SemaDecl.cpp revision 27c6da284f90e32cda0ec8f52a2b6ba5a2613252
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        // FIXME: Checking for the presence of a user-declared constructor
1133        // isn't completely accurate; we'd prefer to check that the initializer
1134        // has no side effects.
1135        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1136          return false;
1137      }
1138    }
1139
1140    // TODO: __attribute__((unused)) templates?
1141  }
1142
1143  return true;
1144}
1145
1146static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1147                                     FixItHint &Hint) {
1148  if (isa<LabelDecl>(D)) {
1149    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1150                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1151    if (AfterColon.isInvalid())
1152      return;
1153    Hint = FixItHint::CreateRemoval(CharSourceRange::
1154                                    getCharRange(D->getLocStart(), AfterColon));
1155  }
1156  return;
1157}
1158
1159/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1160/// unless they are marked attr(unused).
1161void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1162  FixItHint Hint;
1163  if (!ShouldDiagnoseUnusedDecl(D))
1164    return;
1165
1166  GenerateFixForUnusedDecl(D, Context, Hint);
1167
1168  unsigned DiagID;
1169  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1170    DiagID = diag::warn_unused_exception_param;
1171  else if (isa<LabelDecl>(D))
1172    DiagID = diag::warn_unused_label;
1173  else
1174    DiagID = diag::warn_unused_variable;
1175
1176  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1177}
1178
1179static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1180  // Verify that we have no forward references left.  If so, there was a goto
1181  // or address of a label taken, but no definition of it.  Label fwd
1182  // definitions are indicated with a null substmt.
1183  if (L->getStmt() == 0)
1184    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1185}
1186
1187void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1188  if (S->decl_empty()) return;
1189  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1190         "Scope shouldn't contain decls!");
1191
1192  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1193       I != E; ++I) {
1194    Decl *TmpD = (*I);
1195    assert(TmpD && "This decl didn't get pushed??");
1196
1197    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1198    NamedDecl *D = cast<NamedDecl>(TmpD);
1199
1200    if (!D->getDeclName()) continue;
1201
1202    // Diagnose unused variables in this scope.
1203    if (!S->hasErrorOccurred())
1204      DiagnoseUnusedDecl(D);
1205
1206    // If this was a forward reference to a label, verify it was defined.
1207    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1208      CheckPoppedLabel(LD, *this);
1209
1210    // Remove this name from our lexical scope.
1211    IdResolver.RemoveDecl(D);
1212  }
1213}
1214
1215/// \brief Look for an Objective-C class in the translation unit.
1216///
1217/// \param Id The name of the Objective-C class we're looking for. If
1218/// typo-correction fixes this name, the Id will be updated
1219/// to the fixed name.
1220///
1221/// \param IdLoc The location of the name in the translation unit.
1222///
1223/// \param TypoCorrection If true, this routine will attempt typo correction
1224/// if there is no class with the given name.
1225///
1226/// \returns The declaration of the named Objective-C class, or NULL if the
1227/// class could not be found.
1228ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1229                                              SourceLocation IdLoc,
1230                                              bool DoTypoCorrection) {
1231  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1232  // creation from this context.
1233  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1234
1235  if (!IDecl && DoTypoCorrection) {
1236    // Perform typo correction at the given location, but only if we
1237    // find an Objective-C class name.
1238    TypoCorrection C;
1239    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1240                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1241        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1242      Diag(IdLoc, diag::err_undef_interface_suggest)
1243        << Id << IDecl->getDeclName()
1244        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1245      Diag(IDecl->getLocation(), diag::note_previous_decl)
1246        << IDecl->getDeclName();
1247
1248      Id = IDecl->getIdentifier();
1249    }
1250  }
1251
1252  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1253}
1254
1255/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1256/// from S, where a non-field would be declared. This routine copes
1257/// with the difference between C and C++ scoping rules in structs and
1258/// unions. For example, the following code is well-formed in C but
1259/// ill-formed in C++:
1260/// @code
1261/// struct S6 {
1262///   enum { BAR } e;
1263/// };
1264///
1265/// void test_S6() {
1266///   struct S6 a;
1267///   a.e = BAR;
1268/// }
1269/// @endcode
1270/// For the declaration of BAR, this routine will return a different
1271/// scope. The scope S will be the scope of the unnamed enumeration
1272/// within S6. In C++, this routine will return the scope associated
1273/// with S6, because the enumeration's scope is a transparent
1274/// context but structures can contain non-field names. In C, this
1275/// routine will return the translation unit scope, since the
1276/// enumeration's scope is a transparent context and structures cannot
1277/// contain non-field names.
1278Scope *Sema::getNonFieldDeclScope(Scope *S) {
1279  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1280         (S->getEntity() &&
1281          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1282         (S->isClassScope() && !getLangOptions().CPlusPlus))
1283    S = S->getParent();
1284  return S;
1285}
1286
1287/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1288/// file scope.  lazily create a decl for it. ForRedeclaration is true
1289/// if we're creating this built-in in anticipation of redeclaring the
1290/// built-in.
1291NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1292                                     Scope *S, bool ForRedeclaration,
1293                                     SourceLocation Loc) {
1294  Builtin::ID BID = (Builtin::ID)bid;
1295
1296  ASTContext::GetBuiltinTypeError Error;
1297  QualType R = Context.GetBuiltinType(BID, Error);
1298  switch (Error) {
1299  case ASTContext::GE_None:
1300    // Okay
1301    break;
1302
1303  case ASTContext::GE_Missing_stdio:
1304    if (ForRedeclaration)
1305      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1306        << Context.BuiltinInfo.GetName(BID);
1307    return 0;
1308
1309  case ASTContext::GE_Missing_setjmp:
1310    if (ForRedeclaration)
1311      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1312        << Context.BuiltinInfo.GetName(BID);
1313    return 0;
1314
1315  case ASTContext::GE_Missing_ucontext:
1316    if (ForRedeclaration)
1317      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1318        << Context.BuiltinInfo.GetName(BID);
1319    return 0;
1320  }
1321
1322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1323    Diag(Loc, diag::ext_implicit_lib_function_decl)
1324      << Context.BuiltinInfo.GetName(BID)
1325      << R;
1326    if (Context.BuiltinInfo.getHeaderName(BID) &&
1327        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1328          != DiagnosticsEngine::Ignored)
1329      Diag(Loc, diag::note_please_include_header)
1330        << Context.BuiltinInfo.getHeaderName(BID)
1331        << Context.BuiltinInfo.GetName(BID);
1332  }
1333
1334  FunctionDecl *New = FunctionDecl::Create(Context,
1335                                           Context.getTranslationUnitDecl(),
1336                                           Loc, Loc, II, R, /*TInfo=*/0,
1337                                           SC_Extern,
1338                                           SC_None, false,
1339                                           /*hasPrototype=*/true);
1340  New->setImplicit();
1341
1342  // Create Decl objects for each parameter, adding them to the
1343  // FunctionDecl.
1344  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1345    SmallVector<ParmVarDecl*, 16> Params;
1346    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1347      ParmVarDecl *parm =
1348        ParmVarDecl::Create(Context, New, SourceLocation(),
1349                            SourceLocation(), 0,
1350                            FT->getArgType(i), /*TInfo=*/0,
1351                            SC_None, SC_None, 0);
1352      parm->setScopeInfo(0, i);
1353      Params.push_back(parm);
1354    }
1355    New->setParams(Params);
1356  }
1357
1358  AddKnownFunctionAttributes(New);
1359
1360  // TUScope is the translation-unit scope to insert this function into.
1361  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1362  // relate Scopes to DeclContexts, and probably eliminate CurContext
1363  // entirely, but we're not there yet.
1364  DeclContext *SavedContext = CurContext;
1365  CurContext = Context.getTranslationUnitDecl();
1366  PushOnScopeChains(New, TUScope);
1367  CurContext = SavedContext;
1368  return New;
1369}
1370
1371bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1372  QualType OldType;
1373  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1374    OldType = OldTypedef->getUnderlyingType();
1375  else
1376    OldType = Context.getTypeDeclType(Old);
1377  QualType NewType = New->getUnderlyingType();
1378
1379  if (OldType != NewType &&
1380      !OldType->isDependentType() &&
1381      !NewType->isDependentType() &&
1382      !Context.hasSameType(OldType, NewType)) {
1383    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1384    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1385      << Kind << NewType << OldType;
1386    if (Old->getLocation().isValid())
1387      Diag(Old->getLocation(), diag::note_previous_definition);
1388    New->setInvalidDecl();
1389    return true;
1390  }
1391  return false;
1392}
1393
1394/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1395/// same name and scope as a previous declaration 'Old'.  Figure out
1396/// how to resolve this situation, merging decls or emitting
1397/// diagnostics as appropriate. If there was an error, set New to be invalid.
1398///
1399void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1400  // If the new decl is known invalid already, don't bother doing any
1401  // merging checks.
1402  if (New->isInvalidDecl()) return;
1403
1404  // Allow multiple definitions for ObjC built-in typedefs.
1405  // FIXME: Verify the underlying types are equivalent!
1406  if (getLangOptions().ObjC1) {
1407    const IdentifierInfo *TypeID = New->getIdentifier();
1408    switch (TypeID->getLength()) {
1409    default: break;
1410    case 2:
1411      if (!TypeID->isStr("id"))
1412        break;
1413      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1414      // Install the built-in type for 'id', ignoring the current definition.
1415      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1416      return;
1417    case 5:
1418      if (!TypeID->isStr("Class"))
1419        break;
1420      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1421      // Install the built-in type for 'Class', ignoring the current definition.
1422      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1423      return;
1424    case 3:
1425      if (!TypeID->isStr("SEL"))
1426        break;
1427      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1428      // Install the built-in type for 'SEL', ignoring the current definition.
1429      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1430      return;
1431    }
1432    // Fall through - the typedef name was not a builtin type.
1433  }
1434
1435  // Verify the old decl was also a type.
1436  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1437  if (!Old) {
1438    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1439      << New->getDeclName();
1440
1441    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1442    if (OldD->getLocation().isValid())
1443      Diag(OldD->getLocation(), diag::note_previous_definition);
1444
1445    return New->setInvalidDecl();
1446  }
1447
1448  // If the old declaration is invalid, just give up here.
1449  if (Old->isInvalidDecl())
1450    return New->setInvalidDecl();
1451
1452  // If the typedef types are not identical, reject them in all languages and
1453  // with any extensions enabled.
1454  if (isIncompatibleTypedef(Old, New))
1455    return;
1456
1457  // The types match.  Link up the redeclaration chain if the old
1458  // declaration was a typedef.
1459  // FIXME: this is a potential source of weirdness if the type
1460  // spellings don't match exactly.
1461  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1462    New->setPreviousDeclaration(Typedef);
1463
1464  if (getLangOptions().MicrosoftExt)
1465    return;
1466
1467  if (getLangOptions().CPlusPlus) {
1468    // C++ [dcl.typedef]p2:
1469    //   In a given non-class scope, a typedef specifier can be used to
1470    //   redefine the name of any type declared in that scope to refer
1471    //   to the type to which it already refers.
1472    if (!isa<CXXRecordDecl>(CurContext))
1473      return;
1474
1475    // C++0x [dcl.typedef]p4:
1476    //   In a given class scope, a typedef specifier can be used to redefine
1477    //   any class-name declared in that scope that is not also a typedef-name
1478    //   to refer to the type to which it already refers.
1479    //
1480    // This wording came in via DR424, which was a correction to the
1481    // wording in DR56, which accidentally banned code like:
1482    //
1483    //   struct S {
1484    //     typedef struct A { } A;
1485    //   };
1486    //
1487    // in the C++03 standard. We implement the C++0x semantics, which
1488    // allow the above but disallow
1489    //
1490    //   struct S {
1491    //     typedef int I;
1492    //     typedef int I;
1493    //   };
1494    //
1495    // since that was the intent of DR56.
1496    if (!isa<TypedefNameDecl>(Old))
1497      return;
1498
1499    Diag(New->getLocation(), diag::err_redefinition)
1500      << New->getDeclName();
1501    Diag(Old->getLocation(), diag::note_previous_definition);
1502    return New->setInvalidDecl();
1503  }
1504
1505  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1506  // is normally mapped to an error, but can be controlled with
1507  // -Wtypedef-redefinition.  If either the original or the redefinition is
1508  // in a system header, don't emit this for compatibility with GCC.
1509  if (getDiagnostics().getSuppressSystemWarnings() &&
1510      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1511       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1512    return;
1513
1514  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1515    << New->getDeclName();
1516  Diag(Old->getLocation(), diag::note_previous_definition);
1517  return;
1518}
1519
1520/// DeclhasAttr - returns true if decl Declaration already has the target
1521/// attribute.
1522static bool
1523DeclHasAttr(const Decl *D, const Attr *A) {
1524  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1525  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1526  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1527    if ((*i)->getKind() == A->getKind()) {
1528      if (Ann) {
1529        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1530          return true;
1531        continue;
1532      }
1533      // FIXME: Don't hardcode this check
1534      if (OA && isa<OwnershipAttr>(*i))
1535        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1536      return true;
1537    }
1538
1539  return false;
1540}
1541
1542/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1543void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1544                               bool MergeDeprecation) {
1545  if (!Old->hasAttrs())
1546    return;
1547
1548  bool foundAny = New->hasAttrs();
1549
1550  // Ensure that any moving of objects within the allocated map is done before
1551  // we process them.
1552  if (!foundAny) New->setAttrs(AttrVec());
1553
1554  for (specific_attr_iterator<InheritableAttr>
1555         i = Old->specific_attr_begin<InheritableAttr>(),
1556         e = Old->specific_attr_end<InheritableAttr>();
1557       i != e; ++i) {
1558    // Ignore deprecated/unavailable/availability attributes if requested.
1559    if (!MergeDeprecation &&
1560        (isa<DeprecatedAttr>(*i) ||
1561         isa<UnavailableAttr>(*i) ||
1562         isa<AvailabilityAttr>(*i)))
1563      continue;
1564
1565    if (!DeclHasAttr(New, *i)) {
1566      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1567      newAttr->setInherited(true);
1568      New->addAttr(newAttr);
1569      foundAny = true;
1570    }
1571  }
1572
1573  if (!foundAny) New->dropAttrs();
1574}
1575
1576/// mergeParamDeclAttributes - Copy attributes from the old parameter
1577/// to the new one.
1578static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1579                                     const ParmVarDecl *oldDecl,
1580                                     ASTContext &C) {
1581  if (!oldDecl->hasAttrs())
1582    return;
1583
1584  bool foundAny = newDecl->hasAttrs();
1585
1586  // Ensure that any moving of objects within the allocated map is
1587  // done before we process them.
1588  if (!foundAny) newDecl->setAttrs(AttrVec());
1589
1590  for (specific_attr_iterator<InheritableParamAttr>
1591       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1592       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1593    if (!DeclHasAttr(newDecl, *i)) {
1594      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1595      newAttr->setInherited(true);
1596      newDecl->addAttr(newAttr);
1597      foundAny = true;
1598    }
1599  }
1600
1601  if (!foundAny) newDecl->dropAttrs();
1602}
1603
1604namespace {
1605
1606/// Used in MergeFunctionDecl to keep track of function parameters in
1607/// C.
1608struct GNUCompatibleParamWarning {
1609  ParmVarDecl *OldParm;
1610  ParmVarDecl *NewParm;
1611  QualType PromotedType;
1612};
1613
1614}
1615
1616/// getSpecialMember - get the special member enum for a method.
1617Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1618  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1619    if (Ctor->isDefaultConstructor())
1620      return Sema::CXXDefaultConstructor;
1621
1622    if (Ctor->isCopyConstructor())
1623      return Sema::CXXCopyConstructor;
1624
1625    if (Ctor->isMoveConstructor())
1626      return Sema::CXXMoveConstructor;
1627  } else if (isa<CXXDestructorDecl>(MD)) {
1628    return Sema::CXXDestructor;
1629  } else if (MD->isCopyAssignmentOperator()) {
1630    return Sema::CXXCopyAssignment;
1631  } else if (MD->isMoveAssignmentOperator()) {
1632    return Sema::CXXMoveAssignment;
1633  }
1634
1635  return Sema::CXXInvalid;
1636}
1637
1638/// canRedefineFunction - checks if a function can be redefined. Currently,
1639/// only extern inline functions can be redefined, and even then only in
1640/// GNU89 mode.
1641static bool canRedefineFunction(const FunctionDecl *FD,
1642                                const LangOptions& LangOpts) {
1643  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1644          !LangOpts.CPlusPlus &&
1645          FD->isInlineSpecified() &&
1646          FD->getStorageClass() == SC_Extern);
1647}
1648
1649/// MergeFunctionDecl - We just parsed a function 'New' from
1650/// declarator D which has the same name and scope as a previous
1651/// declaration 'Old'.  Figure out how to resolve this situation,
1652/// merging decls or emitting diagnostics as appropriate.
1653///
1654/// In C++, New and Old must be declarations that are not
1655/// overloaded. Use IsOverload to determine whether New and Old are
1656/// overloaded, and to select the Old declaration that New should be
1657/// merged with.
1658///
1659/// Returns true if there was an error, false otherwise.
1660bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1661  // Verify the old decl was also a function.
1662  FunctionDecl *Old = 0;
1663  if (FunctionTemplateDecl *OldFunctionTemplate
1664        = dyn_cast<FunctionTemplateDecl>(OldD))
1665    Old = OldFunctionTemplate->getTemplatedDecl();
1666  else
1667    Old = dyn_cast<FunctionDecl>(OldD);
1668  if (!Old) {
1669    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1670      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1671      Diag(Shadow->getTargetDecl()->getLocation(),
1672           diag::note_using_decl_target);
1673      Diag(Shadow->getUsingDecl()->getLocation(),
1674           diag::note_using_decl) << 0;
1675      return true;
1676    }
1677
1678    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1679      << New->getDeclName();
1680    Diag(OldD->getLocation(), diag::note_previous_definition);
1681    return true;
1682  }
1683
1684  // Determine whether the previous declaration was a definition,
1685  // implicit declaration, or a declaration.
1686  diag::kind PrevDiag;
1687  if (Old->isThisDeclarationADefinition())
1688    PrevDiag = diag::note_previous_definition;
1689  else if (Old->isImplicit())
1690    PrevDiag = diag::note_previous_implicit_declaration;
1691  else
1692    PrevDiag = diag::note_previous_declaration;
1693
1694  QualType OldQType = Context.getCanonicalType(Old->getType());
1695  QualType NewQType = Context.getCanonicalType(New->getType());
1696
1697  // Don't complain about this if we're in GNU89 mode and the old function
1698  // is an extern inline function.
1699  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1700      New->getStorageClass() == SC_Static &&
1701      Old->getStorageClass() != SC_Static &&
1702      !canRedefineFunction(Old, getLangOptions())) {
1703    if (getLangOptions().MicrosoftExt) {
1704      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1705      Diag(Old->getLocation(), PrevDiag);
1706    } else {
1707      Diag(New->getLocation(), diag::err_static_non_static) << New;
1708      Diag(Old->getLocation(), PrevDiag);
1709      return true;
1710    }
1711  }
1712
1713  // If a function is first declared with a calling convention, but is
1714  // later declared or defined without one, the second decl assumes the
1715  // calling convention of the first.
1716  //
1717  // For the new decl, we have to look at the NON-canonical type to tell the
1718  // difference between a function that really doesn't have a calling
1719  // convention and one that is declared cdecl. That's because in
1720  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1721  // because it is the default calling convention.
1722  //
1723  // Note also that we DO NOT return at this point, because we still have
1724  // other tests to run.
1725  const FunctionType *OldType = cast<FunctionType>(OldQType);
1726  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1727  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1728  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1729  bool RequiresAdjustment = false;
1730  if (OldTypeInfo.getCC() != CC_Default &&
1731      NewTypeInfo.getCC() == CC_Default) {
1732    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1733    RequiresAdjustment = true;
1734  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1735                                     NewTypeInfo.getCC())) {
1736    // Calling conventions really aren't compatible, so complain.
1737    Diag(New->getLocation(), diag::err_cconv_change)
1738      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1739      << (OldTypeInfo.getCC() == CC_Default)
1740      << (OldTypeInfo.getCC() == CC_Default ? "" :
1741          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1742    Diag(Old->getLocation(), diag::note_previous_declaration);
1743    return true;
1744  }
1745
1746  // FIXME: diagnose the other way around?
1747  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1748    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1749    RequiresAdjustment = true;
1750  }
1751
1752  // Merge regparm attribute.
1753  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1754      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1755    if (NewTypeInfo.getHasRegParm()) {
1756      Diag(New->getLocation(), diag::err_regparm_mismatch)
1757        << NewType->getRegParmType()
1758        << OldType->getRegParmType();
1759      Diag(Old->getLocation(), diag::note_previous_declaration);
1760      return true;
1761    }
1762
1763    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1764    RequiresAdjustment = true;
1765  }
1766
1767  // Merge ns_returns_retained attribute.
1768  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1769    if (NewTypeInfo.getProducesResult()) {
1770      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1771      Diag(Old->getLocation(), diag::note_previous_declaration);
1772      return true;
1773    }
1774
1775    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1776    RequiresAdjustment = true;
1777  }
1778
1779  if (RequiresAdjustment) {
1780    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1781    New->setType(QualType(NewType, 0));
1782    NewQType = Context.getCanonicalType(New->getType());
1783  }
1784
1785  if (getLangOptions().CPlusPlus) {
1786    // (C++98 13.1p2):
1787    //   Certain function declarations cannot be overloaded:
1788    //     -- Function declarations that differ only in the return type
1789    //        cannot be overloaded.
1790    QualType OldReturnType = OldType->getResultType();
1791    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1792    QualType ResQT;
1793    if (OldReturnType != NewReturnType) {
1794      if (NewReturnType->isObjCObjectPointerType()
1795          && OldReturnType->isObjCObjectPointerType())
1796        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1797      if (ResQT.isNull()) {
1798        if (New->isCXXClassMember() && New->isOutOfLine())
1799          Diag(New->getLocation(),
1800               diag::err_member_def_does_not_match_ret_type) << New;
1801        else
1802          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1803        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1804        return true;
1805      }
1806      else
1807        NewQType = ResQT;
1808    }
1809
1810    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1811    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1812    if (OldMethod && NewMethod) {
1813      // Preserve triviality.
1814      NewMethod->setTrivial(OldMethod->isTrivial());
1815
1816      // MSVC allows explicit template specialization at class scope:
1817      // 2 CXMethodDecls referring to the same function will be injected.
1818      // We don't want a redeclartion error.
1819      bool IsClassScopeExplicitSpecialization =
1820                              OldMethod->isFunctionTemplateSpecialization() &&
1821                              NewMethod->isFunctionTemplateSpecialization();
1822      bool isFriend = NewMethod->getFriendObjectKind();
1823
1824      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1825          !IsClassScopeExplicitSpecialization) {
1826        //    -- Member function declarations with the same name and the
1827        //       same parameter types cannot be overloaded if any of them
1828        //       is a static member function declaration.
1829        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1830          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1831          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1832          return true;
1833        }
1834
1835        // C++ [class.mem]p1:
1836        //   [...] A member shall not be declared twice in the
1837        //   member-specification, except that a nested class or member
1838        //   class template can be declared and then later defined.
1839        unsigned NewDiag;
1840        if (isa<CXXConstructorDecl>(OldMethod))
1841          NewDiag = diag::err_constructor_redeclared;
1842        else if (isa<CXXDestructorDecl>(NewMethod))
1843          NewDiag = diag::err_destructor_redeclared;
1844        else if (isa<CXXConversionDecl>(NewMethod))
1845          NewDiag = diag::err_conv_function_redeclared;
1846        else
1847          NewDiag = diag::err_member_redeclared;
1848
1849        Diag(New->getLocation(), NewDiag);
1850        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1851
1852      // Complain if this is an explicit declaration of a special
1853      // member that was initially declared implicitly.
1854      //
1855      // As an exception, it's okay to befriend such methods in order
1856      // to permit the implicit constructor/destructor/operator calls.
1857      } else if (OldMethod->isImplicit()) {
1858        if (isFriend) {
1859          NewMethod->setImplicit();
1860        } else {
1861          Diag(NewMethod->getLocation(),
1862               diag::err_definition_of_implicitly_declared_member)
1863            << New << getSpecialMember(OldMethod);
1864          return true;
1865        }
1866      } else if (OldMethod->isExplicitlyDefaulted()) {
1867        Diag(NewMethod->getLocation(),
1868             diag::err_definition_of_explicitly_defaulted_member)
1869          << getSpecialMember(OldMethod);
1870        return true;
1871      }
1872    }
1873
1874    // (C++98 8.3.5p3):
1875    //   All declarations for a function shall agree exactly in both the
1876    //   return type and the parameter-type-list.
1877    // We also want to respect all the extended bits except noreturn.
1878
1879    // noreturn should now match unless the old type info didn't have it.
1880    QualType OldQTypeForComparison = OldQType;
1881    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1882      assert(OldQType == QualType(OldType, 0));
1883      const FunctionType *OldTypeForComparison
1884        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1885      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1886      assert(OldQTypeForComparison.isCanonical());
1887    }
1888
1889    if (OldQTypeForComparison == NewQType)
1890      return MergeCompatibleFunctionDecls(New, Old);
1891
1892    // Fall through for conflicting redeclarations and redefinitions.
1893  }
1894
1895  // C: Function types need to be compatible, not identical. This handles
1896  // duplicate function decls like "void f(int); void f(enum X);" properly.
1897  if (!getLangOptions().CPlusPlus &&
1898      Context.typesAreCompatible(OldQType, NewQType)) {
1899    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1900    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1901    const FunctionProtoType *OldProto = 0;
1902    if (isa<FunctionNoProtoType>(NewFuncType) &&
1903        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1904      // The old declaration provided a function prototype, but the
1905      // new declaration does not. Merge in the prototype.
1906      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1907      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1908                                                 OldProto->arg_type_end());
1909      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1910                                         ParamTypes.data(), ParamTypes.size(),
1911                                         OldProto->getExtProtoInfo());
1912      New->setType(NewQType);
1913      New->setHasInheritedPrototype();
1914
1915      // Synthesize a parameter for each argument type.
1916      SmallVector<ParmVarDecl*, 16> Params;
1917      for (FunctionProtoType::arg_type_iterator
1918             ParamType = OldProto->arg_type_begin(),
1919             ParamEnd = OldProto->arg_type_end();
1920           ParamType != ParamEnd; ++ParamType) {
1921        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1922                                                 SourceLocation(),
1923                                                 SourceLocation(), 0,
1924                                                 *ParamType, /*TInfo=*/0,
1925                                                 SC_None, SC_None,
1926                                                 0);
1927        Param->setScopeInfo(0, Params.size());
1928        Param->setImplicit();
1929        Params.push_back(Param);
1930      }
1931
1932      New->setParams(Params);
1933    }
1934
1935    return MergeCompatibleFunctionDecls(New, Old);
1936  }
1937
1938  // GNU C permits a K&R definition to follow a prototype declaration
1939  // if the declared types of the parameters in the K&R definition
1940  // match the types in the prototype declaration, even when the
1941  // promoted types of the parameters from the K&R definition differ
1942  // from the types in the prototype. GCC then keeps the types from
1943  // the prototype.
1944  //
1945  // If a variadic prototype is followed by a non-variadic K&R definition,
1946  // the K&R definition becomes variadic.  This is sort of an edge case, but
1947  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1948  // C99 6.9.1p8.
1949  if (!getLangOptions().CPlusPlus &&
1950      Old->hasPrototype() && !New->hasPrototype() &&
1951      New->getType()->getAs<FunctionProtoType>() &&
1952      Old->getNumParams() == New->getNumParams()) {
1953    SmallVector<QualType, 16> ArgTypes;
1954    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1955    const FunctionProtoType *OldProto
1956      = Old->getType()->getAs<FunctionProtoType>();
1957    const FunctionProtoType *NewProto
1958      = New->getType()->getAs<FunctionProtoType>();
1959
1960    // Determine whether this is the GNU C extension.
1961    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1962                                               NewProto->getResultType());
1963    bool LooseCompatible = !MergedReturn.isNull();
1964    for (unsigned Idx = 0, End = Old->getNumParams();
1965         LooseCompatible && Idx != End; ++Idx) {
1966      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1967      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1968      if (Context.typesAreCompatible(OldParm->getType(),
1969                                     NewProto->getArgType(Idx))) {
1970        ArgTypes.push_back(NewParm->getType());
1971      } else if (Context.typesAreCompatible(OldParm->getType(),
1972                                            NewParm->getType(),
1973                                            /*CompareUnqualified=*/true)) {
1974        GNUCompatibleParamWarning Warn
1975          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1976        Warnings.push_back(Warn);
1977        ArgTypes.push_back(NewParm->getType());
1978      } else
1979        LooseCompatible = false;
1980    }
1981
1982    if (LooseCompatible) {
1983      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1984        Diag(Warnings[Warn].NewParm->getLocation(),
1985             diag::ext_param_promoted_not_compatible_with_prototype)
1986          << Warnings[Warn].PromotedType
1987          << Warnings[Warn].OldParm->getType();
1988        if (Warnings[Warn].OldParm->getLocation().isValid())
1989          Diag(Warnings[Warn].OldParm->getLocation(),
1990               diag::note_previous_declaration);
1991      }
1992
1993      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1994                                           ArgTypes.size(),
1995                                           OldProto->getExtProtoInfo()));
1996      return MergeCompatibleFunctionDecls(New, Old);
1997    }
1998
1999    // Fall through to diagnose conflicting types.
2000  }
2001
2002  // A function that has already been declared has been redeclared or defined
2003  // with a different type- show appropriate diagnostic
2004  if (unsigned BuiltinID = Old->getBuiltinID()) {
2005    // The user has declared a builtin function with an incompatible
2006    // signature.
2007    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2008      // The function the user is redeclaring is a library-defined
2009      // function like 'malloc' or 'printf'. Warn about the
2010      // redeclaration, then pretend that we don't know about this
2011      // library built-in.
2012      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2013      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2014        << Old << Old->getType();
2015      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2016      Old->setInvalidDecl();
2017      return false;
2018    }
2019
2020    PrevDiag = diag::note_previous_builtin_declaration;
2021  }
2022
2023  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2024  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2025  return true;
2026}
2027
2028/// \brief Completes the merge of two function declarations that are
2029/// known to be compatible.
2030///
2031/// This routine handles the merging of attributes and other
2032/// properties of function declarations form the old declaration to
2033/// the new declaration, once we know that New is in fact a
2034/// redeclaration of Old.
2035///
2036/// \returns false
2037bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2038  // Merge the attributes
2039  mergeDeclAttributes(New, Old);
2040
2041  // Merge the storage class.
2042  if (Old->getStorageClass() != SC_Extern &&
2043      Old->getStorageClass() != SC_None)
2044    New->setStorageClass(Old->getStorageClass());
2045
2046  // Merge "pure" flag.
2047  if (Old->isPure())
2048    New->setPure();
2049
2050  // Merge attributes from the parameters.  These can mismatch with K&R
2051  // declarations.
2052  if (New->getNumParams() == Old->getNumParams())
2053    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2054      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2055                               Context);
2056
2057  if (getLangOptions().CPlusPlus)
2058    return MergeCXXFunctionDecl(New, Old);
2059
2060  return false;
2061}
2062
2063
2064void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2065                                ObjCMethodDecl *oldMethod) {
2066  // We don't want to merge unavailable and deprecated attributes
2067  // except from interface to implementation.
2068  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2069
2070  // Merge the attributes.
2071  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2072
2073  // Merge attributes from the parameters.
2074  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2075  for (ObjCMethodDecl::param_iterator
2076         ni = newMethod->param_begin(), ne = newMethod->param_end();
2077       ni != ne; ++ni, ++oi)
2078    mergeParamDeclAttributes(*ni, *oi, Context);
2079
2080  CheckObjCMethodOverride(newMethod, oldMethod, true);
2081}
2082
2083/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2084/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2085/// emitting diagnostics as appropriate.
2086///
2087/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2088/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2089/// check them before the initializer is attached.
2090///
2091void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2092  if (New->isInvalidDecl() || Old->isInvalidDecl())
2093    return;
2094
2095  QualType MergedT;
2096  if (getLangOptions().CPlusPlus) {
2097    AutoType *AT = New->getType()->getContainedAutoType();
2098    if (AT && !AT->isDeduced()) {
2099      // We don't know what the new type is until the initializer is attached.
2100      return;
2101    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2102      // These could still be something that needs exception specs checked.
2103      return MergeVarDeclExceptionSpecs(New, Old);
2104    }
2105    // C++ [basic.link]p10:
2106    //   [...] the types specified by all declarations referring to a given
2107    //   object or function shall be identical, except that declarations for an
2108    //   array object can specify array types that differ by the presence or
2109    //   absence of a major array bound (8.3.4).
2110    else if (Old->getType()->isIncompleteArrayType() &&
2111             New->getType()->isArrayType()) {
2112      CanQual<ArrayType> OldArray
2113        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2114      CanQual<ArrayType> NewArray
2115        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2116      if (OldArray->getElementType() == NewArray->getElementType())
2117        MergedT = New->getType();
2118    } else if (Old->getType()->isArrayType() &&
2119             New->getType()->isIncompleteArrayType()) {
2120      CanQual<ArrayType> OldArray
2121        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2122      CanQual<ArrayType> NewArray
2123        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2124      if (OldArray->getElementType() == NewArray->getElementType())
2125        MergedT = Old->getType();
2126    } else if (New->getType()->isObjCObjectPointerType()
2127               && Old->getType()->isObjCObjectPointerType()) {
2128        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2129                                                        Old->getType());
2130    }
2131  } else {
2132    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2133  }
2134  if (MergedT.isNull()) {
2135    Diag(New->getLocation(), diag::err_redefinition_different_type)
2136      << New->getDeclName();
2137    Diag(Old->getLocation(), diag::note_previous_definition);
2138    return New->setInvalidDecl();
2139  }
2140  New->setType(MergedT);
2141}
2142
2143/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2144/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2145/// situation, merging decls or emitting diagnostics as appropriate.
2146///
2147/// Tentative definition rules (C99 6.9.2p2) are checked by
2148/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2149/// definitions here, since the initializer hasn't been attached.
2150///
2151void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2152  // If the new decl is already invalid, don't do any other checking.
2153  if (New->isInvalidDecl())
2154    return;
2155
2156  // Verify the old decl was also a variable.
2157  VarDecl *Old = 0;
2158  if (!Previous.isSingleResult() ||
2159      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2160    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2161      << New->getDeclName();
2162    Diag(Previous.getRepresentativeDecl()->getLocation(),
2163         diag::note_previous_definition);
2164    return New->setInvalidDecl();
2165  }
2166
2167  // C++ [class.mem]p1:
2168  //   A member shall not be declared twice in the member-specification [...]
2169  //
2170  // Here, we need only consider static data members.
2171  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2172    Diag(New->getLocation(), diag::err_duplicate_member)
2173      << New->getIdentifier();
2174    Diag(Old->getLocation(), diag::note_previous_declaration);
2175    New->setInvalidDecl();
2176  }
2177
2178  mergeDeclAttributes(New, Old);
2179  // Warn if an already-declared variable is made a weak_import in a subsequent
2180  // declaration
2181  if (New->getAttr<WeakImportAttr>() &&
2182      Old->getStorageClass() == SC_None &&
2183      !Old->getAttr<WeakImportAttr>()) {
2184    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2185    Diag(Old->getLocation(), diag::note_previous_definition);
2186    // Remove weak_import attribute on new declaration.
2187    New->dropAttr<WeakImportAttr>();
2188  }
2189
2190  // Merge the types.
2191  MergeVarDeclTypes(New, Old);
2192  if (New->isInvalidDecl())
2193    return;
2194
2195  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2196  if (New->getStorageClass() == SC_Static &&
2197      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2198    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2199    Diag(Old->getLocation(), diag::note_previous_definition);
2200    return New->setInvalidDecl();
2201  }
2202  // C99 6.2.2p4:
2203  //   For an identifier declared with the storage-class specifier
2204  //   extern in a scope in which a prior declaration of that
2205  //   identifier is visible,23) if the prior declaration specifies
2206  //   internal or external linkage, the linkage of the identifier at
2207  //   the later declaration is the same as the linkage specified at
2208  //   the prior declaration. If no prior declaration is visible, or
2209  //   if the prior declaration specifies no linkage, then the
2210  //   identifier has external linkage.
2211  if (New->hasExternalStorage() && Old->hasLinkage())
2212    /* Okay */;
2213  else if (New->getStorageClass() != SC_Static &&
2214           Old->getStorageClass() == SC_Static) {
2215    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2216    Diag(Old->getLocation(), diag::note_previous_definition);
2217    return New->setInvalidDecl();
2218  }
2219
2220  // Check if extern is followed by non-extern and vice-versa.
2221  if (New->hasExternalStorage() &&
2222      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2223    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2224    Diag(Old->getLocation(), diag::note_previous_definition);
2225    return New->setInvalidDecl();
2226  }
2227  if (Old->hasExternalStorage() &&
2228      !New->hasLinkage() && New->isLocalVarDecl()) {
2229    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2230    Diag(Old->getLocation(), diag::note_previous_definition);
2231    return New->setInvalidDecl();
2232  }
2233
2234  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2235
2236  // FIXME: The test for external storage here seems wrong? We still
2237  // need to check for mismatches.
2238  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2239      // Don't complain about out-of-line definitions of static members.
2240      !(Old->getLexicalDeclContext()->isRecord() &&
2241        !New->getLexicalDeclContext()->isRecord())) {
2242    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2243    Diag(Old->getLocation(), diag::note_previous_definition);
2244    return New->setInvalidDecl();
2245  }
2246
2247  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2248    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2249    Diag(Old->getLocation(), diag::note_previous_definition);
2250  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2251    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253  }
2254
2255  // C++ doesn't have tentative definitions, so go right ahead and check here.
2256  const VarDecl *Def;
2257  if (getLangOptions().CPlusPlus &&
2258      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2259      (Def = Old->getDefinition())) {
2260    Diag(New->getLocation(), diag::err_redefinition)
2261      << New->getDeclName();
2262    Diag(Def->getLocation(), diag::note_previous_definition);
2263    New->setInvalidDecl();
2264    return;
2265  }
2266  // c99 6.2.2 P4.
2267  // For an identifier declared with the storage-class specifier extern in a
2268  // scope in which a prior declaration of that identifier is visible, if
2269  // the prior declaration specifies internal or external linkage, the linkage
2270  // of the identifier at the later declaration is the same as the linkage
2271  // specified at the prior declaration.
2272  // FIXME. revisit this code.
2273  if (New->hasExternalStorage() &&
2274      Old->getLinkage() == InternalLinkage &&
2275      New->getDeclContext() == Old->getDeclContext())
2276    New->setStorageClass(Old->getStorageClass());
2277
2278  // Keep a chain of previous declarations.
2279  New->setPreviousDeclaration(Old);
2280
2281  // Inherit access appropriately.
2282  New->setAccess(Old->getAccess());
2283}
2284
2285/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2286/// no declarator (e.g. "struct foo;") is parsed.
2287Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2288                                       DeclSpec &DS) {
2289  return ParsedFreeStandingDeclSpec(S, AS, DS,
2290                                    MultiTemplateParamsArg(*this, 0, 0));
2291}
2292
2293/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2294/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2295/// parameters to cope with template friend declarations.
2296Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2297                                       DeclSpec &DS,
2298                                       MultiTemplateParamsArg TemplateParams) {
2299  Decl *TagD = 0;
2300  TagDecl *Tag = 0;
2301  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2302      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2303      DS.getTypeSpecType() == DeclSpec::TST_union ||
2304      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2305    TagD = DS.getRepAsDecl();
2306
2307    if (!TagD) // We probably had an error
2308      return 0;
2309
2310    // Note that the above type specs guarantee that the
2311    // type rep is a Decl, whereas in many of the others
2312    // it's a Type.
2313    if (isa<TagDecl>(TagD))
2314      Tag = cast<TagDecl>(TagD);
2315    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2316      Tag = CTD->getTemplatedDecl();
2317  }
2318
2319  if (Tag)
2320    Tag->setFreeStanding();
2321
2322  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2323    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2324    // or incomplete types shall not be restrict-qualified."
2325    if (TypeQuals & DeclSpec::TQ_restrict)
2326      Diag(DS.getRestrictSpecLoc(),
2327           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2328           << DS.getSourceRange();
2329  }
2330
2331  if (DS.isConstexprSpecified()) {
2332    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2333    // and definitions of functions and variables.
2334    if (Tag)
2335      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2336        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2337            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2338            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2339    else
2340      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2341    // Don't emit warnings after this error.
2342    return TagD;
2343  }
2344
2345  if (DS.isFriendSpecified()) {
2346    // If we're dealing with a decl but not a TagDecl, assume that
2347    // whatever routines created it handled the friendship aspect.
2348    if (TagD && !Tag)
2349      return 0;
2350    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2351  }
2352
2353  // Track whether we warned about the fact that there aren't any
2354  // declarators.
2355  bool emittedWarning = false;
2356
2357  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2358    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2359        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2360      if (getLangOptions().CPlusPlus ||
2361          Record->getDeclContext()->isRecord())
2362        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2363
2364      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2365        << DS.getSourceRange();
2366      emittedWarning = true;
2367    }
2368  }
2369
2370  // Check for Microsoft C extension: anonymous struct.
2371  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2372      CurContext->isRecord() &&
2373      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2374    // Handle 2 kinds of anonymous struct:
2375    //   struct STRUCT;
2376    // and
2377    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2378    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2379    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2380        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2381         DS.getRepAsType().get()->isStructureType())) {
2382      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2383        << DS.getSourceRange();
2384      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2385    }
2386  }
2387
2388  if (getLangOptions().CPlusPlus &&
2389      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2390    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2391      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2392          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2393        Diag(Enum->getLocation(), diag::ext_no_declarators)
2394          << DS.getSourceRange();
2395        emittedWarning = true;
2396      }
2397
2398  // Skip all the checks below if we have a type error.
2399  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2400
2401  if (!DS.isMissingDeclaratorOk()) {
2402    // Warn about typedefs of enums without names, since this is an
2403    // extension in both Microsoft and GNU.
2404    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2405        Tag && isa<EnumDecl>(Tag)) {
2406      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2407        << DS.getSourceRange();
2408      return Tag;
2409    }
2410
2411    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2412      << DS.getSourceRange();
2413    emittedWarning = true;
2414  }
2415
2416  // We're going to complain about a bunch of spurious specifiers;
2417  // only do this if we're declaring a tag, because otherwise we
2418  // should be getting diag::ext_no_declarators.
2419  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2420    return TagD;
2421
2422  // Note that a linkage-specification sets a storage class, but
2423  // 'extern "C" struct foo;' is actually valid and not theoretically
2424  // useless.
2425  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2426    if (!DS.isExternInLinkageSpec())
2427      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2428        << DeclSpec::getSpecifierName(scs);
2429
2430  if (DS.isThreadSpecified())
2431    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2432  if (DS.getTypeQualifiers()) {
2433    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2434      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2435    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2436      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2437    // Restrict is covered above.
2438  }
2439  if (DS.isInlineSpecified())
2440    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2441  if (DS.isVirtualSpecified())
2442    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2443  if (DS.isExplicitSpecified())
2444    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2445
2446  if (DS.isModulePrivateSpecified() &&
2447      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2448    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2449      << Tag->getTagKind()
2450      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2451
2452  // Warn about ignored type attributes, for example:
2453  // __attribute__((aligned)) struct A;
2454  // Attributes should be placed after tag to apply to type declaration.
2455  if (!DS.getAttributes().empty()) {
2456    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2457    if (TypeSpecType == DeclSpec::TST_class ||
2458        TypeSpecType == DeclSpec::TST_struct ||
2459        TypeSpecType == DeclSpec::TST_union ||
2460        TypeSpecType == DeclSpec::TST_enum) {
2461      AttributeList* attrs = DS.getAttributes().getList();
2462      while (attrs) {
2463        Diag(attrs->getScopeLoc(),
2464             diag::warn_declspec_attribute_ignored)
2465        << attrs->getName()
2466        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2467            TypeSpecType == DeclSpec::TST_struct ? 1 :
2468            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2469        attrs = attrs->getNext();
2470      }
2471    }
2472  }
2473
2474  return TagD;
2475}
2476
2477/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2478/// builds a statement for it and returns it so it is evaluated.
2479StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2480  StmtResult R;
2481  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2482    Expr *Exp = DS.getRepAsExpr();
2483    QualType Ty = Exp->getType();
2484    if (Ty->isPointerType()) {
2485      do
2486        Ty = Ty->getAs<PointerType>()->getPointeeType();
2487      while (Ty->isPointerType());
2488    }
2489    if (Ty->isVariableArrayType()) {
2490      R = ActOnExprStmt(MakeFullExpr(Exp));
2491    }
2492  }
2493  return R;
2494}
2495
2496/// We are trying to inject an anonymous member into the given scope;
2497/// check if there's an existing declaration that can't be overloaded.
2498///
2499/// \return true if this is a forbidden redeclaration
2500static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2501                                         Scope *S,
2502                                         DeclContext *Owner,
2503                                         DeclarationName Name,
2504                                         SourceLocation NameLoc,
2505                                         unsigned diagnostic) {
2506  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2507                 Sema::ForRedeclaration);
2508  if (!SemaRef.LookupName(R, S)) return false;
2509
2510  if (R.getAsSingle<TagDecl>())
2511    return false;
2512
2513  // Pick a representative declaration.
2514  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2515  assert(PrevDecl && "Expected a non-null Decl");
2516
2517  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2518    return false;
2519
2520  SemaRef.Diag(NameLoc, diagnostic) << Name;
2521  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2522
2523  return true;
2524}
2525
2526/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2527/// anonymous struct or union AnonRecord into the owning context Owner
2528/// and scope S. This routine will be invoked just after we realize
2529/// that an unnamed union or struct is actually an anonymous union or
2530/// struct, e.g.,
2531///
2532/// @code
2533/// union {
2534///   int i;
2535///   float f;
2536/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2537///    // f into the surrounding scope.x
2538/// @endcode
2539///
2540/// This routine is recursive, injecting the names of nested anonymous
2541/// structs/unions into the owning context and scope as well.
2542static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2543                                                DeclContext *Owner,
2544                                                RecordDecl *AnonRecord,
2545                                                AccessSpecifier AS,
2546                              SmallVector<NamedDecl*, 2> &Chaining,
2547                                                      bool MSAnonStruct) {
2548  unsigned diagKind
2549    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2550                            : diag::err_anonymous_struct_member_redecl;
2551
2552  bool Invalid = false;
2553
2554  // Look every FieldDecl and IndirectFieldDecl with a name.
2555  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2556                               DEnd = AnonRecord->decls_end();
2557       D != DEnd; ++D) {
2558    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2559        cast<NamedDecl>(*D)->getDeclName()) {
2560      ValueDecl *VD = cast<ValueDecl>(*D);
2561      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2562                                       VD->getLocation(), diagKind)) {
2563        // C++ [class.union]p2:
2564        //   The names of the members of an anonymous union shall be
2565        //   distinct from the names of any other entity in the
2566        //   scope in which the anonymous union is declared.
2567        Invalid = true;
2568      } else {
2569        // C++ [class.union]p2:
2570        //   For the purpose of name lookup, after the anonymous union
2571        //   definition, the members of the anonymous union are
2572        //   considered to have been defined in the scope in which the
2573        //   anonymous union is declared.
2574        unsigned OldChainingSize = Chaining.size();
2575        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2576          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2577               PE = IF->chain_end(); PI != PE; ++PI)
2578            Chaining.push_back(*PI);
2579        else
2580          Chaining.push_back(VD);
2581
2582        assert(Chaining.size() >= 2);
2583        NamedDecl **NamedChain =
2584          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2585        for (unsigned i = 0; i < Chaining.size(); i++)
2586          NamedChain[i] = Chaining[i];
2587
2588        IndirectFieldDecl* IndirectField =
2589          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2590                                    VD->getIdentifier(), VD->getType(),
2591                                    NamedChain, Chaining.size());
2592
2593        IndirectField->setAccess(AS);
2594        IndirectField->setImplicit();
2595        SemaRef.PushOnScopeChains(IndirectField, S);
2596
2597        // That includes picking up the appropriate access specifier.
2598        if (AS != AS_none) IndirectField->setAccess(AS);
2599
2600        Chaining.resize(OldChainingSize);
2601      }
2602    }
2603  }
2604
2605  return Invalid;
2606}
2607
2608/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2609/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2610/// illegal input values are mapped to SC_None.
2611static StorageClass
2612StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2613  switch (StorageClassSpec) {
2614  case DeclSpec::SCS_unspecified:    return SC_None;
2615  case DeclSpec::SCS_extern:         return SC_Extern;
2616  case DeclSpec::SCS_static:         return SC_Static;
2617  case DeclSpec::SCS_auto:           return SC_Auto;
2618  case DeclSpec::SCS_register:       return SC_Register;
2619  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2620    // Illegal SCSs map to None: error reporting is up to the caller.
2621  case DeclSpec::SCS_mutable:        // Fall through.
2622  case DeclSpec::SCS_typedef:        return SC_None;
2623  }
2624  llvm_unreachable("unknown storage class specifier");
2625}
2626
2627/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2628/// a StorageClass. Any error reporting is up to the caller:
2629/// illegal input values are mapped to SC_None.
2630static StorageClass
2631StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2632  switch (StorageClassSpec) {
2633  case DeclSpec::SCS_unspecified:    return SC_None;
2634  case DeclSpec::SCS_extern:         return SC_Extern;
2635  case DeclSpec::SCS_static:         return SC_Static;
2636  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2637    // Illegal SCSs map to None: error reporting is up to the caller.
2638  case DeclSpec::SCS_auto:           // Fall through.
2639  case DeclSpec::SCS_mutable:        // Fall through.
2640  case DeclSpec::SCS_register:       // Fall through.
2641  case DeclSpec::SCS_typedef:        return SC_None;
2642  }
2643  llvm_unreachable("unknown storage class specifier");
2644}
2645
2646/// BuildAnonymousStructOrUnion - Handle the declaration of an
2647/// anonymous structure or union. Anonymous unions are a C++ feature
2648/// (C++ [class.union]) and a GNU C extension; anonymous structures
2649/// are a GNU C and GNU C++ extension.
2650Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2651                                             AccessSpecifier AS,
2652                                             RecordDecl *Record) {
2653  DeclContext *Owner = Record->getDeclContext();
2654
2655  // Diagnose whether this anonymous struct/union is an extension.
2656  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2657    Diag(Record->getLocation(), diag::ext_anonymous_union);
2658  else if (!Record->isUnion())
2659    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2660
2661  // C and C++ require different kinds of checks for anonymous
2662  // structs/unions.
2663  bool Invalid = false;
2664  if (getLangOptions().CPlusPlus) {
2665    const char* PrevSpec = 0;
2666    unsigned DiagID;
2667    if (Record->isUnion()) {
2668      // C++ [class.union]p6:
2669      //   Anonymous unions declared in a named namespace or in the
2670      //   global namespace shall be declared static.
2671      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2672          (isa<TranslationUnitDecl>(Owner) ||
2673           (isa<NamespaceDecl>(Owner) &&
2674            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2675        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2676          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2677
2678        // Recover by adding 'static'.
2679        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2680                               PrevSpec, DiagID);
2681      }
2682      // C++ [class.union]p6:
2683      //   A storage class is not allowed in a declaration of an
2684      //   anonymous union in a class scope.
2685      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2686               isa<RecordDecl>(Owner)) {
2687        Diag(DS.getStorageClassSpecLoc(),
2688             diag::err_anonymous_union_with_storage_spec)
2689          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2690
2691        // Recover by removing the storage specifier.
2692        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2693                               SourceLocation(),
2694                               PrevSpec, DiagID);
2695      }
2696    }
2697
2698    // Ignore const/volatile/restrict qualifiers.
2699    if (DS.getTypeQualifiers()) {
2700      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2701        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2702          << Record->isUnion() << 0
2703          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2704      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2705        Diag(DS.getVolatileSpecLoc(),
2706             diag::ext_anonymous_struct_union_qualified)
2707          << Record->isUnion() << 1
2708          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2709      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2710        Diag(DS.getRestrictSpecLoc(),
2711             diag::ext_anonymous_struct_union_qualified)
2712          << Record->isUnion() << 2
2713          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2714
2715      DS.ClearTypeQualifiers();
2716    }
2717
2718    // C++ [class.union]p2:
2719    //   The member-specification of an anonymous union shall only
2720    //   define non-static data members. [Note: nested types and
2721    //   functions cannot be declared within an anonymous union. ]
2722    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2723                                 MemEnd = Record->decls_end();
2724         Mem != MemEnd; ++Mem) {
2725      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2726        // C++ [class.union]p3:
2727        //   An anonymous union shall not have private or protected
2728        //   members (clause 11).
2729        assert(FD->getAccess() != AS_none);
2730        if (FD->getAccess() != AS_public) {
2731          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2732            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2733          Invalid = true;
2734        }
2735
2736        // C++ [class.union]p1
2737        //   An object of a class with a non-trivial constructor, a non-trivial
2738        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2739        //   assignment operator cannot be a member of a union, nor can an
2740        //   array of such objects.
2741        if (CheckNontrivialField(FD))
2742          Invalid = true;
2743      } else if ((*Mem)->isImplicit()) {
2744        // Any implicit members are fine.
2745      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2746        // This is a type that showed up in an
2747        // elaborated-type-specifier inside the anonymous struct or
2748        // union, but which actually declares a type outside of the
2749        // anonymous struct or union. It's okay.
2750      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2751        if (!MemRecord->isAnonymousStructOrUnion() &&
2752            MemRecord->getDeclName()) {
2753          // Visual C++ allows type definition in anonymous struct or union.
2754          if (getLangOptions().MicrosoftExt)
2755            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2756              << (int)Record->isUnion();
2757          else {
2758            // This is a nested type declaration.
2759            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2760              << (int)Record->isUnion();
2761            Invalid = true;
2762          }
2763        }
2764      } else if (isa<AccessSpecDecl>(*Mem)) {
2765        // Any access specifier is fine.
2766      } else {
2767        // We have something that isn't a non-static data
2768        // member. Complain about it.
2769        unsigned DK = diag::err_anonymous_record_bad_member;
2770        if (isa<TypeDecl>(*Mem))
2771          DK = diag::err_anonymous_record_with_type;
2772        else if (isa<FunctionDecl>(*Mem))
2773          DK = diag::err_anonymous_record_with_function;
2774        else if (isa<VarDecl>(*Mem))
2775          DK = diag::err_anonymous_record_with_static;
2776
2777        // Visual C++ allows type definition in anonymous struct or union.
2778        if (getLangOptions().MicrosoftExt &&
2779            DK == diag::err_anonymous_record_with_type)
2780          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2781            << (int)Record->isUnion();
2782        else {
2783          Diag((*Mem)->getLocation(), DK)
2784              << (int)Record->isUnion();
2785          Invalid = true;
2786        }
2787      }
2788    }
2789  }
2790
2791  if (!Record->isUnion() && !Owner->isRecord()) {
2792    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2793      << (int)getLangOptions().CPlusPlus;
2794    Invalid = true;
2795  }
2796
2797  // Mock up a declarator.
2798  Declarator Dc(DS, Declarator::MemberContext);
2799  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2800  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2801
2802  // Create a declaration for this anonymous struct/union.
2803  NamedDecl *Anon = 0;
2804  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2805    Anon = FieldDecl::Create(Context, OwningClass,
2806                             DS.getSourceRange().getBegin(),
2807                             Record->getLocation(),
2808                             /*IdentifierInfo=*/0,
2809                             Context.getTypeDeclType(Record),
2810                             TInfo,
2811                             /*BitWidth=*/0, /*Mutable=*/false,
2812                             /*HasInit=*/false);
2813    Anon->setAccess(AS);
2814    if (getLangOptions().CPlusPlus)
2815      FieldCollector->Add(cast<FieldDecl>(Anon));
2816  } else {
2817    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2818    assert(SCSpec != DeclSpec::SCS_typedef &&
2819           "Parser allowed 'typedef' as storage class VarDecl.");
2820    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2821    if (SCSpec == DeclSpec::SCS_mutable) {
2822      // mutable can only appear on non-static class members, so it's always
2823      // an error here
2824      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2825      Invalid = true;
2826      SC = SC_None;
2827    }
2828    SCSpec = DS.getStorageClassSpecAsWritten();
2829    VarDecl::StorageClass SCAsWritten
2830      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2831
2832    Anon = VarDecl::Create(Context, Owner,
2833                           DS.getSourceRange().getBegin(),
2834                           Record->getLocation(), /*IdentifierInfo=*/0,
2835                           Context.getTypeDeclType(Record),
2836                           TInfo, SC, SCAsWritten);
2837
2838    // Default-initialize the implicit variable. This initialization will be
2839    // trivial in almost all cases, except if a union member has an in-class
2840    // initializer:
2841    //   union { int n = 0; };
2842    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2843  }
2844  Anon->setImplicit();
2845
2846  // Add the anonymous struct/union object to the current
2847  // context. We'll be referencing this object when we refer to one of
2848  // its members.
2849  Owner->addDecl(Anon);
2850
2851  // Inject the members of the anonymous struct/union into the owning
2852  // context and into the identifier resolver chain for name lookup
2853  // purposes.
2854  SmallVector<NamedDecl*, 2> Chain;
2855  Chain.push_back(Anon);
2856
2857  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2858                                          Chain, false))
2859    Invalid = true;
2860
2861  // Mark this as an anonymous struct/union type. Note that we do not
2862  // do this until after we have already checked and injected the
2863  // members of this anonymous struct/union type, because otherwise
2864  // the members could be injected twice: once by DeclContext when it
2865  // builds its lookup table, and once by
2866  // InjectAnonymousStructOrUnionMembers.
2867  Record->setAnonymousStructOrUnion(true);
2868
2869  if (Invalid)
2870    Anon->setInvalidDecl();
2871
2872  return Anon;
2873}
2874
2875/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2876/// Microsoft C anonymous structure.
2877/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2878/// Example:
2879///
2880/// struct A { int a; };
2881/// struct B { struct A; int b; };
2882///
2883/// void foo() {
2884///   B var;
2885///   var.a = 3;
2886/// }
2887///
2888Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2889                                           RecordDecl *Record) {
2890
2891  // If there is no Record, get the record via the typedef.
2892  if (!Record)
2893    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2894
2895  // Mock up a declarator.
2896  Declarator Dc(DS, Declarator::TypeNameContext);
2897  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2898  assert(TInfo && "couldn't build declarator info for anonymous struct");
2899
2900  // Create a declaration for this anonymous struct.
2901  NamedDecl* Anon = FieldDecl::Create(Context,
2902                             cast<RecordDecl>(CurContext),
2903                             DS.getSourceRange().getBegin(),
2904                             DS.getSourceRange().getBegin(),
2905                             /*IdentifierInfo=*/0,
2906                             Context.getTypeDeclType(Record),
2907                             TInfo,
2908                             /*BitWidth=*/0, /*Mutable=*/false,
2909                             /*HasInit=*/false);
2910  Anon->setImplicit();
2911
2912  // Add the anonymous struct object to the current context.
2913  CurContext->addDecl(Anon);
2914
2915  // Inject the members of the anonymous struct into the current
2916  // context and into the identifier resolver chain for name lookup
2917  // purposes.
2918  SmallVector<NamedDecl*, 2> Chain;
2919  Chain.push_back(Anon);
2920
2921  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2922                                          Record->getDefinition(),
2923                                          AS_none, Chain, true))
2924    Anon->setInvalidDecl();
2925
2926  return Anon;
2927}
2928
2929/// GetNameForDeclarator - Determine the full declaration name for the
2930/// given Declarator.
2931DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2932  return GetNameFromUnqualifiedId(D.getName());
2933}
2934
2935/// \brief Retrieves the declaration name from a parsed unqualified-id.
2936DeclarationNameInfo
2937Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2938  DeclarationNameInfo NameInfo;
2939  NameInfo.setLoc(Name.StartLocation);
2940
2941  switch (Name.getKind()) {
2942
2943  case UnqualifiedId::IK_ImplicitSelfParam:
2944  case UnqualifiedId::IK_Identifier:
2945    NameInfo.setName(Name.Identifier);
2946    NameInfo.setLoc(Name.StartLocation);
2947    return NameInfo;
2948
2949  case UnqualifiedId::IK_OperatorFunctionId:
2950    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2951                                           Name.OperatorFunctionId.Operator));
2952    NameInfo.setLoc(Name.StartLocation);
2953    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2954      = Name.OperatorFunctionId.SymbolLocations[0];
2955    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2956      = Name.EndLocation.getRawEncoding();
2957    return NameInfo;
2958
2959  case UnqualifiedId::IK_LiteralOperatorId:
2960    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2961                                                           Name.Identifier));
2962    NameInfo.setLoc(Name.StartLocation);
2963    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2964    return NameInfo;
2965
2966  case UnqualifiedId::IK_ConversionFunctionId: {
2967    TypeSourceInfo *TInfo;
2968    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2969    if (Ty.isNull())
2970      return DeclarationNameInfo();
2971    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2972                                               Context.getCanonicalType(Ty)));
2973    NameInfo.setLoc(Name.StartLocation);
2974    NameInfo.setNamedTypeInfo(TInfo);
2975    return NameInfo;
2976  }
2977
2978  case UnqualifiedId::IK_ConstructorName: {
2979    TypeSourceInfo *TInfo;
2980    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2981    if (Ty.isNull())
2982      return DeclarationNameInfo();
2983    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2984                                              Context.getCanonicalType(Ty)));
2985    NameInfo.setLoc(Name.StartLocation);
2986    NameInfo.setNamedTypeInfo(TInfo);
2987    return NameInfo;
2988  }
2989
2990  case UnqualifiedId::IK_ConstructorTemplateId: {
2991    // In well-formed code, we can only have a constructor
2992    // template-id that refers to the current context, so go there
2993    // to find the actual type being constructed.
2994    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2995    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2996      return DeclarationNameInfo();
2997
2998    // Determine the type of the class being constructed.
2999    QualType CurClassType = Context.getTypeDeclType(CurClass);
3000
3001    // FIXME: Check two things: that the template-id names the same type as
3002    // CurClassType, and that the template-id does not occur when the name
3003    // was qualified.
3004
3005    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3006                                    Context.getCanonicalType(CurClassType)));
3007    NameInfo.setLoc(Name.StartLocation);
3008    // FIXME: should we retrieve TypeSourceInfo?
3009    NameInfo.setNamedTypeInfo(0);
3010    return NameInfo;
3011  }
3012
3013  case UnqualifiedId::IK_DestructorName: {
3014    TypeSourceInfo *TInfo;
3015    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3016    if (Ty.isNull())
3017      return DeclarationNameInfo();
3018    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3019                                              Context.getCanonicalType(Ty)));
3020    NameInfo.setLoc(Name.StartLocation);
3021    NameInfo.setNamedTypeInfo(TInfo);
3022    return NameInfo;
3023  }
3024
3025  case UnqualifiedId::IK_TemplateId: {
3026    TemplateName TName = Name.TemplateId->Template.get();
3027    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3028    return Context.getNameForTemplate(TName, TNameLoc);
3029  }
3030
3031  } // switch (Name.getKind())
3032
3033  llvm_unreachable("Unknown name kind");
3034}
3035
3036static QualType getCoreType(QualType Ty) {
3037  do {
3038    if (Ty->isPointerType() || Ty->isReferenceType())
3039      Ty = Ty->getPointeeType();
3040    else if (Ty->isArrayType())
3041      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3042    else
3043      return Ty.withoutLocalFastQualifiers();
3044  } while (true);
3045}
3046
3047/// hasSimilarParameters - Determine whether the C++ functions Declaration
3048/// and Definition have "nearly" matching parameters. This heuristic is
3049/// used to improve diagnostics in the case where an out-of-line function
3050/// definition doesn't match any declaration within the class or namespace.
3051/// Also sets Params to the list of indices to the parameters that differ
3052/// between the declaration and the definition. If hasSimilarParameters
3053/// returns true and Params is empty, then all of the parameters match.
3054static bool hasSimilarParameters(ASTContext &Context,
3055                                     FunctionDecl *Declaration,
3056                                     FunctionDecl *Definition,
3057                                     llvm::SmallVectorImpl<unsigned> &Params) {
3058  Params.clear();
3059  if (Declaration->param_size() != Definition->param_size())
3060    return false;
3061  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3062    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3063    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3064
3065    // The parameter types are identical
3066    if (Context.hasSameType(DefParamTy, DeclParamTy))
3067      continue;
3068
3069    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3070    QualType DefParamBaseTy = getCoreType(DefParamTy);
3071    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3072    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3073
3074    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3075        (DeclTyName && DeclTyName == DefTyName))
3076      Params.push_back(Idx);
3077    else  // The two parameters aren't even close
3078      return false;
3079  }
3080
3081  return true;
3082}
3083
3084/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3085/// declarator needs to be rebuilt in the current instantiation.
3086/// Any bits of declarator which appear before the name are valid for
3087/// consideration here.  That's specifically the type in the decl spec
3088/// and the base type in any member-pointer chunks.
3089static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3090                                                    DeclarationName Name) {
3091  // The types we specifically need to rebuild are:
3092  //   - typenames, typeofs, and decltypes
3093  //   - types which will become injected class names
3094  // Of course, we also need to rebuild any type referencing such a
3095  // type.  It's safest to just say "dependent", but we call out a
3096  // few cases here.
3097
3098  DeclSpec &DS = D.getMutableDeclSpec();
3099  switch (DS.getTypeSpecType()) {
3100  case DeclSpec::TST_typename:
3101  case DeclSpec::TST_typeofType:
3102  case DeclSpec::TST_decltype:
3103  case DeclSpec::TST_underlyingType:
3104  case DeclSpec::TST_atomic: {
3105    // Grab the type from the parser.
3106    TypeSourceInfo *TSI = 0;
3107    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3108    if (T.isNull() || !T->isDependentType()) break;
3109
3110    // Make sure there's a type source info.  This isn't really much
3111    // of a waste; most dependent types should have type source info
3112    // attached already.
3113    if (!TSI)
3114      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3115
3116    // Rebuild the type in the current instantiation.
3117    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3118    if (!TSI) return true;
3119
3120    // Store the new type back in the decl spec.
3121    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3122    DS.UpdateTypeRep(LocType);
3123    break;
3124  }
3125
3126  case DeclSpec::TST_typeofExpr: {
3127    Expr *E = DS.getRepAsExpr();
3128    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3129    if (Result.isInvalid()) return true;
3130    DS.UpdateExprRep(Result.get());
3131    break;
3132  }
3133
3134  default:
3135    // Nothing to do for these decl specs.
3136    break;
3137  }
3138
3139  // It doesn't matter what order we do this in.
3140  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3141    DeclaratorChunk &Chunk = D.getTypeObject(I);
3142
3143    // The only type information in the declarator which can come
3144    // before the declaration name is the base type of a member
3145    // pointer.
3146    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3147      continue;
3148
3149    // Rebuild the scope specifier in-place.
3150    CXXScopeSpec &SS = Chunk.Mem.Scope();
3151    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3152      return true;
3153  }
3154
3155  return false;
3156}
3157
3158Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3159  D.setFunctionDefinitionKind(FDK_Declaration);
3160  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3161
3162  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3163      Dcl->getDeclContext()->isFileContext())
3164    Dcl->setTopLevelDeclInObjCContainer();
3165
3166  return Dcl;
3167}
3168
3169/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3170///   If T is the name of a class, then each of the following shall have a
3171///   name different from T:
3172///     - every static data member of class T;
3173///     - every member function of class T
3174///     - every member of class T that is itself a type;
3175/// \returns true if the declaration name violates these rules.
3176bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3177                                   DeclarationNameInfo NameInfo) {
3178  DeclarationName Name = NameInfo.getName();
3179
3180  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3181    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3182      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3183      return true;
3184    }
3185
3186  return false;
3187}
3188
3189Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3190                             MultiTemplateParamsArg TemplateParamLists) {
3191  // TODO: consider using NameInfo for diagnostic.
3192  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3193  DeclarationName Name = NameInfo.getName();
3194
3195  // All of these full declarators require an identifier.  If it doesn't have
3196  // one, the ParsedFreeStandingDeclSpec action should be used.
3197  if (!Name) {
3198    if (!D.isInvalidType())  // Reject this if we think it is valid.
3199      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3200           diag::err_declarator_need_ident)
3201        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3202    return 0;
3203  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3204    return 0;
3205
3206  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3207  // we find one that is.
3208  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3209         (S->getFlags() & Scope::TemplateParamScope) != 0)
3210    S = S->getParent();
3211
3212  DeclContext *DC = CurContext;
3213  if (D.getCXXScopeSpec().isInvalid())
3214    D.setInvalidType();
3215  else if (D.getCXXScopeSpec().isSet()) {
3216    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3217                                        UPPC_DeclarationQualifier))
3218      return 0;
3219
3220    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3221    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3222    if (!DC) {
3223      // If we could not compute the declaration context, it's because the
3224      // declaration context is dependent but does not refer to a class,
3225      // class template, or class template partial specialization. Complain
3226      // and return early, to avoid the coming semantic disaster.
3227      Diag(D.getIdentifierLoc(),
3228           diag::err_template_qualified_declarator_no_match)
3229        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3230        << D.getCXXScopeSpec().getRange();
3231      return 0;
3232    }
3233    bool IsDependentContext = DC->isDependentContext();
3234
3235    if (!IsDependentContext &&
3236        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3237      return 0;
3238
3239    if (isa<CXXRecordDecl>(DC)) {
3240      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3241        Diag(D.getIdentifierLoc(),
3242             diag::err_member_def_undefined_record)
3243          << Name << DC << D.getCXXScopeSpec().getRange();
3244        D.setInvalidType();
3245      } else if (isa<CXXRecordDecl>(CurContext) &&
3246                 !D.getDeclSpec().isFriendSpecified()) {
3247        // The user provided a superfluous scope specifier inside a class
3248        // definition:
3249        //
3250        // class X {
3251        //   void X::f();
3252        // };
3253        if (CurContext->Equals(DC)) {
3254          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3255            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3256        } else {
3257          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3258            << Name << D.getCXXScopeSpec().getRange();
3259
3260          // C++ constructors and destructors with incorrect scopes can break
3261          // our AST invariants by having the wrong underlying types. If
3262          // that's the case, then drop this declaration entirely.
3263          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3264               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3265              !Context.hasSameType(Name.getCXXNameType(),
3266                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3267            return 0;
3268        }
3269
3270        // Pretend that this qualifier was not here.
3271        D.getCXXScopeSpec().clear();
3272      }
3273    }
3274
3275    // Check whether we need to rebuild the type of the given
3276    // declaration in the current instantiation.
3277    if (EnteringContext && IsDependentContext &&
3278        TemplateParamLists.size() != 0) {
3279      ContextRAII SavedContext(*this, DC);
3280      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3281        D.setInvalidType();
3282    }
3283  }
3284
3285  if (DiagnoseClassNameShadow(DC, NameInfo))
3286    // If this is a typedef, we'll end up spewing multiple diagnostics.
3287    // Just return early; it's safer.
3288    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3289      return 0;
3290
3291  NamedDecl *New;
3292
3293  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3294  QualType R = TInfo->getType();
3295
3296  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3297                                      UPPC_DeclarationType))
3298    D.setInvalidType();
3299
3300  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3301                        ForRedeclaration);
3302
3303  // See if this is a redefinition of a variable in the same scope.
3304  if (!D.getCXXScopeSpec().isSet()) {
3305    bool IsLinkageLookup = false;
3306
3307    // If the declaration we're planning to build will be a function
3308    // or object with linkage, then look for another declaration with
3309    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3310    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3311      /* Do nothing*/;
3312    else if (R->isFunctionType()) {
3313      if (CurContext->isFunctionOrMethod() ||
3314          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3315        IsLinkageLookup = true;
3316    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3317      IsLinkageLookup = true;
3318    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3319             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3320      IsLinkageLookup = true;
3321
3322    if (IsLinkageLookup)
3323      Previous.clear(LookupRedeclarationWithLinkage);
3324
3325    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3326  } else { // Something like "int foo::x;"
3327    LookupQualifiedName(Previous, DC);
3328
3329    // Don't consider using declarations as previous declarations for
3330    // out-of-line members.
3331    RemoveUsingDecls(Previous);
3332
3333    // C++ 7.3.1.2p2:
3334    // Members (including explicit specializations of templates) of a named
3335    // namespace can also be defined outside that namespace by explicit
3336    // qualification of the name being defined, provided that the entity being
3337    // defined was already declared in the namespace and the definition appears
3338    // after the point of declaration in a namespace that encloses the
3339    // declarations namespace.
3340    //
3341    // Note that we only check the context at this point. We don't yet
3342    // have enough information to make sure that PrevDecl is actually
3343    // the declaration we want to match. For example, given:
3344    //
3345    //   class X {
3346    //     void f();
3347    //     void f(float);
3348    //   };
3349    //
3350    //   void X::f(int) { } // ill-formed
3351    //
3352    // In this case, PrevDecl will point to the overload set
3353    // containing the two f's declared in X, but neither of them
3354    // matches.
3355
3356    // First check whether we named the global scope.
3357    if (isa<TranslationUnitDecl>(DC)) {
3358      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3359        << Name << D.getCXXScopeSpec().getRange();
3360    } else {
3361      DeclContext *Cur = CurContext;
3362      while (isa<LinkageSpecDecl>(Cur))
3363        Cur = Cur->getParent();
3364      if (!Cur->Encloses(DC)) {
3365        // The qualifying scope doesn't enclose the original declaration.
3366        // Emit diagnostic based on current scope.
3367        SourceLocation L = D.getIdentifierLoc();
3368        SourceRange R = D.getCXXScopeSpec().getRange();
3369        if (isa<FunctionDecl>(Cur))
3370          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3371        else
3372          Diag(L, diag::err_invalid_declarator_scope)
3373            << Name << cast<NamedDecl>(DC) << R;
3374        D.setInvalidType();
3375      }
3376
3377      // C++11 8.3p1:
3378      // ... "The nested-name-specifier of the qualified declarator-id shall
3379      // not begin with a decltype-specifer"
3380      NestedNameSpecifierLoc SpecLoc =
3381            D.getCXXScopeSpec().getWithLocInContext(Context);
3382      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3383                        "NestedNameSpecifierLoc");
3384      while (SpecLoc.getPrefix())
3385        SpecLoc = SpecLoc.getPrefix();
3386      if (dyn_cast_or_null<DecltypeType>(
3387            SpecLoc.getNestedNameSpecifier()->getAsType()))
3388        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3389          << SpecLoc.getTypeLoc().getSourceRange();
3390    }
3391  }
3392
3393  if (Previous.isSingleResult() &&
3394      Previous.getFoundDecl()->isTemplateParameter()) {
3395    // Maybe we will complain about the shadowed template parameter.
3396    if (!D.isInvalidType())
3397      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3398                                      Previous.getFoundDecl());
3399
3400    // Just pretend that we didn't see the previous declaration.
3401    Previous.clear();
3402  }
3403
3404  // In C++, the previous declaration we find might be a tag type
3405  // (class or enum). In this case, the new declaration will hide the
3406  // tag type. Note that this does does not apply if we're declaring a
3407  // typedef (C++ [dcl.typedef]p4).
3408  if (Previous.isSingleTagDecl() &&
3409      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3410    Previous.clear();
3411
3412  bool AddToScope = true;
3413  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3414    if (TemplateParamLists.size()) {
3415      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3416      return 0;
3417    }
3418
3419    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3420  } else if (R->isFunctionType()) {
3421    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3422                                  move(TemplateParamLists),
3423                                  AddToScope);
3424  } else {
3425    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3426                                  move(TemplateParamLists));
3427  }
3428
3429  if (New == 0)
3430    return 0;
3431
3432  // If this has an identifier and is not an invalid redeclaration or
3433  // function template specialization, add it to the scope stack.
3434  if (New->getDeclName() && AddToScope &&
3435       !(D.isRedeclaration() && New->isInvalidDecl()))
3436    PushOnScopeChains(New, S);
3437
3438  return New;
3439}
3440
3441/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3442/// types into constant array types in certain situations which would otherwise
3443/// be errors (for GCC compatibility).
3444static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3445                                                    ASTContext &Context,
3446                                                    bool &SizeIsNegative,
3447                                                    llvm::APSInt &Oversized) {
3448  // This method tries to turn a variable array into a constant
3449  // array even when the size isn't an ICE.  This is necessary
3450  // for compatibility with code that depends on gcc's buggy
3451  // constant expression folding, like struct {char x[(int)(char*)2];}
3452  SizeIsNegative = false;
3453  Oversized = 0;
3454
3455  if (T->isDependentType())
3456    return QualType();
3457
3458  QualifierCollector Qs;
3459  const Type *Ty = Qs.strip(T);
3460
3461  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3462    QualType Pointee = PTy->getPointeeType();
3463    QualType FixedType =
3464        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3465                                            Oversized);
3466    if (FixedType.isNull()) return FixedType;
3467    FixedType = Context.getPointerType(FixedType);
3468    return Qs.apply(Context, FixedType);
3469  }
3470  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3471    QualType Inner = PTy->getInnerType();
3472    QualType FixedType =
3473        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3474                                            Oversized);
3475    if (FixedType.isNull()) return FixedType;
3476    FixedType = Context.getParenType(FixedType);
3477    return Qs.apply(Context, FixedType);
3478  }
3479
3480  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3481  if (!VLATy)
3482    return QualType();
3483  // FIXME: We should probably handle this case
3484  if (VLATy->getElementType()->isVariablyModifiedType())
3485    return QualType();
3486
3487  llvm::APSInt Res;
3488  if (!VLATy->getSizeExpr() ||
3489      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3490    return QualType();
3491
3492  // Check whether the array size is negative.
3493  if (Res.isSigned() && Res.isNegative()) {
3494    SizeIsNegative = true;
3495    return QualType();
3496  }
3497
3498  // Check whether the array is too large to be addressed.
3499  unsigned ActiveSizeBits
3500    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3501                                              Res);
3502  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3503    Oversized = Res;
3504    return QualType();
3505  }
3506
3507  return Context.getConstantArrayType(VLATy->getElementType(),
3508                                      Res, ArrayType::Normal, 0);
3509}
3510
3511/// \brief Register the given locally-scoped external C declaration so
3512/// that it can be found later for redeclarations
3513void
3514Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3515                                       const LookupResult &Previous,
3516                                       Scope *S) {
3517  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3518         "Decl is not a locally-scoped decl!");
3519  // Note that we have a locally-scoped external with this name.
3520  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3521
3522  if (!Previous.isSingleResult())
3523    return;
3524
3525  NamedDecl *PrevDecl = Previous.getFoundDecl();
3526
3527  // If there was a previous declaration of this variable, it may be
3528  // in our identifier chain. Update the identifier chain with the new
3529  // declaration.
3530  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3531    // The previous declaration was found on the identifer resolver
3532    // chain, so remove it from its scope.
3533
3534    if (S->isDeclScope(PrevDecl)) {
3535      // Special case for redeclarations in the SAME scope.
3536      // Because this declaration is going to be added to the identifier chain
3537      // later, we should temporarily take it OFF the chain.
3538      IdResolver.RemoveDecl(ND);
3539
3540    } else {
3541      // Find the scope for the original declaration.
3542      while (S && !S->isDeclScope(PrevDecl))
3543        S = S->getParent();
3544    }
3545
3546    if (S)
3547      S->RemoveDecl(PrevDecl);
3548  }
3549}
3550
3551llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3552Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3553  if (ExternalSource) {
3554    // Load locally-scoped external decls from the external source.
3555    SmallVector<NamedDecl *, 4> Decls;
3556    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3557    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3558      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3559        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3560      if (Pos == LocallyScopedExternalDecls.end())
3561        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3562    }
3563  }
3564
3565  return LocallyScopedExternalDecls.find(Name);
3566}
3567
3568/// \brief Diagnose function specifiers on a declaration of an identifier that
3569/// does not identify a function.
3570void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3571  // FIXME: We should probably indicate the identifier in question to avoid
3572  // confusion for constructs like "inline int a(), b;"
3573  if (D.getDeclSpec().isInlineSpecified())
3574    Diag(D.getDeclSpec().getInlineSpecLoc(),
3575         diag::err_inline_non_function);
3576
3577  if (D.getDeclSpec().isVirtualSpecified())
3578    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3579         diag::err_virtual_non_function);
3580
3581  if (D.getDeclSpec().isExplicitSpecified())
3582    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3583         diag::err_explicit_non_function);
3584}
3585
3586NamedDecl*
3587Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3588                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3589  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3590  if (D.getCXXScopeSpec().isSet()) {
3591    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3592      << D.getCXXScopeSpec().getRange();
3593    D.setInvalidType();
3594    // Pretend we didn't see the scope specifier.
3595    DC = CurContext;
3596    Previous.clear();
3597  }
3598
3599  if (getLangOptions().CPlusPlus) {
3600    // Check that there are no default arguments (C++ only).
3601    CheckExtraCXXDefaultArguments(D);
3602  }
3603
3604  DiagnoseFunctionSpecifiers(D);
3605
3606  if (D.getDeclSpec().isThreadSpecified())
3607    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3608  if (D.getDeclSpec().isConstexprSpecified())
3609    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3610      << 1;
3611
3612  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3613    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3614      << D.getName().getSourceRange();
3615    return 0;
3616  }
3617
3618  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3619  if (!NewTD) return 0;
3620
3621  // Handle attributes prior to checking for duplicates in MergeVarDecl
3622  ProcessDeclAttributes(S, NewTD, D);
3623
3624  CheckTypedefForVariablyModifiedType(S, NewTD);
3625
3626  bool Redeclaration = D.isRedeclaration();
3627  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3628  D.setRedeclaration(Redeclaration);
3629  return ND;
3630}
3631
3632void
3633Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3634  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3635  // then it shall have block scope.
3636  // Note that variably modified types must be fixed before merging the decl so
3637  // that redeclarations will match.
3638  QualType T = NewTD->getUnderlyingType();
3639  if (T->isVariablyModifiedType()) {
3640    getCurFunction()->setHasBranchProtectedScope();
3641
3642    if (S->getFnParent() == 0) {
3643      bool SizeIsNegative;
3644      llvm::APSInt Oversized;
3645      QualType FixedTy =
3646          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3647                                              Oversized);
3648      if (!FixedTy.isNull()) {
3649        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3650        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3651      } else {
3652        if (SizeIsNegative)
3653          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3654        else if (T->isVariableArrayType())
3655          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3656        else if (Oversized.getBoolValue())
3657          Diag(NewTD->getLocation(), diag::err_array_too_large)
3658            << Oversized.toString(10);
3659        else
3660          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3661        NewTD->setInvalidDecl();
3662      }
3663    }
3664  }
3665}
3666
3667
3668/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3669/// declares a typedef-name, either using the 'typedef' type specifier or via
3670/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3671NamedDecl*
3672Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3673                           LookupResult &Previous, bool &Redeclaration) {
3674  // Merge the decl with the existing one if appropriate. If the decl is
3675  // in an outer scope, it isn't the same thing.
3676  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3677                       /*ExplicitInstantiationOrSpecialization=*/false);
3678  if (!Previous.empty()) {
3679    Redeclaration = true;
3680    MergeTypedefNameDecl(NewTD, Previous);
3681  }
3682
3683  // If this is the C FILE type, notify the AST context.
3684  if (IdentifierInfo *II = NewTD->getIdentifier())
3685    if (!NewTD->isInvalidDecl() &&
3686        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3687      if (II->isStr("FILE"))
3688        Context.setFILEDecl(NewTD);
3689      else if (II->isStr("jmp_buf"))
3690        Context.setjmp_bufDecl(NewTD);
3691      else if (II->isStr("sigjmp_buf"))
3692        Context.setsigjmp_bufDecl(NewTD);
3693      else if (II->isStr("ucontext_t"))
3694        Context.setucontext_tDecl(NewTD);
3695      else if (II->isStr("__builtin_va_list"))
3696        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3697    }
3698
3699  return NewTD;
3700}
3701
3702/// \brief Determines whether the given declaration is an out-of-scope
3703/// previous declaration.
3704///
3705/// This routine should be invoked when name lookup has found a
3706/// previous declaration (PrevDecl) that is not in the scope where a
3707/// new declaration by the same name is being introduced. If the new
3708/// declaration occurs in a local scope, previous declarations with
3709/// linkage may still be considered previous declarations (C99
3710/// 6.2.2p4-5, C++ [basic.link]p6).
3711///
3712/// \param PrevDecl the previous declaration found by name
3713/// lookup
3714///
3715/// \param DC the context in which the new declaration is being
3716/// declared.
3717///
3718/// \returns true if PrevDecl is an out-of-scope previous declaration
3719/// for a new delcaration with the same name.
3720static bool
3721isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3722                                ASTContext &Context) {
3723  if (!PrevDecl)
3724    return false;
3725
3726  if (!PrevDecl->hasLinkage())
3727    return false;
3728
3729  if (Context.getLangOptions().CPlusPlus) {
3730    // C++ [basic.link]p6:
3731    //   If there is a visible declaration of an entity with linkage
3732    //   having the same name and type, ignoring entities declared
3733    //   outside the innermost enclosing namespace scope, the block
3734    //   scope declaration declares that same entity and receives the
3735    //   linkage of the previous declaration.
3736    DeclContext *OuterContext = DC->getRedeclContext();
3737    if (!OuterContext->isFunctionOrMethod())
3738      // This rule only applies to block-scope declarations.
3739      return false;
3740
3741    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3742    if (PrevOuterContext->isRecord())
3743      // We found a member function: ignore it.
3744      return false;
3745
3746    // Find the innermost enclosing namespace for the new and
3747    // previous declarations.
3748    OuterContext = OuterContext->getEnclosingNamespaceContext();
3749    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3750
3751    // The previous declaration is in a different namespace, so it
3752    // isn't the same function.
3753    if (!OuterContext->Equals(PrevOuterContext))
3754      return false;
3755  }
3756
3757  return true;
3758}
3759
3760static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3761  CXXScopeSpec &SS = D.getCXXScopeSpec();
3762  if (!SS.isSet()) return;
3763  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3764}
3765
3766bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3767  QualType type = decl->getType();
3768  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3769  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3770    // Various kinds of declaration aren't allowed to be __autoreleasing.
3771    unsigned kind = -1U;
3772    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3773      if (var->hasAttr<BlocksAttr>())
3774        kind = 0; // __block
3775      else if (!var->hasLocalStorage())
3776        kind = 1; // global
3777    } else if (isa<ObjCIvarDecl>(decl)) {
3778      kind = 3; // ivar
3779    } else if (isa<FieldDecl>(decl)) {
3780      kind = 2; // field
3781    }
3782
3783    if (kind != -1U) {
3784      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3785        << kind;
3786    }
3787  } else if (lifetime == Qualifiers::OCL_None) {
3788    // Try to infer lifetime.
3789    if (!type->isObjCLifetimeType())
3790      return false;
3791
3792    lifetime = type->getObjCARCImplicitLifetime();
3793    type = Context.getLifetimeQualifiedType(type, lifetime);
3794    decl->setType(type);
3795  }
3796
3797  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3798    // Thread-local variables cannot have lifetime.
3799    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3800        var->isThreadSpecified()) {
3801      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3802        << var->getType();
3803      return true;
3804    }
3805  }
3806
3807  return false;
3808}
3809
3810NamedDecl*
3811Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3812                              TypeSourceInfo *TInfo, LookupResult &Previous,
3813                              MultiTemplateParamsArg TemplateParamLists) {
3814  QualType R = TInfo->getType();
3815  DeclarationName Name = GetNameForDeclarator(D).getName();
3816
3817  // Check that there are no default arguments (C++ only).
3818  if (getLangOptions().CPlusPlus)
3819    CheckExtraCXXDefaultArguments(D);
3820
3821  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3822  assert(SCSpec != DeclSpec::SCS_typedef &&
3823         "Parser allowed 'typedef' as storage class VarDecl.");
3824  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3825  if (SCSpec == DeclSpec::SCS_mutable) {
3826    // mutable can only appear on non-static class members, so it's always
3827    // an error here
3828    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3829    D.setInvalidType();
3830    SC = SC_None;
3831  }
3832  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3833  VarDecl::StorageClass SCAsWritten
3834    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3835
3836  IdentifierInfo *II = Name.getAsIdentifierInfo();
3837  if (!II) {
3838    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3839      << Name;
3840    return 0;
3841  }
3842
3843  DiagnoseFunctionSpecifiers(D);
3844
3845  if (!DC->isRecord() && S->getFnParent() == 0) {
3846    // C99 6.9p2: The storage-class specifiers auto and register shall not
3847    // appear in the declaration specifiers in an external declaration.
3848    if (SC == SC_Auto || SC == SC_Register) {
3849
3850      // If this is a register variable with an asm label specified, then this
3851      // is a GNU extension.
3852      if (SC == SC_Register && D.getAsmLabel())
3853        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3854      else
3855        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3856      D.setInvalidType();
3857    }
3858  }
3859
3860  if (getLangOptions().OpenCL) {
3861    // Set up the special work-group-local storage class for variables in the
3862    // OpenCL __local address space.
3863    if (R.getAddressSpace() == LangAS::opencl_local)
3864      SC = SC_OpenCLWorkGroupLocal;
3865  }
3866
3867  bool isExplicitSpecialization = false;
3868  VarDecl *NewVD;
3869  if (!getLangOptions().CPlusPlus) {
3870    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3871                            D.getIdentifierLoc(), II,
3872                            R, TInfo, SC, SCAsWritten);
3873
3874    if (D.isInvalidType())
3875      NewVD->setInvalidDecl();
3876  } else {
3877    if (DC->isRecord() && !CurContext->isRecord()) {
3878      // This is an out-of-line definition of a static data member.
3879      if (SC == SC_Static) {
3880        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3881             diag::err_static_out_of_line)
3882          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3883      } else if (SC == SC_None)
3884        SC = SC_Static;
3885    }
3886    if (SC == SC_Static) {
3887      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3888        if (RD->isLocalClass())
3889          Diag(D.getIdentifierLoc(),
3890               diag::err_static_data_member_not_allowed_in_local_class)
3891            << Name << RD->getDeclName();
3892
3893        // C++ [class.union]p1: If a union contains a static data member,
3894        // the program is ill-formed.
3895        //
3896        // We also disallow static data members in anonymous structs.
3897        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3898          Diag(D.getIdentifierLoc(),
3899               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3900            << Name << RD->isUnion();
3901      }
3902    }
3903
3904    // Match up the template parameter lists with the scope specifier, then
3905    // determine whether we have a template or a template specialization.
3906    isExplicitSpecialization = false;
3907    bool Invalid = false;
3908    if (TemplateParameterList *TemplateParams
3909        = MatchTemplateParametersToScopeSpecifier(
3910                                  D.getDeclSpec().getSourceRange().getBegin(),
3911                                                  D.getIdentifierLoc(),
3912                                                  D.getCXXScopeSpec(),
3913                                                  TemplateParamLists.get(),
3914                                                  TemplateParamLists.size(),
3915                                                  /*never a friend*/ false,
3916                                                  isExplicitSpecialization,
3917                                                  Invalid)) {
3918      if (TemplateParams->size() > 0) {
3919        // There is no such thing as a variable template.
3920        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3921          << II
3922          << SourceRange(TemplateParams->getTemplateLoc(),
3923                         TemplateParams->getRAngleLoc());
3924        return 0;
3925      } else {
3926        // There is an extraneous 'template<>' for this variable. Complain
3927        // about it, but allow the declaration of the variable.
3928        Diag(TemplateParams->getTemplateLoc(),
3929             diag::err_template_variable_noparams)
3930          << II
3931          << SourceRange(TemplateParams->getTemplateLoc(),
3932                         TemplateParams->getRAngleLoc());
3933      }
3934    }
3935
3936    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3937                            D.getIdentifierLoc(), II,
3938                            R, TInfo, SC, SCAsWritten);
3939
3940    // If this decl has an auto type in need of deduction, make a note of the
3941    // Decl so we can diagnose uses of it in its own initializer.
3942    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3943        R->getContainedAutoType())
3944      ParsingInitForAutoVars.insert(NewVD);
3945
3946    if (D.isInvalidType() || Invalid)
3947      NewVD->setInvalidDecl();
3948
3949    SetNestedNameSpecifier(NewVD, D);
3950
3951    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3952      NewVD->setTemplateParameterListsInfo(Context,
3953                                           TemplateParamLists.size(),
3954                                           TemplateParamLists.release());
3955    }
3956
3957    if (D.getDeclSpec().isConstexprSpecified())
3958      NewVD->setConstexpr(true);
3959  }
3960
3961  // Set the lexical context. If the declarator has a C++ scope specifier, the
3962  // lexical context will be different from the semantic context.
3963  NewVD->setLexicalDeclContext(CurContext);
3964
3965  if (D.getDeclSpec().isThreadSpecified()) {
3966    if (NewVD->hasLocalStorage())
3967      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3968    else if (!Context.getTargetInfo().isTLSSupported())
3969      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3970    else
3971      NewVD->setThreadSpecified(true);
3972  }
3973
3974  if (D.getDeclSpec().isModulePrivateSpecified()) {
3975    if (isExplicitSpecialization)
3976      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3977        << 2
3978        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3979    else if (NewVD->hasLocalStorage())
3980      Diag(NewVD->getLocation(), diag::err_module_private_local)
3981        << 0 << NewVD->getDeclName()
3982        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3983        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3984    else
3985      NewVD->setModulePrivate();
3986  }
3987
3988  // Handle attributes prior to checking for duplicates in MergeVarDecl
3989  ProcessDeclAttributes(S, NewVD, D);
3990
3991  // In auto-retain/release, infer strong retension for variables of
3992  // retainable type.
3993  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3994    NewVD->setInvalidDecl();
3995
3996  // Handle GNU asm-label extension (encoded as an attribute).
3997  if (Expr *E = (Expr*)D.getAsmLabel()) {
3998    // The parser guarantees this is a string.
3999    StringLiteral *SE = cast<StringLiteral>(E);
4000    StringRef Label = SE->getString();
4001    if (S->getFnParent() != 0) {
4002      switch (SC) {
4003      case SC_None:
4004      case SC_Auto:
4005        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4006        break;
4007      case SC_Register:
4008        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4009          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4010        break;
4011      case SC_Static:
4012      case SC_Extern:
4013      case SC_PrivateExtern:
4014      case SC_OpenCLWorkGroupLocal:
4015        break;
4016      }
4017    }
4018
4019    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4020                                                Context, Label));
4021  }
4022
4023  // Diagnose shadowed variables before filtering for scope.
4024  if (!D.getCXXScopeSpec().isSet())
4025    CheckShadow(S, NewVD, Previous);
4026
4027  // Don't consider existing declarations that are in a different
4028  // scope and are out-of-semantic-context declarations (if the new
4029  // declaration has linkage).
4030  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4031                       isExplicitSpecialization);
4032
4033  if (!getLangOptions().CPlusPlus) {
4034    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4035  } else {
4036    // Merge the decl with the existing one if appropriate.
4037    if (!Previous.empty()) {
4038      if (Previous.isSingleResult() &&
4039          isa<FieldDecl>(Previous.getFoundDecl()) &&
4040          D.getCXXScopeSpec().isSet()) {
4041        // The user tried to define a non-static data member
4042        // out-of-line (C++ [dcl.meaning]p1).
4043        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4044          << D.getCXXScopeSpec().getRange();
4045        Previous.clear();
4046        NewVD->setInvalidDecl();
4047      }
4048    } else if (D.getCXXScopeSpec().isSet()) {
4049      // No previous declaration in the qualifying scope.
4050      Diag(D.getIdentifierLoc(), diag::err_no_member)
4051        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4052        << D.getCXXScopeSpec().getRange();
4053      NewVD->setInvalidDecl();
4054    }
4055
4056    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4057
4058    // This is an explicit specialization of a static data member. Check it.
4059    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4060        CheckMemberSpecialization(NewVD, Previous))
4061      NewVD->setInvalidDecl();
4062  }
4063
4064  // attributes declared post-definition are currently ignored
4065  // FIXME: This should be handled in attribute merging, not
4066  // here.
4067  if (Previous.isSingleResult()) {
4068    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4069    if (Def && (Def = Def->getDefinition()) &&
4070        Def != NewVD && D.hasAttributes()) {
4071      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4072      Diag(Def->getLocation(), diag::note_previous_definition);
4073    }
4074  }
4075
4076  // If this is a locally-scoped extern C variable, update the map of
4077  // such variables.
4078  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4079      !NewVD->isInvalidDecl())
4080    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4081
4082  // If there's a #pragma GCC visibility in scope, and this isn't a class
4083  // member, set the visibility of this variable.
4084  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4085    AddPushedVisibilityAttribute(NewVD);
4086
4087  MarkUnusedFileScopedDecl(NewVD);
4088
4089  return NewVD;
4090}
4091
4092/// \brief Diagnose variable or built-in function shadowing.  Implements
4093/// -Wshadow.
4094///
4095/// This method is called whenever a VarDecl is added to a "useful"
4096/// scope.
4097///
4098/// \param S the scope in which the shadowing name is being declared
4099/// \param R the lookup of the name
4100///
4101void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4102  // Return if warning is ignored.
4103  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4104        DiagnosticsEngine::Ignored)
4105    return;
4106
4107  // Don't diagnose declarations at file scope.
4108  if (D->hasGlobalStorage())
4109    return;
4110
4111  DeclContext *NewDC = D->getDeclContext();
4112
4113  // Only diagnose if we're shadowing an unambiguous field or variable.
4114  if (R.getResultKind() != LookupResult::Found)
4115    return;
4116
4117  NamedDecl* ShadowedDecl = R.getFoundDecl();
4118  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4119    return;
4120
4121  // Fields are not shadowed by variables in C++ static methods.
4122  if (isa<FieldDecl>(ShadowedDecl))
4123    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4124      if (MD->isStatic())
4125        return;
4126
4127  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4128    if (shadowedVar->isExternC()) {
4129      // For shadowing external vars, make sure that we point to the global
4130      // declaration, not a locally scoped extern declaration.
4131      for (VarDecl::redecl_iterator
4132             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4133           I != E; ++I)
4134        if (I->isFileVarDecl()) {
4135          ShadowedDecl = *I;
4136          break;
4137        }
4138    }
4139
4140  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4141
4142  // Only warn about certain kinds of shadowing for class members.
4143  if (NewDC && NewDC->isRecord()) {
4144    // In particular, don't warn about shadowing non-class members.
4145    if (!OldDC->isRecord())
4146      return;
4147
4148    // TODO: should we warn about static data members shadowing
4149    // static data members from base classes?
4150
4151    // TODO: don't diagnose for inaccessible shadowed members.
4152    // This is hard to do perfectly because we might friend the
4153    // shadowing context, but that's just a false negative.
4154  }
4155
4156  // Determine what kind of declaration we're shadowing.
4157  unsigned Kind;
4158  if (isa<RecordDecl>(OldDC)) {
4159    if (isa<FieldDecl>(ShadowedDecl))
4160      Kind = 3; // field
4161    else
4162      Kind = 2; // static data member
4163  } else if (OldDC->isFileContext())
4164    Kind = 1; // global
4165  else
4166    Kind = 0; // local
4167
4168  DeclarationName Name = R.getLookupName();
4169
4170  // Emit warning and note.
4171  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4172  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4173}
4174
4175/// \brief Check -Wshadow without the advantage of a previous lookup.
4176void Sema::CheckShadow(Scope *S, VarDecl *D) {
4177  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4178        DiagnosticsEngine::Ignored)
4179    return;
4180
4181  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4182                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4183  LookupName(R, S);
4184  CheckShadow(S, D, R);
4185}
4186
4187/// \brief Perform semantic checking on a newly-created variable
4188/// declaration.
4189///
4190/// This routine performs all of the type-checking required for a
4191/// variable declaration once it has been built. It is used both to
4192/// check variables after they have been parsed and their declarators
4193/// have been translated into a declaration, and to check variables
4194/// that have been instantiated from a template.
4195///
4196/// Sets NewVD->isInvalidDecl() if an error was encountered.
4197///
4198/// Returns true if the variable declaration is a redeclaration.
4199bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4200                                    LookupResult &Previous) {
4201  // If the decl is already known invalid, don't check it.
4202  if (NewVD->isInvalidDecl())
4203    return false;
4204
4205  QualType T = NewVD->getType();
4206
4207  if (T->isObjCObjectType()) {
4208    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4209      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4210    T = Context.getObjCObjectPointerType(T);
4211    NewVD->setType(T);
4212  }
4213
4214  // Emit an error if an address space was applied to decl with local storage.
4215  // This includes arrays of objects with address space qualifiers, but not
4216  // automatic variables that point to other address spaces.
4217  // ISO/IEC TR 18037 S5.1.2
4218  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4219    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4220    NewVD->setInvalidDecl();
4221    return false;
4222  }
4223
4224  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4225      && !NewVD->hasAttr<BlocksAttr>()) {
4226    if (getLangOptions().getGC() != LangOptions::NonGC)
4227      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4228    else
4229      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4230  }
4231
4232  bool isVM = T->isVariablyModifiedType();
4233  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4234      NewVD->hasAttr<BlocksAttr>())
4235    getCurFunction()->setHasBranchProtectedScope();
4236
4237  if ((isVM && NewVD->hasLinkage()) ||
4238      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4239    bool SizeIsNegative;
4240    llvm::APSInt Oversized;
4241    QualType FixedTy =
4242        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4243                                            Oversized);
4244
4245    if (FixedTy.isNull() && T->isVariableArrayType()) {
4246      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4247      // FIXME: This won't give the correct result for
4248      // int a[10][n];
4249      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4250
4251      if (NewVD->isFileVarDecl())
4252        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4253        << SizeRange;
4254      else if (NewVD->getStorageClass() == SC_Static)
4255        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4256        << SizeRange;
4257      else
4258        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4259        << SizeRange;
4260      NewVD->setInvalidDecl();
4261      return false;
4262    }
4263
4264    if (FixedTy.isNull()) {
4265      if (NewVD->isFileVarDecl())
4266        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4267      else
4268        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4269      NewVD->setInvalidDecl();
4270      return false;
4271    }
4272
4273    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4274    NewVD->setType(FixedTy);
4275  }
4276
4277  if (Previous.empty() && NewVD->isExternC()) {
4278    // Since we did not find anything by this name and we're declaring
4279    // an extern "C" variable, look for a non-visible extern "C"
4280    // declaration with the same name.
4281    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4282      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4283    if (Pos != LocallyScopedExternalDecls.end())
4284      Previous.addDecl(Pos->second);
4285  }
4286
4287  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4288    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4289      << T;
4290    NewVD->setInvalidDecl();
4291    return false;
4292  }
4293
4294  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4295    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4296    NewVD->setInvalidDecl();
4297    return false;
4298  }
4299
4300  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4301    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4302    NewVD->setInvalidDecl();
4303    return false;
4304  }
4305
4306  // Function pointers and references cannot have qualified function type, only
4307  // function pointer-to-members can do that.
4308  QualType Pointee;
4309  unsigned PtrOrRef = 0;
4310  if (const PointerType *Ptr = T->getAs<PointerType>())
4311    Pointee = Ptr->getPointeeType();
4312  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4313    Pointee = Ref->getPointeeType();
4314    PtrOrRef = 1;
4315  }
4316  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4317      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4318    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4319        << PtrOrRef;
4320    NewVD->setInvalidDecl();
4321    return false;
4322  }
4323
4324  if (!Previous.empty()) {
4325    MergeVarDecl(NewVD, Previous);
4326    return true;
4327  }
4328  return false;
4329}
4330
4331/// \brief Data used with FindOverriddenMethod
4332struct FindOverriddenMethodData {
4333  Sema *S;
4334  CXXMethodDecl *Method;
4335};
4336
4337/// \brief Member lookup function that determines whether a given C++
4338/// method overrides a method in a base class, to be used with
4339/// CXXRecordDecl::lookupInBases().
4340static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4341                                 CXXBasePath &Path,
4342                                 void *UserData) {
4343  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4344
4345  FindOverriddenMethodData *Data
4346    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4347
4348  DeclarationName Name = Data->Method->getDeclName();
4349
4350  // FIXME: Do we care about other names here too?
4351  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4352    // We really want to find the base class destructor here.
4353    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4354    CanQualType CT = Data->S->Context.getCanonicalType(T);
4355
4356    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4357  }
4358
4359  for (Path.Decls = BaseRecord->lookup(Name);
4360       Path.Decls.first != Path.Decls.second;
4361       ++Path.Decls.first) {
4362    NamedDecl *D = *Path.Decls.first;
4363    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4364      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4365        return true;
4366    }
4367  }
4368
4369  return false;
4370}
4371
4372/// AddOverriddenMethods - See if a method overrides any in the base classes,
4373/// and if so, check that it's a valid override and remember it.
4374bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4375  // Look for virtual methods in base classes that this method might override.
4376  CXXBasePaths Paths;
4377  FindOverriddenMethodData Data;
4378  Data.Method = MD;
4379  Data.S = this;
4380  bool AddedAny = false;
4381  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4382    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4383         E = Paths.found_decls_end(); I != E; ++I) {
4384      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4385        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4386        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4387            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4388            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4389          AddedAny = true;
4390        }
4391      }
4392    }
4393  }
4394
4395  return AddedAny;
4396}
4397
4398namespace {
4399  // Struct for holding all of the extra arguments needed by
4400  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4401  struct ActOnFDArgs {
4402    Scope *S;
4403    Declarator &D;
4404    MultiTemplateParamsArg TemplateParamLists;
4405    bool AddToScope;
4406  };
4407}
4408
4409/// \brief Generate diagnostics for an invalid function redeclaration.
4410///
4411/// This routine handles generating the diagnostic messages for an invalid
4412/// function redeclaration, including finding possible similar declarations
4413/// or performing typo correction if there are no previous declarations with
4414/// the same name.
4415///
4416/// Returns a NamedDecl iff typo correction was performed and substituting in
4417/// the new declaration name does not cause new errors.
4418static NamedDecl* DiagnoseInvalidRedeclaration(
4419    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4420    ActOnFDArgs &ExtraArgs) {
4421  NamedDecl *Result = NULL;
4422  DeclarationName Name = NewFD->getDeclName();
4423  DeclContext *NewDC = NewFD->getDeclContext();
4424  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4425                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4426  llvm::SmallVector<unsigned, 1> MismatchedParams;
4427  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4428  TypoCorrection Correction;
4429  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4430                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4431  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4432                                  : diag::err_member_def_does_not_match;
4433
4434  NewFD->setInvalidDecl();
4435  SemaRef.LookupQualifiedName(Prev, NewDC);
4436  assert(!Prev.isAmbiguous() &&
4437         "Cannot have an ambiguity in previous-declaration lookup");
4438  if (!Prev.empty()) {
4439    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4440         Func != FuncEnd; ++Func) {
4441      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4442      if (FD &&
4443          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4444        // Add 1 to the index so that 0 can mean the mismatch didn't
4445        // involve a parameter
4446        unsigned ParamNum =
4447            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4448        NearMatches.push_back(std::make_pair(FD, ParamNum));
4449      }
4450    }
4451  // If the qualified name lookup yielded nothing, try typo correction
4452  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4453                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4454             Correction.getCorrection() != Name) {
4455    // Trap errors.
4456    Sema::SFINAETrap Trap(SemaRef);
4457
4458    // Set up everything for the call to ActOnFunctionDeclarator
4459    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4460                              ExtraArgs.D.getIdentifierLoc());
4461    Previous.clear();
4462    Previous.setLookupName(Correction.getCorrection());
4463    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4464                                    CDeclEnd = Correction.end();
4465         CDecl != CDeclEnd; ++CDecl) {
4466      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4467      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4468                                     MismatchedParams)) {
4469        Previous.addDecl(FD);
4470      }
4471    }
4472    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4473    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4474    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4475    // eliminate the need for the parameter pack ExtraArgs.
4476    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4477                                             NewFD->getDeclContext(),
4478                                             NewFD->getTypeSourceInfo(),
4479                                             Previous,
4480                                             ExtraArgs.TemplateParamLists,
4481                                             ExtraArgs.AddToScope);
4482    if (Trap.hasErrorOccurred()) {
4483      // Pretend the typo correction never occurred
4484      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4485                                ExtraArgs.D.getIdentifierLoc());
4486      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4487      Previous.clear();
4488      Previous.setLookupName(Name);
4489      Result = NULL;
4490    } else {
4491      for (LookupResult::iterator Func = Previous.begin(),
4492                               FuncEnd = Previous.end();
4493           Func != FuncEnd; ++Func) {
4494        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4495          NearMatches.push_back(std::make_pair(FD, 0));
4496      }
4497    }
4498    if (NearMatches.empty()) {
4499      // Ignore the correction if it didn't yield any close FunctionDecl matches
4500      Correction = TypoCorrection();
4501    } else {
4502      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4503                             : diag::err_member_def_does_not_match_suggest;
4504    }
4505  }
4506
4507  if (Correction)
4508    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4509        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4510        << FixItHint::CreateReplacement(
4511            NewFD->getLocation(),
4512            Correction.getAsString(SemaRef.getLangOptions()));
4513  else
4514    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4515        << Name << NewDC << NewFD->getLocation();
4516
4517  bool NewFDisConst = false;
4518  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4519    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4520
4521  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4522       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4523       NearMatch != NearMatchEnd; ++NearMatch) {
4524    FunctionDecl *FD = NearMatch->first;
4525    bool FDisConst = false;
4526    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4527      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4528
4529    if (unsigned Idx = NearMatch->second) {
4530      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4531      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4532             diag::note_member_def_close_param_match)
4533          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4534    } else if (Correction) {
4535      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4536          << Correction.getQuoted(SemaRef.getLangOptions());
4537    } else if (FDisConst != NewFDisConst) {
4538      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4539          << NewFDisConst << FD->getSourceRange().getEnd();
4540    } else
4541      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4542  }
4543  return Result;
4544}
4545
4546static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4547                                                          Declarator &D) {
4548  switch (D.getDeclSpec().getStorageClassSpec()) {
4549  default: llvm_unreachable("Unknown storage class!");
4550  case DeclSpec::SCS_auto:
4551  case DeclSpec::SCS_register:
4552  case DeclSpec::SCS_mutable:
4553    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4554                 diag::err_typecheck_sclass_func);
4555    D.setInvalidType();
4556    break;
4557  case DeclSpec::SCS_unspecified: break;
4558  case DeclSpec::SCS_extern: return SC_Extern;
4559  case DeclSpec::SCS_static: {
4560    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4561      // C99 6.7.1p5:
4562      //   The declaration of an identifier for a function that has
4563      //   block scope shall have no explicit storage-class specifier
4564      //   other than extern
4565      // See also (C++ [dcl.stc]p4).
4566      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4567                   diag::err_static_block_func);
4568      break;
4569    } else
4570      return SC_Static;
4571  }
4572  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4573  }
4574
4575  // No explicit storage class has already been returned
4576  return SC_None;
4577}
4578
4579static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4580                                           DeclContext *DC, QualType &R,
4581                                           TypeSourceInfo *TInfo,
4582                                           FunctionDecl::StorageClass SC,
4583                                           bool &IsVirtualOkay) {
4584  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4585  DeclarationName Name = NameInfo.getName();
4586
4587  FunctionDecl *NewFD = 0;
4588  bool isInline = D.getDeclSpec().isInlineSpecified();
4589  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4590  FunctionDecl::StorageClass SCAsWritten
4591    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4592
4593  if (!SemaRef.getLangOptions().CPlusPlus) {
4594    // Determine whether the function was written with a
4595    // prototype. This true when:
4596    //   - there is a prototype in the declarator, or
4597    //   - the type R of the function is some kind of typedef or other reference
4598    //     to a type name (which eventually refers to a function type).
4599    bool HasPrototype =
4600      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4601      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4602
4603    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4604                                 D.getSourceRange().getBegin(), NameInfo, R,
4605                                 TInfo, SC, SCAsWritten, isInline,
4606                                 HasPrototype);
4607    if (D.isInvalidType())
4608      NewFD->setInvalidDecl();
4609
4610    // Set the lexical context.
4611    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4612
4613    return NewFD;
4614  }
4615
4616  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4617  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4618
4619  // Check that the return type is not an abstract class type.
4620  // For record types, this is done by the AbstractClassUsageDiagnoser once
4621  // the class has been completely parsed.
4622  if (!DC->isRecord() &&
4623      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4624                                     R->getAs<FunctionType>()->getResultType(),
4625                                     diag::err_abstract_type_in_decl,
4626                                     SemaRef.AbstractReturnType))
4627    D.setInvalidType();
4628
4629  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4630    // This is a C++ constructor declaration.
4631    assert(DC->isRecord() &&
4632           "Constructors can only be declared in a member context");
4633
4634    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4635    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4636                                      D.getSourceRange().getBegin(), NameInfo,
4637                                      R, TInfo, isExplicit, isInline,
4638                                      /*isImplicitlyDeclared=*/false,
4639                                      isConstexpr);
4640
4641  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4642    // This is a C++ destructor declaration.
4643    if (DC->isRecord()) {
4644      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4645      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4646      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4647                                        SemaRef.Context, Record,
4648                                        D.getSourceRange().getBegin(),
4649                                        NameInfo, R, TInfo, isInline,
4650                                        /*isImplicitlyDeclared=*/false);
4651
4652      // If the class is complete, then we now create the implicit exception
4653      // specification. If the class is incomplete or dependent, we can't do
4654      // it yet.
4655      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4656          Record->getDefinition() && !Record->isBeingDefined() &&
4657          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4658        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4659      }
4660
4661      IsVirtualOkay = true;
4662      return NewDD;
4663
4664    } else {
4665      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4666      D.setInvalidType();
4667
4668      // Create a FunctionDecl to satisfy the function definition parsing
4669      // code path.
4670      return FunctionDecl::Create(SemaRef.Context, DC,
4671                                  D.getSourceRange().getBegin(),
4672                                  D.getIdentifierLoc(), Name, R, TInfo,
4673                                  SC, SCAsWritten, isInline,
4674                                  /*hasPrototype=*/true, isConstexpr);
4675    }
4676
4677  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4678    if (!DC->isRecord()) {
4679      SemaRef.Diag(D.getIdentifierLoc(),
4680           diag::err_conv_function_not_member);
4681      return 0;
4682    }
4683
4684    SemaRef.CheckConversionDeclarator(D, R, SC);
4685    IsVirtualOkay = true;
4686    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4687                                     D.getSourceRange().getBegin(), NameInfo,
4688                                     R, TInfo, isInline, isExplicit,
4689                                     isConstexpr, SourceLocation());
4690
4691  } else if (DC->isRecord()) {
4692    // If the name of the function is the same as the name of the record,
4693    // then this must be an invalid constructor that has a return type.
4694    // (The parser checks for a return type and makes the declarator a
4695    // constructor if it has no return type).
4696    if (Name.getAsIdentifierInfo() &&
4697        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4698      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4699        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4700        << SourceRange(D.getIdentifierLoc());
4701      return 0;
4702    }
4703
4704    bool isStatic = SC == SC_Static;
4705
4706    // [class.free]p1:
4707    // Any allocation function for a class T is a static member
4708    // (even if not explicitly declared static).
4709    if (Name.getCXXOverloadedOperator() == OO_New ||
4710        Name.getCXXOverloadedOperator() == OO_Array_New)
4711      isStatic = true;
4712
4713    // [class.free]p6 Any deallocation function for a class X is a static member
4714    // (even if not explicitly declared static).
4715    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4716        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4717      isStatic = true;
4718
4719    IsVirtualOkay = !isStatic;
4720
4721    // This is a C++ method declaration.
4722    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4723                                 D.getSourceRange().getBegin(), NameInfo, R,
4724                                 TInfo, isStatic, SCAsWritten, isInline,
4725                                 isConstexpr, SourceLocation());
4726
4727  } else {
4728    // Determine whether the function was written with a
4729    // prototype. This true when:
4730    //   - we're in C++ (where every function has a prototype),
4731    return FunctionDecl::Create(SemaRef.Context, DC,
4732                                D.getSourceRange().getBegin(),
4733                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4734                                true/*HasPrototype*/, isConstexpr);
4735  }
4736}
4737
4738NamedDecl*
4739Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4740                              TypeSourceInfo *TInfo, LookupResult &Previous,
4741                              MultiTemplateParamsArg TemplateParamLists,
4742                              bool &AddToScope) {
4743  QualType R = TInfo->getType();
4744
4745  assert(R.getTypePtr()->isFunctionType());
4746
4747  // TODO: consider using NameInfo for diagnostic.
4748  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4749  DeclarationName Name = NameInfo.getName();
4750  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4751
4752  if (D.getDeclSpec().isThreadSpecified())
4753    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4754
4755  // Do not allow returning a objc interface by-value.
4756  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4757    Diag(D.getIdentifierLoc(),
4758         diag::err_object_cannot_be_passed_returned_by_value) << 0
4759    << R->getAs<FunctionType>()->getResultType()
4760    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4761
4762    QualType T = R->getAs<FunctionType>()->getResultType();
4763    T = Context.getObjCObjectPointerType(T);
4764    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4765      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4766      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4767                                  FPT->getNumArgs(), EPI);
4768    }
4769    else if (isa<FunctionNoProtoType>(R))
4770      R = Context.getFunctionNoProtoType(T);
4771  }
4772
4773  bool isFriend = false;
4774  FunctionTemplateDecl *FunctionTemplate = 0;
4775  bool isExplicitSpecialization = false;
4776  bool isFunctionTemplateSpecialization = false;
4777  bool isDependentClassScopeExplicitSpecialization = false;
4778  bool isVirtualOkay = false;
4779
4780  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4781                                              isVirtualOkay);
4782  if (!NewFD) return 0;
4783
4784  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4785    NewFD->setTopLevelDeclInObjCContainer();
4786
4787  if (getLangOptions().CPlusPlus) {
4788    bool isInline = D.getDeclSpec().isInlineSpecified();
4789    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4790    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4791    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4792    isFriend = D.getDeclSpec().isFriendSpecified();
4793    if (isFriend && !isInline && D.isFunctionDefinition()) {
4794      // C++ [class.friend]p5
4795      //   A function can be defined in a friend declaration of a
4796      //   class . . . . Such a function is implicitly inline.
4797      NewFD->setImplicitlyInline();
4798    }
4799
4800    SetNestedNameSpecifier(NewFD, D);
4801    isExplicitSpecialization = false;
4802    isFunctionTemplateSpecialization = false;
4803    if (D.isInvalidType())
4804      NewFD->setInvalidDecl();
4805
4806    // Set the lexical context. If the declarator has a C++
4807    // scope specifier, or is the object of a friend declaration, the
4808    // lexical context will be different from the semantic context.
4809    NewFD->setLexicalDeclContext(CurContext);
4810
4811    // Match up the template parameter lists with the scope specifier, then
4812    // determine whether we have a template or a template specialization.
4813    bool Invalid = false;
4814    if (TemplateParameterList *TemplateParams
4815          = MatchTemplateParametersToScopeSpecifier(
4816                                  D.getDeclSpec().getSourceRange().getBegin(),
4817                                  D.getIdentifierLoc(),
4818                                  D.getCXXScopeSpec(),
4819                                  TemplateParamLists.get(),
4820                                  TemplateParamLists.size(),
4821                                  isFriend,
4822                                  isExplicitSpecialization,
4823                                  Invalid)) {
4824      if (TemplateParams->size() > 0) {
4825        // This is a function template
4826
4827        // Check that we can declare a template here.
4828        if (CheckTemplateDeclScope(S, TemplateParams))
4829          return 0;
4830
4831        // A destructor cannot be a template.
4832        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4833          Diag(NewFD->getLocation(), diag::err_destructor_template);
4834          return 0;
4835        }
4836
4837        // If we're adding a template to a dependent context, we may need to
4838        // rebuilding some of the types used within the template parameter list,
4839        // now that we know what the current instantiation is.
4840        if (DC->isDependentContext()) {
4841          ContextRAII SavedContext(*this, DC);
4842          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4843            Invalid = true;
4844        }
4845
4846
4847        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4848                                                        NewFD->getLocation(),
4849                                                        Name, TemplateParams,
4850                                                        NewFD);
4851        FunctionTemplate->setLexicalDeclContext(CurContext);
4852        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4853
4854        // For source fidelity, store the other template param lists.
4855        if (TemplateParamLists.size() > 1) {
4856          NewFD->setTemplateParameterListsInfo(Context,
4857                                               TemplateParamLists.size() - 1,
4858                                               TemplateParamLists.release());
4859        }
4860      } else {
4861        // This is a function template specialization.
4862        isFunctionTemplateSpecialization = true;
4863        // For source fidelity, store all the template param lists.
4864        NewFD->setTemplateParameterListsInfo(Context,
4865                                             TemplateParamLists.size(),
4866                                             TemplateParamLists.release());
4867
4868        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4869        if (isFriend) {
4870          // We want to remove the "template<>", found here.
4871          SourceRange RemoveRange = TemplateParams->getSourceRange();
4872
4873          // If we remove the template<> and the name is not a
4874          // template-id, we're actually silently creating a problem:
4875          // the friend declaration will refer to an untemplated decl,
4876          // and clearly the user wants a template specialization.  So
4877          // we need to insert '<>' after the name.
4878          SourceLocation InsertLoc;
4879          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4880            InsertLoc = D.getName().getSourceRange().getEnd();
4881            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4882          }
4883
4884          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4885            << Name << RemoveRange
4886            << FixItHint::CreateRemoval(RemoveRange)
4887            << FixItHint::CreateInsertion(InsertLoc, "<>");
4888        }
4889      }
4890    }
4891    else {
4892      // All template param lists were matched against the scope specifier:
4893      // this is NOT (an explicit specialization of) a template.
4894      if (TemplateParamLists.size() > 0)
4895        // For source fidelity, store all the template param lists.
4896        NewFD->setTemplateParameterListsInfo(Context,
4897                                             TemplateParamLists.size(),
4898                                             TemplateParamLists.release());
4899    }
4900
4901    if (Invalid) {
4902      NewFD->setInvalidDecl();
4903      if (FunctionTemplate)
4904        FunctionTemplate->setInvalidDecl();
4905    }
4906
4907    // C++ [dcl.fct.spec]p5:
4908    //   The virtual specifier shall only be used in declarations of
4909    //   nonstatic class member functions that appear within a
4910    //   member-specification of a class declaration; see 10.3.
4911    //
4912    if (isVirtual && !NewFD->isInvalidDecl()) {
4913      if (!isVirtualOkay) {
4914        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4915             diag::err_virtual_non_function);
4916      } else if (!CurContext->isRecord()) {
4917        // 'virtual' was specified outside of the class.
4918        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4919             diag::err_virtual_out_of_class)
4920          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4921      } else if (NewFD->getDescribedFunctionTemplate()) {
4922        // C++ [temp.mem]p3:
4923        //  A member function template shall not be virtual.
4924        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4925             diag::err_virtual_member_function_template)
4926          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4927      } else {
4928        // Okay: Add virtual to the method.
4929        NewFD->setVirtualAsWritten(true);
4930      }
4931    }
4932
4933    // C++ [dcl.fct.spec]p3:
4934    //  The inline specifier shall not appear on a block scope function
4935    //  declaration.
4936    if (isInline && !NewFD->isInvalidDecl()) {
4937      if (CurContext->isFunctionOrMethod()) {
4938        // 'inline' is not allowed on block scope function declaration.
4939        Diag(D.getDeclSpec().getInlineSpecLoc(),
4940             diag::err_inline_declaration_block_scope) << Name
4941          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4942      }
4943    }
4944
4945    // C++ [dcl.fct.spec]p6:
4946    //  The explicit specifier shall be used only in the declaration of a
4947    //  constructor or conversion function within its class definition;
4948    //  see 12.3.1 and 12.3.2.
4949    if (isExplicit && !NewFD->isInvalidDecl()) {
4950      if (!CurContext->isRecord()) {
4951        // 'explicit' was specified outside of the class.
4952        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4953             diag::err_explicit_out_of_class)
4954          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4955      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4956                 !isa<CXXConversionDecl>(NewFD)) {
4957        // 'explicit' was specified on a function that wasn't a constructor
4958        // or conversion function.
4959        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4960             diag::err_explicit_non_ctor_or_conv_function)
4961          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4962      }
4963    }
4964
4965    if (isConstexpr) {
4966      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4967      // are implicitly inline.
4968      NewFD->setImplicitlyInline();
4969
4970      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4971      // be either constructors or to return a literal type. Therefore,
4972      // destructors cannot be declared constexpr.
4973      if (isa<CXXDestructorDecl>(NewFD))
4974        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4975    }
4976
4977    // If __module_private__ was specified, mark the function accordingly.
4978    if (D.getDeclSpec().isModulePrivateSpecified()) {
4979      if (isFunctionTemplateSpecialization) {
4980        SourceLocation ModulePrivateLoc
4981          = D.getDeclSpec().getModulePrivateSpecLoc();
4982        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4983          << 0
4984          << FixItHint::CreateRemoval(ModulePrivateLoc);
4985      } else {
4986        NewFD->setModulePrivate();
4987        if (FunctionTemplate)
4988          FunctionTemplate->setModulePrivate();
4989      }
4990    }
4991
4992    if (isFriend) {
4993      // For now, claim that the objects have no previous declaration.
4994      if (FunctionTemplate) {
4995        FunctionTemplate->setObjectOfFriendDecl(false);
4996        FunctionTemplate->setAccess(AS_public);
4997      }
4998      NewFD->setObjectOfFriendDecl(false);
4999      NewFD->setAccess(AS_public);
5000    }
5001
5002    // If a function is defined as defaulted or deleted, mark it as such now.
5003    switch (D.getFunctionDefinitionKind()) {
5004      case FDK_Declaration:
5005      case FDK_Definition:
5006        break;
5007
5008      case FDK_Defaulted:
5009        NewFD->setDefaulted();
5010        break;
5011
5012      case FDK_Deleted:
5013        NewFD->setDeletedAsWritten();
5014        break;
5015    }
5016
5017    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5018        D.isFunctionDefinition()) {
5019      // C++ [class.mfct]p2:
5020      //   A member function may be defined (8.4) in its class definition, in
5021      //   which case it is an inline member function (7.1.2)
5022      NewFD->setImplicitlyInline();
5023    }
5024
5025    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5026        !CurContext->isRecord()) {
5027      // C++ [class.static]p1:
5028      //   A data or function member of a class may be declared static
5029      //   in a class definition, in which case it is a static member of
5030      //   the class.
5031
5032      // Complain about the 'static' specifier if it's on an out-of-line
5033      // member function definition.
5034      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5035           diag::err_static_out_of_line)
5036        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5037    }
5038  }
5039
5040  // Filter out previous declarations that don't match the scope.
5041  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5042                       isExplicitSpecialization ||
5043                       isFunctionTemplateSpecialization);
5044
5045  // Handle GNU asm-label extension (encoded as an attribute).
5046  if (Expr *E = (Expr*) D.getAsmLabel()) {
5047    // The parser guarantees this is a string.
5048    StringLiteral *SE = cast<StringLiteral>(E);
5049    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5050                                                SE->getString()));
5051  }
5052
5053  // Copy the parameter declarations from the declarator D to the function
5054  // declaration NewFD, if they are available.  First scavenge them into Params.
5055  SmallVector<ParmVarDecl*, 16> Params;
5056  if (D.isFunctionDeclarator()) {
5057    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5058
5059    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5060    // function that takes no arguments, not a function that takes a
5061    // single void argument.
5062    // We let through "const void" here because Sema::GetTypeForDeclarator
5063    // already checks for that case.
5064    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5065        FTI.ArgInfo[0].Param &&
5066        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5067      // Empty arg list, don't push any params.
5068      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5069
5070      // In C++, the empty parameter-type-list must be spelled "void"; a
5071      // typedef of void is not permitted.
5072      if (getLangOptions().CPlusPlus &&
5073          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5074        bool IsTypeAlias = false;
5075        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5076          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5077        else if (const TemplateSpecializationType *TST =
5078                   Param->getType()->getAs<TemplateSpecializationType>())
5079          IsTypeAlias = TST->isTypeAlias();
5080        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5081          << IsTypeAlias;
5082      }
5083    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5084      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5085        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5086        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5087        Param->setDeclContext(NewFD);
5088        Params.push_back(Param);
5089
5090        if (Param->isInvalidDecl())
5091          NewFD->setInvalidDecl();
5092      }
5093    }
5094
5095  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5096    // When we're declaring a function with a typedef, typeof, etc as in the
5097    // following example, we'll need to synthesize (unnamed)
5098    // parameters for use in the declaration.
5099    //
5100    // @code
5101    // typedef void fn(int);
5102    // fn f;
5103    // @endcode
5104
5105    // Synthesize a parameter for each argument type.
5106    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5107         AE = FT->arg_type_end(); AI != AE; ++AI) {
5108      ParmVarDecl *Param =
5109        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5110      Param->setScopeInfo(0, Params.size());
5111      Params.push_back(Param);
5112    }
5113  } else {
5114    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5115           "Should not need args for typedef of non-prototype fn");
5116  }
5117
5118  // Finally, we know we have the right number of parameters, install them.
5119  NewFD->setParams(Params);
5120
5121  // Process the non-inheritable attributes on this declaration.
5122  ProcessDeclAttributes(S, NewFD, D,
5123                        /*NonInheritable=*/true, /*Inheritable=*/false);
5124
5125  if (!getLangOptions().CPlusPlus) {
5126    // Perform semantic checking on the function declaration.
5127    bool isExplicitSpecialization=false;
5128    if (!NewFD->isInvalidDecl()) {
5129      if (NewFD->getResultType()->isVariablyModifiedType()) {
5130        // Functions returning a variably modified type violate C99 6.7.5.2p2
5131        // because all functions have linkage.
5132        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5133        NewFD->setInvalidDecl();
5134      } else {
5135        if (NewFD->isMain())
5136          CheckMain(NewFD, D.getDeclSpec());
5137        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5138                                                    isExplicitSpecialization));
5139      }
5140    }
5141    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5142            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5143           "previous declaration set still overloaded");
5144  } else {
5145    // If the declarator is a template-id, translate the parser's template
5146    // argument list into our AST format.
5147    bool HasExplicitTemplateArgs = false;
5148    TemplateArgumentListInfo TemplateArgs;
5149    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5150      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5151      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5152      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5153      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5154                                         TemplateId->getTemplateArgs(),
5155                                         TemplateId->NumArgs);
5156      translateTemplateArguments(TemplateArgsPtr,
5157                                 TemplateArgs);
5158      TemplateArgsPtr.release();
5159
5160      HasExplicitTemplateArgs = true;
5161
5162      if (NewFD->isInvalidDecl()) {
5163        HasExplicitTemplateArgs = false;
5164      } else if (FunctionTemplate) {
5165        // Function template with explicit template arguments.
5166        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5167          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5168
5169        HasExplicitTemplateArgs = false;
5170      } else if (!isFunctionTemplateSpecialization &&
5171                 !D.getDeclSpec().isFriendSpecified()) {
5172        // We have encountered something that the user meant to be a
5173        // specialization (because it has explicitly-specified template
5174        // arguments) but that was not introduced with a "template<>" (or had
5175        // too few of them).
5176        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5177          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5178          << FixItHint::CreateInsertion(
5179                                    D.getDeclSpec().getSourceRange().getBegin(),
5180                                        "template<> ");
5181        isFunctionTemplateSpecialization = true;
5182      } else {
5183        // "friend void foo<>(int);" is an implicit specialization decl.
5184        isFunctionTemplateSpecialization = true;
5185      }
5186    } else if (isFriend && isFunctionTemplateSpecialization) {
5187      // This combination is only possible in a recovery case;  the user
5188      // wrote something like:
5189      //   template <> friend void foo(int);
5190      // which we're recovering from as if the user had written:
5191      //   friend void foo<>(int);
5192      // Go ahead and fake up a template id.
5193      HasExplicitTemplateArgs = true;
5194        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5195      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5196    }
5197
5198    // If it's a friend (and only if it's a friend), it's possible
5199    // that either the specialized function type or the specialized
5200    // template is dependent, and therefore matching will fail.  In
5201    // this case, don't check the specialization yet.
5202    bool InstantiationDependent = false;
5203    if (isFunctionTemplateSpecialization && isFriend &&
5204        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5205         TemplateSpecializationType::anyDependentTemplateArguments(
5206            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5207            InstantiationDependent))) {
5208      assert(HasExplicitTemplateArgs &&
5209             "friend function specialization without template args");
5210      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5211                                                       Previous))
5212        NewFD->setInvalidDecl();
5213    } else if (isFunctionTemplateSpecialization) {
5214      if (CurContext->isDependentContext() && CurContext->isRecord()
5215          && !isFriend) {
5216        isDependentClassScopeExplicitSpecialization = true;
5217        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5218          diag::ext_function_specialization_in_class :
5219          diag::err_function_specialization_in_class)
5220          << NewFD->getDeclName();
5221      } else if (CheckFunctionTemplateSpecialization(NewFD,
5222                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5223                                                     Previous))
5224        NewFD->setInvalidDecl();
5225
5226      // C++ [dcl.stc]p1:
5227      //   A storage-class-specifier shall not be specified in an explicit
5228      //   specialization (14.7.3)
5229      if (SC != SC_None) {
5230        if (SC != NewFD->getStorageClass())
5231          Diag(NewFD->getLocation(),
5232               diag::err_explicit_specialization_inconsistent_storage_class)
5233            << SC
5234            << FixItHint::CreateRemoval(
5235                                      D.getDeclSpec().getStorageClassSpecLoc());
5236
5237        else
5238          Diag(NewFD->getLocation(),
5239               diag::ext_explicit_specialization_storage_class)
5240            << FixItHint::CreateRemoval(
5241                                      D.getDeclSpec().getStorageClassSpecLoc());
5242      }
5243
5244    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5245      if (CheckMemberSpecialization(NewFD, Previous))
5246          NewFD->setInvalidDecl();
5247    }
5248
5249    // Perform semantic checking on the function declaration.
5250    if (!isDependentClassScopeExplicitSpecialization) {
5251      if (NewFD->isInvalidDecl()) {
5252        // If this is a class member, mark the class invalid immediately.
5253        // This avoids some consistency errors later.
5254        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5255          methodDecl->getParent()->setInvalidDecl();
5256      } else {
5257        if (NewFD->isMain())
5258          CheckMain(NewFD, D.getDeclSpec());
5259        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5260                                                    isExplicitSpecialization));
5261      }
5262    }
5263
5264    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5265            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5266           "previous declaration set still overloaded");
5267
5268    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5269        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5270      NewFD->setInvalidDecl();
5271
5272    NamedDecl *PrincipalDecl = (FunctionTemplate
5273                                ? cast<NamedDecl>(FunctionTemplate)
5274                                : NewFD);
5275
5276    if (isFriend && D.isRedeclaration()) {
5277      AccessSpecifier Access = AS_public;
5278      if (!NewFD->isInvalidDecl())
5279        Access = NewFD->getPreviousDeclaration()->getAccess();
5280
5281      NewFD->setAccess(Access);
5282      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5283
5284      PrincipalDecl->setObjectOfFriendDecl(true);
5285    }
5286
5287    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5288        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5289      PrincipalDecl->setNonMemberOperator();
5290
5291    // If we have a function template, check the template parameter
5292    // list. This will check and merge default template arguments.
5293    if (FunctionTemplate) {
5294      FunctionTemplateDecl *PrevTemplate =
5295                                     FunctionTemplate->getPreviousDeclaration();
5296      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5297                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5298                            D.getDeclSpec().isFriendSpecified()
5299                              ? (D.isFunctionDefinition()
5300                                   ? TPC_FriendFunctionTemplateDefinition
5301                                   : TPC_FriendFunctionTemplate)
5302                              : (D.getCXXScopeSpec().isSet() &&
5303                                 DC && DC->isRecord() &&
5304                                 DC->isDependentContext())
5305                                  ? TPC_ClassTemplateMember
5306                                  : TPC_FunctionTemplate);
5307    }
5308
5309    if (NewFD->isInvalidDecl()) {
5310      // Ignore all the rest of this.
5311    } else if (!D.isRedeclaration()) {
5312      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5313                                       AddToScope };
5314      // Fake up an access specifier if it's supposed to be a class member.
5315      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5316        NewFD->setAccess(AS_public);
5317
5318      // Qualified decls generally require a previous declaration.
5319      if (D.getCXXScopeSpec().isSet()) {
5320        // ...with the major exception of templated-scope or
5321        // dependent-scope friend declarations.
5322
5323        // TODO: we currently also suppress this check in dependent
5324        // contexts because (1) the parameter depth will be off when
5325        // matching friend templates and (2) we might actually be
5326        // selecting a friend based on a dependent factor.  But there
5327        // are situations where these conditions don't apply and we
5328        // can actually do this check immediately.
5329        if (isFriend &&
5330            (TemplateParamLists.size() ||
5331             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5332             CurContext->isDependentContext())) {
5333          // ignore these
5334        } else {
5335          // The user tried to provide an out-of-line definition for a
5336          // function that is a member of a class or namespace, but there
5337          // was no such member function declared (C++ [class.mfct]p2,
5338          // C++ [namespace.memdef]p2). For example:
5339          //
5340          // class X {
5341          //   void f() const;
5342          // };
5343          //
5344          // void X::f() { } // ill-formed
5345          //
5346          // Complain about this problem, and attempt to suggest close
5347          // matches (e.g., those that differ only in cv-qualifiers and
5348          // whether the parameter types are references).
5349
5350          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5351                                                               NewFD,
5352                                                               ExtraArgs)) {
5353            AddToScope = ExtraArgs.AddToScope;
5354            return Result;
5355          }
5356        }
5357
5358        // Unqualified local friend declarations are required to resolve
5359        // to something.
5360      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5361        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5362                                                             NewFD,
5363                                                             ExtraArgs)) {
5364          AddToScope = ExtraArgs.AddToScope;
5365          return Result;
5366        }
5367      }
5368
5369    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5370               !isFriend && !isFunctionTemplateSpecialization &&
5371               !isExplicitSpecialization) {
5372      // An out-of-line member function declaration must also be a
5373      // definition (C++ [dcl.meaning]p1).
5374      // Note that this is not the case for explicit specializations of
5375      // function templates or member functions of class templates, per
5376      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5377      // extension for compatibility with old SWIG code which likes to
5378      // generate them.
5379      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5380        << D.getCXXScopeSpec().getRange();
5381    }
5382  }
5383
5384
5385  // Handle attributes. We need to have merged decls when handling attributes
5386  // (for example to check for conflicts, etc).
5387  // FIXME: This needs to happen before we merge declarations. Then,
5388  // let attribute merging cope with attribute conflicts.
5389  ProcessDeclAttributes(S, NewFD, D,
5390                        /*NonInheritable=*/false, /*Inheritable=*/true);
5391
5392  // attributes declared post-definition are currently ignored
5393  // FIXME: This should happen during attribute merging
5394  if (D.isRedeclaration() && Previous.isSingleResult()) {
5395    const FunctionDecl *Def;
5396    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5397    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5398      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5399      Diag(Def->getLocation(), diag::note_previous_definition);
5400    }
5401  }
5402
5403  AddKnownFunctionAttributes(NewFD);
5404
5405  if (NewFD->hasAttr<OverloadableAttr>() &&
5406      !NewFD->getType()->getAs<FunctionProtoType>()) {
5407    Diag(NewFD->getLocation(),
5408         diag::err_attribute_overloadable_no_prototype)
5409      << NewFD;
5410
5411    // Turn this into a variadic function with no parameters.
5412    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5413    FunctionProtoType::ExtProtoInfo EPI;
5414    EPI.Variadic = true;
5415    EPI.ExtInfo = FT->getExtInfo();
5416
5417    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5418    NewFD->setType(R);
5419  }
5420
5421  // If there's a #pragma GCC visibility in scope, and this isn't a class
5422  // member, set the visibility of this function.
5423  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5424    AddPushedVisibilityAttribute(NewFD);
5425
5426  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5427  // marking the function.
5428  AddCFAuditedAttribute(NewFD);
5429
5430  // If this is a locally-scoped extern C function, update the
5431  // map of such names.
5432  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5433      && !NewFD->isInvalidDecl())
5434    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5435
5436  // Set this FunctionDecl's range up to the right paren.
5437  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5438
5439  if (getLangOptions().CPlusPlus) {
5440    if (FunctionTemplate) {
5441      if (NewFD->isInvalidDecl())
5442        FunctionTemplate->setInvalidDecl();
5443      return FunctionTemplate;
5444    }
5445  }
5446
5447  MarkUnusedFileScopedDecl(NewFD);
5448
5449  if (getLangOptions().CUDA)
5450    if (IdentifierInfo *II = NewFD->getIdentifier())
5451      if (!NewFD->isInvalidDecl() &&
5452          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5453        if (II->isStr("cudaConfigureCall")) {
5454          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5455            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5456
5457          Context.setcudaConfigureCallDecl(NewFD);
5458        }
5459      }
5460
5461  // Here we have an function template explicit specialization at class scope.
5462  // The actually specialization will be postponed to template instatiation
5463  // time via the ClassScopeFunctionSpecializationDecl node.
5464  if (isDependentClassScopeExplicitSpecialization) {
5465    ClassScopeFunctionSpecializationDecl *NewSpec =
5466                         ClassScopeFunctionSpecializationDecl::Create(
5467                                Context, CurContext,  SourceLocation(),
5468                                cast<CXXMethodDecl>(NewFD));
5469    CurContext->addDecl(NewSpec);
5470    AddToScope = false;
5471  }
5472
5473  return NewFD;
5474}
5475
5476/// \brief Perform semantic checking of a new function declaration.
5477///
5478/// Performs semantic analysis of the new function declaration
5479/// NewFD. This routine performs all semantic checking that does not
5480/// require the actual declarator involved in the declaration, and is
5481/// used both for the declaration of functions as they are parsed
5482/// (called via ActOnDeclarator) and for the declaration of functions
5483/// that have been instantiated via C++ template instantiation (called
5484/// via InstantiateDecl).
5485///
5486/// \param IsExplicitSpecialiation whether this new function declaration is
5487/// an explicit specialization of the previous declaration.
5488///
5489/// This sets NewFD->isInvalidDecl() to true if there was an error.
5490///
5491/// Returns true if the function declaration is a redeclaration.
5492bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5493                                    LookupResult &Previous,
5494                                    bool IsExplicitSpecialization) {
5495  assert(!NewFD->getResultType()->isVariablyModifiedType()
5496         && "Variably modified return types are not handled here");
5497
5498  // Check for a previous declaration of this name.
5499  if (Previous.empty() && NewFD->isExternC()) {
5500    // Since we did not find anything by this name and we're declaring
5501    // an extern "C" function, look for a non-visible extern "C"
5502    // declaration with the same name.
5503    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5504      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5505    if (Pos != LocallyScopedExternalDecls.end())
5506      Previous.addDecl(Pos->second);
5507  }
5508
5509  bool Redeclaration = false;
5510
5511  // Merge or overload the declaration with an existing declaration of
5512  // the same name, if appropriate.
5513  if (!Previous.empty()) {
5514    // Determine whether NewFD is an overload of PrevDecl or
5515    // a declaration that requires merging. If it's an overload,
5516    // there's no more work to do here; we'll just add the new
5517    // function to the scope.
5518
5519    NamedDecl *OldDecl = 0;
5520    if (!AllowOverloadingOfFunction(Previous, Context)) {
5521      Redeclaration = true;
5522      OldDecl = Previous.getFoundDecl();
5523    } else {
5524      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5525                            /*NewIsUsingDecl*/ false)) {
5526      case Ovl_Match:
5527        Redeclaration = true;
5528        break;
5529
5530      case Ovl_NonFunction:
5531        Redeclaration = true;
5532        break;
5533
5534      case Ovl_Overload:
5535        Redeclaration = false;
5536        break;
5537      }
5538
5539      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5540        // If a function name is overloadable in C, then every function
5541        // with that name must be marked "overloadable".
5542        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5543          << Redeclaration << NewFD;
5544        NamedDecl *OverloadedDecl = 0;
5545        if (Redeclaration)
5546          OverloadedDecl = OldDecl;
5547        else if (!Previous.empty())
5548          OverloadedDecl = Previous.getRepresentativeDecl();
5549        if (OverloadedDecl)
5550          Diag(OverloadedDecl->getLocation(),
5551               diag::note_attribute_overloadable_prev_overload);
5552        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5553                                                        Context));
5554      }
5555    }
5556
5557    if (Redeclaration) {
5558      // NewFD and OldDecl represent declarations that need to be
5559      // merged.
5560      if (MergeFunctionDecl(NewFD, OldDecl)) {
5561        NewFD->setInvalidDecl();
5562        return Redeclaration;
5563      }
5564
5565      Previous.clear();
5566      Previous.addDecl(OldDecl);
5567
5568      if (FunctionTemplateDecl *OldTemplateDecl
5569                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5570        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5571        FunctionTemplateDecl *NewTemplateDecl
5572          = NewFD->getDescribedFunctionTemplate();
5573        assert(NewTemplateDecl && "Template/non-template mismatch");
5574        if (CXXMethodDecl *Method
5575              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5576          Method->setAccess(OldTemplateDecl->getAccess());
5577          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5578        }
5579
5580        // If this is an explicit specialization of a member that is a function
5581        // template, mark it as a member specialization.
5582        if (IsExplicitSpecialization &&
5583            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5584          NewTemplateDecl->setMemberSpecialization();
5585          assert(OldTemplateDecl->isMemberSpecialization());
5586        }
5587
5588      } else {
5589        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5590          NewFD->setAccess(OldDecl->getAccess());
5591        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5592      }
5593    }
5594  }
5595
5596  // Semantic checking for this function declaration (in isolation).
5597  if (getLangOptions().CPlusPlus) {
5598    // C++-specific checks.
5599    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5600      CheckConstructor(Constructor);
5601    } else if (CXXDestructorDecl *Destructor =
5602                dyn_cast<CXXDestructorDecl>(NewFD)) {
5603      CXXRecordDecl *Record = Destructor->getParent();
5604      QualType ClassType = Context.getTypeDeclType(Record);
5605
5606      // FIXME: Shouldn't we be able to perform this check even when the class
5607      // type is dependent? Both gcc and edg can handle that.
5608      if (!ClassType->isDependentType()) {
5609        DeclarationName Name
5610          = Context.DeclarationNames.getCXXDestructorName(
5611                                        Context.getCanonicalType(ClassType));
5612        if (NewFD->getDeclName() != Name) {
5613          Diag(NewFD->getLocation(), diag::err_destructor_name);
5614          NewFD->setInvalidDecl();
5615          return Redeclaration;
5616        }
5617      }
5618    } else if (CXXConversionDecl *Conversion
5619               = dyn_cast<CXXConversionDecl>(NewFD)) {
5620      ActOnConversionDeclarator(Conversion);
5621    }
5622
5623    // Find any virtual functions that this function overrides.
5624    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5625      if (!Method->isFunctionTemplateSpecialization() &&
5626          !Method->getDescribedFunctionTemplate()) {
5627        if (AddOverriddenMethods(Method->getParent(), Method)) {
5628          // If the function was marked as "static", we have a problem.
5629          if (NewFD->getStorageClass() == SC_Static) {
5630            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5631              << NewFD->getDeclName();
5632            for (CXXMethodDecl::method_iterator
5633                      Overridden = Method->begin_overridden_methods(),
5634                   OverriddenEnd = Method->end_overridden_methods();
5635                 Overridden != OverriddenEnd;
5636                 ++Overridden) {
5637              Diag((*Overridden)->getLocation(),
5638                   diag::note_overridden_virtual_function);
5639            }
5640          }
5641        }
5642      }
5643    }
5644
5645    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5646    if (NewFD->isOverloadedOperator() &&
5647        CheckOverloadedOperatorDeclaration(NewFD)) {
5648      NewFD->setInvalidDecl();
5649      return Redeclaration;
5650    }
5651
5652    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5653    if (NewFD->getLiteralIdentifier() &&
5654        CheckLiteralOperatorDeclaration(NewFD)) {
5655      NewFD->setInvalidDecl();
5656      return Redeclaration;
5657    }
5658
5659    // In C++, check default arguments now that we have merged decls. Unless
5660    // the lexical context is the class, because in this case this is done
5661    // during delayed parsing anyway.
5662    if (!CurContext->isRecord())
5663      CheckCXXDefaultArguments(NewFD);
5664
5665    // If this function declares a builtin function, check the type of this
5666    // declaration against the expected type for the builtin.
5667    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5668      ASTContext::GetBuiltinTypeError Error;
5669      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5670      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5671        // The type of this function differs from the type of the builtin,
5672        // so forget about the builtin entirely.
5673        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5674      }
5675    }
5676  }
5677  return Redeclaration;
5678}
5679
5680void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5681  // C++ [basic.start.main]p3:  A program that declares main to be inline
5682  //   or static is ill-formed.
5683  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5684  //   shall not appear in a declaration of main.
5685  // static main is not an error under C99, but we should warn about it.
5686  if (FD->getStorageClass() == SC_Static)
5687    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5688         ? diag::err_static_main : diag::warn_static_main)
5689      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5690  if (FD->isInlineSpecified())
5691    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5692      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5693
5694  QualType T = FD->getType();
5695  assert(T->isFunctionType() && "function decl is not of function type");
5696  const FunctionType* FT = T->getAs<FunctionType>();
5697
5698  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5699    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5700    FD->setInvalidDecl(true);
5701  }
5702
5703  // Treat protoless main() as nullary.
5704  if (isa<FunctionNoProtoType>(FT)) return;
5705
5706  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5707  unsigned nparams = FTP->getNumArgs();
5708  assert(FD->getNumParams() == nparams);
5709
5710  bool HasExtraParameters = (nparams > 3);
5711
5712  // Darwin passes an undocumented fourth argument of type char**.  If
5713  // other platforms start sprouting these, the logic below will start
5714  // getting shifty.
5715  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5716    HasExtraParameters = false;
5717
5718  if (HasExtraParameters) {
5719    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5720    FD->setInvalidDecl(true);
5721    nparams = 3;
5722  }
5723
5724  // FIXME: a lot of the following diagnostics would be improved
5725  // if we had some location information about types.
5726
5727  QualType CharPP =
5728    Context.getPointerType(Context.getPointerType(Context.CharTy));
5729  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5730
5731  for (unsigned i = 0; i < nparams; ++i) {
5732    QualType AT = FTP->getArgType(i);
5733
5734    bool mismatch = true;
5735
5736    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5737      mismatch = false;
5738    else if (Expected[i] == CharPP) {
5739      // As an extension, the following forms are okay:
5740      //   char const **
5741      //   char const * const *
5742      //   char * const *
5743
5744      QualifierCollector qs;
5745      const PointerType* PT;
5746      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5747          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5748          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5749        qs.removeConst();
5750        mismatch = !qs.empty();
5751      }
5752    }
5753
5754    if (mismatch) {
5755      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5756      // TODO: suggest replacing given type with expected type
5757      FD->setInvalidDecl(true);
5758    }
5759  }
5760
5761  if (nparams == 1 && !FD->isInvalidDecl()) {
5762    Diag(FD->getLocation(), diag::warn_main_one_arg);
5763  }
5764
5765  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5766    Diag(FD->getLocation(), diag::err_main_template_decl);
5767    FD->setInvalidDecl();
5768  }
5769}
5770
5771bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5772  // FIXME: Need strict checking.  In C89, we need to check for
5773  // any assignment, increment, decrement, function-calls, or
5774  // commas outside of a sizeof.  In C99, it's the same list,
5775  // except that the aforementioned are allowed in unevaluated
5776  // expressions.  Everything else falls under the
5777  // "may accept other forms of constant expressions" exception.
5778  // (We never end up here for C++, so the constant expression
5779  // rules there don't matter.)
5780  if (Init->isConstantInitializer(Context, false))
5781    return false;
5782  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5783    << Init->getSourceRange();
5784  return true;
5785}
5786
5787namespace {
5788  // Visits an initialization expression to see if OrigDecl is evaluated in
5789  // its own initialization and throws a warning if it does.
5790  class SelfReferenceChecker
5791      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5792    Sema &S;
5793    Decl *OrigDecl;
5794    bool isRecordType;
5795    bool isPODType;
5796
5797  public:
5798    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5799
5800    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5801                                                    S(S), OrigDecl(OrigDecl) {
5802      isPODType = false;
5803      isRecordType = false;
5804      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5805        isPODType = VD->getType().isPODType(S.Context);
5806        isRecordType = VD->getType()->isRecordType();
5807      }
5808    }
5809
5810    void VisitExpr(Expr *E) {
5811      if (isa<ObjCMessageExpr>(*E)) return;
5812      if (isRecordType) {
5813        Expr *expr = E;
5814        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5815          ValueDecl *VD = ME->getMemberDecl();
5816          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5817          expr = ME->getBase();
5818        }
5819        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5820          HandleDeclRefExpr(DRE);
5821          return;
5822        }
5823      }
5824      Inherited::VisitExpr(E);
5825    }
5826
5827    void VisitMemberExpr(MemberExpr *E) {
5828      if (E->getType()->canDecayToPointerType()) return;
5829      if (isa<FieldDecl>(E->getMemberDecl()))
5830        if (DeclRefExpr *DRE
5831              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5832          HandleDeclRefExpr(DRE);
5833          return;
5834        }
5835      Inherited::VisitMemberExpr(E);
5836    }
5837
5838    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5839      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5840          (isRecordType && E->getCastKind() == CK_NoOp)) {
5841        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5842        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5843          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5844        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5845          HandleDeclRefExpr(DRE);
5846          return;
5847        }
5848      }
5849      Inherited::VisitImplicitCastExpr(E);
5850    }
5851
5852    void VisitUnaryOperator(UnaryOperator *E) {
5853      // For POD record types, addresses of its own members are well-defined.
5854      if (isRecordType && isPODType) return;
5855      Inherited::VisitUnaryOperator(E);
5856    }
5857
5858    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5859      Decl* ReferenceDecl = DRE->getDecl();
5860      if (OrigDecl != ReferenceDecl) return;
5861      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5862                          Sema::NotForRedeclaration);
5863      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5864                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5865                              << Result.getLookupName()
5866                              << OrigDecl->getLocation()
5867                              << DRE->getSourceRange());
5868    }
5869  };
5870}
5871
5872/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5873void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5874  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5875}
5876
5877/// AddInitializerToDecl - Adds the initializer Init to the
5878/// declaration dcl. If DirectInit is true, this is C++ direct
5879/// initialization rather than copy initialization.
5880void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5881                                bool DirectInit, bool TypeMayContainAuto) {
5882  // If there is no declaration, there was an error parsing it.  Just ignore
5883  // the initializer.
5884  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5885    return;
5886
5887  // Check for self-references within variable initializers.
5888  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5889    // Variables declared within a function/method body are handled
5890    // by a dataflow analysis.
5891    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5892      CheckSelfReference(RealDecl, Init);
5893  }
5894  else {
5895    CheckSelfReference(RealDecl, Init);
5896  }
5897
5898  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5899    // With declarators parsed the way they are, the parser cannot
5900    // distinguish between a normal initializer and a pure-specifier.
5901    // Thus this grotesque test.
5902    IntegerLiteral *IL;
5903    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5904        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5905      CheckPureMethod(Method, Init->getSourceRange());
5906    else {
5907      Diag(Method->getLocation(), diag::err_member_function_initialization)
5908        << Method->getDeclName() << Init->getSourceRange();
5909      Method->setInvalidDecl();
5910    }
5911    return;
5912  }
5913
5914  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5915  if (!VDecl) {
5916    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5917    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5918    RealDecl->setInvalidDecl();
5919    return;
5920  }
5921
5922  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5923  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5924    TypeSourceInfo *DeducedType = 0;
5925    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5926      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5927        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5928        << Init->getSourceRange();
5929    if (!DeducedType) {
5930      RealDecl->setInvalidDecl();
5931      return;
5932    }
5933    VDecl->setTypeSourceInfo(DeducedType);
5934    VDecl->setType(DeducedType->getType());
5935
5936    // In ARC, infer lifetime.
5937    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5938      VDecl->setInvalidDecl();
5939
5940    // If this is a redeclaration, check that the type we just deduced matches
5941    // the previously declared type.
5942    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5943      MergeVarDeclTypes(VDecl, Old);
5944  }
5945
5946  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
5947    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
5948    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5949    VDecl->setInvalidDecl();
5950    return;
5951  }
5952
5953
5954  // A definition must end up with a complete type, which means it must be
5955  // complete with the restriction that an array type might be completed by the
5956  // initializer; note that later code assumes this restriction.
5957  QualType BaseDeclType = VDecl->getType();
5958  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5959    BaseDeclType = Array->getElementType();
5960  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5961                          diag::err_typecheck_decl_incomplete_type)) {
5962    RealDecl->setInvalidDecl();
5963    return;
5964  }
5965
5966  // The variable can not have an abstract class type.
5967  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5968                             diag::err_abstract_type_in_decl,
5969                             AbstractVariableType))
5970    VDecl->setInvalidDecl();
5971
5972  const VarDecl *Def;
5973  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5974    Diag(VDecl->getLocation(), diag::err_redefinition)
5975      << VDecl->getDeclName();
5976    Diag(Def->getLocation(), diag::note_previous_definition);
5977    VDecl->setInvalidDecl();
5978    return;
5979  }
5980
5981  const VarDecl* PrevInit = 0;
5982  if (getLangOptions().CPlusPlus) {
5983    // C++ [class.static.data]p4
5984    //   If a static data member is of const integral or const
5985    //   enumeration type, its declaration in the class definition can
5986    //   specify a constant-initializer which shall be an integral
5987    //   constant expression (5.19). In that case, the member can appear
5988    //   in integral constant expressions. The member shall still be
5989    //   defined in a namespace scope if it is used in the program and the
5990    //   namespace scope definition shall not contain an initializer.
5991    //
5992    // We already performed a redefinition check above, but for static
5993    // data members we also need to check whether there was an in-class
5994    // declaration with an initializer.
5995    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5996      Diag(VDecl->getLocation(), diag::err_redefinition)
5997        << VDecl->getDeclName();
5998      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5999      return;
6000    }
6001
6002    if (VDecl->hasLocalStorage())
6003      getCurFunction()->setHasBranchProtectedScope();
6004
6005    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6006      VDecl->setInvalidDecl();
6007      return;
6008    }
6009  }
6010
6011  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6012  // a kernel function cannot be initialized."
6013  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6014    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6015    VDecl->setInvalidDecl();
6016    return;
6017  }
6018
6019  // Get the decls type and save a reference for later, since
6020  // CheckInitializerTypes may change it.
6021  QualType DclT = VDecl->getType(), SavT = DclT;
6022
6023  // Perform the initialization.
6024  if (!VDecl->isInvalidDecl()) {
6025    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6026    InitializationKind Kind
6027      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6028                                                      Init->getLocStart(),
6029                                                      Init->getLocEnd())
6030                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6031                                                    Init->getLocStart());
6032
6033    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6034    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6035                                              MultiExprArg(*this, &Init, 1),
6036                                              &DclT);
6037    if (Result.isInvalid()) {
6038      VDecl->setInvalidDecl();
6039      return;
6040    }
6041
6042    Init = Result.takeAs<Expr>();
6043  }
6044
6045  // If the type changed, it means we had an incomplete type that was
6046  // completed by the initializer. For example:
6047  //   int ary[] = { 1, 3, 5 };
6048  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6049  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6050    VDecl->setType(DclT);
6051    Init->setType(DclT.getNonReferenceType());
6052  }
6053
6054  // Check any implicit conversions within the expression.
6055  CheckImplicitConversions(Init, VDecl->getLocation());
6056
6057  if (!VDecl->isInvalidDecl())
6058    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6059
6060  Init = MaybeCreateExprWithCleanups(Init);
6061  // Attach the initializer to the decl.
6062  VDecl->setInit(Init);
6063
6064  if (VDecl->isLocalVarDecl()) {
6065    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6066    // static storage duration shall be constant expressions or string literals.
6067    // C++ does not have this restriction.
6068    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6069        VDecl->getStorageClass() == SC_Static)
6070      CheckForConstantInitializer(Init, DclT);
6071  } else if (VDecl->isStaticDataMember() &&
6072             VDecl->getLexicalDeclContext()->isRecord()) {
6073    // This is an in-class initialization for a static data member, e.g.,
6074    //
6075    // struct S {
6076    //   static const int value = 17;
6077    // };
6078
6079    // C++ [class.mem]p4:
6080    //   A member-declarator can contain a constant-initializer only
6081    //   if it declares a static member (9.4) of const integral or
6082    //   const enumeration type, see 9.4.2.
6083    //
6084    // C++11 [class.static.data]p3:
6085    //   If a non-volatile const static data member is of integral or
6086    //   enumeration type, its declaration in the class definition can
6087    //   specify a brace-or-equal-initializer in which every initalizer-clause
6088    //   that is an assignment-expression is a constant expression. A static
6089    //   data member of literal type can be declared in the class definition
6090    //   with the constexpr specifier; if so, its declaration shall specify a
6091    //   brace-or-equal-initializer in which every initializer-clause that is
6092    //   an assignment-expression is a constant expression.
6093
6094    // Do nothing on dependent types.
6095    if (DclT->isDependentType()) {
6096
6097    // Allow any 'static constexpr' members, whether or not they are of literal
6098    // type. We separately check that the initializer is a constant expression,
6099    // which implicitly requires the member to be of literal type.
6100    } else if (VDecl->isConstexpr()) {
6101
6102    // Require constness.
6103    } else if (!DclT.isConstQualified()) {
6104      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6105        << Init->getSourceRange();
6106      VDecl->setInvalidDecl();
6107
6108    // We allow integer constant expressions in all cases.
6109    } else if (DclT->isIntegralOrEnumerationType()) {
6110      // Check whether the expression is a constant expression.
6111      SourceLocation Loc;
6112      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6113        // In C++11, a non-constexpr const static data member with an
6114        // in-class initializer cannot be volatile.
6115        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6116      else if (Init->isValueDependent())
6117        ; // Nothing to check.
6118      else if (Init->isIntegerConstantExpr(Context, &Loc))
6119        ; // Ok, it's an ICE!
6120      else if (Init->isEvaluatable(Context)) {
6121        // If we can constant fold the initializer through heroics, accept it,
6122        // but report this as a use of an extension for -pedantic.
6123        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6124          << Init->getSourceRange();
6125      } else {
6126        // Otherwise, this is some crazy unknown case.  Report the issue at the
6127        // location provided by the isIntegerConstantExpr failed check.
6128        Diag(Loc, diag::err_in_class_initializer_non_constant)
6129          << Init->getSourceRange();
6130        VDecl->setInvalidDecl();
6131      }
6132
6133    // We allow foldable floating-point constants as an extension.
6134    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6135      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6136        << DclT << Init->getSourceRange();
6137      if (getLangOptions().CPlusPlus0x)
6138        Diag(VDecl->getLocation(),
6139             diag::note_in_class_initializer_float_type_constexpr)
6140          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6141
6142      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6143        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6144          << Init->getSourceRange();
6145        VDecl->setInvalidDecl();
6146      }
6147
6148    // Suggest adding 'constexpr' in C++11 for literal types.
6149    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6150      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6151        << DclT << Init->getSourceRange()
6152        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6153      VDecl->setConstexpr(true);
6154
6155    } else {
6156      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6157        << DclT << Init->getSourceRange();
6158      VDecl->setInvalidDecl();
6159    }
6160  } else if (VDecl->isFileVarDecl()) {
6161    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6162        (!getLangOptions().CPlusPlus ||
6163         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6164      Diag(VDecl->getLocation(), diag::warn_extern_init);
6165
6166    // C99 6.7.8p4. All file scoped initializers need to be constant.
6167    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6168      CheckForConstantInitializer(Init, DclT);
6169  }
6170
6171  CheckCompleteVariableDeclaration(VDecl);
6172}
6173
6174/// ActOnInitializerError - Given that there was an error parsing an
6175/// initializer for the given declaration, try to return to some form
6176/// of sanity.
6177void Sema::ActOnInitializerError(Decl *D) {
6178  // Our main concern here is re-establishing invariants like "a
6179  // variable's type is either dependent or complete".
6180  if (!D || D->isInvalidDecl()) return;
6181
6182  VarDecl *VD = dyn_cast<VarDecl>(D);
6183  if (!VD) return;
6184
6185  // Auto types are meaningless if we can't make sense of the initializer.
6186  if (ParsingInitForAutoVars.count(D)) {
6187    D->setInvalidDecl();
6188    return;
6189  }
6190
6191  QualType Ty = VD->getType();
6192  if (Ty->isDependentType()) return;
6193
6194  // Require a complete type.
6195  if (RequireCompleteType(VD->getLocation(),
6196                          Context.getBaseElementType(Ty),
6197                          diag::err_typecheck_decl_incomplete_type)) {
6198    VD->setInvalidDecl();
6199    return;
6200  }
6201
6202  // Require an abstract type.
6203  if (RequireNonAbstractType(VD->getLocation(), Ty,
6204                             diag::err_abstract_type_in_decl,
6205                             AbstractVariableType)) {
6206    VD->setInvalidDecl();
6207    return;
6208  }
6209
6210  // Don't bother complaining about constructors or destructors,
6211  // though.
6212}
6213
6214void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6215                                  bool TypeMayContainAuto) {
6216  // If there is no declaration, there was an error parsing it. Just ignore it.
6217  if (RealDecl == 0)
6218    return;
6219
6220  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6221    QualType Type = Var->getType();
6222
6223    // C++11 [dcl.spec.auto]p3
6224    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6225      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6226        << Var->getDeclName() << Type;
6227      Var->setInvalidDecl();
6228      return;
6229    }
6230
6231    // C++11 [class.static.data]p3: A static data member can be declared with
6232    // the constexpr specifier; if so, its declaration shall specify
6233    // a brace-or-equal-initializer.
6234    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6235    // the definition of a variable [...] or the declaration of a static data
6236    // member.
6237    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6238      if (Var->isStaticDataMember())
6239        Diag(Var->getLocation(),
6240             diag::err_constexpr_static_mem_var_requires_init)
6241          << Var->getDeclName();
6242      else
6243        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6244      Var->setInvalidDecl();
6245      return;
6246    }
6247
6248    switch (Var->isThisDeclarationADefinition()) {
6249    case VarDecl::Definition:
6250      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6251        break;
6252
6253      // We have an out-of-line definition of a static data member
6254      // that has an in-class initializer, so we type-check this like
6255      // a declaration.
6256      //
6257      // Fall through
6258
6259    case VarDecl::DeclarationOnly:
6260      // It's only a declaration.
6261
6262      // Block scope. C99 6.7p7: If an identifier for an object is
6263      // declared with no linkage (C99 6.2.2p6), the type for the
6264      // object shall be complete.
6265      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6266          !Var->getLinkage() && !Var->isInvalidDecl() &&
6267          RequireCompleteType(Var->getLocation(), Type,
6268                              diag::err_typecheck_decl_incomplete_type))
6269        Var->setInvalidDecl();
6270
6271      // Make sure that the type is not abstract.
6272      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6273          RequireNonAbstractType(Var->getLocation(), Type,
6274                                 diag::err_abstract_type_in_decl,
6275                                 AbstractVariableType))
6276        Var->setInvalidDecl();
6277      return;
6278
6279    case VarDecl::TentativeDefinition:
6280      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6281      // object that has file scope without an initializer, and without a
6282      // storage-class specifier or with the storage-class specifier "static",
6283      // constitutes a tentative definition. Note: A tentative definition with
6284      // external linkage is valid (C99 6.2.2p5).
6285      if (!Var->isInvalidDecl()) {
6286        if (const IncompleteArrayType *ArrayT
6287                                    = Context.getAsIncompleteArrayType(Type)) {
6288          if (RequireCompleteType(Var->getLocation(),
6289                                  ArrayT->getElementType(),
6290                                  diag::err_illegal_decl_array_incomplete_type))
6291            Var->setInvalidDecl();
6292        } else if (Var->getStorageClass() == SC_Static) {
6293          // C99 6.9.2p3: If the declaration of an identifier for an object is
6294          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6295          // declared type shall not be an incomplete type.
6296          // NOTE: code such as the following
6297          //     static struct s;
6298          //     struct s { int a; };
6299          // is accepted by gcc. Hence here we issue a warning instead of
6300          // an error and we do not invalidate the static declaration.
6301          // NOTE: to avoid multiple warnings, only check the first declaration.
6302          if (Var->getPreviousDeclaration() == 0)
6303            RequireCompleteType(Var->getLocation(), Type,
6304                                diag::ext_typecheck_decl_incomplete_type);
6305        }
6306      }
6307
6308      // Record the tentative definition; we're done.
6309      if (!Var->isInvalidDecl())
6310        TentativeDefinitions.push_back(Var);
6311      return;
6312    }
6313
6314    // Provide a specific diagnostic for uninitialized variable
6315    // definitions with incomplete array type.
6316    if (Type->isIncompleteArrayType()) {
6317      Diag(Var->getLocation(),
6318           diag::err_typecheck_incomplete_array_needs_initializer);
6319      Var->setInvalidDecl();
6320      return;
6321    }
6322
6323    // Provide a specific diagnostic for uninitialized variable
6324    // definitions with reference type.
6325    if (Type->isReferenceType()) {
6326      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6327        << Var->getDeclName()
6328        << SourceRange(Var->getLocation(), Var->getLocation());
6329      Var->setInvalidDecl();
6330      return;
6331    }
6332
6333    // Do not attempt to type-check the default initializer for a
6334    // variable with dependent type.
6335    if (Type->isDependentType())
6336      return;
6337
6338    if (Var->isInvalidDecl())
6339      return;
6340
6341    if (RequireCompleteType(Var->getLocation(),
6342                            Context.getBaseElementType(Type),
6343                            diag::err_typecheck_decl_incomplete_type)) {
6344      Var->setInvalidDecl();
6345      return;
6346    }
6347
6348    // The variable can not have an abstract class type.
6349    if (RequireNonAbstractType(Var->getLocation(), Type,
6350                               diag::err_abstract_type_in_decl,
6351                               AbstractVariableType)) {
6352      Var->setInvalidDecl();
6353      return;
6354    }
6355
6356    // Check for jumps past the implicit initializer.  C++0x
6357    // clarifies that this applies to a "variable with automatic
6358    // storage duration", not a "local variable".
6359    // C++11 [stmt.dcl]p3
6360    //   A program that jumps from a point where a variable with automatic
6361    //   storage duration is not in scope to a point where it is in scope is
6362    //   ill-formed unless the variable has scalar type, class type with a
6363    //   trivial default constructor and a trivial destructor, a cv-qualified
6364    //   version of one of these types, or an array of one of the preceding
6365    //   types and is declared without an initializer.
6366    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6367      if (const RecordType *Record
6368            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6369        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6370        // Mark the function for further checking even if the looser rules of
6371        // C++11 do not require such checks, so that we can diagnose
6372        // incompatibilities with C++98.
6373        if (!CXXRecord->isPOD())
6374          getCurFunction()->setHasBranchProtectedScope();
6375      }
6376    }
6377
6378    // C++03 [dcl.init]p9:
6379    //   If no initializer is specified for an object, and the
6380    //   object is of (possibly cv-qualified) non-POD class type (or
6381    //   array thereof), the object shall be default-initialized; if
6382    //   the object is of const-qualified type, the underlying class
6383    //   type shall have a user-declared default
6384    //   constructor. Otherwise, if no initializer is specified for
6385    //   a non- static object, the object and its subobjects, if
6386    //   any, have an indeterminate initial value); if the object
6387    //   or any of its subobjects are of const-qualified type, the
6388    //   program is ill-formed.
6389    // C++0x [dcl.init]p11:
6390    //   If no initializer is specified for an object, the object is
6391    //   default-initialized; [...].
6392    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6393    InitializationKind Kind
6394      = InitializationKind::CreateDefault(Var->getLocation());
6395
6396    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6397    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6398                                      MultiExprArg(*this, 0, 0));
6399    if (Init.isInvalid())
6400      Var->setInvalidDecl();
6401    else if (Init.get())
6402      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6403
6404    CheckCompleteVariableDeclaration(Var);
6405  }
6406}
6407
6408void Sema::ActOnCXXForRangeDecl(Decl *D) {
6409  VarDecl *VD = dyn_cast<VarDecl>(D);
6410  if (!VD) {
6411    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6412    D->setInvalidDecl();
6413    return;
6414  }
6415
6416  VD->setCXXForRangeDecl(true);
6417
6418  // for-range-declaration cannot be given a storage class specifier.
6419  int Error = -1;
6420  switch (VD->getStorageClassAsWritten()) {
6421  case SC_None:
6422    break;
6423  case SC_Extern:
6424    Error = 0;
6425    break;
6426  case SC_Static:
6427    Error = 1;
6428    break;
6429  case SC_PrivateExtern:
6430    Error = 2;
6431    break;
6432  case SC_Auto:
6433    Error = 3;
6434    break;
6435  case SC_Register:
6436    Error = 4;
6437    break;
6438  case SC_OpenCLWorkGroupLocal:
6439    llvm_unreachable("Unexpected storage class");
6440  }
6441  if (VD->isConstexpr())
6442    Error = 5;
6443  if (Error != -1) {
6444    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6445      << VD->getDeclName() << Error;
6446    D->setInvalidDecl();
6447  }
6448}
6449
6450void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6451  if (var->isInvalidDecl()) return;
6452
6453  // In ARC, don't allow jumps past the implicit initialization of a
6454  // local retaining variable.
6455  if (getLangOptions().ObjCAutoRefCount &&
6456      var->hasLocalStorage()) {
6457    switch (var->getType().getObjCLifetime()) {
6458    case Qualifiers::OCL_None:
6459    case Qualifiers::OCL_ExplicitNone:
6460    case Qualifiers::OCL_Autoreleasing:
6461      break;
6462
6463    case Qualifiers::OCL_Weak:
6464    case Qualifiers::OCL_Strong:
6465      getCurFunction()->setHasBranchProtectedScope();
6466      break;
6467    }
6468  }
6469
6470  // All the following checks are C++ only.
6471  if (!getLangOptions().CPlusPlus) return;
6472
6473  QualType baseType = Context.getBaseElementType(var->getType());
6474  if (baseType->isDependentType()) return;
6475
6476  // __block variables might require us to capture a copy-initializer.
6477  if (var->hasAttr<BlocksAttr>()) {
6478    // It's currently invalid to ever have a __block variable with an
6479    // array type; should we diagnose that here?
6480
6481    // Regardless, we don't want to ignore array nesting when
6482    // constructing this copy.
6483    QualType type = var->getType();
6484
6485    if (type->isStructureOrClassType()) {
6486      SourceLocation poi = var->getLocation();
6487      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6488      ExprResult result =
6489        PerformCopyInitialization(
6490                        InitializedEntity::InitializeBlock(poi, type, false),
6491                                  poi, Owned(varRef));
6492      if (!result.isInvalid()) {
6493        result = MaybeCreateExprWithCleanups(result);
6494        Expr *init = result.takeAs<Expr>();
6495        Context.setBlockVarCopyInits(var, init);
6496      }
6497    }
6498  }
6499
6500  Expr *Init = var->getInit();
6501  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6502
6503  if (!var->getDeclContext()->isDependentContext() && Init) {
6504    if (IsGlobal && !var->isConstexpr() &&
6505        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6506                                            var->getLocation())
6507          != DiagnosticsEngine::Ignored &&
6508        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6509      Diag(var->getLocation(), diag::warn_global_constructor)
6510        << Init->getSourceRange();
6511
6512    if (var->isConstexpr()) {
6513      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6514      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6515        SourceLocation DiagLoc = var->getLocation();
6516        // If the note doesn't add any useful information other than a source
6517        // location, fold it into the primary diagnostic.
6518        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6519              diag::note_invalid_subexpr_in_const_expr) {
6520          DiagLoc = Notes[0].first;
6521          Notes.clear();
6522        }
6523        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6524          << var << Init->getSourceRange();
6525        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6526          Diag(Notes[I].first, Notes[I].second);
6527      }
6528    } else if (var->isUsableInConstantExpressions()) {
6529      // Check whether the initializer of a const variable of integral or
6530      // enumeration type is an ICE now, since we can't tell whether it was
6531      // initialized by a constant expression if we check later.
6532      var->checkInitIsICE();
6533    }
6534  }
6535
6536  // Require the destructor.
6537  if (const RecordType *recordType = baseType->getAs<RecordType>())
6538    FinalizeVarWithDestructor(var, recordType);
6539}
6540
6541/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6542/// any semantic actions necessary after any initializer has been attached.
6543void
6544Sema::FinalizeDeclaration(Decl *ThisDecl) {
6545  // Note that we are no longer parsing the initializer for this declaration.
6546  ParsingInitForAutoVars.erase(ThisDecl);
6547}
6548
6549Sema::DeclGroupPtrTy
6550Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6551                              Decl **Group, unsigned NumDecls) {
6552  SmallVector<Decl*, 8> Decls;
6553
6554  if (DS.isTypeSpecOwned())
6555    Decls.push_back(DS.getRepAsDecl());
6556
6557  for (unsigned i = 0; i != NumDecls; ++i)
6558    if (Decl *D = Group[i])
6559      Decls.push_back(D);
6560
6561  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6562                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6563}
6564
6565/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6566/// group, performing any necessary semantic checking.
6567Sema::DeclGroupPtrTy
6568Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6569                           bool TypeMayContainAuto) {
6570  // C++0x [dcl.spec.auto]p7:
6571  //   If the type deduced for the template parameter U is not the same in each
6572  //   deduction, the program is ill-formed.
6573  // FIXME: When initializer-list support is added, a distinction is needed
6574  // between the deduced type U and the deduced type which 'auto' stands for.
6575  //   auto a = 0, b = { 1, 2, 3 };
6576  // is legal because the deduced type U is 'int' in both cases.
6577  if (TypeMayContainAuto && NumDecls > 1) {
6578    QualType Deduced;
6579    CanQualType DeducedCanon;
6580    VarDecl *DeducedDecl = 0;
6581    for (unsigned i = 0; i != NumDecls; ++i) {
6582      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6583        AutoType *AT = D->getType()->getContainedAutoType();
6584        // Don't reissue diagnostics when instantiating a template.
6585        if (AT && D->isInvalidDecl())
6586          break;
6587        if (AT && AT->isDeduced()) {
6588          QualType U = AT->getDeducedType();
6589          CanQualType UCanon = Context.getCanonicalType(U);
6590          if (Deduced.isNull()) {
6591            Deduced = U;
6592            DeducedCanon = UCanon;
6593            DeducedDecl = D;
6594          } else if (DeducedCanon != UCanon) {
6595            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6596                 diag::err_auto_different_deductions)
6597              << Deduced << DeducedDecl->getDeclName()
6598              << U << D->getDeclName()
6599              << DeducedDecl->getInit()->getSourceRange()
6600              << D->getInit()->getSourceRange();
6601            D->setInvalidDecl();
6602            break;
6603          }
6604        }
6605      }
6606    }
6607  }
6608
6609  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6610}
6611
6612
6613/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6614/// to introduce parameters into function prototype scope.
6615Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6616  const DeclSpec &DS = D.getDeclSpec();
6617
6618  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6619  // C++03 [dcl.stc]p2 also permits 'auto'.
6620  VarDecl::StorageClass StorageClass = SC_None;
6621  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6622  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6623    StorageClass = SC_Register;
6624    StorageClassAsWritten = SC_Register;
6625  } else if (getLangOptions().CPlusPlus &&
6626             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6627    StorageClass = SC_Auto;
6628    StorageClassAsWritten = SC_Auto;
6629  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6630    Diag(DS.getStorageClassSpecLoc(),
6631         diag::err_invalid_storage_class_in_func_decl);
6632    D.getMutableDeclSpec().ClearStorageClassSpecs();
6633  }
6634
6635  if (D.getDeclSpec().isThreadSpecified())
6636    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6637  if (D.getDeclSpec().isConstexprSpecified())
6638    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6639      << 0;
6640
6641  DiagnoseFunctionSpecifiers(D);
6642
6643  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6644  QualType parmDeclType = TInfo->getType();
6645
6646  if (getLangOptions().CPlusPlus) {
6647    // Check that there are no default arguments inside the type of this
6648    // parameter.
6649    CheckExtraCXXDefaultArguments(D);
6650
6651    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6652    if (D.getCXXScopeSpec().isSet()) {
6653      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6654        << D.getCXXScopeSpec().getRange();
6655      D.getCXXScopeSpec().clear();
6656    }
6657  }
6658
6659  // Ensure we have a valid name
6660  IdentifierInfo *II = 0;
6661  if (D.hasName()) {
6662    II = D.getIdentifier();
6663    if (!II) {
6664      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6665        << GetNameForDeclarator(D).getName().getAsString();
6666      D.setInvalidType(true);
6667    }
6668  }
6669
6670  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6671  if (II) {
6672    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6673                   ForRedeclaration);
6674    LookupName(R, S);
6675    if (R.isSingleResult()) {
6676      NamedDecl *PrevDecl = R.getFoundDecl();
6677      if (PrevDecl->isTemplateParameter()) {
6678        // Maybe we will complain about the shadowed template parameter.
6679        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6680        // Just pretend that we didn't see the previous declaration.
6681        PrevDecl = 0;
6682      } else if (S->isDeclScope(PrevDecl)) {
6683        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6684        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6685
6686        // Recover by removing the name
6687        II = 0;
6688        D.SetIdentifier(0, D.getIdentifierLoc());
6689        D.setInvalidType(true);
6690      }
6691    }
6692  }
6693
6694  // Temporarily put parameter variables in the translation unit, not
6695  // the enclosing context.  This prevents them from accidentally
6696  // looking like class members in C++.
6697  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6698                                    D.getSourceRange().getBegin(),
6699                                    D.getIdentifierLoc(), II,
6700                                    parmDeclType, TInfo,
6701                                    StorageClass, StorageClassAsWritten);
6702
6703  if (D.isInvalidType())
6704    New->setInvalidDecl();
6705
6706  assert(S->isFunctionPrototypeScope());
6707  assert(S->getFunctionPrototypeDepth() >= 1);
6708  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6709                    S->getNextFunctionPrototypeIndex());
6710
6711  // Add the parameter declaration into this scope.
6712  S->AddDecl(New);
6713  if (II)
6714    IdResolver.AddDecl(New);
6715
6716  ProcessDeclAttributes(S, New, D);
6717
6718  if (D.getDeclSpec().isModulePrivateSpecified())
6719    Diag(New->getLocation(), diag::err_module_private_local)
6720      << 1 << New->getDeclName()
6721      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6722      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6723
6724  if (New->hasAttr<BlocksAttr>()) {
6725    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6726  }
6727  return New;
6728}
6729
6730/// \brief Synthesizes a variable for a parameter arising from a
6731/// typedef.
6732ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6733                                              SourceLocation Loc,
6734                                              QualType T) {
6735  /* FIXME: setting StartLoc == Loc.
6736     Would it be worth to modify callers so as to provide proper source
6737     location for the unnamed parameters, embedding the parameter's type? */
6738  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6739                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6740                                           SC_None, SC_None, 0);
6741  Param->setImplicit();
6742  return Param;
6743}
6744
6745void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6746                                    ParmVarDecl * const *ParamEnd) {
6747  // Don't diagnose unused-parameter errors in template instantiations; we
6748  // will already have done so in the template itself.
6749  if (!ActiveTemplateInstantiations.empty())
6750    return;
6751
6752  for (; Param != ParamEnd; ++Param) {
6753    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6754        !(*Param)->hasAttr<UnusedAttr>()) {
6755      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6756        << (*Param)->getDeclName();
6757    }
6758  }
6759}
6760
6761void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6762                                                  ParmVarDecl * const *ParamEnd,
6763                                                  QualType ReturnTy,
6764                                                  NamedDecl *D) {
6765  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6766    return;
6767
6768  // Warn if the return value is pass-by-value and larger than the specified
6769  // threshold.
6770  if (ReturnTy.isPODType(Context)) {
6771    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6772    if (Size > LangOpts.NumLargeByValueCopy)
6773      Diag(D->getLocation(), diag::warn_return_value_size)
6774          << D->getDeclName() << Size;
6775  }
6776
6777  // Warn if any parameter is pass-by-value and larger than the specified
6778  // threshold.
6779  for (; Param != ParamEnd; ++Param) {
6780    QualType T = (*Param)->getType();
6781    if (!T.isPODType(Context))
6782      continue;
6783    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6784    if (Size > LangOpts.NumLargeByValueCopy)
6785      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6786          << (*Param)->getDeclName() << Size;
6787  }
6788}
6789
6790ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6791                                  SourceLocation NameLoc, IdentifierInfo *Name,
6792                                  QualType T, TypeSourceInfo *TSInfo,
6793                                  VarDecl::StorageClass StorageClass,
6794                                  VarDecl::StorageClass StorageClassAsWritten) {
6795  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6796  if (getLangOptions().ObjCAutoRefCount &&
6797      T.getObjCLifetime() == Qualifiers::OCL_None &&
6798      T->isObjCLifetimeType()) {
6799
6800    Qualifiers::ObjCLifetime lifetime;
6801
6802    // Special cases for arrays:
6803    //   - if it's const, use __unsafe_unretained
6804    //   - otherwise, it's an error
6805    if (T->isArrayType()) {
6806      if (!T.isConstQualified()) {
6807        DelayedDiagnostics.add(
6808            sema::DelayedDiagnostic::makeForbiddenType(
6809            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6810      }
6811      lifetime = Qualifiers::OCL_ExplicitNone;
6812    } else {
6813      lifetime = T->getObjCARCImplicitLifetime();
6814    }
6815    T = Context.getLifetimeQualifiedType(T, lifetime);
6816  }
6817
6818  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6819                                         Context.getAdjustedParameterType(T),
6820                                         TSInfo,
6821                                         StorageClass, StorageClassAsWritten,
6822                                         0);
6823
6824  // Parameters can not be abstract class types.
6825  // For record types, this is done by the AbstractClassUsageDiagnoser once
6826  // the class has been completely parsed.
6827  if (!CurContext->isRecord() &&
6828      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6829                             AbstractParamType))
6830    New->setInvalidDecl();
6831
6832  // Parameter declarators cannot be interface types. All ObjC objects are
6833  // passed by reference.
6834  if (T->isObjCObjectType()) {
6835    Diag(NameLoc,
6836         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6837      << FixItHint::CreateInsertion(NameLoc, "*");
6838    T = Context.getObjCObjectPointerType(T);
6839    New->setType(T);
6840  }
6841
6842  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6843  // duration shall not be qualified by an address-space qualifier."
6844  // Since all parameters have automatic store duration, they can not have
6845  // an address space.
6846  if (T.getAddressSpace() != 0) {
6847    Diag(NameLoc, diag::err_arg_with_address_space);
6848    New->setInvalidDecl();
6849  }
6850
6851  return New;
6852}
6853
6854void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6855                                           SourceLocation LocAfterDecls) {
6856  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6857
6858  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6859  // for a K&R function.
6860  if (!FTI.hasPrototype) {
6861    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6862      --i;
6863      if (FTI.ArgInfo[i].Param == 0) {
6864        llvm::SmallString<256> Code;
6865        llvm::raw_svector_ostream(Code) << "  int "
6866                                        << FTI.ArgInfo[i].Ident->getName()
6867                                        << ";\n";
6868        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6869          << FTI.ArgInfo[i].Ident
6870          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6871
6872        // Implicitly declare the argument as type 'int' for lack of a better
6873        // type.
6874        AttributeFactory attrs;
6875        DeclSpec DS(attrs);
6876        const char* PrevSpec; // unused
6877        unsigned DiagID; // unused
6878        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6879                           PrevSpec, DiagID);
6880        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6881        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6882        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6883      }
6884    }
6885  }
6886}
6887
6888Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6889                                         Declarator &D) {
6890  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6891  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6892  Scope *ParentScope = FnBodyScope->getParent();
6893
6894  D.setFunctionDefinitionKind(FDK_Definition);
6895  Decl *DP = HandleDeclarator(ParentScope, D,
6896                              MultiTemplateParamsArg(*this));
6897  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6898}
6899
6900static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6901  // Don't warn about invalid declarations.
6902  if (FD->isInvalidDecl())
6903    return false;
6904
6905  // Or declarations that aren't global.
6906  if (!FD->isGlobal())
6907    return false;
6908
6909  // Don't warn about C++ member functions.
6910  if (isa<CXXMethodDecl>(FD))
6911    return false;
6912
6913  // Don't warn about 'main'.
6914  if (FD->isMain())
6915    return false;
6916
6917  // Don't warn about inline functions.
6918  if (FD->isInlined())
6919    return false;
6920
6921  // Don't warn about function templates.
6922  if (FD->getDescribedFunctionTemplate())
6923    return false;
6924
6925  // Don't warn about function template specializations.
6926  if (FD->isFunctionTemplateSpecialization())
6927    return false;
6928
6929  bool MissingPrototype = true;
6930  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6931       Prev; Prev = Prev->getPreviousDeclaration()) {
6932    // Ignore any declarations that occur in function or method
6933    // scope, because they aren't visible from the header.
6934    if (Prev->getDeclContext()->isFunctionOrMethod())
6935      continue;
6936
6937    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6938    break;
6939  }
6940
6941  return MissingPrototype;
6942}
6943
6944void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6945  // Don't complain if we're in GNU89 mode and the previous definition
6946  // was an extern inline function.
6947  const FunctionDecl *Definition;
6948  if (FD->isDefined(Definition) &&
6949      !canRedefineFunction(Definition, getLangOptions())) {
6950    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6951        Definition->getStorageClass() == SC_Extern)
6952      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6953        << FD->getDeclName() << getLangOptions().CPlusPlus;
6954    else
6955      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6956    Diag(Definition->getLocation(), diag::note_previous_definition);
6957  }
6958}
6959
6960Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6961  // Clear the last template instantiation error context.
6962  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6963
6964  if (!D)
6965    return D;
6966  FunctionDecl *FD = 0;
6967
6968  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6969    FD = FunTmpl->getTemplatedDecl();
6970  else
6971    FD = cast<FunctionDecl>(D);
6972
6973  // Enter a new function scope
6974  PushFunctionScope();
6975
6976  // See if this is a redefinition.
6977  if (!FD->isLateTemplateParsed())
6978    CheckForFunctionRedefinition(FD);
6979
6980  // Builtin functions cannot be defined.
6981  if (unsigned BuiltinID = FD->getBuiltinID()) {
6982    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6983      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6984      FD->setInvalidDecl();
6985    }
6986  }
6987
6988  // The return type of a function definition must be complete
6989  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6990  QualType ResultType = FD->getResultType();
6991  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6992      !FD->isInvalidDecl() &&
6993      RequireCompleteType(FD->getLocation(), ResultType,
6994                          diag::err_func_def_incomplete_result))
6995    FD->setInvalidDecl();
6996
6997  // GNU warning -Wmissing-prototypes:
6998  //   Warn if a global function is defined without a previous
6999  //   prototype declaration. This warning is issued even if the
7000  //   definition itself provides a prototype. The aim is to detect
7001  //   global functions that fail to be declared in header files.
7002  if (ShouldWarnAboutMissingPrototype(FD))
7003    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7004
7005  if (FnBodyScope)
7006    PushDeclContext(FnBodyScope, FD);
7007
7008  // Check the validity of our function parameters
7009  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7010                           /*CheckParameterNames=*/true);
7011
7012  // Introduce our parameters into the function scope
7013  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7014    ParmVarDecl *Param = FD->getParamDecl(p);
7015    Param->setOwningFunction(FD);
7016
7017    // If this has an identifier, add it to the scope stack.
7018    if (Param->getIdentifier() && FnBodyScope) {
7019      CheckShadow(FnBodyScope, Param);
7020
7021      PushOnScopeChains(Param, FnBodyScope);
7022    }
7023  }
7024
7025  // Checking attributes of current function definition
7026  // dllimport attribute.
7027  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7028  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7029    // dllimport attribute cannot be directly applied to definition.
7030    // Microsoft accepts dllimport for functions defined within class scope.
7031    if (!DA->isInherited() &&
7032        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7033      Diag(FD->getLocation(),
7034           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7035        << "dllimport";
7036      FD->setInvalidDecl();
7037      return FD;
7038    }
7039
7040    // Visual C++ appears to not think this is an issue, so only issue
7041    // a warning when Microsoft extensions are disabled.
7042    if (!LangOpts.MicrosoftExt) {
7043      // If a symbol previously declared dllimport is later defined, the
7044      // attribute is ignored in subsequent references, and a warning is
7045      // emitted.
7046      Diag(FD->getLocation(),
7047           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7048        << FD->getName() << "dllimport";
7049    }
7050  }
7051  return FD;
7052}
7053
7054/// \brief Given the set of return statements within a function body,
7055/// compute the variables that are subject to the named return value
7056/// optimization.
7057///
7058/// Each of the variables that is subject to the named return value
7059/// optimization will be marked as NRVO variables in the AST, and any
7060/// return statement that has a marked NRVO variable as its NRVO candidate can
7061/// use the named return value optimization.
7062///
7063/// This function applies a very simplistic algorithm for NRVO: if every return
7064/// statement in the function has the same NRVO candidate, that candidate is
7065/// the NRVO variable.
7066///
7067/// FIXME: Employ a smarter algorithm that accounts for multiple return
7068/// statements and the lifetimes of the NRVO candidates. We should be able to
7069/// find a maximal set of NRVO variables.
7070void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7071  ReturnStmt **Returns = Scope->Returns.data();
7072
7073  const VarDecl *NRVOCandidate = 0;
7074  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7075    if (!Returns[I]->getNRVOCandidate())
7076      return;
7077
7078    if (!NRVOCandidate)
7079      NRVOCandidate = Returns[I]->getNRVOCandidate();
7080    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7081      return;
7082  }
7083
7084  if (NRVOCandidate)
7085    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7086}
7087
7088Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7089  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7090}
7091
7092Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7093                                    bool IsInstantiation) {
7094  FunctionDecl *FD = 0;
7095  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7096  if (FunTmpl)
7097    FD = FunTmpl->getTemplatedDecl();
7098  else
7099    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7100
7101  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7102  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7103
7104  if (FD) {
7105    FD->setBody(Body);
7106    if (FD->isMain()) {
7107      // C and C++ allow for main to automagically return 0.
7108      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7109      FD->setHasImplicitReturnZero(true);
7110      WP.disableCheckFallThrough();
7111    } else if (FD->hasAttr<NakedAttr>()) {
7112      // If the function is marked 'naked', don't complain about missing return
7113      // statements.
7114      WP.disableCheckFallThrough();
7115    }
7116
7117    // MSVC permits the use of pure specifier (=0) on function definition,
7118    // defined at class scope, warn about this non standard construct.
7119    if (getLangOptions().MicrosoftExt && FD->isPure())
7120      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7121
7122    if (!FD->isInvalidDecl()) {
7123      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7124      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7125                                             FD->getResultType(), FD);
7126
7127      // If this is a constructor, we need a vtable.
7128      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7129        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7130
7131      computeNRVO(Body, getCurFunction());
7132    }
7133
7134    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7135  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7136    assert(MD == getCurMethodDecl() && "Method parsing confused");
7137    MD->setBody(Body);
7138    if (Body)
7139      MD->setEndLoc(Body->getLocEnd());
7140    if (!MD->isInvalidDecl()) {
7141      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7142      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7143                                             MD->getResultType(), MD);
7144
7145      if (Body)
7146        computeNRVO(Body, getCurFunction());
7147    }
7148    if (ObjCShouldCallSuperDealloc) {
7149      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7150      ObjCShouldCallSuperDealloc = false;
7151    }
7152    if (ObjCShouldCallSuperFinalize) {
7153      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7154      ObjCShouldCallSuperFinalize = false;
7155    }
7156  } else {
7157    return 0;
7158  }
7159
7160  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7161         "ObjC methods, which should have been handled in the block above.");
7162  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7163         "ObjC methods, which should have been handled in the block above.");
7164
7165  // Verify and clean out per-function state.
7166  if (Body) {
7167    // C++ constructors that have function-try-blocks can't have return
7168    // statements in the handlers of that block. (C++ [except.handle]p14)
7169    // Verify this.
7170    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7171      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7172
7173    // Verify that gotos and switch cases don't jump into scopes illegally.
7174    if (getCurFunction()->NeedsScopeChecking() &&
7175        !dcl->isInvalidDecl() &&
7176        !hasAnyUnrecoverableErrorsInThisFunction())
7177      DiagnoseInvalidJumps(Body);
7178
7179    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7180      if (!Destructor->getParent()->isDependentType())
7181        CheckDestructor(Destructor);
7182
7183      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7184                                             Destructor->getParent());
7185    }
7186
7187    // If any errors have occurred, clear out any temporaries that may have
7188    // been leftover. This ensures that these temporaries won't be picked up for
7189    // deletion in some later function.
7190    if (PP.getDiagnostics().hasErrorOccurred() ||
7191        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7192      DiscardCleanupsInEvaluationContext();
7193    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7194      // Since the body is valid, issue any analysis-based warnings that are
7195      // enabled.
7196      ActivePolicy = &WP;
7197    }
7198
7199    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7200        !CheckConstexprFunctionBody(FD, Body))
7201      FD->setInvalidDecl();
7202
7203    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7204    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7205  }
7206
7207  if (!IsInstantiation)
7208    PopDeclContext();
7209
7210  PopFunctionOrBlockScope(ActivePolicy, dcl);
7211
7212  // If any errors have occurred, clear out any temporaries that may have
7213  // been leftover. This ensures that these temporaries won't be picked up for
7214  // deletion in some later function.
7215  if (getDiagnostics().hasErrorOccurred()) {
7216    DiscardCleanupsInEvaluationContext();
7217  }
7218
7219  return dcl;
7220}
7221
7222
7223/// When we finish delayed parsing of an attribute, we must attach it to the
7224/// relevant Decl.
7225void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7226                                       ParsedAttributes &Attrs) {
7227  ProcessDeclAttributeList(S, D, Attrs.getList());
7228}
7229
7230
7231/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7232/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7233NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7234                                          IdentifierInfo &II, Scope *S) {
7235  // Before we produce a declaration for an implicitly defined
7236  // function, see whether there was a locally-scoped declaration of
7237  // this name as a function or variable. If so, use that
7238  // (non-visible) declaration, and complain about it.
7239  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7240    = findLocallyScopedExternalDecl(&II);
7241  if (Pos != LocallyScopedExternalDecls.end()) {
7242    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7243    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7244    return Pos->second;
7245  }
7246
7247  // Extension in C99.  Legal in C90, but warn about it.
7248  unsigned diag_id;
7249  if (II.getName().startswith("__builtin_"))
7250    diag_id = diag::err_builtin_unknown;
7251  else if (getLangOptions().C99)
7252    diag_id = diag::ext_implicit_function_decl;
7253  else
7254    diag_id = diag::warn_implicit_function_decl;
7255  Diag(Loc, diag_id) << &II;
7256
7257  // Because typo correction is expensive, only do it if the implicit
7258  // function declaration is going to be treated as an error.
7259  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7260    TypoCorrection Corrected;
7261    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7262                                      LookupOrdinaryName, S, 0))) {
7263      NamedDecl *Decl = Corrected.getCorrectionDecl();
7264      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7265        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7266        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7267
7268        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7269            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7270
7271        if (Func->getLocation().isValid()
7272            && !II.getName().startswith("__builtin_"))
7273          Diag(Func->getLocation(), diag::note_previous_decl)
7274              << CorrectedQuotedStr;
7275      }
7276    }
7277  }
7278
7279  // Set a Declarator for the implicit definition: int foo();
7280  const char *Dummy;
7281  AttributeFactory attrFactory;
7282  DeclSpec DS(attrFactory);
7283  unsigned DiagID;
7284  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7285  (void)Error; // Silence warning.
7286  assert(!Error && "Error setting up implicit decl!");
7287  Declarator D(DS, Declarator::BlockContext);
7288  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7289                                             0, 0, true, SourceLocation(),
7290                                             SourceLocation(), SourceLocation(),
7291                                             SourceLocation(),
7292                                             EST_None, SourceLocation(),
7293                                             0, 0, 0, 0, Loc, Loc, D),
7294                DS.getAttributes(),
7295                SourceLocation());
7296  D.SetIdentifier(&II, Loc);
7297
7298  // Insert this function into translation-unit scope.
7299
7300  DeclContext *PrevDC = CurContext;
7301  CurContext = Context.getTranslationUnitDecl();
7302
7303  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7304  FD->setImplicit();
7305
7306  CurContext = PrevDC;
7307
7308  AddKnownFunctionAttributes(FD);
7309
7310  return FD;
7311}
7312
7313/// \brief Adds any function attributes that we know a priori based on
7314/// the declaration of this function.
7315///
7316/// These attributes can apply both to implicitly-declared builtins
7317/// (like __builtin___printf_chk) or to library-declared functions
7318/// like NSLog or printf.
7319///
7320/// We need to check for duplicate attributes both here and where user-written
7321/// attributes are applied to declarations.
7322void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7323  if (FD->isInvalidDecl())
7324    return;
7325
7326  // If this is a built-in function, map its builtin attributes to
7327  // actual attributes.
7328  if (unsigned BuiltinID = FD->getBuiltinID()) {
7329    // Handle printf-formatting attributes.
7330    unsigned FormatIdx;
7331    bool HasVAListArg;
7332    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7333      if (!FD->getAttr<FormatAttr>())
7334        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7335                                                "printf", FormatIdx+1,
7336                                               HasVAListArg ? 0 : FormatIdx+2));
7337    }
7338    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7339                                             HasVAListArg)) {
7340     if (!FD->getAttr<FormatAttr>())
7341       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7342                                              "scanf", FormatIdx+1,
7343                                              HasVAListArg ? 0 : FormatIdx+2));
7344    }
7345
7346    // Mark const if we don't care about errno and that is the only
7347    // thing preventing the function from being const. This allows
7348    // IRgen to use LLVM intrinsics for such functions.
7349    if (!getLangOptions().MathErrno &&
7350        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7351      if (!FD->getAttr<ConstAttr>())
7352        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7353    }
7354
7355    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7356        !FD->getAttr<ReturnsTwiceAttr>())
7357      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7358    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7359      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7360    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7361      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7362  }
7363
7364  IdentifierInfo *Name = FD->getIdentifier();
7365  if (!Name)
7366    return;
7367  if ((!getLangOptions().CPlusPlus &&
7368       FD->getDeclContext()->isTranslationUnit()) ||
7369      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7370       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7371       LinkageSpecDecl::lang_c)) {
7372    // Okay: this could be a libc/libm/Objective-C function we know
7373    // about.
7374  } else
7375    return;
7376
7377  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7378    // FIXME: NSLog and NSLogv should be target specific
7379    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7380      // FIXME: We known better than our headers.
7381      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7382    } else
7383      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7384                                             "printf", 1,
7385                                             Name->isStr("NSLogv") ? 0 : 2));
7386  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7387    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7388    // target-specific builtins, perhaps?
7389    if (!FD->getAttr<FormatAttr>())
7390      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7391                                             "printf", 2,
7392                                             Name->isStr("vasprintf") ? 0 : 3));
7393  }
7394}
7395
7396TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7397                                    TypeSourceInfo *TInfo) {
7398  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7399  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7400
7401  if (!TInfo) {
7402    assert(D.isInvalidType() && "no declarator info for valid type");
7403    TInfo = Context.getTrivialTypeSourceInfo(T);
7404  }
7405
7406  // Scope manipulation handled by caller.
7407  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7408                                           D.getSourceRange().getBegin(),
7409                                           D.getIdentifierLoc(),
7410                                           D.getIdentifier(),
7411                                           TInfo);
7412
7413  // Bail out immediately if we have an invalid declaration.
7414  if (D.isInvalidType()) {
7415    NewTD->setInvalidDecl();
7416    return NewTD;
7417  }
7418
7419  if (D.getDeclSpec().isModulePrivateSpecified()) {
7420    if (CurContext->isFunctionOrMethod())
7421      Diag(NewTD->getLocation(), diag::err_module_private_local)
7422        << 2 << NewTD->getDeclName()
7423        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7424        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7425    else
7426      NewTD->setModulePrivate();
7427  }
7428
7429  // C++ [dcl.typedef]p8:
7430  //   If the typedef declaration defines an unnamed class (or
7431  //   enum), the first typedef-name declared by the declaration
7432  //   to be that class type (or enum type) is used to denote the
7433  //   class type (or enum type) for linkage purposes only.
7434  // We need to check whether the type was declared in the declaration.
7435  switch (D.getDeclSpec().getTypeSpecType()) {
7436  case TST_enum:
7437  case TST_struct:
7438  case TST_union:
7439  case TST_class: {
7440    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7441
7442    // Do nothing if the tag is not anonymous or already has an
7443    // associated typedef (from an earlier typedef in this decl group).
7444    if (tagFromDeclSpec->getIdentifier()) break;
7445    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7446
7447    // A well-formed anonymous tag must always be a TUK_Definition.
7448    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7449
7450    // The type must match the tag exactly;  no qualifiers allowed.
7451    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7452      break;
7453
7454    // Otherwise, set this is the anon-decl typedef for the tag.
7455    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7456    break;
7457  }
7458
7459  default:
7460    break;
7461  }
7462
7463  return NewTD;
7464}
7465
7466
7467/// \brief Determine whether a tag with a given kind is acceptable
7468/// as a redeclaration of the given tag declaration.
7469///
7470/// \returns true if the new tag kind is acceptable, false otherwise.
7471bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7472                                        TagTypeKind NewTag, bool isDefinition,
7473                                        SourceLocation NewTagLoc,
7474                                        const IdentifierInfo &Name) {
7475  // C++ [dcl.type.elab]p3:
7476  //   The class-key or enum keyword present in the
7477  //   elaborated-type-specifier shall agree in kind with the
7478  //   declaration to which the name in the elaborated-type-specifier
7479  //   refers. This rule also applies to the form of
7480  //   elaborated-type-specifier that declares a class-name or
7481  //   friend class since it can be construed as referring to the
7482  //   definition of the class. Thus, in any
7483  //   elaborated-type-specifier, the enum keyword shall be used to
7484  //   refer to an enumeration (7.2), the union class-key shall be
7485  //   used to refer to a union (clause 9), and either the class or
7486  //   struct class-key shall be used to refer to a class (clause 9)
7487  //   declared using the class or struct class-key.
7488  TagTypeKind OldTag = Previous->getTagKind();
7489  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7490    if (OldTag == NewTag)
7491      return true;
7492
7493  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7494      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7495    // Warn about the struct/class tag mismatch.
7496    bool isTemplate = false;
7497    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7498      isTemplate = Record->getDescribedClassTemplate();
7499
7500    if (!ActiveTemplateInstantiations.empty()) {
7501      // In a template instantiation, do not offer fix-its for tag mismatches
7502      // since they usually mess up the template instead of fixing the problem.
7503      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7504        << (NewTag == TTK_Class) << isTemplate << &Name;
7505      return true;
7506    }
7507
7508    if (isDefinition) {
7509      // On definitions, check previous tags and issue a fix-it for each
7510      // one that doesn't match the current tag.
7511      if (Previous->getDefinition()) {
7512        // Don't suggest fix-its for redefinitions.
7513        return true;
7514      }
7515
7516      bool previousMismatch = false;
7517      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7518           E(Previous->redecls_end()); I != E; ++I) {
7519        if (I->getTagKind() != NewTag) {
7520          if (!previousMismatch) {
7521            previousMismatch = true;
7522            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7523              << (NewTag == TTK_Class) << isTemplate << &Name;
7524          }
7525          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7526            << (NewTag == TTK_Class)
7527            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7528                                            NewTag == TTK_Class?
7529                                            "class" : "struct");
7530        }
7531      }
7532      return true;
7533    }
7534
7535    // Check for a previous definition.  If current tag and definition
7536    // are same type, do nothing.  If no definition, but disagree with
7537    // with previous tag type, give a warning, but no fix-it.
7538    const TagDecl *Redecl = Previous->getDefinition() ?
7539                            Previous->getDefinition() : Previous;
7540    if (Redecl->getTagKind() == NewTag) {
7541      return true;
7542    }
7543
7544    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7545      << (NewTag == TTK_Class)
7546      << isTemplate << &Name;
7547    Diag(Redecl->getLocation(), diag::note_previous_use);
7548
7549    // If there is a previous defintion, suggest a fix-it.
7550    if (Previous->getDefinition()) {
7551        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7552          << (Redecl->getTagKind() == TTK_Class)
7553          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7554                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7555    }
7556
7557    return true;
7558  }
7559  return false;
7560}
7561
7562/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7563/// former case, Name will be non-null.  In the later case, Name will be null.
7564/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7565/// reference/declaration/definition of a tag.
7566Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7567                     SourceLocation KWLoc, CXXScopeSpec &SS,
7568                     IdentifierInfo *Name, SourceLocation NameLoc,
7569                     AttributeList *Attr, AccessSpecifier AS,
7570                     SourceLocation ModulePrivateLoc,
7571                     MultiTemplateParamsArg TemplateParameterLists,
7572                     bool &OwnedDecl, bool &IsDependent,
7573                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7574                     TypeResult UnderlyingType) {
7575  // If this is not a definition, it must have a name.
7576  assert((Name != 0 || TUK == TUK_Definition) &&
7577         "Nameless record must be a definition!");
7578  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7579
7580  OwnedDecl = false;
7581  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7582
7583  // FIXME: Check explicit specializations more carefully.
7584  bool isExplicitSpecialization = false;
7585  bool Invalid = false;
7586
7587  // We only need to do this matching if we have template parameters
7588  // or a scope specifier, which also conveniently avoids this work
7589  // for non-C++ cases.
7590  if (TemplateParameterLists.size() > 0 ||
7591      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7592    if (TemplateParameterList *TemplateParams
7593          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7594                                                TemplateParameterLists.get(),
7595                                                TemplateParameterLists.size(),
7596                                                    TUK == TUK_Friend,
7597                                                    isExplicitSpecialization,
7598                                                    Invalid)) {
7599      if (TemplateParams->size() > 0) {
7600        // This is a declaration or definition of a class template (which may
7601        // be a member of another template).
7602
7603        if (Invalid)
7604          return 0;
7605
7606        OwnedDecl = false;
7607        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7608                                               SS, Name, NameLoc, Attr,
7609                                               TemplateParams, AS,
7610                                               ModulePrivateLoc,
7611                                           TemplateParameterLists.size() - 1,
7612                 (TemplateParameterList**) TemplateParameterLists.release());
7613        return Result.get();
7614      } else {
7615        // The "template<>" header is extraneous.
7616        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7617          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7618        isExplicitSpecialization = true;
7619      }
7620    }
7621  }
7622
7623  // Figure out the underlying type if this a enum declaration. We need to do
7624  // this early, because it's needed to detect if this is an incompatible
7625  // redeclaration.
7626  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7627
7628  if (Kind == TTK_Enum) {
7629    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7630      // No underlying type explicitly specified, or we failed to parse the
7631      // type, default to int.
7632      EnumUnderlying = Context.IntTy.getTypePtr();
7633    else if (UnderlyingType.get()) {
7634      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7635      // integral type; any cv-qualification is ignored.
7636      TypeSourceInfo *TI = 0;
7637      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7638      EnumUnderlying = TI;
7639
7640      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7641
7642      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7643        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7644          << T;
7645        // Recover by falling back to int.
7646        EnumUnderlying = Context.IntTy.getTypePtr();
7647      }
7648
7649      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7650                                          UPPC_FixedUnderlyingType))
7651        EnumUnderlying = Context.IntTy.getTypePtr();
7652
7653    } else if (getLangOptions().MicrosoftExt)
7654      // Microsoft enums are always of int type.
7655      EnumUnderlying = Context.IntTy.getTypePtr();
7656  }
7657
7658  DeclContext *SearchDC = CurContext;
7659  DeclContext *DC = CurContext;
7660  bool isStdBadAlloc = false;
7661
7662  RedeclarationKind Redecl = ForRedeclaration;
7663  if (TUK == TUK_Friend || TUK == TUK_Reference)
7664    Redecl = NotForRedeclaration;
7665
7666  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7667
7668  if (Name && SS.isNotEmpty()) {
7669    // We have a nested-name tag ('struct foo::bar').
7670
7671    // Check for invalid 'foo::'.
7672    if (SS.isInvalid()) {
7673      Name = 0;
7674      goto CreateNewDecl;
7675    }
7676
7677    // If this is a friend or a reference to a class in a dependent
7678    // context, don't try to make a decl for it.
7679    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7680      DC = computeDeclContext(SS, false);
7681      if (!DC) {
7682        IsDependent = true;
7683        return 0;
7684      }
7685    } else {
7686      DC = computeDeclContext(SS, true);
7687      if (!DC) {
7688        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7689          << SS.getRange();
7690        return 0;
7691      }
7692    }
7693
7694    if (RequireCompleteDeclContext(SS, DC))
7695      return 0;
7696
7697    SearchDC = DC;
7698    // Look-up name inside 'foo::'.
7699    LookupQualifiedName(Previous, DC);
7700
7701    if (Previous.isAmbiguous())
7702      return 0;
7703
7704    if (Previous.empty()) {
7705      // Name lookup did not find anything. However, if the
7706      // nested-name-specifier refers to the current instantiation,
7707      // and that current instantiation has any dependent base
7708      // classes, we might find something at instantiation time: treat
7709      // this as a dependent elaborated-type-specifier.
7710      // But this only makes any sense for reference-like lookups.
7711      if (Previous.wasNotFoundInCurrentInstantiation() &&
7712          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7713        IsDependent = true;
7714        return 0;
7715      }
7716
7717      // A tag 'foo::bar' must already exist.
7718      Diag(NameLoc, diag::err_not_tag_in_scope)
7719        << Kind << Name << DC << SS.getRange();
7720      Name = 0;
7721      Invalid = true;
7722      goto CreateNewDecl;
7723    }
7724  } else if (Name) {
7725    // If this is a named struct, check to see if there was a previous forward
7726    // declaration or definition.
7727    // FIXME: We're looking into outer scopes here, even when we
7728    // shouldn't be. Doing so can result in ambiguities that we
7729    // shouldn't be diagnosing.
7730    LookupName(Previous, S);
7731
7732    if (Previous.isAmbiguous() &&
7733        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7734      LookupResult::Filter F = Previous.makeFilter();
7735      while (F.hasNext()) {
7736        NamedDecl *ND = F.next();
7737        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7738          F.erase();
7739      }
7740      F.done();
7741    }
7742
7743    // Note:  there used to be some attempt at recovery here.
7744    if (Previous.isAmbiguous())
7745      return 0;
7746
7747    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7748      // FIXME: This makes sure that we ignore the contexts associated
7749      // with C structs, unions, and enums when looking for a matching
7750      // tag declaration or definition. See the similar lookup tweak
7751      // in Sema::LookupName; is there a better way to deal with this?
7752      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7753        SearchDC = SearchDC->getParent();
7754    }
7755  } else if (S->isFunctionPrototypeScope()) {
7756    // If this is an enum declaration in function prototype scope, set its
7757    // initial context to the translation unit.
7758    SearchDC = Context.getTranslationUnitDecl();
7759  }
7760
7761  if (Previous.isSingleResult() &&
7762      Previous.getFoundDecl()->isTemplateParameter()) {
7763    // Maybe we will complain about the shadowed template parameter.
7764    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7765    // Just pretend that we didn't see the previous declaration.
7766    Previous.clear();
7767  }
7768
7769  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7770      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7771    // This is a declaration of or a reference to "std::bad_alloc".
7772    isStdBadAlloc = true;
7773
7774    if (Previous.empty() && StdBadAlloc) {
7775      // std::bad_alloc has been implicitly declared (but made invisible to
7776      // name lookup). Fill in this implicit declaration as the previous
7777      // declaration, so that the declarations get chained appropriately.
7778      Previous.addDecl(getStdBadAlloc());
7779    }
7780  }
7781
7782  // If we didn't find a previous declaration, and this is a reference
7783  // (or friend reference), move to the correct scope.  In C++, we
7784  // also need to do a redeclaration lookup there, just in case
7785  // there's a shadow friend decl.
7786  if (Name && Previous.empty() &&
7787      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7788    if (Invalid) goto CreateNewDecl;
7789    assert(SS.isEmpty());
7790
7791    if (TUK == TUK_Reference) {
7792      // C++ [basic.scope.pdecl]p5:
7793      //   -- for an elaborated-type-specifier of the form
7794      //
7795      //          class-key identifier
7796      //
7797      //      if the elaborated-type-specifier is used in the
7798      //      decl-specifier-seq or parameter-declaration-clause of a
7799      //      function defined in namespace scope, the identifier is
7800      //      declared as a class-name in the namespace that contains
7801      //      the declaration; otherwise, except as a friend
7802      //      declaration, the identifier is declared in the smallest
7803      //      non-class, non-function-prototype scope that contains the
7804      //      declaration.
7805      //
7806      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7807      // C structs and unions.
7808      //
7809      // It is an error in C++ to declare (rather than define) an enum
7810      // type, including via an elaborated type specifier.  We'll
7811      // diagnose that later; for now, declare the enum in the same
7812      // scope as we would have picked for any other tag type.
7813      //
7814      // GNU C also supports this behavior as part of its incomplete
7815      // enum types extension, while GNU C++ does not.
7816      //
7817      // Find the context where we'll be declaring the tag.
7818      // FIXME: We would like to maintain the current DeclContext as the
7819      // lexical context,
7820      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7821        SearchDC = SearchDC->getParent();
7822
7823      // Find the scope where we'll be declaring the tag.
7824      while (S->isClassScope() ||
7825             (getLangOptions().CPlusPlus &&
7826              S->isFunctionPrototypeScope()) ||
7827             ((S->getFlags() & Scope::DeclScope) == 0) ||
7828             (S->getEntity() &&
7829              ((DeclContext *)S->getEntity())->isTransparentContext()))
7830        S = S->getParent();
7831    } else {
7832      assert(TUK == TUK_Friend);
7833      // C++ [namespace.memdef]p3:
7834      //   If a friend declaration in a non-local class first declares a
7835      //   class or function, the friend class or function is a member of
7836      //   the innermost enclosing namespace.
7837      SearchDC = SearchDC->getEnclosingNamespaceContext();
7838    }
7839
7840    // In C++, we need to do a redeclaration lookup to properly
7841    // diagnose some problems.
7842    if (getLangOptions().CPlusPlus) {
7843      Previous.setRedeclarationKind(ForRedeclaration);
7844      LookupQualifiedName(Previous, SearchDC);
7845    }
7846  }
7847
7848  if (!Previous.empty()) {
7849    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7850
7851    // It's okay to have a tag decl in the same scope as a typedef
7852    // which hides a tag decl in the same scope.  Finding this
7853    // insanity with a redeclaration lookup can only actually happen
7854    // in C++.
7855    //
7856    // This is also okay for elaborated-type-specifiers, which is
7857    // technically forbidden by the current standard but which is
7858    // okay according to the likely resolution of an open issue;
7859    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7860    if (getLangOptions().CPlusPlus) {
7861      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7862        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7863          TagDecl *Tag = TT->getDecl();
7864          if (Tag->getDeclName() == Name &&
7865              Tag->getDeclContext()->getRedeclContext()
7866                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7867            PrevDecl = Tag;
7868            Previous.clear();
7869            Previous.addDecl(Tag);
7870            Previous.resolveKind();
7871          }
7872        }
7873      }
7874    }
7875
7876    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7877      // If this is a use of a previous tag, or if the tag is already declared
7878      // in the same scope (so that the definition/declaration completes or
7879      // rementions the tag), reuse the decl.
7880      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7881          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7882        // Make sure that this wasn't declared as an enum and now used as a
7883        // struct or something similar.
7884        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7885                                          TUK == TUK_Definition, KWLoc,
7886                                          *Name)) {
7887          bool SafeToContinue
7888            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7889               Kind != TTK_Enum);
7890          if (SafeToContinue)
7891            Diag(KWLoc, diag::err_use_with_wrong_tag)
7892              << Name
7893              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7894                                              PrevTagDecl->getKindName());
7895          else
7896            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7897          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7898
7899          if (SafeToContinue)
7900            Kind = PrevTagDecl->getTagKind();
7901          else {
7902            // Recover by making this an anonymous redefinition.
7903            Name = 0;
7904            Previous.clear();
7905            Invalid = true;
7906          }
7907        }
7908
7909        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7910          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7911
7912          // All conflicts with previous declarations are recovered by
7913          // returning the previous declaration.
7914          if (ScopedEnum != PrevEnum->isScoped()) {
7915            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7916              << PrevEnum->isScoped();
7917            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7918            return PrevTagDecl;
7919          }
7920          else if (EnumUnderlying && PrevEnum->isFixed()) {
7921            QualType T;
7922            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7923                T = TI->getType();
7924            else
7925                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7926
7927            if (!Context.hasSameUnqualifiedType(T,
7928                                                PrevEnum->getIntegerType())) {
7929              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7930                   diag::err_enum_redeclare_type_mismatch)
7931                << T
7932                << PrevEnum->getIntegerType();
7933              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7934              return PrevTagDecl;
7935            }
7936          }
7937          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7938            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7939              << PrevEnum->isFixed();
7940            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7941            return PrevTagDecl;
7942          }
7943        }
7944
7945        if (!Invalid) {
7946          // If this is a use, just return the declaration we found.
7947
7948          // FIXME: In the future, return a variant or some other clue
7949          // for the consumer of this Decl to know it doesn't own it.
7950          // For our current ASTs this shouldn't be a problem, but will
7951          // need to be changed with DeclGroups.
7952          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7953               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7954            return PrevTagDecl;
7955
7956          // Diagnose attempts to redefine a tag.
7957          if (TUK == TUK_Definition) {
7958            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7959              // If we're defining a specialization and the previous definition
7960              // is from an implicit instantiation, don't emit an error
7961              // here; we'll catch this in the general case below.
7962              if (!isExplicitSpecialization ||
7963                  !isa<CXXRecordDecl>(Def) ||
7964                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7965                                               == TSK_ExplicitSpecialization) {
7966                Diag(NameLoc, diag::err_redefinition) << Name;
7967                Diag(Def->getLocation(), diag::note_previous_definition);
7968                // If this is a redefinition, recover by making this
7969                // struct be anonymous, which will make any later
7970                // references get the previous definition.
7971                Name = 0;
7972                Previous.clear();
7973                Invalid = true;
7974              }
7975            } else {
7976              // If the type is currently being defined, complain
7977              // about a nested redefinition.
7978              const TagType *Tag
7979                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7980              if (Tag->isBeingDefined()) {
7981                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7982                Diag(PrevTagDecl->getLocation(),
7983                     diag::note_previous_definition);
7984                Name = 0;
7985                Previous.clear();
7986                Invalid = true;
7987              }
7988            }
7989
7990            // Okay, this is definition of a previously declared or referenced
7991            // tag PrevDecl. We're going to create a new Decl for it.
7992          }
7993        }
7994        // If we get here we have (another) forward declaration or we
7995        // have a definition.  Just create a new decl.
7996
7997      } else {
7998        // If we get here, this is a definition of a new tag type in a nested
7999        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8000        // new decl/type.  We set PrevDecl to NULL so that the entities
8001        // have distinct types.
8002        Previous.clear();
8003      }
8004      // If we get here, we're going to create a new Decl. If PrevDecl
8005      // is non-NULL, it's a definition of the tag declared by
8006      // PrevDecl. If it's NULL, we have a new definition.
8007
8008
8009    // Otherwise, PrevDecl is not a tag, but was found with tag
8010    // lookup.  This is only actually possible in C++, where a few
8011    // things like templates still live in the tag namespace.
8012    } else {
8013      assert(getLangOptions().CPlusPlus);
8014
8015      // Use a better diagnostic if an elaborated-type-specifier
8016      // found the wrong kind of type on the first
8017      // (non-redeclaration) lookup.
8018      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8019          !Previous.isForRedeclaration()) {
8020        unsigned Kind = 0;
8021        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8022        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8023        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8024        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8025        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8026        Invalid = true;
8027
8028      // Otherwise, only diagnose if the declaration is in scope.
8029      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8030                                isExplicitSpecialization)) {
8031        // do nothing
8032
8033      // Diagnose implicit declarations introduced by elaborated types.
8034      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8035        unsigned Kind = 0;
8036        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8037        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8038        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8039        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8040        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8041        Invalid = true;
8042
8043      // Otherwise it's a declaration.  Call out a particularly common
8044      // case here.
8045      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8046        unsigned Kind = 0;
8047        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8048        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8049          << Name << Kind << TND->getUnderlyingType();
8050        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8051        Invalid = true;
8052
8053      // Otherwise, diagnose.
8054      } else {
8055        // The tag name clashes with something else in the target scope,
8056        // issue an error and recover by making this tag be anonymous.
8057        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8058        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8059        Name = 0;
8060        Invalid = true;
8061      }
8062
8063      // The existing declaration isn't relevant to us; we're in a
8064      // new scope, so clear out the previous declaration.
8065      Previous.clear();
8066    }
8067  }
8068
8069CreateNewDecl:
8070
8071  TagDecl *PrevDecl = 0;
8072  if (Previous.isSingleResult())
8073    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8074
8075  // If there is an identifier, use the location of the identifier as the
8076  // location of the decl, otherwise use the location of the struct/union
8077  // keyword.
8078  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8079
8080  // Otherwise, create a new declaration. If there is a previous
8081  // declaration of the same entity, the two will be linked via
8082  // PrevDecl.
8083  TagDecl *New;
8084
8085  bool IsForwardReference = false;
8086  if (Kind == TTK_Enum) {
8087    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8088    // enum X { A, B, C } D;    D should chain to X.
8089    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8090                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8091                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8092    // If this is an undefined enum, warn.
8093    if (TUK != TUK_Definition && !Invalid) {
8094      TagDecl *Def;
8095      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8096        // C++0x: 7.2p2: opaque-enum-declaration.
8097        // Conflicts are diagnosed above. Do nothing.
8098      }
8099      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8100        Diag(Loc, diag::ext_forward_ref_enum_def)
8101          << New;
8102        Diag(Def->getLocation(), diag::note_previous_definition);
8103      } else {
8104        unsigned DiagID = diag::ext_forward_ref_enum;
8105        if (getLangOptions().MicrosoftExt)
8106          DiagID = diag::ext_ms_forward_ref_enum;
8107        else if (getLangOptions().CPlusPlus)
8108          DiagID = diag::err_forward_ref_enum;
8109        Diag(Loc, DiagID);
8110
8111        // If this is a forward-declared reference to an enumeration, make a
8112        // note of it; we won't actually be introducing the declaration into
8113        // the declaration context.
8114        if (TUK == TUK_Reference)
8115          IsForwardReference = true;
8116      }
8117    }
8118
8119    if (EnumUnderlying) {
8120      EnumDecl *ED = cast<EnumDecl>(New);
8121      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8122        ED->setIntegerTypeSourceInfo(TI);
8123      else
8124        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8125      ED->setPromotionType(ED->getIntegerType());
8126    }
8127
8128  } else {
8129    // struct/union/class
8130
8131    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8132    // struct X { int A; } D;    D should chain to X.
8133    if (getLangOptions().CPlusPlus) {
8134      // FIXME: Look for a way to use RecordDecl for simple structs.
8135      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8136                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8137
8138      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8139        StdBadAlloc = cast<CXXRecordDecl>(New);
8140    } else
8141      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8142                               cast_or_null<RecordDecl>(PrevDecl));
8143  }
8144
8145  // Maybe add qualifier info.
8146  if (SS.isNotEmpty()) {
8147    if (SS.isSet()) {
8148      New->setQualifierInfo(SS.getWithLocInContext(Context));
8149      if (TemplateParameterLists.size() > 0) {
8150        New->setTemplateParameterListsInfo(Context,
8151                                           TemplateParameterLists.size(),
8152                    (TemplateParameterList**) TemplateParameterLists.release());
8153      }
8154    }
8155    else
8156      Invalid = true;
8157  }
8158
8159  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8160    // Add alignment attributes if necessary; these attributes are checked when
8161    // the ASTContext lays out the structure.
8162    //
8163    // It is important for implementing the correct semantics that this
8164    // happen here (in act on tag decl). The #pragma pack stack is
8165    // maintained as a result of parser callbacks which can occur at
8166    // many points during the parsing of a struct declaration (because
8167    // the #pragma tokens are effectively skipped over during the
8168    // parsing of the struct).
8169    AddAlignmentAttributesForRecord(RD);
8170
8171    AddMsStructLayoutForRecord(RD);
8172  }
8173
8174  if (ModulePrivateLoc.isValid()) {
8175    if (isExplicitSpecialization)
8176      Diag(New->getLocation(), diag::err_module_private_specialization)
8177        << 2
8178        << FixItHint::CreateRemoval(ModulePrivateLoc);
8179    // __module_private__ does not apply to local classes. However, we only
8180    // diagnose this as an error when the declaration specifiers are
8181    // freestanding. Here, we just ignore the __module_private__.
8182    else if (!SearchDC->isFunctionOrMethod())
8183      New->setModulePrivate();
8184  }
8185
8186  // If this is a specialization of a member class (of a class template),
8187  // check the specialization.
8188  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8189    Invalid = true;
8190
8191  if (Invalid)
8192    New->setInvalidDecl();
8193
8194  if (Attr)
8195    ProcessDeclAttributeList(S, New, Attr);
8196
8197  // If we're declaring or defining a tag in function prototype scope
8198  // in C, note that this type can only be used within the function.
8199  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8200    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8201
8202  // Set the lexical context. If the tag has a C++ scope specifier, the
8203  // lexical context will be different from the semantic context.
8204  New->setLexicalDeclContext(CurContext);
8205
8206  // Mark this as a friend decl if applicable.
8207  // In Microsoft mode, a friend declaration also acts as a forward
8208  // declaration so we always pass true to setObjectOfFriendDecl to make
8209  // the tag name visible.
8210  if (TUK == TUK_Friend)
8211    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8212                               getLangOptions().MicrosoftExt);
8213
8214  // Set the access specifier.
8215  if (!Invalid && SearchDC->isRecord())
8216    SetMemberAccessSpecifier(New, PrevDecl, AS);
8217
8218  if (TUK == TUK_Definition)
8219    New->startDefinition();
8220
8221  // If this has an identifier, add it to the scope stack.
8222  if (TUK == TUK_Friend) {
8223    // We might be replacing an existing declaration in the lookup tables;
8224    // if so, borrow its access specifier.
8225    if (PrevDecl)
8226      New->setAccess(PrevDecl->getAccess());
8227
8228    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8229    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8230    if (Name) // can be null along some error paths
8231      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8232        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8233  } else if (Name) {
8234    S = getNonFieldDeclScope(S);
8235    PushOnScopeChains(New, S, !IsForwardReference);
8236    if (IsForwardReference)
8237      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8238
8239  } else {
8240    CurContext->addDecl(New);
8241  }
8242
8243  // If this is the C FILE type, notify the AST context.
8244  if (IdentifierInfo *II = New->getIdentifier())
8245    if (!New->isInvalidDecl() &&
8246        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8247        II->isStr("FILE"))
8248      Context.setFILEDecl(New);
8249
8250  OwnedDecl = true;
8251  return New;
8252}
8253
8254void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8255  AdjustDeclIfTemplate(TagD);
8256  TagDecl *Tag = cast<TagDecl>(TagD);
8257
8258  // Enter the tag context.
8259  PushDeclContext(S, Tag);
8260}
8261
8262Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8263  assert(isa<ObjCContainerDecl>(IDecl) &&
8264         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8265  DeclContext *OCD = cast<DeclContext>(IDecl);
8266  assert(getContainingDC(OCD) == CurContext &&
8267      "The next DeclContext should be lexically contained in the current one.");
8268  CurContext = OCD;
8269  return IDecl;
8270}
8271
8272void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8273                                           SourceLocation FinalLoc,
8274                                           SourceLocation LBraceLoc) {
8275  AdjustDeclIfTemplate(TagD);
8276  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8277
8278  FieldCollector->StartClass();
8279
8280  if (!Record->getIdentifier())
8281    return;
8282
8283  if (FinalLoc.isValid())
8284    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8285
8286  // C++ [class]p2:
8287  //   [...] The class-name is also inserted into the scope of the
8288  //   class itself; this is known as the injected-class-name. For
8289  //   purposes of access checking, the injected-class-name is treated
8290  //   as if it were a public member name.
8291  CXXRecordDecl *InjectedClassName
8292    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8293                            Record->getLocStart(), Record->getLocation(),
8294                            Record->getIdentifier(),
8295                            /*PrevDecl=*/0,
8296                            /*DelayTypeCreation=*/true);
8297  Context.getTypeDeclType(InjectedClassName, Record);
8298  InjectedClassName->setImplicit();
8299  InjectedClassName->setAccess(AS_public);
8300  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8301      InjectedClassName->setDescribedClassTemplate(Template);
8302  PushOnScopeChains(InjectedClassName, S);
8303  assert(InjectedClassName->isInjectedClassName() &&
8304         "Broken injected-class-name");
8305}
8306
8307void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8308                                    SourceLocation RBraceLoc) {
8309  AdjustDeclIfTemplate(TagD);
8310  TagDecl *Tag = cast<TagDecl>(TagD);
8311  Tag->setRBraceLoc(RBraceLoc);
8312
8313  if (isa<CXXRecordDecl>(Tag))
8314    FieldCollector->FinishClass();
8315
8316  // Exit this scope of this tag's definition.
8317  PopDeclContext();
8318
8319  // Notify the consumer that we've defined a tag.
8320  Consumer.HandleTagDeclDefinition(Tag);
8321}
8322
8323void Sema::ActOnObjCContainerFinishDefinition() {
8324  // Exit this scope of this interface definition.
8325  PopDeclContext();
8326}
8327
8328void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8329  assert(DC == CurContext && "Mismatch of container contexts");
8330  OriginalLexicalContext = DC;
8331  ActOnObjCContainerFinishDefinition();
8332}
8333
8334void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8335  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8336  OriginalLexicalContext = 0;
8337}
8338
8339void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8340  AdjustDeclIfTemplate(TagD);
8341  TagDecl *Tag = cast<TagDecl>(TagD);
8342  Tag->setInvalidDecl();
8343
8344  // We're undoing ActOnTagStartDefinition here, not
8345  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8346  // the FieldCollector.
8347
8348  PopDeclContext();
8349}
8350
8351// Note that FieldName may be null for anonymous bitfields.
8352bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8353                          QualType FieldTy, const Expr *BitWidth,
8354                          bool *ZeroWidth) {
8355  // Default to true; that shouldn't confuse checks for emptiness
8356  if (ZeroWidth)
8357    *ZeroWidth = true;
8358
8359  // C99 6.7.2.1p4 - verify the field type.
8360  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8361  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8362    // Handle incomplete types with specific error.
8363    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8364      return true;
8365    if (FieldName)
8366      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8367        << FieldName << FieldTy << BitWidth->getSourceRange();
8368    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8369      << FieldTy << BitWidth->getSourceRange();
8370  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8371                                             UPPC_BitFieldWidth))
8372    return true;
8373
8374  // If the bit-width is type- or value-dependent, don't try to check
8375  // it now.
8376  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8377    return false;
8378
8379  llvm::APSInt Value;
8380  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8381    return true;
8382
8383  if (Value != 0 && ZeroWidth)
8384    *ZeroWidth = false;
8385
8386  // Zero-width bitfield is ok for anonymous field.
8387  if (Value == 0 && FieldName)
8388    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8389
8390  if (Value.isSigned() && Value.isNegative()) {
8391    if (FieldName)
8392      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8393               << FieldName << Value.toString(10);
8394    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8395      << Value.toString(10);
8396  }
8397
8398  if (!FieldTy->isDependentType()) {
8399    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8400    if (Value.getZExtValue() > TypeSize) {
8401      if (!getLangOptions().CPlusPlus) {
8402        if (FieldName)
8403          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8404            << FieldName << (unsigned)Value.getZExtValue()
8405            << (unsigned)TypeSize;
8406
8407        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8408          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8409      }
8410
8411      if (FieldName)
8412        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8413          << FieldName << (unsigned)Value.getZExtValue()
8414          << (unsigned)TypeSize;
8415      else
8416        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8417          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8418    }
8419  }
8420
8421  return false;
8422}
8423
8424/// ActOnField - Each field of a C struct/union is passed into this in order
8425/// to create a FieldDecl object for it.
8426Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8427                       Declarator &D, Expr *BitfieldWidth) {
8428  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8429                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8430                               /*HasInit=*/false, AS_public);
8431  return Res;
8432}
8433
8434/// HandleField - Analyze a field of a C struct or a C++ data member.
8435///
8436FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8437                             SourceLocation DeclStart,
8438                             Declarator &D, Expr *BitWidth, bool HasInit,
8439                             AccessSpecifier AS) {
8440  IdentifierInfo *II = D.getIdentifier();
8441  SourceLocation Loc = DeclStart;
8442  if (II) Loc = D.getIdentifierLoc();
8443
8444  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8445  QualType T = TInfo->getType();
8446  if (getLangOptions().CPlusPlus) {
8447    CheckExtraCXXDefaultArguments(D);
8448
8449    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8450                                        UPPC_DataMemberType)) {
8451      D.setInvalidType();
8452      T = Context.IntTy;
8453      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8454    }
8455  }
8456
8457  DiagnoseFunctionSpecifiers(D);
8458
8459  if (D.getDeclSpec().isThreadSpecified())
8460    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8461  if (D.getDeclSpec().isConstexprSpecified())
8462    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8463      << 2;
8464
8465  // Check to see if this name was declared as a member previously
8466  NamedDecl *PrevDecl = 0;
8467  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8468  LookupName(Previous, S);
8469  switch (Previous.getResultKind()) {
8470    case LookupResult::Found:
8471    case LookupResult::FoundUnresolvedValue:
8472      PrevDecl = Previous.getAsSingle<NamedDecl>();
8473      break;
8474
8475    case LookupResult::FoundOverloaded:
8476      PrevDecl = Previous.getRepresentativeDecl();
8477      break;
8478
8479    case LookupResult::NotFound:
8480    case LookupResult::NotFoundInCurrentInstantiation:
8481    case LookupResult::Ambiguous:
8482      break;
8483  }
8484  Previous.suppressDiagnostics();
8485
8486  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8487    // Maybe we will complain about the shadowed template parameter.
8488    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8489    // Just pretend that we didn't see the previous declaration.
8490    PrevDecl = 0;
8491  }
8492
8493  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8494    PrevDecl = 0;
8495
8496  bool Mutable
8497    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8498  SourceLocation TSSL = D.getSourceRange().getBegin();
8499  FieldDecl *NewFD
8500    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8501                     TSSL, AS, PrevDecl, &D);
8502
8503  if (NewFD->isInvalidDecl())
8504    Record->setInvalidDecl();
8505
8506  if (D.getDeclSpec().isModulePrivateSpecified())
8507    NewFD->setModulePrivate();
8508
8509  if (NewFD->isInvalidDecl() && PrevDecl) {
8510    // Don't introduce NewFD into scope; there's already something
8511    // with the same name in the same scope.
8512  } else if (II) {
8513    PushOnScopeChains(NewFD, S);
8514  } else
8515    Record->addDecl(NewFD);
8516
8517  return NewFD;
8518}
8519
8520/// \brief Build a new FieldDecl and check its well-formedness.
8521///
8522/// This routine builds a new FieldDecl given the fields name, type,
8523/// record, etc. \p PrevDecl should refer to any previous declaration
8524/// with the same name and in the same scope as the field to be
8525/// created.
8526///
8527/// \returns a new FieldDecl.
8528///
8529/// \todo The Declarator argument is a hack. It will be removed once
8530FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8531                                TypeSourceInfo *TInfo,
8532                                RecordDecl *Record, SourceLocation Loc,
8533                                bool Mutable, Expr *BitWidth, bool HasInit,
8534                                SourceLocation TSSL,
8535                                AccessSpecifier AS, NamedDecl *PrevDecl,
8536                                Declarator *D) {
8537  IdentifierInfo *II = Name.getAsIdentifierInfo();
8538  bool InvalidDecl = false;
8539  if (D) InvalidDecl = D->isInvalidType();
8540
8541  // If we receive a broken type, recover by assuming 'int' and
8542  // marking this declaration as invalid.
8543  if (T.isNull()) {
8544    InvalidDecl = true;
8545    T = Context.IntTy;
8546  }
8547
8548  QualType EltTy = Context.getBaseElementType(T);
8549  if (!EltTy->isDependentType() &&
8550      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8551    // Fields of incomplete type force their record to be invalid.
8552    Record->setInvalidDecl();
8553    InvalidDecl = true;
8554  }
8555
8556  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8557  // than a variably modified type.
8558  if (!InvalidDecl && T->isVariablyModifiedType()) {
8559    bool SizeIsNegative;
8560    llvm::APSInt Oversized;
8561    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8562                                                           SizeIsNegative,
8563                                                           Oversized);
8564    if (!FixedTy.isNull()) {
8565      Diag(Loc, diag::warn_illegal_constant_array_size);
8566      T = FixedTy;
8567    } else {
8568      if (SizeIsNegative)
8569        Diag(Loc, diag::err_typecheck_negative_array_size);
8570      else if (Oversized.getBoolValue())
8571        Diag(Loc, diag::err_array_too_large)
8572          << Oversized.toString(10);
8573      else
8574        Diag(Loc, diag::err_typecheck_field_variable_size);
8575      InvalidDecl = true;
8576    }
8577  }
8578
8579  // Fields can not have abstract class types
8580  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8581                                             diag::err_abstract_type_in_decl,
8582                                             AbstractFieldType))
8583    InvalidDecl = true;
8584
8585  bool ZeroWidth = false;
8586  // If this is declared as a bit-field, check the bit-field.
8587  if (!InvalidDecl && BitWidth &&
8588      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8589    InvalidDecl = true;
8590    BitWidth = 0;
8591    ZeroWidth = false;
8592  }
8593
8594  // Check that 'mutable' is consistent with the type of the declaration.
8595  if (!InvalidDecl && Mutable) {
8596    unsigned DiagID = 0;
8597    if (T->isReferenceType())
8598      DiagID = diag::err_mutable_reference;
8599    else if (T.isConstQualified())
8600      DiagID = diag::err_mutable_const;
8601
8602    if (DiagID) {
8603      SourceLocation ErrLoc = Loc;
8604      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8605        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8606      Diag(ErrLoc, DiagID);
8607      Mutable = false;
8608      InvalidDecl = true;
8609    }
8610  }
8611
8612  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8613                                       BitWidth, Mutable, HasInit);
8614  if (InvalidDecl)
8615    NewFD->setInvalidDecl();
8616
8617  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8618    Diag(Loc, diag::err_duplicate_member) << II;
8619    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8620    NewFD->setInvalidDecl();
8621  }
8622
8623  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8624    if (Record->isUnion()) {
8625      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8626        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8627        if (RDecl->getDefinition()) {
8628          // C++ [class.union]p1: An object of a class with a non-trivial
8629          // constructor, a non-trivial copy constructor, a non-trivial
8630          // destructor, or a non-trivial copy assignment operator
8631          // cannot be a member of a union, nor can an array of such
8632          // objects.
8633          if (CheckNontrivialField(NewFD))
8634            NewFD->setInvalidDecl();
8635        }
8636      }
8637
8638      // C++ [class.union]p1: If a union contains a member of reference type,
8639      // the program is ill-formed.
8640      if (EltTy->isReferenceType()) {
8641        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8642          << NewFD->getDeclName() << EltTy;
8643        NewFD->setInvalidDecl();
8644      }
8645    }
8646  }
8647
8648  // FIXME: We need to pass in the attributes given an AST
8649  // representation, not a parser representation.
8650  if (D)
8651    // FIXME: What to pass instead of TUScope?
8652    ProcessDeclAttributes(TUScope, NewFD, *D);
8653
8654  // In auto-retain/release, infer strong retension for fields of
8655  // retainable type.
8656  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8657    NewFD->setInvalidDecl();
8658
8659  if (T.isObjCGCWeak())
8660    Diag(Loc, diag::warn_attribute_weak_on_field);
8661
8662  NewFD->setAccess(AS);
8663  return NewFD;
8664}
8665
8666bool Sema::CheckNontrivialField(FieldDecl *FD) {
8667  assert(FD);
8668  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8669
8670  if (FD->isInvalidDecl())
8671    return true;
8672
8673  QualType EltTy = Context.getBaseElementType(FD->getType());
8674  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8675    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8676    if (RDecl->getDefinition()) {
8677      // We check for copy constructors before constructors
8678      // because otherwise we'll never get complaints about
8679      // copy constructors.
8680
8681      CXXSpecialMember member = CXXInvalid;
8682      if (!RDecl->hasTrivialCopyConstructor())
8683        member = CXXCopyConstructor;
8684      else if (!RDecl->hasTrivialDefaultConstructor())
8685        member = CXXDefaultConstructor;
8686      else if (!RDecl->hasTrivialCopyAssignment())
8687        member = CXXCopyAssignment;
8688      else if (!RDecl->hasTrivialDestructor())
8689        member = CXXDestructor;
8690
8691      if (member != CXXInvalid) {
8692        if (!getLangOptions().CPlusPlus0x &&
8693            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8694          // Objective-C++ ARC: it is an error to have a non-trivial field of
8695          // a union. However, system headers in Objective-C programs
8696          // occasionally have Objective-C lifetime objects within unions,
8697          // and rather than cause the program to fail, we make those
8698          // members unavailable.
8699          SourceLocation Loc = FD->getLocation();
8700          if (getSourceManager().isInSystemHeader(Loc)) {
8701            if (!FD->hasAttr<UnavailableAttr>())
8702              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8703                                  "this system field has retaining ownership"));
8704            return false;
8705          }
8706        }
8707
8708        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8709               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8710               diag::err_illegal_union_or_anon_struct_member)
8711          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8712        DiagnoseNontrivial(RT, member);
8713        return !getLangOptions().CPlusPlus0x;
8714      }
8715    }
8716  }
8717
8718  return false;
8719}
8720
8721/// DiagnoseNontrivial - Given that a class has a non-trivial
8722/// special member, figure out why.
8723void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8724  QualType QT(T, 0U);
8725  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8726
8727  // Check whether the member was user-declared.
8728  switch (member) {
8729  case CXXInvalid:
8730    break;
8731
8732  case CXXDefaultConstructor:
8733    if (RD->hasUserDeclaredConstructor()) {
8734      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8735      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8736        const FunctionDecl *body = 0;
8737        ci->hasBody(body);
8738        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8739          SourceLocation CtorLoc = ci->getLocation();
8740          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8741          return;
8742        }
8743      }
8744
8745      llvm_unreachable("found no user-declared constructors");
8746    }
8747    break;
8748
8749  case CXXCopyConstructor:
8750    if (RD->hasUserDeclaredCopyConstructor()) {
8751      SourceLocation CtorLoc =
8752        RD->getCopyConstructor(0)->getLocation();
8753      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8754      return;
8755    }
8756    break;
8757
8758  case CXXMoveConstructor:
8759    if (RD->hasUserDeclaredMoveConstructor()) {
8760      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8761      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8762      return;
8763    }
8764    break;
8765
8766  case CXXCopyAssignment:
8767    if (RD->hasUserDeclaredCopyAssignment()) {
8768      // FIXME: this should use the location of the copy
8769      // assignment, not the type.
8770      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8771      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8772      return;
8773    }
8774    break;
8775
8776  case CXXMoveAssignment:
8777    if (RD->hasUserDeclaredMoveAssignment()) {
8778      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8779      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8780      return;
8781    }
8782    break;
8783
8784  case CXXDestructor:
8785    if (RD->hasUserDeclaredDestructor()) {
8786      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8787      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8788      return;
8789    }
8790    break;
8791  }
8792
8793  typedef CXXRecordDecl::base_class_iterator base_iter;
8794
8795  // Virtual bases and members inhibit trivial copying/construction,
8796  // but not trivial destruction.
8797  if (member != CXXDestructor) {
8798    // Check for virtual bases.  vbases includes indirect virtual bases,
8799    // so we just iterate through the direct bases.
8800    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8801      if (bi->isVirtual()) {
8802        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8803        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8804        return;
8805      }
8806
8807    // Check for virtual methods.
8808    typedef CXXRecordDecl::method_iterator meth_iter;
8809    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8810         ++mi) {
8811      if (mi->isVirtual()) {
8812        SourceLocation MLoc = mi->getSourceRange().getBegin();
8813        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8814        return;
8815      }
8816    }
8817  }
8818
8819  bool (CXXRecordDecl::*hasTrivial)() const;
8820  switch (member) {
8821  case CXXDefaultConstructor:
8822    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8823  case CXXCopyConstructor:
8824    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8825  case CXXCopyAssignment:
8826    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8827  case CXXDestructor:
8828    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8829  default:
8830    llvm_unreachable("unexpected special member");
8831  }
8832
8833  // Check for nontrivial bases (and recurse).
8834  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8835    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8836    assert(BaseRT && "Don't know how to handle dependent bases");
8837    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8838    if (!(BaseRecTy->*hasTrivial)()) {
8839      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8840      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8841      DiagnoseNontrivial(BaseRT, member);
8842      return;
8843    }
8844  }
8845
8846  // Check for nontrivial members (and recurse).
8847  typedef RecordDecl::field_iterator field_iter;
8848  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8849       ++fi) {
8850    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8851    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8852      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8853
8854      if (!(EltRD->*hasTrivial)()) {
8855        SourceLocation FLoc = (*fi)->getLocation();
8856        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8857        DiagnoseNontrivial(EltRT, member);
8858        return;
8859      }
8860    }
8861
8862    if (EltTy->isObjCLifetimeType()) {
8863      switch (EltTy.getObjCLifetime()) {
8864      case Qualifiers::OCL_None:
8865      case Qualifiers::OCL_ExplicitNone:
8866        break;
8867
8868      case Qualifiers::OCL_Autoreleasing:
8869      case Qualifiers::OCL_Weak:
8870      case Qualifiers::OCL_Strong:
8871        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8872          << QT << EltTy.getObjCLifetime();
8873        return;
8874      }
8875    }
8876  }
8877
8878  llvm_unreachable("found no explanation for non-trivial member");
8879}
8880
8881/// TranslateIvarVisibility - Translate visibility from a token ID to an
8882///  AST enum value.
8883static ObjCIvarDecl::AccessControl
8884TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8885  switch (ivarVisibility) {
8886  default: llvm_unreachable("Unknown visitibility kind");
8887  case tok::objc_private: return ObjCIvarDecl::Private;
8888  case tok::objc_public: return ObjCIvarDecl::Public;
8889  case tok::objc_protected: return ObjCIvarDecl::Protected;
8890  case tok::objc_package: return ObjCIvarDecl::Package;
8891  }
8892}
8893
8894/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8895/// in order to create an IvarDecl object for it.
8896Decl *Sema::ActOnIvar(Scope *S,
8897                                SourceLocation DeclStart,
8898                                Declarator &D, Expr *BitfieldWidth,
8899                                tok::ObjCKeywordKind Visibility) {
8900
8901  IdentifierInfo *II = D.getIdentifier();
8902  Expr *BitWidth = (Expr*)BitfieldWidth;
8903  SourceLocation Loc = DeclStart;
8904  if (II) Loc = D.getIdentifierLoc();
8905
8906  // FIXME: Unnamed fields can be handled in various different ways, for
8907  // example, unnamed unions inject all members into the struct namespace!
8908
8909  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8910  QualType T = TInfo->getType();
8911
8912  if (BitWidth) {
8913    // 6.7.2.1p3, 6.7.2.1p4
8914    if (VerifyBitField(Loc, II, T, BitWidth)) {
8915      D.setInvalidType();
8916      BitWidth = 0;
8917    }
8918  } else {
8919    // Not a bitfield.
8920
8921    // validate II.
8922
8923  }
8924  if (T->isReferenceType()) {
8925    Diag(Loc, diag::err_ivar_reference_type);
8926    D.setInvalidType();
8927  }
8928  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8929  // than a variably modified type.
8930  else if (T->isVariablyModifiedType()) {
8931    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8932    D.setInvalidType();
8933  }
8934
8935  // Get the visibility (access control) for this ivar.
8936  ObjCIvarDecl::AccessControl ac =
8937    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8938                                        : ObjCIvarDecl::None;
8939  // Must set ivar's DeclContext to its enclosing interface.
8940  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8941  ObjCContainerDecl *EnclosingContext;
8942  if (ObjCImplementationDecl *IMPDecl =
8943      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8944    if (!LangOpts.ObjCNonFragileABI2) {
8945    // Case of ivar declared in an implementation. Context is that of its class.
8946      EnclosingContext = IMPDecl->getClassInterface();
8947      assert(EnclosingContext && "Implementation has no class interface!");
8948    }
8949    else
8950      EnclosingContext = EnclosingDecl;
8951  } else {
8952    if (ObjCCategoryDecl *CDecl =
8953        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8954      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8955        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8956        return 0;
8957      }
8958    }
8959    EnclosingContext = EnclosingDecl;
8960  }
8961
8962  // Construct the decl.
8963  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8964                                             DeclStart, Loc, II, T,
8965                                             TInfo, ac, (Expr *)BitfieldWidth);
8966
8967  if (II) {
8968    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8969                                           ForRedeclaration);
8970    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8971        && !isa<TagDecl>(PrevDecl)) {
8972      Diag(Loc, diag::err_duplicate_member) << II;
8973      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8974      NewID->setInvalidDecl();
8975    }
8976  }
8977
8978  // Process attributes attached to the ivar.
8979  ProcessDeclAttributes(S, NewID, D);
8980
8981  if (D.isInvalidType())
8982    NewID->setInvalidDecl();
8983
8984  // In ARC, infer 'retaining' for ivars of retainable type.
8985  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8986    NewID->setInvalidDecl();
8987
8988  if (D.getDeclSpec().isModulePrivateSpecified())
8989    NewID->setModulePrivate();
8990
8991  if (II) {
8992    // FIXME: When interfaces are DeclContexts, we'll need to add
8993    // these to the interface.
8994    S->AddDecl(NewID);
8995    IdResolver.AddDecl(NewID);
8996  }
8997
8998  return NewID;
8999}
9000
9001/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9002/// class and class extensions. For every class @interface and class
9003/// extension @interface, if the last ivar is a bitfield of any type,
9004/// then add an implicit `char :0` ivar to the end of that interface.
9005void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9006                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9007  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9008    return;
9009
9010  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9011  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9012
9013  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9014    return;
9015  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9016  if (!ID) {
9017    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9018      if (!CD->IsClassExtension())
9019        return;
9020    }
9021    // No need to add this to end of @implementation.
9022    else
9023      return;
9024  }
9025  // All conditions are met. Add a new bitfield to the tail end of ivars.
9026  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9027  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9028
9029  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9030                              DeclLoc, DeclLoc, 0,
9031                              Context.CharTy,
9032                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9033                                                               DeclLoc),
9034                              ObjCIvarDecl::Private, BW,
9035                              true);
9036  AllIvarDecls.push_back(Ivar);
9037}
9038
9039void Sema::ActOnFields(Scope* S,
9040                       SourceLocation RecLoc, Decl *EnclosingDecl,
9041                       llvm::ArrayRef<Decl *> Fields,
9042                       SourceLocation LBrac, SourceLocation RBrac,
9043                       AttributeList *Attr) {
9044  assert(EnclosingDecl && "missing record or interface decl");
9045
9046  // If the decl this is being inserted into is invalid, then it may be a
9047  // redeclaration or some other bogus case.  Don't try to add fields to it.
9048  if (EnclosingDecl->isInvalidDecl())
9049    return;
9050
9051  // Verify that all the fields are okay.
9052  unsigned NumNamedMembers = 0;
9053  SmallVector<FieldDecl*, 32> RecFields;
9054
9055  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9056  bool ARCErrReported = false;
9057  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9058       i != end; ++i) {
9059    FieldDecl *FD = cast<FieldDecl>(*i);
9060
9061    // Get the type for the field.
9062    const Type *FDTy = FD->getType().getTypePtr();
9063
9064    if (!FD->isAnonymousStructOrUnion()) {
9065      // Remember all fields written by the user.
9066      RecFields.push_back(FD);
9067    }
9068
9069    // If the field is already invalid for some reason, don't emit more
9070    // diagnostics about it.
9071    if (FD->isInvalidDecl()) {
9072      EnclosingDecl->setInvalidDecl();
9073      continue;
9074    }
9075
9076    // C99 6.7.2.1p2:
9077    //   A structure or union shall not contain a member with
9078    //   incomplete or function type (hence, a structure shall not
9079    //   contain an instance of itself, but may contain a pointer to
9080    //   an instance of itself), except that the last member of a
9081    //   structure with more than one named member may have incomplete
9082    //   array type; such a structure (and any union containing,
9083    //   possibly recursively, a member that is such a structure)
9084    //   shall not be a member of a structure or an element of an
9085    //   array.
9086    if (FDTy->isFunctionType()) {
9087      // Field declared as a function.
9088      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9089        << FD->getDeclName();
9090      FD->setInvalidDecl();
9091      EnclosingDecl->setInvalidDecl();
9092      continue;
9093    } else if (FDTy->isIncompleteArrayType() && Record &&
9094               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9095                ((getLangOptions().MicrosoftExt ||
9096                  getLangOptions().CPlusPlus) &&
9097                 (i + 1 == Fields.end() || Record->isUnion())))) {
9098      // Flexible array member.
9099      // Microsoft and g++ is more permissive regarding flexible array.
9100      // It will accept flexible array in union and also
9101      // as the sole element of a struct/class.
9102      if (getLangOptions().MicrosoftExt) {
9103        if (Record->isUnion())
9104          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9105            << FD->getDeclName();
9106        else if (Fields.size() == 1)
9107          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9108            << FD->getDeclName() << Record->getTagKind();
9109      } else if (getLangOptions().CPlusPlus) {
9110        if (Record->isUnion())
9111          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9112            << FD->getDeclName();
9113        else if (Fields.size() == 1)
9114          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9115            << FD->getDeclName() << Record->getTagKind();
9116      } else if (NumNamedMembers < 1) {
9117        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9118          << FD->getDeclName();
9119        FD->setInvalidDecl();
9120        EnclosingDecl->setInvalidDecl();
9121        continue;
9122      }
9123      if (!FD->getType()->isDependentType() &&
9124          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9125        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9126          << FD->getDeclName() << FD->getType();
9127        FD->setInvalidDecl();
9128        EnclosingDecl->setInvalidDecl();
9129        continue;
9130      }
9131      // Okay, we have a legal flexible array member at the end of the struct.
9132      if (Record)
9133        Record->setHasFlexibleArrayMember(true);
9134    } else if (!FDTy->isDependentType() &&
9135               RequireCompleteType(FD->getLocation(), FD->getType(),
9136                                   diag::err_field_incomplete)) {
9137      // Incomplete type
9138      FD->setInvalidDecl();
9139      EnclosingDecl->setInvalidDecl();
9140      continue;
9141    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9142      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9143        // If this is a member of a union, then entire union becomes "flexible".
9144        if (Record && Record->isUnion()) {
9145          Record->setHasFlexibleArrayMember(true);
9146        } else {
9147          // If this is a struct/class and this is not the last element, reject
9148          // it.  Note that GCC supports variable sized arrays in the middle of
9149          // structures.
9150          if (i + 1 != Fields.end())
9151            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9152              << FD->getDeclName() << FD->getType();
9153          else {
9154            // We support flexible arrays at the end of structs in
9155            // other structs as an extension.
9156            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9157              << FD->getDeclName();
9158            if (Record)
9159              Record->setHasFlexibleArrayMember(true);
9160          }
9161        }
9162      }
9163      if (Record && FDTTy->getDecl()->hasObjectMember())
9164        Record->setHasObjectMember(true);
9165    } else if (FDTy->isObjCObjectType()) {
9166      /// A field cannot be an Objective-c object
9167      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9168        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9169      QualType T = Context.getObjCObjectPointerType(FD->getType());
9170      FD->setType(T);
9171    }
9172    else if (!getLangOptions().CPlusPlus) {
9173      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9174        // It's an error in ARC if a field has lifetime.
9175        // We don't want to report this in a system header, though,
9176        // so we just make the field unavailable.
9177        // FIXME: that's really not sufficient; we need to make the type
9178        // itself invalid to, say, initialize or copy.
9179        QualType T = FD->getType();
9180        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9181        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9182          SourceLocation loc = FD->getLocation();
9183          if (getSourceManager().isInSystemHeader(loc)) {
9184            if (!FD->hasAttr<UnavailableAttr>()) {
9185              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9186                                "this system field has retaining ownership"));
9187            }
9188          } else {
9189            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9190              << T->isBlockPointerType();
9191          }
9192          ARCErrReported = true;
9193        }
9194      }
9195      else if (getLangOptions().ObjC1 &&
9196               getLangOptions().getGC() != LangOptions::NonGC &&
9197               Record && !Record->hasObjectMember()) {
9198        if (FD->getType()->isObjCObjectPointerType() ||
9199            FD->getType().isObjCGCStrong())
9200          Record->setHasObjectMember(true);
9201        else if (Context.getAsArrayType(FD->getType())) {
9202          QualType BaseType = Context.getBaseElementType(FD->getType());
9203          if (BaseType->isRecordType() &&
9204              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9205            Record->setHasObjectMember(true);
9206          else if (BaseType->isObjCObjectPointerType() ||
9207                   BaseType.isObjCGCStrong())
9208                 Record->setHasObjectMember(true);
9209        }
9210      }
9211    }
9212    // Keep track of the number of named members.
9213    if (FD->getIdentifier())
9214      ++NumNamedMembers;
9215  }
9216
9217  // Okay, we successfully defined 'Record'.
9218  if (Record) {
9219    bool Completed = false;
9220    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9221      if (!CXXRecord->isInvalidDecl()) {
9222        // Set access bits correctly on the directly-declared conversions.
9223        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9224        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9225             I != E; ++I)
9226          Convs->setAccess(I, (*I)->getAccess());
9227
9228        if (!CXXRecord->isDependentType()) {
9229          // Objective-C Automatic Reference Counting:
9230          //   If a class has a non-static data member of Objective-C pointer
9231          //   type (or array thereof), it is a non-POD type and its
9232          //   default constructor (if any), copy constructor, copy assignment
9233          //   operator, and destructor are non-trivial.
9234          //
9235          // This rule is also handled by CXXRecordDecl::completeDefinition().
9236          // However, here we check whether this particular class is only
9237          // non-POD because of the presence of an Objective-C pointer member.
9238          // If so, objects of this type cannot be shared between code compiled
9239          // with instant objects and code compiled with manual retain/release.
9240          if (getLangOptions().ObjCAutoRefCount &&
9241              CXXRecord->hasObjectMember() &&
9242              CXXRecord->getLinkage() == ExternalLinkage) {
9243            if (CXXRecord->isPOD()) {
9244              Diag(CXXRecord->getLocation(),
9245                   diag::warn_arc_non_pod_class_with_object_member)
9246               << CXXRecord;
9247            } else {
9248              // FIXME: Fix-Its would be nice here, but finding a good location
9249              // for them is going to be tricky.
9250              if (CXXRecord->hasTrivialCopyConstructor())
9251                Diag(CXXRecord->getLocation(),
9252                     diag::warn_arc_trivial_member_function_with_object_member)
9253                  << CXXRecord << 0;
9254              if (CXXRecord->hasTrivialCopyAssignment())
9255                Diag(CXXRecord->getLocation(),
9256                     diag::warn_arc_trivial_member_function_with_object_member)
9257                << CXXRecord << 1;
9258              if (CXXRecord->hasTrivialDestructor())
9259                Diag(CXXRecord->getLocation(),
9260                     diag::warn_arc_trivial_member_function_with_object_member)
9261                << CXXRecord << 2;
9262            }
9263          }
9264
9265          // Adjust user-defined destructor exception spec.
9266          if (getLangOptions().CPlusPlus0x &&
9267              CXXRecord->hasUserDeclaredDestructor())
9268            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9269
9270          // Add any implicitly-declared members to this class.
9271          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9272
9273          // If we have virtual base classes, we may end up finding multiple
9274          // final overriders for a given virtual function. Check for this
9275          // problem now.
9276          if (CXXRecord->getNumVBases()) {
9277            CXXFinalOverriderMap FinalOverriders;
9278            CXXRecord->getFinalOverriders(FinalOverriders);
9279
9280            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9281                                             MEnd = FinalOverriders.end();
9282                 M != MEnd; ++M) {
9283              for (OverridingMethods::iterator SO = M->second.begin(),
9284                                            SOEnd = M->second.end();
9285                   SO != SOEnd; ++SO) {
9286                assert(SO->second.size() > 0 &&
9287                       "Virtual function without overridding functions?");
9288                if (SO->second.size() == 1)
9289                  continue;
9290
9291                // C++ [class.virtual]p2:
9292                //   In a derived class, if a virtual member function of a base
9293                //   class subobject has more than one final overrider the
9294                //   program is ill-formed.
9295                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9296                  << (NamedDecl *)M->first << Record;
9297                Diag(M->first->getLocation(),
9298                     diag::note_overridden_virtual_function);
9299                for (OverridingMethods::overriding_iterator
9300                          OM = SO->second.begin(),
9301                       OMEnd = SO->second.end();
9302                     OM != OMEnd; ++OM)
9303                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9304                    << (NamedDecl *)M->first << OM->Method->getParent();
9305
9306                Record->setInvalidDecl();
9307              }
9308            }
9309            CXXRecord->completeDefinition(&FinalOverriders);
9310            Completed = true;
9311          }
9312        }
9313      }
9314    }
9315
9316    if (!Completed)
9317      Record->completeDefinition();
9318
9319    // Now that the record is complete, do any delayed exception spec checks
9320    // we were missing.
9321    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9322      const CXXDestructorDecl *Dtor =
9323              DelayedDestructorExceptionSpecChecks.back().first;
9324      if (Dtor->getParent() != Record)
9325        break;
9326
9327      assert(!Dtor->getParent()->isDependentType() &&
9328          "Should not ever add destructors of templates into the list.");
9329      CheckOverridingFunctionExceptionSpec(Dtor,
9330          DelayedDestructorExceptionSpecChecks.back().second);
9331      DelayedDestructorExceptionSpecChecks.pop_back();
9332    }
9333
9334  } else {
9335    ObjCIvarDecl **ClsFields =
9336      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9337    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9338      ID->setEndOfDefinitionLoc(RBrac);
9339      // Add ivar's to class's DeclContext.
9340      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9341        ClsFields[i]->setLexicalDeclContext(ID);
9342        ID->addDecl(ClsFields[i]);
9343      }
9344      // Must enforce the rule that ivars in the base classes may not be
9345      // duplicates.
9346      if (ID->getSuperClass())
9347        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9348    } else if (ObjCImplementationDecl *IMPDecl =
9349                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9350      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9351      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9352        // Ivar declared in @implementation never belongs to the implementation.
9353        // Only it is in implementation's lexical context.
9354        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9355      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9356    } else if (ObjCCategoryDecl *CDecl =
9357                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9358      // case of ivars in class extension; all other cases have been
9359      // reported as errors elsewhere.
9360      // FIXME. Class extension does not have a LocEnd field.
9361      // CDecl->setLocEnd(RBrac);
9362      // Add ivar's to class extension's DeclContext.
9363      // Diagnose redeclaration of private ivars.
9364      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9365      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9366        if (IDecl) {
9367          if (const ObjCIvarDecl *ClsIvar =
9368              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9369            Diag(ClsFields[i]->getLocation(),
9370                 diag::err_duplicate_ivar_declaration);
9371            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9372            continue;
9373          }
9374          for (const ObjCCategoryDecl *ClsExtDecl =
9375                IDecl->getFirstClassExtension();
9376               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9377            if (const ObjCIvarDecl *ClsExtIvar =
9378                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9379              Diag(ClsFields[i]->getLocation(),
9380                   diag::err_duplicate_ivar_declaration);
9381              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9382              continue;
9383            }
9384          }
9385        }
9386        ClsFields[i]->setLexicalDeclContext(CDecl);
9387        CDecl->addDecl(ClsFields[i]);
9388      }
9389    }
9390  }
9391
9392  if (Attr)
9393    ProcessDeclAttributeList(S, Record, Attr);
9394
9395  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9396  // set the visibility of this record.
9397  if (Record && !Record->getDeclContext()->isRecord())
9398    AddPushedVisibilityAttribute(Record);
9399}
9400
9401/// \brief Determine whether the given integral value is representable within
9402/// the given type T.
9403static bool isRepresentableIntegerValue(ASTContext &Context,
9404                                        llvm::APSInt &Value,
9405                                        QualType T) {
9406  assert(T->isIntegralType(Context) && "Integral type required!");
9407  unsigned BitWidth = Context.getIntWidth(T);
9408
9409  if (Value.isUnsigned() || Value.isNonNegative()) {
9410    if (T->isSignedIntegerOrEnumerationType())
9411      --BitWidth;
9412    return Value.getActiveBits() <= BitWidth;
9413  }
9414  return Value.getMinSignedBits() <= BitWidth;
9415}
9416
9417// \brief Given an integral type, return the next larger integral type
9418// (or a NULL type of no such type exists).
9419static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9420  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9421  // enum checking below.
9422  assert(T->isIntegralType(Context) && "Integral type required!");
9423  const unsigned NumTypes = 4;
9424  QualType SignedIntegralTypes[NumTypes] = {
9425    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9426  };
9427  QualType UnsignedIntegralTypes[NumTypes] = {
9428    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9429    Context.UnsignedLongLongTy
9430  };
9431
9432  unsigned BitWidth = Context.getTypeSize(T);
9433  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9434                                                        : UnsignedIntegralTypes;
9435  for (unsigned I = 0; I != NumTypes; ++I)
9436    if (Context.getTypeSize(Types[I]) > BitWidth)
9437      return Types[I];
9438
9439  return QualType();
9440}
9441
9442EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9443                                          EnumConstantDecl *LastEnumConst,
9444                                          SourceLocation IdLoc,
9445                                          IdentifierInfo *Id,
9446                                          Expr *Val) {
9447  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9448  llvm::APSInt EnumVal(IntWidth);
9449  QualType EltTy;
9450
9451  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9452    Val = 0;
9453
9454  if (Val)
9455    Val = DefaultLvalueConversion(Val).take();
9456
9457  if (Val) {
9458    if (Enum->isDependentType() || Val->isTypeDependent())
9459      EltTy = Context.DependentTy;
9460    else {
9461      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9462      SourceLocation ExpLoc;
9463      if (!Val->isValueDependent() &&
9464          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9465        Val = 0;
9466      } else {
9467        if (!getLangOptions().CPlusPlus) {
9468          // C99 6.7.2.2p2:
9469          //   The expression that defines the value of an enumeration constant
9470          //   shall be an integer constant expression that has a value
9471          //   representable as an int.
9472
9473          // Complain if the value is not representable in an int.
9474          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9475            Diag(IdLoc, diag::ext_enum_value_not_int)
9476              << EnumVal.toString(10) << Val->getSourceRange()
9477              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9478          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9479            // Force the type of the expression to 'int'.
9480            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9481          }
9482        }
9483
9484        if (Enum->isFixed()) {
9485          EltTy = Enum->getIntegerType();
9486
9487          // C++0x [dcl.enum]p5:
9488          //   ... if the initializing value of an enumerator cannot be
9489          //   represented by the underlying type, the program is ill-formed.
9490          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9491            if (getLangOptions().MicrosoftExt) {
9492              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9493              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9494            } else
9495              Diag(IdLoc, diag::err_enumerator_too_large)
9496                << EltTy;
9497          } else
9498            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9499        }
9500        else {
9501          // C++0x [dcl.enum]p5:
9502          //   If the underlying type is not fixed, the type of each enumerator
9503          //   is the type of its initializing value:
9504          //     - If an initializer is specified for an enumerator, the
9505          //       initializing value has the same type as the expression.
9506          EltTy = Val->getType();
9507        }
9508      }
9509    }
9510  }
9511
9512  if (!Val) {
9513    if (Enum->isDependentType())
9514      EltTy = Context.DependentTy;
9515    else if (!LastEnumConst) {
9516      // C++0x [dcl.enum]p5:
9517      //   If the underlying type is not fixed, the type of each enumerator
9518      //   is the type of its initializing value:
9519      //     - If no initializer is specified for the first enumerator, the
9520      //       initializing value has an unspecified integral type.
9521      //
9522      // GCC uses 'int' for its unspecified integral type, as does
9523      // C99 6.7.2.2p3.
9524      if (Enum->isFixed()) {
9525        EltTy = Enum->getIntegerType();
9526      }
9527      else {
9528        EltTy = Context.IntTy;
9529      }
9530    } else {
9531      // Assign the last value + 1.
9532      EnumVal = LastEnumConst->getInitVal();
9533      ++EnumVal;
9534      EltTy = LastEnumConst->getType();
9535
9536      // Check for overflow on increment.
9537      if (EnumVal < LastEnumConst->getInitVal()) {
9538        // C++0x [dcl.enum]p5:
9539        //   If the underlying type is not fixed, the type of each enumerator
9540        //   is the type of its initializing value:
9541        //
9542        //     - Otherwise the type of the initializing value is the same as
9543        //       the type of the initializing value of the preceding enumerator
9544        //       unless the incremented value is not representable in that type,
9545        //       in which case the type is an unspecified integral type
9546        //       sufficient to contain the incremented value. If no such type
9547        //       exists, the program is ill-formed.
9548        QualType T = getNextLargerIntegralType(Context, EltTy);
9549        if (T.isNull() || Enum->isFixed()) {
9550          // There is no integral type larger enough to represent this
9551          // value. Complain, then allow the value to wrap around.
9552          EnumVal = LastEnumConst->getInitVal();
9553          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9554          ++EnumVal;
9555          if (Enum->isFixed())
9556            // When the underlying type is fixed, this is ill-formed.
9557            Diag(IdLoc, diag::err_enumerator_wrapped)
9558              << EnumVal.toString(10)
9559              << EltTy;
9560          else
9561            Diag(IdLoc, diag::warn_enumerator_too_large)
9562              << EnumVal.toString(10);
9563        } else {
9564          EltTy = T;
9565        }
9566
9567        // Retrieve the last enumerator's value, extent that type to the
9568        // type that is supposed to be large enough to represent the incremented
9569        // value, then increment.
9570        EnumVal = LastEnumConst->getInitVal();
9571        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9572        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9573        ++EnumVal;
9574
9575        // If we're not in C++, diagnose the overflow of enumerator values,
9576        // which in C99 means that the enumerator value is not representable in
9577        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9578        // permits enumerator values that are representable in some larger
9579        // integral type.
9580        if (!getLangOptions().CPlusPlus && !T.isNull())
9581          Diag(IdLoc, diag::warn_enum_value_overflow);
9582      } else if (!getLangOptions().CPlusPlus &&
9583                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9584        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9585        Diag(IdLoc, diag::ext_enum_value_not_int)
9586          << EnumVal.toString(10) << 1;
9587      }
9588    }
9589  }
9590
9591  if (!EltTy->isDependentType()) {
9592    // Make the enumerator value match the signedness and size of the
9593    // enumerator's type.
9594    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9595    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9596  }
9597
9598  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9599                                  Val, EnumVal);
9600}
9601
9602
9603Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9604                              SourceLocation IdLoc, IdentifierInfo *Id,
9605                              AttributeList *Attr,
9606                              SourceLocation EqualLoc, Expr *val) {
9607  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9608  EnumConstantDecl *LastEnumConst =
9609    cast_or_null<EnumConstantDecl>(lastEnumConst);
9610  Expr *Val = static_cast<Expr*>(val);
9611
9612  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9613  // we find one that is.
9614  S = getNonFieldDeclScope(S);
9615
9616  // Verify that there isn't already something declared with this name in this
9617  // scope.
9618  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9619                                         ForRedeclaration);
9620  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9621    // Maybe we will complain about the shadowed template parameter.
9622    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9623    // Just pretend that we didn't see the previous declaration.
9624    PrevDecl = 0;
9625  }
9626
9627  if (PrevDecl) {
9628    // When in C++, we may get a TagDecl with the same name; in this case the
9629    // enum constant will 'hide' the tag.
9630    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9631           "Received TagDecl when not in C++!");
9632    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9633      if (isa<EnumConstantDecl>(PrevDecl))
9634        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9635      else
9636        Diag(IdLoc, diag::err_redefinition) << Id;
9637      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9638      return 0;
9639    }
9640  }
9641
9642  // C++ [class.mem]p13:
9643  //   If T is the name of a class, then each of the following shall have a
9644  //   name different from T:
9645  //     - every enumerator of every member of class T that is an enumerated
9646  //       type
9647  if (CXXRecordDecl *Record
9648                      = dyn_cast<CXXRecordDecl>(
9649                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9650    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9651      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9652
9653  EnumConstantDecl *New =
9654    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9655
9656  if (New) {
9657    // Process attributes.
9658    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9659
9660    // Register this decl in the current scope stack.
9661    New->setAccess(TheEnumDecl->getAccess());
9662    PushOnScopeChains(New, S);
9663  }
9664
9665  return New;
9666}
9667
9668void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9669                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9670                         Decl **Elements, unsigned NumElements,
9671                         Scope *S, AttributeList *Attr) {
9672  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9673  QualType EnumType = Context.getTypeDeclType(Enum);
9674
9675  if (Attr)
9676    ProcessDeclAttributeList(S, Enum, Attr);
9677
9678  if (Enum->isDependentType()) {
9679    for (unsigned i = 0; i != NumElements; ++i) {
9680      EnumConstantDecl *ECD =
9681        cast_or_null<EnumConstantDecl>(Elements[i]);
9682      if (!ECD) continue;
9683
9684      ECD->setType(EnumType);
9685    }
9686
9687    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9688    return;
9689  }
9690
9691  // TODO: If the result value doesn't fit in an int, it must be a long or long
9692  // long value.  ISO C does not support this, but GCC does as an extension,
9693  // emit a warning.
9694  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9695  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9696  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9697
9698  // Verify that all the values are okay, compute the size of the values, and
9699  // reverse the list.
9700  unsigned NumNegativeBits = 0;
9701  unsigned NumPositiveBits = 0;
9702
9703  // Keep track of whether all elements have type int.
9704  bool AllElementsInt = true;
9705
9706  for (unsigned i = 0; i != NumElements; ++i) {
9707    EnumConstantDecl *ECD =
9708      cast_or_null<EnumConstantDecl>(Elements[i]);
9709    if (!ECD) continue;  // Already issued a diagnostic.
9710
9711    const llvm::APSInt &InitVal = ECD->getInitVal();
9712
9713    // Keep track of the size of positive and negative values.
9714    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9715      NumPositiveBits = std::max(NumPositiveBits,
9716                                 (unsigned)InitVal.getActiveBits());
9717    else
9718      NumNegativeBits = std::max(NumNegativeBits,
9719                                 (unsigned)InitVal.getMinSignedBits());
9720
9721    // Keep track of whether every enum element has type int (very commmon).
9722    if (AllElementsInt)
9723      AllElementsInt = ECD->getType() == Context.IntTy;
9724  }
9725
9726  // Figure out the type that should be used for this enum.
9727  QualType BestType;
9728  unsigned BestWidth;
9729
9730  // C++0x N3000 [conv.prom]p3:
9731  //   An rvalue of an unscoped enumeration type whose underlying
9732  //   type is not fixed can be converted to an rvalue of the first
9733  //   of the following types that can represent all the values of
9734  //   the enumeration: int, unsigned int, long int, unsigned long
9735  //   int, long long int, or unsigned long long int.
9736  // C99 6.4.4.3p2:
9737  //   An identifier declared as an enumeration constant has type int.
9738  // The C99 rule is modified by a gcc extension
9739  QualType BestPromotionType;
9740
9741  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9742  // -fshort-enums is the equivalent to specifying the packed attribute on all
9743  // enum definitions.
9744  if (LangOpts.ShortEnums)
9745    Packed = true;
9746
9747  if (Enum->isFixed()) {
9748    BestType = Enum->getIntegerType();
9749    if (BestType->isPromotableIntegerType())
9750      BestPromotionType = Context.getPromotedIntegerType(BestType);
9751    else
9752      BestPromotionType = BestType;
9753    // We don't need to set BestWidth, because BestType is going to be the type
9754    // of the enumerators, but we do anyway because otherwise some compilers
9755    // warn that it might be used uninitialized.
9756    BestWidth = CharWidth;
9757  }
9758  else if (NumNegativeBits) {
9759    // If there is a negative value, figure out the smallest integer type (of
9760    // int/long/longlong) that fits.
9761    // If it's packed, check also if it fits a char or a short.
9762    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9763      BestType = Context.SignedCharTy;
9764      BestWidth = CharWidth;
9765    } else if (Packed && NumNegativeBits <= ShortWidth &&
9766               NumPositiveBits < ShortWidth) {
9767      BestType = Context.ShortTy;
9768      BestWidth = ShortWidth;
9769    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9770      BestType = Context.IntTy;
9771      BestWidth = IntWidth;
9772    } else {
9773      BestWidth = Context.getTargetInfo().getLongWidth();
9774
9775      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9776        BestType = Context.LongTy;
9777      } else {
9778        BestWidth = Context.getTargetInfo().getLongLongWidth();
9779
9780        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9781          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9782        BestType = Context.LongLongTy;
9783      }
9784    }
9785    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9786  } else {
9787    // If there is no negative value, figure out the smallest type that fits
9788    // all of the enumerator values.
9789    // If it's packed, check also if it fits a char or a short.
9790    if (Packed && NumPositiveBits <= CharWidth) {
9791      BestType = Context.UnsignedCharTy;
9792      BestPromotionType = Context.IntTy;
9793      BestWidth = CharWidth;
9794    } else if (Packed && NumPositiveBits <= ShortWidth) {
9795      BestType = Context.UnsignedShortTy;
9796      BestPromotionType = Context.IntTy;
9797      BestWidth = ShortWidth;
9798    } else if (NumPositiveBits <= IntWidth) {
9799      BestType = Context.UnsignedIntTy;
9800      BestWidth = IntWidth;
9801      BestPromotionType
9802        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9803                           ? Context.UnsignedIntTy : Context.IntTy;
9804    } else if (NumPositiveBits <=
9805               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9806      BestType = Context.UnsignedLongTy;
9807      BestPromotionType
9808        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9809                           ? Context.UnsignedLongTy : Context.LongTy;
9810    } else {
9811      BestWidth = Context.getTargetInfo().getLongLongWidth();
9812      assert(NumPositiveBits <= BestWidth &&
9813             "How could an initializer get larger than ULL?");
9814      BestType = Context.UnsignedLongLongTy;
9815      BestPromotionType
9816        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9817                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9818    }
9819  }
9820
9821  // Loop over all of the enumerator constants, changing their types to match
9822  // the type of the enum if needed.
9823  for (unsigned i = 0; i != NumElements; ++i) {
9824    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9825    if (!ECD) continue;  // Already issued a diagnostic.
9826
9827    // Standard C says the enumerators have int type, but we allow, as an
9828    // extension, the enumerators to be larger than int size.  If each
9829    // enumerator value fits in an int, type it as an int, otherwise type it the
9830    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9831    // that X has type 'int', not 'unsigned'.
9832
9833    // Determine whether the value fits into an int.
9834    llvm::APSInt InitVal = ECD->getInitVal();
9835
9836    // If it fits into an integer type, force it.  Otherwise force it to match
9837    // the enum decl type.
9838    QualType NewTy;
9839    unsigned NewWidth;
9840    bool NewSign;
9841    if (!getLangOptions().CPlusPlus &&
9842        !Enum->isFixed() &&
9843        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9844      NewTy = Context.IntTy;
9845      NewWidth = IntWidth;
9846      NewSign = true;
9847    } else if (ECD->getType() == BestType) {
9848      // Already the right type!
9849      if (getLangOptions().CPlusPlus)
9850        // C++ [dcl.enum]p4: Following the closing brace of an
9851        // enum-specifier, each enumerator has the type of its
9852        // enumeration.
9853        ECD->setType(EnumType);
9854      continue;
9855    } else {
9856      NewTy = BestType;
9857      NewWidth = BestWidth;
9858      NewSign = BestType->isSignedIntegerOrEnumerationType();
9859    }
9860
9861    // Adjust the APSInt value.
9862    InitVal = InitVal.extOrTrunc(NewWidth);
9863    InitVal.setIsSigned(NewSign);
9864    ECD->setInitVal(InitVal);
9865
9866    // Adjust the Expr initializer and type.
9867    if (ECD->getInitExpr() &&
9868        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9869      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9870                                                CK_IntegralCast,
9871                                                ECD->getInitExpr(),
9872                                                /*base paths*/ 0,
9873                                                VK_RValue));
9874    if (getLangOptions().CPlusPlus)
9875      // C++ [dcl.enum]p4: Following the closing brace of an
9876      // enum-specifier, each enumerator has the type of its
9877      // enumeration.
9878      ECD->setType(EnumType);
9879    else
9880      ECD->setType(NewTy);
9881  }
9882
9883  Enum->completeDefinition(BestType, BestPromotionType,
9884                           NumPositiveBits, NumNegativeBits);
9885}
9886
9887Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9888                                  SourceLocation StartLoc,
9889                                  SourceLocation EndLoc) {
9890  StringLiteral *AsmString = cast<StringLiteral>(expr);
9891
9892  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9893                                                   AsmString, StartLoc,
9894                                                   EndLoc);
9895  CurContext->addDecl(New);
9896  return New;
9897}
9898
9899DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc, ModuleIdPath Path) {
9900  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9901                                                Module::AllVisible,
9902                                                /*IsIncludeDirective=*/false);
9903  if (!Mod)
9904    return true;
9905
9906  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9907  Module *ModCheck = Mod;
9908  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9909    // If we've run out of module parents, just drop the remaining identifiers.
9910    // We need the length to be consistent.
9911    if (!ModCheck)
9912      break;
9913    ModCheck = ModCheck->Parent;
9914
9915    IdentifierLocs.push_back(Path[I].second);
9916  }
9917
9918  ImportDecl *Import = ImportDecl::Create(Context,
9919                                          Context.getTranslationUnitDecl(),
9920                                          ImportLoc, Mod,
9921                                          IdentifierLocs);
9922  Context.getTranslationUnitDecl()->addDecl(Import);
9923  return Import;
9924}
9925
9926void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9927                             SourceLocation PragmaLoc,
9928                             SourceLocation NameLoc) {
9929  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9930
9931  if (PrevDecl) {
9932    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9933  } else {
9934    (void)WeakUndeclaredIdentifiers.insert(
9935      std::pair<IdentifierInfo*,WeakInfo>
9936        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9937  }
9938}
9939
9940void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9941                                IdentifierInfo* AliasName,
9942                                SourceLocation PragmaLoc,
9943                                SourceLocation NameLoc,
9944                                SourceLocation AliasNameLoc) {
9945  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9946                                    LookupOrdinaryName);
9947  WeakInfo W = WeakInfo(Name, NameLoc);
9948
9949  if (PrevDecl) {
9950    if (!PrevDecl->hasAttr<AliasAttr>())
9951      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9952        DeclApplyPragmaWeak(TUScope, ND, W);
9953  } else {
9954    (void)WeakUndeclaredIdentifiers.insert(
9955      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9956  }
9957}
9958
9959Decl *Sema::getObjCDeclContext() const {
9960  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9961}
9962
9963AvailabilityResult Sema::getCurContextAvailability() const {
9964  const Decl *D = cast<Decl>(getCurLexicalContext());
9965  // A category implicitly has the availability of the interface.
9966  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9967    D = CatD->getClassInterface();
9968
9969  return D->getAvailability();
9970}
9971