SemaDecl.cpp revision 2767ce2e21d8bc17869b8436220bce719b3369e4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, 0, true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(DeclPtrTy::make(*I));
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(DeclPtrTy::make(D));
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482static bool isOutOfScopePreviousDeclaration(NamedDecl *,
483                                            DeclContext*,
484                                            ASTContext&);
485
486/// Filters out lookup results that don't fall within the given scope
487/// as determined by isDeclInScope.
488static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
489                                 DeclContext *Ctx, Scope *S,
490                                 bool ConsiderLinkage) {
491  LookupResult::Filter F = R.makeFilter();
492  while (F.hasNext()) {
493    NamedDecl *D = F.next();
494
495    if (SemaRef.isDeclInScope(D, Ctx, S))
496      continue;
497
498    if (ConsiderLinkage &&
499        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
500      continue;
501
502    F.erase();
503  }
504
505  F.done();
506}
507
508static bool isUsingDecl(NamedDecl *D) {
509  return isa<UsingShadowDecl>(D) ||
510         isa<UnresolvedUsingTypenameDecl>(D) ||
511         isa<UnresolvedUsingValueDecl>(D);
512}
513
514/// Removes using shadow declarations from the lookup results.
515static void RemoveUsingDecls(LookupResult &R) {
516  LookupResult::Filter F = R.makeFilter();
517  while (F.hasNext())
518    if (isUsingDecl(F.next()))
519      F.erase();
520
521  F.done();
522}
523
524/// \brief Check for this common pattern:
525/// @code
526/// class S {
527///   S(const S&); // DO NOT IMPLEMENT
528///   void operator=(const S&); // DO NOT IMPLEMENT
529/// };
530/// @endcode
531static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
532  // FIXME: Should check for private access too but access is set after we get
533  // the decl here.
534  if (D->isThisDeclarationADefinition())
535    return false;
536
537  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
538    return CD->isCopyConstructor();
539  return D->isCopyAssignment();
540}
541
542bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
543  assert(D);
544
545  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
546    return false;
547
548  // Ignore class templates.
549  if (D->getDeclContext()->isDependentContext())
550    return false;
551
552  // We warn for unused decls internal to the translation unit.
553  if (D->getLinkage() == ExternalLinkage)
554    return false;
555
556  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
557    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
558      return false;
559
560    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
561      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
562        return false;
563    } else {
564      // 'static inline' functions are used in headers; don't warn.
565      if (FD->getStorageClass() == FunctionDecl::Static &&
566          FD->isInlineSpecified())
567        return false;
568    }
569
570    if (FD->isThisDeclarationADefinition())
571      return !Context.DeclMustBeEmitted(FD);
572    return true;
573  }
574
575  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
576    if (VD->isStaticDataMember() &&
577        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
578      return false;
579
580    if ( VD->isFileVarDecl() &&
581        !VD->getType().isConstant(Context))
582      return !Context.DeclMustBeEmitted(VD);
583  }
584
585   return false;
586 }
587
588 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
589  if (!D)
590    return;
591
592  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
593    const FunctionDecl *First = FD->getFirstDeclaration();
594    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
595      return; // First should already be in the vector.
596  }
597
598  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
599    const VarDecl *First = VD->getFirstDeclaration();
600    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
601      return; // First should already be in the vector.
602  }
603
604   if (ShouldWarnIfUnusedFileScopedDecl(D))
605     UnusedFileScopedDecls.push_back(D);
606 }
607
608static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
609  if (D->isInvalidDecl())
610    return false;
611
612  if (D->isUsed() || D->hasAttr<UnusedAttr>())
613    return false;
614
615  // White-list anything that isn't a local variable.
616  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
617      !D->getDeclContext()->isFunctionOrMethod())
618    return false;
619
620  // Types of valid local variables should be complete, so this should succeed.
621  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
622
623    // White-list anything with an __attribute__((unused)) type.
624    QualType Ty = VD->getType();
625
626    // Only look at the outermost level of typedef.
627    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
628      if (TT->getDecl()->hasAttr<UnusedAttr>())
629        return false;
630    }
631
632    // If we failed to complete the type for some reason, or if the type is
633    // dependent, don't diagnose the variable.
634    if (Ty->isIncompleteType() || Ty->isDependentType())
635      return false;
636
637    if (const TagType *TT = Ty->getAs<TagType>()) {
638      const TagDecl *Tag = TT->getDecl();
639      if (Tag->hasAttr<UnusedAttr>())
640        return false;
641
642      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
643        // FIXME: Checking for the presence of a user-declared constructor
644        // isn't completely accurate; we'd prefer to check that the initializer
645        // has no side effects.
646        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
647          return false;
648      }
649    }
650
651    // TODO: __attribute__((unused)) templates?
652  }
653
654  return true;
655}
656
657void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
658  if (!ShouldDiagnoseUnusedDecl(D))
659    return;
660
661  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
662    Diag(D->getLocation(), diag::warn_unused_exception_param)
663    << D->getDeclName();
664  else
665    Diag(D->getLocation(), diag::warn_unused_variable)
666    << D->getDeclName();
667}
668
669void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
670  if (S->decl_empty()) return;
671  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
672         "Scope shouldn't contain decls!");
673
674  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
675       I != E; ++I) {
676    Decl *TmpD = (*I).getAs<Decl>();
677    assert(TmpD && "This decl didn't get pushed??");
678
679    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
680    NamedDecl *D = cast<NamedDecl>(TmpD);
681
682    if (!D->getDeclName()) continue;
683
684    // Diagnose unused variables in this scope.
685    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
686      DiagnoseUnusedDecl(D);
687
688    // Remove this name from our lexical scope.
689    IdResolver.RemoveDecl(D);
690  }
691}
692
693/// \brief Look for an Objective-C class in the translation unit.
694///
695/// \param Id The name of the Objective-C class we're looking for. If
696/// typo-correction fixes this name, the Id will be updated
697/// to the fixed name.
698///
699/// \param IdLoc The location of the name in the translation unit.
700///
701/// \param TypoCorrection If true, this routine will attempt typo correction
702/// if there is no class with the given name.
703///
704/// \returns The declaration of the named Objective-C class, or NULL if the
705/// class could not be found.
706ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
707                                              SourceLocation IdLoc,
708                                              bool TypoCorrection) {
709  // The third "scope" argument is 0 since we aren't enabling lazy built-in
710  // creation from this context.
711  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
712
713  if (!IDecl && TypoCorrection) {
714    // Perform typo correction at the given location, but only if we
715    // find an Objective-C class name.
716    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
717    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
718        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
719      Diag(IdLoc, diag::err_undef_interface_suggest)
720        << Id << IDecl->getDeclName()
721        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
722      Diag(IDecl->getLocation(), diag::note_previous_decl)
723        << IDecl->getDeclName();
724
725      Id = IDecl->getIdentifier();
726    }
727  }
728
729  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
730}
731
732/// getNonFieldDeclScope - Retrieves the innermost scope, starting
733/// from S, where a non-field would be declared. This routine copes
734/// with the difference between C and C++ scoping rules in structs and
735/// unions. For example, the following code is well-formed in C but
736/// ill-formed in C++:
737/// @code
738/// struct S6 {
739///   enum { BAR } e;
740/// };
741///
742/// void test_S6() {
743///   struct S6 a;
744///   a.e = BAR;
745/// }
746/// @endcode
747/// For the declaration of BAR, this routine will return a different
748/// scope. The scope S will be the scope of the unnamed enumeration
749/// within S6. In C++, this routine will return the scope associated
750/// with S6, because the enumeration's scope is a transparent
751/// context but structures can contain non-field names. In C, this
752/// routine will return the translation unit scope, since the
753/// enumeration's scope is a transparent context and structures cannot
754/// contain non-field names.
755Scope *Sema::getNonFieldDeclScope(Scope *S) {
756  while (((S->getFlags() & Scope::DeclScope) == 0) ||
757         (S->getEntity() &&
758          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
759         (S->isClassScope() && !getLangOptions().CPlusPlus))
760    S = S->getParent();
761  return S;
762}
763
764void Sema::InitBuiltinVaListType() {
765  if (!Context.getBuiltinVaListType().isNull())
766    return;
767
768  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
769  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
770                                       LookupOrdinaryName, ForRedeclaration);
771  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
772  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
773}
774
775/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
776/// file scope.  lazily create a decl for it. ForRedeclaration is true
777/// if we're creating this built-in in anticipation of redeclaring the
778/// built-in.
779NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
780                                     Scope *S, bool ForRedeclaration,
781                                     SourceLocation Loc) {
782  Builtin::ID BID = (Builtin::ID)bid;
783
784  if (Context.BuiltinInfo.hasVAListUse(BID))
785    InitBuiltinVaListType();
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           FunctionDecl::Extern,
823                                           FunctionDecl::None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           VarDecl::None, VarDecl::None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *decl, const Attr *target) {
1001  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
1002    if (attr->getKind() == target->getKind())
1003      return true;
1004
1005  return false;
1006}
1007
1008/// MergeAttributes - append attributes from the Old decl to the New one.
1009static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
1010  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
1011    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
1012      Attr *NewAttr = attr->clone(C);
1013      NewAttr->setInherited(true);
1014      New->addAttr(NewAttr);
1015    }
1016  }
1017}
1018
1019namespace {
1020
1021/// Used in MergeFunctionDecl to keep track of function parameters in
1022/// C.
1023struct GNUCompatibleParamWarning {
1024  ParmVarDecl *OldParm;
1025  ParmVarDecl *NewParm;
1026  QualType PromotedType;
1027};
1028
1029}
1030
1031/// getSpecialMember - get the special member enum for a method.
1032Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1033  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1034    if (Ctor->isCopyConstructor())
1035      return Sema::CXXCopyConstructor;
1036
1037    return Sema::CXXConstructor;
1038  }
1039
1040  if (isa<CXXDestructorDecl>(MD))
1041    return Sema::CXXDestructor;
1042
1043  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1044  return Sema::CXXCopyAssignment;
1045}
1046
1047/// canRedefineFunction - checks if a function can be redefined. Currently,
1048/// only extern inline functions can be redefined, and even then only in
1049/// GNU89 mode.
1050static bool canRedefineFunction(const FunctionDecl *FD,
1051                                const LangOptions& LangOpts) {
1052  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1053          FD->isInlineSpecified() &&
1054          FD->getStorageClass() == FunctionDecl::Extern);
1055}
1056
1057/// MergeFunctionDecl - We just parsed a function 'New' from
1058/// declarator D which has the same name and scope as a previous
1059/// declaration 'Old'.  Figure out how to resolve this situation,
1060/// merging decls or emitting diagnostics as appropriate.
1061///
1062/// In C++, New and Old must be declarations that are not
1063/// overloaded. Use IsOverload to determine whether New and Old are
1064/// overloaded, and to select the Old declaration that New should be
1065/// merged with.
1066///
1067/// Returns true if there was an error, false otherwise.
1068bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1069  // Verify the old decl was also a function.
1070  FunctionDecl *Old = 0;
1071  if (FunctionTemplateDecl *OldFunctionTemplate
1072        = dyn_cast<FunctionTemplateDecl>(OldD))
1073    Old = OldFunctionTemplate->getTemplatedDecl();
1074  else
1075    Old = dyn_cast<FunctionDecl>(OldD);
1076  if (!Old) {
1077    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1078      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1079      Diag(Shadow->getTargetDecl()->getLocation(),
1080           diag::note_using_decl_target);
1081      Diag(Shadow->getUsingDecl()->getLocation(),
1082           diag::note_using_decl) << 0;
1083      return true;
1084    }
1085
1086    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1087      << New->getDeclName();
1088    Diag(OldD->getLocation(), diag::note_previous_definition);
1089    return true;
1090  }
1091
1092  // Determine whether the previous declaration was a definition,
1093  // implicit declaration, or a declaration.
1094  diag::kind PrevDiag;
1095  if (Old->isThisDeclarationADefinition())
1096    PrevDiag = diag::note_previous_definition;
1097  else if (Old->isImplicit())
1098    PrevDiag = diag::note_previous_implicit_declaration;
1099  else
1100    PrevDiag = diag::note_previous_declaration;
1101
1102  QualType OldQType = Context.getCanonicalType(Old->getType());
1103  QualType NewQType = Context.getCanonicalType(New->getType());
1104
1105  // Don't complain about this if we're in GNU89 mode and the old function
1106  // is an extern inline function.
1107  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1108      New->getStorageClass() == FunctionDecl::Static &&
1109      Old->getStorageClass() != FunctionDecl::Static &&
1110      !canRedefineFunction(Old, getLangOptions())) {
1111    Diag(New->getLocation(), diag::err_static_non_static)
1112      << New;
1113    Diag(Old->getLocation(), PrevDiag);
1114    return true;
1115  }
1116
1117  // If a function is first declared with a calling convention, but is
1118  // later declared or defined without one, the second decl assumes the
1119  // calling convention of the first.
1120  //
1121  // For the new decl, we have to look at the NON-canonical type to tell the
1122  // difference between a function that really doesn't have a calling
1123  // convention and one that is declared cdecl. That's because in
1124  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1125  // because it is the default calling convention.
1126  //
1127  // Note also that we DO NOT return at this point, because we still have
1128  // other tests to run.
1129  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1130  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1131  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1132  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1133  if (OldTypeInfo.getCC() != CC_Default &&
1134      NewTypeInfo.getCC() == CC_Default) {
1135    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1136    New->setType(NewQType);
1137    NewQType = Context.getCanonicalType(NewQType);
1138  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1139                                     NewTypeInfo.getCC())) {
1140    // Calling conventions really aren't compatible, so complain.
1141    Diag(New->getLocation(), diag::err_cconv_change)
1142      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1143      << (OldTypeInfo.getCC() == CC_Default)
1144      << (OldTypeInfo.getCC() == CC_Default ? "" :
1145          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1146    Diag(Old->getLocation(), diag::note_previous_declaration);
1147    return true;
1148  }
1149
1150  // FIXME: diagnose the other way around?
1151  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1152    NewQType = Context.getNoReturnType(NewQType);
1153    New->setType(NewQType);
1154    assert(NewQType.isCanonical());
1155  }
1156
1157  // Merge regparm attribute.
1158  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1159    if (NewType->getRegParmType()) {
1160      Diag(New->getLocation(), diag::err_regparm_mismatch)
1161        << NewType->getRegParmType()
1162        << OldType->getRegParmType();
1163      Diag(Old->getLocation(), diag::note_previous_declaration);
1164      return true;
1165    }
1166
1167    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1168    New->setType(NewQType);
1169    assert(NewQType.isCanonical());
1170  }
1171
1172  if (getLangOptions().CPlusPlus) {
1173    // (C++98 13.1p2):
1174    //   Certain function declarations cannot be overloaded:
1175    //     -- Function declarations that differ only in the return type
1176    //        cannot be overloaded.
1177    QualType OldReturnType
1178      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1179    QualType NewReturnType
1180      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1181    QualType ResQT;
1182    if (OldReturnType != NewReturnType) {
1183      if (NewReturnType->isObjCObjectPointerType()
1184          && OldReturnType->isObjCObjectPointerType())
1185        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1186      if (ResQT.isNull()) {
1187        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1188        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1189        return true;
1190      }
1191      else
1192        NewQType = ResQT;
1193    }
1194
1195    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1196    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1197    if (OldMethod && NewMethod) {
1198      // Preserve triviality.
1199      NewMethod->setTrivial(OldMethod->isTrivial());
1200
1201      bool isFriend = NewMethod->getFriendObjectKind();
1202
1203      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1204        //    -- Member function declarations with the same name and the
1205        //       same parameter types cannot be overloaded if any of them
1206        //       is a static member function declaration.
1207        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1208          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1209          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210          return true;
1211        }
1212
1213        // C++ [class.mem]p1:
1214        //   [...] A member shall not be declared twice in the
1215        //   member-specification, except that a nested class or member
1216        //   class template can be declared and then later defined.
1217        unsigned NewDiag;
1218        if (isa<CXXConstructorDecl>(OldMethod))
1219          NewDiag = diag::err_constructor_redeclared;
1220        else if (isa<CXXDestructorDecl>(NewMethod))
1221          NewDiag = diag::err_destructor_redeclared;
1222        else if (isa<CXXConversionDecl>(NewMethod))
1223          NewDiag = diag::err_conv_function_redeclared;
1224        else
1225          NewDiag = diag::err_member_redeclared;
1226
1227        Diag(New->getLocation(), NewDiag);
1228        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1229
1230      // Complain if this is an explicit declaration of a special
1231      // member that was initially declared implicitly.
1232      //
1233      // As an exception, it's okay to befriend such methods in order
1234      // to permit the implicit constructor/destructor/operator calls.
1235      } else if (OldMethod->isImplicit()) {
1236        if (isFriend) {
1237          NewMethod->setImplicit();
1238        } else {
1239          Diag(NewMethod->getLocation(),
1240               diag::err_definition_of_implicitly_declared_member)
1241            << New << getSpecialMember(OldMethod);
1242          return true;
1243        }
1244      }
1245    }
1246
1247    // (C++98 8.3.5p3):
1248    //   All declarations for a function shall agree exactly in both the
1249    //   return type and the parameter-type-list.
1250    // attributes should be ignored when comparing.
1251    if (Context.getNoReturnType(OldQType, false) ==
1252        Context.getNoReturnType(NewQType, false))
1253      return MergeCompatibleFunctionDecls(New, Old);
1254
1255    // Fall through for conflicting redeclarations and redefinitions.
1256  }
1257
1258  // C: Function types need to be compatible, not identical. This handles
1259  // duplicate function decls like "void f(int); void f(enum X);" properly.
1260  if (!getLangOptions().CPlusPlus &&
1261      Context.typesAreCompatible(OldQType, NewQType)) {
1262    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1263    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1264    const FunctionProtoType *OldProto = 0;
1265    if (isa<FunctionNoProtoType>(NewFuncType) &&
1266        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1267      // The old declaration provided a function prototype, but the
1268      // new declaration does not. Merge in the prototype.
1269      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1270      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1271                                                 OldProto->arg_type_end());
1272      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1273                                         ParamTypes.data(), ParamTypes.size(),
1274                                         OldProto->isVariadic(),
1275                                         OldProto->getTypeQuals(),
1276                                         false, false, 0, 0,
1277                                         OldProto->getExtInfo());
1278      New->setType(NewQType);
1279      New->setHasInheritedPrototype();
1280
1281      // Synthesize a parameter for each argument type.
1282      llvm::SmallVector<ParmVarDecl*, 16> Params;
1283      for (FunctionProtoType::arg_type_iterator
1284             ParamType = OldProto->arg_type_begin(),
1285             ParamEnd = OldProto->arg_type_end();
1286           ParamType != ParamEnd; ++ParamType) {
1287        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1288                                                 SourceLocation(), 0,
1289                                                 *ParamType, /*TInfo=*/0,
1290                                                 VarDecl::None, VarDecl::None,
1291                                                 0);
1292        Param->setImplicit();
1293        Params.push_back(Param);
1294      }
1295
1296      New->setParams(Params.data(), Params.size());
1297    }
1298
1299    return MergeCompatibleFunctionDecls(New, Old);
1300  }
1301
1302  // GNU C permits a K&R definition to follow a prototype declaration
1303  // if the declared types of the parameters in the K&R definition
1304  // match the types in the prototype declaration, even when the
1305  // promoted types of the parameters from the K&R definition differ
1306  // from the types in the prototype. GCC then keeps the types from
1307  // the prototype.
1308  //
1309  // If a variadic prototype is followed by a non-variadic K&R definition,
1310  // the K&R definition becomes variadic.  This is sort of an edge case, but
1311  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1312  // C99 6.9.1p8.
1313  if (!getLangOptions().CPlusPlus &&
1314      Old->hasPrototype() && !New->hasPrototype() &&
1315      New->getType()->getAs<FunctionProtoType>() &&
1316      Old->getNumParams() == New->getNumParams()) {
1317    llvm::SmallVector<QualType, 16> ArgTypes;
1318    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1319    const FunctionProtoType *OldProto
1320      = Old->getType()->getAs<FunctionProtoType>();
1321    const FunctionProtoType *NewProto
1322      = New->getType()->getAs<FunctionProtoType>();
1323
1324    // Determine whether this is the GNU C extension.
1325    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1326                                               NewProto->getResultType());
1327    bool LooseCompatible = !MergedReturn.isNull();
1328    for (unsigned Idx = 0, End = Old->getNumParams();
1329         LooseCompatible && Idx != End; ++Idx) {
1330      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1331      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1332      if (Context.typesAreCompatible(OldParm->getType(),
1333                                     NewProto->getArgType(Idx))) {
1334        ArgTypes.push_back(NewParm->getType());
1335      } else if (Context.typesAreCompatible(OldParm->getType(),
1336                                            NewParm->getType(),
1337                                            /*CompareUnqualified=*/true)) {
1338        GNUCompatibleParamWarning Warn
1339          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1340        Warnings.push_back(Warn);
1341        ArgTypes.push_back(NewParm->getType());
1342      } else
1343        LooseCompatible = false;
1344    }
1345
1346    if (LooseCompatible) {
1347      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1348        Diag(Warnings[Warn].NewParm->getLocation(),
1349             diag::ext_param_promoted_not_compatible_with_prototype)
1350          << Warnings[Warn].PromotedType
1351          << Warnings[Warn].OldParm->getType();
1352        if (Warnings[Warn].OldParm->getLocation().isValid())
1353          Diag(Warnings[Warn].OldParm->getLocation(),
1354               diag::note_previous_declaration);
1355      }
1356
1357      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1358                                           ArgTypes.size(),
1359                                           OldProto->isVariadic(), 0,
1360                                           false, false, 0, 0,
1361                                           OldProto->getExtInfo()));
1362      return MergeCompatibleFunctionDecls(New, Old);
1363    }
1364
1365    // Fall through to diagnose conflicting types.
1366  }
1367
1368  // A function that has already been declared has been redeclared or defined
1369  // with a different type- show appropriate diagnostic
1370  if (unsigned BuiltinID = Old->getBuiltinID()) {
1371    // The user has declared a builtin function with an incompatible
1372    // signature.
1373    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1374      // The function the user is redeclaring is a library-defined
1375      // function like 'malloc' or 'printf'. Warn about the
1376      // redeclaration, then pretend that we don't know about this
1377      // library built-in.
1378      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1379      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1380        << Old << Old->getType();
1381      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1382      Old->setInvalidDecl();
1383      return false;
1384    }
1385
1386    PrevDiag = diag::note_previous_builtin_declaration;
1387  }
1388
1389  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1390  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1391  return true;
1392}
1393
1394/// \brief Completes the merge of two function declarations that are
1395/// known to be compatible.
1396///
1397/// This routine handles the merging of attributes and other
1398/// properties of function declarations form the old declaration to
1399/// the new declaration, once we know that New is in fact a
1400/// redeclaration of Old.
1401///
1402/// \returns false
1403bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1404  // Merge the attributes
1405  MergeAttributes(New, Old, Context);
1406
1407  // Merge the storage class.
1408  if (Old->getStorageClass() != FunctionDecl::Extern &&
1409      Old->getStorageClass() != FunctionDecl::None)
1410    New->setStorageClass(Old->getStorageClass());
1411
1412  // Merge "pure" flag.
1413  if (Old->isPure())
1414    New->setPure();
1415
1416  // Merge the "deleted" flag.
1417  if (Old->isDeleted())
1418    New->setDeleted();
1419
1420  if (getLangOptions().CPlusPlus)
1421    return MergeCXXFunctionDecl(New, Old);
1422
1423  return false;
1424}
1425
1426/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1427/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1428/// situation, merging decls or emitting diagnostics as appropriate.
1429///
1430/// Tentative definition rules (C99 6.9.2p2) are checked by
1431/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1432/// definitions here, since the initializer hasn't been attached.
1433///
1434void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1435  // If the new decl is already invalid, don't do any other checking.
1436  if (New->isInvalidDecl())
1437    return;
1438
1439  // Verify the old decl was also a variable.
1440  VarDecl *Old = 0;
1441  if (!Previous.isSingleResult() ||
1442      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1443    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1444      << New->getDeclName();
1445    Diag(Previous.getRepresentativeDecl()->getLocation(),
1446         diag::note_previous_definition);
1447    return New->setInvalidDecl();
1448  }
1449
1450  MergeAttributes(New, Old, Context);
1451
1452  // Merge the types
1453  QualType MergedT;
1454  if (getLangOptions().CPlusPlus) {
1455    if (Context.hasSameType(New->getType(), Old->getType()))
1456      MergedT = New->getType();
1457    // C++ [basic.link]p10:
1458    //   [...] the types specified by all declarations referring to a given
1459    //   object or function shall be identical, except that declarations for an
1460    //   array object can specify array types that differ by the presence or
1461    //   absence of a major array bound (8.3.4).
1462    else if (Old->getType()->isIncompleteArrayType() &&
1463             New->getType()->isArrayType()) {
1464      CanQual<ArrayType> OldArray
1465        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1466      CanQual<ArrayType> NewArray
1467        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1468      if (OldArray->getElementType() == NewArray->getElementType())
1469        MergedT = New->getType();
1470    } else if (Old->getType()->isArrayType() &&
1471             New->getType()->isIncompleteArrayType()) {
1472      CanQual<ArrayType> OldArray
1473        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1474      CanQual<ArrayType> NewArray
1475        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1476      if (OldArray->getElementType() == NewArray->getElementType())
1477        MergedT = Old->getType();
1478    } else if (New->getType()->isObjCObjectPointerType()
1479               && Old->getType()->isObjCObjectPointerType()) {
1480        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1481    }
1482  } else {
1483    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1484  }
1485  if (MergedT.isNull()) {
1486    Diag(New->getLocation(), diag::err_redefinition_different_type)
1487      << New->getDeclName();
1488    Diag(Old->getLocation(), diag::note_previous_definition);
1489    return New->setInvalidDecl();
1490  }
1491  New->setType(MergedT);
1492
1493  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1494  if (New->getStorageClass() == VarDecl::Static &&
1495      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1496    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1497    Diag(Old->getLocation(), diag::note_previous_definition);
1498    return New->setInvalidDecl();
1499  }
1500  // C99 6.2.2p4:
1501  //   For an identifier declared with the storage-class specifier
1502  //   extern in a scope in which a prior declaration of that
1503  //   identifier is visible,23) if the prior declaration specifies
1504  //   internal or external linkage, the linkage of the identifier at
1505  //   the later declaration is the same as the linkage specified at
1506  //   the prior declaration. If no prior declaration is visible, or
1507  //   if the prior declaration specifies no linkage, then the
1508  //   identifier has external linkage.
1509  if (New->hasExternalStorage() && Old->hasLinkage())
1510    /* Okay */;
1511  else if (New->getStorageClass() != VarDecl::Static &&
1512           Old->getStorageClass() == VarDecl::Static) {
1513    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1514    Diag(Old->getLocation(), diag::note_previous_definition);
1515    return New->setInvalidDecl();
1516  }
1517
1518  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1519
1520  // FIXME: The test for external storage here seems wrong? We still
1521  // need to check for mismatches.
1522  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1523      // Don't complain about out-of-line definitions of static members.
1524      !(Old->getLexicalDeclContext()->isRecord() &&
1525        !New->getLexicalDeclContext()->isRecord())) {
1526    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1527    Diag(Old->getLocation(), diag::note_previous_definition);
1528    return New->setInvalidDecl();
1529  }
1530
1531  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1532    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1533    Diag(Old->getLocation(), diag::note_previous_definition);
1534  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1535    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1536    Diag(Old->getLocation(), diag::note_previous_definition);
1537  }
1538
1539  // C++ doesn't have tentative definitions, so go right ahead and check here.
1540  const VarDecl *Def;
1541  if (getLangOptions().CPlusPlus &&
1542      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1543      (Def = Old->getDefinition())) {
1544    Diag(New->getLocation(), diag::err_redefinition)
1545      << New->getDeclName();
1546    Diag(Def->getLocation(), diag::note_previous_definition);
1547    New->setInvalidDecl();
1548    return;
1549  }
1550  // c99 6.2.2 P4.
1551  // For an identifier declared with the storage-class specifier extern in a
1552  // scope in which a prior declaration of that identifier is visible, if
1553  // the prior declaration specifies internal or external linkage, the linkage
1554  // of the identifier at the later declaration is the same as the linkage
1555  // specified at the prior declaration.
1556  // FIXME. revisit this code.
1557  if (New->hasExternalStorage() &&
1558      Old->getLinkage() == InternalLinkage &&
1559      New->getDeclContext() == Old->getDeclContext())
1560    New->setStorageClass(Old->getStorageClass());
1561
1562  // Keep a chain of previous declarations.
1563  New->setPreviousDeclaration(Old);
1564
1565  // Inherit access appropriately.
1566  New->setAccess(Old->getAccess());
1567}
1568
1569/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1570/// no declarator (e.g. "struct foo;") is parsed.
1571Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1572                                                 DeclSpec &DS) {
1573  // FIXME: Error on auto/register at file scope
1574  // FIXME: Error on inline/virtual/explicit
1575  // FIXME: Warn on useless __thread
1576  // FIXME: Warn on useless const/volatile
1577  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1578  // FIXME: Warn on useless attributes
1579  Decl *TagD = 0;
1580  TagDecl *Tag = 0;
1581  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1582      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1583      DS.getTypeSpecType() == DeclSpec::TST_union ||
1584      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1585    TagD = static_cast<Decl *>(DS.getTypeRep());
1586
1587    if (!TagD) // We probably had an error
1588      return DeclPtrTy();
1589
1590    // Note that the above type specs guarantee that the
1591    // type rep is a Decl, whereas in many of the others
1592    // it's a Type.
1593    Tag = dyn_cast<TagDecl>(TagD);
1594  }
1595
1596  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1597    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1598    // or incomplete types shall not be restrict-qualified."
1599    if (TypeQuals & DeclSpec::TQ_restrict)
1600      Diag(DS.getRestrictSpecLoc(),
1601           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1602           << DS.getSourceRange();
1603  }
1604
1605  if (DS.isFriendSpecified()) {
1606    // If we're dealing with a class template decl, assume that the
1607    // template routines are handling it.
1608    if (TagD && isa<ClassTemplateDecl>(TagD))
1609      return DeclPtrTy();
1610    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1611  }
1612
1613  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1614    // If there are attributes in the DeclSpec, apply them to the record.
1615    if (const AttributeList *AL = DS.getAttributes())
1616      ProcessDeclAttributeList(S, Record, AL);
1617
1618    if (!Record->getDeclName() && Record->isDefinition() &&
1619        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1620      if (getLangOptions().CPlusPlus ||
1621          Record->getDeclContext()->isRecord())
1622        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1623
1624      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1625        << DS.getSourceRange();
1626    }
1627
1628    // Microsoft allows unnamed struct/union fields. Don't complain
1629    // about them.
1630    // FIXME: Should we support Microsoft's extensions in this area?
1631    if (Record->getDeclName() && getLangOptions().Microsoft)
1632      return DeclPtrTy::make(Tag);
1633  }
1634
1635  if (getLangOptions().CPlusPlus &&
1636      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1637    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1638      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1639          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1640        Diag(Enum->getLocation(), diag::ext_no_declarators)
1641          << DS.getSourceRange();
1642
1643  if (!DS.isMissingDeclaratorOk() &&
1644      DS.getTypeSpecType() != DeclSpec::TST_error) {
1645    // Warn about typedefs of enums without names, since this is an
1646    // extension in both Microsoft and GNU.
1647    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1648        Tag && isa<EnumDecl>(Tag)) {
1649      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1650        << DS.getSourceRange();
1651      return DeclPtrTy::make(Tag);
1652    }
1653
1654    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655      << DS.getSourceRange();
1656  }
1657
1658  return DeclPtrTy::make(TagD);
1659}
1660
1661/// We are trying to inject an anonymous member into the given scope;
1662/// check if there's an existing declaration that can't be overloaded.
1663///
1664/// \return true if this is a forbidden redeclaration
1665static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1666                                         Scope *S,
1667                                         DeclContext *Owner,
1668                                         DeclarationName Name,
1669                                         SourceLocation NameLoc,
1670                                         unsigned diagnostic) {
1671  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1672                 Sema::ForRedeclaration);
1673  if (!SemaRef.LookupName(R, S)) return false;
1674
1675  if (R.getAsSingle<TagDecl>())
1676    return false;
1677
1678  // Pick a representative declaration.
1679  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1680  if (PrevDecl && Owner->isRecord()) {
1681    RecordDecl *Record = cast<RecordDecl>(Owner);
1682    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1683      return false;
1684  }
1685
1686  SemaRef.Diag(NameLoc, diagnostic) << Name;
1687  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1688
1689  return true;
1690}
1691
1692/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1693/// anonymous struct or union AnonRecord into the owning context Owner
1694/// and scope S. This routine will be invoked just after we realize
1695/// that an unnamed union or struct is actually an anonymous union or
1696/// struct, e.g.,
1697///
1698/// @code
1699/// union {
1700///   int i;
1701///   float f;
1702/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1703///    // f into the surrounding scope.x
1704/// @endcode
1705///
1706/// This routine is recursive, injecting the names of nested anonymous
1707/// structs/unions into the owning context and scope as well.
1708static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1709                                                DeclContext *Owner,
1710                                                RecordDecl *AnonRecord,
1711                                                AccessSpecifier AS) {
1712  unsigned diagKind
1713    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1714                            : diag::err_anonymous_struct_member_redecl;
1715
1716  bool Invalid = false;
1717  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1718                               FEnd = AnonRecord->field_end();
1719       F != FEnd; ++F) {
1720    if ((*F)->getDeclName()) {
1721      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1722                                       (*F)->getLocation(), diagKind)) {
1723        // C++ [class.union]p2:
1724        //   The names of the members of an anonymous union shall be
1725        //   distinct from the names of any other entity in the
1726        //   scope in which the anonymous union is declared.
1727        Invalid = true;
1728      } else {
1729        // C++ [class.union]p2:
1730        //   For the purpose of name lookup, after the anonymous union
1731        //   definition, the members of the anonymous union are
1732        //   considered to have been defined in the scope in which the
1733        //   anonymous union is declared.
1734        Owner->makeDeclVisibleInContext(*F);
1735        S->AddDecl(Sema::DeclPtrTy::make(*F));
1736        SemaRef.IdResolver.AddDecl(*F);
1737
1738        // That includes picking up the appropriate access specifier.
1739        if (AS != AS_none) (*F)->setAccess(AS);
1740      }
1741    } else if (const RecordType *InnerRecordType
1742                 = (*F)->getType()->getAs<RecordType>()) {
1743      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1744      if (InnerRecord->isAnonymousStructOrUnion())
1745        Invalid = Invalid ||
1746          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1747                                              InnerRecord, AS);
1748    }
1749  }
1750
1751  return Invalid;
1752}
1753
1754/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1755/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1756/// illegal input values are mapped to VarDecl::None.
1757static VarDecl::StorageClass
1758StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1759  switch (StorageClassSpec) {
1760  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1761  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1762  case DeclSpec::SCS_static:         return VarDecl::Static;
1763  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1764  case DeclSpec::SCS_register:       return VarDecl::Register;
1765  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1766    // Illegal SCSs map to None: error reporting is up to the caller.
1767  case DeclSpec::SCS_mutable:        // Fall through.
1768  case DeclSpec::SCS_typedef:        return VarDecl::None;
1769  }
1770  llvm_unreachable("unknown storage class specifier");
1771}
1772
1773/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1774/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1775/// illegal input values are mapped to FunctionDecl::None.
1776static FunctionDecl::StorageClass
1777StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1778  switch (StorageClassSpec) {
1779  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1780  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1781  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1782  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1783    // Illegal SCSs map to None: error reporting is up to the caller.
1784  case DeclSpec::SCS_auto:           // Fall through.
1785  case DeclSpec::SCS_mutable:        // Fall through.
1786  case DeclSpec::SCS_register:       // Fall through.
1787  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1788  }
1789  llvm_unreachable("unknown storage class specifier");
1790}
1791
1792/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1793/// anonymous structure or union. Anonymous unions are a C++ feature
1794/// (C++ [class.union]) and a GNU C extension; anonymous structures
1795/// are a GNU C and GNU C++ extension.
1796Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1797                                                  AccessSpecifier AS,
1798                                                  RecordDecl *Record) {
1799  DeclContext *Owner = Record->getDeclContext();
1800
1801  // Diagnose whether this anonymous struct/union is an extension.
1802  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1803    Diag(Record->getLocation(), diag::ext_anonymous_union);
1804  else if (!Record->isUnion())
1805    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1806
1807  // C and C++ require different kinds of checks for anonymous
1808  // structs/unions.
1809  bool Invalid = false;
1810  if (getLangOptions().CPlusPlus) {
1811    const char* PrevSpec = 0;
1812    unsigned DiagID;
1813    // C++ [class.union]p3:
1814    //   Anonymous unions declared in a named namespace or in the
1815    //   global namespace shall be declared static.
1816    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1817        (isa<TranslationUnitDecl>(Owner) ||
1818         (isa<NamespaceDecl>(Owner) &&
1819          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1820      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1821      Invalid = true;
1822
1823      // Recover by adding 'static'.
1824      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1825                             PrevSpec, DiagID);
1826    }
1827    // C++ [class.union]p3:
1828    //   A storage class is not allowed in a declaration of an
1829    //   anonymous union in a class scope.
1830    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1831             isa<RecordDecl>(Owner)) {
1832      Diag(DS.getStorageClassSpecLoc(),
1833           diag::err_anonymous_union_with_storage_spec);
1834      Invalid = true;
1835
1836      // Recover by removing the storage specifier.
1837      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1838                             PrevSpec, DiagID);
1839    }
1840
1841    // C++ [class.union]p2:
1842    //   The member-specification of an anonymous union shall only
1843    //   define non-static data members. [Note: nested types and
1844    //   functions cannot be declared within an anonymous union. ]
1845    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1846                                 MemEnd = Record->decls_end();
1847         Mem != MemEnd; ++Mem) {
1848      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1849        // C++ [class.union]p3:
1850        //   An anonymous union shall not have private or protected
1851        //   members (clause 11).
1852        assert(FD->getAccess() != AS_none);
1853        if (FD->getAccess() != AS_public) {
1854          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1855            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1856          Invalid = true;
1857        }
1858
1859        if (CheckNontrivialField(FD))
1860          Invalid = true;
1861      } else if ((*Mem)->isImplicit()) {
1862        // Any implicit members are fine.
1863      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1864        // This is a type that showed up in an
1865        // elaborated-type-specifier inside the anonymous struct or
1866        // union, but which actually declares a type outside of the
1867        // anonymous struct or union. It's okay.
1868      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1869        if (!MemRecord->isAnonymousStructOrUnion() &&
1870            MemRecord->getDeclName()) {
1871          // This is a nested type declaration.
1872          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1873            << (int)Record->isUnion();
1874          Invalid = true;
1875        }
1876      } else if (isa<AccessSpecDecl>(*Mem)) {
1877        // Any access specifier is fine.
1878      } else {
1879        // We have something that isn't a non-static data
1880        // member. Complain about it.
1881        unsigned DK = diag::err_anonymous_record_bad_member;
1882        if (isa<TypeDecl>(*Mem))
1883          DK = diag::err_anonymous_record_with_type;
1884        else if (isa<FunctionDecl>(*Mem))
1885          DK = diag::err_anonymous_record_with_function;
1886        else if (isa<VarDecl>(*Mem))
1887          DK = diag::err_anonymous_record_with_static;
1888        Diag((*Mem)->getLocation(), DK)
1889            << (int)Record->isUnion();
1890          Invalid = true;
1891      }
1892    }
1893  }
1894
1895  if (!Record->isUnion() && !Owner->isRecord()) {
1896    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1897      << (int)getLangOptions().CPlusPlus;
1898    Invalid = true;
1899  }
1900
1901  // Mock up a declarator.
1902  Declarator Dc(DS, Declarator::TypeNameContext);
1903  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1904  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1905
1906  // Create a declaration for this anonymous struct/union.
1907  NamedDecl *Anon = 0;
1908  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1909    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1910                             /*IdentifierInfo=*/0,
1911                             Context.getTypeDeclType(Record),
1912                             TInfo,
1913                             /*BitWidth=*/0, /*Mutable=*/false);
1914    Anon->setAccess(AS);
1915    if (getLangOptions().CPlusPlus) {
1916      FieldCollector->Add(cast<FieldDecl>(Anon));
1917      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1918        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1919    }
1920  } else {
1921    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1922    assert(SCSpec != DeclSpec::SCS_typedef &&
1923           "Parser allowed 'typedef' as storage class VarDecl.");
1924    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1925    if (SCSpec == DeclSpec::SCS_mutable) {
1926      // mutable can only appear on non-static class members, so it's always
1927      // an error here
1928      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1929      Invalid = true;
1930      SC = VarDecl::None;
1931    }
1932    SCSpec = DS.getStorageClassSpecAsWritten();
1933    VarDecl::StorageClass SCAsWritten
1934      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1935
1936    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1937                           /*IdentifierInfo=*/0,
1938                           Context.getTypeDeclType(Record),
1939                           TInfo, SC, SCAsWritten);
1940  }
1941  Anon->setImplicit();
1942
1943  // Add the anonymous struct/union object to the current
1944  // context. We'll be referencing this object when we refer to one of
1945  // its members.
1946  Owner->addDecl(Anon);
1947
1948  // Inject the members of the anonymous struct/union into the owning
1949  // context and into the identifier resolver chain for name lookup
1950  // purposes.
1951  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1952    Invalid = true;
1953
1954  // Mark this as an anonymous struct/union type. Note that we do not
1955  // do this until after we have already checked and injected the
1956  // members of this anonymous struct/union type, because otherwise
1957  // the members could be injected twice: once by DeclContext when it
1958  // builds its lookup table, and once by
1959  // InjectAnonymousStructOrUnionMembers.
1960  Record->setAnonymousStructOrUnion(true);
1961
1962  if (Invalid)
1963    Anon->setInvalidDecl();
1964
1965  return DeclPtrTy::make(Anon);
1966}
1967
1968
1969/// GetNameForDeclarator - Determine the full declaration name for the
1970/// given Declarator.
1971DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1972  return GetNameFromUnqualifiedId(D.getName());
1973}
1974
1975/// \brief Retrieves the declaration name from a parsed unqualified-id.
1976DeclarationNameInfo
1977Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1978  DeclarationNameInfo NameInfo;
1979  NameInfo.setLoc(Name.StartLocation);
1980
1981  switch (Name.getKind()) {
1982
1983  case UnqualifiedId::IK_Identifier:
1984    NameInfo.setName(Name.Identifier);
1985    NameInfo.setLoc(Name.StartLocation);
1986    return NameInfo;
1987
1988  case UnqualifiedId::IK_OperatorFunctionId:
1989    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
1990                                           Name.OperatorFunctionId.Operator));
1991    NameInfo.setLoc(Name.StartLocation);
1992    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
1993      = Name.OperatorFunctionId.SymbolLocations[0];
1994    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
1995      = Name.EndLocation.getRawEncoding();
1996    return NameInfo;
1997
1998  case UnqualifiedId::IK_LiteralOperatorId:
1999    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2000                                                           Name.Identifier));
2001    NameInfo.setLoc(Name.StartLocation);
2002    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2003    return NameInfo;
2004
2005  case UnqualifiedId::IK_ConversionFunctionId: {
2006    TypeSourceInfo *TInfo;
2007    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2008    if (Ty.isNull())
2009      return DeclarationNameInfo();
2010    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2011                                               Context.getCanonicalType(Ty)));
2012    NameInfo.setLoc(Name.StartLocation);
2013    NameInfo.setNamedTypeInfo(TInfo);
2014    return NameInfo;
2015  }
2016
2017  case UnqualifiedId::IK_ConstructorName: {
2018    TypeSourceInfo *TInfo;
2019    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2020    if (Ty.isNull())
2021      return DeclarationNameInfo();
2022    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2023                                              Context.getCanonicalType(Ty)));
2024    NameInfo.setLoc(Name.StartLocation);
2025    NameInfo.setNamedTypeInfo(TInfo);
2026    return NameInfo;
2027  }
2028
2029  case UnqualifiedId::IK_ConstructorTemplateId: {
2030    // In well-formed code, we can only have a constructor
2031    // template-id that refers to the current context, so go there
2032    // to find the actual type being constructed.
2033    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2034    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2035      return DeclarationNameInfo();
2036
2037    // Determine the type of the class being constructed.
2038    QualType CurClassType = Context.getTypeDeclType(CurClass);
2039
2040    // FIXME: Check two things: that the template-id names the same type as
2041    // CurClassType, and that the template-id does not occur when the name
2042    // was qualified.
2043
2044    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2045                                    Context.getCanonicalType(CurClassType)));
2046    NameInfo.setLoc(Name.StartLocation);
2047    // FIXME: should we retrieve TypeSourceInfo?
2048    NameInfo.setNamedTypeInfo(0);
2049    return NameInfo;
2050  }
2051
2052  case UnqualifiedId::IK_DestructorName: {
2053    TypeSourceInfo *TInfo;
2054    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2055    if (Ty.isNull())
2056      return DeclarationNameInfo();
2057    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2058                                              Context.getCanonicalType(Ty)));
2059    NameInfo.setLoc(Name.StartLocation);
2060    NameInfo.setNamedTypeInfo(TInfo);
2061    return NameInfo;
2062  }
2063
2064  case UnqualifiedId::IK_TemplateId: {
2065    TemplateName TName
2066      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2067    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2068    return Context.getNameForTemplate(TName, TNameLoc);
2069  }
2070
2071  } // switch (Name.getKind())
2072
2073  assert(false && "Unknown name kind");
2074  return DeclarationNameInfo();
2075}
2076
2077/// isNearlyMatchingFunction - Determine whether the C++ functions
2078/// Declaration and Definition are "nearly" matching. This heuristic
2079/// is used to improve diagnostics in the case where an out-of-line
2080/// function definition doesn't match any declaration within
2081/// the class or namespace.
2082static bool isNearlyMatchingFunction(ASTContext &Context,
2083                                     FunctionDecl *Declaration,
2084                                     FunctionDecl *Definition) {
2085  if (Declaration->param_size() != Definition->param_size())
2086    return false;
2087  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2088    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2089    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2090
2091    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2092                                        DefParamTy.getNonReferenceType()))
2093      return false;
2094  }
2095
2096  return true;
2097}
2098
2099/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2100/// declarator needs to be rebuilt in the current instantiation.
2101/// Any bits of declarator which appear before the name are valid for
2102/// consideration here.  That's specifically the type in the decl spec
2103/// and the base type in any member-pointer chunks.
2104static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2105                                                    DeclarationName Name) {
2106  // The types we specifically need to rebuild are:
2107  //   - typenames, typeofs, and decltypes
2108  //   - types which will become injected class names
2109  // Of course, we also need to rebuild any type referencing such a
2110  // type.  It's safest to just say "dependent", but we call out a
2111  // few cases here.
2112
2113  DeclSpec &DS = D.getMutableDeclSpec();
2114  switch (DS.getTypeSpecType()) {
2115  case DeclSpec::TST_typename:
2116  case DeclSpec::TST_typeofType:
2117  case DeclSpec::TST_typeofExpr:
2118  case DeclSpec::TST_decltype: {
2119    // Grab the type from the parser.
2120    TypeSourceInfo *TSI = 0;
2121    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2122    if (T.isNull() || !T->isDependentType()) break;
2123
2124    // Make sure there's a type source info.  This isn't really much
2125    // of a waste; most dependent types should have type source info
2126    // attached already.
2127    if (!TSI)
2128      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2129
2130    // Rebuild the type in the current instantiation.
2131    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2132    if (!TSI) return true;
2133
2134    // Store the new type back in the decl spec.
2135    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2136    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2137    break;
2138  }
2139
2140  default:
2141    // Nothing to do for these decl specs.
2142    break;
2143  }
2144
2145  // It doesn't matter what order we do this in.
2146  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2147    DeclaratorChunk &Chunk = D.getTypeObject(I);
2148
2149    // The only type information in the declarator which can come
2150    // before the declaration name is the base type of a member
2151    // pointer.
2152    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2153      continue;
2154
2155    // Rebuild the scope specifier in-place.
2156    CXXScopeSpec &SS = Chunk.Mem.Scope();
2157    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2158      return true;
2159  }
2160
2161  return false;
2162}
2163
2164Sema::DeclPtrTy
2165Sema::HandleDeclarator(Scope *S, Declarator &D,
2166                       MultiTemplateParamsArg TemplateParamLists,
2167                       bool IsFunctionDefinition) {
2168  // TODO: consider using NameInfo for diagnostic.
2169  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2170  DeclarationName Name = NameInfo.getName();
2171
2172  // All of these full declarators require an identifier.  If it doesn't have
2173  // one, the ParsedFreeStandingDeclSpec action should be used.
2174  if (!Name) {
2175    if (!D.isInvalidType())  // Reject this if we think it is valid.
2176      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2177           diag::err_declarator_need_ident)
2178        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2179    return DeclPtrTy();
2180  }
2181
2182  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2183  // we find one that is.
2184  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2185         (S->getFlags() & Scope::TemplateParamScope) != 0)
2186    S = S->getParent();
2187
2188  DeclContext *DC = CurContext;
2189  if (D.getCXXScopeSpec().isInvalid())
2190    D.setInvalidType();
2191  else if (D.getCXXScopeSpec().isSet()) {
2192    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2193    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2194    if (!DC) {
2195      // If we could not compute the declaration context, it's because the
2196      // declaration context is dependent but does not refer to a class,
2197      // class template, or class template partial specialization. Complain
2198      // and return early, to avoid the coming semantic disaster.
2199      Diag(D.getIdentifierLoc(),
2200           diag::err_template_qualified_declarator_no_match)
2201        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2202        << D.getCXXScopeSpec().getRange();
2203      return DeclPtrTy();
2204    }
2205
2206    bool IsDependentContext = DC->isDependentContext();
2207
2208    if (!IsDependentContext &&
2209        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2210      return DeclPtrTy();
2211
2212    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2213      Diag(D.getIdentifierLoc(),
2214           diag::err_member_def_undefined_record)
2215        << Name << DC << D.getCXXScopeSpec().getRange();
2216      D.setInvalidType();
2217    }
2218
2219    // Check whether we need to rebuild the type of the given
2220    // declaration in the current instantiation.
2221    if (EnteringContext && IsDependentContext &&
2222        TemplateParamLists.size() != 0) {
2223      ContextRAII SavedContext(*this, DC);
2224      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2225        D.setInvalidType();
2226    }
2227  }
2228
2229  NamedDecl *New;
2230
2231  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2232  QualType R = TInfo->getType();
2233
2234  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2235                        ForRedeclaration);
2236
2237  // See if this is a redefinition of a variable in the same scope.
2238  if (!D.getCXXScopeSpec().isSet()) {
2239    bool IsLinkageLookup = false;
2240
2241    // If the declaration we're planning to build will be a function
2242    // or object with linkage, then look for another declaration with
2243    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2244    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2245      /* Do nothing*/;
2246    else if (R->isFunctionType()) {
2247      if (CurContext->isFunctionOrMethod() ||
2248          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2249        IsLinkageLookup = true;
2250    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2251      IsLinkageLookup = true;
2252    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2253             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2254      IsLinkageLookup = true;
2255
2256    if (IsLinkageLookup)
2257      Previous.clear(LookupRedeclarationWithLinkage);
2258
2259    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2260  } else { // Something like "int foo::x;"
2261    LookupQualifiedName(Previous, DC);
2262
2263    // Don't consider using declarations as previous declarations for
2264    // out-of-line members.
2265    RemoveUsingDecls(Previous);
2266
2267    // C++ 7.3.1.2p2:
2268    // Members (including explicit specializations of templates) of a named
2269    // namespace can also be defined outside that namespace by explicit
2270    // qualification of the name being defined, provided that the entity being
2271    // defined was already declared in the namespace and the definition appears
2272    // after the point of declaration in a namespace that encloses the
2273    // declarations namespace.
2274    //
2275    // Note that we only check the context at this point. We don't yet
2276    // have enough information to make sure that PrevDecl is actually
2277    // the declaration we want to match. For example, given:
2278    //
2279    //   class X {
2280    //     void f();
2281    //     void f(float);
2282    //   };
2283    //
2284    //   void X::f(int) { } // ill-formed
2285    //
2286    // In this case, PrevDecl will point to the overload set
2287    // containing the two f's declared in X, but neither of them
2288    // matches.
2289
2290    // First check whether we named the global scope.
2291    if (isa<TranslationUnitDecl>(DC)) {
2292      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2293        << Name << D.getCXXScopeSpec().getRange();
2294    } else {
2295      DeclContext *Cur = CurContext;
2296      while (isa<LinkageSpecDecl>(Cur))
2297        Cur = Cur->getParent();
2298      if (!Cur->Encloses(DC)) {
2299        // The qualifying scope doesn't enclose the original declaration.
2300        // Emit diagnostic based on current scope.
2301        SourceLocation L = D.getIdentifierLoc();
2302        SourceRange R = D.getCXXScopeSpec().getRange();
2303        if (isa<FunctionDecl>(Cur))
2304          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2305        else
2306          Diag(L, diag::err_invalid_declarator_scope)
2307            << Name << cast<NamedDecl>(DC) << R;
2308        D.setInvalidType();
2309      }
2310    }
2311  }
2312
2313  if (Previous.isSingleResult() &&
2314      Previous.getFoundDecl()->isTemplateParameter()) {
2315    // Maybe we will complain about the shadowed template parameter.
2316    if (!D.isInvalidType())
2317      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2318                                          Previous.getFoundDecl()))
2319        D.setInvalidType();
2320
2321    // Just pretend that we didn't see the previous declaration.
2322    Previous.clear();
2323  }
2324
2325  // In C++, the previous declaration we find might be a tag type
2326  // (class or enum). In this case, the new declaration will hide the
2327  // tag type. Note that this does does not apply if we're declaring a
2328  // typedef (C++ [dcl.typedef]p4).
2329  if (Previous.isSingleTagDecl() &&
2330      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2331    Previous.clear();
2332
2333  bool Redeclaration = false;
2334  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2335    if (TemplateParamLists.size()) {
2336      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2337      return DeclPtrTy();
2338    }
2339
2340    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2341  } else if (R->isFunctionType()) {
2342    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2343                                  move(TemplateParamLists),
2344                                  IsFunctionDefinition, Redeclaration);
2345  } else {
2346    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2347                                  move(TemplateParamLists),
2348                                  Redeclaration);
2349  }
2350
2351  if (New == 0)
2352    return DeclPtrTy();
2353
2354  // If this has an identifier and is not an invalid redeclaration or
2355  // function template specialization, add it to the scope stack.
2356  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2357    PushOnScopeChains(New, S);
2358
2359  return DeclPtrTy::make(New);
2360}
2361
2362/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2363/// types into constant array types in certain situations which would otherwise
2364/// be errors (for GCC compatibility).
2365static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2366                                                    ASTContext &Context,
2367                                                    bool &SizeIsNegative,
2368                                                    llvm::APSInt &Oversized) {
2369  // This method tries to turn a variable array into a constant
2370  // array even when the size isn't an ICE.  This is necessary
2371  // for compatibility with code that depends on gcc's buggy
2372  // constant expression folding, like struct {char x[(int)(char*)2];}
2373  SizeIsNegative = false;
2374  Oversized = 0;
2375
2376  if (T->isDependentType())
2377    return QualType();
2378
2379  QualifierCollector Qs;
2380  const Type *Ty = Qs.strip(T);
2381
2382  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2383    QualType Pointee = PTy->getPointeeType();
2384    QualType FixedType =
2385        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2386                                            Oversized);
2387    if (FixedType.isNull()) return FixedType;
2388    FixedType = Context.getPointerType(FixedType);
2389    return Qs.apply(FixedType);
2390  }
2391
2392  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2393  if (!VLATy)
2394    return QualType();
2395  // FIXME: We should probably handle this case
2396  if (VLATy->getElementType()->isVariablyModifiedType())
2397    return QualType();
2398
2399  Expr::EvalResult EvalResult;
2400  if (!VLATy->getSizeExpr() ||
2401      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2402      !EvalResult.Val.isInt())
2403    return QualType();
2404
2405  // Check whether the array size is negative.
2406  llvm::APSInt &Res = EvalResult.Val.getInt();
2407  if (Res.isSigned() && Res.isNegative()) {
2408    SizeIsNegative = true;
2409    return QualType();
2410  }
2411
2412  // Check whether the array is too large to be addressed.
2413  unsigned ActiveSizeBits
2414    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2415                                              Res);
2416  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2417    Oversized = Res;
2418    return QualType();
2419  }
2420
2421  return Context.getConstantArrayType(VLATy->getElementType(),
2422                                      Res, ArrayType::Normal, 0);
2423}
2424
2425/// \brief Register the given locally-scoped external C declaration so
2426/// that it can be found later for redeclarations
2427void
2428Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2429                                       const LookupResult &Previous,
2430                                       Scope *S) {
2431  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2432         "Decl is not a locally-scoped decl!");
2433  // Note that we have a locally-scoped external with this name.
2434  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2435
2436  if (!Previous.isSingleResult())
2437    return;
2438
2439  NamedDecl *PrevDecl = Previous.getFoundDecl();
2440
2441  // If there was a previous declaration of this variable, it may be
2442  // in our identifier chain. Update the identifier chain with the new
2443  // declaration.
2444  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2445    // The previous declaration was found on the identifer resolver
2446    // chain, so remove it from its scope.
2447    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2448      S = S->getParent();
2449
2450    if (S)
2451      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2452  }
2453}
2454
2455/// \brief Diagnose function specifiers on a declaration of an identifier that
2456/// does not identify a function.
2457void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2458  // FIXME: We should probably indicate the identifier in question to avoid
2459  // confusion for constructs like "inline int a(), b;"
2460  if (D.getDeclSpec().isInlineSpecified())
2461    Diag(D.getDeclSpec().getInlineSpecLoc(),
2462         diag::err_inline_non_function);
2463
2464  if (D.getDeclSpec().isVirtualSpecified())
2465    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2466         diag::err_virtual_non_function);
2467
2468  if (D.getDeclSpec().isExplicitSpecified())
2469    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2470         diag::err_explicit_non_function);
2471}
2472
2473NamedDecl*
2474Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2475                             QualType R,  TypeSourceInfo *TInfo,
2476                             LookupResult &Previous, bool &Redeclaration) {
2477  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2478  if (D.getCXXScopeSpec().isSet()) {
2479    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2480      << D.getCXXScopeSpec().getRange();
2481    D.setInvalidType();
2482    // Pretend we didn't see the scope specifier.
2483    DC = CurContext;
2484    Previous.clear();
2485  }
2486
2487  if (getLangOptions().CPlusPlus) {
2488    // Check that there are no default arguments (C++ only).
2489    CheckExtraCXXDefaultArguments(D);
2490  }
2491
2492  DiagnoseFunctionSpecifiers(D);
2493
2494  if (D.getDeclSpec().isThreadSpecified())
2495    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2496
2497  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2498    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2499      << D.getName().getSourceRange();
2500    return 0;
2501  }
2502
2503  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2504  if (!NewTD) return 0;
2505
2506  // Handle attributes prior to checking for duplicates in MergeVarDecl
2507  ProcessDeclAttributes(S, NewTD, D);
2508
2509  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2510  // then it shall have block scope.
2511  // Note that variably modified types must be fixed before merging the decl so
2512  // that redeclarations will match.
2513  QualType T = NewTD->getUnderlyingType();
2514  if (T->isVariablyModifiedType()) {
2515    setFunctionHasBranchProtectedScope();
2516
2517    if (S->getFnParent() == 0) {
2518      bool SizeIsNegative;
2519      llvm::APSInt Oversized;
2520      QualType FixedTy =
2521          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2522                                              Oversized);
2523      if (!FixedTy.isNull()) {
2524        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2525        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2526      } else {
2527        if (SizeIsNegative)
2528          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2529        else if (T->isVariableArrayType())
2530          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2531        else if (Oversized.getBoolValue())
2532          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2533            << Oversized.toString(10);
2534        else
2535          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2536        NewTD->setInvalidDecl();
2537      }
2538    }
2539  }
2540
2541  // Merge the decl with the existing one if appropriate. If the decl is
2542  // in an outer scope, it isn't the same thing.
2543  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2544  if (!Previous.empty()) {
2545    Redeclaration = true;
2546    MergeTypeDefDecl(NewTD, Previous);
2547  }
2548
2549  // If this is the C FILE type, notify the AST context.
2550  if (IdentifierInfo *II = NewTD->getIdentifier())
2551    if (!NewTD->isInvalidDecl() &&
2552        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2553      if (II->isStr("FILE"))
2554        Context.setFILEDecl(NewTD);
2555      else if (II->isStr("jmp_buf"))
2556        Context.setjmp_bufDecl(NewTD);
2557      else if (II->isStr("sigjmp_buf"))
2558        Context.setsigjmp_bufDecl(NewTD);
2559    }
2560
2561  return NewTD;
2562}
2563
2564/// \brief Determines whether the given declaration is an out-of-scope
2565/// previous declaration.
2566///
2567/// This routine should be invoked when name lookup has found a
2568/// previous declaration (PrevDecl) that is not in the scope where a
2569/// new declaration by the same name is being introduced. If the new
2570/// declaration occurs in a local scope, previous declarations with
2571/// linkage may still be considered previous declarations (C99
2572/// 6.2.2p4-5, C++ [basic.link]p6).
2573///
2574/// \param PrevDecl the previous declaration found by name
2575/// lookup
2576///
2577/// \param DC the context in which the new declaration is being
2578/// declared.
2579///
2580/// \returns true if PrevDecl is an out-of-scope previous declaration
2581/// for a new delcaration with the same name.
2582static bool
2583isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2584                                ASTContext &Context) {
2585  if (!PrevDecl)
2586    return 0;
2587
2588  if (!PrevDecl->hasLinkage())
2589    return false;
2590
2591  if (Context.getLangOptions().CPlusPlus) {
2592    // C++ [basic.link]p6:
2593    //   If there is a visible declaration of an entity with linkage
2594    //   having the same name and type, ignoring entities declared
2595    //   outside the innermost enclosing namespace scope, the block
2596    //   scope declaration declares that same entity and receives the
2597    //   linkage of the previous declaration.
2598    DeclContext *OuterContext = DC->getLookupContext();
2599    if (!OuterContext->isFunctionOrMethod())
2600      // This rule only applies to block-scope declarations.
2601      return false;
2602    else {
2603      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2604      if (PrevOuterContext->isRecord())
2605        // We found a member function: ignore it.
2606        return false;
2607      else {
2608        // Find the innermost enclosing namespace for the new and
2609        // previous declarations.
2610        while (!OuterContext->isFileContext())
2611          OuterContext = OuterContext->getParent();
2612        while (!PrevOuterContext->isFileContext())
2613          PrevOuterContext = PrevOuterContext->getParent();
2614
2615        // The previous declaration is in a different namespace, so it
2616        // isn't the same function.
2617        if (OuterContext->getPrimaryContext() !=
2618            PrevOuterContext->getPrimaryContext())
2619          return false;
2620      }
2621    }
2622  }
2623
2624  return true;
2625}
2626
2627static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2628  CXXScopeSpec &SS = D.getCXXScopeSpec();
2629  if (!SS.isSet()) return;
2630  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2631                       SS.getRange());
2632}
2633
2634NamedDecl*
2635Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2636                              QualType R, TypeSourceInfo *TInfo,
2637                              LookupResult &Previous,
2638                              MultiTemplateParamsArg TemplateParamLists,
2639                              bool &Redeclaration) {
2640  DeclarationName Name = GetNameForDeclarator(D).getName();
2641
2642  // Check that there are no default arguments (C++ only).
2643  if (getLangOptions().CPlusPlus)
2644    CheckExtraCXXDefaultArguments(D);
2645
2646  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2647  assert(SCSpec != DeclSpec::SCS_typedef &&
2648         "Parser allowed 'typedef' as storage class VarDecl.");
2649  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2650  if (SCSpec == DeclSpec::SCS_mutable) {
2651    // mutable can only appear on non-static class members, so it's always
2652    // an error here
2653    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2654    D.setInvalidType();
2655    SC = VarDecl::None;
2656  }
2657  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2658  VarDecl::StorageClass SCAsWritten
2659    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2660
2661  IdentifierInfo *II = Name.getAsIdentifierInfo();
2662  if (!II) {
2663    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2664      << Name.getAsString();
2665    return 0;
2666  }
2667
2668  DiagnoseFunctionSpecifiers(D);
2669
2670  if (!DC->isRecord() && S->getFnParent() == 0) {
2671    // C99 6.9p2: The storage-class specifiers auto and register shall not
2672    // appear in the declaration specifiers in an external declaration.
2673    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2674
2675      // If this is a register variable with an asm label specified, then this
2676      // is a GNU extension.
2677      if (SC == VarDecl::Register && D.getAsmLabel())
2678        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2679      else
2680        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2681      D.setInvalidType();
2682    }
2683  }
2684  if (DC->isRecord() && !CurContext->isRecord()) {
2685    // This is an out-of-line definition of a static data member.
2686    if (SC == VarDecl::Static) {
2687      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2688           diag::err_static_out_of_line)
2689        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2690    } else if (SC == VarDecl::None)
2691      SC = VarDecl::Static;
2692  }
2693  if (SC == VarDecl::Static) {
2694    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2695      if (RD->isLocalClass())
2696        Diag(D.getIdentifierLoc(),
2697             diag::err_static_data_member_not_allowed_in_local_class)
2698          << Name << RD->getDeclName();
2699    }
2700  }
2701
2702  // Match up the template parameter lists with the scope specifier, then
2703  // determine whether we have a template or a template specialization.
2704  bool isExplicitSpecialization = false;
2705  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2706  bool Invalid = false;
2707  if (TemplateParameterList *TemplateParams
2708        = MatchTemplateParametersToScopeSpecifier(
2709                                  D.getDeclSpec().getSourceRange().getBegin(),
2710                                                  D.getCXXScopeSpec(),
2711                        (TemplateParameterList**)TemplateParamLists.get(),
2712                                                   TemplateParamLists.size(),
2713                                                  /*never a friend*/ false,
2714                                                  isExplicitSpecialization,
2715                                                  Invalid)) {
2716    // All but one template parameter lists have been matching.
2717    --NumMatchedTemplateParamLists;
2718
2719    if (TemplateParams->size() > 0) {
2720      // There is no such thing as a variable template.
2721      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2722        << II
2723        << SourceRange(TemplateParams->getTemplateLoc(),
2724                       TemplateParams->getRAngleLoc());
2725      return 0;
2726    } else {
2727      // There is an extraneous 'template<>' for this variable. Complain
2728      // about it, but allow the declaration of the variable.
2729      Diag(TemplateParams->getTemplateLoc(),
2730           diag::err_template_variable_noparams)
2731        << II
2732        << SourceRange(TemplateParams->getTemplateLoc(),
2733                       TemplateParams->getRAngleLoc());
2734
2735      isExplicitSpecialization = true;
2736    }
2737  }
2738
2739  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2740                                   II, R, TInfo, SC, SCAsWritten);
2741
2742  if (D.isInvalidType() || Invalid)
2743    NewVD->setInvalidDecl();
2744
2745  SetNestedNameSpecifier(NewVD, D);
2746
2747  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2748    NewVD->setTemplateParameterListsInfo(Context,
2749                                         NumMatchedTemplateParamLists,
2750                        (TemplateParameterList**)TemplateParamLists.release());
2751  }
2752
2753  if (D.getDeclSpec().isThreadSpecified()) {
2754    if (NewVD->hasLocalStorage())
2755      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2756    else if (!Context.Target.isTLSSupported())
2757      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2758    else
2759      NewVD->setThreadSpecified(true);
2760  }
2761
2762  // Set the lexical context. If the declarator has a C++ scope specifier, the
2763  // lexical context will be different from the semantic context.
2764  NewVD->setLexicalDeclContext(CurContext);
2765
2766  // Handle attributes prior to checking for duplicates in MergeVarDecl
2767  ProcessDeclAttributes(S, NewVD, D);
2768
2769  // Handle GNU asm-label extension (encoded as an attribute).
2770  if (Expr *E = (Expr*) D.getAsmLabel()) {
2771    // The parser guarantees this is a string.
2772    StringLiteral *SE = cast<StringLiteral>(E);
2773    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2774  }
2775
2776  // Diagnose shadowed variables before filtering for scope.
2777  if (!D.getCXXScopeSpec().isSet())
2778    CheckShadow(S, NewVD, Previous);
2779
2780  // Don't consider existing declarations that are in a different
2781  // scope and are out-of-semantic-context declarations (if the new
2782  // declaration has linkage).
2783  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2784
2785  // Merge the decl with the existing one if appropriate.
2786  if (!Previous.empty()) {
2787    if (Previous.isSingleResult() &&
2788        isa<FieldDecl>(Previous.getFoundDecl()) &&
2789        D.getCXXScopeSpec().isSet()) {
2790      // The user tried to define a non-static data member
2791      // out-of-line (C++ [dcl.meaning]p1).
2792      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2793        << D.getCXXScopeSpec().getRange();
2794      Previous.clear();
2795      NewVD->setInvalidDecl();
2796    }
2797  } else if (D.getCXXScopeSpec().isSet()) {
2798    // No previous declaration in the qualifying scope.
2799    Diag(D.getIdentifierLoc(), diag::err_no_member)
2800      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2801      << D.getCXXScopeSpec().getRange();
2802    NewVD->setInvalidDecl();
2803  }
2804
2805  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2806
2807  // This is an explicit specialization of a static data member. Check it.
2808  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2809      CheckMemberSpecialization(NewVD, Previous))
2810    NewVD->setInvalidDecl();
2811
2812  // attributes declared post-definition are currently ignored
2813  if (Previous.isSingleResult()) {
2814    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2815    if (Def && (Def = Def->getDefinition()) &&
2816        Def != NewVD && D.hasAttributes()) {
2817      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2818      Diag(Def->getLocation(), diag::note_previous_definition);
2819    }
2820  }
2821
2822  // If this is a locally-scoped extern C variable, update the map of
2823  // such variables.
2824  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2825      !NewVD->isInvalidDecl())
2826    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2827
2828  // If there's a #pragma GCC visibility in scope, and this isn't a class
2829  // member, set the visibility of this variable.
2830  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2831    AddPushedVisibilityAttribute(NewVD);
2832
2833  MarkUnusedFileScopedDecl(NewVD);
2834
2835  return NewVD;
2836}
2837
2838/// \brief Diagnose variable or built-in function shadowing.  Implements
2839/// -Wshadow.
2840///
2841/// This method is called whenever a VarDecl is added to a "useful"
2842/// scope.
2843///
2844/// \param S the scope in which the shadowing name is being declared
2845/// \param R the lookup of the name
2846///
2847void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2848  // Return if warning is ignored.
2849  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2850    return;
2851
2852  // Don't diagnose declarations at file scope.  The scope might not
2853  // have a DeclContext if (e.g.) we're parsing a function prototype.
2854  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2855  if (NewDC && NewDC->isFileContext())
2856    return;
2857
2858  // Only diagnose if we're shadowing an unambiguous field or variable.
2859  if (R.getResultKind() != LookupResult::Found)
2860    return;
2861
2862  NamedDecl* ShadowedDecl = R.getFoundDecl();
2863  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2864    return;
2865
2866  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2867
2868  // Only warn about certain kinds of shadowing for class members.
2869  if (NewDC && NewDC->isRecord()) {
2870    // In particular, don't warn about shadowing non-class members.
2871    if (!OldDC->isRecord())
2872      return;
2873
2874    // TODO: should we warn about static data members shadowing
2875    // static data members from base classes?
2876
2877    // TODO: don't diagnose for inaccessible shadowed members.
2878    // This is hard to do perfectly because we might friend the
2879    // shadowing context, but that's just a false negative.
2880  }
2881
2882  // Determine what kind of declaration we're shadowing.
2883  unsigned Kind;
2884  if (isa<RecordDecl>(OldDC)) {
2885    if (isa<FieldDecl>(ShadowedDecl))
2886      Kind = 3; // field
2887    else
2888      Kind = 2; // static data member
2889  } else if (OldDC->isFileContext())
2890    Kind = 1; // global
2891  else
2892    Kind = 0; // local
2893
2894  DeclarationName Name = R.getLookupName();
2895
2896  // Emit warning and note.
2897  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2898  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2899}
2900
2901/// \brief Check -Wshadow without the advantage of a previous lookup.
2902void Sema::CheckShadow(Scope *S, VarDecl *D) {
2903  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2904                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2905  LookupName(R, S);
2906  CheckShadow(S, D, R);
2907}
2908
2909/// \brief Perform semantic checking on a newly-created variable
2910/// declaration.
2911///
2912/// This routine performs all of the type-checking required for a
2913/// variable declaration once it has been built. It is used both to
2914/// check variables after they have been parsed and their declarators
2915/// have been translated into a declaration, and to check variables
2916/// that have been instantiated from a template.
2917///
2918/// Sets NewVD->isInvalidDecl() if an error was encountered.
2919void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2920                                    LookupResult &Previous,
2921                                    bool &Redeclaration) {
2922  // If the decl is already known invalid, don't check it.
2923  if (NewVD->isInvalidDecl())
2924    return;
2925
2926  QualType T = NewVD->getType();
2927
2928  if (T->isObjCObjectType()) {
2929    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2930    return NewVD->setInvalidDecl();
2931  }
2932
2933  // Emit an error if an address space was applied to decl with local storage.
2934  // This includes arrays of objects with address space qualifiers, but not
2935  // automatic variables that point to other address spaces.
2936  // ISO/IEC TR 18037 S5.1.2
2937  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2938    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2939    return NewVD->setInvalidDecl();
2940  }
2941
2942  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2943      && !NewVD->hasAttr<BlocksAttr>())
2944    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2945
2946  bool isVM = T->isVariablyModifiedType();
2947  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2948      NewVD->hasAttr<BlocksAttr>())
2949    setFunctionHasBranchProtectedScope();
2950
2951  if ((isVM && NewVD->hasLinkage()) ||
2952      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2953    bool SizeIsNegative;
2954    llvm::APSInt Oversized;
2955    QualType FixedTy =
2956        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2957                                            Oversized);
2958
2959    if (FixedTy.isNull() && T->isVariableArrayType()) {
2960      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2961      // FIXME: This won't give the correct result for
2962      // int a[10][n];
2963      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2964
2965      if (NewVD->isFileVarDecl())
2966        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2967        << SizeRange;
2968      else if (NewVD->getStorageClass() == VarDecl::Static)
2969        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2970        << SizeRange;
2971      else
2972        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2973        << SizeRange;
2974      return NewVD->setInvalidDecl();
2975    }
2976
2977    if (FixedTy.isNull()) {
2978      if (NewVD->isFileVarDecl())
2979        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2980      else
2981        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2982      return NewVD->setInvalidDecl();
2983    }
2984
2985    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2986    NewVD->setType(FixedTy);
2987  }
2988
2989  if (Previous.empty() && NewVD->isExternC()) {
2990    // Since we did not find anything by this name and we're declaring
2991    // an extern "C" variable, look for a non-visible extern "C"
2992    // declaration with the same name.
2993    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2994      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2995    if (Pos != LocallyScopedExternalDecls.end())
2996      Previous.addDecl(Pos->second);
2997  }
2998
2999  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3000    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3001      << T;
3002    return NewVD->setInvalidDecl();
3003  }
3004
3005  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3006    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3007    return NewVD->setInvalidDecl();
3008  }
3009
3010  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3011    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3012    return NewVD->setInvalidDecl();
3013  }
3014
3015  // Function pointers and references cannot have qualified function type, only
3016  // function pointer-to-members can do that.
3017  QualType Pointee;
3018  unsigned PtrOrRef = 0;
3019  if (const PointerType *Ptr = T->getAs<PointerType>())
3020    Pointee = Ptr->getPointeeType();
3021  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3022    Pointee = Ref->getPointeeType();
3023    PtrOrRef = 1;
3024  }
3025  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3026      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3027    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3028        << PtrOrRef;
3029    return NewVD->setInvalidDecl();
3030  }
3031
3032  if (!Previous.empty()) {
3033    Redeclaration = true;
3034    MergeVarDecl(NewVD, Previous);
3035  }
3036}
3037
3038/// \brief Data used with FindOverriddenMethod
3039struct FindOverriddenMethodData {
3040  Sema *S;
3041  CXXMethodDecl *Method;
3042};
3043
3044/// \brief Member lookup function that determines whether a given C++
3045/// method overrides a method in a base class, to be used with
3046/// CXXRecordDecl::lookupInBases().
3047static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3048                                 CXXBasePath &Path,
3049                                 void *UserData) {
3050  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3051
3052  FindOverriddenMethodData *Data
3053    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3054
3055  DeclarationName Name = Data->Method->getDeclName();
3056
3057  // FIXME: Do we care about other names here too?
3058  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3059    // We really want to find the base class destructor here.
3060    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3061    CanQualType CT = Data->S->Context.getCanonicalType(T);
3062
3063    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3064  }
3065
3066  for (Path.Decls = BaseRecord->lookup(Name);
3067       Path.Decls.first != Path.Decls.second;
3068       ++Path.Decls.first) {
3069    NamedDecl *D = *Path.Decls.first;
3070    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3071      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3072        return true;
3073    }
3074  }
3075
3076  return false;
3077}
3078
3079/// AddOverriddenMethods - See if a method overrides any in the base classes,
3080/// and if so, check that it's a valid override and remember it.
3081void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3082  // Look for virtual methods in base classes that this method might override.
3083  CXXBasePaths Paths;
3084  FindOverriddenMethodData Data;
3085  Data.Method = MD;
3086  Data.S = this;
3087  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3088    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3089         E = Paths.found_decls_end(); I != E; ++I) {
3090      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3091        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3092            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3093            !CheckOverridingFunctionAttributes(MD, OldMD))
3094          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3095      }
3096    }
3097  }
3098}
3099
3100NamedDecl*
3101Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3102                              QualType R, TypeSourceInfo *TInfo,
3103                              LookupResult &Previous,
3104                              MultiTemplateParamsArg TemplateParamLists,
3105                              bool IsFunctionDefinition, bool &Redeclaration) {
3106  assert(R.getTypePtr()->isFunctionType());
3107
3108  // TODO: consider using NameInfo for diagnostic.
3109  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3110  DeclarationName Name = NameInfo.getName();
3111  FunctionDecl::StorageClass SC = FunctionDecl::None;
3112  switch (D.getDeclSpec().getStorageClassSpec()) {
3113  default: assert(0 && "Unknown storage class!");
3114  case DeclSpec::SCS_auto:
3115  case DeclSpec::SCS_register:
3116  case DeclSpec::SCS_mutable:
3117    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3118         diag::err_typecheck_sclass_func);
3119    D.setInvalidType();
3120    break;
3121  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3122  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3123  case DeclSpec::SCS_static: {
3124    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3125      // C99 6.7.1p5:
3126      //   The declaration of an identifier for a function that has
3127      //   block scope shall have no explicit storage-class specifier
3128      //   other than extern
3129      // See also (C++ [dcl.stc]p4).
3130      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3131           diag::err_static_block_func);
3132      SC = FunctionDecl::None;
3133    } else
3134      SC = FunctionDecl::Static;
3135    break;
3136  }
3137  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3138  }
3139
3140  if (D.getDeclSpec().isThreadSpecified())
3141    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3142
3143  bool isFriend = D.getDeclSpec().isFriendSpecified();
3144  bool isInline = D.getDeclSpec().isInlineSpecified();
3145  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3146  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3147
3148  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3149  FunctionDecl::StorageClass SCAsWritten
3150    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3151
3152  // Check that the return type is not an abstract class type.
3153  // For record types, this is done by the AbstractClassUsageDiagnoser once
3154  // the class has been completely parsed.
3155  if (!DC->isRecord() &&
3156      RequireNonAbstractType(D.getIdentifierLoc(),
3157                             R->getAs<FunctionType>()->getResultType(),
3158                             diag::err_abstract_type_in_decl,
3159                             AbstractReturnType))
3160    D.setInvalidType();
3161
3162  // Do not allow returning a objc interface by-value.
3163  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3164    Diag(D.getIdentifierLoc(),
3165         diag::err_object_cannot_be_passed_returned_by_value) << 0
3166      << R->getAs<FunctionType>()->getResultType();
3167    D.setInvalidType();
3168  }
3169
3170  bool isVirtualOkay = false;
3171  FunctionDecl *NewFD;
3172
3173  if (isFriend) {
3174    // C++ [class.friend]p5
3175    //   A function can be defined in a friend declaration of a
3176    //   class . . . . Such a function is implicitly inline.
3177    isInline |= IsFunctionDefinition;
3178  }
3179
3180  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3181    // This is a C++ constructor declaration.
3182    assert(DC->isRecord() &&
3183           "Constructors can only be declared in a member context");
3184
3185    R = CheckConstructorDeclarator(D, R, SC);
3186
3187    // Create the new declaration
3188    NewFD = CXXConstructorDecl::Create(Context,
3189                                       cast<CXXRecordDecl>(DC),
3190                                       NameInfo, R, TInfo,
3191                                       isExplicit, isInline,
3192                                       /*isImplicitlyDeclared=*/false);
3193  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3194    // This is a C++ destructor declaration.
3195    if (DC->isRecord()) {
3196      R = CheckDestructorDeclarator(D, R, SC);
3197
3198      NewFD = CXXDestructorDecl::Create(Context,
3199                                        cast<CXXRecordDecl>(DC),
3200                                        NameInfo, R,
3201                                        isInline,
3202                                        /*isImplicitlyDeclared=*/false);
3203      NewFD->setTypeSourceInfo(TInfo);
3204
3205      isVirtualOkay = true;
3206    } else {
3207      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3208
3209      // Create a FunctionDecl to satisfy the function definition parsing
3210      // code path.
3211      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3212                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3213                                   /*hasPrototype=*/true);
3214      D.setInvalidType();
3215    }
3216  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3217    if (!DC->isRecord()) {
3218      Diag(D.getIdentifierLoc(),
3219           diag::err_conv_function_not_member);
3220      return 0;
3221    }
3222
3223    CheckConversionDeclarator(D, R, SC);
3224    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3225                                      NameInfo, R, TInfo,
3226                                      isInline, isExplicit);
3227
3228    isVirtualOkay = true;
3229  } else if (DC->isRecord()) {
3230    // If the of the function is the same as the name of the record, then this
3231    // must be an invalid constructor that has a return type.
3232    // (The parser checks for a return type and makes the declarator a
3233    // constructor if it has no return type).
3234    // must have an invalid constructor that has a return type
3235    if (Name.getAsIdentifierInfo() &&
3236        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3237      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3238        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3239        << SourceRange(D.getIdentifierLoc());
3240      return 0;
3241    }
3242
3243    bool isStatic = SC == FunctionDecl::Static;
3244
3245    // [class.free]p1:
3246    // Any allocation function for a class T is a static member
3247    // (even if not explicitly declared static).
3248    if (Name.getCXXOverloadedOperator() == OO_New ||
3249        Name.getCXXOverloadedOperator() == OO_Array_New)
3250      isStatic = true;
3251
3252    // [class.free]p6 Any deallocation function for a class X is a static member
3253    // (even if not explicitly declared static).
3254    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3255        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3256      isStatic = true;
3257
3258    // This is a C++ method declaration.
3259    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3260                                  NameInfo, R, TInfo,
3261                                  isStatic, SCAsWritten, isInline);
3262
3263    isVirtualOkay = !isStatic;
3264  } else {
3265    // Determine whether the function was written with a
3266    // prototype. This true when:
3267    //   - we're in C++ (where every function has a prototype),
3268    //   - there is a prototype in the declarator, or
3269    //   - the type R of the function is some kind of typedef or other reference
3270    //     to a type name (which eventually refers to a function type).
3271    bool HasPrototype =
3272       getLangOptions().CPlusPlus ||
3273       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3274       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3275
3276    NewFD = FunctionDecl::Create(Context, DC,
3277                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3278                                 HasPrototype);
3279  }
3280
3281  if (D.isInvalidType())
3282    NewFD->setInvalidDecl();
3283
3284  SetNestedNameSpecifier(NewFD, D);
3285
3286  // Set the lexical context. If the declarator has a C++
3287  // scope specifier, or is the object of a friend declaration, the
3288  // lexical context will be different from the semantic context.
3289  NewFD->setLexicalDeclContext(CurContext);
3290
3291  // Match up the template parameter lists with the scope specifier, then
3292  // determine whether we have a template or a template specialization.
3293  FunctionTemplateDecl *FunctionTemplate = 0;
3294  bool isExplicitSpecialization = false;
3295  bool isFunctionTemplateSpecialization = false;
3296  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3297  bool Invalid = false;
3298  if (TemplateParameterList *TemplateParams
3299        = MatchTemplateParametersToScopeSpecifier(
3300                                  D.getDeclSpec().getSourceRange().getBegin(),
3301                                  D.getCXXScopeSpec(),
3302                           (TemplateParameterList**)TemplateParamLists.get(),
3303                                                  TemplateParamLists.size(),
3304                                                  isFriend,
3305                                                  isExplicitSpecialization,
3306                                                  Invalid)) {
3307    // All but one template parameter lists have been matching.
3308    --NumMatchedTemplateParamLists;
3309
3310    if (TemplateParams->size() > 0) {
3311      // This is a function template
3312
3313      // Check that we can declare a template here.
3314      if (CheckTemplateDeclScope(S, TemplateParams))
3315        return 0;
3316
3317      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3318                                                      NewFD->getLocation(),
3319                                                      Name, TemplateParams,
3320                                                      NewFD);
3321      FunctionTemplate->setLexicalDeclContext(CurContext);
3322      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3323    } else {
3324      // This is a function template specialization.
3325      isFunctionTemplateSpecialization = true;
3326
3327      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3328      if (isFriend && isFunctionTemplateSpecialization) {
3329        // We want to remove the "template<>", found here.
3330        SourceRange RemoveRange = TemplateParams->getSourceRange();
3331
3332        // If we remove the template<> and the name is not a
3333        // template-id, we're actually silently creating a problem:
3334        // the friend declaration will refer to an untemplated decl,
3335        // and clearly the user wants a template specialization.  So
3336        // we need to insert '<>' after the name.
3337        SourceLocation InsertLoc;
3338        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3339          InsertLoc = D.getName().getSourceRange().getEnd();
3340          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3341        }
3342
3343        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3344          << Name << RemoveRange
3345          << FixItHint::CreateRemoval(RemoveRange)
3346          << FixItHint::CreateInsertion(InsertLoc, "<>");
3347      }
3348    }
3349  }
3350
3351  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3352    NewFD->setTemplateParameterListsInfo(Context,
3353                                         NumMatchedTemplateParamLists,
3354                        (TemplateParameterList**)TemplateParamLists.release());
3355  }
3356
3357  if (Invalid) {
3358    NewFD->setInvalidDecl();
3359    if (FunctionTemplate)
3360      FunctionTemplate->setInvalidDecl();
3361  }
3362
3363  // C++ [dcl.fct.spec]p5:
3364  //   The virtual specifier shall only be used in declarations of
3365  //   nonstatic class member functions that appear within a
3366  //   member-specification of a class declaration; see 10.3.
3367  //
3368  if (isVirtual && !NewFD->isInvalidDecl()) {
3369    if (!isVirtualOkay) {
3370       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3371           diag::err_virtual_non_function);
3372    } else if (!CurContext->isRecord()) {
3373      // 'virtual' was specified outside of the class.
3374      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3375        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3376    } else {
3377      // Okay: Add virtual to the method.
3378      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3379      CurClass->setMethodAsVirtual(NewFD);
3380    }
3381  }
3382
3383  // C++ [dcl.fct.spec]p3:
3384  //  The inline specifier shall not appear on a block scope function declaration.
3385  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3386    if (CurContext->isFunctionOrMethod()) {
3387      // 'inline' is not allowed on block scope function declaration.
3388      Diag(D.getDeclSpec().getInlineSpecLoc(),
3389           diag::err_inline_declaration_block_scope) << Name
3390        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3391    }
3392  }
3393
3394  // C++ [dcl.fct.spec]p6:
3395  //  The explicit specifier shall be used only in the declaration of a
3396  //  constructor or conversion function within its class definition; see 12.3.1
3397  //  and 12.3.2.
3398  if (isExplicit && !NewFD->isInvalidDecl()) {
3399    if (!CurContext->isRecord()) {
3400      // 'explicit' was specified outside of the class.
3401      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3402           diag::err_explicit_out_of_class)
3403        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3404    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3405               !isa<CXXConversionDecl>(NewFD)) {
3406      // 'explicit' was specified on a function that wasn't a constructor
3407      // or conversion function.
3408      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3409           diag::err_explicit_non_ctor_or_conv_function)
3410        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3411    }
3412  }
3413
3414  // Filter out previous declarations that don't match the scope.
3415  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3416
3417  if (isFriend) {
3418    // DC is the namespace in which the function is being declared.
3419    assert((DC->isFileContext() || !Previous.empty()) &&
3420           "previously-undeclared friend function being created "
3421           "in a non-namespace context");
3422
3423    // For now, claim that the objects have no previous declaration.
3424    if (FunctionTemplate) {
3425      FunctionTemplate->setObjectOfFriendDecl(false);
3426      FunctionTemplate->setAccess(AS_public);
3427    }
3428    NewFD->setObjectOfFriendDecl(false);
3429    NewFD->setAccess(AS_public);
3430  }
3431
3432  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3433      !CurContext->isRecord()) {
3434    // C++ [class.static]p1:
3435    //   A data or function member of a class may be declared static
3436    //   in a class definition, in which case it is a static member of
3437    //   the class.
3438
3439    // Complain about the 'static' specifier if it's on an out-of-line
3440    // member function definition.
3441    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3442         diag::err_static_out_of_line)
3443      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3444  }
3445
3446  // Handle GNU asm-label extension (encoded as an attribute).
3447  if (Expr *E = (Expr*) D.getAsmLabel()) {
3448    // The parser guarantees this is a string.
3449    StringLiteral *SE = cast<StringLiteral>(E);
3450    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3451  }
3452
3453  // Copy the parameter declarations from the declarator D to the function
3454  // declaration NewFD, if they are available.  First scavenge them into Params.
3455  llvm::SmallVector<ParmVarDecl*, 16> Params;
3456  if (D.getNumTypeObjects() > 0) {
3457    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3458
3459    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3460    // function that takes no arguments, not a function that takes a
3461    // single void argument.
3462    // We let through "const void" here because Sema::GetTypeForDeclarator
3463    // already checks for that case.
3464    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3465        FTI.ArgInfo[0].Param &&
3466        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3467      // Empty arg list, don't push any params.
3468      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3469
3470      // In C++, the empty parameter-type-list must be spelled "void"; a
3471      // typedef of void is not permitted.
3472      if (getLangOptions().CPlusPlus &&
3473          Param->getType().getUnqualifiedType() != Context.VoidTy)
3474        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3475      // FIXME: Leaks decl?
3476    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3477      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3478        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3479        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3480        Param->setDeclContext(NewFD);
3481        Params.push_back(Param);
3482
3483        if (Param->isInvalidDecl())
3484          NewFD->setInvalidDecl();
3485      }
3486    }
3487
3488  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3489    // When we're declaring a function with a typedef, typeof, etc as in the
3490    // following example, we'll need to synthesize (unnamed)
3491    // parameters for use in the declaration.
3492    //
3493    // @code
3494    // typedef void fn(int);
3495    // fn f;
3496    // @endcode
3497
3498    // Synthesize a parameter for each argument type.
3499    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3500         AE = FT->arg_type_end(); AI != AE; ++AI) {
3501      ParmVarDecl *Param =
3502        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3503      Params.push_back(Param);
3504    }
3505  } else {
3506    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3507           "Should not need args for typedef of non-prototype fn");
3508  }
3509  // Finally, we know we have the right number of parameters, install them.
3510  NewFD->setParams(Params.data(), Params.size());
3511
3512  // If the declarator is a template-id, translate the parser's template
3513  // argument list into our AST format.
3514  bool HasExplicitTemplateArgs = false;
3515  TemplateArgumentListInfo TemplateArgs;
3516  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3517    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3518    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3519    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3520    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3521                                       TemplateId->getTemplateArgs(),
3522                                       TemplateId->NumArgs);
3523    translateTemplateArguments(TemplateArgsPtr,
3524                               TemplateArgs);
3525    TemplateArgsPtr.release();
3526
3527    HasExplicitTemplateArgs = true;
3528
3529    if (FunctionTemplate) {
3530      // FIXME: Diagnose function template with explicit template
3531      // arguments.
3532      HasExplicitTemplateArgs = false;
3533    } else if (!isFunctionTemplateSpecialization &&
3534               !D.getDeclSpec().isFriendSpecified()) {
3535      // We have encountered something that the user meant to be a
3536      // specialization (because it has explicitly-specified template
3537      // arguments) but that was not introduced with a "template<>" (or had
3538      // too few of them).
3539      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3540        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3541        << FixItHint::CreateInsertion(
3542                                   D.getDeclSpec().getSourceRange().getBegin(),
3543                                                 "template<> ");
3544      isFunctionTemplateSpecialization = true;
3545    } else {
3546      // "friend void foo<>(int);" is an implicit specialization decl.
3547      isFunctionTemplateSpecialization = true;
3548    }
3549  } else if (isFriend && isFunctionTemplateSpecialization) {
3550    // This combination is only possible in a recovery case;  the user
3551    // wrote something like:
3552    //   template <> friend void foo(int);
3553    // which we're recovering from as if the user had written:
3554    //   friend void foo<>(int);
3555    // Go ahead and fake up a template id.
3556    HasExplicitTemplateArgs = true;
3557    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3558    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3559  }
3560
3561  // If it's a friend (and only if it's a friend), it's possible
3562  // that either the specialized function type or the specialized
3563  // template is dependent, and therefore matching will fail.  In
3564  // this case, don't check the specialization yet.
3565  if (isFunctionTemplateSpecialization && isFriend &&
3566      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3567    assert(HasExplicitTemplateArgs &&
3568           "friend function specialization without template args");
3569    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3570                                                     Previous))
3571      NewFD->setInvalidDecl();
3572  } else if (isFunctionTemplateSpecialization) {
3573    if (CheckFunctionTemplateSpecialization(NewFD,
3574                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3575                                            Previous))
3576      NewFD->setInvalidDecl();
3577  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3578    if (CheckMemberSpecialization(NewFD, Previous))
3579      NewFD->setInvalidDecl();
3580  }
3581
3582  // Perform semantic checking on the function declaration.
3583  bool OverloadableAttrRequired = false; // FIXME: HACK!
3584  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3585                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3586
3587  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3588          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3589         "previous declaration set still overloaded");
3590
3591  NamedDecl *PrincipalDecl = (FunctionTemplate
3592                              ? cast<NamedDecl>(FunctionTemplate)
3593                              : NewFD);
3594
3595  if (isFriend && Redeclaration) {
3596    AccessSpecifier Access = AS_public;
3597    if (!NewFD->isInvalidDecl())
3598      Access = NewFD->getPreviousDeclaration()->getAccess();
3599
3600    NewFD->setAccess(Access);
3601    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3602
3603    PrincipalDecl->setObjectOfFriendDecl(true);
3604  }
3605
3606  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3607      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3608    PrincipalDecl->setNonMemberOperator();
3609
3610  // If we have a function template, check the template parameter
3611  // list. This will check and merge default template arguments.
3612  if (FunctionTemplate) {
3613    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3614    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3615                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3616             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3617                                                : TPC_FunctionTemplate);
3618  }
3619
3620  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3621    // Fake up an access specifier if it's supposed to be a class member.
3622    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3623      NewFD->setAccess(AS_public);
3624
3625    // An out-of-line member function declaration must also be a
3626    // definition (C++ [dcl.meaning]p1).
3627    // Note that this is not the case for explicit specializations of
3628    // function templates or member functions of class templates, per
3629    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3630    // for compatibility with old SWIG code which likes to generate them.
3631    if (!IsFunctionDefinition && !isFriend &&
3632        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3633      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3634        << D.getCXXScopeSpec().getRange();
3635    }
3636    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3637      // The user tried to provide an out-of-line definition for a
3638      // function that is a member of a class or namespace, but there
3639      // was no such member function declared (C++ [class.mfct]p2,
3640      // C++ [namespace.memdef]p2). For example:
3641      //
3642      // class X {
3643      //   void f() const;
3644      // };
3645      //
3646      // void X::f() { } // ill-formed
3647      //
3648      // Complain about this problem, and attempt to suggest close
3649      // matches (e.g., those that differ only in cv-qualifiers and
3650      // whether the parameter types are references).
3651      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3652        << Name << DC << D.getCXXScopeSpec().getRange();
3653      NewFD->setInvalidDecl();
3654
3655      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3656                        ForRedeclaration);
3657      LookupQualifiedName(Prev, DC);
3658      assert(!Prev.isAmbiguous() &&
3659             "Cannot have an ambiguity in previous-declaration lookup");
3660      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3661           Func != FuncEnd; ++Func) {
3662        if (isa<FunctionDecl>(*Func) &&
3663            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3664          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3665      }
3666    }
3667  }
3668
3669  // Handle attributes. We need to have merged decls when handling attributes
3670  // (for example to check for conflicts, etc).
3671  // FIXME: This needs to happen before we merge declarations. Then,
3672  // let attribute merging cope with attribute conflicts.
3673  ProcessDeclAttributes(S, NewFD, D);
3674
3675  // attributes declared post-definition are currently ignored
3676  if (Redeclaration && Previous.isSingleResult()) {
3677    const FunctionDecl *Def;
3678    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3679    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3680      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3681      Diag(Def->getLocation(), diag::note_previous_definition);
3682    }
3683  }
3684
3685  AddKnownFunctionAttributes(NewFD);
3686
3687  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3688    // If a function name is overloadable in C, then every function
3689    // with that name must be marked "overloadable".
3690    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3691      << Redeclaration << NewFD;
3692    if (!Previous.empty())
3693      Diag(Previous.getRepresentativeDecl()->getLocation(),
3694           diag::note_attribute_overloadable_prev_overload);
3695    NewFD->addAttr(::new (Context) OverloadableAttr());
3696  }
3697
3698  if (NewFD->hasAttr<OverloadableAttr>() &&
3699      !NewFD->getType()->getAs<FunctionProtoType>()) {
3700    Diag(NewFD->getLocation(),
3701         diag::err_attribute_overloadable_no_prototype)
3702      << NewFD;
3703
3704    // Turn this into a variadic function with no parameters.
3705    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3706    QualType R = Context.getFunctionType(FT->getResultType(),
3707                                         0, 0, true, 0, false, false, 0, 0,
3708                                         FT->getExtInfo());
3709    NewFD->setType(R);
3710  }
3711
3712  // If there's a #pragma GCC visibility in scope, and this isn't a class
3713  // member, set the visibility of this function.
3714  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3715    AddPushedVisibilityAttribute(NewFD);
3716
3717  // If this is a locally-scoped extern C function, update the
3718  // map of such names.
3719  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3720      && !NewFD->isInvalidDecl())
3721    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3722
3723  // Set this FunctionDecl's range up to the right paren.
3724  NewFD->setLocEnd(D.getSourceRange().getEnd());
3725
3726  if (FunctionTemplate && NewFD->isInvalidDecl())
3727    FunctionTemplate->setInvalidDecl();
3728
3729  if (FunctionTemplate)
3730    return FunctionTemplate;
3731
3732  MarkUnusedFileScopedDecl(NewFD);
3733
3734  return NewFD;
3735}
3736
3737/// \brief Perform semantic checking of a new function declaration.
3738///
3739/// Performs semantic analysis of the new function declaration
3740/// NewFD. This routine performs all semantic checking that does not
3741/// require the actual declarator involved in the declaration, and is
3742/// used both for the declaration of functions as they are parsed
3743/// (called via ActOnDeclarator) and for the declaration of functions
3744/// that have been instantiated via C++ template instantiation (called
3745/// via InstantiateDecl).
3746///
3747/// \param IsExplicitSpecialiation whether this new function declaration is
3748/// an explicit specialization of the previous declaration.
3749///
3750/// This sets NewFD->isInvalidDecl() to true if there was an error.
3751void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3752                                    LookupResult &Previous,
3753                                    bool IsExplicitSpecialization,
3754                                    bool &Redeclaration,
3755                                    bool &OverloadableAttrRequired) {
3756  // If NewFD is already known erroneous, don't do any of this checking.
3757  if (NewFD->isInvalidDecl()) {
3758    // If this is a class member, mark the class invalid immediately.
3759    // This avoids some consistency errors later.
3760    if (isa<CXXMethodDecl>(NewFD))
3761      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3762
3763    return;
3764  }
3765
3766  if (NewFD->getResultType()->isVariablyModifiedType()) {
3767    // Functions returning a variably modified type violate C99 6.7.5.2p2
3768    // because all functions have linkage.
3769    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3770    return NewFD->setInvalidDecl();
3771  }
3772
3773  if (NewFD->isMain())
3774    CheckMain(NewFD);
3775
3776  // Check for a previous declaration of this name.
3777  if (Previous.empty() && NewFD->isExternC()) {
3778    // Since we did not find anything by this name and we're declaring
3779    // an extern "C" function, look for a non-visible extern "C"
3780    // declaration with the same name.
3781    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3782      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3783    if (Pos != LocallyScopedExternalDecls.end())
3784      Previous.addDecl(Pos->second);
3785  }
3786
3787  // Merge or overload the declaration with an existing declaration of
3788  // the same name, if appropriate.
3789  if (!Previous.empty()) {
3790    // Determine whether NewFD is an overload of PrevDecl or
3791    // a declaration that requires merging. If it's an overload,
3792    // there's no more work to do here; we'll just add the new
3793    // function to the scope.
3794
3795    NamedDecl *OldDecl = 0;
3796    if (!AllowOverloadingOfFunction(Previous, Context)) {
3797      Redeclaration = true;
3798      OldDecl = Previous.getFoundDecl();
3799    } else {
3800      if (!getLangOptions().CPlusPlus)
3801        OverloadableAttrRequired = true;
3802
3803      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3804                            /*NewIsUsingDecl*/ false)) {
3805      case Ovl_Match:
3806        Redeclaration = true;
3807        break;
3808
3809      case Ovl_NonFunction:
3810        Redeclaration = true;
3811        break;
3812
3813      case Ovl_Overload:
3814        Redeclaration = false;
3815        break;
3816      }
3817    }
3818
3819    if (Redeclaration) {
3820      // NewFD and OldDecl represent declarations that need to be
3821      // merged.
3822      if (MergeFunctionDecl(NewFD, OldDecl))
3823        return NewFD->setInvalidDecl();
3824
3825      Previous.clear();
3826      Previous.addDecl(OldDecl);
3827
3828      if (FunctionTemplateDecl *OldTemplateDecl
3829                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3830        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3831        FunctionTemplateDecl *NewTemplateDecl
3832          = NewFD->getDescribedFunctionTemplate();
3833        assert(NewTemplateDecl && "Template/non-template mismatch");
3834        if (CXXMethodDecl *Method
3835              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3836          Method->setAccess(OldTemplateDecl->getAccess());
3837          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3838        }
3839
3840        // If this is an explicit specialization of a member that is a function
3841        // template, mark it as a member specialization.
3842        if (IsExplicitSpecialization &&
3843            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3844          NewTemplateDecl->setMemberSpecialization();
3845          assert(OldTemplateDecl->isMemberSpecialization());
3846        }
3847      } else {
3848        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3849          NewFD->setAccess(OldDecl->getAccess());
3850        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3851      }
3852    }
3853  }
3854
3855  // Semantic checking for this function declaration (in isolation).
3856  if (getLangOptions().CPlusPlus) {
3857    // C++-specific checks.
3858    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3859      CheckConstructor(Constructor);
3860    } else if (CXXDestructorDecl *Destructor =
3861                dyn_cast<CXXDestructorDecl>(NewFD)) {
3862      CXXRecordDecl *Record = Destructor->getParent();
3863      QualType ClassType = Context.getTypeDeclType(Record);
3864
3865      // FIXME: Shouldn't we be able to perform this check even when the class
3866      // type is dependent? Both gcc and edg can handle that.
3867      if (!ClassType->isDependentType()) {
3868        DeclarationName Name
3869          = Context.DeclarationNames.getCXXDestructorName(
3870                                        Context.getCanonicalType(ClassType));
3871//         NewFD->getDeclName().dump();
3872//         Name.dump();
3873        if (NewFD->getDeclName() != Name) {
3874          Diag(NewFD->getLocation(), diag::err_destructor_name);
3875          return NewFD->setInvalidDecl();
3876        }
3877      }
3878
3879      Record->setUserDeclaredDestructor(true);
3880      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3881      // user-defined destructor.
3882      Record->setPOD(false);
3883
3884      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3885      // declared destructor.
3886      // FIXME: C++0x: don't do this for "= default" destructors
3887      Record->setHasTrivialDestructor(false);
3888    } else if (CXXConversionDecl *Conversion
3889               = dyn_cast<CXXConversionDecl>(NewFD)) {
3890      ActOnConversionDeclarator(Conversion);
3891    }
3892
3893    // Find any virtual functions that this function overrides.
3894    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3895      if (!Method->isFunctionTemplateSpecialization() &&
3896          !Method->getDescribedFunctionTemplate())
3897        AddOverriddenMethods(Method->getParent(), Method);
3898    }
3899
3900    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3901    if (NewFD->isOverloadedOperator() &&
3902        CheckOverloadedOperatorDeclaration(NewFD))
3903      return NewFD->setInvalidDecl();
3904
3905    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3906    if (NewFD->getLiteralIdentifier() &&
3907        CheckLiteralOperatorDeclaration(NewFD))
3908      return NewFD->setInvalidDecl();
3909
3910    // In C++, check default arguments now that we have merged decls. Unless
3911    // the lexical context is the class, because in this case this is done
3912    // during delayed parsing anyway.
3913    if (!CurContext->isRecord())
3914      CheckCXXDefaultArguments(NewFD);
3915  }
3916}
3917
3918void Sema::CheckMain(FunctionDecl* FD) {
3919  // C++ [basic.start.main]p3:  A program that declares main to be inline
3920  //   or static is ill-formed.
3921  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3922  //   shall not appear in a declaration of main.
3923  // static main is not an error under C99, but we should warn about it.
3924  bool isInline = FD->isInlineSpecified();
3925  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3926  if (isInline || isStatic) {
3927    unsigned diagID = diag::warn_unusual_main_decl;
3928    if (isInline || getLangOptions().CPlusPlus)
3929      diagID = diag::err_unusual_main_decl;
3930
3931    int which = isStatic + (isInline << 1) - 1;
3932    Diag(FD->getLocation(), diagID) << which;
3933  }
3934
3935  QualType T = FD->getType();
3936  assert(T->isFunctionType() && "function decl is not of function type");
3937  const FunctionType* FT = T->getAs<FunctionType>();
3938
3939  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3940    // TODO: add a replacement fixit to turn the return type into 'int'.
3941    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3942    FD->setInvalidDecl(true);
3943  }
3944
3945  // Treat protoless main() as nullary.
3946  if (isa<FunctionNoProtoType>(FT)) return;
3947
3948  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3949  unsigned nparams = FTP->getNumArgs();
3950  assert(FD->getNumParams() == nparams);
3951
3952  bool HasExtraParameters = (nparams > 3);
3953
3954  // Darwin passes an undocumented fourth argument of type char**.  If
3955  // other platforms start sprouting these, the logic below will start
3956  // getting shifty.
3957  if (nparams == 4 &&
3958      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3959    HasExtraParameters = false;
3960
3961  if (HasExtraParameters) {
3962    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3963    FD->setInvalidDecl(true);
3964    nparams = 3;
3965  }
3966
3967  // FIXME: a lot of the following diagnostics would be improved
3968  // if we had some location information about types.
3969
3970  QualType CharPP =
3971    Context.getPointerType(Context.getPointerType(Context.CharTy));
3972  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3973
3974  for (unsigned i = 0; i < nparams; ++i) {
3975    QualType AT = FTP->getArgType(i);
3976
3977    bool mismatch = true;
3978
3979    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3980      mismatch = false;
3981    else if (Expected[i] == CharPP) {
3982      // As an extension, the following forms are okay:
3983      //   char const **
3984      //   char const * const *
3985      //   char * const *
3986
3987      QualifierCollector qs;
3988      const PointerType* PT;
3989      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3990          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3991          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3992        qs.removeConst();
3993        mismatch = !qs.empty();
3994      }
3995    }
3996
3997    if (mismatch) {
3998      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3999      // TODO: suggest replacing given type with expected type
4000      FD->setInvalidDecl(true);
4001    }
4002  }
4003
4004  if (nparams == 1 && !FD->isInvalidDecl()) {
4005    Diag(FD->getLocation(), diag::warn_main_one_arg);
4006  }
4007}
4008
4009bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4010  // FIXME: Need strict checking.  In C89, we need to check for
4011  // any assignment, increment, decrement, function-calls, or
4012  // commas outside of a sizeof.  In C99, it's the same list,
4013  // except that the aforementioned are allowed in unevaluated
4014  // expressions.  Everything else falls under the
4015  // "may accept other forms of constant expressions" exception.
4016  // (We never end up here for C++, so the constant expression
4017  // rules there don't matter.)
4018  if (Init->isConstantInitializer(Context, false))
4019    return false;
4020  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4021    << Init->getSourceRange();
4022  return true;
4023}
4024
4025void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
4026  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
4027}
4028
4029/// AddInitializerToDecl - Adds the initializer Init to the
4030/// declaration dcl. If DirectInit is true, this is C++ direct
4031/// initialization rather than copy initialization.
4032void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
4033  Decl *RealDecl = dcl.getAs<Decl>();
4034  // If there is no declaration, there was an error parsing it.  Just ignore
4035  // the initializer.
4036  if (RealDecl == 0)
4037    return;
4038
4039  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4040    // With declarators parsed the way they are, the parser cannot
4041    // distinguish between a normal initializer and a pure-specifier.
4042    // Thus this grotesque test.
4043    IntegerLiteral *IL;
4044    Expr *Init = static_cast<Expr *>(init.get());
4045    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4046        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4047      CheckPureMethod(Method, Init->getSourceRange());
4048    else {
4049      Diag(Method->getLocation(), diag::err_member_function_initialization)
4050        << Method->getDeclName() << Init->getSourceRange();
4051      Method->setInvalidDecl();
4052    }
4053    return;
4054  }
4055
4056  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4057  if (!VDecl) {
4058    if (getLangOptions().CPlusPlus &&
4059        RealDecl->getLexicalDeclContext()->isRecord() &&
4060        isa<NamedDecl>(RealDecl))
4061      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4062        << cast<NamedDecl>(RealDecl)->getDeclName();
4063    else
4064      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4065    RealDecl->setInvalidDecl();
4066    return;
4067  }
4068
4069  // A definition must end up with a complete type, which means it must be
4070  // complete with the restriction that an array type might be completed by the
4071  // initializer; note that later code assumes this restriction.
4072  QualType BaseDeclType = VDecl->getType();
4073  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4074    BaseDeclType = Array->getElementType();
4075  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4076                          diag::err_typecheck_decl_incomplete_type)) {
4077    RealDecl->setInvalidDecl();
4078    return;
4079  }
4080
4081  // The variable can not have an abstract class type.
4082  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4083                             diag::err_abstract_type_in_decl,
4084                             AbstractVariableType))
4085    VDecl->setInvalidDecl();
4086
4087  const VarDecl *Def;
4088  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4089    Diag(VDecl->getLocation(), diag::err_redefinition)
4090      << VDecl->getDeclName();
4091    Diag(Def->getLocation(), diag::note_previous_definition);
4092    VDecl->setInvalidDecl();
4093    return;
4094  }
4095
4096  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4097    setFunctionHasBranchProtectedScope();
4098
4099  // Take ownership of the expression, now that we're sure we have somewhere
4100  // to put it.
4101  Expr *Init = init.takeAs<Expr>();
4102  assert(Init && "missing initializer");
4103
4104  // Capture the variable that is being initialized and the style of
4105  // initialization.
4106  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4107
4108  // FIXME: Poor source location information.
4109  InitializationKind Kind
4110    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4111                                                   Init->getLocStart(),
4112                                                   Init->getLocEnd())
4113                : InitializationKind::CreateCopy(VDecl->getLocation(),
4114                                                 Init->getLocStart());
4115
4116  // Get the decls type and save a reference for later, since
4117  // CheckInitializerTypes may change it.
4118  QualType DclT = VDecl->getType(), SavT = DclT;
4119  if (VDecl->isBlockVarDecl()) {
4120    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4121      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4122      VDecl->setInvalidDecl();
4123    } else if (!VDecl->isInvalidDecl()) {
4124      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4125      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4126                                          MultiExprArg(*this, (void**)&Init, 1),
4127                                                &DclT);
4128      if (Result.isInvalid()) {
4129        VDecl->setInvalidDecl();
4130        return;
4131      }
4132
4133      Init = Result.takeAs<Expr>();
4134
4135      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4136      // Don't check invalid declarations to avoid emitting useless diagnostics.
4137      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4138        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4139          CheckForConstantInitializer(Init, DclT);
4140      }
4141    }
4142  } else if (VDecl->isStaticDataMember() &&
4143             VDecl->getLexicalDeclContext()->isRecord()) {
4144    // This is an in-class initialization for a static data member, e.g.,
4145    //
4146    // struct S {
4147    //   static const int value = 17;
4148    // };
4149
4150    // Attach the initializer
4151    VDecl->setInit(Init);
4152
4153    // C++ [class.mem]p4:
4154    //   A member-declarator can contain a constant-initializer only
4155    //   if it declares a static member (9.4) of const integral or
4156    //   const enumeration type, see 9.4.2.
4157    QualType T = VDecl->getType();
4158    if (!T->isDependentType() &&
4159        (!Context.getCanonicalType(T).isConstQualified() ||
4160         !T->isIntegralOrEnumerationType())) {
4161      Diag(VDecl->getLocation(), diag::err_member_initialization)
4162        << VDecl->getDeclName() << Init->getSourceRange();
4163      VDecl->setInvalidDecl();
4164    } else {
4165      // C++ [class.static.data]p4:
4166      //   If a static data member is of const integral or const
4167      //   enumeration type, its declaration in the class definition
4168      //   can specify a constant-initializer which shall be an
4169      //   integral constant expression (5.19).
4170      if (!Init->isTypeDependent() &&
4171          !Init->getType()->isIntegralOrEnumerationType()) {
4172        // We have a non-dependent, non-integral or enumeration type.
4173        Diag(Init->getSourceRange().getBegin(),
4174             diag::err_in_class_initializer_non_integral_type)
4175          << Init->getType() << Init->getSourceRange();
4176        VDecl->setInvalidDecl();
4177      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4178        // Check whether the expression is a constant expression.
4179        llvm::APSInt Value;
4180        SourceLocation Loc;
4181        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4182          Diag(Loc, diag::err_in_class_initializer_non_constant)
4183            << Init->getSourceRange();
4184          VDecl->setInvalidDecl();
4185        } else if (!VDecl->getType()->isDependentType())
4186          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4187      }
4188    }
4189  } else if (VDecl->isFileVarDecl()) {
4190    if (VDecl->getStorageClass() == VarDecl::Extern &&
4191        (!getLangOptions().CPlusPlus ||
4192         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4193      Diag(VDecl->getLocation(), diag::warn_extern_init);
4194    if (!VDecl->isInvalidDecl()) {
4195      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4196      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4197                                          MultiExprArg(*this, (void**)&Init, 1),
4198                                                &DclT);
4199      if (Result.isInvalid()) {
4200        VDecl->setInvalidDecl();
4201        return;
4202      }
4203
4204      Init = Result.takeAs<Expr>();
4205    }
4206
4207    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4208    // Don't check invalid declarations to avoid emitting useless diagnostics.
4209    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4210      // C99 6.7.8p4. All file scoped initializers need to be constant.
4211      CheckForConstantInitializer(Init, DclT);
4212    }
4213  }
4214  // If the type changed, it means we had an incomplete type that was
4215  // completed by the initializer. For example:
4216  //   int ary[] = { 1, 3, 5 };
4217  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4218  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4219    VDecl->setType(DclT);
4220    Init->setType(DclT);
4221  }
4222
4223  Init = MaybeCreateCXXExprWithTemporaries(Init);
4224  // Attach the initializer to the decl.
4225  VDecl->setInit(Init);
4226
4227  if (getLangOptions().CPlusPlus) {
4228    if (!VDecl->isInvalidDecl() &&
4229        !VDecl->getDeclContext()->isDependentContext() &&
4230        VDecl->hasGlobalStorage() &&
4231        !Init->isConstantInitializer(Context,
4232                                     VDecl->getType()->isReferenceType()))
4233      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4234        << Init->getSourceRange();
4235
4236    // Make sure we mark the destructor as used if necessary.
4237    QualType InitType = VDecl->getType();
4238    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4239      InitType = Context.getBaseElementType(Array);
4240    if (const RecordType *Record = InitType->getAs<RecordType>())
4241      FinalizeVarWithDestructor(VDecl, Record);
4242  }
4243
4244  return;
4245}
4246
4247/// ActOnInitializerError - Given that there was an error parsing an
4248/// initializer for the given declaration, try to return to some form
4249/// of sanity.
4250void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4251  // Our main concern here is re-establishing invariants like "a
4252  // variable's type is either dependent or complete".
4253  Decl *D = dcl.getAs<Decl>();
4254  if (!D || D->isInvalidDecl()) return;
4255
4256  VarDecl *VD = dyn_cast<VarDecl>(D);
4257  if (!VD) return;
4258
4259  QualType Ty = VD->getType();
4260  if (Ty->isDependentType()) return;
4261
4262  // Require a complete type.
4263  if (RequireCompleteType(VD->getLocation(),
4264                          Context.getBaseElementType(Ty),
4265                          diag::err_typecheck_decl_incomplete_type)) {
4266    VD->setInvalidDecl();
4267    return;
4268  }
4269
4270  // Require an abstract type.
4271  if (RequireNonAbstractType(VD->getLocation(), Ty,
4272                             diag::err_abstract_type_in_decl,
4273                             AbstractVariableType)) {
4274    VD->setInvalidDecl();
4275    return;
4276  }
4277
4278  // Don't bother complaining about constructors or destructors,
4279  // though.
4280}
4281
4282void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4283                                  bool TypeContainsUndeducedAuto) {
4284  Decl *RealDecl = dcl.getAs<Decl>();
4285
4286  // If there is no declaration, there was an error parsing it. Just ignore it.
4287  if (RealDecl == 0)
4288    return;
4289
4290  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4291    QualType Type = Var->getType();
4292
4293    // C++0x [dcl.spec.auto]p3
4294    if (TypeContainsUndeducedAuto) {
4295      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4296        << Var->getDeclName() << Type;
4297      Var->setInvalidDecl();
4298      return;
4299    }
4300
4301    switch (Var->isThisDeclarationADefinition()) {
4302    case VarDecl::Definition:
4303      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4304        break;
4305
4306      // We have an out-of-line definition of a static data member
4307      // that has an in-class initializer, so we type-check this like
4308      // a declaration.
4309      //
4310      // Fall through
4311
4312    case VarDecl::DeclarationOnly:
4313      // It's only a declaration.
4314
4315      // Block scope. C99 6.7p7: If an identifier for an object is
4316      // declared with no linkage (C99 6.2.2p6), the type for the
4317      // object shall be complete.
4318      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4319          !Var->getLinkage() && !Var->isInvalidDecl() &&
4320          RequireCompleteType(Var->getLocation(), Type,
4321                              diag::err_typecheck_decl_incomplete_type))
4322        Var->setInvalidDecl();
4323
4324      // Make sure that the type is not abstract.
4325      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4326          RequireNonAbstractType(Var->getLocation(), Type,
4327                                 diag::err_abstract_type_in_decl,
4328                                 AbstractVariableType))
4329        Var->setInvalidDecl();
4330      return;
4331
4332    case VarDecl::TentativeDefinition:
4333      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4334      // object that has file scope without an initializer, and without a
4335      // storage-class specifier or with the storage-class specifier "static",
4336      // constitutes a tentative definition. Note: A tentative definition with
4337      // external linkage is valid (C99 6.2.2p5).
4338      if (!Var->isInvalidDecl()) {
4339        if (const IncompleteArrayType *ArrayT
4340                                    = Context.getAsIncompleteArrayType(Type)) {
4341          if (RequireCompleteType(Var->getLocation(),
4342                                  ArrayT->getElementType(),
4343                                  diag::err_illegal_decl_array_incomplete_type))
4344            Var->setInvalidDecl();
4345        } else if (Var->getStorageClass() == VarDecl::Static) {
4346          // C99 6.9.2p3: If the declaration of an identifier for an object is
4347          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4348          // declared type shall not be an incomplete type.
4349          // NOTE: code such as the following
4350          //     static struct s;
4351          //     struct s { int a; };
4352          // is accepted by gcc. Hence here we issue a warning instead of
4353          // an error and we do not invalidate the static declaration.
4354          // NOTE: to avoid multiple warnings, only check the first declaration.
4355          if (Var->getPreviousDeclaration() == 0)
4356            RequireCompleteType(Var->getLocation(), Type,
4357                                diag::ext_typecheck_decl_incomplete_type);
4358        }
4359      }
4360
4361      // Record the tentative definition; we're done.
4362      if (!Var->isInvalidDecl())
4363        TentativeDefinitions.push_back(Var);
4364      return;
4365    }
4366
4367    // Provide a specific diagnostic for uninitialized variable
4368    // definitions with incomplete array type.
4369    if (Type->isIncompleteArrayType()) {
4370      Diag(Var->getLocation(),
4371           diag::err_typecheck_incomplete_array_needs_initializer);
4372      Var->setInvalidDecl();
4373      return;
4374    }
4375
4376    // Provide a specific diagnostic for uninitialized variable
4377    // definitions with reference type.
4378    if (Type->isReferenceType()) {
4379      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4380        << Var->getDeclName()
4381        << SourceRange(Var->getLocation(), Var->getLocation());
4382      Var->setInvalidDecl();
4383      return;
4384    }
4385
4386    // Do not attempt to type-check the default initializer for a
4387    // variable with dependent type.
4388    if (Type->isDependentType())
4389      return;
4390
4391    if (Var->isInvalidDecl())
4392      return;
4393
4394    if (RequireCompleteType(Var->getLocation(),
4395                            Context.getBaseElementType(Type),
4396                            diag::err_typecheck_decl_incomplete_type)) {
4397      Var->setInvalidDecl();
4398      return;
4399    }
4400
4401    // The variable can not have an abstract class type.
4402    if (RequireNonAbstractType(Var->getLocation(), Type,
4403                               diag::err_abstract_type_in_decl,
4404                               AbstractVariableType)) {
4405      Var->setInvalidDecl();
4406      return;
4407    }
4408
4409    const RecordType *Record
4410      = Context.getBaseElementType(Type)->getAs<RecordType>();
4411    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4412        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4413      // C++03 [dcl.init]p9:
4414      //   If no initializer is specified for an object, and the
4415      //   object is of (possibly cv-qualified) non-POD class type (or
4416      //   array thereof), the object shall be default-initialized; if
4417      //   the object is of const-qualified type, the underlying class
4418      //   type shall have a user-declared default
4419      //   constructor. Otherwise, if no initializer is specified for
4420      //   a non- static object, the object and its subobjects, if
4421      //   any, have an indeterminate initial value); if the object
4422      //   or any of its subobjects are of const-qualified type, the
4423      //   program is ill-formed.
4424      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4425    } else {
4426      // Check for jumps past the implicit initializer.  C++0x
4427      // clarifies that this applies to a "variable with automatic
4428      // storage duration", not a "local variable".
4429      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4430        setFunctionHasBranchProtectedScope();
4431
4432      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4433      InitializationKind Kind
4434        = InitializationKind::CreateDefault(Var->getLocation());
4435
4436      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4437      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4438                                              MultiExprArg(*this, 0, 0));
4439      if (Init.isInvalid())
4440        Var->setInvalidDecl();
4441      else if (Init.get()) {
4442        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4443
4444        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4445            Var->hasGlobalStorage() &&
4446            !Var->getDeclContext()->isDependentContext() &&
4447            !Var->getInit()->isConstantInitializer(Context, false))
4448          Diag(Var->getLocation(), diag::warn_global_constructor);
4449      }
4450    }
4451
4452    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4453      FinalizeVarWithDestructor(Var, Record);
4454  }
4455}
4456
4457Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4458                                                   DeclPtrTy *Group,
4459                                                   unsigned NumDecls) {
4460  llvm::SmallVector<Decl*, 8> Decls;
4461
4462  if (DS.isTypeSpecOwned())
4463    Decls.push_back((Decl*)DS.getTypeRep());
4464
4465  for (unsigned i = 0; i != NumDecls; ++i)
4466    if (Decl *D = Group[i].getAs<Decl>())
4467      Decls.push_back(D);
4468
4469  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4470                                                   Decls.data(), Decls.size()));
4471}
4472
4473
4474/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4475/// to introduce parameters into function prototype scope.
4476Sema::DeclPtrTy
4477Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4478  const DeclSpec &DS = D.getDeclSpec();
4479
4480  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4481  VarDecl::StorageClass StorageClass = VarDecl::None;
4482  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4483  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4484    StorageClass = VarDecl::Register;
4485    StorageClassAsWritten = VarDecl::Register;
4486  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4487    Diag(DS.getStorageClassSpecLoc(),
4488         diag::err_invalid_storage_class_in_func_decl);
4489    D.getMutableDeclSpec().ClearStorageClassSpecs();
4490  }
4491
4492  if (D.getDeclSpec().isThreadSpecified())
4493    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4494
4495  DiagnoseFunctionSpecifiers(D);
4496
4497  // Check that there are no default arguments inside the type of this
4498  // parameter (C++ only).
4499  if (getLangOptions().CPlusPlus)
4500    CheckExtraCXXDefaultArguments(D);
4501
4502  TagDecl *OwnedDecl = 0;
4503  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4504  QualType parmDeclType = TInfo->getType();
4505
4506  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4507    // C++ [dcl.fct]p6:
4508    //   Types shall not be defined in return or parameter types.
4509    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4510      << Context.getTypeDeclType(OwnedDecl);
4511  }
4512
4513  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4514  IdentifierInfo *II = D.getIdentifier();
4515  if (II) {
4516    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4517                   ForRedeclaration);
4518    LookupName(R, S);
4519    if (R.isSingleResult()) {
4520      NamedDecl *PrevDecl = R.getFoundDecl();
4521      if (PrevDecl->isTemplateParameter()) {
4522        // Maybe we will complain about the shadowed template parameter.
4523        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4524        // Just pretend that we didn't see the previous declaration.
4525        PrevDecl = 0;
4526      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4527        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4528        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4529
4530        // Recover by removing the name
4531        II = 0;
4532        D.SetIdentifier(0, D.getIdentifierLoc());
4533        D.setInvalidType(true);
4534      }
4535    }
4536  }
4537
4538  // Temporarily put parameter variables in the translation unit, not
4539  // the enclosing context.  This prevents them from accidentally
4540  // looking like class members in C++.
4541  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4542                                    TInfo, parmDeclType, II,
4543                                    D.getIdentifierLoc(),
4544                                    StorageClass, StorageClassAsWritten);
4545
4546  if (D.isInvalidType())
4547    New->setInvalidDecl();
4548
4549  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4550  if (D.getCXXScopeSpec().isSet()) {
4551    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4552      << D.getCXXScopeSpec().getRange();
4553    New->setInvalidDecl();
4554  }
4555
4556  // Add the parameter declaration into this scope.
4557  S->AddDecl(DeclPtrTy::make(New));
4558  if (II)
4559    IdResolver.AddDecl(New);
4560
4561  ProcessDeclAttributes(S, New, D);
4562
4563  if (New->hasAttr<BlocksAttr>()) {
4564    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4565  }
4566  return DeclPtrTy::make(New);
4567}
4568
4569/// \brief Synthesizes a variable for a parameter arising from a
4570/// typedef.
4571ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4572                                              SourceLocation Loc,
4573                                              QualType T) {
4574  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4575                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4576                                           VarDecl::None, VarDecl::None, 0);
4577  Param->setImplicit();
4578  return Param;
4579}
4580
4581ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4582                                  TypeSourceInfo *TSInfo, QualType T,
4583                                  IdentifierInfo *Name,
4584                                  SourceLocation NameLoc,
4585                                  VarDecl::StorageClass StorageClass,
4586                                  VarDecl::StorageClass StorageClassAsWritten) {
4587  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4588                                         adjustParameterType(T), TSInfo,
4589                                         StorageClass, StorageClassAsWritten,
4590                                         0);
4591
4592  // Parameters can not be abstract class types.
4593  // For record types, this is done by the AbstractClassUsageDiagnoser once
4594  // the class has been completely parsed.
4595  if (!CurContext->isRecord() &&
4596      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4597                             AbstractParamType))
4598    New->setInvalidDecl();
4599
4600  // Parameter declarators cannot be interface types. All ObjC objects are
4601  // passed by reference.
4602  if (T->isObjCObjectType()) {
4603    Diag(NameLoc,
4604         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4605    New->setInvalidDecl();
4606  }
4607
4608  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4609  // duration shall not be qualified by an address-space qualifier."
4610  // Since all parameters have automatic store duration, they can not have
4611  // an address space.
4612  if (T.getAddressSpace() != 0) {
4613    Diag(NameLoc, diag::err_arg_with_address_space);
4614    New->setInvalidDecl();
4615  }
4616
4617  return New;
4618}
4619
4620void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4621                                           SourceLocation LocAfterDecls) {
4622  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4623         "Not a function declarator!");
4624  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4625
4626  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4627  // for a K&R function.
4628  if (!FTI.hasPrototype) {
4629    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4630      --i;
4631      if (FTI.ArgInfo[i].Param == 0) {
4632        llvm::SmallString<256> Code;
4633        llvm::raw_svector_ostream(Code) << "  int "
4634                                        << FTI.ArgInfo[i].Ident->getName()
4635                                        << ";\n";
4636        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4637          << FTI.ArgInfo[i].Ident
4638          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4639
4640        // Implicitly declare the argument as type 'int' for lack of a better
4641        // type.
4642        DeclSpec DS;
4643        const char* PrevSpec; // unused
4644        unsigned DiagID; // unused
4645        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4646                           PrevSpec, DiagID);
4647        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4648        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4649        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4650      }
4651    }
4652  }
4653}
4654
4655Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4656                                              Declarator &D) {
4657  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4658  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4659         "Not a function declarator!");
4660  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4661
4662  if (FTI.hasPrototype) {
4663    // FIXME: Diagnose arguments without names in C.
4664  }
4665
4666  Scope *ParentScope = FnBodyScope->getParent();
4667
4668  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4669                                  MultiTemplateParamsArg(*this),
4670                                  /*IsFunctionDefinition=*/true);
4671  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4672}
4673
4674static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4675  // Don't warn about invalid declarations.
4676  if (FD->isInvalidDecl())
4677    return false;
4678
4679  // Or declarations that aren't global.
4680  if (!FD->isGlobal())
4681    return false;
4682
4683  // Don't warn about C++ member functions.
4684  if (isa<CXXMethodDecl>(FD))
4685    return false;
4686
4687  // Don't warn about 'main'.
4688  if (FD->isMain())
4689    return false;
4690
4691  // Don't warn about inline functions.
4692  if (FD->isInlineSpecified())
4693    return false;
4694
4695  // Don't warn about function templates.
4696  if (FD->getDescribedFunctionTemplate())
4697    return false;
4698
4699  // Don't warn about function template specializations.
4700  if (FD->isFunctionTemplateSpecialization())
4701    return false;
4702
4703  bool MissingPrototype = true;
4704  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4705       Prev; Prev = Prev->getPreviousDeclaration()) {
4706    // Ignore any declarations that occur in function or method
4707    // scope, because they aren't visible from the header.
4708    if (Prev->getDeclContext()->isFunctionOrMethod())
4709      continue;
4710
4711    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4712    break;
4713  }
4714
4715  return MissingPrototype;
4716}
4717
4718Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4719  // Clear the last template instantiation error context.
4720  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4721
4722  if (!D)
4723    return D;
4724  FunctionDecl *FD = 0;
4725
4726  if (FunctionTemplateDecl *FunTmpl
4727        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4728    FD = FunTmpl->getTemplatedDecl();
4729  else
4730    FD = cast<FunctionDecl>(D.getAs<Decl>());
4731
4732  // Enter a new function scope
4733  PushFunctionScope();
4734
4735  // See if this is a redefinition.
4736  // But don't complain if we're in GNU89 mode and the previous definition
4737  // was an extern inline function.
4738  const FunctionDecl *Definition;
4739  if (FD->hasBody(Definition) &&
4740      !canRedefineFunction(Definition, getLangOptions())) {
4741    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4742    Diag(Definition->getLocation(), diag::note_previous_definition);
4743  }
4744
4745  // Builtin functions cannot be defined.
4746  if (unsigned BuiltinID = FD->getBuiltinID()) {
4747    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4748      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4749      FD->setInvalidDecl();
4750    }
4751  }
4752
4753  // The return type of a function definition must be complete
4754  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4755  QualType ResultType = FD->getResultType();
4756  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4757      !FD->isInvalidDecl() &&
4758      RequireCompleteType(FD->getLocation(), ResultType,
4759                          diag::err_func_def_incomplete_result))
4760    FD->setInvalidDecl();
4761
4762  // GNU warning -Wmissing-prototypes:
4763  //   Warn if a global function is defined without a previous
4764  //   prototype declaration. This warning is issued even if the
4765  //   definition itself provides a prototype. The aim is to detect
4766  //   global functions that fail to be declared in header files.
4767  if (ShouldWarnAboutMissingPrototype(FD))
4768    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4769
4770  if (FnBodyScope)
4771    PushDeclContext(FnBodyScope, FD);
4772
4773  // Check the validity of our function parameters
4774  CheckParmsForFunctionDef(FD);
4775
4776  bool ShouldCheckShadow =
4777    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4778
4779  // Introduce our parameters into the function scope
4780  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4781    ParmVarDecl *Param = FD->getParamDecl(p);
4782    Param->setOwningFunction(FD);
4783
4784    // If this has an identifier, add it to the scope stack.
4785    if (Param->getIdentifier() && FnBodyScope) {
4786      if (ShouldCheckShadow)
4787        CheckShadow(FnBodyScope, Param);
4788
4789      PushOnScopeChains(Param, FnBodyScope);
4790    }
4791  }
4792
4793  // Checking attributes of current function definition
4794  // dllimport attribute.
4795  if (FD->getAttr<DLLImportAttr>() &&
4796      (!FD->getAttr<DLLExportAttr>())) {
4797    // dllimport attribute cannot be applied to definition.
4798    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4799      Diag(FD->getLocation(),
4800           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4801        << "dllimport";
4802      FD->setInvalidDecl();
4803      return DeclPtrTy::make(FD);
4804    }
4805
4806    // Visual C++ appears to not think this is an issue, so only issue
4807    // a warning when Microsoft extensions are disabled.
4808    if (!LangOpts.Microsoft) {
4809      // If a symbol previously declared dllimport is later defined, the
4810      // attribute is ignored in subsequent references, and a warning is
4811      // emitted.
4812      Diag(FD->getLocation(),
4813           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4814        << FD->getName() << "dllimport";
4815    }
4816  }
4817  return DeclPtrTy::make(FD);
4818}
4819
4820/// \brief Given the set of return statements within a function body,
4821/// compute the variables that are subject to the named return value
4822/// optimization.
4823///
4824/// Each of the variables that is subject to the named return value
4825/// optimization will be marked as NRVO variables in the AST, and any
4826/// return statement that has a marked NRVO variable as its NRVO candidate can
4827/// use the named return value optimization.
4828///
4829/// This function applies a very simplistic algorithm for NRVO: if every return
4830/// statement in the function has the same NRVO candidate, that candidate is
4831/// the NRVO variable.
4832///
4833/// FIXME: Employ a smarter algorithm that accounts for multiple return
4834/// statements and the lifetimes of the NRVO candidates. We should be able to
4835/// find a maximal set of NRVO variables.
4836static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4837  const VarDecl *NRVOCandidate = 0;
4838  for (unsigned I = 0; I != NumReturns; ++I) {
4839    if (!Returns[I]->getNRVOCandidate())
4840      return;
4841
4842    if (!NRVOCandidate)
4843      NRVOCandidate = Returns[I]->getNRVOCandidate();
4844    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4845      return;
4846  }
4847
4848  if (NRVOCandidate)
4849    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4850}
4851
4852Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4853  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4854}
4855
4856Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4857                                              bool IsInstantiation) {
4858  Decl *dcl = D.getAs<Decl>();
4859  Stmt *Body = BodyArg.takeAs<Stmt>();
4860
4861  FunctionDecl *FD = 0;
4862  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4863  if (FunTmpl)
4864    FD = FunTmpl->getTemplatedDecl();
4865  else
4866    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4867
4868  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4869
4870  if (FD) {
4871    FD->setBody(Body);
4872    if (FD->isMain()) {
4873      // C and C++ allow for main to automagically return 0.
4874      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4875      FD->setHasImplicitReturnZero(true);
4876      WP.disableCheckFallThrough();
4877    }
4878
4879    if (!FD->isInvalidDecl()) {
4880      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4881
4882      // If this is a constructor, we need a vtable.
4883      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4884        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4885
4886      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4887                  FunctionScopes.back()->Returns.size());
4888    }
4889
4890    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4891  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4892    assert(MD == getCurMethodDecl() && "Method parsing confused");
4893    MD->setBody(Body);
4894    MD->setEndLoc(Body->getLocEnd());
4895    if (!MD->isInvalidDecl())
4896      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4897  } else {
4898    return DeclPtrTy();
4899  }
4900
4901  // Verify and clean out per-function state.
4902
4903  // Check goto/label use.
4904  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4905       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4906    LabelStmt *L = I->second;
4907
4908    // Verify that we have no forward references left.  If so, there was a goto
4909    // or address of a label taken, but no definition of it.  Label fwd
4910    // definitions are indicated with a null substmt.
4911    if (L->getSubStmt() != 0)
4912      continue;
4913
4914    // Emit error.
4915    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4916
4917    // At this point, we have gotos that use the bogus label.  Stitch it into
4918    // the function body so that they aren't leaked and that the AST is well
4919    // formed.
4920    if (Body == 0) {
4921      // The whole function wasn't parsed correctly.
4922      continue;
4923    }
4924
4925    // Otherwise, the body is valid: we want to stitch the label decl into the
4926    // function somewhere so that it is properly owned and so that the goto
4927    // has a valid target.  Do this by creating a new compound stmt with the
4928    // label in it.
4929
4930    // Give the label a sub-statement.
4931    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4932
4933    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4934                               cast<CXXTryStmt>(Body)->getTryBlock() :
4935                               cast<CompoundStmt>(Body);
4936    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4937                                          Compound->body_end());
4938    Elements.push_back(L);
4939    Compound->setStmts(Context, Elements.data(), Elements.size());
4940  }
4941
4942  if (Body) {
4943    // C++ constructors that have function-try-blocks can't have return
4944    // statements in the handlers of that block. (C++ [except.handle]p14)
4945    // Verify this.
4946    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4947      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4948
4949    // Verify that that gotos and switch cases don't jump into scopes illegally.
4950    // Verify that that gotos and switch cases don't jump into scopes illegally.
4951    if (FunctionNeedsScopeChecking() &&
4952        !dcl->isInvalidDecl() &&
4953        !hasAnyErrorsInThisFunction())
4954      DiagnoseInvalidJumps(Body);
4955
4956    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4957      if (!Destructor->getParent()->isDependentType())
4958        CheckDestructor(Destructor);
4959
4960      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4961                                             Destructor->getParent());
4962    }
4963
4964    // If any errors have occurred, clear out any temporaries that may have
4965    // been leftover. This ensures that these temporaries won't be picked up for
4966    // deletion in some later function.
4967    if (PP.getDiagnostics().hasErrorOccurred())
4968      ExprTemporaries.clear();
4969    else if (!isa<FunctionTemplateDecl>(dcl)) {
4970      // Since the body is valid, issue any analysis-based warnings that are
4971      // enabled.
4972      QualType ResultType;
4973      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4974        ResultType = FD->getResultType();
4975      }
4976      else {
4977        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4978        ResultType = MD->getResultType();
4979      }
4980      AnalysisWarnings.IssueWarnings(WP, dcl);
4981    }
4982
4983    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4984  }
4985
4986  if (!IsInstantiation)
4987    PopDeclContext();
4988
4989  PopFunctionOrBlockScope();
4990
4991  // If any errors have occurred, clear out any temporaries that may have
4992  // been leftover. This ensures that these temporaries won't be picked up for
4993  // deletion in some later function.
4994  if (getDiagnostics().hasErrorOccurred())
4995    ExprTemporaries.clear();
4996
4997  return D;
4998}
4999
5000/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5001/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5002NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5003                                          IdentifierInfo &II, Scope *S) {
5004  // Before we produce a declaration for an implicitly defined
5005  // function, see whether there was a locally-scoped declaration of
5006  // this name as a function or variable. If so, use that
5007  // (non-visible) declaration, and complain about it.
5008  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5009    = LocallyScopedExternalDecls.find(&II);
5010  if (Pos != LocallyScopedExternalDecls.end()) {
5011    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5012    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5013    return Pos->second;
5014  }
5015
5016  // Extension in C99.  Legal in C90, but warn about it.
5017  if (II.getName().startswith("__builtin_"))
5018    Diag(Loc, diag::warn_builtin_unknown) << &II;
5019  else if (getLangOptions().C99)
5020    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5021  else
5022    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5023
5024  // Set a Declarator for the implicit definition: int foo();
5025  const char *Dummy;
5026  DeclSpec DS;
5027  unsigned DiagID;
5028  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5029  Error = Error; // Silence warning.
5030  assert(!Error && "Error setting up implicit decl!");
5031  Declarator D(DS, Declarator::BlockContext);
5032  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5033                                             0, 0, false, SourceLocation(),
5034                                             false, 0,0,0, Loc, Loc, D),
5035                SourceLocation());
5036  D.SetIdentifier(&II, Loc);
5037
5038  // Insert this function into translation-unit scope.
5039
5040  DeclContext *PrevDC = CurContext;
5041  CurContext = Context.getTranslationUnitDecl();
5042
5043  FunctionDecl *FD =
5044 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
5045  FD->setImplicit();
5046
5047  CurContext = PrevDC;
5048
5049  AddKnownFunctionAttributes(FD);
5050
5051  return FD;
5052}
5053
5054/// \brief Adds any function attributes that we know a priori based on
5055/// the declaration of this function.
5056///
5057/// These attributes can apply both to implicitly-declared builtins
5058/// (like __builtin___printf_chk) or to library-declared functions
5059/// like NSLog or printf.
5060void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5061  if (FD->isInvalidDecl())
5062    return;
5063
5064  // If this is a built-in function, map its builtin attributes to
5065  // actual attributes.
5066  if (unsigned BuiltinID = FD->getBuiltinID()) {
5067    // Handle printf-formatting attributes.
5068    unsigned FormatIdx;
5069    bool HasVAListArg;
5070    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5071      if (!FD->getAttr<FormatAttr>())
5072        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
5073                                               HasVAListArg ? 0 : FormatIdx+2));
5074    }
5075    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5076                                             HasVAListArg)) {
5077     if (!FD->getAttr<FormatAttr>())
5078       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
5079                                              HasVAListArg ? 0 : FormatIdx+2));
5080    }
5081
5082    // Mark const if we don't care about errno and that is the only
5083    // thing preventing the function from being const. This allows
5084    // IRgen to use LLVM intrinsics for such functions.
5085    if (!getLangOptions().MathErrno &&
5086        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5087      if (!FD->getAttr<ConstAttr>())
5088        FD->addAttr(::new (Context) ConstAttr());
5089    }
5090
5091    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5092      FD->setType(Context.getNoReturnType(FD->getType()));
5093    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5094      FD->addAttr(::new (Context) NoThrowAttr());
5095    if (Context.BuiltinInfo.isConst(BuiltinID))
5096      FD->addAttr(::new (Context) ConstAttr());
5097  }
5098
5099  IdentifierInfo *Name = FD->getIdentifier();
5100  if (!Name)
5101    return;
5102  if ((!getLangOptions().CPlusPlus &&
5103       FD->getDeclContext()->isTranslationUnit()) ||
5104      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5105       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5106       LinkageSpecDecl::lang_c)) {
5107    // Okay: this could be a libc/libm/Objective-C function we know
5108    // about.
5109  } else
5110    return;
5111
5112  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5113    // FIXME: NSLog and NSLogv should be target specific
5114    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5115      // FIXME: We known better than our headers.
5116      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5117    } else
5118      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
5119                                             Name->isStr("NSLogv") ? 0 : 2));
5120  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5121    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5122    // target-specific builtins, perhaps?
5123    if (!FD->getAttr<FormatAttr>())
5124      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
5125                                             Name->isStr("vasprintf") ? 0 : 3));
5126  }
5127}
5128
5129TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5130                                    TypeSourceInfo *TInfo) {
5131  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5132  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5133
5134  if (!TInfo) {
5135    assert(D.isInvalidType() && "no declarator info for valid type");
5136    TInfo = Context.getTrivialTypeSourceInfo(T);
5137  }
5138
5139  // Scope manipulation handled by caller.
5140  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5141                                           D.getIdentifierLoc(),
5142                                           D.getIdentifier(),
5143                                           TInfo);
5144
5145  if (const TagType *TT = T->getAs<TagType>()) {
5146    TagDecl *TD = TT->getDecl();
5147
5148    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5149    // keep track of the TypedefDecl.
5150    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5151      TD->setTypedefForAnonDecl(NewTD);
5152  }
5153
5154  if (D.isInvalidType())
5155    NewTD->setInvalidDecl();
5156  return NewTD;
5157}
5158
5159
5160/// \brief Determine whether a tag with a given kind is acceptable
5161/// as a redeclaration of the given tag declaration.
5162///
5163/// \returns true if the new tag kind is acceptable, false otherwise.
5164bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5165                                        TagTypeKind NewTag,
5166                                        SourceLocation NewTagLoc,
5167                                        const IdentifierInfo &Name) {
5168  // C++ [dcl.type.elab]p3:
5169  //   The class-key or enum keyword present in the
5170  //   elaborated-type-specifier shall agree in kind with the
5171  //   declaration to which the name in the elaborated-type-specifier
5172  //   refers. This rule also applies to the form of
5173  //   elaborated-type-specifier that declares a class-name or
5174  //   friend class since it can be construed as referring to the
5175  //   definition of the class. Thus, in any
5176  //   elaborated-type-specifier, the enum keyword shall be used to
5177  //   refer to an enumeration (7.2), the union class-key shall be
5178  //   used to refer to a union (clause 9), and either the class or
5179  //   struct class-key shall be used to refer to a class (clause 9)
5180  //   declared using the class or struct class-key.
5181  TagTypeKind OldTag = Previous->getTagKind();
5182  if (OldTag == NewTag)
5183    return true;
5184
5185  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5186      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5187    // Warn about the struct/class tag mismatch.
5188    bool isTemplate = false;
5189    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5190      isTemplate = Record->getDescribedClassTemplate();
5191
5192    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5193      << (NewTag == TTK_Class)
5194      << isTemplate << &Name
5195      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5196                              OldTag == TTK_Class? "class" : "struct");
5197    Diag(Previous->getLocation(), diag::note_previous_use);
5198    return true;
5199  }
5200  return false;
5201}
5202
5203/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5204/// former case, Name will be non-null.  In the later case, Name will be null.
5205/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5206/// reference/declaration/definition of a tag.
5207Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5208                               SourceLocation KWLoc, CXXScopeSpec &SS,
5209                               IdentifierInfo *Name, SourceLocation NameLoc,
5210                               AttributeList *Attr, AccessSpecifier AS,
5211                               MultiTemplateParamsArg TemplateParameterLists,
5212                               bool &OwnedDecl, bool &IsDependent) {
5213  // If this is not a definition, it must have a name.
5214  assert((Name != 0 || TUK == TUK_Definition) &&
5215         "Nameless record must be a definition!");
5216
5217  OwnedDecl = false;
5218  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5219
5220  // FIXME: Check explicit specializations more carefully.
5221  bool isExplicitSpecialization = false;
5222  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5223  bool Invalid = false;
5224  if (TUK != TUK_Reference) {
5225    if (TemplateParameterList *TemplateParams
5226          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5227                        (TemplateParameterList**)TemplateParameterLists.get(),
5228                                              TemplateParameterLists.size(),
5229                                                    TUK == TUK_Friend,
5230                                                    isExplicitSpecialization,
5231                                                    Invalid)) {
5232      // All but one template parameter lists have been matching.
5233      --NumMatchedTemplateParamLists;
5234
5235      if (TemplateParams->size() > 0) {
5236        // This is a declaration or definition of a class template (which may
5237        // be a member of another template).
5238        if (Invalid)
5239          return DeclPtrTy();
5240
5241        OwnedDecl = false;
5242        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5243                                               SS, Name, NameLoc, Attr,
5244                                               TemplateParams,
5245                                               AS);
5246        TemplateParameterLists.release();
5247        return Result.get();
5248      } else {
5249        // The "template<>" header is extraneous.
5250        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5251          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5252        isExplicitSpecialization = true;
5253      }
5254    }
5255  }
5256
5257  DeclContext *SearchDC = CurContext;
5258  DeclContext *DC = CurContext;
5259  bool isStdBadAlloc = false;
5260
5261  RedeclarationKind Redecl = ForRedeclaration;
5262  if (TUK == TUK_Friend || TUK == TUK_Reference)
5263    Redecl = NotForRedeclaration;
5264
5265  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5266
5267  if (Name && SS.isNotEmpty()) {
5268    // We have a nested-name tag ('struct foo::bar').
5269
5270    // Check for invalid 'foo::'.
5271    if (SS.isInvalid()) {
5272      Name = 0;
5273      goto CreateNewDecl;
5274    }
5275
5276    // If this is a friend or a reference to a class in a dependent
5277    // context, don't try to make a decl for it.
5278    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5279      DC = computeDeclContext(SS, false);
5280      if (!DC) {
5281        IsDependent = true;
5282        return DeclPtrTy();
5283      }
5284    } else {
5285      DC = computeDeclContext(SS, true);
5286      if (!DC) {
5287        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5288          << SS.getRange();
5289        return DeclPtrTy();
5290      }
5291    }
5292
5293    if (RequireCompleteDeclContext(SS, DC))
5294      return DeclPtrTy::make((Decl *)0);
5295
5296    SearchDC = DC;
5297    // Look-up name inside 'foo::'.
5298    LookupQualifiedName(Previous, DC);
5299
5300    if (Previous.isAmbiguous())
5301      return DeclPtrTy();
5302
5303    if (Previous.empty()) {
5304      // Name lookup did not find anything. However, if the
5305      // nested-name-specifier refers to the current instantiation,
5306      // and that current instantiation has any dependent base
5307      // classes, we might find something at instantiation time: treat
5308      // this as a dependent elaborated-type-specifier.
5309      if (Previous.wasNotFoundInCurrentInstantiation()) {
5310        IsDependent = true;
5311        return DeclPtrTy();
5312      }
5313
5314      // A tag 'foo::bar' must already exist.
5315      Diag(NameLoc, diag::err_not_tag_in_scope)
5316        << Kind << Name << DC << SS.getRange();
5317      Name = 0;
5318      Invalid = true;
5319      goto CreateNewDecl;
5320    }
5321  } else if (Name) {
5322    // If this is a named struct, check to see if there was a previous forward
5323    // declaration or definition.
5324    // FIXME: We're looking into outer scopes here, even when we
5325    // shouldn't be. Doing so can result in ambiguities that we
5326    // shouldn't be diagnosing.
5327    LookupName(Previous, S);
5328
5329    // Note:  there used to be some attempt at recovery here.
5330    if (Previous.isAmbiguous())
5331      return DeclPtrTy();
5332
5333    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5334      // FIXME: This makes sure that we ignore the contexts associated
5335      // with C structs, unions, and enums when looking for a matching
5336      // tag declaration or definition. See the similar lookup tweak
5337      // in Sema::LookupName; is there a better way to deal with this?
5338      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5339        SearchDC = SearchDC->getParent();
5340    }
5341  }
5342
5343  if (Previous.isSingleResult() &&
5344      Previous.getFoundDecl()->isTemplateParameter()) {
5345    // Maybe we will complain about the shadowed template parameter.
5346    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5347    // Just pretend that we didn't see the previous declaration.
5348    Previous.clear();
5349  }
5350
5351  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5352      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5353    // This is a declaration of or a reference to "std::bad_alloc".
5354    isStdBadAlloc = true;
5355
5356    if (Previous.empty() && StdBadAlloc) {
5357      // std::bad_alloc has been implicitly declared (but made invisible to
5358      // name lookup). Fill in this implicit declaration as the previous
5359      // declaration, so that the declarations get chained appropriately.
5360      Previous.addDecl(getStdBadAlloc());
5361    }
5362  }
5363
5364  // If we didn't find a previous declaration, and this is a reference
5365  // (or friend reference), move to the correct scope.  In C++, we
5366  // also need to do a redeclaration lookup there, just in case
5367  // there's a shadow friend decl.
5368  if (Name && Previous.empty() &&
5369      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5370    if (Invalid) goto CreateNewDecl;
5371    assert(SS.isEmpty());
5372
5373    if (TUK == TUK_Reference) {
5374      // C++ [basic.scope.pdecl]p5:
5375      //   -- for an elaborated-type-specifier of the form
5376      //
5377      //          class-key identifier
5378      //
5379      //      if the elaborated-type-specifier is used in the
5380      //      decl-specifier-seq or parameter-declaration-clause of a
5381      //      function defined in namespace scope, the identifier is
5382      //      declared as a class-name in the namespace that contains
5383      //      the declaration; otherwise, except as a friend
5384      //      declaration, the identifier is declared in the smallest
5385      //      non-class, non-function-prototype scope that contains the
5386      //      declaration.
5387      //
5388      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5389      // C structs and unions.
5390      //
5391      // It is an error in C++ to declare (rather than define) an enum
5392      // type, including via an elaborated type specifier.  We'll
5393      // diagnose that later; for now, declare the enum in the same
5394      // scope as we would have picked for any other tag type.
5395      //
5396      // GNU C also supports this behavior as part of its incomplete
5397      // enum types extension, while GNU C++ does not.
5398      //
5399      // Find the context where we'll be declaring the tag.
5400      // FIXME: We would like to maintain the current DeclContext as the
5401      // lexical context,
5402      while (SearchDC->isRecord())
5403        SearchDC = SearchDC->getParent();
5404
5405      // Find the scope where we'll be declaring the tag.
5406      while (S->isClassScope() ||
5407             (getLangOptions().CPlusPlus &&
5408              S->isFunctionPrototypeScope()) ||
5409             ((S->getFlags() & Scope::DeclScope) == 0) ||
5410             (S->getEntity() &&
5411              ((DeclContext *)S->getEntity())->isTransparentContext()))
5412        S = S->getParent();
5413    } else {
5414      assert(TUK == TUK_Friend);
5415      // C++ [namespace.memdef]p3:
5416      //   If a friend declaration in a non-local class first declares a
5417      //   class or function, the friend class or function is a member of
5418      //   the innermost enclosing namespace.
5419      SearchDC = SearchDC->getEnclosingNamespaceContext();
5420    }
5421
5422    // In C++, we need to do a redeclaration lookup to properly
5423    // diagnose some problems.
5424    if (getLangOptions().CPlusPlus) {
5425      Previous.setRedeclarationKind(ForRedeclaration);
5426      LookupQualifiedName(Previous, SearchDC);
5427    }
5428  }
5429
5430  if (!Previous.empty()) {
5431    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5432
5433    // It's okay to have a tag decl in the same scope as a typedef
5434    // which hides a tag decl in the same scope.  Finding this
5435    // insanity with a redeclaration lookup can only actually happen
5436    // in C++.
5437    //
5438    // This is also okay for elaborated-type-specifiers, which is
5439    // technically forbidden by the current standard but which is
5440    // okay according to the likely resolution of an open issue;
5441    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5442    if (getLangOptions().CPlusPlus) {
5443      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5444        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5445          TagDecl *Tag = TT->getDecl();
5446          if (Tag->getDeclName() == Name &&
5447              Tag->getDeclContext()->getLookupContext()
5448                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5449            PrevDecl = Tag;
5450            Previous.clear();
5451            Previous.addDecl(Tag);
5452          }
5453        }
5454      }
5455    }
5456
5457    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5458      // If this is a use of a previous tag, or if the tag is already declared
5459      // in the same scope (so that the definition/declaration completes or
5460      // rementions the tag), reuse the decl.
5461      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5462          isDeclInScope(PrevDecl, SearchDC, S)) {
5463        // Make sure that this wasn't declared as an enum and now used as a
5464        // struct or something similar.
5465        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5466          bool SafeToContinue
5467            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5468               Kind != TTK_Enum);
5469          if (SafeToContinue)
5470            Diag(KWLoc, diag::err_use_with_wrong_tag)
5471              << Name
5472              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5473                                              PrevTagDecl->getKindName());
5474          else
5475            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5476          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5477
5478          if (SafeToContinue)
5479            Kind = PrevTagDecl->getTagKind();
5480          else {
5481            // Recover by making this an anonymous redefinition.
5482            Name = 0;
5483            Previous.clear();
5484            Invalid = true;
5485          }
5486        }
5487
5488        if (!Invalid) {
5489          // If this is a use, just return the declaration we found.
5490
5491          // FIXME: In the future, return a variant or some other clue
5492          // for the consumer of this Decl to know it doesn't own it.
5493          // For our current ASTs this shouldn't be a problem, but will
5494          // need to be changed with DeclGroups.
5495          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5496              TUK == TUK_Friend)
5497            return DeclPtrTy::make(PrevTagDecl);
5498
5499          // Diagnose attempts to redefine a tag.
5500          if (TUK == TUK_Definition) {
5501            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5502              // If we're defining a specialization and the previous definition
5503              // is from an implicit instantiation, don't emit an error
5504              // here; we'll catch this in the general case below.
5505              if (!isExplicitSpecialization ||
5506                  !isa<CXXRecordDecl>(Def) ||
5507                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5508                                               == TSK_ExplicitSpecialization) {
5509                Diag(NameLoc, diag::err_redefinition) << Name;
5510                Diag(Def->getLocation(), diag::note_previous_definition);
5511                // If this is a redefinition, recover by making this
5512                // struct be anonymous, which will make any later
5513                // references get the previous definition.
5514                Name = 0;
5515                Previous.clear();
5516                Invalid = true;
5517              }
5518            } else {
5519              // If the type is currently being defined, complain
5520              // about a nested redefinition.
5521              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5522              if (Tag->isBeingDefined()) {
5523                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5524                Diag(PrevTagDecl->getLocation(),
5525                     diag::note_previous_definition);
5526                Name = 0;
5527                Previous.clear();
5528                Invalid = true;
5529              }
5530            }
5531
5532            // Okay, this is definition of a previously declared or referenced
5533            // tag PrevDecl. We're going to create a new Decl for it.
5534          }
5535        }
5536        // If we get here we have (another) forward declaration or we
5537        // have a definition.  Just create a new decl.
5538
5539      } else {
5540        // If we get here, this is a definition of a new tag type in a nested
5541        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5542        // new decl/type.  We set PrevDecl to NULL so that the entities
5543        // have distinct types.
5544        Previous.clear();
5545      }
5546      // If we get here, we're going to create a new Decl. If PrevDecl
5547      // is non-NULL, it's a definition of the tag declared by
5548      // PrevDecl. If it's NULL, we have a new definition.
5549
5550
5551    // Otherwise, PrevDecl is not a tag, but was found with tag
5552    // lookup.  This is only actually possible in C++, where a few
5553    // things like templates still live in the tag namespace.
5554    } else {
5555      assert(getLangOptions().CPlusPlus);
5556
5557      // Use a better diagnostic if an elaborated-type-specifier
5558      // found the wrong kind of type on the first
5559      // (non-redeclaration) lookup.
5560      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5561          !Previous.isForRedeclaration()) {
5562        unsigned Kind = 0;
5563        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5564        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5565        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5566        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5567        Invalid = true;
5568
5569      // Otherwise, only diagnose if the declaration is in scope.
5570      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5571        // do nothing
5572
5573      // Diagnose implicit declarations introduced by elaborated types.
5574      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5575        unsigned Kind = 0;
5576        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5577        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5578        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5579        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5580        Invalid = true;
5581
5582      // Otherwise it's a declaration.  Call out a particularly common
5583      // case here.
5584      } else if (isa<TypedefDecl>(PrevDecl)) {
5585        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5586          << Name
5587          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5588        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5589        Invalid = true;
5590
5591      // Otherwise, diagnose.
5592      } else {
5593        // The tag name clashes with something else in the target scope,
5594        // issue an error and recover by making this tag be anonymous.
5595        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5596        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5597        Name = 0;
5598        Invalid = true;
5599      }
5600
5601      // The existing declaration isn't relevant to us; we're in a
5602      // new scope, so clear out the previous declaration.
5603      Previous.clear();
5604    }
5605  }
5606
5607CreateNewDecl:
5608
5609  TagDecl *PrevDecl = 0;
5610  if (Previous.isSingleResult())
5611    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5612
5613  // If there is an identifier, use the location of the identifier as the
5614  // location of the decl, otherwise use the location of the struct/union
5615  // keyword.
5616  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5617
5618  // Otherwise, create a new declaration. If there is a previous
5619  // declaration of the same entity, the two will be linked via
5620  // PrevDecl.
5621  TagDecl *New;
5622
5623  if (Kind == TTK_Enum) {
5624    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5625    // enum X { A, B, C } D;    D should chain to X.
5626    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5627                           cast_or_null<EnumDecl>(PrevDecl));
5628    // If this is an undefined enum, warn.
5629    if (TUK != TUK_Definition && !Invalid) {
5630      TagDecl *Def;
5631      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5632        Diag(Loc, diag::ext_forward_ref_enum_def)
5633          << New;
5634        Diag(Def->getLocation(), diag::note_previous_definition);
5635      } else {
5636        Diag(Loc,
5637             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5638                                       : diag::ext_forward_ref_enum);
5639      }
5640    }
5641  } else {
5642    // struct/union/class
5643
5644    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5645    // struct X { int A; } D;    D should chain to X.
5646    if (getLangOptions().CPlusPlus) {
5647      // FIXME: Look for a way to use RecordDecl for simple structs.
5648      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5649                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5650
5651      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5652        StdBadAlloc = cast<CXXRecordDecl>(New);
5653    } else
5654      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5655                               cast_or_null<RecordDecl>(PrevDecl));
5656  }
5657
5658  // Maybe add qualifier info.
5659  if (SS.isNotEmpty()) {
5660    if (SS.isSet()) {
5661      NestedNameSpecifier *NNS
5662        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5663      New->setQualifierInfo(NNS, SS.getRange());
5664      if (NumMatchedTemplateParamLists > 0) {
5665        New->setTemplateParameterListsInfo(Context,
5666                                           NumMatchedTemplateParamLists,
5667                    (TemplateParameterList**) TemplateParameterLists.release());
5668      }
5669    }
5670    else
5671      Invalid = true;
5672  }
5673
5674  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5675    // Add alignment attributes if necessary; these attributes are checked when
5676    // the ASTContext lays out the structure.
5677    //
5678    // It is important for implementing the correct semantics that this
5679    // happen here (in act on tag decl). The #pragma pack stack is
5680    // maintained as a result of parser callbacks which can occur at
5681    // many points during the parsing of a struct declaration (because
5682    // the #pragma tokens are effectively skipped over during the
5683    // parsing of the struct).
5684    AddAlignmentAttributesForRecord(RD);
5685  }
5686
5687  // If this is a specialization of a member class (of a class template),
5688  // check the specialization.
5689  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5690    Invalid = true;
5691
5692  if (Invalid)
5693    New->setInvalidDecl();
5694
5695  if (Attr)
5696    ProcessDeclAttributeList(S, New, Attr);
5697
5698  // If we're declaring or defining a tag in function prototype scope
5699  // in C, note that this type can only be used within the function.
5700  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5701    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5702
5703  // Set the lexical context. If the tag has a C++ scope specifier, the
5704  // lexical context will be different from the semantic context.
5705  New->setLexicalDeclContext(CurContext);
5706
5707  // Mark this as a friend decl if applicable.
5708  if (TUK == TUK_Friend)
5709    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5710
5711  // Set the access specifier.
5712  if (!Invalid && SearchDC->isRecord())
5713    SetMemberAccessSpecifier(New, PrevDecl, AS);
5714
5715  if (TUK == TUK_Definition)
5716    New->startDefinition();
5717
5718  // If this has an identifier, add it to the scope stack.
5719  if (TUK == TUK_Friend) {
5720    // We might be replacing an existing declaration in the lookup tables;
5721    // if so, borrow its access specifier.
5722    if (PrevDecl)
5723      New->setAccess(PrevDecl->getAccess());
5724
5725    DeclContext *DC = New->getDeclContext()->getLookupContext();
5726    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5727    if (Name) // can be null along some error paths
5728      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5729        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5730  } else if (Name) {
5731    S = getNonFieldDeclScope(S);
5732    PushOnScopeChains(New, S);
5733  } else {
5734    CurContext->addDecl(New);
5735  }
5736
5737  // If this is the C FILE type, notify the AST context.
5738  if (IdentifierInfo *II = New->getIdentifier())
5739    if (!New->isInvalidDecl() &&
5740        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5741        II->isStr("FILE"))
5742      Context.setFILEDecl(New);
5743
5744  OwnedDecl = true;
5745  return DeclPtrTy::make(New);
5746}
5747
5748void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5749  AdjustDeclIfTemplate(TagD);
5750  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5751
5752  // Enter the tag context.
5753  PushDeclContext(S, Tag);
5754}
5755
5756void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5757                                           SourceLocation LBraceLoc) {
5758  AdjustDeclIfTemplate(TagD);
5759  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5760
5761  FieldCollector->StartClass();
5762
5763  if (!Record->getIdentifier())
5764    return;
5765
5766  // C++ [class]p2:
5767  //   [...] The class-name is also inserted into the scope of the
5768  //   class itself; this is known as the injected-class-name. For
5769  //   purposes of access checking, the injected-class-name is treated
5770  //   as if it were a public member name.
5771  CXXRecordDecl *InjectedClassName
5772    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5773                            CurContext, Record->getLocation(),
5774                            Record->getIdentifier(),
5775                            Record->getTagKeywordLoc(),
5776                            Record);
5777  InjectedClassName->setImplicit();
5778  InjectedClassName->setAccess(AS_public);
5779  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5780      InjectedClassName->setDescribedClassTemplate(Template);
5781  PushOnScopeChains(InjectedClassName, S);
5782  assert(InjectedClassName->isInjectedClassName() &&
5783         "Broken injected-class-name");
5784}
5785
5786void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5787                                    SourceLocation RBraceLoc) {
5788  AdjustDeclIfTemplate(TagD);
5789  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5790  Tag->setRBraceLoc(RBraceLoc);
5791
5792  if (isa<CXXRecordDecl>(Tag))
5793    FieldCollector->FinishClass();
5794
5795  // Exit this scope of this tag's definition.
5796  PopDeclContext();
5797
5798  // Notify the consumer that we've defined a tag.
5799  Consumer.HandleTagDeclDefinition(Tag);
5800}
5801
5802void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5803  AdjustDeclIfTemplate(TagD);
5804  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5805  Tag->setInvalidDecl();
5806
5807  // We're undoing ActOnTagStartDefinition here, not
5808  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5809  // the FieldCollector.
5810
5811  PopDeclContext();
5812}
5813
5814// Note that FieldName may be null for anonymous bitfields.
5815bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5816                          QualType FieldTy, const Expr *BitWidth,
5817                          bool *ZeroWidth) {
5818  // Default to true; that shouldn't confuse checks for emptiness
5819  if (ZeroWidth)
5820    *ZeroWidth = true;
5821
5822  // C99 6.7.2.1p4 - verify the field type.
5823  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5824  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5825    // Handle incomplete types with specific error.
5826    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5827      return true;
5828    if (FieldName)
5829      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5830        << FieldName << FieldTy << BitWidth->getSourceRange();
5831    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5832      << FieldTy << BitWidth->getSourceRange();
5833  }
5834
5835  // If the bit-width is type- or value-dependent, don't try to check
5836  // it now.
5837  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5838    return false;
5839
5840  llvm::APSInt Value;
5841  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5842    return true;
5843
5844  if (Value != 0 && ZeroWidth)
5845    *ZeroWidth = false;
5846
5847  // Zero-width bitfield is ok for anonymous field.
5848  if (Value == 0 && FieldName)
5849    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5850
5851  if (Value.isSigned() && Value.isNegative()) {
5852    if (FieldName)
5853      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5854               << FieldName << Value.toString(10);
5855    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5856      << Value.toString(10);
5857  }
5858
5859  if (!FieldTy->isDependentType()) {
5860    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5861    if (Value.getZExtValue() > TypeSize) {
5862      if (!getLangOptions().CPlusPlus) {
5863        if (FieldName)
5864          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5865            << FieldName << (unsigned)Value.getZExtValue()
5866            << (unsigned)TypeSize;
5867
5868        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5869          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5870      }
5871
5872      if (FieldName)
5873        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5874          << FieldName << (unsigned)Value.getZExtValue()
5875          << (unsigned)TypeSize;
5876      else
5877        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5878          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5879    }
5880  }
5881
5882  return false;
5883}
5884
5885/// ActOnField - Each field of a struct/union/class is passed into this in order
5886/// to create a FieldDecl object for it.
5887Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5888                                 SourceLocation DeclStart,
5889                                 Declarator &D, ExprTy *BitfieldWidth) {
5890  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5891                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5892                               AS_public);
5893  return DeclPtrTy::make(Res);
5894}
5895
5896/// HandleField - Analyze a field of a C struct or a C++ data member.
5897///
5898FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5899                             SourceLocation DeclStart,
5900                             Declarator &D, Expr *BitWidth,
5901                             AccessSpecifier AS) {
5902  IdentifierInfo *II = D.getIdentifier();
5903  SourceLocation Loc = DeclStart;
5904  if (II) Loc = D.getIdentifierLoc();
5905
5906  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5907  QualType T = TInfo->getType();
5908  if (getLangOptions().CPlusPlus)
5909    CheckExtraCXXDefaultArguments(D);
5910
5911  DiagnoseFunctionSpecifiers(D);
5912
5913  if (D.getDeclSpec().isThreadSpecified())
5914    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5915
5916  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5917                                         ForRedeclaration);
5918
5919  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5920    // Maybe we will complain about the shadowed template parameter.
5921    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5922    // Just pretend that we didn't see the previous declaration.
5923    PrevDecl = 0;
5924  }
5925
5926  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5927    PrevDecl = 0;
5928
5929  bool Mutable
5930    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5931  SourceLocation TSSL = D.getSourceRange().getBegin();
5932  FieldDecl *NewFD
5933    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5934                     AS, PrevDecl, &D);
5935
5936  if (NewFD->isInvalidDecl())
5937    Record->setInvalidDecl();
5938
5939  if (NewFD->isInvalidDecl() && PrevDecl) {
5940    // Don't introduce NewFD into scope; there's already something
5941    // with the same name in the same scope.
5942  } else if (II) {
5943    PushOnScopeChains(NewFD, S);
5944  } else
5945    Record->addDecl(NewFD);
5946
5947  return NewFD;
5948}
5949
5950/// \brief Build a new FieldDecl and check its well-formedness.
5951///
5952/// This routine builds a new FieldDecl given the fields name, type,
5953/// record, etc. \p PrevDecl should refer to any previous declaration
5954/// with the same name and in the same scope as the field to be
5955/// created.
5956///
5957/// \returns a new FieldDecl.
5958///
5959/// \todo The Declarator argument is a hack. It will be removed once
5960FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5961                                TypeSourceInfo *TInfo,
5962                                RecordDecl *Record, SourceLocation Loc,
5963                                bool Mutable, Expr *BitWidth,
5964                                SourceLocation TSSL,
5965                                AccessSpecifier AS, NamedDecl *PrevDecl,
5966                                Declarator *D) {
5967  IdentifierInfo *II = Name.getAsIdentifierInfo();
5968  bool InvalidDecl = false;
5969  if (D) InvalidDecl = D->isInvalidType();
5970
5971  // If we receive a broken type, recover by assuming 'int' and
5972  // marking this declaration as invalid.
5973  if (T.isNull()) {
5974    InvalidDecl = true;
5975    T = Context.IntTy;
5976  }
5977
5978  QualType EltTy = Context.getBaseElementType(T);
5979  if (!EltTy->isDependentType() &&
5980      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
5981    // Fields of incomplete type force their record to be invalid.
5982    Record->setInvalidDecl();
5983    InvalidDecl = true;
5984  }
5985
5986  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5987  // than a variably modified type.
5988  if (!InvalidDecl && T->isVariablyModifiedType()) {
5989    bool SizeIsNegative;
5990    llvm::APSInt Oversized;
5991    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5992                                                           SizeIsNegative,
5993                                                           Oversized);
5994    if (!FixedTy.isNull()) {
5995      Diag(Loc, diag::warn_illegal_constant_array_size);
5996      T = FixedTy;
5997    } else {
5998      if (SizeIsNegative)
5999        Diag(Loc, diag::err_typecheck_negative_array_size);
6000      else if (Oversized.getBoolValue())
6001        Diag(Loc, diag::err_array_too_large)
6002          << Oversized.toString(10);
6003      else
6004        Diag(Loc, diag::err_typecheck_field_variable_size);
6005      InvalidDecl = true;
6006    }
6007  }
6008
6009  // Fields can not have abstract class types
6010  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6011                                             diag::err_abstract_type_in_decl,
6012                                             AbstractFieldType))
6013    InvalidDecl = true;
6014
6015  bool ZeroWidth = false;
6016  // If this is declared as a bit-field, check the bit-field.
6017  if (!InvalidDecl && BitWidth &&
6018      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6019    InvalidDecl = true;
6020    DeleteExpr(BitWidth);
6021    BitWidth = 0;
6022    ZeroWidth = false;
6023  }
6024
6025  // Check that 'mutable' is consistent with the type of the declaration.
6026  if (!InvalidDecl && Mutable) {
6027    unsigned DiagID = 0;
6028    if (T->isReferenceType())
6029      DiagID = diag::err_mutable_reference;
6030    else if (T.isConstQualified())
6031      DiagID = diag::err_mutable_const;
6032
6033    if (DiagID) {
6034      SourceLocation ErrLoc = Loc;
6035      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6036        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6037      Diag(ErrLoc, DiagID);
6038      Mutable = false;
6039      InvalidDecl = true;
6040    }
6041  }
6042
6043  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6044                                       BitWidth, Mutable);
6045  if (InvalidDecl)
6046    NewFD->setInvalidDecl();
6047
6048  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6049    Diag(Loc, diag::err_duplicate_member) << II;
6050    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6051    NewFD->setInvalidDecl();
6052  }
6053
6054  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6055    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6056
6057    if (!T->isPODType())
6058      CXXRecord->setPOD(false);
6059    if (!ZeroWidth)
6060      CXXRecord->setEmpty(false);
6061
6062    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6063      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6064      if (RDecl->getDefinition()) {
6065        if (!RDecl->hasTrivialConstructor())
6066          CXXRecord->setHasTrivialConstructor(false);
6067        if (!RDecl->hasTrivialCopyConstructor())
6068          CXXRecord->setHasTrivialCopyConstructor(false);
6069        if (!RDecl->hasTrivialCopyAssignment())
6070          CXXRecord->setHasTrivialCopyAssignment(false);
6071        if (!RDecl->hasTrivialDestructor())
6072          CXXRecord->setHasTrivialDestructor(false);
6073
6074        // C++ 9.5p1: An object of a class with a non-trivial
6075        // constructor, a non-trivial copy constructor, a non-trivial
6076        // destructor, or a non-trivial copy assignment operator
6077        // cannot be a member of a union, nor can an array of such
6078        // objects.
6079        // TODO: C++0x alters this restriction significantly.
6080        if (Record->isUnion() && CheckNontrivialField(NewFD))
6081          NewFD->setInvalidDecl();
6082      }
6083    }
6084  }
6085
6086  // FIXME: We need to pass in the attributes given an AST
6087  // representation, not a parser representation.
6088  if (D)
6089    // FIXME: What to pass instead of TUScope?
6090    ProcessDeclAttributes(TUScope, NewFD, *D);
6091
6092  if (T.isObjCGCWeak())
6093    Diag(Loc, diag::warn_attribute_weak_on_field);
6094
6095  NewFD->setAccess(AS);
6096
6097  // C++ [dcl.init.aggr]p1:
6098  //   An aggregate is an array or a class (clause 9) with [...] no
6099  //   private or protected non-static data members (clause 11).
6100  // A POD must be an aggregate.
6101  if (getLangOptions().CPlusPlus &&
6102      (AS == AS_private || AS == AS_protected)) {
6103    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6104    CXXRecord->setAggregate(false);
6105    CXXRecord->setPOD(false);
6106  }
6107
6108  return NewFD;
6109}
6110
6111bool Sema::CheckNontrivialField(FieldDecl *FD) {
6112  assert(FD);
6113  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6114
6115  if (FD->isInvalidDecl())
6116    return true;
6117
6118  QualType EltTy = Context.getBaseElementType(FD->getType());
6119  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6120    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6121    if (RDecl->getDefinition()) {
6122      // We check for copy constructors before constructors
6123      // because otherwise we'll never get complaints about
6124      // copy constructors.
6125
6126      CXXSpecialMember member = CXXInvalid;
6127      if (!RDecl->hasTrivialCopyConstructor())
6128        member = CXXCopyConstructor;
6129      else if (!RDecl->hasTrivialConstructor())
6130        member = CXXConstructor;
6131      else if (!RDecl->hasTrivialCopyAssignment())
6132        member = CXXCopyAssignment;
6133      else if (!RDecl->hasTrivialDestructor())
6134        member = CXXDestructor;
6135
6136      if (member != CXXInvalid) {
6137        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6138              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6139        DiagnoseNontrivial(RT, member);
6140        return true;
6141      }
6142    }
6143  }
6144
6145  return false;
6146}
6147
6148/// DiagnoseNontrivial - Given that a class has a non-trivial
6149/// special member, figure out why.
6150void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6151  QualType QT(T, 0U);
6152  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6153
6154  // Check whether the member was user-declared.
6155  switch (member) {
6156  case CXXInvalid:
6157    break;
6158
6159  case CXXConstructor:
6160    if (RD->hasUserDeclaredConstructor()) {
6161      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6162      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6163        const FunctionDecl *body = 0;
6164        ci->hasBody(body);
6165        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6166          SourceLocation CtorLoc = ci->getLocation();
6167          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6168          return;
6169        }
6170      }
6171
6172      assert(0 && "found no user-declared constructors");
6173      return;
6174    }
6175    break;
6176
6177  case CXXCopyConstructor:
6178    if (RD->hasUserDeclaredCopyConstructor()) {
6179      SourceLocation CtorLoc =
6180        RD->getCopyConstructor(Context, 0)->getLocation();
6181      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6182      return;
6183    }
6184    break;
6185
6186  case CXXCopyAssignment:
6187    if (RD->hasUserDeclaredCopyAssignment()) {
6188      // FIXME: this should use the location of the copy
6189      // assignment, not the type.
6190      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6191      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6192      return;
6193    }
6194    break;
6195
6196  case CXXDestructor:
6197    if (RD->hasUserDeclaredDestructor()) {
6198      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6199      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6200      return;
6201    }
6202    break;
6203  }
6204
6205  typedef CXXRecordDecl::base_class_iterator base_iter;
6206
6207  // Virtual bases and members inhibit trivial copying/construction,
6208  // but not trivial destruction.
6209  if (member != CXXDestructor) {
6210    // Check for virtual bases.  vbases includes indirect virtual bases,
6211    // so we just iterate through the direct bases.
6212    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6213      if (bi->isVirtual()) {
6214        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6215        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6216        return;
6217      }
6218
6219    // Check for virtual methods.
6220    typedef CXXRecordDecl::method_iterator meth_iter;
6221    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6222         ++mi) {
6223      if (mi->isVirtual()) {
6224        SourceLocation MLoc = mi->getSourceRange().getBegin();
6225        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6226        return;
6227      }
6228    }
6229  }
6230
6231  bool (CXXRecordDecl::*hasTrivial)() const;
6232  switch (member) {
6233  case CXXConstructor:
6234    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6235  case CXXCopyConstructor:
6236    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6237  case CXXCopyAssignment:
6238    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6239  case CXXDestructor:
6240    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6241  default:
6242    assert(0 && "unexpected special member"); return;
6243  }
6244
6245  // Check for nontrivial bases (and recurse).
6246  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6247    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6248    assert(BaseRT && "Don't know how to handle dependent bases");
6249    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6250    if (!(BaseRecTy->*hasTrivial)()) {
6251      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6252      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6253      DiagnoseNontrivial(BaseRT, member);
6254      return;
6255    }
6256  }
6257
6258  // Check for nontrivial members (and recurse).
6259  typedef RecordDecl::field_iterator field_iter;
6260  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6261       ++fi) {
6262    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6263    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6264      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6265
6266      if (!(EltRD->*hasTrivial)()) {
6267        SourceLocation FLoc = (*fi)->getLocation();
6268        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6269        DiagnoseNontrivial(EltRT, member);
6270        return;
6271      }
6272    }
6273  }
6274
6275  assert(0 && "found no explanation for non-trivial member");
6276}
6277
6278/// TranslateIvarVisibility - Translate visibility from a token ID to an
6279///  AST enum value.
6280static ObjCIvarDecl::AccessControl
6281TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6282  switch (ivarVisibility) {
6283  default: assert(0 && "Unknown visitibility kind");
6284  case tok::objc_private: return ObjCIvarDecl::Private;
6285  case tok::objc_public: return ObjCIvarDecl::Public;
6286  case tok::objc_protected: return ObjCIvarDecl::Protected;
6287  case tok::objc_package: return ObjCIvarDecl::Package;
6288  }
6289}
6290
6291/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6292/// in order to create an IvarDecl object for it.
6293Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6294                                SourceLocation DeclStart,
6295                                DeclPtrTy IntfDecl,
6296                                Declarator &D, ExprTy *BitfieldWidth,
6297                                tok::ObjCKeywordKind Visibility) {
6298
6299  IdentifierInfo *II = D.getIdentifier();
6300  Expr *BitWidth = (Expr*)BitfieldWidth;
6301  SourceLocation Loc = DeclStart;
6302  if (II) Loc = D.getIdentifierLoc();
6303
6304  // FIXME: Unnamed fields can be handled in various different ways, for
6305  // example, unnamed unions inject all members into the struct namespace!
6306
6307  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6308  QualType T = TInfo->getType();
6309
6310  if (BitWidth) {
6311    // 6.7.2.1p3, 6.7.2.1p4
6312    if (VerifyBitField(Loc, II, T, BitWidth)) {
6313      D.setInvalidType();
6314      DeleteExpr(BitWidth);
6315      BitWidth = 0;
6316    }
6317  } else {
6318    // Not a bitfield.
6319
6320    // validate II.
6321
6322  }
6323  if (T->isReferenceType()) {
6324    Diag(Loc, diag::err_ivar_reference_type);
6325    D.setInvalidType();
6326  }
6327  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6328  // than a variably modified type.
6329  else if (T->isVariablyModifiedType()) {
6330    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6331    D.setInvalidType();
6332  }
6333
6334  // Get the visibility (access control) for this ivar.
6335  ObjCIvarDecl::AccessControl ac =
6336    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6337                                        : ObjCIvarDecl::None;
6338  // Must set ivar's DeclContext to its enclosing interface.
6339  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6340  ObjCContainerDecl *EnclosingContext;
6341  if (ObjCImplementationDecl *IMPDecl =
6342      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6343    // Case of ivar declared in an implementation. Context is that of its class.
6344    EnclosingContext = IMPDecl->getClassInterface();
6345    assert(EnclosingContext && "Implementation has no class interface!");
6346  } else {
6347    if (ObjCCategoryDecl *CDecl =
6348        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6349      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6350        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6351        return DeclPtrTy();
6352      }
6353    }
6354    EnclosingContext = EnclosingDecl;
6355  }
6356
6357  // Construct the decl.
6358  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6359                                             EnclosingContext, Loc, II, T,
6360                                             TInfo, ac, (Expr *)BitfieldWidth);
6361
6362  if (II) {
6363    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6364                                           ForRedeclaration);
6365    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6366        && !isa<TagDecl>(PrevDecl)) {
6367      Diag(Loc, diag::err_duplicate_member) << II;
6368      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6369      NewID->setInvalidDecl();
6370    }
6371  }
6372
6373  // Process attributes attached to the ivar.
6374  ProcessDeclAttributes(S, NewID, D);
6375
6376  if (D.isInvalidType())
6377    NewID->setInvalidDecl();
6378
6379  if (II) {
6380    // FIXME: When interfaces are DeclContexts, we'll need to add
6381    // these to the interface.
6382    S->AddDecl(DeclPtrTy::make(NewID));
6383    IdResolver.AddDecl(NewID);
6384  }
6385
6386  return DeclPtrTy::make(NewID);
6387}
6388
6389void Sema::ActOnFields(Scope* S,
6390                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6391                       DeclPtrTy *Fields, unsigned NumFields,
6392                       SourceLocation LBrac, SourceLocation RBrac,
6393                       AttributeList *Attr) {
6394  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6395  assert(EnclosingDecl && "missing record or interface decl");
6396
6397  // If the decl this is being inserted into is invalid, then it may be a
6398  // redeclaration or some other bogus case.  Don't try to add fields to it.
6399  if (EnclosingDecl->isInvalidDecl()) {
6400    // FIXME: Deallocate fields?
6401    return;
6402  }
6403
6404
6405  // Verify that all the fields are okay.
6406  unsigned NumNamedMembers = 0;
6407  llvm::SmallVector<FieldDecl*, 32> RecFields;
6408
6409  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6410  for (unsigned i = 0; i != NumFields; ++i) {
6411    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6412
6413    // Get the type for the field.
6414    Type *FDTy = FD->getType().getTypePtr();
6415
6416    if (!FD->isAnonymousStructOrUnion()) {
6417      // Remember all fields written by the user.
6418      RecFields.push_back(FD);
6419    }
6420
6421    // If the field is already invalid for some reason, don't emit more
6422    // diagnostics about it.
6423    if (FD->isInvalidDecl()) {
6424      EnclosingDecl->setInvalidDecl();
6425      continue;
6426    }
6427
6428    // C99 6.7.2.1p2:
6429    //   A structure or union shall not contain a member with
6430    //   incomplete or function type (hence, a structure shall not
6431    //   contain an instance of itself, but may contain a pointer to
6432    //   an instance of itself), except that the last member of a
6433    //   structure with more than one named member may have incomplete
6434    //   array type; such a structure (and any union containing,
6435    //   possibly recursively, a member that is such a structure)
6436    //   shall not be a member of a structure or an element of an
6437    //   array.
6438    if (FDTy->isFunctionType()) {
6439      // Field declared as a function.
6440      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6441        << FD->getDeclName();
6442      FD->setInvalidDecl();
6443      EnclosingDecl->setInvalidDecl();
6444      continue;
6445    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6446               Record && Record->isStruct()) {
6447      // Flexible array member.
6448      if (NumNamedMembers < 1) {
6449        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6450          << FD->getDeclName();
6451        FD->setInvalidDecl();
6452        EnclosingDecl->setInvalidDecl();
6453        continue;
6454      }
6455      if (!FD->getType()->isDependentType() &&
6456          !Context.getBaseElementType(FD->getType())->isPODType()) {
6457        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6458          << FD->getDeclName() << FD->getType();
6459        FD->setInvalidDecl();
6460        EnclosingDecl->setInvalidDecl();
6461        continue;
6462      }
6463
6464      // Okay, we have a legal flexible array member at the end of the struct.
6465      if (Record)
6466        Record->setHasFlexibleArrayMember(true);
6467    } else if (!FDTy->isDependentType() &&
6468               RequireCompleteType(FD->getLocation(), FD->getType(),
6469                                   diag::err_field_incomplete)) {
6470      // Incomplete type
6471      FD->setInvalidDecl();
6472      EnclosingDecl->setInvalidDecl();
6473      continue;
6474    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6475      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6476        // If this is a member of a union, then entire union becomes "flexible".
6477        if (Record && Record->isUnion()) {
6478          Record->setHasFlexibleArrayMember(true);
6479        } else {
6480          // If this is a struct/class and this is not the last element, reject
6481          // it.  Note that GCC supports variable sized arrays in the middle of
6482          // structures.
6483          if (i != NumFields-1)
6484            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6485              << FD->getDeclName() << FD->getType();
6486          else {
6487            // We support flexible arrays at the end of structs in
6488            // other structs as an extension.
6489            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6490              << FD->getDeclName();
6491            if (Record)
6492              Record->setHasFlexibleArrayMember(true);
6493          }
6494        }
6495      }
6496      if (Record && FDTTy->getDecl()->hasObjectMember())
6497        Record->setHasObjectMember(true);
6498    } else if (FDTy->isObjCObjectType()) {
6499      /// A field cannot be an Objective-c object
6500      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6501      FD->setInvalidDecl();
6502      EnclosingDecl->setInvalidDecl();
6503      continue;
6504    } else if (getLangOptions().ObjC1 &&
6505               getLangOptions().getGCMode() != LangOptions::NonGC &&
6506               Record &&
6507               (FD->getType()->isObjCObjectPointerType() ||
6508                FD->getType().isObjCGCStrong()))
6509      Record->setHasObjectMember(true);
6510    else if (Context.getAsArrayType(FD->getType())) {
6511      QualType BaseType = Context.getBaseElementType(FD->getType());
6512      if (Record && BaseType->isRecordType() &&
6513          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6514        Record->setHasObjectMember(true);
6515    }
6516    // Keep track of the number of named members.
6517    if (FD->getIdentifier())
6518      ++NumNamedMembers;
6519  }
6520
6521  // Okay, we successfully defined 'Record'.
6522  if (Record) {
6523    Record->completeDefinition();
6524  } else {
6525    ObjCIvarDecl **ClsFields =
6526      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6527    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6528      ID->setLocEnd(RBrac);
6529      // Add ivar's to class's DeclContext.
6530      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6531        ClsFields[i]->setLexicalDeclContext(ID);
6532        ID->addDecl(ClsFields[i]);
6533      }
6534      // Must enforce the rule that ivars in the base classes may not be
6535      // duplicates.
6536      if (ID->getSuperClass())
6537        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6538    } else if (ObjCImplementationDecl *IMPDecl =
6539                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6540      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6541      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6542        // Ivar declared in @implementation never belongs to the implementation.
6543        // Only it is in implementation's lexical context.
6544        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6545      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6546    } else if (ObjCCategoryDecl *CDecl =
6547                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6548      // case of ivars in class extension; all other cases have been
6549      // reported as errors elsewhere.
6550      // FIXME. Class extension does not have a LocEnd field.
6551      // CDecl->setLocEnd(RBrac);
6552      // Add ivar's to class extension's DeclContext.
6553      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6554        ClsFields[i]->setLexicalDeclContext(CDecl);
6555        CDecl->addDecl(ClsFields[i]);
6556      }
6557    }
6558  }
6559
6560  if (Attr)
6561    ProcessDeclAttributeList(S, Record, Attr);
6562
6563  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6564  // set the visibility of this record.
6565  if (Record && !Record->getDeclContext()->isRecord())
6566    AddPushedVisibilityAttribute(Record);
6567}
6568
6569/// \brief Determine whether the given integral value is representable within
6570/// the given type T.
6571static bool isRepresentableIntegerValue(ASTContext &Context,
6572                                        llvm::APSInt &Value,
6573                                        QualType T) {
6574  assert(T->isIntegralType(Context) && "Integral type required!");
6575  unsigned BitWidth = Context.getIntWidth(T);
6576
6577  if (Value.isUnsigned() || Value.isNonNegative())
6578    return Value.getActiveBits() < BitWidth;
6579
6580  return Value.getMinSignedBits() <= BitWidth;
6581}
6582
6583// \brief Given an integral type, return the next larger integral type
6584// (or a NULL type of no such type exists).
6585static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6586  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6587  // enum checking below.
6588  assert(T->isIntegralType(Context) && "Integral type required!");
6589  const unsigned NumTypes = 4;
6590  QualType SignedIntegralTypes[NumTypes] = {
6591    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6592  };
6593  QualType UnsignedIntegralTypes[NumTypes] = {
6594    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6595    Context.UnsignedLongLongTy
6596  };
6597
6598  unsigned BitWidth = Context.getTypeSize(T);
6599  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6600                                            : UnsignedIntegralTypes;
6601  for (unsigned I = 0; I != NumTypes; ++I)
6602    if (Context.getTypeSize(Types[I]) > BitWidth)
6603      return Types[I];
6604
6605  return QualType();
6606}
6607
6608EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6609                                          EnumConstantDecl *LastEnumConst,
6610                                          SourceLocation IdLoc,
6611                                          IdentifierInfo *Id,
6612                                          ExprArg val) {
6613  Expr *Val = (Expr *)val.get();
6614
6615  unsigned IntWidth = Context.Target.getIntWidth();
6616  llvm::APSInt EnumVal(IntWidth);
6617  QualType EltTy;
6618  if (Val) {
6619    if (Enum->isDependentType() || Val->isTypeDependent())
6620      EltTy = Context.DependentTy;
6621    else {
6622      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6623      SourceLocation ExpLoc;
6624      if (!Val->isValueDependent() &&
6625          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6626        Val = 0;
6627      } else {
6628        if (!getLangOptions().CPlusPlus) {
6629          // C99 6.7.2.2p2:
6630          //   The expression that defines the value of an enumeration constant
6631          //   shall be an integer constant expression that has a value
6632          //   representable as an int.
6633
6634          // Complain if the value is not representable in an int.
6635          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6636            Diag(IdLoc, diag::ext_enum_value_not_int)
6637              << EnumVal.toString(10) << Val->getSourceRange()
6638              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6639          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6640            // Force the type of the expression to 'int'.
6641            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6642
6643            if (Val != val.get()) {
6644              val.release();
6645              val = Val;
6646            }
6647          }
6648        }
6649
6650        // C++0x [dcl.enum]p5:
6651        //   If the underlying type is not fixed, the type of each enumerator
6652        //   is the type of its initializing value:
6653        //     - If an initializer is specified for an enumerator, the
6654        //       initializing value has the same type as the expression.
6655        EltTy = Val->getType();
6656      }
6657    }
6658  }
6659
6660  if (!Val) {
6661    if (Enum->isDependentType())
6662      EltTy = Context.DependentTy;
6663    else if (!LastEnumConst) {
6664      // C++0x [dcl.enum]p5:
6665      //   If the underlying type is not fixed, the type of each enumerator
6666      //   is the type of its initializing value:
6667      //     - If no initializer is specified for the first enumerator, the
6668      //       initializing value has an unspecified integral type.
6669      //
6670      // GCC uses 'int' for its unspecified integral type, as does
6671      // C99 6.7.2.2p3.
6672      EltTy = Context.IntTy;
6673    } else {
6674      // Assign the last value + 1.
6675      EnumVal = LastEnumConst->getInitVal();
6676      ++EnumVal;
6677      EltTy = LastEnumConst->getType();
6678
6679      // Check for overflow on increment.
6680      if (EnumVal < LastEnumConst->getInitVal()) {
6681        // C++0x [dcl.enum]p5:
6682        //   If the underlying type is not fixed, the type of each enumerator
6683        //   is the type of its initializing value:
6684        //
6685        //     - Otherwise the type of the initializing value is the same as
6686        //       the type of the initializing value of the preceding enumerator
6687        //       unless the incremented value is not representable in that type,
6688        //       in which case the type is an unspecified integral type
6689        //       sufficient to contain the incremented value. If no such type
6690        //       exists, the program is ill-formed.
6691        QualType T = getNextLargerIntegralType(Context, EltTy);
6692        if (T.isNull()) {
6693          // There is no integral type larger enough to represent this
6694          // value. Complain, then allow the value to wrap around.
6695          EnumVal = LastEnumConst->getInitVal();
6696          EnumVal.zext(EnumVal.getBitWidth() * 2);
6697          Diag(IdLoc, diag::warn_enumerator_too_large)
6698            << EnumVal.toString(10);
6699        } else {
6700          EltTy = T;
6701        }
6702
6703        // Retrieve the last enumerator's value, extent that type to the
6704        // type that is supposed to be large enough to represent the incremented
6705        // value, then increment.
6706        EnumVal = LastEnumConst->getInitVal();
6707        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6708        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6709        ++EnumVal;
6710
6711        // If we're not in C++, diagnose the overflow of enumerator values,
6712        // which in C99 means that the enumerator value is not representable in
6713        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6714        // permits enumerator values that are representable in some larger
6715        // integral type.
6716        if (!getLangOptions().CPlusPlus && !T.isNull())
6717          Diag(IdLoc, diag::warn_enum_value_overflow);
6718      } else if (!getLangOptions().CPlusPlus &&
6719                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6720        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6721        Diag(IdLoc, diag::ext_enum_value_not_int)
6722          << EnumVal.toString(10) << 1;
6723      }
6724    }
6725  }
6726
6727  if (!EltTy->isDependentType()) {
6728    // Make the enumerator value match the signedness and size of the
6729    // enumerator's type.
6730    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6731    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6732  }
6733
6734  val.release();
6735  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6736                                  Val, EnumVal);
6737}
6738
6739
6740Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6741                                        DeclPtrTy lastEnumConst,
6742                                        SourceLocation IdLoc,
6743                                        IdentifierInfo *Id,
6744                                        SourceLocation EqualLoc, ExprTy *val) {
6745  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6746  EnumConstantDecl *LastEnumConst =
6747    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6748  Expr *Val = static_cast<Expr*>(val);
6749
6750  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6751  // we find one that is.
6752  S = getNonFieldDeclScope(S);
6753
6754  // Verify that there isn't already something declared with this name in this
6755  // scope.
6756  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6757                                         ForRedeclaration);
6758  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6759    // Maybe we will complain about the shadowed template parameter.
6760    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6761    // Just pretend that we didn't see the previous declaration.
6762    PrevDecl = 0;
6763  }
6764
6765  if (PrevDecl) {
6766    // When in C++, we may get a TagDecl with the same name; in this case the
6767    // enum constant will 'hide' the tag.
6768    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6769           "Received TagDecl when not in C++!");
6770    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6771      if (isa<EnumConstantDecl>(PrevDecl))
6772        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6773      else
6774        Diag(IdLoc, diag::err_redefinition) << Id;
6775      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6776      return DeclPtrTy();
6777    }
6778  }
6779
6780  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6781                                            IdLoc, Id, Owned(Val));
6782
6783  // Register this decl in the current scope stack.
6784  if (New) {
6785    New->setAccess(TheEnumDecl->getAccess());
6786    PushOnScopeChains(New, S);
6787  }
6788
6789  return DeclPtrTy::make(New);
6790}
6791
6792void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6793                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6794                         DeclPtrTy *Elements, unsigned NumElements,
6795                         Scope *S, AttributeList *Attr) {
6796  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6797  QualType EnumType = Context.getTypeDeclType(Enum);
6798
6799  if (Attr)
6800    ProcessDeclAttributeList(S, Enum, Attr);
6801
6802  if (Enum->isDependentType()) {
6803    for (unsigned i = 0; i != NumElements; ++i) {
6804      EnumConstantDecl *ECD =
6805        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6806      if (!ECD) continue;
6807
6808      ECD->setType(EnumType);
6809    }
6810
6811    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6812    return;
6813  }
6814
6815  // TODO: If the result value doesn't fit in an int, it must be a long or long
6816  // long value.  ISO C does not support this, but GCC does as an extension,
6817  // emit a warning.
6818  unsigned IntWidth = Context.Target.getIntWidth();
6819  unsigned CharWidth = Context.Target.getCharWidth();
6820  unsigned ShortWidth = Context.Target.getShortWidth();
6821
6822  // Verify that all the values are okay, compute the size of the values, and
6823  // reverse the list.
6824  unsigned NumNegativeBits = 0;
6825  unsigned NumPositiveBits = 0;
6826
6827  // Keep track of whether all elements have type int.
6828  bool AllElementsInt = true;
6829
6830  for (unsigned i = 0; i != NumElements; ++i) {
6831    EnumConstantDecl *ECD =
6832      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6833    if (!ECD) continue;  // Already issued a diagnostic.
6834
6835    const llvm::APSInt &InitVal = ECD->getInitVal();
6836
6837    // Keep track of the size of positive and negative values.
6838    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6839      NumPositiveBits = std::max(NumPositiveBits,
6840                                 (unsigned)InitVal.getActiveBits());
6841    else
6842      NumNegativeBits = std::max(NumNegativeBits,
6843                                 (unsigned)InitVal.getMinSignedBits());
6844
6845    // Keep track of whether every enum element has type int (very commmon).
6846    if (AllElementsInt)
6847      AllElementsInt = ECD->getType() == Context.IntTy;
6848  }
6849
6850  // Figure out the type that should be used for this enum.
6851  // FIXME: Support -fshort-enums.
6852  QualType BestType;
6853  unsigned BestWidth;
6854
6855  // C++0x N3000 [conv.prom]p3:
6856  //   An rvalue of an unscoped enumeration type whose underlying
6857  //   type is not fixed can be converted to an rvalue of the first
6858  //   of the following types that can represent all the values of
6859  //   the enumeration: int, unsigned int, long int, unsigned long
6860  //   int, long long int, or unsigned long long int.
6861  // C99 6.4.4.3p2:
6862  //   An identifier declared as an enumeration constant has type int.
6863  // The C99 rule is modified by a gcc extension
6864  QualType BestPromotionType;
6865
6866  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6867
6868  if (NumNegativeBits) {
6869    // If there is a negative value, figure out the smallest integer type (of
6870    // int/long/longlong) that fits.
6871    // If it's packed, check also if it fits a char or a short.
6872    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6873      BestType = Context.SignedCharTy;
6874      BestWidth = CharWidth;
6875    } else if (Packed && NumNegativeBits <= ShortWidth &&
6876               NumPositiveBits < ShortWidth) {
6877      BestType = Context.ShortTy;
6878      BestWidth = ShortWidth;
6879    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6880      BestType = Context.IntTy;
6881      BestWidth = IntWidth;
6882    } else {
6883      BestWidth = Context.Target.getLongWidth();
6884
6885      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6886        BestType = Context.LongTy;
6887      } else {
6888        BestWidth = Context.Target.getLongLongWidth();
6889
6890        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6891          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6892        BestType = Context.LongLongTy;
6893      }
6894    }
6895    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6896  } else {
6897    // If there is no negative value, figure out the smallest type that fits
6898    // all of the enumerator values.
6899    // If it's packed, check also if it fits a char or a short.
6900    if (Packed && NumPositiveBits <= CharWidth) {
6901      BestType = Context.UnsignedCharTy;
6902      BestPromotionType = Context.IntTy;
6903      BestWidth = CharWidth;
6904    } else if (Packed && NumPositiveBits <= ShortWidth) {
6905      BestType = Context.UnsignedShortTy;
6906      BestPromotionType = Context.IntTy;
6907      BestWidth = ShortWidth;
6908    } else if (NumPositiveBits <= IntWidth) {
6909      BestType = Context.UnsignedIntTy;
6910      BestWidth = IntWidth;
6911      BestPromotionType
6912        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6913                           ? Context.UnsignedIntTy : Context.IntTy;
6914    } else if (NumPositiveBits <=
6915               (BestWidth = Context.Target.getLongWidth())) {
6916      BestType = Context.UnsignedLongTy;
6917      BestPromotionType
6918        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6919                           ? Context.UnsignedLongTy : Context.LongTy;
6920    } else {
6921      BestWidth = Context.Target.getLongLongWidth();
6922      assert(NumPositiveBits <= BestWidth &&
6923             "How could an initializer get larger than ULL?");
6924      BestType = Context.UnsignedLongLongTy;
6925      BestPromotionType
6926        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6927                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6928    }
6929  }
6930
6931  // Loop over all of the enumerator constants, changing their types to match
6932  // the type of the enum if needed.
6933  for (unsigned i = 0; i != NumElements; ++i) {
6934    EnumConstantDecl *ECD =
6935      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6936    if (!ECD) continue;  // Already issued a diagnostic.
6937
6938    // Standard C says the enumerators have int type, but we allow, as an
6939    // extension, the enumerators to be larger than int size.  If each
6940    // enumerator value fits in an int, type it as an int, otherwise type it the
6941    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6942    // that X has type 'int', not 'unsigned'.
6943
6944    // Determine whether the value fits into an int.
6945    llvm::APSInt InitVal = ECD->getInitVal();
6946
6947    // If it fits into an integer type, force it.  Otherwise force it to match
6948    // the enum decl type.
6949    QualType NewTy;
6950    unsigned NewWidth;
6951    bool NewSign;
6952    if (!getLangOptions().CPlusPlus &&
6953        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6954      NewTy = Context.IntTy;
6955      NewWidth = IntWidth;
6956      NewSign = true;
6957    } else if (ECD->getType() == BestType) {
6958      // Already the right type!
6959      if (getLangOptions().CPlusPlus)
6960        // C++ [dcl.enum]p4: Following the closing brace of an
6961        // enum-specifier, each enumerator has the type of its
6962        // enumeration.
6963        ECD->setType(EnumType);
6964      continue;
6965    } else {
6966      NewTy = BestType;
6967      NewWidth = BestWidth;
6968      NewSign = BestType->isSignedIntegerType();
6969    }
6970
6971    // Adjust the APSInt value.
6972    InitVal.extOrTrunc(NewWidth);
6973    InitVal.setIsSigned(NewSign);
6974    ECD->setInitVal(InitVal);
6975
6976    // Adjust the Expr initializer and type.
6977    if (ECD->getInitExpr())
6978      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6979                                                CastExpr::CK_IntegralCast,
6980                                                ECD->getInitExpr(),
6981                                                /*base paths*/ 0,
6982                                                ImplicitCastExpr::RValue));
6983    if (getLangOptions().CPlusPlus)
6984      // C++ [dcl.enum]p4: Following the closing brace of an
6985      // enum-specifier, each enumerator has the type of its
6986      // enumeration.
6987      ECD->setType(EnumType);
6988    else
6989      ECD->setType(NewTy);
6990  }
6991
6992  Enum->completeDefinition(BestType, BestPromotionType,
6993                           NumPositiveBits, NumNegativeBits);
6994}
6995
6996Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6997                                            ExprArg expr) {
6998  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6999
7000  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7001                                                   Loc, AsmString);
7002  CurContext->addDecl(New);
7003  return DeclPtrTy::make(New);
7004}
7005
7006void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7007                             SourceLocation PragmaLoc,
7008                             SourceLocation NameLoc) {
7009  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7010
7011  if (PrevDecl) {
7012    PrevDecl->addAttr(::new (Context) WeakAttr());
7013  } else {
7014    (void)WeakUndeclaredIdentifiers.insert(
7015      std::pair<IdentifierInfo*,WeakInfo>
7016        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7017  }
7018}
7019
7020void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7021                                IdentifierInfo* AliasName,
7022                                SourceLocation PragmaLoc,
7023                                SourceLocation NameLoc,
7024                                SourceLocation AliasNameLoc) {
7025  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7026                                    LookupOrdinaryName);
7027  WeakInfo W = WeakInfo(Name, NameLoc);
7028
7029  if (PrevDecl) {
7030    if (!PrevDecl->hasAttr<AliasAttr>())
7031      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7032        DeclApplyPragmaWeak(TUScope, ND, W);
7033  } else {
7034    (void)WeakUndeclaredIdentifiers.insert(
7035      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7036  }
7037}
7038