SemaDecl.cpp revision 27c8dc06f65d7abcf6a7e7f64a7960c9a150ca01
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
32  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
33
34  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
35                 isa<ObjCInterfaceDecl>(IIDecl) ||
36                 isa<TagDecl>(IIDecl)))
37    return IIDecl;
38  return 0;
39}
40
41DeclContext *Sema::getDCParent(DeclContext *DC) {
42  // If CurContext is a ObjC method, getParent() will return NULL.
43  if (isa<ObjCMethodDecl>(DC))
44    return Context.getTranslationUnitDecl();
45
46  // A C++ inline method is parsed *after* the topmost class it was declared in
47  // is fully parsed (it's "complete").
48  // The parsing of a C++ inline method happens at the declaration context of
49  // the topmost (non-nested) class it is declared in.
50  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
51    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
52    DC = MD->getParent();
53    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
54      DC = RD;
55
56    // Return the declaration context of the topmost class the inline method is
57    // declared in.
58    return DC;
59  }
60
61  return DC->getParent();
62}
63
64void Sema::PushDeclContext(DeclContext *DC) {
65  assert(getDCParent(DC) == CurContext &&
66       "The next DeclContext should be directly contained in the current one.");
67  CurContext = DC;
68}
69
70void Sema::PopDeclContext() {
71  assert(CurContext && "DeclContext imbalance!");
72  CurContext = getDCParent(CurContext);
73}
74
75/// Add this decl to the scope shadowed decl chains.
76void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
77  S->AddDecl(D);
78
79  // C++ [basic.scope]p4:
80  //   -- exactly one declaration shall declare a class name or
81  //   enumeration name that is not a typedef name and the other
82  //   declarations shall all refer to the same object or
83  //   enumerator, or all refer to functions and function templates;
84  //   in this case the class name or enumeration name is hidden.
85  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
86    // We are pushing the name of a tag (enum or class).
87    IdentifierResolver::iterator
88        I = IdResolver.begin(TD->getIdentifier(),
89                             TD->getDeclContext(), false/*LookInParentCtx*/);
90    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
99    FunctionDecl *FD = cast<FunctionDecl>(D);
100    // We are pushing the name of a function, which might be an
101    // overloaded name.
102    IdentifierResolver::iterator
103        I = IdResolver.begin(FD->getIdentifier(),
104                             FD->getDeclContext(), false/*LookInParentCtx*/);
105    if (I != IdResolver.end() &&
106        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
107        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
108      // There is already a declaration with the same name in the same
109      // scope. It must be a function or an overloaded function.
110      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
111      if (!Ovl) {
112        // We haven't yet overloaded this function. Take the existing
113        // FunctionDecl and put it into an OverloadedFunctionDecl.
114        Ovl = OverloadedFunctionDecl::Create(Context,
115                                             FD->getDeclContext(),
116                                             FD->getIdentifier());
117        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
118
119        // Remove the name binding to the existing FunctionDecl...
120        IdResolver.RemoveDecl(*I);
121
122        // ... and put the OverloadedFunctionDecl in its place.
123        IdResolver.AddDecl(Ovl);
124      }
125
126      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
127      // to its list of overloads.
128      Ovl->addOverload(FD);
129
130      return;
131    }
132  }
133
134  IdResolver.AddDecl(D);
135}
136
137void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
138  if (S->decl_empty()) return;
139  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
140
141  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
142       I != E; ++I) {
143    Decl *TmpD = static_cast<Decl*>(*I);
144    assert(TmpD && "This decl didn't get pushed??");
145
146    if (isa<CXXFieldDecl>(TmpD)) continue;
147
148    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
149    ScopedDecl *D = cast<ScopedDecl>(TmpD);
150
151    IdentifierInfo *II = D->getIdentifier();
152    if (!II) continue;
153
154    // We only want to remove the decls from the identifier decl chains for
155    // local scopes, when inside a function/method.
156    if (S->getFnParent() != 0)
157      IdResolver.RemoveDecl(D);
158
159    // Chain this decl to the containing DeclContext.
160    D->setNext(CurContext->getDeclChain());
161    CurContext->setDeclChain(D);
162  }
163}
164
165/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
166/// return 0 if one not found.
167ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
168  // The third "scope" argument is 0 since we aren't enabling lazy built-in
169  // creation from this context.
170  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
171
172  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
173}
174
175/// LookupDecl - Look up the inner-most declaration in the specified
176/// namespace.
177Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
178                       Scope *S, bool enableLazyBuiltinCreation) {
179  if (II == 0) return 0;
180  unsigned NS = NSI;
181  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
182    NS |= Decl::IDNS_Tag;
183
184  // Scan up the scope chain looking for a decl that matches this identifier
185  // that is in the appropriate namespace.  This search should not take long, as
186  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
187  for (IdentifierResolver::iterator
188       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
189    if ((*I)->getIdentifierNamespace() & NS)
190      return *I;
191
192  // If we didn't find a use of this identifier, and if the identifier
193  // corresponds to a compiler builtin, create the decl object for the builtin
194  // now, injecting it into translation unit scope, and return it.
195  if (NS & Decl::IDNS_Ordinary) {
196    if (enableLazyBuiltinCreation) {
197      // If this is a builtin on this (or all) targets, create the decl.
198      if (unsigned BuiltinID = II->getBuiltinID())
199        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
200    }
201    if (getLangOptions().ObjC1) {
202      // @interface and @compatibility_alias introduce typedef-like names.
203      // Unlike typedef's, they can only be introduced at file-scope (and are
204      // therefore not scoped decls). They can, however, be shadowed by
205      // other names in IDNS_Ordinary.
206      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
207      if (IDI != ObjCInterfaceDecls.end())
208        return IDI->second;
209      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
210      if (I != ObjCAliasDecls.end())
211        return I->second->getClassInterface();
212    }
213  }
214  return 0;
215}
216
217void Sema::InitBuiltinVaListType() {
218  if (!Context.getBuiltinVaListType().isNull())
219    return;
220
221  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
222  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
223  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
224  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
225}
226
227/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
228/// lazily create a decl for it.
229ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
230                                      Scope *S) {
231  Builtin::ID BID = (Builtin::ID)bid;
232
233  if (Context.BuiltinInfo.hasVAListUse(BID))
234    InitBuiltinVaListType();
235
236  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
237  FunctionDecl *New = FunctionDecl::Create(Context,
238                                           Context.getTranslationUnitDecl(),
239                                           SourceLocation(), II, R,
240                                           FunctionDecl::Extern, false, 0);
241
242  // Create Decl objects for each parameter, adding them to the
243  // FunctionDecl.
244  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
245    llvm::SmallVector<ParmVarDecl*, 16> Params;
246    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
247      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
248                                           FT->getArgType(i), VarDecl::None, 0,
249                                           0));
250    New->setParams(&Params[0], Params.size());
251  }
252
253
254
255  // TUScope is the translation-unit scope to insert this function into.
256  PushOnScopeChains(New, TUScope);
257  return New;
258}
259
260/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
261/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
262/// situation, merging decls or emitting diagnostics as appropriate.
263///
264TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
265  // Allow multiple definitions for ObjC built-in typedefs.
266  // FIXME: Verify the underlying types are equivalent!
267  if (getLangOptions().ObjC1) {
268    const IdentifierInfo *typeIdent = New->getIdentifier();
269    if (typeIdent == Ident_id) {
270      Context.setObjCIdType(New);
271      return New;
272    } else if (typeIdent == Ident_Class) {
273      Context.setObjCClassType(New);
274      return New;
275    } else if (typeIdent == Ident_SEL) {
276      Context.setObjCSelType(New);
277      return New;
278    } else if (typeIdent == Ident_Protocol) {
279      Context.setObjCProtoType(New->getUnderlyingType());
280      return New;
281    }
282    // Fall through - the typedef name was not a builtin type.
283  }
284  // Verify the old decl was also a typedef.
285  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
286  if (!Old) {
287    Diag(New->getLocation(), diag::err_redefinition_different_kind,
288         New->getName());
289    Diag(OldD->getLocation(), diag::err_previous_definition);
290    return New;
291  }
292
293  // If the typedef types are not identical, reject them in all languages and
294  // with any extensions enabled.
295  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
296      Context.getCanonicalType(Old->getUnderlyingType()) !=
297      Context.getCanonicalType(New->getUnderlyingType())) {
298    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
299         New->getUnderlyingType().getAsString(),
300         Old->getUnderlyingType().getAsString());
301    Diag(Old->getLocation(), diag::err_previous_definition);
302    return Old;
303  }
304
305  if (getLangOptions().Microsoft) return New;
306
307  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
308  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
309  // *either* declaration is in a system header. The code below implements
310  // this adhoc compatibility rule. FIXME: The following code will not
311  // work properly when compiling ".i" files (containing preprocessed output).
312  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
313    SourceManager &SrcMgr = Context.getSourceManager();
314    if (SrcMgr.isInSystemHeader(Old->getLocation()))
315      return New;
316    if (SrcMgr.isInSystemHeader(New->getLocation()))
317      return New;
318  }
319
320  Diag(New->getLocation(), diag::err_redefinition, New->getName());
321  Diag(Old->getLocation(), diag::err_previous_definition);
322  return New;
323}
324
325/// DeclhasAttr - returns true if decl Declaration already has the target
326/// attribute.
327static bool DeclHasAttr(const Decl *decl, const Attr *target) {
328  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
329    if (attr->getKind() == target->getKind())
330      return true;
331
332  return false;
333}
334
335/// MergeAttributes - append attributes from the Old decl to the New one.
336static void MergeAttributes(Decl *New, Decl *Old) {
337  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
338
339  while (attr) {
340     tmp = attr;
341     attr = attr->getNext();
342
343    if (!DeclHasAttr(New, tmp)) {
344       New->addAttr(tmp);
345    } else {
346       tmp->setNext(0);
347       delete(tmp);
348    }
349  }
350
351  Old->invalidateAttrs();
352}
353
354/// MergeFunctionDecl - We just parsed a function 'New' from
355/// declarator D which has the same name and scope as a previous
356/// declaration 'Old'.  Figure out how to resolve this situation,
357/// merging decls or emitting diagnostics as appropriate.
358/// Redeclaration will be set true if this New is a redeclaration OldD.
359///
360/// In C++, New and Old must be declarations that are not
361/// overloaded. Use IsOverload to determine whether New and Old are
362/// overloaded, and to select the Old declaration that New should be
363/// merged with.
364FunctionDecl *
365Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
366  assert(!isa<OverloadedFunctionDecl>(OldD) &&
367         "Cannot merge with an overloaded function declaration");
368
369  Redeclaration = false;
370  // Verify the old decl was also a function.
371  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
372  if (!Old) {
373    Diag(New->getLocation(), diag::err_redefinition_different_kind,
374         New->getName());
375    Diag(OldD->getLocation(), diag::err_previous_definition);
376    return New;
377  }
378
379  // Determine whether the previous declaration was a definition,
380  // implicit declaration, or a declaration.
381  diag::kind PrevDiag;
382  if (Old->isThisDeclarationADefinition())
383    PrevDiag = diag::err_previous_definition;
384  else if (Old->isImplicit())
385    PrevDiag = diag::err_previous_implicit_declaration;
386  else
387    PrevDiag = diag::err_previous_declaration;
388
389  QualType OldQType = Context.getCanonicalType(Old->getType());
390  QualType NewQType = Context.getCanonicalType(New->getType());
391
392  if (getLangOptions().CPlusPlus) {
393    // (C++98 13.1p2):
394    //   Certain function declarations cannot be overloaded:
395    //     -- Function declarations that differ only in the return type
396    //        cannot be overloaded.
397    QualType OldReturnType
398      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
399    QualType NewReturnType
400      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
401    if (OldReturnType != NewReturnType) {
402      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
403      Diag(Old->getLocation(), PrevDiag);
404      return New;
405    }
406
407    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
408    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
409    if (OldMethod && NewMethod) {
410      //    -- Member function declarations with the same name and the
411      //       same parameter types cannot be overloaded if any of them
412      //       is a static member function declaration.
413      if (OldMethod->isStatic() || NewMethod->isStatic()) {
414        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
415        Diag(Old->getLocation(), PrevDiag);
416        return New;
417      }
418    }
419
420    // (C++98 8.3.5p3):
421    //   All declarations for a function shall agree exactly in both the
422    //   return type and the parameter-type-list.
423    if (OldQType == NewQType) {
424      // We have a redeclaration.
425      MergeAttributes(New, Old);
426      Redeclaration = true;
427      return MergeCXXFunctionDecl(New, Old);
428    }
429
430    // Fall through for conflicting redeclarations and redefinitions.
431  }
432
433  // C: Function types need to be compatible, not identical. This handles
434  // duplicate function decls like "void f(int); void f(enum X);" properly.
435  if (!getLangOptions().CPlusPlus &&
436      Context.typesAreCompatible(OldQType, NewQType)) {
437    MergeAttributes(New, Old);
438    Redeclaration = true;
439    return New;
440  }
441
442  // A function that has already been declared has been redeclared or defined
443  // with a different type- show appropriate diagnostic
444
445  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
446  // TODO: This is totally simplistic.  It should handle merging functions
447  // together etc, merging extern int X; int X; ...
448  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
449  Diag(Old->getLocation(), PrevDiag);
450  return New;
451}
452
453/// Predicate for C "tentative" external object definitions (C99 6.9.2).
454static bool isTentativeDefinition(VarDecl *VD) {
455  if (VD->isFileVarDecl())
456    return (!VD->getInit() &&
457            (VD->getStorageClass() == VarDecl::None ||
458             VD->getStorageClass() == VarDecl::Static));
459  return false;
460}
461
462/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
463/// when dealing with C "tentative" external object definitions (C99 6.9.2).
464void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
465  bool VDIsTentative = isTentativeDefinition(VD);
466  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
467
468  for (IdentifierResolver::iterator
469       I = IdResolver.begin(VD->getIdentifier(),
470                            VD->getDeclContext(), false/*LookInParentCtx*/),
471       E = IdResolver.end(); I != E; ++I) {
472    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
473      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
474
475      // Handle the following case:
476      //   int a[10];
477      //   int a[];   - the code below makes sure we set the correct type.
478      //   int a[11]; - this is an error, size isn't 10.
479      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
480          OldDecl->getType()->isConstantArrayType())
481        VD->setType(OldDecl->getType());
482
483      // Check for "tentative" definitions. We can't accomplish this in
484      // MergeVarDecl since the initializer hasn't been attached.
485      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
486        continue;
487
488      // Handle __private_extern__ just like extern.
489      if (OldDecl->getStorageClass() != VarDecl::Extern &&
490          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
491          VD->getStorageClass() != VarDecl::Extern &&
492          VD->getStorageClass() != VarDecl::PrivateExtern) {
493        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
494        Diag(OldDecl->getLocation(), diag::err_previous_definition);
495      }
496    }
497  }
498}
499
500/// MergeVarDecl - We just parsed a variable 'New' which has the same name
501/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
502/// situation, merging decls or emitting diagnostics as appropriate.
503///
504/// Tentative definition rules (C99 6.9.2p2) are checked by
505/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
506/// definitions here, since the initializer hasn't been attached.
507///
508VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
509  // Verify the old decl was also a variable.
510  VarDecl *Old = dyn_cast<VarDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind,
513         New->getName());
514    Diag(OldD->getLocation(), diag::err_previous_definition);
515    return New;
516  }
517
518  MergeAttributes(New, Old);
519
520  // Verify the types match.
521  QualType OldCType = Context.getCanonicalType(Old->getType());
522  QualType NewCType = Context.getCanonicalType(New->getType());
523  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
524    Diag(New->getLocation(), diag::err_redefinition, New->getName());
525    Diag(Old->getLocation(), diag::err_previous_definition);
526    return New;
527  }
528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
529  if (New->getStorageClass() == VarDecl::Static &&
530      (Old->getStorageClass() == VarDecl::None ||
531       Old->getStorageClass() == VarDecl::Extern)) {
532    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
533    Diag(Old->getLocation(), diag::err_previous_definition);
534    return New;
535  }
536  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
537  if (New->getStorageClass() != VarDecl::Static &&
538      Old->getStorageClass() == VarDecl::Static) {
539    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
540    Diag(Old->getLocation(), diag::err_previous_definition);
541    return New;
542  }
543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
544  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547  }
548  return New;
549}
550
551/// CheckParmsForFunctionDef - Check that the parameters of the given
552/// function are appropriate for the definition of a function. This
553/// takes care of any checks that cannot be performed on the
554/// declaration itself, e.g., that the types of each of the function
555/// parameters are complete.
556bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
557  bool HasInvalidParm = false;
558  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
559    ParmVarDecl *Param = FD->getParamDecl(p);
560
561    // C99 6.7.5.3p4: the parameters in a parameter type list in a
562    // function declarator that is part of a function definition of
563    // that function shall not have incomplete type.
564    if (Param->getType()->isIncompleteType() &&
565        !Param->isInvalidDecl()) {
566      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
567           Param->getType().getAsString());
568      Param->setInvalidDecl();
569      HasInvalidParm = true;
570    }
571  }
572
573  return HasInvalidParm;
574}
575
576/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
577/// no declarator (e.g. "struct foo;") is parsed.
578Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
579  // TODO: emit error on 'int;' or 'const enum foo;'.
580  // TODO: emit error on 'typedef int;'
581  // if (!DS.isMissingDeclaratorOk()) Diag(...);
582
583  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
584}
585
586bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
587  // Get the type before calling CheckSingleAssignmentConstraints(), since
588  // it can promote the expression.
589  QualType InitType = Init->getType();
590
591  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
592  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
593                                  InitType, Init, "initializing");
594}
595
596bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
597  const ArrayType *AT = Context.getAsArrayType(DeclT);
598
599  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
600    // C99 6.7.8p14. We have an array of character type with unknown size
601    // being initialized to a string literal.
602    llvm::APSInt ConstVal(32);
603    ConstVal = strLiteral->getByteLength() + 1;
604    // Return a new array type (C99 6.7.8p22).
605    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
606                                         ArrayType::Normal, 0);
607  } else {
608    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
609    // C99 6.7.8p14. We have an array of character type with known size.
610    // FIXME: Avoid truncation for 64-bit length strings.
611    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
612      Diag(strLiteral->getSourceRange().getBegin(),
613           diag::warn_initializer_string_for_char_array_too_long,
614           strLiteral->getSourceRange());
615  }
616  // Set type from "char *" to "constant array of char".
617  strLiteral->setType(DeclT);
618  // For now, we always return false (meaning success).
619  return false;
620}
621
622StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
623  const ArrayType *AT = Context.getAsArrayType(DeclType);
624  if (AT && AT->getElementType()->isCharType()) {
625    return dyn_cast<StringLiteral>(Init);
626  }
627  return 0;
628}
629
630bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
631  // C++ [dcl.init.ref]p1:
632  //   A variable declared to be a T&, that is “reference to type T”
633  //   (8.3.2), shall be initialized by an object, or function, of
634  //   type T or by an object that can be converted into a T.
635  if (DeclType->isReferenceType())
636    return CheckReferenceInit(Init, DeclType);
637
638  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
639  // of unknown size ("[]") or an object type that is not a variable array type.
640  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
641    return Diag(VAT->getSizeExpr()->getLocStart(),
642                diag::err_variable_object_no_init,
643                VAT->getSizeExpr()->getSourceRange());
644
645  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
646  if (!InitList) {
647    // FIXME: Handle wide strings
648    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
649      return CheckStringLiteralInit(strLiteral, DeclType);
650
651    // C99 6.7.8p16.
652    if (DeclType->isArrayType())
653      return Diag(Init->getLocStart(),
654                  diag::err_array_init_list_required,
655                  Init->getSourceRange());
656
657    return CheckSingleInitializer(Init, DeclType);
658  }
659
660  InitListChecker CheckInitList(this, InitList, DeclType);
661  return CheckInitList.HadError();
662}
663
664Sema::DeclTy *
665Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
666  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
667  IdentifierInfo *II = D.getIdentifier();
668
669  // All of these full declarators require an identifier.  If it doesn't have
670  // one, the ParsedFreeStandingDeclSpec action should be used.
671  if (II == 0) {
672    Diag(D.getDeclSpec().getSourceRange().getBegin(),
673         diag::err_declarator_need_ident,
674         D.getDeclSpec().getSourceRange(), D.getSourceRange());
675    return 0;
676  }
677
678  // The scope passed in may not be a decl scope.  Zip up the scope tree until
679  // we find one that is.
680  while ((S->getFlags() & Scope::DeclScope) == 0)
681    S = S->getParent();
682
683  // See if this is a redefinition of a variable in the same scope.
684  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
685  ScopedDecl *New;
686  bool InvalidDecl = false;
687
688  // In C++, the previous declaration we find might be a tag type
689  // (class or enum). In this case, the new declaration will hide the
690  // tag type.
691  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
692    PrevDecl = 0;
693
694  QualType R = GetTypeForDeclarator(D, S);
695  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
696
697  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
698    // Check that there are no default arguments (C++ only).
699    if (getLangOptions().CPlusPlus)
700      CheckExtraCXXDefaultArguments(D);
701
702    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
703    if (!NewTD) return 0;
704
705    // Handle attributes prior to checking for duplicates in MergeVarDecl
706    ProcessDeclAttributes(NewTD, D);
707    // Merge the decl with the existing one if appropriate. If the decl is
708    // in an outer scope, it isn't the same thing.
709    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
710      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
711      if (NewTD == 0) return 0;
712    }
713    New = NewTD;
714    if (S->getFnParent() == 0) {
715      // C99 6.7.7p2: If a typedef name specifies a variably modified type
716      // then it shall have block scope.
717      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
718        // FIXME: Diagnostic needs to be fixed.
719        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
720        InvalidDecl = true;
721      }
722    }
723  } else if (R.getTypePtr()->isFunctionType()) {
724    FunctionDecl::StorageClass SC = FunctionDecl::None;
725    switch (D.getDeclSpec().getStorageClassSpec()) {
726      default: assert(0 && "Unknown storage class!");
727      case DeclSpec::SCS_auto:
728      case DeclSpec::SCS_register:
729        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
730             R.getAsString());
731        InvalidDecl = true;
732        break;
733      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
734      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
735      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
736      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
737    }
738
739    bool isInline = D.getDeclSpec().isInlineSpecified();
740    FunctionDecl *NewFD;
741    if (D.getContext() == Declarator::MemberContext) {
742      // This is a C++ method declaration.
743      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
744                                    D.getIdentifierLoc(), II, R,
745                                    (SC == FunctionDecl::Static), isInline,
746                                    LastDeclarator);
747    } else {
748      NewFD = FunctionDecl::Create(Context, CurContext,
749                                   D.getIdentifierLoc(),
750                                   II, R, SC, isInline, LastDeclarator,
751                                   // FIXME: Move to DeclGroup...
752                                   D.getDeclSpec().getSourceRange().getBegin());
753    }
754    // Handle attributes.
755    ProcessDeclAttributes(NewFD, D);
756
757    // Handle GNU asm-label extension (encoded as an attribute).
758    if (Expr *E = (Expr*) D.getAsmLabel()) {
759      // The parser guarantees this is a string.
760      StringLiteral *SE = cast<StringLiteral>(E);
761      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
762                                                  SE->getByteLength())));
763    }
764
765    // Copy the parameter declarations from the declarator D to
766    // the function declaration NewFD, if they are available.
767    if (D.getNumTypeObjects() > 0) {
768      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
769
770      // Create Decl objects for each parameter, adding them to the
771      // FunctionDecl.
772      llvm::SmallVector<ParmVarDecl*, 16> Params;
773
774      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
775      // function that takes no arguments, not a function that takes a
776      // single void argument.
777      // We let through "const void" here because Sema::GetTypeForDeclarator
778      // already checks for that case.
779      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
780          FTI.ArgInfo[0].Param &&
781          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
782        // empty arg list, don't push any params.
783        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
784
785        // In C++, the empty parameter-type-list must be spelled "void"; a
786        // typedef of void is not permitted.
787        if (getLangOptions().CPlusPlus &&
788            Param->getType().getUnqualifiedType() != Context.VoidTy) {
789          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
790        }
791      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
792        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
793          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
794      }
795
796      NewFD->setParams(&Params[0], Params.size());
797    } else if (R->getAsTypedefType()) {
798      // When we're declaring a function with a typedef, as in the
799      // following example, we'll need to synthesize (unnamed)
800      // parameters for use in the declaration.
801      //
802      // @code
803      // typedef void fn(int);
804      // fn f;
805      // @endcode
806      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
807      if (!FT) {
808        // This is a typedef of a function with no prototype, so we
809        // don't need to do anything.
810      } else if ((FT->getNumArgs() == 0) ||
811          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
812           FT->getArgType(0)->isVoidType())) {
813        // This is a zero-argument function. We don't need to do anything.
814      } else {
815        // Synthesize a parameter for each argument type.
816        llvm::SmallVector<ParmVarDecl*, 16> Params;
817        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
818             ArgType != FT->arg_type_end(); ++ArgType) {
819          Params.push_back(ParmVarDecl::Create(Context, CurContext,
820                                               SourceLocation(), 0,
821                                               *ArgType, VarDecl::None,
822                                               0, 0));
823        }
824
825        NewFD->setParams(&Params[0], Params.size());
826      }
827    }
828
829    // Merge the decl with the existing one if appropriate. Since C functions
830    // are in a flat namespace, make sure we consider decls in outer scopes.
831    if (PrevDecl &&
832        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
833      bool Redeclaration = false;
834
835      // If C++, determine whether NewFD is an overload of PrevDecl or
836      // a declaration that requires merging. If it's an overload,
837      // there's no more work to do here; we'll just add the new
838      // function to the scope.
839      OverloadedFunctionDecl::function_iterator MatchedDecl;
840      if (!getLangOptions().CPlusPlus ||
841          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
842        Decl *OldDecl = PrevDecl;
843
844        // If PrevDecl was an overloaded function, extract the
845        // FunctionDecl that matched.
846        if (isa<OverloadedFunctionDecl>(PrevDecl))
847          OldDecl = *MatchedDecl;
848
849        // NewFD and PrevDecl represent declarations that need to be
850        // merged.
851        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
852
853        if (NewFD == 0) return 0;
854        if (Redeclaration) {
855          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
856
857          if (OldDecl == PrevDecl) {
858            // Remove the name binding for the previous
859            // declaration. We'll add the binding back later, but then
860            // it will refer to the new declaration (which will
861            // contain more information).
862            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
863          } else {
864            // We need to update the OverloadedFunctionDecl with the
865            // latest declaration of this function, so that name
866            // lookup will always refer to the latest declaration of
867            // this function.
868            *MatchedDecl = NewFD;
869
870            // Add the redeclaration to the current scope, since we'll
871            // be skipping PushOnScopeChains.
872            S->AddDecl(NewFD);
873
874            return NewFD;
875          }
876        }
877      }
878    }
879    New = NewFD;
880
881    // In C++, check default arguments now that we have merged decls.
882    if (getLangOptions().CPlusPlus)
883      CheckCXXDefaultArguments(NewFD);
884  } else {
885    // Check that there are no default arguments (C++ only).
886    if (getLangOptions().CPlusPlus)
887      CheckExtraCXXDefaultArguments(D);
888
889    if (R.getTypePtr()->isObjCInterfaceType()) {
890      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
891           D.getIdentifier()->getName());
892      InvalidDecl = true;
893    }
894
895    VarDecl *NewVD;
896    VarDecl::StorageClass SC;
897    switch (D.getDeclSpec().getStorageClassSpec()) {
898    default: assert(0 && "Unknown storage class!");
899    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
900    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
901    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
902    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
903    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
904    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
905    }
906    if (D.getContext() == Declarator::MemberContext) {
907      assert(SC == VarDecl::Static && "Invalid storage class for member!");
908      // This is a static data member for a C++ class.
909      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
910                                      D.getIdentifierLoc(), II,
911                                      R, LastDeclarator);
912    } else {
913      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
914      if (S->getFnParent() == 0) {
915        // C99 6.9p2: The storage-class specifiers auto and register shall not
916        // appear in the declaration specifiers in an external declaration.
917        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
918          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
919               R.getAsString());
920          InvalidDecl = true;
921        }
922      }
923        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
924                                II, R, SC, LastDeclarator,
925                                // FIXME: Move to DeclGroup...
926                                D.getDeclSpec().getSourceRange().getBegin());
927        NewVD->setThreadSpecified(ThreadSpecified);
928    }
929    // Handle attributes prior to checking for duplicates in MergeVarDecl
930    ProcessDeclAttributes(NewVD, D);
931
932    // Handle GNU asm-label extension (encoded as an attribute).
933    if (Expr *E = (Expr*) D.getAsmLabel()) {
934      // The parser guarantees this is a string.
935      StringLiteral *SE = cast<StringLiteral>(E);
936      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
937                                                  SE->getByteLength())));
938    }
939
940    // Emit an error if an address space was applied to decl with local storage.
941    // This includes arrays of objects with address space qualifiers, but not
942    // automatic variables that point to other address spaces.
943    // ISO/IEC TR 18037 S5.1.2
944    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
945      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
946      InvalidDecl = true;
947    }
948    // Merge the decl with the existing one if appropriate. If the decl is
949    // in an outer scope, it isn't the same thing.
950    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
951      NewVD = MergeVarDecl(NewVD, PrevDecl);
952      if (NewVD == 0) return 0;
953    }
954    New = NewVD;
955  }
956
957  // If this has an identifier, add it to the scope stack.
958  if (II)
959    PushOnScopeChains(New, S);
960  // If any semantic error occurred, mark the decl as invalid.
961  if (D.getInvalidType() || InvalidDecl)
962    New->setInvalidDecl();
963
964  return New;
965}
966
967void Sema::InitializerElementNotConstant(const Expr *Init) {
968  Diag(Init->getExprLoc(),
969       diag::err_init_element_not_constant, Init->getSourceRange());
970}
971
972bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
973  switch (Init->getStmtClass()) {
974  default:
975    InitializerElementNotConstant(Init);
976    return true;
977  case Expr::ParenExprClass: {
978    const ParenExpr* PE = cast<ParenExpr>(Init);
979    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
980  }
981  case Expr::CompoundLiteralExprClass:
982    return cast<CompoundLiteralExpr>(Init)->isFileScope();
983  case Expr::DeclRefExprClass: {
984    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
985    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
986      if (VD->hasGlobalStorage())
987        return false;
988      InitializerElementNotConstant(Init);
989      return true;
990    }
991    if (isa<FunctionDecl>(D))
992      return false;
993    InitializerElementNotConstant(Init);
994    return true;
995  }
996  case Expr::MemberExprClass: {
997    const MemberExpr *M = cast<MemberExpr>(Init);
998    if (M->isArrow())
999      return CheckAddressConstantExpression(M->getBase());
1000    return CheckAddressConstantExpressionLValue(M->getBase());
1001  }
1002  case Expr::ArraySubscriptExprClass: {
1003    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1004    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1005    return CheckAddressConstantExpression(ASE->getBase()) ||
1006           CheckArithmeticConstantExpression(ASE->getIdx());
1007  }
1008  case Expr::StringLiteralClass:
1009  case Expr::PredefinedExprClass:
1010    return false;
1011  case Expr::UnaryOperatorClass: {
1012    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1013
1014    // C99 6.6p9
1015    if (Exp->getOpcode() == UnaryOperator::Deref)
1016      return CheckAddressConstantExpression(Exp->getSubExpr());
1017
1018    InitializerElementNotConstant(Init);
1019    return true;
1020  }
1021  }
1022}
1023
1024bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1025  switch (Init->getStmtClass()) {
1026  default:
1027    InitializerElementNotConstant(Init);
1028    return true;
1029  case Expr::ParenExprClass:
1030    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1031  case Expr::StringLiteralClass:
1032  case Expr::ObjCStringLiteralClass:
1033    return false;
1034  case Expr::CallExprClass:
1035    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1036    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1037           Builtin::BI__builtin___CFStringMakeConstantString)
1038      return false;
1039
1040    InitializerElementNotConstant(Init);
1041    return true;
1042
1043  case Expr::UnaryOperatorClass: {
1044    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1045
1046    // C99 6.6p9
1047    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1048      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1049
1050    if (Exp->getOpcode() == UnaryOperator::Extension)
1051      return CheckAddressConstantExpression(Exp->getSubExpr());
1052
1053    InitializerElementNotConstant(Init);
1054    return true;
1055  }
1056  case Expr::BinaryOperatorClass: {
1057    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1058    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1059
1060    Expr *PExp = Exp->getLHS();
1061    Expr *IExp = Exp->getRHS();
1062    if (IExp->getType()->isPointerType())
1063      std::swap(PExp, IExp);
1064
1065    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1066    return CheckAddressConstantExpression(PExp) ||
1067           CheckArithmeticConstantExpression(IExp);
1068  }
1069  case Expr::ImplicitCastExprClass:
1070  case Expr::CStyleCastExprClass: {
1071    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1072    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1073      // Check for implicit promotion
1074      if (SubExpr->getType()->isFunctionType() ||
1075          SubExpr->getType()->isArrayType())
1076        return CheckAddressConstantExpressionLValue(SubExpr);
1077    }
1078
1079    // Check for pointer->pointer cast
1080    if (SubExpr->getType()->isPointerType())
1081      return CheckAddressConstantExpression(SubExpr);
1082
1083    if (SubExpr->getType()->isIntegralType()) {
1084      // Check for the special-case of a pointer->int->pointer cast;
1085      // this isn't standard, but some code requires it. See
1086      // PR2720 for an example.
1087      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1088        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1089          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1090          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1091          if (IntWidth >= PointerWidth) {
1092            return CheckAddressConstantExpression(SubCast->getSubExpr());
1093          }
1094        }
1095      }
1096    }
1097    if (SubExpr->getType()->isArithmeticType()) {
1098      return CheckArithmeticConstantExpression(SubExpr);
1099    }
1100
1101    InitializerElementNotConstant(Init);
1102    return true;
1103  }
1104  case Expr::ConditionalOperatorClass: {
1105    // FIXME: Should we pedwarn here?
1106    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1107    if (!Exp->getCond()->getType()->isArithmeticType()) {
1108      InitializerElementNotConstant(Init);
1109      return true;
1110    }
1111    if (CheckArithmeticConstantExpression(Exp->getCond()))
1112      return true;
1113    if (Exp->getLHS() &&
1114        CheckAddressConstantExpression(Exp->getLHS()))
1115      return true;
1116    return CheckAddressConstantExpression(Exp->getRHS());
1117  }
1118  case Expr::AddrLabelExprClass:
1119    return false;
1120  }
1121}
1122
1123static const Expr* FindExpressionBaseAddress(const Expr* E);
1124
1125static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1126  switch (E->getStmtClass()) {
1127  default:
1128    return E;
1129  case Expr::ParenExprClass: {
1130    const ParenExpr* PE = cast<ParenExpr>(E);
1131    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1132  }
1133  case Expr::MemberExprClass: {
1134    const MemberExpr *M = cast<MemberExpr>(E);
1135    if (M->isArrow())
1136      return FindExpressionBaseAddress(M->getBase());
1137    return FindExpressionBaseAddressLValue(M->getBase());
1138  }
1139  case Expr::ArraySubscriptExprClass: {
1140    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1141    return FindExpressionBaseAddress(ASE->getBase());
1142  }
1143  case Expr::UnaryOperatorClass: {
1144    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1145
1146    if (Exp->getOpcode() == UnaryOperator::Deref)
1147      return FindExpressionBaseAddress(Exp->getSubExpr());
1148
1149    return E;
1150  }
1151  }
1152}
1153
1154static const Expr* FindExpressionBaseAddress(const Expr* E) {
1155  switch (E->getStmtClass()) {
1156  default:
1157    return E;
1158  case Expr::ParenExprClass: {
1159    const ParenExpr* PE = cast<ParenExpr>(E);
1160    return FindExpressionBaseAddress(PE->getSubExpr());
1161  }
1162  case Expr::UnaryOperatorClass: {
1163    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1164
1165    // C99 6.6p9
1166    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1167      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1168
1169    if (Exp->getOpcode() == UnaryOperator::Extension)
1170      return FindExpressionBaseAddress(Exp->getSubExpr());
1171
1172    return E;
1173  }
1174  case Expr::BinaryOperatorClass: {
1175    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1176
1177    Expr *PExp = Exp->getLHS();
1178    Expr *IExp = Exp->getRHS();
1179    if (IExp->getType()->isPointerType())
1180      std::swap(PExp, IExp);
1181
1182    return FindExpressionBaseAddress(PExp);
1183  }
1184  case Expr::ImplicitCastExprClass: {
1185    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1186
1187    // Check for implicit promotion
1188    if (SubExpr->getType()->isFunctionType() ||
1189        SubExpr->getType()->isArrayType())
1190      return FindExpressionBaseAddressLValue(SubExpr);
1191
1192    // Check for pointer->pointer cast
1193    if (SubExpr->getType()->isPointerType())
1194      return FindExpressionBaseAddress(SubExpr);
1195
1196    // We assume that we have an arithmetic expression here;
1197    // if we don't, we'll figure it out later
1198    return 0;
1199  }
1200  case Expr::CStyleCastExprClass: {
1201    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1202
1203    // Check for pointer->pointer cast
1204    if (SubExpr->getType()->isPointerType())
1205      return FindExpressionBaseAddress(SubExpr);
1206
1207    // We assume that we have an arithmetic expression here;
1208    // if we don't, we'll figure it out later
1209    return 0;
1210  }
1211  }
1212}
1213
1214bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1215  switch (Init->getStmtClass()) {
1216  default:
1217    InitializerElementNotConstant(Init);
1218    return true;
1219  case Expr::ParenExprClass: {
1220    const ParenExpr* PE = cast<ParenExpr>(Init);
1221    return CheckArithmeticConstantExpression(PE->getSubExpr());
1222  }
1223  case Expr::FloatingLiteralClass:
1224  case Expr::IntegerLiteralClass:
1225  case Expr::CharacterLiteralClass:
1226  case Expr::ImaginaryLiteralClass:
1227  case Expr::TypesCompatibleExprClass:
1228  case Expr::CXXBoolLiteralExprClass:
1229    return false;
1230  case Expr::CallExprClass: {
1231    const CallExpr *CE = cast<CallExpr>(Init);
1232
1233    // Allow any constant foldable calls to builtins.
1234    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1235      return false;
1236
1237    InitializerElementNotConstant(Init);
1238    return true;
1239  }
1240  case Expr::DeclRefExprClass: {
1241    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1242    if (isa<EnumConstantDecl>(D))
1243      return false;
1244    InitializerElementNotConstant(Init);
1245    return true;
1246  }
1247  case Expr::CompoundLiteralExprClass:
1248    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1249    // but vectors are allowed to be magic.
1250    if (Init->getType()->isVectorType())
1251      return false;
1252    InitializerElementNotConstant(Init);
1253    return true;
1254  case Expr::UnaryOperatorClass: {
1255    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1256
1257    switch (Exp->getOpcode()) {
1258    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1259    // See C99 6.6p3.
1260    default:
1261      InitializerElementNotConstant(Init);
1262      return true;
1263    case UnaryOperator::SizeOf:
1264    case UnaryOperator::AlignOf:
1265    case UnaryOperator::OffsetOf:
1266      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1267      // See C99 6.5.3.4p2 and 6.6p3.
1268      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1269        return false;
1270      InitializerElementNotConstant(Init);
1271      return true;
1272    case UnaryOperator::Extension:
1273    case UnaryOperator::LNot:
1274    case UnaryOperator::Plus:
1275    case UnaryOperator::Minus:
1276    case UnaryOperator::Not:
1277      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1278    }
1279  }
1280  case Expr::SizeOfAlignOfTypeExprClass: {
1281    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1282    // Special check for void types, which are allowed as an extension
1283    if (Exp->getArgumentType()->isVoidType())
1284      return false;
1285    // alignof always evaluates to a constant.
1286    // FIXME: is sizeof(int[3.0]) a constant expression?
1287    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1288      InitializerElementNotConstant(Init);
1289      return true;
1290    }
1291    return false;
1292  }
1293  case Expr::BinaryOperatorClass: {
1294    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1295
1296    if (Exp->getLHS()->getType()->isArithmeticType() &&
1297        Exp->getRHS()->getType()->isArithmeticType()) {
1298      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1299             CheckArithmeticConstantExpression(Exp->getRHS());
1300    }
1301
1302    if (Exp->getLHS()->getType()->isPointerType() &&
1303        Exp->getRHS()->getType()->isPointerType()) {
1304      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1305      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1306
1307      // Only allow a null (constant integer) base; we could
1308      // allow some additional cases if necessary, but this
1309      // is sufficient to cover offsetof-like constructs.
1310      if (!LHSBase && !RHSBase) {
1311        return CheckAddressConstantExpression(Exp->getLHS()) ||
1312               CheckAddressConstantExpression(Exp->getRHS());
1313      }
1314    }
1315
1316    InitializerElementNotConstant(Init);
1317    return true;
1318  }
1319  case Expr::ImplicitCastExprClass:
1320  case Expr::CStyleCastExprClass: {
1321    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1322    if (SubExpr->getType()->isArithmeticType())
1323      return CheckArithmeticConstantExpression(SubExpr);
1324
1325    if (SubExpr->getType()->isPointerType()) {
1326      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1327      // If the pointer has a null base, this is an offsetof-like construct
1328      if (!Base)
1329        return CheckAddressConstantExpression(SubExpr);
1330    }
1331
1332    InitializerElementNotConstant(Init);
1333    return true;
1334  }
1335  case Expr::ConditionalOperatorClass: {
1336    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1337
1338    // If GNU extensions are disabled, we require all operands to be arithmetic
1339    // constant expressions.
1340    if (getLangOptions().NoExtensions) {
1341      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1342          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1343             CheckArithmeticConstantExpression(Exp->getRHS());
1344    }
1345
1346    // Otherwise, we have to emulate some of the behavior of fold here.
1347    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1348    // because it can constant fold things away.  To retain compatibility with
1349    // GCC code, we see if we can fold the condition to a constant (which we
1350    // should always be able to do in theory).  If so, we only require the
1351    // specified arm of the conditional to be a constant.  This is a horrible
1352    // hack, but is require by real world code that uses __builtin_constant_p.
1353    APValue Val;
1354    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1355      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1356      // won't be able to either.  Use it to emit the diagnostic though.
1357      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1358      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1359      return Res;
1360    }
1361
1362    // Verify that the side following the condition is also a constant.
1363    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1364    if (Val.getInt() == 0)
1365      std::swap(TrueSide, FalseSide);
1366
1367    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1368      return true;
1369
1370    // Okay, the evaluated side evaluates to a constant, so we accept this.
1371    // Check to see if the other side is obviously not a constant.  If so,
1372    // emit a warning that this is a GNU extension.
1373    if (FalseSide && !FalseSide->isEvaluatable(Context))
1374      Diag(Init->getExprLoc(),
1375           diag::ext_typecheck_expression_not_constant_but_accepted,
1376           FalseSide->getSourceRange());
1377    return false;
1378  }
1379  }
1380}
1381
1382bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1383  Init = Init->IgnoreParens();
1384
1385  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1386  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1387    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1388
1389  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1390    return CheckForConstantInitializer(e->getInitializer(), DclT);
1391
1392  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1393    unsigned numInits = Exp->getNumInits();
1394    for (unsigned i = 0; i < numInits; i++) {
1395      // FIXME: Need to get the type of the declaration for C++,
1396      // because it could be a reference?
1397      if (CheckForConstantInitializer(Exp->getInit(i),
1398                                      Exp->getInit(i)->getType()))
1399        return true;
1400    }
1401    return false;
1402  }
1403
1404  if (Init->isNullPointerConstant(Context))
1405    return false;
1406  if (Init->getType()->isArithmeticType()) {
1407    QualType InitTy = Context.getCanonicalType(Init->getType())
1408                             .getUnqualifiedType();
1409    if (InitTy == Context.BoolTy) {
1410      // Special handling for pointers implicitly cast to bool;
1411      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1412      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1413        Expr* SubE = ICE->getSubExpr();
1414        if (SubE->getType()->isPointerType() ||
1415            SubE->getType()->isArrayType() ||
1416            SubE->getType()->isFunctionType()) {
1417          return CheckAddressConstantExpression(Init);
1418        }
1419      }
1420    } else if (InitTy->isIntegralType()) {
1421      Expr* SubE = 0;
1422      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1423        SubE = CE->getSubExpr();
1424      // Special check for pointer cast to int; we allow as an extension
1425      // an address constant cast to an integer if the integer
1426      // is of an appropriate width (this sort of code is apparently used
1427      // in some places).
1428      // FIXME: Add pedwarn?
1429      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1430      if (SubE && (SubE->getType()->isPointerType() ||
1431                   SubE->getType()->isArrayType() ||
1432                   SubE->getType()->isFunctionType())) {
1433        unsigned IntWidth = Context.getTypeSize(Init->getType());
1434        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1435        if (IntWidth >= PointerWidth)
1436          return CheckAddressConstantExpression(Init);
1437      }
1438    }
1439
1440    return CheckArithmeticConstantExpression(Init);
1441  }
1442
1443  if (Init->getType()->isPointerType())
1444    return CheckAddressConstantExpression(Init);
1445
1446  // An array type at the top level that isn't an init-list must
1447  // be a string literal
1448  if (Init->getType()->isArrayType())
1449    return false;
1450
1451  if (Init->getType()->isFunctionType())
1452    return false;
1453
1454  // Allow block exprs at top level.
1455  if (Init->getType()->isBlockPointerType())
1456    return false;
1457
1458  InitializerElementNotConstant(Init);
1459  return true;
1460}
1461
1462void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1463  Decl *RealDecl = static_cast<Decl *>(dcl);
1464  Expr *Init = static_cast<Expr *>(init);
1465  assert(Init && "missing initializer");
1466
1467  // If there is no declaration, there was an error parsing it.  Just ignore
1468  // the initializer.
1469  if (RealDecl == 0) {
1470    delete Init;
1471    return;
1472  }
1473
1474  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1475  if (!VDecl) {
1476    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1477         diag::err_illegal_initializer);
1478    RealDecl->setInvalidDecl();
1479    return;
1480  }
1481  // Get the decls type and save a reference for later, since
1482  // CheckInitializerTypes may change it.
1483  QualType DclT = VDecl->getType(), SavT = DclT;
1484  if (VDecl->isBlockVarDecl()) {
1485    VarDecl::StorageClass SC = VDecl->getStorageClass();
1486    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1487      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1488      VDecl->setInvalidDecl();
1489    } else if (!VDecl->isInvalidDecl()) {
1490      if (CheckInitializerTypes(Init, DclT))
1491        VDecl->setInvalidDecl();
1492
1493      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1494      if (!getLangOptions().CPlusPlus) {
1495        if (SC == VarDecl::Static) // C99 6.7.8p4.
1496          CheckForConstantInitializer(Init, DclT);
1497      }
1498    }
1499  } else if (VDecl->isFileVarDecl()) {
1500    if (VDecl->getStorageClass() == VarDecl::Extern)
1501      Diag(VDecl->getLocation(), diag::warn_extern_init);
1502    if (!VDecl->isInvalidDecl())
1503      if (CheckInitializerTypes(Init, DclT))
1504        VDecl->setInvalidDecl();
1505
1506    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1507    if (!getLangOptions().CPlusPlus) {
1508      // C99 6.7.8p4. All file scoped initializers need to be constant.
1509      CheckForConstantInitializer(Init, DclT);
1510    }
1511  }
1512  // If the type changed, it means we had an incomplete type that was
1513  // completed by the initializer. For example:
1514  //   int ary[] = { 1, 3, 5 };
1515  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1516  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1517    VDecl->setType(DclT);
1518    Init->setType(DclT);
1519  }
1520
1521  // Attach the initializer to the decl.
1522  VDecl->setInit(Init);
1523  return;
1524}
1525
1526void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1527  Decl *RealDecl = static_cast<Decl *>(dcl);
1528
1529  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1530    QualType Type = Var->getType();
1531    // C++ [dcl.init.ref]p3:
1532    //   The initializer can be omitted for a reference only in a
1533    //   parameter declaration (8.3.5), in the declaration of a
1534    //   function return type, in the declaration of a class member
1535    //   within its class declaration (9.2), and where the extern
1536    //   specifier is explicitly used.
1537    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern)
1538      Diag(Var->getLocation(),
1539           diag::err_reference_var_requires_init,
1540           Var->getName(),
1541           SourceRange(Var->getLocation(), Var->getLocation()));
1542
1543    // C++ [dcl.init]p9:
1544    //
1545    //     If no initializer is specified for an object, and the
1546    //     object is of (possibly cv-qualified) non-POD class type (or
1547    //     array thereof), the object shall be default-initialized; if
1548    //     the object is of const-qualified type, the underlying class
1549    //     type shall have a user-declared default
1550    //     constructor. Otherwise, if no initializer is specified for
1551    //     an object, the object and its subobjects, if any, have an
1552    //     indeterminate initial value; if the object or any of its
1553    //     subobjects are of const-qualified type, the program is
1554    //     ill-formed.
1555    //
1556    // This isn't technically an error in C, so we don't diagnose it.
1557    //
1558    // FIXME: Actually perform the POD/user-defined default
1559    // constructor check.
1560    if (getLangOptions().CPlusPlus &&
1561             Context.getCanonicalType(Type).isConstQualified())
1562      Diag(Var->getLocation(),
1563           diag::err_const_var_requires_init,
1564           Var->getName(),
1565           SourceRange(Var->getLocation(), Var->getLocation()));
1566  }
1567}
1568
1569/// The declarators are chained together backwards, reverse the list.
1570Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1571  // Often we have single declarators, handle them quickly.
1572  Decl *GroupDecl = static_cast<Decl*>(group);
1573  if (GroupDecl == 0)
1574    return 0;
1575
1576  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1577  ScopedDecl *NewGroup = 0;
1578  if (Group->getNextDeclarator() == 0)
1579    NewGroup = Group;
1580  else { // reverse the list.
1581    while (Group) {
1582      ScopedDecl *Next = Group->getNextDeclarator();
1583      Group->setNextDeclarator(NewGroup);
1584      NewGroup = Group;
1585      Group = Next;
1586    }
1587  }
1588  // Perform semantic analysis that depends on having fully processed both
1589  // the declarator and initializer.
1590  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1591    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1592    if (!IDecl)
1593      continue;
1594    QualType T = IDecl->getType();
1595
1596    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1597    // static storage duration, it shall not have a variable length array.
1598    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1599        IDecl->getStorageClass() == VarDecl::Static) {
1600      if (T->isVariableArrayType()) {
1601        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1602        IDecl->setInvalidDecl();
1603      }
1604    }
1605    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1606    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1607    if (IDecl->isBlockVarDecl() &&
1608        IDecl->getStorageClass() != VarDecl::Extern) {
1609      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1610        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1611             T.getAsString());
1612        IDecl->setInvalidDecl();
1613      }
1614    }
1615    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1616    // object that has file scope without an initializer, and without a
1617    // storage-class specifier or with the storage-class specifier "static",
1618    // constitutes a tentative definition. Note: A tentative definition with
1619    // external linkage is valid (C99 6.2.2p5).
1620    if (isTentativeDefinition(IDecl)) {
1621      if (T->isIncompleteArrayType()) {
1622        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1623        // array to be completed. Don't issue a diagnostic.
1624      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1625        // C99 6.9.2p3: If the declaration of an identifier for an object is
1626        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1627        // declared type shall not be an incomplete type.
1628        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1629             T.getAsString());
1630        IDecl->setInvalidDecl();
1631      }
1632    }
1633    if (IDecl->isFileVarDecl())
1634      CheckForFileScopedRedefinitions(S, IDecl);
1635  }
1636  return NewGroup;
1637}
1638
1639/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1640/// to introduce parameters into function prototype scope.
1641Sema::DeclTy *
1642Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1643  const DeclSpec &DS = D.getDeclSpec();
1644
1645  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1646  VarDecl::StorageClass StorageClass = VarDecl::None;
1647  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1648    StorageClass = VarDecl::Register;
1649  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1650    Diag(DS.getStorageClassSpecLoc(),
1651         diag::err_invalid_storage_class_in_func_decl);
1652    D.getMutableDeclSpec().ClearStorageClassSpecs();
1653  }
1654  if (DS.isThreadSpecified()) {
1655    Diag(DS.getThreadSpecLoc(),
1656         diag::err_invalid_storage_class_in_func_decl);
1657    D.getMutableDeclSpec().ClearStorageClassSpecs();
1658  }
1659
1660  // Check that there are no default arguments inside the type of this
1661  // parameter (C++ only).
1662  if (getLangOptions().CPlusPlus)
1663    CheckExtraCXXDefaultArguments(D);
1664
1665  // In this context, we *do not* check D.getInvalidType(). If the declarator
1666  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1667  // though it will not reflect the user specified type.
1668  QualType parmDeclType = GetTypeForDeclarator(D, S);
1669
1670  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1671
1672  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1673  // Can this happen for params?  We already checked that they don't conflict
1674  // among each other.  Here they can only shadow globals, which is ok.
1675  IdentifierInfo *II = D.getIdentifier();
1676  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1677    if (S->isDeclScope(PrevDecl)) {
1678      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1679           dyn_cast<NamedDecl>(PrevDecl)->getName());
1680
1681      // Recover by removing the name
1682      II = 0;
1683      D.SetIdentifier(0, D.getIdentifierLoc());
1684    }
1685  }
1686
1687  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1688  // Doing the promotion here has a win and a loss. The win is the type for
1689  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1690  // code generator). The loss is the orginal type isn't preserved. For example:
1691  //
1692  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1693  //    int blockvardecl[5];
1694  //    sizeof(parmvardecl);  // size == 4
1695  //    sizeof(blockvardecl); // size == 20
1696  // }
1697  //
1698  // For expressions, all implicit conversions are captured using the
1699  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1700  //
1701  // FIXME: If a source translation tool needs to see the original type, then
1702  // we need to consider storing both types (in ParmVarDecl)...
1703  //
1704  if (parmDeclType->isArrayType()) {
1705    // int x[restrict 4] ->  int *restrict
1706    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1707  } else if (parmDeclType->isFunctionType())
1708    parmDeclType = Context.getPointerType(parmDeclType);
1709
1710  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1711                                         D.getIdentifierLoc(), II,
1712                                         parmDeclType, StorageClass,
1713                                         0, 0);
1714
1715  if (D.getInvalidType())
1716    New->setInvalidDecl();
1717
1718  if (II)
1719    PushOnScopeChains(New, S);
1720
1721  ProcessDeclAttributes(New, D);
1722  return New;
1723
1724}
1725
1726Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1727  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1728  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1729         "Not a function declarator!");
1730  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1731
1732  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1733  // for a K&R function.
1734  if (!FTI.hasPrototype) {
1735    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1736      if (FTI.ArgInfo[i].Param == 0) {
1737        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1738             FTI.ArgInfo[i].Ident->getName());
1739        // Implicitly declare the argument as type 'int' for lack of a better
1740        // type.
1741        DeclSpec DS;
1742        const char* PrevSpec; // unused
1743        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1744                           PrevSpec);
1745        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1746        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1747        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1748      }
1749    }
1750  } else {
1751    // FIXME: Diagnose arguments without names in C.
1752  }
1753
1754  Scope *GlobalScope = FnBodyScope->getParent();
1755
1756  // See if this is a redefinition.
1757  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1758                             GlobalScope);
1759  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1760    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1761      const FunctionDecl *Definition;
1762      if (FD->getBody(Definition)) {
1763        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1764             D.getIdentifier()->getName());
1765        Diag(Definition->getLocation(), diag::err_previous_definition);
1766      }
1767    }
1768  }
1769
1770  return ActOnStartOfFunctionDef(FnBodyScope,
1771                                 ActOnDeclarator(GlobalScope, D, 0));
1772}
1773
1774Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1775  Decl *decl = static_cast<Decl*>(D);
1776  FunctionDecl *FD = cast<FunctionDecl>(decl);
1777  PushDeclContext(FD);
1778
1779  // Check the validity of our function parameters
1780  CheckParmsForFunctionDef(FD);
1781
1782  // Introduce our parameters into the function scope
1783  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1784    ParmVarDecl *Param = FD->getParamDecl(p);
1785    // If this has an identifier, add it to the scope stack.
1786    if (Param->getIdentifier())
1787      PushOnScopeChains(Param, FnBodyScope);
1788  }
1789
1790  return FD;
1791}
1792
1793Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1794  Decl *dcl = static_cast<Decl *>(D);
1795  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1796    FD->setBody((Stmt*)Body);
1797    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1798  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1799    MD->setBody((Stmt*)Body);
1800  } else
1801    return 0;
1802  PopDeclContext();
1803  // Verify and clean out per-function state.
1804
1805  // Check goto/label use.
1806  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1807       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1808    // Verify that we have no forward references left.  If so, there was a goto
1809    // or address of a label taken, but no definition of it.  Label fwd
1810    // definitions are indicated with a null substmt.
1811    if (I->second->getSubStmt() == 0) {
1812      LabelStmt *L = I->second;
1813      // Emit error.
1814      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1815
1816      // At this point, we have gotos that use the bogus label.  Stitch it into
1817      // the function body so that they aren't leaked and that the AST is well
1818      // formed.
1819      if (Body) {
1820        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1821        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1822      } else {
1823        // The whole function wasn't parsed correctly, just delete this.
1824        delete L;
1825      }
1826    }
1827  }
1828  LabelMap.clear();
1829
1830  return D;
1831}
1832
1833/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1834/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1835ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1836                                           IdentifierInfo &II, Scope *S) {
1837  // Extension in C99.  Legal in C90, but warn about it.
1838  if (getLangOptions().C99)
1839    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1840  else
1841    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1842
1843  // FIXME: handle stuff like:
1844  // void foo() { extern float X(); }
1845  // void bar() { X(); }  <-- implicit decl for X in another scope.
1846
1847  // Set a Declarator for the implicit definition: int foo();
1848  const char *Dummy;
1849  DeclSpec DS;
1850  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1851  Error = Error; // Silence warning.
1852  assert(!Error && "Error setting up implicit decl!");
1853  Declarator D(DS, Declarator::BlockContext);
1854  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
1855  D.SetIdentifier(&II, Loc);
1856
1857  // Insert this function into translation-unit scope.
1858
1859  DeclContext *PrevDC = CurContext;
1860  CurContext = Context.getTranslationUnitDecl();
1861
1862  FunctionDecl *FD =
1863    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1864  FD->setImplicit();
1865
1866  CurContext = PrevDC;
1867
1868  return FD;
1869}
1870
1871
1872TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1873                                    ScopedDecl *LastDeclarator) {
1874  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1875  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1876
1877  // Scope manipulation handled by caller.
1878  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1879                                           D.getIdentifierLoc(),
1880                                           D.getIdentifier(),
1881                                           T, LastDeclarator);
1882  if (D.getInvalidType())
1883    NewTD->setInvalidDecl();
1884  return NewTD;
1885}
1886
1887/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1888/// former case, Name will be non-null.  In the later case, Name will be null.
1889/// TagType indicates what kind of tag this is. TK indicates whether this is a
1890/// reference/declaration/definition of a tag.
1891Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1892                             SourceLocation KWLoc, IdentifierInfo *Name,
1893                             SourceLocation NameLoc, AttributeList *Attr) {
1894  // If this is a use of an existing tag, it must have a name.
1895  assert((Name != 0 || TK == TK_Definition) &&
1896         "Nameless record must be a definition!");
1897
1898  TagDecl::TagKind Kind;
1899  switch (TagType) {
1900  default: assert(0 && "Unknown tag type!");
1901  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1902  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1903  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1904  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1905  }
1906
1907  // Two code paths: a new one for structs/unions/classes where we create
1908  //   separate decls for forward declarations, and an old (eventually to
1909  //   be removed) code path for enums.
1910  if (Kind != TagDecl::TK_enum)
1911    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1912
1913  // If this is a named struct, check to see if there was a previous forward
1914  // declaration or definition.
1915  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1916  ScopedDecl *PrevDecl =
1917    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1918
1919  if (PrevDecl) {
1920    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1921            "unexpected Decl type");
1922    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1923      // If this is a use of a previous tag, or if the tag is already declared
1924      // in the same scope (so that the definition/declaration completes or
1925      // rementions the tag), reuse the decl.
1926      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1927        // Make sure that this wasn't declared as an enum and now used as a
1928        // struct or something similar.
1929        if (PrevTagDecl->getTagKind() != Kind) {
1930          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1931          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1932          // Recover by making this an anonymous redefinition.
1933          Name = 0;
1934          PrevDecl = 0;
1935        } else {
1936          // If this is a use or a forward declaration, we're good.
1937          if (TK != TK_Definition)
1938            return PrevDecl;
1939
1940          // Diagnose attempts to redefine a tag.
1941          if (PrevTagDecl->isDefinition()) {
1942            Diag(NameLoc, diag::err_redefinition, Name->getName());
1943            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1944            // If this is a redefinition, recover by making this struct be
1945            // anonymous, which will make any later references get the previous
1946            // definition.
1947            Name = 0;
1948          } else {
1949            // Okay, this is definition of a previously declared or referenced
1950            // tag. Move the location of the decl to be the definition site.
1951            PrevDecl->setLocation(NameLoc);
1952            return PrevDecl;
1953          }
1954        }
1955      }
1956      // If we get here, this is a definition of a new struct type in a nested
1957      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1958      // type.
1959    } else {
1960      // PrevDecl is a namespace.
1961      if (isDeclInScope(PrevDecl, CurContext, S)) {
1962        // The tag name clashes with a namespace name, issue an error and
1963        // recover by making this tag be anonymous.
1964        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1965        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1966        Name = 0;
1967      }
1968    }
1969  }
1970
1971  // If there is an identifier, use the location of the identifier as the
1972  // location of the decl, otherwise use the location of the struct/union
1973  // keyword.
1974  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1975
1976  // Otherwise, if this is the first time we've seen this tag, create the decl.
1977  TagDecl *New;
1978  if (Kind == TagDecl::TK_enum) {
1979    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1980    // enum X { A, B, C } D;    D should chain to X.
1981    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1982    // If this is an undefined enum, warn.
1983    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1984  } else {
1985    // struct/union/class
1986
1987    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1988    // struct X { int A; } D;    D should chain to X.
1989    if (getLangOptions().CPlusPlus)
1990      // FIXME: Look for a way to use RecordDecl for simple structs.
1991      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1992    else
1993      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1994  }
1995
1996  // If this has an identifier, add it to the scope stack.
1997  if (Name) {
1998    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1999    // we find one that is.
2000    while ((S->getFlags() & Scope::DeclScope) == 0)
2001      S = S->getParent();
2002
2003    // Add it to the decl chain.
2004    PushOnScopeChains(New, S);
2005  }
2006
2007  if (Attr)
2008    ProcessDeclAttributeList(New, Attr);
2009  return New;
2010}
2011
2012/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2013///  the logic for enums, we create separate decls for forward declarations.
2014///  This is called by ActOnTag, but eventually will replace its logic.
2015Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2016                             SourceLocation KWLoc, IdentifierInfo *Name,
2017                             SourceLocation NameLoc, AttributeList *Attr) {
2018
2019  // If this is a named struct, check to see if there was a previous forward
2020  // declaration or definition.
2021  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2022  ScopedDecl *PrevDecl =
2023    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
2024
2025  if (PrevDecl) {
2026    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2027           "unexpected Decl type");
2028
2029    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2030      // If this is a use of a previous tag, or if the tag is already declared
2031      // in the same scope (so that the definition/declaration completes or
2032      // rementions the tag), reuse the decl.
2033      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2034        // Make sure that this wasn't declared as an enum and now used as a
2035        // struct or something similar.
2036        if (PrevTagDecl->getTagKind() != Kind) {
2037          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2038          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2039          // Recover by making this an anonymous redefinition.
2040          Name = 0;
2041          PrevDecl = 0;
2042        } else {
2043          // If this is a use, return the original decl.
2044
2045          // FIXME: In the future, return a variant or some other clue
2046          //  for the consumer of this Decl to know it doesn't own it.
2047          //  For our current ASTs this shouldn't be a problem, but will
2048          //  need to be changed with DeclGroups.
2049          if (TK == TK_Reference)
2050            return PrevDecl;
2051
2052          // The new decl is a definition?
2053          if (TK == TK_Definition) {
2054            // Diagnose attempts to redefine a tag.
2055            if (RecordDecl* DefRecord =
2056                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2057              Diag(NameLoc, diag::err_redefinition, Name->getName());
2058              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2059              // If this is a redefinition, recover by making this struct be
2060              // anonymous, which will make any later references get the previous
2061              // definition.
2062              Name = 0;
2063              PrevDecl = 0;
2064            }
2065            // Okay, this is definition of a previously declared or referenced
2066            // tag.  We're going to create a new Decl.
2067          }
2068        }
2069        // If we get here we have (another) forward declaration.  Just create
2070        // a new decl.
2071      }
2072      else {
2073        // If we get here, this is a definition of a new struct type in a nested
2074        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2075        // new decl/type.  We set PrevDecl to NULL so that the Records
2076        // have distinct types.
2077        PrevDecl = 0;
2078      }
2079    } else {
2080      // PrevDecl is a namespace.
2081      if (isDeclInScope(PrevDecl, CurContext, S)) {
2082        // The tag name clashes with a namespace name, issue an error and
2083        // recover by making this tag be anonymous.
2084        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2085        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2086        Name = 0;
2087      }
2088    }
2089  }
2090
2091  // If there is an identifier, use the location of the identifier as the
2092  // location of the decl, otherwise use the location of the struct/union
2093  // keyword.
2094  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2095
2096  // Otherwise, if this is the first time we've seen this tag, create the decl.
2097  TagDecl *New;
2098
2099  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2100  // struct X { int A; } D;    D should chain to X.
2101  if (getLangOptions().CPlusPlus)
2102    // FIXME: Look for a way to use RecordDecl for simple structs.
2103    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2104                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2105  else
2106    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2107                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2108
2109  // If this has an identifier, add it to the scope stack.
2110  if ((TK == TK_Definition || !PrevDecl) && Name) {
2111    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2112    // we find one that is.
2113    while ((S->getFlags() & Scope::DeclScope) == 0)
2114      S = S->getParent();
2115
2116    // Add it to the decl chain.
2117    PushOnScopeChains(New, S);
2118  }
2119
2120  // Handle #pragma pack: if the #pragma pack stack has non-default
2121  // alignment, make up a packed attribute for this decl. These
2122  // attributes are checked when the ASTContext lays out the
2123  // structure.
2124  //
2125  // It is important for implementing the correct semantics that this
2126  // happen here (in act on tag decl). The #pragma pack stack is
2127  // maintained as a result of parser callbacks which can occur at
2128  // many points during the parsing of a struct declaration (because
2129  // the #pragma tokens are effectively skipped over during the
2130  // parsing of the struct).
2131  if (unsigned Alignment = PackContext.getAlignment())
2132    New->addAttr(new PackedAttr(Alignment * 8));
2133
2134  if (Attr)
2135    ProcessDeclAttributeList(New, Attr);
2136
2137  return New;
2138}
2139
2140
2141/// Collect the instance variables declared in an Objective-C object.  Used in
2142/// the creation of structures from objects using the @defs directive.
2143static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2144                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2145  if (Class->getSuperClass())
2146    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2147
2148  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2149  for (ObjCInterfaceDecl::ivar_iterator
2150        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2151
2152    ObjCIvarDecl* ID = *I;
2153    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2154                                                ID->getIdentifier(),
2155                                                ID->getType(),
2156                                                ID->getBitWidth()));
2157  }
2158}
2159
2160/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2161/// instance variables of ClassName into Decls.
2162void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2163                     IdentifierInfo *ClassName,
2164                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2165  // Check that ClassName is a valid class
2166  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2167  if (!Class) {
2168    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2169    return;
2170  }
2171  // Collect the instance variables
2172  CollectIvars(Class, Context, Decls);
2173}
2174
2175QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2176  // This method tries to turn a variable array into a constant
2177  // array even when the size isn't an ICE.  This is necessary
2178  // for compatibility with code that depends on gcc's buggy
2179  // constant expression folding, like struct {char x[(int)(char*)2];}
2180  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2181    APValue Result;
2182    if (VLATy->getSizeExpr() &&
2183        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2184      llvm::APSInt &Res = Result.getInt();
2185      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2186        return Context.getConstantArrayType(VLATy->getElementType(),
2187                                            Res, ArrayType::Normal, 0);
2188    }
2189  }
2190  return QualType();
2191}
2192
2193/// ActOnField - Each field of a struct/union/class is passed into this in order
2194/// to create a FieldDecl object for it.
2195Sema::DeclTy *Sema::ActOnField(Scope *S,
2196                               SourceLocation DeclStart,
2197                               Declarator &D, ExprTy *BitfieldWidth) {
2198  IdentifierInfo *II = D.getIdentifier();
2199  Expr *BitWidth = (Expr*)BitfieldWidth;
2200  SourceLocation Loc = DeclStart;
2201  if (II) Loc = D.getIdentifierLoc();
2202
2203  // FIXME: Unnamed fields can be handled in various different ways, for
2204  // example, unnamed unions inject all members into the struct namespace!
2205
2206  if (BitWidth) {
2207    // TODO: Validate.
2208    //printf("WARNING: BITFIELDS IGNORED!\n");
2209
2210    // 6.7.2.1p3
2211    // 6.7.2.1p4
2212
2213  } else {
2214    // Not a bitfield.
2215
2216    // validate II.
2217
2218  }
2219
2220  QualType T = GetTypeForDeclarator(D, S);
2221  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2222  bool InvalidDecl = false;
2223
2224  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2225  // than a variably modified type.
2226  if (T->isVariablyModifiedType()) {
2227    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2228    if (!FixedTy.isNull()) {
2229      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2230      T = FixedTy;
2231    } else {
2232      // FIXME: This diagnostic needs work
2233      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2234      InvalidDecl = true;
2235    }
2236  }
2237  // FIXME: Chain fielddecls together.
2238  FieldDecl *NewFD;
2239
2240  if (getLangOptions().CPlusPlus) {
2241    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2242    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2243                                 Loc, II, T, BitWidth);
2244    if (II)
2245      PushOnScopeChains(NewFD, S);
2246  }
2247  else
2248    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2249
2250  ProcessDeclAttributes(NewFD, D);
2251
2252  if (D.getInvalidType() || InvalidDecl)
2253    NewFD->setInvalidDecl();
2254  return NewFD;
2255}
2256
2257/// TranslateIvarVisibility - Translate visibility from a token ID to an
2258///  AST enum value.
2259static ObjCIvarDecl::AccessControl
2260TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2261  switch (ivarVisibility) {
2262  default: assert(0 && "Unknown visitibility kind");
2263  case tok::objc_private: return ObjCIvarDecl::Private;
2264  case tok::objc_public: return ObjCIvarDecl::Public;
2265  case tok::objc_protected: return ObjCIvarDecl::Protected;
2266  case tok::objc_package: return ObjCIvarDecl::Package;
2267  }
2268}
2269
2270/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2271/// in order to create an IvarDecl object for it.
2272Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2273                              SourceLocation DeclStart,
2274                              Declarator &D, ExprTy *BitfieldWidth,
2275                              tok::ObjCKeywordKind Visibility) {
2276  IdentifierInfo *II = D.getIdentifier();
2277  Expr *BitWidth = (Expr*)BitfieldWidth;
2278  SourceLocation Loc = DeclStart;
2279  if (II) Loc = D.getIdentifierLoc();
2280
2281  // FIXME: Unnamed fields can be handled in various different ways, for
2282  // example, unnamed unions inject all members into the struct namespace!
2283
2284
2285  if (BitWidth) {
2286    // TODO: Validate.
2287    //printf("WARNING: BITFIELDS IGNORED!\n");
2288
2289    // 6.7.2.1p3
2290    // 6.7.2.1p4
2291
2292  } else {
2293    // Not a bitfield.
2294
2295    // validate II.
2296
2297  }
2298
2299  QualType T = GetTypeForDeclarator(D, S);
2300  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2301  bool InvalidDecl = false;
2302
2303  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2304  // than a variably modified type.
2305  if (T->isVariablyModifiedType()) {
2306    // FIXME: This diagnostic needs work
2307    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2308    InvalidDecl = true;
2309  }
2310
2311  // Get the visibility (access control) for this ivar.
2312  ObjCIvarDecl::AccessControl ac =
2313    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2314                                        : ObjCIvarDecl::None;
2315
2316  // Construct the decl.
2317  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2318                                             (Expr *)BitfieldWidth);
2319
2320  // Process attributes attached to the ivar.
2321  ProcessDeclAttributes(NewID, D);
2322
2323  if (D.getInvalidType() || InvalidDecl)
2324    NewID->setInvalidDecl();
2325
2326  return NewID;
2327}
2328
2329void Sema::ActOnFields(Scope* S,
2330                       SourceLocation RecLoc, DeclTy *RecDecl,
2331                       DeclTy **Fields, unsigned NumFields,
2332                       SourceLocation LBrac, SourceLocation RBrac,
2333                       AttributeList *Attr) {
2334  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2335  assert(EnclosingDecl && "missing record or interface decl");
2336  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2337
2338  if (Record)
2339    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2340      // Diagnose code like:
2341      //     struct S { struct S {} X; };
2342      // We discover this when we complete the outer S.  Reject and ignore the
2343      // outer S.
2344      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2345           DefRecord->getKindName());
2346      Diag(RecLoc, diag::err_previous_definition);
2347      Record->setInvalidDecl();
2348      return;
2349    }
2350
2351  // Verify that all the fields are okay.
2352  unsigned NumNamedMembers = 0;
2353  llvm::SmallVector<FieldDecl*, 32> RecFields;
2354  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2355
2356  for (unsigned i = 0; i != NumFields; ++i) {
2357
2358    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2359    assert(FD && "missing field decl");
2360
2361    // Remember all fields.
2362    RecFields.push_back(FD);
2363
2364    // Get the type for the field.
2365    Type *FDTy = FD->getType().getTypePtr();
2366
2367    // C99 6.7.2.1p2 - A field may not be a function type.
2368    if (FDTy->isFunctionType()) {
2369      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2370           FD->getName());
2371      FD->setInvalidDecl();
2372      EnclosingDecl->setInvalidDecl();
2373      continue;
2374    }
2375    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2376    if (FDTy->isIncompleteType()) {
2377      if (!Record) {  // Incomplete ivar type is always an error.
2378        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2379        FD->setInvalidDecl();
2380        EnclosingDecl->setInvalidDecl();
2381        continue;
2382      }
2383      if (i != NumFields-1 ||                   // ... that the last member ...
2384          !Record->isStruct() ||  // ... of a structure ...
2385          !FDTy->isArrayType()) {         //... may have incomplete array type.
2386        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2387        FD->setInvalidDecl();
2388        EnclosingDecl->setInvalidDecl();
2389        continue;
2390      }
2391      if (NumNamedMembers < 1) {  //... must have more than named member ...
2392        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2393             FD->getName());
2394        FD->setInvalidDecl();
2395        EnclosingDecl->setInvalidDecl();
2396        continue;
2397      }
2398      // Okay, we have a legal flexible array member at the end of the struct.
2399      if (Record)
2400        Record->setHasFlexibleArrayMember(true);
2401    }
2402    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2403    /// field of another structure or the element of an array.
2404    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2405      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2406        // If this is a member of a union, then entire union becomes "flexible".
2407        if (Record && Record->isUnion()) {
2408          Record->setHasFlexibleArrayMember(true);
2409        } else {
2410          // If this is a struct/class and this is not the last element, reject
2411          // it.  Note that GCC supports variable sized arrays in the middle of
2412          // structures.
2413          if (i != NumFields-1) {
2414            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2415                 FD->getName());
2416            FD->setInvalidDecl();
2417            EnclosingDecl->setInvalidDecl();
2418            continue;
2419          }
2420          // We support flexible arrays at the end of structs in other structs
2421          // as an extension.
2422          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2423               FD->getName());
2424          if (Record)
2425            Record->setHasFlexibleArrayMember(true);
2426        }
2427      }
2428    }
2429    /// A field cannot be an Objective-c object
2430    if (FDTy->isObjCInterfaceType()) {
2431      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2432           FD->getName());
2433      FD->setInvalidDecl();
2434      EnclosingDecl->setInvalidDecl();
2435      continue;
2436    }
2437    // Keep track of the number of named members.
2438    if (IdentifierInfo *II = FD->getIdentifier()) {
2439      // Detect duplicate member names.
2440      if (!FieldIDs.insert(II)) {
2441        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2442        // Find the previous decl.
2443        SourceLocation PrevLoc;
2444        for (unsigned i = 0; ; ++i) {
2445          assert(i != RecFields.size() && "Didn't find previous def!");
2446          if (RecFields[i]->getIdentifier() == II) {
2447            PrevLoc = RecFields[i]->getLocation();
2448            break;
2449          }
2450        }
2451        Diag(PrevLoc, diag::err_previous_definition);
2452        FD->setInvalidDecl();
2453        EnclosingDecl->setInvalidDecl();
2454        continue;
2455      }
2456      ++NumNamedMembers;
2457    }
2458  }
2459
2460  // Okay, we successfully defined 'Record'.
2461  if (Record) {
2462    Record->defineBody(Context, &RecFields[0], RecFields.size());
2463    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2464    // Sema::ActOnFinishCXXClassDef.
2465    if (!isa<CXXRecordDecl>(Record))
2466      Consumer.HandleTagDeclDefinition(Record);
2467  } else {
2468    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2469    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2470      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2471    else if (ObjCImplementationDecl *IMPDecl =
2472               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2473      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2474      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2475      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2476    }
2477  }
2478
2479  if (Attr)
2480    ProcessDeclAttributeList(Record, Attr);
2481}
2482
2483Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2484                                      DeclTy *lastEnumConst,
2485                                      SourceLocation IdLoc, IdentifierInfo *Id,
2486                                      SourceLocation EqualLoc, ExprTy *val) {
2487  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2488  EnumConstantDecl *LastEnumConst =
2489    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2490  Expr *Val = static_cast<Expr*>(val);
2491
2492  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2493  // we find one that is.
2494  while ((S->getFlags() & Scope::DeclScope) == 0)
2495    S = S->getParent();
2496
2497  // Verify that there isn't already something declared with this name in this
2498  // scope.
2499  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2500    // When in C++, we may get a TagDecl with the same name; in this case the
2501    // enum constant will 'hide' the tag.
2502    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2503           "Received TagDecl when not in C++!");
2504    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2505      if (isa<EnumConstantDecl>(PrevDecl))
2506        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2507      else
2508        Diag(IdLoc, diag::err_redefinition, Id->getName());
2509      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2510      delete Val;
2511      return 0;
2512    }
2513  }
2514
2515  llvm::APSInt EnumVal(32);
2516  QualType EltTy;
2517  if (Val) {
2518    // Make sure to promote the operand type to int.
2519    UsualUnaryConversions(Val);
2520
2521    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2522    SourceLocation ExpLoc;
2523    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2524      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2525           Id->getName());
2526      delete Val;
2527      Val = 0;  // Just forget about it.
2528    } else {
2529      EltTy = Val->getType();
2530    }
2531  }
2532
2533  if (!Val) {
2534    if (LastEnumConst) {
2535      // Assign the last value + 1.
2536      EnumVal = LastEnumConst->getInitVal();
2537      ++EnumVal;
2538
2539      // Check for overflow on increment.
2540      if (EnumVal < LastEnumConst->getInitVal())
2541        Diag(IdLoc, diag::warn_enum_value_overflow);
2542
2543      EltTy = LastEnumConst->getType();
2544    } else {
2545      // First value, set to zero.
2546      EltTy = Context.IntTy;
2547      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2548    }
2549  }
2550
2551  EnumConstantDecl *New =
2552    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2553                             Val, EnumVal,
2554                             LastEnumConst);
2555
2556  // Register this decl in the current scope stack.
2557  PushOnScopeChains(New, S);
2558  return New;
2559}
2560
2561// FIXME: For consistency with ActOnFields(), we should have the parser
2562// pass in the source location for the left/right braces.
2563void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2564                         DeclTy **Elements, unsigned NumElements) {
2565  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2566
2567  if (Enum && Enum->isDefinition()) {
2568    // Diagnose code like:
2569    //   enum e0 {
2570    //     E0 = sizeof(enum e0 { E1 })
2571    //   };
2572    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2573         Enum->getName());
2574    Diag(EnumLoc, diag::err_previous_definition);
2575    Enum->setInvalidDecl();
2576    return;
2577  }
2578  // TODO: If the result value doesn't fit in an int, it must be a long or long
2579  // long value.  ISO C does not support this, but GCC does as an extension,
2580  // emit a warning.
2581  unsigned IntWidth = Context.Target.getIntWidth();
2582
2583  // Verify that all the values are okay, compute the size of the values, and
2584  // reverse the list.
2585  unsigned NumNegativeBits = 0;
2586  unsigned NumPositiveBits = 0;
2587
2588  // Keep track of whether all elements have type int.
2589  bool AllElementsInt = true;
2590
2591  EnumConstantDecl *EltList = 0;
2592  for (unsigned i = 0; i != NumElements; ++i) {
2593    EnumConstantDecl *ECD =
2594      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2595    if (!ECD) continue;  // Already issued a diagnostic.
2596
2597    // If the enum value doesn't fit in an int, emit an extension warning.
2598    const llvm::APSInt &InitVal = ECD->getInitVal();
2599    assert(InitVal.getBitWidth() >= IntWidth &&
2600           "Should have promoted value to int");
2601    if (InitVal.getBitWidth() > IntWidth) {
2602      llvm::APSInt V(InitVal);
2603      V.trunc(IntWidth);
2604      V.extend(InitVal.getBitWidth());
2605      if (V != InitVal)
2606        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2607             InitVal.toString(10));
2608    }
2609
2610    // Keep track of the size of positive and negative values.
2611    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2612      NumPositiveBits = std::max(NumPositiveBits,
2613                                 (unsigned)InitVal.getActiveBits());
2614    else
2615      NumNegativeBits = std::max(NumNegativeBits,
2616                                 (unsigned)InitVal.getMinSignedBits());
2617
2618    // Keep track of whether every enum element has type int (very commmon).
2619    if (AllElementsInt)
2620      AllElementsInt = ECD->getType() == Context.IntTy;
2621
2622    ECD->setNextDeclarator(EltList);
2623    EltList = ECD;
2624  }
2625
2626  // Figure out the type that should be used for this enum.
2627  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2628  QualType BestType;
2629  unsigned BestWidth;
2630
2631  if (NumNegativeBits) {
2632    // If there is a negative value, figure out the smallest integer type (of
2633    // int/long/longlong) that fits.
2634    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2635      BestType = Context.IntTy;
2636      BestWidth = IntWidth;
2637    } else {
2638      BestWidth = Context.Target.getLongWidth();
2639
2640      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2641        BestType = Context.LongTy;
2642      else {
2643        BestWidth = Context.Target.getLongLongWidth();
2644
2645        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2646          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2647        BestType = Context.LongLongTy;
2648      }
2649    }
2650  } else {
2651    // If there is no negative value, figure out which of uint, ulong, ulonglong
2652    // fits.
2653    if (NumPositiveBits <= IntWidth) {
2654      BestType = Context.UnsignedIntTy;
2655      BestWidth = IntWidth;
2656    } else if (NumPositiveBits <=
2657               (BestWidth = Context.Target.getLongWidth())) {
2658      BestType = Context.UnsignedLongTy;
2659    } else {
2660      BestWidth = Context.Target.getLongLongWidth();
2661      assert(NumPositiveBits <= BestWidth &&
2662             "How could an initializer get larger than ULL?");
2663      BestType = Context.UnsignedLongLongTy;
2664    }
2665  }
2666
2667  // Loop over all of the enumerator constants, changing their types to match
2668  // the type of the enum if needed.
2669  for (unsigned i = 0; i != NumElements; ++i) {
2670    EnumConstantDecl *ECD =
2671      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2672    if (!ECD) continue;  // Already issued a diagnostic.
2673
2674    // Standard C says the enumerators have int type, but we allow, as an
2675    // extension, the enumerators to be larger than int size.  If each
2676    // enumerator value fits in an int, type it as an int, otherwise type it the
2677    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2678    // that X has type 'int', not 'unsigned'.
2679    if (ECD->getType() == Context.IntTy) {
2680      // Make sure the init value is signed.
2681      llvm::APSInt IV = ECD->getInitVal();
2682      IV.setIsSigned(true);
2683      ECD->setInitVal(IV);
2684      continue;  // Already int type.
2685    }
2686
2687    // Determine whether the value fits into an int.
2688    llvm::APSInt InitVal = ECD->getInitVal();
2689    bool FitsInInt;
2690    if (InitVal.isUnsigned() || !InitVal.isNegative())
2691      FitsInInt = InitVal.getActiveBits() < IntWidth;
2692    else
2693      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2694
2695    // If it fits into an integer type, force it.  Otherwise force it to match
2696    // the enum decl type.
2697    QualType NewTy;
2698    unsigned NewWidth;
2699    bool NewSign;
2700    if (FitsInInt) {
2701      NewTy = Context.IntTy;
2702      NewWidth = IntWidth;
2703      NewSign = true;
2704    } else if (ECD->getType() == BestType) {
2705      // Already the right type!
2706      continue;
2707    } else {
2708      NewTy = BestType;
2709      NewWidth = BestWidth;
2710      NewSign = BestType->isSignedIntegerType();
2711    }
2712
2713    // Adjust the APSInt value.
2714    InitVal.extOrTrunc(NewWidth);
2715    InitVal.setIsSigned(NewSign);
2716    ECD->setInitVal(InitVal);
2717
2718    // Adjust the Expr initializer and type.
2719    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2720    ECD->setType(NewTy);
2721  }
2722
2723  Enum->defineElements(EltList, BestType);
2724  Consumer.HandleTagDeclDefinition(Enum);
2725}
2726
2727Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2728                                          ExprTy *expr) {
2729  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2730
2731  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2732}
2733
2734Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2735                                     SourceLocation LBrace,
2736                                     SourceLocation RBrace,
2737                                     const char *Lang,
2738                                     unsigned StrSize,
2739                                     DeclTy *D) {
2740  LinkageSpecDecl::LanguageIDs Language;
2741  Decl *dcl = static_cast<Decl *>(D);
2742  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2743    Language = LinkageSpecDecl::lang_c;
2744  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2745    Language = LinkageSpecDecl::lang_cxx;
2746  else {
2747    Diag(Loc, diag::err_bad_language);
2748    return 0;
2749  }
2750
2751  // FIXME: Add all the various semantics of linkage specifications
2752  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2753}
2754
2755void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
2756                           ExprTy *alignment, SourceLocation PragmaLoc,
2757                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
2758  Expr *Alignment = static_cast<Expr *>(alignment);
2759
2760  // If specified then alignment must be a "small" power of two.
2761  unsigned AlignmentVal = 0;
2762  if (Alignment) {
2763    llvm::APSInt Val;
2764    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
2765        !Val.isPowerOf2() ||
2766        Val.getZExtValue() > 16) {
2767      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
2768      delete Alignment;
2769      return; // Ignore
2770    }
2771
2772    AlignmentVal = (unsigned) Val.getZExtValue();
2773  }
2774
2775  switch (Kind) {
2776  case Action::PPK_Default: // pack([n])
2777    PackContext.setAlignment(AlignmentVal);
2778    break;
2779
2780  case Action::PPK_Show: // pack(show)
2781    // Show the current alignment, making sure to show the right value
2782    // for the default.
2783    AlignmentVal = PackContext.getAlignment();
2784    // FIXME: This should come from the target.
2785    if (AlignmentVal == 0)
2786      AlignmentVal = 8;
2787    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
2788    break;
2789
2790  case Action::PPK_Push: // pack(push [, id] [, [n])
2791    PackContext.push(Name);
2792    // Set the new alignment if specified.
2793    if (Alignment)
2794      PackContext.setAlignment(AlignmentVal);
2795    break;
2796
2797  case Action::PPK_Pop: // pack(pop [, id] [,  n])
2798    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
2799    // "#pragma pack(pop, identifier, n) is undefined"
2800    if (Alignment && Name)
2801      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
2802
2803    // Do the pop.
2804    if (!PackContext.pop(Name)) {
2805      // If a name was specified then failure indicates the name
2806      // wasn't found. Otherwise failure indicates the stack was
2807      // empty.
2808      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
2809           Name ? "no record matching name" : "stack empty");
2810
2811      // FIXME: Warn about popping named records as MSVC does.
2812    } else {
2813      // Pop succeeded, set the new alignment if specified.
2814      if (Alignment)
2815        PackContext.setAlignment(AlignmentVal);
2816    }
2817    break;
2818
2819  default:
2820    assert(0 && "Invalid #pragma pack kind.");
2821  }
2822}
2823
2824bool PragmaPackStack::pop(IdentifierInfo *Name) {
2825  if (Stack.empty())
2826    return false;
2827
2828  // If name is empty just pop top.
2829  if (!Name) {
2830    Alignment = Stack.back().first;
2831    Stack.pop_back();
2832    return true;
2833  }
2834
2835  // Otherwise, find the named record.
2836  for (unsigned i = Stack.size(); i != 0; ) {
2837    --i;
2838    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
2839      // Found it, pop up to and including this record.
2840      Alignment = Stack[i].first;
2841      Stack.erase(Stack.begin() + i, Stack.end());
2842      return true;
2843    }
2844  }
2845
2846  return false;
2847}
2848