    if (!AllowOverloadingOfFunction(Previous, Context)) {
3354      Redeclaration = true;
3355      OldDecl = Previous.getFoundDecl();
3356    } else {
3357      if (!getLangOptions().CPlusPlus) {
3358        OverloadableAttrRequired = true;
3359
3360        // Functions marked "overloadable" must have a prototype (that
3361        // we can't get through declaration merging).
3362        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3363          Diag(NewFD->getLocation(),
3364               diag::err_attribute_overloadable_no_prototype)
3365            << NewFD;
3366          Redeclaration = true;
3367
3368          // Turn this into a variadic function with no parameters.
3369          QualType R = Context.getFunctionType(
3370                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3371                     0, 0, true, 0, false, false, 0, 0,
3372                     FunctionType::ExtInfo());
3373          NewFD->setType(R);
3374          return NewFD->setInvalidDecl();
3375        }
3376      }
3377
3378      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3379      case Ovl_Match:
3380        Redeclaration = true;
3381        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3382          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3383          Redeclaration = false;
3384        }
3385        break;
3386
3387      case Ovl_NonFunction:
3388        Redeclaration = true;
3389        break;
3390
3391      case Ovl_Overload:
3392        Redeclaration = false;
3393        break;
3394      }
3395    }
3396
3397    if (Redeclaration) {
3398      // NewFD and OldDecl represent declarations that need to be
3399      // merged.
3400      if (MergeFunctionDecl(NewFD, OldDecl))
3401        return NewFD->setInvalidDecl();
3402
3403      Previous.clear();
3404      Previous.addDecl(OldDecl);
3405
3406      if (FunctionTemplateDecl *OldTemplateDecl
3407                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3408        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3409        FunctionTemplateDecl *NewTemplateDecl
3410          = NewFD->getDescribedFunctionTemplate();
3411        assert(NewTemplateDecl && "Template/non-template mismatch");
3412        if (CXXMethodDecl *Method
3413              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3414          Method->setAccess(OldTemplateDecl->getAccess());
3415          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3416        }
3417
3418        // If this is an explicit specialization of a member that is a function
3419        // template, mark it as a member specialization.
3420        if (IsExplicitSpecialization &&
3421            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3422          NewTemplateDecl->setMemberSpecialization();
3423          assert(OldTemplateDecl->isMemberSpecialization());
3424        }
3425      } else {
3426        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3427          NewFD->setAccess(OldDecl->getAccess());
3428        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3429      }
3430    }
3431  }
3432
3433  // Semantic checking for this function declaration (in isolation).
3434  if (getLangOptions().CPlusPlus) {
3435    // C++-specific checks.
3436    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3437      CheckConstructor(Constructor);
3438    } else if (CXXDestructorDecl *Destructor =
3439                dyn_cast<CXXDestructorDecl>(NewFD)) {
3440      CXXRecordDecl *Record = Destructor->getParent();
3441      QualType ClassType = Context.getTypeDeclType(Record);
3442
3443      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3444      // type is dependent? Both gcc and edg can handle that.
3445      if (!ClassType->isDependentType()) {
3446        DeclarationName Name
3447          = Context.DeclarationNames.getCXXDestructorName(
3448                                        Context.getCanonicalType(ClassType));
3449        if (NewFD->getDeclName() != Name) {
3450          Diag(NewFD->getLocation(), diag::err_destructor_name);
3451          return NewFD->setInvalidDecl();
3452        }
3453      }
3454
3455      Record->setUserDeclaredDestructor(true);
3456      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3457      // user-defined destructor.
3458      Record->setPOD(false);
3459
3460      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3461      // declared destructor.
3462      // FIXME: C++0x: don't do this for "= default" destructors
3463      Record->setHasTrivialDestructor(false);
3464    } else if (CXXConversionDecl *Conversion
3465               = dyn_cast<CXXConversionDecl>(NewFD)) {
3466      ActOnConversionDeclarator(Conversion);
3467    }
3468
3469    // Find any virtual functions that this function overrides.
3470    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3471      if (!Method->isFunctionTemplateSpecialization() &&
3472          !Method->getDescribedFunctionTemplate())
3473        AddOverriddenMethods(Method->getParent(), Method);
3474    }
3475
3476    // Additional checks for the destructor; make sure we do this after we
3477    // figure out whether the destructor is virtual.
3478    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3479      if (!Destructor->getParent()->isDependentType())
3480        CheckDestructor(Destructor);
3481
3482    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3483    if (NewFD->isOverloadedOperator() &&
3484        CheckOverloadedOperatorDeclaration(NewFD))
3485      return NewFD->setInvalidDecl();
3486
3487    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3488    if (NewFD->getLiteralIdentifier() &&
3489        CheckLiteralOperatorDeclaration(NewFD))
3490      return NewFD->setInvalidDecl();
3491
3492    // In C++, check default arguments now that we have merged decls. Unless
3493    // the lexical context is the class, because in this case this is done
3494    // during delayed parsing anyway.
3495    if (!CurContext->isRecord())
3496      CheckCXXDefaultArguments(NewFD);
3497  }
3498}
3499
3500void Sema::CheckMain(FunctionDecl* FD) {
3501  // C++ [basic.start.main]p3:  A program that declares main to be inline
3502  //   or static is ill-formed.
3503  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3504  //   shall not appear in a declaration of main.
3505  // static main is not an error under C99, but we should warn about it.
3506  bool isInline = FD->isInlineSpecified();
3507  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3508  if (isInline || isStatic) {
3509    unsigned diagID = diag::warn_unusual_main_decl;
3510    if (isInline || getLangOptions().CPlusPlus)
3511      diagID = diag::err_unusual_main_decl;
3512
3513    int which = isStatic + (isInline << 1) - 1;
3514    Diag(FD->getLocation(), diagID) << which;
3515  }
3516
3517  QualType T = FD->getType();
3518  assert(T->isFunctionType() && "function decl is not of function type");
3519  const FunctionType* FT = T->getAs<FunctionType>();
3520
3521  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3522    // TODO: add a replacement fixit to turn the return type into 'int'.
3523    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3524    FD->setInvalidDecl(true);
3525  }
3526
3527  // Treat protoless main() as nullary.
3528  if (isa<FunctionNoProtoType>(FT)) return;
3529
3530  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3531  unsigned nparams = FTP->getNumArgs();
3532  assert(FD->getNumParams() == nparams);
3533
3534  bool HasExtraParameters = (nparams > 3);
3535
3536  // Darwin passes an undocumented fourth argument of type char**.  If
3537  // other platforms start sprouting these, the logic below will start
3538  // getting shifty.
3539  if (nparams == 4 &&
3540      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3541    HasExtraParameters = false;
3542
3543  if (HasExtraParameters) {
3544    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3545    FD->setInvalidDecl(true);
3546    nparams = 3;
3547  }
3548
3549  // FIXME: a lot of the following diagnostics would be improved
3550  // if we had some location information about types.
3551
3552  QualType CharPP =
3553    Context.getPointerType(Context.getPointerType(Context.CharTy));
3554  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3555
3556  for (unsigned i = 0; i < nparams; ++i) {
3557    QualType AT = FTP->getArgType(i);
3558
3559    bool mismatch = true;
3560
3561    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3562      mismatch = false;
3563    else if (Expected[i] == CharPP) {
3564      // As an extension, the following forms are okay:
3565      //   char const **
3566      //   char const * const *
3567      //   char * const *
3568
3569      QualifierCollector qs;
3570      const PointerType* PT;
3571      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3572          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3573          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3574        qs.removeConst();
3575        mismatch = !qs.empty();
3576      }
3577    }
3578
3579    if (mismatch) {
3580      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3581      // TODO: suggest replacing given type with expected type
3582      FD->setInvalidDecl(true);
3583    }
3584  }
3585
3586  if (nparams == 1 && !FD->isInvalidDecl()) {
3587    Diag(FD->getLocation(), diag::warn_main_one_arg);
3588  }
3589}
3590
3591bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3592  // FIXME: Need strict checking.  In C89, we need to check for
3593  // any assignment, increment, decrement, function-calls, or
3594  // commas outside of a sizeof.  In C99, it's the same list,
3595  // except that the aforementioned are allowed in unevaluated
3596  // expressions.  Everything else falls under the
3597  // "may accept other forms of constant expressions" exception.
3598  // (We never end up here for C++, so the constant expression
3599  // rules there don't matter.)
3600  if (Init->isConstantInitializer(Context))
3601    return false;
3602  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3603    << Init->getSourceRange();
3604  return true;
3605}
3606
3607void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3608  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3609}
3610
3611/// AddInitializerToDecl - Adds the initializer Init to the
3612/// declaration dcl. If DirectInit is true, this is C++ direct
3613/// initialization rather than copy initialization.
3614void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3615  Decl *RealDecl = dcl.getAs<Decl>();
3616  // If there is no declaration, there was an error parsing it.  Just ignore
3617  // the initializer.
3618  if (RealDecl == 0)
3619    return;
3620
3621  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3622    // With declarators parsed the way they are, the parser cannot
3623    // distinguish between a normal initializer and a pure-specifier.
3624    // Thus this grotesque test.
3625    IntegerLiteral *IL;
3626    Expr *Init = static_cast<Expr *>(init.get());
3627    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3628        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3629      CheckPureMethod(Method, Init->getSourceRange());
3630    else {
3631      Diag(Method->getLocation(), diag::err_member_function_initialization)
3632        << Method->getDeclName() << Init->getSourceRange();
3633      Method->setInvalidDecl();
3634    }
3635    return;
3636  }
3637
3638  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3639  if (!VDecl) {
3640    if (getLangOptions().CPlusPlus &&
3641        RealDecl->getLexicalDeclContext()->isRecord() &&
3642        isa<NamedDecl>(RealDecl))
3643      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3644        << cast<NamedDecl>(RealDecl)->getDeclName();
3645    else
3646      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3647    RealDecl->setInvalidDecl();
3648    return;
3649  }
3650
3651  // A definition must end up with a complete type, which means it must be
3652  // complete with the restriction that an array type might be completed by the
3653  // initializer; note that later code assumes this restriction.
3654  QualType BaseDeclType = VDecl->getType();
3655  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3656    BaseDeclType = Array->getElementType();
3657  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3658                          diag::err_typecheck_decl_incomplete_type)) {
3659    RealDecl->setInvalidDecl();
3660    return;
3661  }
3662
3663  // The variable can not have an abstract class type.
3664  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3665                             diag::err_abstract_type_in_decl,
3666                             AbstractVariableType))
3667    VDecl->setInvalidDecl();
3668
3669  const VarDecl *Def;
3670  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3671    Diag(VDecl->getLocation(), diag::err_redefinition)
3672      << VDecl->getDeclName();
3673    Diag(Def->getLocation(), diag::note_previous_definition);
3674    VDecl->setInvalidDecl();
3675    return;
3676  }
3677
3678  // Take ownership of the expression, now that we're sure we have somewhere
3679  // to put it.
3680  Expr *Init = init.takeAs<Expr>();
3681  assert(Init && "missing initializer");
3682
3683  // Capture the variable that is being initialized and the style of
3684  // initialization.
3685  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3686
3687  // FIXME: Poor source location information.
3688  InitializationKind Kind
3689    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3690                                                   Init->getLocStart(),
3691                                                   Init->getLocEnd())
3692                : InitializationKind::CreateCopy(VDecl->getLocation(),
3693                                                 Init->getLocStart());
3694
3695  // Get the decls type and save a reference for later, since
3696  // CheckInitializerTypes may change it.
3697  QualType DclT = VDecl->getType(), SavT = DclT;
3698  if (VDecl->isBlockVarDecl()) {
3699    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3700      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3701      VDecl->setInvalidDecl();
3702    } else if (!VDecl->isInvalidDecl()) {
3703      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3704      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3705                                          MultiExprArg(*this, (void**)&Init, 1),
3706                                                &DclT);
3707      if (Result.isInvalid()) {
3708        VDecl->setInvalidDecl();
3709        return;
3710      }
3711
3712      Init = Result.takeAs<Expr>();
3713
3714      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3715      // Don't check invalid declarations to avoid emitting useless diagnostics.
3716      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3717        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3718          CheckForConstantInitializer(Init, DclT);
3719      }
3720    }
3721  } else if (VDecl->isStaticDataMember() &&
3722             VDecl->getLexicalDeclContext()->isRecord()) {
3723    // This is an in-class initialization for a static data member, e.g.,
3724    //
3725    // struct S {
3726    //   static const int value = 17;
3727    // };
3728
3729    // Attach the initializer
3730    VDecl->setInit(Init);
3731
3732    // C++ [class.mem]p4:
3733    //   A member-declarator can contain a constant-initializer only
3734    //   if it declares a static member (9.4) of const integral or
3735    //   const enumeration type, see 9.4.2.
3736    QualType T = VDecl->getType();
3737    if (!T->isDependentType() &&
3738        (!Context.getCanonicalType(T).isConstQualified() ||
3739         !T->isIntegralType())) {
3740      Diag(VDecl->getLocation(), diag::err_member_initialization)
3741        << VDecl->getDeclName() << Init->getSourceRange();
3742      VDecl->setInvalidDecl();
3743    } else {
3744      // C++ [class.static.data]p4:
3745      //   If a static data member is of const integral or const
3746      //   enumeration type, its declaration in the class definition
3747      //   can specify a constant-initializer which shall be an
3748      //   integral constant expression (5.19).
3749      if (!Init->isTypeDependent() &&
3750          !Init->getType()->isIntegralType()) {
3751        // We have a non-dependent, non-integral or enumeration type.
3752        Diag(Init->getSourceRange().getBegin(),
3753             diag::err_in_class_initializer_non_integral_type)
3754          << Init->getType() << Init->getSourceRange();
3755        VDecl->setInvalidDecl();
3756      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3757        // Check whether the expression is a constant expression.
3758        llvm::APSInt Value;
3759        SourceLocation Loc;
3760        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3761          Diag(Loc, diag::err_in_class_initializer_non_constant)
3762            << Init->getSourceRange();
3763          VDecl->setInvalidDecl();
3764        } else if (!VDecl->getType()->isDependentType())
3765          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3766      }
3767    }
3768  } else if (VDecl->isFileVarDecl()) {
3769    if (VDecl->getStorageClass() == VarDecl::Extern)
3770      Diag(VDecl->getLocation(), diag::warn_extern_init);
3771    if (!VDecl->isInvalidDecl()) {
3772      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3773      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3774                                          MultiExprArg(*this, (void**)&Init, 1),
3775                                                &DclT);
3776      if (Result.isInvalid()) {
3777        VDecl->setInvalidDecl();
3778        return;
3779      }
3780
3781      Init = Result.takeAs<Expr>();
3782    }
3783
3784    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3785    // Don't check invalid declarations to avoid emitting useless diagnostics.
3786    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3787      // C99 6.7.8p4. All file scoped initializers need to be constant.
3788      CheckForConstantInitializer(Init, DclT);
3789    }
3790  }
3791  // If the type changed, it means we had an incomplete type that was
3792  // completed by the initializer. For example:
3793  //   int ary[] = { 1, 3, 5 };
3794  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3795  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3796    VDecl->setType(DclT);
3797    Init->setType(DclT);
3798  }
3799
3800  Init = MaybeCreateCXXExprWithTemporaries(Init);
3801  // Attach the initializer to the decl.
3802  VDecl->setInit(Init);
3803
3804  if (getLangOptions().CPlusPlus) {
3805    // Make sure we mark the destructor as used if necessary.
3806    QualType InitType = VDecl->getType();
3807    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3808      InitType = Context.getBaseElementType(Array);
3809    if (const RecordType *Record = InitType->getAs<RecordType>())
3810      FinalizeVarWithDestructor(VDecl, Record);
3811  }
3812
3813  return;
3814}
3815
3816/// ActOnInitializerError - Given that there was an error parsing an
3817/// initializer for the given declaration, try to return to some form
3818/// of sanity.
3819void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3820  // Our main concern here is re-establishing invariants like "a
3821  // variable's type is either dependent or complete".
3822  Decl *D = dcl.getAs<Decl>();
3823  if (!D || D->isInvalidDecl()) return;
3824
3825  VarDecl *VD = dyn_cast<VarDecl>(D);
3826  if (!VD) return;
3827
3828  QualType Ty = VD->getType();
3829  if (Ty->isDependentType()) return;
3830
3831  // Require a complete type.
3832  if (RequireCompleteType(VD->getLocation(),
3833                          Context.getBaseElementType(Ty),
3834                          diag::err_typecheck_decl_incomplete_type)) {
3835    VD->setInvalidDecl();
3836    return;
3837  }
3838
3839  // Require an abstract type.
3840  if (RequireNonAbstractType(VD->getLocation(), Ty,
3841                             diag::err_abstract_type_in_decl,
3842                             AbstractVariableType)) {
3843    VD->setInvalidDecl();
3844    return;
3845  }
3846
3847  // Don't bother complaining about constructors or destructors,
3848  // though.
3849}
3850
3851void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3852                                  bool TypeContainsUndeducedAuto) {
3853  Decl *RealDecl = dcl.getAs<Decl>();
3854
3855  // If there is no declaration, there was an error parsing it. Just ignore it.
3856  if (RealDecl == 0)
3857    return;
3858
3859  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3860    QualType Type = Var->getType();
3861
3862    // C++0x [dcl.spec.auto]p3
3863    if (TypeContainsUndeducedAuto) {
3864      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3865        << Var->getDeclName() << Type;
3866      Var->setInvalidDecl();
3867      return;
3868    }
3869
3870    switch (Var->isThisDeclarationADefinition()) {
3871    case VarDecl::Definition:
3872      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3873        break;
3874
3875      // We have an out-of-line definition of a static data member
3876      // that has an in-class initializer, so we type-check this like
3877      // a declaration.
3878      //
3879      // Fall through
3880
3881    case VarDecl::DeclarationOnly:
3882      // It's only a declaration.
3883
3884      // Block scope. C99 6.7p7: If an identifier for an object is
3885      // declared with no linkage (C99 6.2.2p6), the type for the
3886      // object shall be complete.
3887      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3888          !Var->getLinkage() && !Var->isInvalidDecl() &&
3889          RequireCompleteType(Var->getLocation(), Type,
3890                              diag::err_typecheck_decl_incomplete_type))
3891        Var->setInvalidDecl();
3892
3893      // Make sure that the type is not abstract.
3894      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3895          RequireNonAbstractType(Var->getLocation(), Type,
3896                                 diag::err_abstract_type_in_decl,
3897                                 AbstractVariableType))
3898        Var->setInvalidDecl();
3899      return;
3900
3901    case VarDecl::TentativeDefinition:
3902      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3903      // object that has file scope without an initializer, and without a
3904      // storage-class specifier or with the storage-class specifier "static",
3905      // constitutes a tentative definition. Note: A tentative definition with
3906      // external linkage is valid (C99 6.2.2p5).
3907      if (!Var->isInvalidDecl()) {
3908        if (const IncompleteArrayType *ArrayT
3909                                    = Context.getAsIncompleteArrayType(Type)) {
3910          if (RequireCompleteType(Var->getLocation(),
3911                                  ArrayT->getElementType(),
3912                                  diag::err_illegal_decl_array_incomplete_type))
3913            Var->setInvalidDecl();
3914        } else if (Var->getStorageClass() == VarDecl::Static) {
3915          // C99 6.9.2p3: If the declaration of an identifier for an object is
3916          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3917          // declared type shall not be an incomplete type.
3918          // NOTE: code such as the following
3919          //     static struct s;
3920          //     struct s { int a; };
3921          // is accepted by gcc. Hence here we issue a warning instead of
3922          // an error and we do not invalidate the static declaration.
3923          // NOTE: to avoid multiple warnings, only check the first declaration.
3924          if (Var->getPreviousDeclaration() == 0)
3925            RequireCompleteType(Var->getLocation(), Type,
3926                                diag::ext_typecheck_decl_incomplete_type);
3927        }
3928      }
3929
3930      // Record the tentative definition; we're done.
3931      if (!Var->isInvalidDecl())
3932        TentativeDefinitions.push_back(Var);
3933      return;
3934    }
3935
3936    // Provide a specific diagnostic for uninitialized variable
3937    // definitions with incomplete array type.
3938    if (Type->isIncompleteArrayType()) {
3939      Diag(Var->getLocation(),
3940           diag::err_typecheck_incomplete_array_needs_initializer);
3941      Var->setInvalidDecl();
3942      return;
3943    }
3944
3945   // Provide a specific diagnostic for uninitialized variable
3946   // definitions with reference type.
3947   if (Type->isReferenceType()) {
3948     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3949       << Var->getDeclName()
3950       << SourceRange(Var->getLocation(), Var->getLocation());
3951     Var->setInvalidDecl();
3952     return;
3953   }
3954
3955    // Do not attempt to type-check the default initializer for a
3956    // variable with dependent type.
3957    if (Type->isDependentType())
3958      return;
3959
3960    if (Var->isInvalidDecl())
3961      return;
3962
3963    if (RequireCompleteType(Var->getLocation(),
3964                            Context.getBaseElementType(Type),
3965                            diag::err_typecheck_decl_incomplete_type)) {
3966      Var->setInvalidDecl();
3967      return;
3968    }
3969
3970    // The variable can not have an abstract class type.
3971    if (RequireNonAbstractType(Var->getLocation(), Type,
3972                               diag::err_abstract_type_in_decl,
3973                               AbstractVariableType)) {
3974      Var->setInvalidDecl();
3975      return;
3976    }
3977
3978    const RecordType *Record
3979      = Context.getBaseElementType(Type)->getAs<RecordType>();
3980    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
3981        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
3982      // C++03 [dcl.init]p9:
3983      //   If no initializer is specified for an object, and the
3984      //   object is of (possibly cv-qualified) non-POD class type (or
3985      //   array thereof), the object shall be default-initialized; if
3986      //   the object is of const-qualified type, the underlying class
3987      //   type shall have a user-declared default
3988      //   constructor. Otherwise, if no initializer is specified for
3989      //   a non- static object, the object and its subobjects, if
3990      //   any, have an indeterminate initial value); if the object
3991      //   or any of its subobjects are of const-qualified type, the
3992      //   program is ill-formed.
3993      // FIXME: DPG thinks it is very fishy that C++0x disables this.
3994    } else {
3995      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3996      InitializationKind Kind
3997        = InitializationKind::CreateDefault(Var->getLocation());
3998
3999      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4000      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4001                                              MultiExprArg(*this, 0, 0));
4002      if (Init.isInvalid())
4003        Var->setInvalidDecl();
4004      else if (Init.get())
4005        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4006    }
4007
4008    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4009      FinalizeVarWithDestructor(Var, Record);
4010  }
4011}
4012
4013Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4014                                                   DeclPtrTy *Group,
4015                                                   unsigned NumDecls) {
4016  llvm::SmallVector<Decl*, 8> Decls;
4017
4018  if (DS.isTypeSpecOwned())
4019    Decls.push_back((Decl*)DS.getTypeRep());
4020
4021  for (unsigned i = 0; i != NumDecls; ++i)
4022    if (Decl *D = Group[i].getAs<Decl>())
4023      Decls.push_back(D);
4024
4025  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4026                                                   Decls.data(), Decls.size()));
4027}
4028
4029
4030/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4031/// to introduce parameters into function prototype scope.
4032Sema::DeclPtrTy
4033Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4034  const DeclSpec &DS = D.getDeclSpec();
4035
4036  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4037  VarDecl::StorageClass StorageClass = VarDecl::None;
4038  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4039    StorageClass = VarDecl::Register;
4040  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4041    Diag(DS.getStorageClassSpecLoc(),
4042         diag::err_invalid_storage_class_in_func_decl);
4043    D.getMutableDeclSpec().ClearStorageClassSpecs();
4044  }
4045
4046  if (D.getDeclSpec().isThreadSpecified())
4047    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4048
4049  DiagnoseFunctionSpecifiers(D);
4050
4051  // Check that there are no default arguments inside the type of this
4052  // parameter (C++ only).
4053  if (getLangOptions().CPlusPlus)
4054    CheckExtraCXXDefaultArguments(D);
4055
4056  TypeSourceInfo *TInfo = 0;
4057  TagDecl *OwnedDecl = 0;
4058  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4059
4060  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4061    // C++ [dcl.fct]p6:
4062    //   Types shall not be defined in return or parameter types.
4063    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4064      << Context.getTypeDeclType(OwnedDecl);
4065  }
4066
4067  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4068  IdentifierInfo *II = D.getIdentifier();
4069  if (II) {
4070    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4071                   ForRedeclaration);
4072    LookupName(R, S);
4073    if (R.isSingleResult()) {
4074      NamedDecl *PrevDecl = R.getFoundDecl();
4075      if (PrevDecl->isTemplateParameter()) {
4076        // Maybe we will complain about the shadowed template parameter.
4077        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4078        // Just pretend that we didn't see the previous declaration.
4079        PrevDecl = 0;
4080      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4081        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4082        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4083
4084        // Recover by removing the name
4085        II = 0;
4086        D.SetIdentifier(0, D.getIdentifierLoc());
4087        D.setInvalidType(true);
4088      }
4089    }
4090  }
4091
4092  // Parameters can not be abstract class types.
4093  // For record types, this is done by the AbstractClassUsageDiagnoser once
4094  // the class has been completely parsed.
4095  if (!CurContext->isRecord() &&
4096      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4097                             diag::err_abstract_type_in_decl,
4098                             AbstractParamType))
4099    D.setInvalidType(true);
4100
4101  QualType T = adjustParameterType(parmDeclType);
4102
4103  // Temporarily put parameter variables in the translation unit, not
4104  // the enclosing context.  This prevents them from accidentally
4105  // looking like class members in C++.
4106  DeclContext *DC = Context.getTranslationUnitDecl();
4107
4108  ParmVarDecl *New
4109    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
4110                          T, TInfo, StorageClass, 0);
4111
4112  if (D.isInvalidType())
4113    New->setInvalidDecl();
4114
4115  // Parameter declarators cannot be interface types. All ObjC objects are
4116  // passed by reference.
4117  if (T->isObjCInterfaceType()) {
4118    Diag(D.getIdentifierLoc(),
4119         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4120    New->setInvalidDecl();
4121  }
4122
4123  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4124  if (D.getCXXScopeSpec().isSet()) {
4125    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4126      << D.getCXXScopeSpec().getRange();
4127    New->setInvalidDecl();
4128  }
4129
4130  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4131  // duration shall not be qualified by an address-space qualifier."
4132  // Since all parameters have automatic store duration, they can not have
4133  // an address space.
4134  if (T.getAddressSpace() != 0) {
4135    Diag(D.getIdentifierLoc(),
4136         diag::err_arg_with_address_space);
4137    New->setInvalidDecl();
4138  }
4139
4140
4141  // Add the parameter declaration into this scope.
4142  S->AddDecl(DeclPtrTy::make(New));
4143  if (II)
4144    IdResolver.AddDecl(New);
4145
4146  ProcessDeclAttributes(S, New, D);
4147
4148  if (New->hasAttr<BlocksAttr>()) {
4149    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4150  }
4151  return DeclPtrTy::make(New);
4152}
4153
4154void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4155  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4156  Param->setDeclContext(CurContext);
4157}
4158
4159void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4160                                           SourceLocation LocAfterDecls) {
4161  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4162         "Not a function declarator!");
4163  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4164
4165  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4166  // for a K&R function.
4167  if (!FTI.hasPrototype) {
4168    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4169      --i;
4170      if (FTI.ArgInfo[i].Param == 0) {
4171        llvm::SmallString<256> Code;
4172        llvm::raw_svector_ostream(Code) << "  int "
4173                                        << FTI.ArgInfo[i].Ident->getName()
4174                                        << ";\n";
4175        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4176          << FTI.ArgInfo[i].Ident
4177          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4178
4179        // Implicitly declare the argument as type 'int' for lack of a better
4180        // type.
4181        DeclSpec DS;
4182        const char* PrevSpec; // unused
4183        unsigned DiagID; // unused
4184        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4185                           PrevSpec, DiagID);
4186        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4187        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4188        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4189      }
4190    }
4191  }
4192}
4193
4194Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4195                                              Declarator &D) {
4196  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4197  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4198         "Not a function declarator!");
4199  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4200
4201  if (FTI.hasPrototype) {
4202    // FIXME: Diagnose arguments without names in C.
4203  }
4204
4205  Scope *ParentScope = FnBodyScope->getParent();
4206
4207  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4208                                  MultiTemplateParamsArg(*this),
4209                                  /*IsFunctionDefinition=*/true);
4210  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4211}
4212
4213static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4214  // Don't warn about invalid declarations.
4215  if (FD->isInvalidDecl())
4216    return false;
4217
4218  // Or declarations that aren't global.
4219  if (!FD->isGlobal())
4220    return false;
4221
4222  // Don't warn about C++ member functions.
4223  if (isa<CXXMethodDecl>(FD))
4224    return false;
4225
4226  // Don't warn about 'main'.
4227  if (FD->isMain())
4228    return false;
4229
4230  // Don't warn about inline functions.
4231  if (FD->isInlineSpecified())
4232    return false;
4233
4234  // Don't warn about function templates.
4235  if (FD->getDescribedFunctionTemplate())
4236    return false;
4237
4238  // Don't warn about function template specializations.
4239  if (FD->isFunctionTemplateSpecialization())
4240    return false;
4241
4242  bool MissingPrototype = true;
4243  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4244       Prev; Prev = Prev->getPreviousDeclaration()) {
4245    // Ignore any declarations that occur in function or method
4246    // scope, because they aren't visible from the header.
4247    if (Prev->getDeclContext()->isFunctionOrMethod())
4248      continue;
4249
4250    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4251    break;
4252  }
4253
4254  return MissingPrototype;
4255}
4256
4257Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4258  // Clear the last template instantiation error context.
4259  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4260
4261  if (!D)
4262    return D;
4263  FunctionDecl *FD = 0;
4264
4265  if (FunctionTemplateDecl *FunTmpl
4266        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4267    FD = FunTmpl->getTemplatedDecl();
4268  else
4269    FD = cast<FunctionDecl>(D.getAs<Decl>());
4270
4271  // Enter a new function scope
4272  PushFunctionScope();
4273
4274  // See if this is a redefinition.
4275  // But don't complain if we're in GNU89 mode and the previous definition
4276  // was an extern inline function.
4277  const FunctionDecl *Definition;
4278  if (FD->getBody(Definition) &&
4279      !canRedefineFunction(Definition, getLangOptions())) {
4280    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4281    Diag(Definition->getLocation(), diag::note_previous_definition);
4282  }
4283
4284  // Builtin functions cannot be defined.
4285  if (unsigned BuiltinID = FD->getBuiltinID()) {
4286    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4287      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4288      FD->setInvalidDecl();
4289    }
4290  }
4291
4292  // The return type of a function definition must be complete
4293  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4294  QualType ResultType = FD->getResultType();
4295  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4296      !FD->isInvalidDecl() &&
4297      RequireCompleteType(FD->getLocation(), ResultType,
4298                          diag::err_func_def_incomplete_result))
4299    FD->setInvalidDecl();
4300
4301  // GNU warning -Wmissing-prototypes:
4302  //   Warn if a global function is defined without a previous
4303  //   prototype declaration. This warning is issued even if the
4304  //   definition itself provides a prototype. The aim is to detect
4305  //   global functions that fail to be declared in header files.
4306  if (ShouldWarnAboutMissingPrototype(FD))
4307    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4308
4309  if (FnBodyScope)
4310    PushDeclContext(FnBodyScope, FD);
4311
4312  // Check the validity of our function parameters
4313  CheckParmsForFunctionDef(FD);
4314
4315  bool ShouldCheckShadow =
4316    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4317
4318  // Introduce our parameters into the function scope
4319  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4320    ParmVarDecl *Param = FD->getParamDecl(p);
4321    Param->setOwningFunction(FD);
4322
4323    // If this has an identifier, add it to the scope stack.
4324    if (Param->getIdentifier() && FnBodyScope) {
4325      if (ShouldCheckShadow)
4326        CheckShadow(FnBodyScope, Param);
4327
4328      PushOnScopeChains(Param, FnBodyScope);
4329    }
4330  }
4331
4332  // Checking attributes of current function definition
4333  // dllimport attribute.
4334  if (FD->getAttr<DLLImportAttr>() &&
4335      (!FD->getAttr<DLLExportAttr>())) {
4336    // dllimport attribute cannot be applied to definition.
4337    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4338      Diag(FD->getLocation(),
4339           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4340        << "dllimport";
4341      FD->setInvalidDecl();
4342      return DeclPtrTy::make(FD);
4343    }
4344
4345    // Visual C++ appears to not think this is an issue, so only issue
4346    // a warning when Microsoft extensions are disabled.
4347    if (!LangOpts.Microsoft) {
4348      // If a symbol previously declared dllimport is later defined, the
4349      // attribute is ignored in subsequent references, and a warning is
4350      // emitted.
4351      Diag(FD->getLocation(),
4352           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4353        << FD->getNameAsCString() << "dllimport";
4354    }
4355  }
4356  return DeclPtrTy::make(FD);
4357}
4358
4359Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4360  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4361}
4362
4363Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4364                                              bool IsInstantiation) {
4365  Decl *dcl = D.getAs<Decl>();
4366  Stmt *Body = BodyArg.takeAs<Stmt>();
4367
4368  FunctionDecl *FD = 0;
4369  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4370  if (FunTmpl)
4371    FD = FunTmpl->getTemplatedDecl();
4372  else
4373    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4374
4375  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4376
4377  if (FD) {
4378    FD->setBody(Body);
4379    if (FD->isMain()) {
4380      // C and C++ allow for main to automagically return 0.
4381      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4382      FD->setHasImplicitReturnZero(true);
4383      WP.disableCheckFallThrough();
4384    }
4385
4386    if (!FD->isInvalidDecl())
4387      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4388
4389    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4390      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4391
4392    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4393  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4394    assert(MD == getCurMethodDecl() && "Method parsing confused");
4395    MD->setBody(Body);
4396    MD->setEndLoc(Body->getLocEnd());
4397    if (!MD->isInvalidDecl())
4398      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4399  } else {
4400    Body->Destroy(Context);
4401    return DeclPtrTy();
4402  }
4403
4404  // Verify and clean out per-function state.
4405
4406  // Check goto/label use.
4407  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4408       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4409    LabelStmt *L = I->second;
4410
4411    // Verify that we have no forward references left.  If so, there was a goto
4412    // or address of a label taken, but no definition of it.  Label fwd
4413    // definitions are indicated with a null substmt.
4414    if (L->getSubStmt() != 0)
4415      continue;
4416
4417    // Emit error.
4418    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4419
4420    // At this point, we have gotos that use the bogus label.  Stitch it into
4421    // the function body so that they aren't leaked and that the AST is well
4422    // formed.
4423    if (Body == 0) {
4424      // The whole function wasn't parsed correctly, just delete this.
4425      L->Destroy(Context);
4426      continue;
4427    }
4428
4429    // Otherwise, the body is valid: we want to stitch the label decl into the
4430    // function somewhere so that it is properly owned and so that the goto
4431    // has a valid target.  Do this by creating a new compound stmt with the
4432    // label in it.
4433
4434    // Give the label a sub-statement.
4435    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4436
4437    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4438                               cast<CXXTryStmt>(Body)->getTryBlock() :
4439                               cast<CompoundStmt>(Body);
4440    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4441                                          Compound->body_end());
4442    Elements.push_back(L);
4443    Compound->setStmts(Context, Elements.data(), Elements.size());
4444  }
4445
4446  if (Body) {
4447    // C++ constructors that have function-try-blocks can't have return
4448    // statements in the handlers of that block. (C++ [except.handle]p14)
4449    // Verify this.
4450    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4451      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4452
4453    // Verify that that gotos and switch cases don't jump into scopes illegally.
4454    // Verify that that gotos and switch cases don't jump into scopes illegally.
4455    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4456      DiagnoseInvalidJumps(Body);
4457
4458    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4459      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4460                                             Destructor->getParent());
4461
4462    // If any errors have occurred, clear out any temporaries that may have
4463    // been leftover. This ensures that these temporaries won't be picked up for
4464    // deletion in some later function.
4465    if (PP.getDiagnostics().hasErrorOccurred())
4466      ExprTemporaries.clear();
4467    else if (!isa<FunctionTemplateDecl>(dcl)) {
4468      // Since the body is valid, issue any analysis-based warnings that are
4469      // enabled.
4470      QualType ResultType;
4471      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4472        ResultType = FD->getResultType();
4473      }
4474      else {
4475        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4476        ResultType = MD->getResultType();
4477      }
4478      AnalysisWarnings.IssueWarnings(WP, dcl);
4479    }
4480
4481    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4482  }
4483
4484  if (!IsInstantiation)
4485    PopDeclContext();
4486
4487  PopFunctionOrBlockScope();
4488
4489  // If any errors have occurred, clear out any temporaries that may have
4490  // been leftover. This ensures that these temporaries won't be picked up for
4491  // deletion in some later function.
4492  if (getDiagnostics().hasErrorOccurred())
4493    ExprTemporaries.clear();
4494
4495  return D;
4496}
4497
4498/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4499/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4500NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4501                                          IdentifierInfo &II, Scope *S) {
4502  // Before we produce a declaration for an implicitly defined
4503  // function, see whether there was a locally-scoped declaration of
4504  // this name as a function or variable. If so, use that
4505  // (non-visible) declaration, and complain about it.
4506  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4507    = LocallyScopedExternalDecls.find(&II);
4508  if (Pos != LocallyScopedExternalDecls.end()) {
4509    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4510    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4511    return Pos->second;
4512  }
4513
4514  // Extension in C99.  Legal in C90, but warn about it.
4515  if (II.getName().startswith("__builtin_"))
4516    Diag(Loc, diag::warn_builtin_unknown) << &II;
4517  else if (getLangOptions().C99)
4518    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4519  else
4520    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4521
4522  // Set a Declarator for the implicit definition: int foo();
4523  const char *Dummy;
4524  DeclSpec DS;
4525  unsigned DiagID;
4526  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4527  Error = Error; // Silence warning.
4528  assert(!Error && "Error setting up implicit decl!");
4529  Declarator D(DS, Declarator::BlockContext);
4530  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4531                                             0, 0, false, SourceLocation(),
4532                                             false, 0,0,0, Loc, Loc, D),
4533                SourceLocation());
4534  D.SetIdentifier(&II, Loc);
4535
4536  // Insert this function into translation-unit scope.
4537
4538  DeclContext *PrevDC = CurContext;
4539  CurContext = Context.getTranslationUnitDecl();
4540
4541  FunctionDecl *FD =
4542 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4543  FD->setImplicit();
4544
4545  CurContext = PrevDC;
4546
4547  AddKnownFunctionAttributes(FD);
4548
4549  return FD;
4550}
4551
4552/// \brief Adds any function attributes that we know a priori based on
4553/// the declaration of this function.
4554///
4555/// These attributes can apply both to implicitly-declared builtins
4556/// (like __builtin___printf_chk) or to library-declared functions
4557/// like NSLog or printf.
4558void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4559  if (FD->isInvalidDecl())
4560    return;
4561
4562  // If this is a built-in function, map its builtin attributes to
4563  // actual attributes.
4564  if (unsigned BuiltinID = FD->getBuiltinID()) {
4565    // Handle printf-formatting attributes.
4566    unsigned FormatIdx;
4567    bool HasVAListArg;
4568    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4569      if (!FD->getAttr<FormatAttr>())
4570        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4571                                               HasVAListArg ? 0 : FormatIdx+2));
4572    }
4573
4574    // Mark const if we don't care about errno and that is the only
4575    // thing preventing the function from being const. This allows
4576    // IRgen to use LLVM intrinsics for such functions.
4577    if (!getLangOptions().MathErrno &&
4578        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4579      if (!FD->getAttr<ConstAttr>())
4580        FD->addAttr(::new (Context) ConstAttr());
4581    }
4582
4583    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4584      FD->setType(Context.getNoReturnType(FD->getType()));
4585    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4586      FD->addAttr(::new (Context) NoThrowAttr());
4587    if (Context.BuiltinInfo.isConst(BuiltinID))
4588      FD->addAttr(::new (Context) ConstAttr());
4589  }
4590
4591  IdentifierInfo *Name = FD->getIdentifier();
4592  if (!Name)
4593    return;
4594  if ((!getLangOptions().CPlusPlus &&
4595       FD->getDeclContext()->isTranslationUnit()) ||
4596      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4597       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4598       LinkageSpecDecl::lang_c)) {
4599    // Okay: this could be a libc/libm/Objective-C function we know
4600    // about.
4601  } else
4602    return;
4603
4604  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4605    // FIXME: NSLog and NSLogv should be target specific
4606    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4607      // FIXME: We known better than our headers.
4608      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4609    } else
4610      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4611                                             Name->isStr("NSLogv") ? 0 : 2));
4612  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4613    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4614    // target-specific builtins, perhaps?
4615    if (!FD->getAttr<FormatAttr>())
4616      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4617                                             Name->isStr("vasprintf") ? 0 : 3));
4618  }
4619}
4620
4621TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4622                                    TypeSourceInfo *TInfo) {
4623  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4624  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4625
4626  if (!TInfo) {
4627    assert(D.isInvalidType() && "no declarator info for valid type");
4628    TInfo = Context.getTrivialTypeSourceInfo(T);
4629  }
4630
4631  // Scope manipulation handled by caller.
4632  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4633                                           D.getIdentifierLoc(),
4634                                           D.getIdentifier(),
4635                                           TInfo);
4636
4637  if (const TagType *TT = T->getAs<TagType>()) {
4638    TagDecl *TD = TT->getDecl();
4639
4640    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4641    // keep track of the TypedefDecl.
4642    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4643      TD->setTypedefForAnonDecl(NewTD);
4644  }
4645
4646  if (D.isInvalidType())
4647    NewTD->setInvalidDecl();
4648  return NewTD;
4649}
4650
4651
4652/// \brief Determine whether a tag with a given kind is acceptable
4653/// as a redeclaration of the given tag declaration.
4654///
4655/// \returns true if the new tag kind is acceptable, false otherwise.
4656bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4657                                        TagDecl::TagKind NewTag,
4658                                        SourceLocation NewTagLoc,
4659                                        const IdentifierInfo &Name) {
4660  // C++ [dcl.type.elab]p3:
4661  //   The class-key or enum keyword present in the
4662  //   elaborated-type-specifier shall agree in kind with the
4663  //   declaration to which the name in theelaborated-type-specifier
4664  //   refers. This rule also applies to the form of
4665  //   elaborated-type-specifier that declares a class-name or
4666  //   friend class since it can be construed as referring to the
4667  //   definition of the class. Thus, in any
4668  //   elaborated-type-specifier, the enum keyword shall be used to
4669  //   refer to an enumeration (7.2), the union class-keyshall be
4670  //   used to refer to a union (clause 9), and either the class or
4671  //   struct class-key shall be used to refer to a class (clause 9)
4672  //   declared using the class or struct class-key.
4673  TagDecl::TagKind OldTag = Previous->getTagKind();
4674  if (OldTag == NewTag)
4675    return true;
4676
4677  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4678      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4679    // Warn about the struct/class tag mismatch.
4680    bool isTemplate = false;
4681    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4682      isTemplate = Record->getDescribedClassTemplate();
4683
4684    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4685      << (NewTag == TagDecl::TK_class)
4686      << isTemplate << &Name
4687      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4688                              OldTag == TagDecl::TK_class? "class" : "struct");
4689    Diag(Previous->getLocation(), diag::note_previous_use);
4690    return true;
4691  }
4692  return false;
4693}
4694
4695/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4696/// former case, Name will be non-null.  In the later case, Name will be null.
4697/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4698/// reference/declaration/definition of a tag.
4699Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4700                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4701                               IdentifierInfo *Name, SourceLocation NameLoc,
4702                               AttributeList *Attr, AccessSpecifier AS,
4703                               MultiTemplateParamsArg TemplateParameterLists,
4704                               bool &OwnedDecl, bool &IsDependent) {
4705  // If this is not a definition, it must have a name.
4706  assert((Name != 0 || TUK == TUK_Definition) &&
4707         "Nameless record must be a definition!");
4708
4709  OwnedDecl = false;
4710  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4711
4712  // FIXME: Check explicit specializations more carefully.
4713  bool isExplicitSpecialization = false;
4714  if (TUK != TUK_Reference) {
4715    if (TemplateParameterList *TemplateParams
4716          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4717                        (TemplateParameterList**)TemplateParameterLists.get(),
4718                                              TemplateParameterLists.size(),
4719                                                    isExplicitSpecialization)) {
4720      if (TemplateParams->size() > 0) {
4721        // This is a declaration or definition of a class template (which may
4722        // be a member of another template).
4723        OwnedDecl = false;
4724        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4725                                               SS, Name, NameLoc, Attr,
4726                                               TemplateParams,
4727                                               AS);
4728        TemplateParameterLists.release();
4729        return Result.get();
4730      } else {
4731        // The "template<>" header is extraneous.
4732        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4733          << ElaboratedType::getNameForTagKind(Kind) << Name;
4734        isExplicitSpecialization = true;
4735      }
4736    }
4737
4738    TemplateParameterLists.release();
4739  }
4740
4741  DeclContext *SearchDC = CurContext;
4742  DeclContext *DC = CurContext;
4743  bool isStdBadAlloc = false;
4744  bool Invalid = false;
4745
4746  RedeclarationKind Redecl = ForRedeclaration;
4747  if (TUK == TUK_Friend || TUK == TUK_Reference)
4748    Redecl = NotForRedeclaration;
4749
4750  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4751
4752  if (Name && SS.isNotEmpty()) {
4753    // We have a nested-name tag ('struct foo::bar').
4754
4755    // Check for invalid 'foo::'.
4756    if (SS.isInvalid()) {
4757      Name = 0;
4758      goto CreateNewDecl;
4759    }
4760
4761    // If this is a friend or a reference to a class in a dependent
4762    // context, don't try to make a decl for it.
4763    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4764      DC = computeDeclContext(SS, false);
4765      if (!DC) {
4766        IsDependent = true;
4767        return DeclPtrTy();
4768      }
4769    }
4770
4771    if (RequireCompleteDeclContext(SS))
4772      return DeclPtrTy::make((Decl *)0);
4773
4774    DC = computeDeclContext(SS, true);
4775    SearchDC = DC;
4776    // Look-up name inside 'foo::'.
4777    LookupQualifiedName(Previous, DC);
4778
4779    if (Previous.isAmbiguous())
4780      return DeclPtrTy();
4781
4782    if (Previous.empty()) {
4783      // Name lookup did not find anything. However, if the
4784      // nested-name-specifier refers to the current instantiation,
4785      // and that current instantiation has any dependent base
4786      // classes, we might find something at instantiation time: treat
4787      // this as a dependent elaborated-type-specifier.
4788      if (Previous.wasNotFoundInCurrentInstantiation()) {
4789        IsDependent = true;
4790        return DeclPtrTy();
4791      }
4792
4793      // A tag 'foo::bar' must already exist.
4794      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4795      Name = 0;
4796      Invalid = true;
4797      goto CreateNewDecl;
4798    }
4799  } else if (Name) {
4800    // If this is a named struct, check to see if there was a previous forward
4801    // declaration or definition.
4802    // FIXME: We're looking into outer scopes here, even when we
4803    // shouldn't be. Doing so can result in ambiguities that we
4804    // shouldn't be diagnosing.
4805    LookupName(Previous, S);
4806
4807    // Note:  there used to be some attempt at recovery here.
4808    if (Previous.isAmbiguous())
4809      return DeclPtrTy();
4810
4811    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4812      // FIXME: This makes sure that we ignore the contexts associated
4813      // with C structs, unions, and enums when looking for a matching
4814      // tag declaration or definition. See the similar lookup tweak
4815      // in Sema::LookupName; is there a better way to deal with this?
4816      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4817        SearchDC = SearchDC->getParent();
4818    }
4819  }
4820
4821  if (Previous.isSingleResult() &&
4822      Previous.getFoundDecl()->isTemplateParameter()) {
4823    // Maybe we will complain about the shadowed template parameter.
4824    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4825    // Just pretend that we didn't see the previous declaration.
4826    Previous.clear();
4827  }
4828
4829  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4830      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4831    // This is a declaration of or a reference to "std::bad_alloc".
4832    isStdBadAlloc = true;
4833
4834    if (Previous.empty() && StdBadAlloc) {
4835      // std::bad_alloc has been implicitly declared (but made invisible to
4836      // name lookup). Fill in this implicit declaration as the previous
4837      // declaration, so that the declarations get chained appropriately.
4838      Previous.addDecl(StdBadAlloc);
4839    }
4840  }
4841
4842  // If we didn't find a previous declaration, and this is a reference
4843  // (or friend reference), move to the correct scope.  In C++, we
4844  // also need to do a redeclaration lookup there, just in case
4845  // there's a shadow friend decl.
4846  if (Name && Previous.empty() &&
4847      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4848    if (Invalid) goto CreateNewDecl;
4849    assert(SS.isEmpty());
4850
4851    if (TUK == TUK_Reference) {
4852      // C++ [basic.scope.pdecl]p5:
4853      //   -- for an elaborated-type-specifier of the form
4854      //
4855      //          class-key identifier
4856      //
4857      //      if the elaborated-type-specifier is used in the
4858      //      decl-specifier-seq or parameter-declaration-clause of a
4859      //      function defined in namespace scope, the identifier is
4860      //      declared as a class-name in the namespace that contains
4861      //      the declaration; otherwise, except as a friend
4862      //      declaration, the identifier is declared in the smallest
4863      //      non-class, non-function-prototype scope that contains the
4864      //      declaration.
4865      //
4866      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4867      // C structs and unions.
4868      //
4869      // It is an error in C++ to declare (rather than define) an enum
4870      // type, including via an elaborated type specifier.  We'll
4871      // diagnose that later; for now, declare the enum in the same
4872      // scope as we would have picked for any other tag type.
4873      //
4874      // GNU C also supports this behavior as part of its incomplete
4875      // enum types extension, while GNU C++ does not.
4876      //
4877      // Find the context where we'll be declaring the tag.
4878      // FIXME: We would like to maintain the current DeclContext as the
4879      // lexical context,
4880      while (SearchDC->isRecord())
4881        SearchDC = SearchDC->getParent();
4882
4883      // Find the scope where we'll be declaring the tag.
4884      while (S->isClassScope() ||
4885             (getLangOptions().CPlusPlus &&
4886              S->isFunctionPrototypeScope()) ||
4887             ((S->getFlags() & Scope::DeclScope) == 0) ||
4888             (S->getEntity() &&
4889              ((DeclContext *)S->getEntity())->isTransparentContext()))
4890        S = S->getParent();
4891    } else {
4892      assert(TUK == TUK_Friend);
4893      // C++ [namespace.memdef]p3:
4894      //   If a friend declaration in a non-local class first declares a
4895      //   class or function, the friend class or function is a member of
4896      //   the innermost enclosing namespace.
4897      SearchDC = SearchDC->getEnclosingNamespaceContext();
4898
4899      // Look up through our scopes until we find one with an entity which
4900      // matches our declaration context.
4901      while (S->getEntity() &&
4902             ((DeclContext *)S->getEntity())->getPrimaryContext() != SearchDC) {
4903        S = S->getParent();
4904        assert(S && "No enclosing scope matching the enclosing namespace.");
4905      }
4906    }
4907
4908    // In C++, look for a shadow friend decl.
4909    if (getLangOptions().CPlusPlus) {
4910      Previous.setRedeclarationKind(ForRedeclaration);
4911      LookupQualifiedName(Previous, SearchDC);
4912    }
4913  }
4914
4915  if (!Previous.empty()) {
4916    assert(Previous.isSingleResult());
4917    NamedDecl *PrevDecl = Previous.getFoundDecl();
4918    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4919      // If this is a use of a previous tag, or if the tag is already declared
4920      // in the same scope (so that the definition/declaration completes or
4921      // rementions the tag), reuse the decl.
4922      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4923          isDeclInScope(PrevDecl, SearchDC, S)) {
4924        // Make sure that this wasn't declared as an enum and now used as a
4925        // struct or something similar.
4926        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4927          bool SafeToContinue
4928            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4929               Kind != TagDecl::TK_enum);
4930          if (SafeToContinue)
4931            Diag(KWLoc, diag::err_use_with_wrong_tag)
4932              << Name
4933              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4934                                                  PrevTagDecl->getKindName());
4935          else
4936            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4937          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4938
4939          if (SafeToContinue)
4940            Kind = PrevTagDecl->getTagKind();
4941          else {
4942            // Recover by making this an anonymous redefinition.
4943            Name = 0;
4944            Previous.clear();
4945            Invalid = true;
4946          }
4947        }
4948
4949        if (!Invalid) {
4950          // If this is a use, just return the declaration we found.
4951
4952          // FIXME: In the future, return a variant or some other clue
4953          // for the consumer of this Decl to know it doesn't own it.
4954          // For our current ASTs this shouldn't be a problem, but will
4955          // need to be changed with DeclGroups.
4956          if (TUK == TUK_Reference || TUK == TUK_Friend)
4957            return DeclPtrTy::make(PrevTagDecl);
4958
4959          // Diagnose attempts to redefine a tag.
4960          if (TUK == TUK_Definition) {
4961            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4962              // If we're defining a specialization and the previous definition
4963              // is from an implicit instantiation, don't emit an error
4964              // here; we'll catch this in the general case below.
4965              if (!isExplicitSpecialization ||
4966                  !isa<CXXRecordDecl>(Def) ||
4967                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4968                                               == TSK_ExplicitSpecialization) {
4969                Diag(NameLoc, diag::err_redefinition) << Name;
4970                Diag(Def->getLocation(), diag::note_previous_definition);
4971                // If this is a redefinition, recover by making this
4972                // struct be anonymous, which will make any later
4973                // references get the previous definition.
4974                Name = 0;
4975                Previous.clear();
4976                Invalid = true;
4977              }
4978            } else {
4979              // If the type is currently being defined, complain
4980              // about a nested redefinition.
4981              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4982              if (Tag->isBeingDefined()) {
4983                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4984                Diag(PrevTagDecl->getLocation(),
4985                     diag::note_previous_definition);
4986                Name = 0;
4987                Previous.clear();
4988                Invalid = true;
4989              }
4990            }
4991
4992            // Okay, this is definition of a previously declared or referenced
4993            // tag PrevDecl. We're going to create a new Decl for it.
4994          }
4995        }
4996        // If we get here we have (another) forward declaration or we
4997        // have a definition.  Just create a new decl.
4998
4999      } else {
5000        // If we get here, this is a definition of a new tag type in a nested
5001        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5002        // new decl/type.  We set PrevDecl to NULL so that the entities
5003        // have distinct types.
5004        Previous.clear();
5005      }
5006      // If we get here, we're going to create a new Decl. If PrevDecl
5007      // is non-NULL, it's a definition of the tag declared by
5008      // PrevDecl. If it's NULL, we have a new definition.
5009    } else {
5010      // PrevDecl is a namespace, template, or anything else
5011      // that lives in the IDNS_Tag identifier namespace.
5012      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5013          isDeclInScope(PrevDecl, SearchDC, S)) {
5014        // The tag name clashes with a namespace name, issue an error and
5015        // recover by making this tag be anonymous.
5016        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5017        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5018        Name = 0;
5019        Previous.clear();
5020        Invalid = true;
5021      } else {
5022        // The existing declaration isn't relevant to us; we're in a
5023        // new scope, so clear out the previous declaration.
5024        Previous.clear();
5025      }
5026    }
5027  }
5028
5029CreateNewDecl:
5030
5031  TagDecl *PrevDecl = 0;
5032  if (Previous.isSingleResult())
5033    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5034
5035  // If there is an identifier, use the location of the identifier as the
5036  // location of the decl, otherwise use the location of the struct/union
5037  // keyword.
5038  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5039
5040  // Otherwise, create a new declaration. If there is a previous
5041  // declaration of the same entity, the two will be linked via
5042  // PrevDecl.
5043  TagDecl *New;
5044
5045  if (Kind == TagDecl::TK_enum) {
5046    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5047    // enum X { A, B, C } D;    D should chain to X.
5048    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5049                           cast_or_null<EnumDecl>(PrevDecl));
5050    // If this is an undefined enum, warn.
5051    if (TUK != TUK_Definition && !Invalid)  {
5052      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5053                                              : diag::ext_forward_ref_enum;
5054      Diag(Loc, DK);
5055    }
5056  } else {
5057    // struct/union/class
5058
5059    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5060    // struct X { int A; } D;    D should chain to X.
5061    if (getLangOptions().CPlusPlus) {
5062      // FIXME: Look for a way to use RecordDecl for simple structs.
5063      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5064                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5065
5066      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5067        StdBadAlloc = cast<CXXRecordDecl>(New);
5068    } else
5069      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5070                               cast_or_null<RecordDecl>(PrevDecl));
5071  }
5072
5073  // Maybe add qualifier info.
5074  if (SS.isNotEmpty()) {
5075    NestedNameSpecifier *NNS
5076      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5077    New->setQualifierInfo(NNS, SS.getRange());
5078  }
5079
5080  if (Kind != TagDecl::TK_enum) {
5081    // Handle #pragma pack: if the #pragma pack stack has non-default
5082    // alignment, make up a packed attribute for this decl. These
5083    // attributes are checked when the ASTContext lays out the
5084    // structure.
5085    //
5086    // It is important for implementing the correct semantics that this
5087    // happen here (in act on tag decl). The #pragma pack stack is
5088    // maintained as a result of parser callbacks which can occur at
5089    // many points during the parsing of a struct declaration (because
5090    // the #pragma tokens are effectively skipped over during the
5091    // parsing of the struct).
5092    if (unsigned Alignment = getPragmaPackAlignment())
5093      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5094  }
5095
5096  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5097    // C++ [dcl.typedef]p3:
5098    //   [...] Similarly, in a given scope, a class or enumeration
5099    //   shall not be declared with the same name as a typedef-name
5100    //   that is declared in that scope and refers to a type other
5101    //   than the class or enumeration itself.
5102    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5103                        ForRedeclaration);
5104    LookupName(Lookup, S);
5105    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5106    NamedDecl *PrevTypedefNamed = PrevTypedef;
5107    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5108        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5109          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5110      Diag(Loc, diag::err_tag_definition_of_typedef)
5111        << Context.getTypeDeclType(New)
5112        << PrevTypedef->getUnderlyingType();
5113      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5114      Invalid = true;
5115    }
5116  }
5117
5118  // If this is a specialization of a member class (of a class template),
5119  // check the specialization.
5120  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5121    Invalid = true;
5122
5123  if (Invalid)
5124    New->setInvalidDecl();
5125
5126  if (Attr)
5127    ProcessDeclAttributeList(S, New, Attr);
5128
5129  // If we're declaring or defining a tag in function prototype scope
5130  // in C, note that this type can only be used within the function.
5131  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5132    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5133
5134  // Set the lexical context. If the tag has a C++ scope specifier, the
5135  // lexical context will be different from the semantic context.
5136  New->setLexicalDeclContext(CurContext);
5137
5138  // Mark this as a friend decl if applicable.
5139  if (TUK == TUK_Friend)
5140    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5141
5142  // Set the access specifier.
5143  if (!Invalid && SearchDC->isRecord())
5144    SetMemberAccessSpecifier(New, PrevDecl, AS);
5145
5146  if (TUK == TUK_Definition)
5147    New->startDefinition();
5148
5149  // If this has an identifier, add it to the scope stack.
5150  if (TUK == TUK_Friend) {
5151    // We might be replacing an existing declaration in the lookup tables;
5152    // if so, borrow its access specifier.
5153    if (PrevDecl)
5154      New->setAccess(PrevDecl->getAccess());
5155
5156    DeclContext *DC = New->getDeclContext()->getLookupContext();
5157    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5158    if (Name) // can be null along some error paths
5159      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5160        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5161  } else if (Name) {
5162    S = getNonFieldDeclScope(S);
5163    PushOnScopeChains(New, S);
5164  } else {
5165    CurContext->addDecl(New);
5166  }
5167
5168  // If this is the C FILE type, notify the AST context.
5169  if (IdentifierInfo *II = New->getIdentifier())
5170    if (!New->isInvalidDecl() &&
5171        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5172        II->isStr("FILE"))
5173      Context.setFILEDecl(New);
5174
5175  OwnedDecl = true;
5176  return DeclPtrTy::make(New);
5177}
5178
5179void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5180  AdjustDeclIfTemplate(TagD);
5181  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5182
5183  // Enter the tag context.
5184  PushDeclContext(S, Tag);
5185}
5186
5187void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5188                                           SourceLocation LBraceLoc) {
5189  AdjustDeclIfTemplate(TagD);
5190  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5191
5192  FieldCollector->StartClass();
5193
5194  if (!Record->getIdentifier())
5195    return;
5196
5197  // C++ [class]p2:
5198  //   [...] The class-name is also inserted into the scope of the
5199  //   class itself; this is known as the injected-class-name. For
5200  //   purposes of access checking, the injected-class-name is treated
5201  //   as if it were a public member name.
5202  CXXRecordDecl *InjectedClassName
5203    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5204                            CurContext, Record->getLocation(),
5205                            Record->getIdentifier(),
5206                            Record->getTagKeywordLoc(),
5207                            Record);
5208  InjectedClassName->setImplicit();
5209  InjectedClassName->setAccess(AS_public);
5210  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5211      InjectedClassName->setDescribedClassTemplate(Template);
5212  PushOnScopeChains(InjectedClassName, S);
5213  assert(InjectedClassName->isInjectedClassName() &&
5214         "Broken injected-class-name");
5215}
5216
5217// Traverses the class and any nested classes, making a note of any
5218// dynamic classes that have no key function so that we can mark all of
5219// their virtual member functions as "used" at the end of the translation
5220// unit. This ensures that all functions needed by the vtable will get
5221// instantiated/synthesized.
5222static void
5223RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5224                                      SourceLocation Loc) {
5225  // We don't look at dependent or undefined classes.
5226  if (Record->isDependentContext() || !Record->isDefinition())
5227    return;
5228
5229  if (Record->isDynamicClass()) {
5230    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5231
5232    if (!KeyFunction)
5233      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5234                                                                   Loc));
5235
5236    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5237        && Record->getLinkage() == ExternalLinkage)
5238      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5239  }
5240  for (DeclContext::decl_iterator D = Record->decls_begin(),
5241                               DEnd = Record->decls_end();
5242       D != DEnd; ++D) {
5243    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5244      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5245  }
5246}
5247
5248void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5249                                    SourceLocation RBraceLoc) {
5250  AdjustDeclIfTemplate(TagD);
5251  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5252  Tag->setRBraceLoc(RBraceLoc);
5253
5254  if (isa<CXXRecordDecl>(Tag))
5255    FieldCollector->FinishClass();
5256
5257  // Exit this scope of this tag's definition.
5258  PopDeclContext();
5259
5260  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5261    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5262                                          RBraceLoc);
5263
5264  // Notify the consumer that we've defined a tag.
5265  Consumer.HandleTagDeclDefinition(Tag);
5266}
5267
5268void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5269  AdjustDeclIfTemplate(TagD);
5270  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5271  Tag->setInvalidDecl();
5272
5273  // We're undoing ActOnTagStartDefinition here, not
5274  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5275  // the FieldCollector.
5276
5277  PopDeclContext();
5278}
5279
5280// Note that FieldName may be null for anonymous bitfields.
5281bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5282                          QualType FieldTy, const Expr *BitWidth,
5283                          bool *ZeroWidth) {
5284  // Default to true; that shouldn't confuse checks for emptiness
5285  if (ZeroWidth)
5286    *ZeroWidth = true;
5287
5288  // C99 6.7.2.1p4 - verify the field type.
5289  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5290  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5291    // Handle incomplete types with specific error.
5292    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5293      return true;
5294    if (FieldName)
5295      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5296        << FieldName << FieldTy << BitWidth->getSourceRange();
5297    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5298      << FieldTy << BitWidth->getSourceRange();
5299  }
5300
5301  // If the bit-width is type- or value-dependent, don't try to check
5302  // it now.
5303  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5304    return false;
5305
5306  llvm::APSInt Value;
5307  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5308    return true;
5309
5310  if (Value != 0 && ZeroWidth)
5311    *ZeroWidth = false;
5312
5313  // Zero-width bitfield is ok for anonymous field.
5314  if (Value == 0 && FieldName)
5315    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5316
5317  if (Value.isSigned() && Value.isNegative()) {
5318    if (FieldName)
5319      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5320               << FieldName << Value.toString(10);
5321    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5322      << Value.toString(10);
5323  }
5324
5325  if (!FieldTy->isDependentType()) {
5326    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5327    if (Value.getZExtValue() > TypeSize) {
5328      if (FieldName)
5329        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5330          << FieldName << (unsigned)TypeSize;
5331      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5332        << (unsigned)TypeSize;
5333    }
5334  }
5335
5336  return false;
5337}
5338
5339/// ActOnField - Each field of a struct/union/class is passed into this in order
5340/// to create a FieldDecl object for it.
5341Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5342                                 SourceLocation DeclStart,
5343                                 Declarator &D, ExprTy *BitfieldWidth) {
5344  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5345                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5346                               AS_public);
5347  return DeclPtrTy::make(Res);
5348}
5349
5350/// HandleField - Analyze a field of a C struct or a C++ data member.
5351///
5352FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5353                             SourceLocation DeclStart,
5354                             Declarator &D, Expr *BitWidth,
5355                             AccessSpecifier AS) {
5356  IdentifierInfo *II = D.getIdentifier();
5357  SourceLocation Loc = DeclStart;
5358  if (II) Loc = D.getIdentifierLoc();
5359
5360  TypeSourceInfo *TInfo = 0;
5361  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5362  if (getLangOptions().CPlusPlus)
5363    CheckExtraCXXDefaultArguments(D);
5364
5365  DiagnoseFunctionSpecifiers(D);
5366
5367  if (D.getDeclSpec().isThreadSpecified())
5368    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5369
5370  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5371                                         ForRedeclaration);
5372
5373  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5374    // Maybe we will complain about the shadowed template parameter.
5375    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5376    // Just pretend that we didn't see the previous declaration.
5377    PrevDecl = 0;
5378  }
5379
5380  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5381    PrevDecl = 0;
5382
5383  bool Mutable
5384    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5385  SourceLocation TSSL = D.getSourceRange().getBegin();
5386  FieldDecl *NewFD
5387    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5388                     AS, PrevDecl, &D);
5389
5390  if (NewFD->isInvalidDecl())
5391    Record->setInvalidDecl();
5392
5393  if (NewFD->isInvalidDecl() && PrevDecl) {
5394    // Don't introduce NewFD into scope; there's already something
5395    // with the same name in the same scope.
5396  } else if (II) {
5397    PushOnScopeChains(NewFD, S);
5398  } else
5399    Record->addDecl(NewFD);
5400
5401  return NewFD;
5402}
5403
5404/// \brief Build a new FieldDecl and check its well-formedness.
5405///
5406/// This routine builds a new FieldDecl given the fields name, type,
5407/// record, etc. \p PrevDecl should refer to any previous declaration
5408/// with the same name and in the same scope as the field to be
5409/// created.
5410///
5411/// \returns a new FieldDecl.
5412///
5413/// \todo The Declarator argument is a hack. It will be removed once
5414FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5415                                TypeSourceInfo *TInfo,
5416                                RecordDecl *Record, SourceLocation Loc,
5417                                bool Mutable, Expr *BitWidth,
5418                                SourceLocation TSSL,
5419                                AccessSpecifier AS, NamedDecl *PrevDecl,
5420                                Declarator *D) {
5421  IdentifierInfo *II = Name.getAsIdentifierInfo();
5422  bool InvalidDecl = false;
5423  if (D) InvalidDecl = D->isInvalidType();
5424
5425  // If we receive a broken type, recover by assuming 'int' and
5426  // marking this declaration as invalid.
5427  if (T.isNull()) {
5428    InvalidDecl = true;
5429    T = Context.IntTy;
5430  }
5431
5432  QualType EltTy = Context.getBaseElementType(T);
5433  if (!EltTy->isDependentType() &&
5434      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5435    InvalidDecl = true;
5436
5437  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5438  // than a variably modified type.
5439  if (!InvalidDecl && T->isVariablyModifiedType()) {
5440    bool SizeIsNegative;
5441    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5442                                                           SizeIsNegative);
5443    if (!FixedTy.isNull()) {
5444      Diag(Loc, diag::warn_illegal_constant_array_size);
5445      T = FixedTy;
5446    } else {
5447      if (SizeIsNegative)
5448        Diag(Loc, diag::err_typecheck_negative_array_size);
5449      else
5450        Diag(Loc, diag::err_typecheck_field_variable_size);
5451      InvalidDecl = true;
5452    }
5453  }
5454
5455  // Fields can not have abstract class types
5456  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5457                                             diag::err_abstract_type_in_decl,
5458                                             AbstractFieldType))
5459    InvalidDecl = true;
5460
5461  bool ZeroWidth = false;
5462  // If this is declared as a bit-field, check the bit-field.
5463  if (!InvalidDecl && BitWidth &&
5464      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5465    InvalidDecl = true;
5466    DeleteExpr(BitWidth);
5467    BitWidth = 0;
5468    ZeroWidth = false;
5469  }
5470
5471  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5472                                       BitWidth, Mutable);
5473  if (InvalidDecl)
5474    NewFD->setInvalidDecl();
5475
5476  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5477    Diag(Loc, diag::err_duplicate_member) << II;
5478    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5479    NewFD->setInvalidDecl();
5480  }
5481
5482  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5483    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5484
5485    if (!T->isPODType())
5486      CXXRecord->setPOD(false);
5487    if (!ZeroWidth)
5488      CXXRecord->setEmpty(false);
5489
5490    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5491      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5492
5493      if (!RDecl->hasTrivialConstructor())
5494        CXXRecord->setHasTrivialConstructor(false);
5495      if (!RDecl->hasTrivialCopyConstructor())
5496        CXXRecord->setHasTrivialCopyConstructor(false);
5497      if (!RDecl->hasTrivialCopyAssignment())
5498        CXXRecord->setHasTrivialCopyAssignment(false);
5499      if (!RDecl->hasTrivialDestructor())
5500        CXXRecord->setHasTrivialDestructor(false);
5501
5502      // C++ 9.5p1: An object of a class with a non-trivial
5503      // constructor, a non-trivial copy constructor, a non-trivial
5504      // destructor, or a non-trivial copy assignment operator
5505      // cannot be a member of a union, nor can an array of such
5506      // objects.
5507      // TODO: C++0x alters this restriction significantly.
5508      if (Record->isUnion()) {
5509        // We check for copy constructors before constructors
5510        // because otherwise we'll never get complaints about
5511        // copy constructors.
5512
5513        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5514
5515        CXXSpecialMember member;
5516        if (!RDecl->hasTrivialCopyConstructor())
5517          member = CXXCopyConstructor;
5518        else if (!RDecl->hasTrivialConstructor())
5519          member = CXXDefaultConstructor;
5520        else if (!RDecl->hasTrivialCopyAssignment())
5521          member = CXXCopyAssignment;
5522        else if (!RDecl->hasTrivialDestructor())
5523          member = CXXDestructor;
5524        else
5525          member = invalid;
5526
5527        if (member != invalid) {
5528          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5529          DiagnoseNontrivial(RT, member);
5530          NewFD->setInvalidDecl();
5531        }
5532      }
5533    }
5534  }
5535
5536  // FIXME: We need to pass in the attributes given an AST
5537  // representation, not a parser representation.
5538  if (D)
5539    // FIXME: What to pass instead of TUScope?
5540    ProcessDeclAttributes(TUScope, NewFD, *D);
5541
5542  if (T.isObjCGCWeak())
5543    Diag(Loc, diag::warn_attribute_weak_on_field);
5544
5545  NewFD->setAccess(AS);
5546
5547  // C++ [dcl.init.aggr]p1:
5548  //   An aggregate is an array or a class (clause 9) with [...] no
5549  //   private or protected non-static data members (clause 11).
5550  // A POD must be an aggregate.
5551  if (getLangOptions().CPlusPlus &&
5552      (AS == AS_private || AS == AS_protected)) {
5553    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5554    CXXRecord->setAggregate(false);
5555    CXXRecord->setPOD(false);
5556  }
5557
5558  return NewFD;
5559}
5560
5561/// DiagnoseNontrivial - Given that a class has a non-trivial
5562/// special member, figure out why.
5563void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5564  QualType QT(T, 0U);
5565  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5566
5567  // Check whether the member was user-declared.
5568  switch (member) {
5569  case CXXDefaultConstructor:
5570    if (RD->hasUserDeclaredConstructor()) {
5571      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5572      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5573        const FunctionDecl *body = 0;
5574        ci->getBody(body);
5575        if (!body ||
5576            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5577          SourceLocation CtorLoc = ci->getLocation();
5578          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5579          return;
5580        }
5581      }
5582
5583      assert(0 && "found no user-declared constructors");
5584      return;
5585    }
5586    break;
5587
5588  case CXXCopyConstructor:
5589    if (RD->hasUserDeclaredCopyConstructor()) {
5590      SourceLocation CtorLoc =
5591        RD->getCopyConstructor(Context, 0)->getLocation();
5592      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5593      return;
5594    }
5595    break;
5596
5597  case CXXCopyAssignment:
5598    if (RD->hasUserDeclaredCopyAssignment()) {
5599      // FIXME: this should use the location of the copy
5600      // assignment, not the type.
5601      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5602      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5603      return;
5604    }
5605    break;
5606
5607  case CXXDestructor:
5608    if (RD->hasUserDeclaredDestructor()) {
5609      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5610      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5611      return;
5612    }
5613    break;
5614  }
5615
5616  typedef CXXRecordDecl::base_class_iterator base_iter;
5617
5618  // Virtual bases and members inhibit trivial copying/construction,
5619  // but not trivial destruction.
5620  if (member != CXXDestructor) {
5621    // Check for virtual bases.  vbases includes indirect virtual bases,
5622    // so we just iterate through the direct bases.
5623    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5624      if (bi->isVirtual()) {
5625        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5626        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5627        return;
5628      }
5629
5630    // Check for virtual methods.
5631    typedef CXXRecordDecl::method_iterator meth_iter;
5632    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5633         ++mi) {
5634      if (mi->isVirtual()) {
5635        SourceLocation MLoc = mi->getSourceRange().getBegin();
5636        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5637        return;
5638      }
5639    }
5640  }
5641
5642  bool (CXXRecordDecl::*hasTrivial)() const;
5643  switch (member) {
5644  case CXXDefaultConstructor:
5645    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5646  case CXXCopyConstructor:
5647    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5648  case CXXCopyAssignment:
5649    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5650  case CXXDestructor:
5651    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5652  default:
5653    assert(0 && "unexpected special member"); return;
5654  }
5655
5656  // Check for nontrivial bases (and recurse).
5657  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5658    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5659    assert(BaseRT && "Don't know how to handle dependent bases");
5660    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5661    if (!(BaseRecTy->*hasTrivial)()) {
5662      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5663      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5664      DiagnoseNontrivial(BaseRT, member);
5665      return;
5666    }
5667  }
5668
5669  // Check for nontrivial members (and recurse).
5670  typedef RecordDecl::field_iterator field_iter;
5671  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5672       ++fi) {
5673    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5674    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5675      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5676
5677      if (!(EltRD->*hasTrivial)()) {
5678        SourceLocation FLoc = (*fi)->getLocation();
5679        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5680        DiagnoseNontrivial(EltRT, member);
5681        return;
5682      }
5683    }
5684  }
5685
5686  assert(0 && "found no explanation for non-trivial member");
5687}
5688
5689/// TranslateIvarVisibility - Translate visibility from a token ID to an
5690///  AST enum value.
5691static ObjCIvarDecl::AccessControl
5692TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5693  switch (ivarVisibility) {
5694  default: assert(0 && "Unknown visitibility kind");
5695  case tok::objc_private: return ObjCIvarDecl::Private;
5696  case tok::objc_public: return ObjCIvarDecl::Public;
5697  case tok::objc_protected: return ObjCIvarDecl::Protected;
5698  case tok::objc_package: return ObjCIvarDecl::Package;
5699  }
5700}
5701
5702/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5703/// in order to create an IvarDecl object for it.
5704Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5705                                SourceLocation DeclStart,
5706                                DeclPtrTy IntfDecl,
5707                                Declarator &D, ExprTy *BitfieldWidth,
5708                                tok::ObjCKeywordKind Visibility) {
5709
5710  IdentifierInfo *II = D.getIdentifier();
5711  Expr *BitWidth = (Expr*)BitfieldWidth;
5712  SourceLocation Loc = DeclStart;
5713  if (II) Loc = D.getIdentifierLoc();
5714
5715  // FIXME: Unnamed fields can be handled in various different ways, for
5716  // example, unnamed unions inject all members into the struct namespace!
5717
5718  TypeSourceInfo *TInfo = 0;
5719  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5720
5721  if (BitWidth) {
5722    // 6.7.2.1p3, 6.7.2.1p4
5723    if (VerifyBitField(Loc, II, T, BitWidth)) {
5724      D.setInvalidType();
5725      DeleteExpr(BitWidth);
5726      BitWidth = 0;
5727    }
5728  } else {
5729    // Not a bitfield.
5730
5731    // validate II.
5732
5733  }
5734
5735  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5736  // than a variably modified type.
5737  if (T->isVariablyModifiedType()) {
5738    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5739    D.setInvalidType();
5740  }
5741
5742  // Get the visibility (access control) for this ivar.
5743  ObjCIvarDecl::AccessControl ac =
5744    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5745                                        : ObjCIvarDecl::None;
5746  // Must set ivar's DeclContext to its enclosing interface.
5747  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5748  DeclContext *EnclosingContext;
5749  if (ObjCImplementationDecl *IMPDecl =
5750      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5751    // Case of ivar declared in an implementation. Context is that of its class.
5752    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5753    assert(IDecl && "No class- ActOnIvar");
5754    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5755  } else
5756    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5757  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5758
5759  // Construct the decl.
5760  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5761                                             EnclosingContext, Loc, II, T,
5762                                             TInfo, ac, (Expr *)BitfieldWidth);
5763
5764  if (II) {
5765    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5766                                           ForRedeclaration);
5767    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5768        && !isa<TagDecl>(PrevDecl)) {
5769      Diag(Loc, diag::err_duplicate_member) << II;
5770      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5771      NewID->setInvalidDecl();
5772    }
5773  }
5774
5775  // Process attributes attached to the ivar.
5776  ProcessDeclAttributes(S, NewID, D);
5777
5778  if (D.isInvalidType())
5779    NewID->setInvalidDecl();
5780
5781  if (II) {
5782    // FIXME: When interfaces are DeclContexts, we'll need to add
5783    // these to the interface.
5784    S->AddDecl(DeclPtrTy::make(NewID));
5785    IdResolver.AddDecl(NewID);
5786  }
5787
5788  return DeclPtrTy::make(NewID);
5789}
5790
5791void Sema::ActOnFields(Scope* S,
5792                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5793                       DeclPtrTy *Fields, unsigned NumFields,
5794                       SourceLocation LBrac, SourceLocation RBrac,
5795                       AttributeList *Attr) {
5796  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5797  assert(EnclosingDecl && "missing record or interface decl");
5798
5799  // If the decl this is being inserted into is invalid, then it may be a
5800  // redeclaration or some other bogus case.  Don't try to add fields to it.
5801  if (EnclosingDecl->isInvalidDecl()) {
5802    // FIXME: Deallocate fields?
5803    return;
5804  }
5805
5806
5807  // Verify that all the fields are okay.
5808  unsigned NumNamedMembers = 0;
5809  llvm::SmallVector<FieldDecl*, 32> RecFields;
5810
5811  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5812  for (unsigned i = 0; i != NumFields; ++i) {
5813    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5814
5815    // Get the type for the field.
5816    Type *FDTy = FD->getType().getTypePtr();
5817
5818    if (!FD->isAnonymousStructOrUnion()) {
5819      // Remember all fields written by the user.
5820      RecFields.push_back(FD);
5821    }
5822
5823    // If the field is already invalid for some reason, don't emit more
5824    // diagnostics about it.
5825    if (FD->isInvalidDecl()) {
5826      EnclosingDecl->setInvalidDecl();
5827      continue;
5828    }
5829
5830    // C99 6.7.2.1p2:
5831    //   A structure or union shall not contain a member with
5832    //   incomplete or function type (hence, a structure shall not
5833    //   contain an instance of itself, but may contain a pointer to
5834    //   an instance of itself), except that the last member of a
5835    //   structure with more than one named member may have incomplete
5836    //   array type; such a structure (and any union containing,
5837    //   possibly recursively, a member that is such a structure)
5838    //   shall not be a member of a structure or an element of an
5839    //   array.
5840    if (FDTy->isFunctionType()) {
5841      // Field declared as a function.
5842      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5843        << FD->getDeclName();
5844      FD->setInvalidDecl();
5845      EnclosingDecl->setInvalidDecl();
5846      continue;
5847    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5848               Record && Record->isStruct()) {
5849      // Flexible array member.
5850      if (NumNamedMembers < 1) {
5851        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5852          << FD->getDeclName();
5853        FD->setInvalidDecl();
5854        EnclosingDecl->setInvalidDecl();
5855        continue;
5856      }
5857      // Okay, we have a legal flexible array member at the end of the struct.
5858      if (Record)
5859        Record->setHasFlexibleArrayMember(true);
5860    } else if (!FDTy->isDependentType() &&
5861               RequireCompleteType(FD->getLocation(), FD->getType(),
5862                                   diag::err_field_incomplete)) {
5863      // Incomplete type
5864      FD->setInvalidDecl();
5865      EnclosingDecl->setInvalidDecl();
5866      continue;
5867    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5868      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5869        // If this is a member of a union, then entire union becomes "flexible".
5870        if (Record && Record->isUnion()) {
5871          Record->setHasFlexibleArrayMember(true);
5872        } else {
5873          // If this is a struct/class and this is not the last element, reject
5874          // it.  Note that GCC supports variable sized arrays in the middle of
5875          // structures.
5876          if (i != NumFields-1)
5877            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5878              << FD->getDeclName() << FD->getType();
5879          else {
5880            // We support flexible arrays at the end of structs in
5881            // other structs as an extension.
5882            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5883              << FD->getDeclName();
5884            if (Record)
5885              Record->setHasFlexibleArrayMember(true);
5886          }
5887        }
5888      }
5889      if (Record && FDTTy->getDecl()->hasObjectMember())
5890        Record->setHasObjectMember(true);
5891    } else if (FDTy->isObjCInterfaceType()) {
5892      /// A field cannot be an Objective-c object
5893      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5894      FD->setInvalidDecl();
5895      EnclosingDecl->setInvalidDecl();
5896      continue;
5897    } else if (getLangOptions().ObjC1 &&
5898               getLangOptions().getGCMode() != LangOptions::NonGC &&
5899               Record &&
5900               (FD->getType()->isObjCObjectPointerType() ||
5901                FD->getType().isObjCGCStrong()))
5902      Record->setHasObjectMember(true);
5903    // Keep track of the number of named members.
5904    if (FD->getIdentifier())
5905      ++NumNamedMembers;
5906  }
5907
5908  // Okay, we successfully defined 'Record'.
5909  if (Record) {
5910    Record->completeDefinition();
5911  } else {
5912    ObjCIvarDecl **ClsFields =
5913      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5914    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5915      ID->setLocEnd(RBrac);
5916      // Add ivar's to class's DeclContext.
5917      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5918        ClsFields[i]->setLexicalDeclContext(ID);
5919        ID->addDecl(ClsFields[i]);
5920      }
5921      // Must enforce the rule that ivars in the base classes may not be
5922      // duplicates.
5923      if (ID->getSuperClass())
5924        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5925    } else if (ObjCImplementationDecl *IMPDecl =
5926                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5927      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5928      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5929        // Ivar declared in @implementation never belongs to the implementation.
5930        // Only it is in implementation's lexical context.
5931        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5932      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5933    } else if (ObjCCategoryDecl *CDecl =
5934                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5935      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension())
5936        Diag(LBrac, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5937      else {
5938        // FIXME. Class extension does not have a LocEnd field.
5939        // CDecl->setLocEnd(RBrac);
5940        // Add ivar's to class extension's DeclContext.
5941        for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5942          ClsFields[i]->setLexicalDeclContext(CDecl);
5943          CDecl->addDecl(ClsFields[i]);
5944        }
5945      }
5946    }
5947  }
5948
5949  if (Attr)
5950    ProcessDeclAttributeList(S, Record, Attr);
5951}
5952
5953/// \brief Determine whether the given integral value is representable within
5954/// the given type T.
5955static bool isRepresentableIntegerValue(ASTContext &Context,
5956                                        llvm::APSInt &Value,
5957                                        QualType T) {
5958  assert(T->isIntegralType() && "Integral type required!");
5959  unsigned BitWidth = Context.getTypeSize(T);
5960
5961  if (Value.isUnsigned() || Value.isNonNegative())
5962    return Value.getActiveBits() < BitWidth;
5963
5964  return Value.getMinSignedBits() <= BitWidth;
5965}
5966
5967// \brief Given an integral type, return the next larger integral type
5968// (or a NULL type of no such type exists).
5969static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5970  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5971  // enum checking below.
5972  assert(T->isIntegralType() && "Integral type required!");
5973  const unsigned NumTypes = 4;
5974  QualType SignedIntegralTypes[NumTypes] = {
5975    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5976  };
5977  QualType UnsignedIntegralTypes[NumTypes] = {
5978    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5979    Context.UnsignedLongLongTy
5980  };
5981
5982  unsigned BitWidth = Context.getTypeSize(T);
5983  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5984                                            : UnsignedIntegralTypes;
5985  for (unsigned I = 0; I != NumTypes; ++I)
5986    if (Context.getTypeSize(Types[I]) > BitWidth)
5987      return Types[I];
5988
5989  return QualType();
5990}
5991
5992EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5993                                          EnumConstantDecl *LastEnumConst,
5994                                          SourceLocation IdLoc,
5995                                          IdentifierInfo *Id,
5996                                          ExprArg val) {
5997  Expr *Val = (Expr *)val.get();
5998
5999  unsigned IntWidth = Context.Target.getIntWidth();
6000  llvm::APSInt EnumVal(IntWidth);
6001  QualType EltTy;
6002  if (Val) {
6003    if (Enum->isDependentType() || Val->isTypeDependent())
6004      EltTy = Context.DependentTy;
6005    else {
6006      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6007      SourceLocation ExpLoc;
6008      if (!Val->isValueDependent() &&
6009          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6010        Val = 0;
6011      } else {
6012        if (!getLangOptions().CPlusPlus) {
6013          // C99 6.7.2.2p2:
6014          //   The expression that defines the value of an enumeration constant
6015          //   shall be an integer constant expression that has a value
6016          //   representable as an int.
6017
6018          // Complain if the value is not representable in an int.
6019          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6020            Diag(IdLoc, diag::ext_enum_value_not_int)
6021              << EnumVal.toString(10) << Val->getSourceRange()
6022              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6023          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6024            // Force the type of the expression to 'int'.
6025            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6026
6027            if (Val != val.get()) {
6028              val.release();
6029              val = Val;
6030            }
6031          }
6032        }
6033
6034        // C++0x [dcl.enum]p5:
6035        //   If the underlying type is not fixed, the type of each enumerator
6036        //   is the type of its initializing value:
6037        //     - If an initializer is specified for an enumerator, the
6038        //       initializing value has the same type as the expression.
6039        EltTy = Val->getType();
6040      }
6041    }
6042  }
6043
6044  if (!Val) {
6045    if (Enum->isDependentType())
6046      EltTy = Context.DependentTy;
6047    else if (!LastEnumConst) {
6048      // C++0x [dcl.enum]p5:
6049      //   If the underlying type is not fixed, the type of each enumerator
6050      //   is the type of its initializing value:
6051      //     - If no initializer is specified for the first enumerator, the
6052      //       initializing value has an unspecified integral type.
6053      //
6054      // GCC uses 'int' for its unspecified integral type, as does
6055      // C99 6.7.2.2p3.
6056      EltTy = Context.IntTy;
6057    } else {
6058      // Assign the last value + 1.
6059      EnumVal = LastEnumConst->getInitVal();
6060      ++EnumVal;
6061      EltTy = LastEnumConst->getType();
6062
6063      // Check for overflow on increment.
6064      if (EnumVal < LastEnumConst->getInitVal()) {
6065        // C++0x [dcl.enum]p5:
6066        //   If the underlying type is not fixed, the type of each enumerator
6067        //   is the type of its initializing value:
6068        //
6069        //     - Otherwise the type of the initializing value is the same as
6070        //       the type of the initializing value of the preceding enumerator
6071        //       unless the incremented value is not representable in that type,
6072        //       in which case the type is an unspecified integral type
6073        //       sufficient to contain the incremented value. If no such type
6074        //       exists, the program is ill-formed.
6075        QualType T = getNextLargerIntegralType(Context, EltTy);
6076        if (T.isNull()) {
6077          // There is no integral type larger enough to represent this
6078          // value. Complain, then allow the value to wrap around.
6079          EnumVal = LastEnumConst->getInitVal();
6080          EnumVal.zext(EnumVal.getBitWidth() * 2);
6081          Diag(IdLoc, diag::warn_enumerator_too_large)
6082            << EnumVal.toString(10);
6083        } else {
6084          EltTy = T;
6085        }
6086
6087        // Retrieve the last enumerator's value, extent that type to the
6088        // type that is supposed to be large enough to represent the incremented
6089        // value, then increment.
6090        EnumVal = LastEnumConst->getInitVal();
6091        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6092        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6093        ++EnumVal;
6094
6095        // If we're not in C++, diagnose the overflow of enumerator values,
6096        // which in C99 means that the enumerator value is not representable in
6097        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6098        // permits enumerator values that are representable in some larger
6099        // integral type.
6100        if (!getLangOptions().CPlusPlus && !T.isNull())
6101          Diag(IdLoc, diag::warn_enum_value_overflow);
6102      } else if (!getLangOptions().CPlusPlus &&
6103                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6104        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6105        Diag(IdLoc, diag::ext_enum_value_not_int)
6106          << EnumVal.toString(10) << 1;
6107      }
6108    }
6109  }
6110
6111  if (!EltTy->isDependentType()) {
6112    // Make the enumerator value match the signedness and size of the
6113    // enumerator's type.
6114    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6115    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6116  }
6117
6118  val.release();
6119  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6120                                  Val, EnumVal);
6121}
6122
6123
6124Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6125                                        DeclPtrTy lastEnumConst,
6126                                        SourceLocation IdLoc,
6127                                        IdentifierInfo *Id,
6128                                        SourceLocation EqualLoc, ExprTy *val) {
6129  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6130  EnumConstantDecl *LastEnumConst =
6131    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6132  Expr *Val = static_cast<Expr*>(val);
6133
6134  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6135  // we find one that is.
6136  S = getNonFieldDeclScope(S);
6137
6138  // Verify that there isn't already something declared with this name in this
6139  // scope.
6140  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6141                                         ForRedeclaration);
6142  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6143    // Maybe we will complain about the shadowed template parameter.
6144    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6145    // Just pretend that we didn't see the previous declaration.
6146    PrevDecl = 0;
6147  }
6148
6149  if (PrevDecl) {
6150    // When in C++, we may get a TagDecl with the same name; in this case the
6151    // enum constant will 'hide' the tag.
6152    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6153           "Received TagDecl when not in C++!");
6154    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6155      if (isa<EnumConstantDecl>(PrevDecl))
6156        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6157      else
6158        Diag(IdLoc, diag::err_redefinition) << Id;
6159      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6160      if (Val) Val->Destroy(Context);
6161      return DeclPtrTy();
6162    }
6163  }
6164
6165  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6166                                            IdLoc, Id, Owned(Val));
6167
6168  // Register this decl in the current scope stack.
6169  if (New) {
6170    New->setAccess(TheEnumDecl->getAccess());
6171    PushOnScopeChains(New, S);
6172  }
6173
6174  return DeclPtrTy::make(New);
6175}
6176
6177void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6178                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6179                         DeclPtrTy *Elements, unsigned NumElements,
6180                         Scope *S, AttributeList *Attr) {
6181  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6182  QualType EnumType = Context.getTypeDeclType(Enum);
6183
6184  if (Attr)
6185    ProcessDeclAttributeList(S, Enum, Attr);
6186
6187  if (Enum->isDependentType()) {
6188    for (unsigned i = 0; i != NumElements; ++i) {
6189      EnumConstantDecl *ECD =
6190        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6191      if (!ECD) continue;
6192
6193      ECD->setType(EnumType);
6194    }
6195
6196    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6197    return;
6198  }
6199
6200  // TODO: If the result value doesn't fit in an int, it must be a long or long
6201  // long value.  ISO C does not support this, but GCC does as an extension,
6202  // emit a warning.
6203  unsigned IntWidth = Context.Target.getIntWidth();
6204  unsigned CharWidth = Context.Target.getCharWidth();
6205  unsigned ShortWidth = Context.Target.getShortWidth();
6206
6207  // Verify that all the values are okay, compute the size of the values, and
6208  // reverse the list.
6209  unsigned NumNegativeBits = 0;
6210  unsigned NumPositiveBits = 0;
6211
6212  // Keep track of whether all elements have type int.
6213  bool AllElementsInt = true;
6214
6215  for (unsigned i = 0; i != NumElements; ++i) {
6216    EnumConstantDecl *ECD =
6217      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6218    if (!ECD) continue;  // Already issued a diagnostic.
6219
6220    const llvm::APSInt &InitVal = ECD->getInitVal();
6221
6222    // Keep track of the size of positive and negative values.
6223    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6224      NumPositiveBits = std::max(NumPositiveBits,
6225                                 (unsigned)InitVal.getActiveBits());
6226    else
6227      NumNegativeBits = std::max(NumNegativeBits,
6228                                 (unsigned)InitVal.getMinSignedBits());
6229
6230    // Keep track of whether every enum element has type int (very commmon).
6231    if (AllElementsInt)
6232      AllElementsInt = ECD->getType() == Context.IntTy;
6233  }
6234
6235  // Figure out the type that should be used for this enum.
6236  // FIXME: Support -fshort-enums.
6237  QualType BestType;
6238  unsigned BestWidth;
6239
6240  // C++0x N3000 [conv.prom]p3:
6241  //   An rvalue of an unscoped enumeration type whose underlying
6242  //   type is not fixed can be converted to an rvalue of the first
6243  //   of the following types that can represent all the values of
6244  //   the enumeration: int, unsigned int, long int, unsigned long
6245  //   int, long long int, or unsigned long long int.
6246  // C99 6.4.4.3p2:
6247  //   An identifier declared as an enumeration constant has type int.
6248  // The C99 rule is modified by a gcc extension
6249  QualType BestPromotionType;
6250
6251  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6252
6253  if (NumNegativeBits) {
6254    // If there is a negative value, figure out the smallest integer type (of
6255    // int/long/longlong) that fits.
6256    // If it's packed, check also if it fits a char or a short.
6257    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6258      BestType = Context.SignedCharTy;
6259      BestWidth = CharWidth;
6260    } else if (Packed && NumNegativeBits <= ShortWidth &&
6261               NumPositiveBits < ShortWidth) {
6262      BestType = Context.ShortTy;
6263      BestWidth = ShortWidth;
6264    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6265      BestType = Context.IntTy;
6266      BestWidth = IntWidth;
6267    } else {
6268      BestWidth = Context.Target.getLongWidth();
6269
6270      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6271        BestType = Context.LongTy;
6272      } else {
6273        BestWidth = Context.Target.getLongLongWidth();
6274
6275        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6276          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6277        BestType = Context.LongLongTy;
6278      }
6279    }
6280    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6281  } else {
6282    // If there is no negative value, figure out the smallest type that fits
6283    // all of the enumerator values.
6284    // If it's packed, check also if it fits a char or a short.
6285    if (Packed && NumPositiveBits <= CharWidth) {
6286      BestType = Context.UnsignedCharTy;
6287      BestPromotionType = Context.IntTy;
6288      BestWidth = CharWidth;
6289    } else if (Packed && NumPositiveBits <= ShortWidth) {
6290      BestType = Context.UnsignedShortTy;
6291      BestPromotionType = Context.IntTy;
6292      BestWidth = ShortWidth;
6293    } else if (NumPositiveBits <= IntWidth) {
6294      BestType = Context.UnsignedIntTy;
6295      BestWidth = IntWidth;
6296      BestPromotionType
6297        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6298                           ? Context.UnsignedIntTy : Context.IntTy;
6299    } else if (NumPositiveBits <=
6300               (BestWidth = Context.Target.getLongWidth())) {
6301      BestType = Context.UnsignedLongTy;
6302      BestPromotionType
6303        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6304                           ? Context.UnsignedLongTy : Context.LongTy;
6305    } else {
6306      BestWidth = Context.Target.getLongLongWidth();
6307      assert(NumPositiveBits <= BestWidth &&
6308             "How could an initializer get larger than ULL?");
6309      BestType = Context.UnsignedLongLongTy;
6310      BestPromotionType
6311        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6312                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6313    }
6314  }
6315
6316  // Loop over all of the enumerator constants, changing their types to match
6317  // the type of the enum if needed.
6318  for (unsigned i = 0; i != NumElements; ++i) {
6319    EnumConstantDecl *ECD =
6320      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6321    if (!ECD) continue;  // Already issued a diagnostic.
6322
6323    // Standard C says the enumerators have int type, but we allow, as an
6324    // extension, the enumerators to be larger than int size.  If each
6325    // enumerator value fits in an int, type it as an int, otherwise type it the
6326    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6327    // that X has type 'int', not 'unsigned'.
6328
6329    // Determine whether the value fits into an int.
6330    llvm::APSInt InitVal = ECD->getInitVal();
6331
6332    // If it fits into an integer type, force it.  Otherwise force it to match
6333    // the enum decl type.
6334    QualType NewTy;
6335    unsigned NewWidth;
6336    bool NewSign;
6337    if (!getLangOptions().CPlusPlus &&
6338        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6339      NewTy = Context.IntTy;
6340      NewWidth = IntWidth;
6341      NewSign = true;
6342    } else if (ECD->getType() == BestType) {
6343      // Already the right type!
6344      if (getLangOptions().CPlusPlus)
6345        // C++ [dcl.enum]p4: Following the closing brace of an
6346        // enum-specifier, each enumerator has the type of its
6347        // enumeration.
6348        ECD->setType(EnumType);
6349      continue;
6350    } else {
6351      NewTy = BestType;
6352      NewWidth = BestWidth;
6353      NewSign = BestType->isSignedIntegerType();
6354    }
6355
6356    // Adjust the APSInt value.
6357    InitVal.extOrTrunc(NewWidth);
6358    InitVal.setIsSigned(NewSign);
6359    ECD->setInitVal(InitVal);
6360
6361    // Adjust the Expr initializer and type.
6362    if (ECD->getInitExpr())
6363      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6364                                                      CastExpr::CK_IntegralCast,
6365                                                      ECD->getInitExpr(),
6366                                                      /*isLvalue=*/false));
6367    if (getLangOptions().CPlusPlus)
6368      // C++ [dcl.enum]p4: Following the closing brace of an
6369      // enum-specifier, each enumerator has the type of its
6370      // enumeration.
6371      ECD->setType(EnumType);
6372    else
6373      ECD->setType(NewTy);
6374  }
6375
6376  Enum->completeDefinition(BestType, BestPromotionType);
6377}
6378
6379Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6380                                            ExprArg expr) {
6381  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6382
6383  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6384                                                   Loc, AsmString);
6385  CurContext->addDecl(New);
6386  return DeclPtrTy::make(New);
6387}
6388
6389void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6390                             SourceLocation PragmaLoc,
6391                             SourceLocation NameLoc) {
6392  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6393
6394  if (PrevDecl) {
6395    PrevDecl->addAttr(::new (Context) WeakAttr());
6396  } else {
6397    (void)WeakUndeclaredIdentifiers.insert(
6398      std::pair<IdentifierInfo*,WeakInfo>
6399        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6400  }
6401}
6402
6403void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6404                                IdentifierInfo* AliasName,
6405                                SourceLocation PragmaLoc,
6406                                SourceLocation NameLoc,
6407                                SourceLocation AliasNameLoc) {
6408  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6409  WeakInfo W = WeakInfo(Name, NameLoc);
6410
6411  if (PrevDecl) {
6412    if (!PrevDecl->hasAttr<AliasAttr>())
6413      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6414        DeclApplyPragmaWeak(TUScope, ND, W);
6415  } else {
6416    (void)WeakUndeclaredIdentifiers.insert(
6417      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6418  }
6419}
6420