SemaDecl.cpp revision 282e7e66748cc6dd14d6f7f2cb52e5373c531e61
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58namespace {
59
60class TypeNameValidatorCCC : public CorrectionCandidateCallback {
61 public:
62  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
63    WantExpressionKeywords = false;
64    WantCXXNamedCasts = false;
65    WantRemainingKeywords = false;
66  }
67
68  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
69    if (NamedDecl *ND = candidate.getCorrectionDecl())
70      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
71          (AllowInvalidDecl || !ND->isInvalidDecl());
72    else
73      return candidate.isKeyword();
74  }
75
76 private:
77  bool AllowInvalidDecl;
78};
79
80}
81
82/// \brief If the identifier refers to a type name within this scope,
83/// return the declaration of that type.
84///
85/// This routine performs ordinary name lookup of the identifier II
86/// within the given scope, with optional C++ scope specifier SS, to
87/// determine whether the name refers to a type. If so, returns an
88/// opaque pointer (actually a QualType) corresponding to that
89/// type. Otherwise, returns NULL.
90///
91/// If name lookup results in an ambiguity, this routine will complain
92/// and then return NULL.
93ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
94                             Scope *S, CXXScopeSpec *SS,
95                             bool isClassName, bool HasTrailingDot,
96                             ParsedType ObjectTypePtr,
97                             bool IsCtorOrDtorName,
98                             bool WantNontrivialTypeSourceInfo,
99                             IdentifierInfo **CorrectedII) {
100  // Determine where we will perform name lookup.
101  DeclContext *LookupCtx = 0;
102  if (ObjectTypePtr) {
103    QualType ObjectType = ObjectTypePtr.get();
104    if (ObjectType->isRecordType())
105      LookupCtx = computeDeclContext(ObjectType);
106  } else if (SS && SS->isNotEmpty()) {
107    LookupCtx = computeDeclContext(*SS, false);
108
109    if (!LookupCtx) {
110      if (isDependentScopeSpecifier(*SS)) {
111        // C++ [temp.res]p3:
112        //   A qualified-id that refers to a type and in which the
113        //   nested-name-specifier depends on a template-parameter (14.6.2)
114        //   shall be prefixed by the keyword typename to indicate that the
115        //   qualified-id denotes a type, forming an
116        //   elaborated-type-specifier (7.1.5.3).
117        //
118        // We therefore do not perform any name lookup if the result would
119        // refer to a member of an unknown specialization.
120        if (!isClassName)
121          return ParsedType();
122
123        // We know from the grammar that this name refers to a type,
124        // so build a dependent node to describe the type.
125        if (WantNontrivialTypeSourceInfo)
126          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
127
128        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
129        QualType T =
130          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
131                            II, NameLoc);
132
133          return ParsedType::make(T);
134      }
135
136      return ParsedType();
137    }
138
139    if (!LookupCtx->isDependentContext() &&
140        RequireCompleteDeclContext(*SS, LookupCtx))
141      return ParsedType();
142  }
143
144  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
145  // lookup for class-names.
146  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
147                                      LookupOrdinaryName;
148  LookupResult Result(*this, &II, NameLoc, Kind);
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Result, LookupCtx);
155
156    if (ObjectTypePtr && Result.empty()) {
157      // C++ [basic.lookup.classref]p3:
158      //   If the unqualified-id is ~type-name, the type-name is looked up
159      //   in the context of the entire postfix-expression. If the type T of
160      //   the object expression is of a class type C, the type-name is also
161      //   looked up in the scope of class C. At least one of the lookups shall
162      //   find a name that refers to (possibly cv-qualified) T.
163      LookupName(Result, S);
164    }
165  } else {
166    // Perform unqualified name lookup.
167    LookupName(Result, S);
168  }
169
170  NamedDecl *IIDecl = 0;
171  switch (Result.getResultKind()) {
172  case LookupResult::NotFound:
173  case LookupResult::NotFoundInCurrentInstantiation:
174    if (CorrectedII) {
175      TypeNameValidatorCCC Validator(true);
176      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
177                                              Kind, S, SS, Validator);
178      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
179      TemplateTy Template;
180      bool MemberOfUnknownSpecialization;
181      UnqualifiedId TemplateName;
182      TemplateName.setIdentifier(NewII, NameLoc);
183      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
184      CXXScopeSpec NewSS, *NewSSPtr = SS;
185      if (SS && NNS) {
186        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
187        NewSSPtr = &NewSS;
188      }
189      if (Correction && (NNS || NewII != &II) &&
190          // Ignore a correction to a template type as the to-be-corrected
191          // identifier is not a template (typo correction for template names
192          // is handled elsewhere).
193          !(getLangOptions().CPlusPlus && NewSSPtr &&
194            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
195                           false, Template, MemberOfUnknownSpecialization))) {
196        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
197                                    isClassName, HasTrailingDot, ObjectTypePtr,
198                                    IsCtorOrDtorName,
199                                    WantNontrivialTypeSourceInfo);
200        if (Ty) {
201          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
202          std::string CorrectedQuotedStr(
203              Correction.getQuoted(getLangOptions()));
204          Diag(NameLoc, diag::err_unknown_typename_suggest)
205              << Result.getLookupName() << CorrectedQuotedStr
206              << FixItHint::CreateReplacement(SourceRange(NameLoc),
207                                              CorrectedStr);
208          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
209            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
210              << CorrectedQuotedStr;
211
212          if (SS && NNS)
213            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
214          *CorrectedII = NewII;
215          return Ty;
216        }
217      }
218    }
219    // If typo correction failed or was not performed, fall through
220  case LookupResult::FoundOverloaded:
221  case LookupResult::FoundUnresolvedValue:
222    Result.suppressDiagnostics();
223    return ParsedType();
224
225  case LookupResult::Ambiguous:
226    // Recover from type-hiding ambiguities by hiding the type.  We'll
227    // do the lookup again when looking for an object, and we can
228    // diagnose the error then.  If we don't do this, then the error
229    // about hiding the type will be immediately followed by an error
230    // that only makes sense if the identifier was treated like a type.
231    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
232      Result.suppressDiagnostics();
233      return ParsedType();
234    }
235
236    // Look to see if we have a type anywhere in the list of results.
237    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
238         Res != ResEnd; ++Res) {
239      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
240        if (!IIDecl ||
241            (*Res)->getLocation().getRawEncoding() <
242              IIDecl->getLocation().getRawEncoding())
243          IIDecl = *Res;
244      }
245    }
246
247    if (!IIDecl) {
248      // None of the entities we found is a type, so there is no way
249      // to even assume that the result is a type. In this case, don't
250      // complain about the ambiguity. The parser will either try to
251      // perform this lookup again (e.g., as an object name), which
252      // will produce the ambiguity, or will complain that it expected
253      // a type name.
254      Result.suppressDiagnostics();
255      return ParsedType();
256    }
257
258    // We found a type within the ambiguous lookup; diagnose the
259    // ambiguity and then return that type. This might be the right
260    // answer, or it might not be, but it suppresses any attempt to
261    // perform the name lookup again.
262    break;
263
264  case LookupResult::Found:
265    IIDecl = Result.getFoundDecl();
266    break;
267  }
268
269  assert(IIDecl && "Didn't find decl");
270
271  QualType T;
272  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
273    DiagnoseUseOfDecl(IIDecl, NameLoc);
274
275    if (T.isNull())
276      T = Context.getTypeDeclType(TD);
277
278    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
279    // constructor or destructor name (in such a case, the scope specifier
280    // will be attached to the enclosing Expr or Decl node).
281    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
282      if (WantNontrivialTypeSourceInfo) {
283        // Construct a type with type-source information.
284        TypeLocBuilder Builder;
285        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
286
287        T = getElaboratedType(ETK_None, *SS, T);
288        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
289        ElabTL.setKeywordLoc(SourceLocation());
290        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
291        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
292      } else {
293        T = getElaboratedType(ETK_None, *SS, T);
294      }
295    }
296  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
297    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
298    if (!HasTrailingDot)
299      T = Context.getObjCInterfaceType(IDecl);
300  }
301
302  if (T.isNull()) {
303    // If it's not plausibly a type, suppress diagnostics.
304    Result.suppressDiagnostics();
305    return ParsedType();
306  }
307  return ParsedType::make(T);
308}
309
310/// isTagName() - This method is called *for error recovery purposes only*
311/// to determine if the specified name is a valid tag name ("struct foo").  If
312/// so, this returns the TST for the tag corresponding to it (TST_enum,
313/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
314/// where the user forgot to specify the tag.
315DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
316  // Do a tag name lookup in this scope.
317  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
318  LookupName(R, S, false);
319  R.suppressDiagnostics();
320  if (R.getResultKind() == LookupResult::Found)
321    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
322      switch (TD->getTagKind()) {
323      case TTK_Struct: return DeclSpec::TST_struct;
324      case TTK_Union:  return DeclSpec::TST_union;
325      case TTK_Class:  return DeclSpec::TST_class;
326      case TTK_Enum:   return DeclSpec::TST_enum;
327      }
328    }
329
330  return DeclSpec::TST_unspecified;
331}
332
333/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
334/// if a CXXScopeSpec's type is equal to the type of one of the base classes
335/// then downgrade the missing typename error to a warning.
336/// This is needed for MSVC compatibility; Example:
337/// @code
338/// template<class T> class A {
339/// public:
340///   typedef int TYPE;
341/// };
342/// template<class T> class B : public A<T> {
343/// public:
344///   A<T>::TYPE a; // no typename required because A<T> is a base class.
345/// };
346/// @endcode
347bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
348  if (CurContext->isRecord()) {
349    const Type *Ty = SS->getScopeRep()->getAsType();
350
351    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
352    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
353          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
354      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
355        return true;
356    return S->isFunctionPrototypeScope();
357  }
358  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
359}
360
361bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
362                                   SourceLocation IILoc,
363                                   Scope *S,
364                                   CXXScopeSpec *SS,
365                                   ParsedType &SuggestedType) {
366  // We don't have anything to suggest (yet).
367  SuggestedType = ParsedType();
368
369  // There may have been a typo in the name of the type. Look up typo
370  // results, in case we have something that we can suggest.
371  TypeNameValidatorCCC Validator(false);
372  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
373                                             LookupOrdinaryName, S, SS,
374                                             Validator)) {
375    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
376    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
377
378    if (Corrected.isKeyword()) {
379      // We corrected to a keyword.
380      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
381      Diag(IILoc, diag::err_unknown_typename_suggest)
382        << &II << CorrectedQuotedStr;
383    } else {
384      NamedDecl *Result = Corrected.getCorrectionDecl();
385      // We found a similarly-named type or interface; suggest that.
386      if (!SS || !SS->isSet())
387        Diag(IILoc, diag::err_unknown_typename_suggest)
388          << &II << CorrectedQuotedStr
389          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
390      else if (DeclContext *DC = computeDeclContext(*SS, false))
391        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
392          << &II << DC << CorrectedQuotedStr << SS->getRange()
393          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
394      else
395        llvm_unreachable("could not have corrected a typo here");
396
397      Diag(Result->getLocation(), diag::note_previous_decl)
398        << CorrectedQuotedStr;
399
400      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
401                                  false, false, ParsedType(),
402                                  /*IsCtorOrDtorName=*/false,
403                                  /*NonTrivialTypeSourceInfo=*/true);
404    }
405    return true;
406  }
407
408  if (getLangOptions().CPlusPlus) {
409    // See if II is a class template that the user forgot to pass arguments to.
410    UnqualifiedId Name;
411    Name.setIdentifier(&II, IILoc);
412    CXXScopeSpec EmptySS;
413    TemplateTy TemplateResult;
414    bool MemberOfUnknownSpecialization;
415    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
416                       Name, ParsedType(), true, TemplateResult,
417                       MemberOfUnknownSpecialization) == TNK_Type_template) {
418      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
419      Diag(IILoc, diag::err_template_missing_args) << TplName;
420      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
421        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
422          << TplDecl->getTemplateParameters()->getSourceRange();
423      }
424      return true;
425    }
426  }
427
428  // FIXME: Should we move the logic that tries to recover from a missing tag
429  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
430
431  if (!SS || (!SS->isSet() && !SS->isInvalid()))
432    Diag(IILoc, diag::err_unknown_typename) << &II;
433  else if (DeclContext *DC = computeDeclContext(*SS, false))
434    Diag(IILoc, diag::err_typename_nested_not_found)
435      << &II << DC << SS->getRange();
436  else if (isDependentScopeSpecifier(*SS)) {
437    unsigned DiagID = diag::err_typename_missing;
438    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
439      DiagID = diag::warn_typename_missing;
440
441    Diag(SS->getRange().getBegin(), DiagID)
442      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
443      << SourceRange(SS->getRange().getBegin(), IILoc)
444      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
445    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
446                                                                         .get();
447  } else {
448    assert(SS && SS->isInvalid() &&
449           "Invalid scope specifier has already been diagnosed");
450  }
451
452  return true;
453}
454
455/// \brief Determine whether the given result set contains either a type name
456/// or
457static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
458  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
459                       NextToken.is(tok::less);
460
461  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
462    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
463      return true;
464
465    if (CheckTemplate && isa<TemplateDecl>(*I))
466      return true;
467  }
468
469  return false;
470}
471
472Sema::NameClassification Sema::ClassifyName(Scope *S,
473                                            CXXScopeSpec &SS,
474                                            IdentifierInfo *&Name,
475                                            SourceLocation NameLoc,
476                                            const Token &NextToken) {
477  DeclarationNameInfo NameInfo(Name, NameLoc);
478  ObjCMethodDecl *CurMethod = getCurMethodDecl();
479
480  if (NextToken.is(tok::coloncolon)) {
481    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
482                                QualType(), false, SS, 0, false);
483
484  }
485
486  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
487  LookupParsedName(Result, S, &SS, !CurMethod);
488
489  // Perform lookup for Objective-C instance variables (including automatically
490  // synthesized instance variables), if we're in an Objective-C method.
491  // FIXME: This lookup really, really needs to be folded in to the normal
492  // unqualified lookup mechanism.
493  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
494    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
495    if (E.get() || E.isInvalid())
496      return E;
497  }
498
499  bool SecondTry = false;
500  bool IsFilteredTemplateName = false;
501
502Corrected:
503  switch (Result.getResultKind()) {
504  case LookupResult::NotFound:
505    // If an unqualified-id is followed by a '(', then we have a function
506    // call.
507    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
508      // In C++, this is an ADL-only call.
509      // FIXME: Reference?
510      if (getLangOptions().CPlusPlus)
511        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
512
513      // C90 6.3.2.2:
514      //   If the expression that precedes the parenthesized argument list in a
515      //   function call consists solely of an identifier, and if no
516      //   declaration is visible for this identifier, the identifier is
517      //   implicitly declared exactly as if, in the innermost block containing
518      //   the function call, the declaration
519      //
520      //     extern int identifier ();
521      //
522      //   appeared.
523      //
524      // We also allow this in C99 as an extension.
525      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
526        Result.addDecl(D);
527        Result.resolveKind();
528        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
529      }
530    }
531
532    // In C, we first see whether there is a tag type by the same name, in
533    // which case it's likely that the user just forget to write "enum",
534    // "struct", or "union".
535    if (!getLangOptions().CPlusPlus && !SecondTry) {
536      Result.clear(LookupTagName);
537      LookupParsedName(Result, S, &SS);
538      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
539        const char *TagName = 0;
540        const char *FixItTagName = 0;
541        switch (Tag->getTagKind()) {
542          case TTK_Class:
543            TagName = "class";
544            FixItTagName = "class ";
545            break;
546
547          case TTK_Enum:
548            TagName = "enum";
549            FixItTagName = "enum ";
550            break;
551
552          case TTK_Struct:
553            TagName = "struct";
554            FixItTagName = "struct ";
555            break;
556
557          case TTK_Union:
558            TagName = "union";
559            FixItTagName = "union ";
560            break;
561        }
562
563        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
564          << Name << TagName << getLangOptions().CPlusPlus
565          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
566        break;
567      }
568
569      Result.clear(LookupOrdinaryName);
570    }
571
572    // Perform typo correction to determine if there is another name that is
573    // close to this name.
574    if (!SecondTry) {
575      SecondTry = true;
576      CorrectionCandidateCallback DefaultValidator;
577      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
578                                                 Result.getLookupKind(), S,
579                                                 &SS, DefaultValidator)) {
580        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
581        unsigned QualifiedDiag = diag::err_no_member_suggest;
582        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
583        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
584
585        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
586        NamedDecl *UnderlyingFirstDecl
587          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
588        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
589            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
590          UnqualifiedDiag = diag::err_no_template_suggest;
591          QualifiedDiag = diag::err_no_member_template_suggest;
592        } else if (UnderlyingFirstDecl &&
593                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
594                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
596           UnqualifiedDiag = diag::err_unknown_typename_suggest;
597           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
598         }
599
600        if (SS.isEmpty())
601          Diag(NameLoc, UnqualifiedDiag)
602            << Name << CorrectedQuotedStr
603            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
604        else
605          Diag(NameLoc, QualifiedDiag)
606            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
607            << SS.getRange()
608            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
609
610        // Update the name, so that the caller has the new name.
611        Name = Corrected.getCorrectionAsIdentifierInfo();
612
613        // Typo correction corrected to a keyword.
614        if (Corrected.isKeyword())
615          return Corrected.getCorrectionAsIdentifierInfo();
616
617        // Also update the LookupResult...
618        // FIXME: This should probably go away at some point
619        Result.clear();
620        Result.setLookupName(Corrected.getCorrection());
621        if (FirstDecl) {
622          Result.addDecl(FirstDecl);
623          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
624            << CorrectedQuotedStr;
625        }
626
627        // If we found an Objective-C instance variable, let
628        // LookupInObjCMethod build the appropriate expression to
629        // reference the ivar.
630        // FIXME: This is a gross hack.
631        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
632          Result.clear();
633          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
634          return move(E);
635        }
636
637        goto Corrected;
638      }
639    }
640
641    // We failed to correct; just fall through and let the parser deal with it.
642    Result.suppressDiagnostics();
643    return NameClassification::Unknown();
644
645  case LookupResult::NotFoundInCurrentInstantiation: {
646    // We performed name lookup into the current instantiation, and there were
647    // dependent bases, so we treat this result the same way as any other
648    // dependent nested-name-specifier.
649
650    // C++ [temp.res]p2:
651    //   A name used in a template declaration or definition and that is
652    //   dependent on a template-parameter is assumed not to name a type
653    //   unless the applicable name lookup finds a type name or the name is
654    //   qualified by the keyword typename.
655    //
656    // FIXME: If the next token is '<', we might want to ask the parser to
657    // perform some heroics to see if we actually have a
658    // template-argument-list, which would indicate a missing 'template'
659    // keyword here.
660    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
661                                     NameInfo, /*TemplateArgs=*/0);
662  }
663
664  case LookupResult::Found:
665  case LookupResult::FoundOverloaded:
666  case LookupResult::FoundUnresolvedValue:
667    break;
668
669  case LookupResult::Ambiguous:
670    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
671        hasAnyAcceptableTemplateNames(Result)) {
672      // C++ [temp.local]p3:
673      //   A lookup that finds an injected-class-name (10.2) can result in an
674      //   ambiguity in certain cases (for example, if it is found in more than
675      //   one base class). If all of the injected-class-names that are found
676      //   refer to specializations of the same class template, and if the name
677      //   is followed by a template-argument-list, the reference refers to the
678      //   class template itself and not a specialization thereof, and is not
679      //   ambiguous.
680      //
681      // This filtering can make an ambiguous result into an unambiguous one,
682      // so try again after filtering out template names.
683      FilterAcceptableTemplateNames(Result);
684      if (!Result.isAmbiguous()) {
685        IsFilteredTemplateName = true;
686        break;
687      }
688    }
689
690    // Diagnose the ambiguity and return an error.
691    return NameClassification::Error();
692  }
693
694  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
695      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
696    // C++ [temp.names]p3:
697    //   After name lookup (3.4) finds that a name is a template-name or that
698    //   an operator-function-id or a literal- operator-id refers to a set of
699    //   overloaded functions any member of which is a function template if
700    //   this is followed by a <, the < is always taken as the delimiter of a
701    //   template-argument-list and never as the less-than operator.
702    if (!IsFilteredTemplateName)
703      FilterAcceptableTemplateNames(Result);
704
705    if (!Result.empty()) {
706      bool IsFunctionTemplate;
707      TemplateName Template;
708      if (Result.end() - Result.begin() > 1) {
709        IsFunctionTemplate = true;
710        Template = Context.getOverloadedTemplateName(Result.begin(),
711                                                     Result.end());
712      } else {
713        TemplateDecl *TD
714          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
715        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
716
717        if (SS.isSet() && !SS.isInvalid())
718          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
719                                                    /*TemplateKeyword=*/false,
720                                                      TD);
721        else
722          Template = TemplateName(TD);
723      }
724
725      if (IsFunctionTemplate) {
726        // Function templates always go through overload resolution, at which
727        // point we'll perform the various checks (e.g., accessibility) we need
728        // to based on which function we selected.
729        Result.suppressDiagnostics();
730
731        return NameClassification::FunctionTemplate(Template);
732      }
733
734      return NameClassification::TypeTemplate(Template);
735    }
736  }
737
738  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
739  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
740    DiagnoseUseOfDecl(Type, NameLoc);
741    QualType T = Context.getTypeDeclType(Type);
742    return ParsedType::make(T);
743  }
744
745  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
746  if (!Class) {
747    // FIXME: It's unfortunate that we don't have a Type node for handling this.
748    if (ObjCCompatibleAliasDecl *Alias
749                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
750      Class = Alias->getClassInterface();
751  }
752
753  if (Class) {
754    DiagnoseUseOfDecl(Class, NameLoc);
755
756    if (NextToken.is(tok::period)) {
757      // Interface. <something> is parsed as a property reference expression.
758      // Just return "unknown" as a fall-through for now.
759      Result.suppressDiagnostics();
760      return NameClassification::Unknown();
761    }
762
763    QualType T = Context.getObjCInterfaceType(Class);
764    return ParsedType::make(T);
765  }
766
767  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
768    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
769
770  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
771  return BuildDeclarationNameExpr(SS, Result, ADL);
772}
773
774// Determines the context to return to after temporarily entering a
775// context.  This depends in an unnecessarily complicated way on the
776// exact ordering of callbacks from the parser.
777DeclContext *Sema::getContainingDC(DeclContext *DC) {
778
779  // Functions defined inline within classes aren't parsed until we've
780  // finished parsing the top-level class, so the top-level class is
781  // the context we'll need to return to.
782  if (isa<FunctionDecl>(DC)) {
783    DC = DC->getLexicalParent();
784
785    // A function not defined within a class will always return to its
786    // lexical context.
787    if (!isa<CXXRecordDecl>(DC))
788      return DC;
789
790    // A C++ inline method/friend is parsed *after* the topmost class
791    // it was declared in is fully parsed ("complete");  the topmost
792    // class is the context we need to return to.
793    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
794      DC = RD;
795
796    // Return the declaration context of the topmost class the inline method is
797    // declared in.
798    return DC;
799  }
800
801  return DC->getLexicalParent();
802}
803
804void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
805  assert(getContainingDC(DC) == CurContext &&
806      "The next DeclContext should be lexically contained in the current one.");
807  CurContext = DC;
808  S->setEntity(DC);
809}
810
811void Sema::PopDeclContext() {
812  assert(CurContext && "DeclContext imbalance!");
813
814  CurContext = getContainingDC(CurContext);
815  assert(CurContext && "Popped translation unit!");
816}
817
818/// EnterDeclaratorContext - Used when we must lookup names in the context
819/// of a declarator's nested name specifier.
820///
821void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
822  // C++0x [basic.lookup.unqual]p13:
823  //   A name used in the definition of a static data member of class
824  //   X (after the qualified-id of the static member) is looked up as
825  //   if the name was used in a member function of X.
826  // C++0x [basic.lookup.unqual]p14:
827  //   If a variable member of a namespace is defined outside of the
828  //   scope of its namespace then any name used in the definition of
829  //   the variable member (after the declarator-id) is looked up as
830  //   if the definition of the variable member occurred in its
831  //   namespace.
832  // Both of these imply that we should push a scope whose context
833  // is the semantic context of the declaration.  We can't use
834  // PushDeclContext here because that context is not necessarily
835  // lexically contained in the current context.  Fortunately,
836  // the containing scope should have the appropriate information.
837
838  assert(!S->getEntity() && "scope already has entity");
839
840#ifndef NDEBUG
841  Scope *Ancestor = S->getParent();
842  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
843  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
844#endif
845
846  CurContext = DC;
847  S->setEntity(DC);
848}
849
850void Sema::ExitDeclaratorContext(Scope *S) {
851  assert(S->getEntity() == CurContext && "Context imbalance!");
852
853  // Switch back to the lexical context.  The safety of this is
854  // enforced by an assert in EnterDeclaratorContext.
855  Scope *Ancestor = S->getParent();
856  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
857  CurContext = (DeclContext*) Ancestor->getEntity();
858
859  // We don't need to do anything with the scope, which is going to
860  // disappear.
861}
862
863
864void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
865  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
866  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
867    // We assume that the caller has already called
868    // ActOnReenterTemplateScope
869    FD = TFD->getTemplatedDecl();
870  }
871  if (!FD)
872    return;
873
874  PushDeclContext(S, FD);
875  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
876    ParmVarDecl *Param = FD->getParamDecl(P);
877    // If the parameter has an identifier, then add it to the scope
878    if (Param->getIdentifier()) {
879      S->AddDecl(Param);
880      IdResolver.AddDecl(Param);
881    }
882  }
883}
884
885
886/// \brief Determine whether we allow overloading of the function
887/// PrevDecl with another declaration.
888///
889/// This routine determines whether overloading is possible, not
890/// whether some new function is actually an overload. It will return
891/// true in C++ (where we can always provide overloads) or, as an
892/// extension, in C when the previous function is already an
893/// overloaded function declaration or has the "overloadable"
894/// attribute.
895static bool AllowOverloadingOfFunction(LookupResult &Previous,
896                                       ASTContext &Context) {
897  if (Context.getLangOptions().CPlusPlus)
898    return true;
899
900  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
901    return true;
902
903  return (Previous.getResultKind() == LookupResult::Found
904          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
905}
906
907/// Add this decl to the scope shadowed decl chains.
908void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
909  // Move up the scope chain until we find the nearest enclosing
910  // non-transparent context. The declaration will be introduced into this
911  // scope.
912  while (S->getEntity() &&
913         ((DeclContext *)S->getEntity())->isTransparentContext())
914    S = S->getParent();
915
916  // Add scoped declarations into their context, so that they can be
917  // found later. Declarations without a context won't be inserted
918  // into any context.
919  if (AddToContext)
920    CurContext->addDecl(D);
921
922  // Out-of-line definitions shouldn't be pushed into scope in C++.
923  // Out-of-line variable and function definitions shouldn't even in C.
924  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
925      D->isOutOfLine() &&
926      !D->getDeclContext()->getRedeclContext()->Equals(
927        D->getLexicalDeclContext()->getRedeclContext()))
928    return;
929
930  // Template instantiations should also not be pushed into scope.
931  if (isa<FunctionDecl>(D) &&
932      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
933    return;
934
935  // If this replaces anything in the current scope,
936  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
937                               IEnd = IdResolver.end();
938  for (; I != IEnd; ++I) {
939    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
940      S->RemoveDecl(*I);
941      IdResolver.RemoveDecl(*I);
942
943      // Should only need to replace one decl.
944      break;
945    }
946  }
947
948  S->AddDecl(D);
949
950  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
951    // Implicitly-generated labels may end up getting generated in an order that
952    // isn't strictly lexical, which breaks name lookup. Be careful to insert
953    // the label at the appropriate place in the identifier chain.
954    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
955      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
956      if (IDC == CurContext) {
957        if (!S->isDeclScope(*I))
958          continue;
959      } else if (IDC->Encloses(CurContext))
960        break;
961    }
962
963    IdResolver.InsertDeclAfter(I, D);
964  } else {
965    IdResolver.AddDecl(D);
966  }
967}
968
969void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
970  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
971    TUScope->AddDecl(D);
972}
973
974bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
975                         bool ExplicitInstantiationOrSpecialization) {
976  return IdResolver.isDeclInScope(D, Ctx, Context, S,
977                                  ExplicitInstantiationOrSpecialization);
978}
979
980Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
981  DeclContext *TargetDC = DC->getPrimaryContext();
982  do {
983    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
984      if (ScopeDC->getPrimaryContext() == TargetDC)
985        return S;
986  } while ((S = S->getParent()));
987
988  return 0;
989}
990
991static bool isOutOfScopePreviousDeclaration(NamedDecl *,
992                                            DeclContext*,
993                                            ASTContext&);
994
995/// Filters out lookup results that don't fall within the given scope
996/// as determined by isDeclInScope.
997void Sema::FilterLookupForScope(LookupResult &R,
998                                DeclContext *Ctx, Scope *S,
999                                bool ConsiderLinkage,
1000                                bool ExplicitInstantiationOrSpecialization) {
1001  LookupResult::Filter F = R.makeFilter();
1002  while (F.hasNext()) {
1003    NamedDecl *D = F.next();
1004
1005    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1006      continue;
1007
1008    if (ConsiderLinkage &&
1009        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1010      continue;
1011
1012    F.erase();
1013  }
1014
1015  F.done();
1016}
1017
1018static bool isUsingDecl(NamedDecl *D) {
1019  return isa<UsingShadowDecl>(D) ||
1020         isa<UnresolvedUsingTypenameDecl>(D) ||
1021         isa<UnresolvedUsingValueDecl>(D);
1022}
1023
1024/// Removes using shadow declarations from the lookup results.
1025static void RemoveUsingDecls(LookupResult &R) {
1026  LookupResult::Filter F = R.makeFilter();
1027  while (F.hasNext())
1028    if (isUsingDecl(F.next()))
1029      F.erase();
1030
1031  F.done();
1032}
1033
1034/// \brief Check for this common pattern:
1035/// @code
1036/// class S {
1037///   S(const S&); // DO NOT IMPLEMENT
1038///   void operator=(const S&); // DO NOT IMPLEMENT
1039/// };
1040/// @endcode
1041static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1042  // FIXME: Should check for private access too but access is set after we get
1043  // the decl here.
1044  if (D->doesThisDeclarationHaveABody())
1045    return false;
1046
1047  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1048    return CD->isCopyConstructor();
1049  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1050    return Method->isCopyAssignmentOperator();
1051  return false;
1052}
1053
1054bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1055  assert(D);
1056
1057  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1058    return false;
1059
1060  // Ignore class templates.
1061  if (D->getDeclContext()->isDependentContext() ||
1062      D->getLexicalDeclContext()->isDependentContext())
1063    return false;
1064
1065  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1066    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1067      return false;
1068
1069    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1070      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1071        return false;
1072    } else {
1073      // 'static inline' functions are used in headers; don't warn.
1074      if (FD->getStorageClass() == SC_Static &&
1075          FD->isInlineSpecified())
1076        return false;
1077    }
1078
1079    if (FD->doesThisDeclarationHaveABody() &&
1080        Context.DeclMustBeEmitted(FD))
1081      return false;
1082  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1083    if (!VD->isFileVarDecl() ||
1084        VD->getType().isConstant(Context) ||
1085        Context.DeclMustBeEmitted(VD))
1086      return false;
1087
1088    if (VD->isStaticDataMember() &&
1089        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1090      return false;
1091
1092  } else {
1093    return false;
1094  }
1095
1096  // Only warn for unused decls internal to the translation unit.
1097  if (D->getLinkage() == ExternalLinkage)
1098    return false;
1099
1100  return true;
1101}
1102
1103void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1104  if (!D)
1105    return;
1106
1107  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1108    const FunctionDecl *First = FD->getFirstDeclaration();
1109    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1110      return; // First should already be in the vector.
1111  }
1112
1113  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1114    const VarDecl *First = VD->getFirstDeclaration();
1115    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1116      return; // First should already be in the vector.
1117  }
1118
1119   if (ShouldWarnIfUnusedFileScopedDecl(D))
1120     UnusedFileScopedDecls.push_back(D);
1121 }
1122
1123static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1124  if (D->isInvalidDecl())
1125    return false;
1126
1127  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1128    return false;
1129
1130  if (isa<LabelDecl>(D))
1131    return true;
1132
1133  // White-list anything that isn't a local variable.
1134  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1135      !D->getDeclContext()->isFunctionOrMethod())
1136    return false;
1137
1138  // Types of valid local variables should be complete, so this should succeed.
1139  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1140
1141    // White-list anything with an __attribute__((unused)) type.
1142    QualType Ty = VD->getType();
1143
1144    // Only look at the outermost level of typedef.
1145    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1146      if (TT->getDecl()->hasAttr<UnusedAttr>())
1147        return false;
1148    }
1149
1150    // If we failed to complete the type for some reason, or if the type is
1151    // dependent, don't diagnose the variable.
1152    if (Ty->isIncompleteType() || Ty->isDependentType())
1153      return false;
1154
1155    if (const TagType *TT = Ty->getAs<TagType>()) {
1156      const TagDecl *Tag = TT->getDecl();
1157      if (Tag->hasAttr<UnusedAttr>())
1158        return false;
1159
1160      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1161        if (!RD->hasTrivialDestructor())
1162          return false;
1163
1164        if (const Expr *Init = VD->getInit()) {
1165          const CXXConstructExpr *Construct =
1166            dyn_cast<CXXConstructExpr>(Init);
1167          if (Construct && !Construct->isElidable()) {
1168            CXXConstructorDecl *CD = Construct->getConstructor();
1169            if (!CD->isTrivial())
1170              return false;
1171          }
1172        }
1173      }
1174    }
1175
1176    // TODO: __attribute__((unused)) templates?
1177  }
1178
1179  return true;
1180}
1181
1182static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1183                                     FixItHint &Hint) {
1184  if (isa<LabelDecl>(D)) {
1185    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1186                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1187    if (AfterColon.isInvalid())
1188      return;
1189    Hint = FixItHint::CreateRemoval(CharSourceRange::
1190                                    getCharRange(D->getLocStart(), AfterColon));
1191  }
1192  return;
1193}
1194
1195/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1196/// unless they are marked attr(unused).
1197void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1198  FixItHint Hint;
1199  if (!ShouldDiagnoseUnusedDecl(D))
1200    return;
1201
1202  GenerateFixForUnusedDecl(D, Context, Hint);
1203
1204  unsigned DiagID;
1205  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1206    DiagID = diag::warn_unused_exception_param;
1207  else if (isa<LabelDecl>(D))
1208    DiagID = diag::warn_unused_label;
1209  else
1210    DiagID = diag::warn_unused_variable;
1211
1212  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1213}
1214
1215static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1216  // Verify that we have no forward references left.  If so, there was a goto
1217  // or address of a label taken, but no definition of it.  Label fwd
1218  // definitions are indicated with a null substmt.
1219  if (L->getStmt() == 0)
1220    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1221}
1222
1223void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1224  if (S->decl_empty()) return;
1225  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1226         "Scope shouldn't contain decls!");
1227
1228  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1229       I != E; ++I) {
1230    Decl *TmpD = (*I);
1231    assert(TmpD && "This decl didn't get pushed??");
1232
1233    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1234    NamedDecl *D = cast<NamedDecl>(TmpD);
1235
1236    if (!D->getDeclName()) continue;
1237
1238    // Diagnose unused variables in this scope.
1239    if (!S->hasErrorOccurred())
1240      DiagnoseUnusedDecl(D);
1241
1242    // If this was a forward reference to a label, verify it was defined.
1243    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1244      CheckPoppedLabel(LD, *this);
1245
1246    // Remove this name from our lexical scope.
1247    IdResolver.RemoveDecl(D);
1248  }
1249}
1250
1251/// \brief Look for an Objective-C class in the translation unit.
1252///
1253/// \param Id The name of the Objective-C class we're looking for. If
1254/// typo-correction fixes this name, the Id will be updated
1255/// to the fixed name.
1256///
1257/// \param IdLoc The location of the name in the translation unit.
1258///
1259/// \param TypoCorrection If true, this routine will attempt typo correction
1260/// if there is no class with the given name.
1261///
1262/// \returns The declaration of the named Objective-C class, or NULL if the
1263/// class could not be found.
1264ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1265                                              SourceLocation IdLoc,
1266                                              bool DoTypoCorrection) {
1267  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1268  // creation from this context.
1269  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1270
1271  if (!IDecl && DoTypoCorrection) {
1272    // Perform typo correction at the given location, but only if we
1273    // find an Objective-C class name.
1274    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1275    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1276                                       LookupOrdinaryName, TUScope, NULL,
1277                                       Validator)) {
1278      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1279      Diag(IdLoc, diag::err_undef_interface_suggest)
1280        << Id << IDecl->getDeclName()
1281        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1282      Diag(IDecl->getLocation(), diag::note_previous_decl)
1283        << IDecl->getDeclName();
1284
1285      Id = IDecl->getIdentifier();
1286    }
1287  }
1288  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1289  // This routine must always return a class definition, if any.
1290  if (Def && Def->getDefinition())
1291      Def = Def->getDefinition();
1292  return Def;
1293}
1294
1295/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1296/// from S, where a non-field would be declared. This routine copes
1297/// with the difference between C and C++ scoping rules in structs and
1298/// unions. For example, the following code is well-formed in C but
1299/// ill-formed in C++:
1300/// @code
1301/// struct S6 {
1302///   enum { BAR } e;
1303/// };
1304///
1305/// void test_S6() {
1306///   struct S6 a;
1307///   a.e = BAR;
1308/// }
1309/// @endcode
1310/// For the declaration of BAR, this routine will return a different
1311/// scope. The scope S will be the scope of the unnamed enumeration
1312/// within S6. In C++, this routine will return the scope associated
1313/// with S6, because the enumeration's scope is a transparent
1314/// context but structures can contain non-field names. In C, this
1315/// routine will return the translation unit scope, since the
1316/// enumeration's scope is a transparent context and structures cannot
1317/// contain non-field names.
1318Scope *Sema::getNonFieldDeclScope(Scope *S) {
1319  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1320         (S->getEntity() &&
1321          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1322         (S->isClassScope() && !getLangOptions().CPlusPlus))
1323    S = S->getParent();
1324  return S;
1325}
1326
1327/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1328/// file scope.  lazily create a decl for it. ForRedeclaration is true
1329/// if we're creating this built-in in anticipation of redeclaring the
1330/// built-in.
1331NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1332                                     Scope *S, bool ForRedeclaration,
1333                                     SourceLocation Loc) {
1334  Builtin::ID BID = (Builtin::ID)bid;
1335
1336  ASTContext::GetBuiltinTypeError Error;
1337  QualType R = Context.GetBuiltinType(BID, Error);
1338  switch (Error) {
1339  case ASTContext::GE_None:
1340    // Okay
1341    break;
1342
1343  case ASTContext::GE_Missing_stdio:
1344    if (ForRedeclaration)
1345      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1346        << Context.BuiltinInfo.GetName(BID);
1347    return 0;
1348
1349  case ASTContext::GE_Missing_setjmp:
1350    if (ForRedeclaration)
1351      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1352        << Context.BuiltinInfo.GetName(BID);
1353    return 0;
1354
1355  case ASTContext::GE_Missing_ucontext:
1356    if (ForRedeclaration)
1357      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1358        << Context.BuiltinInfo.GetName(BID);
1359    return 0;
1360  }
1361
1362  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1363    Diag(Loc, diag::ext_implicit_lib_function_decl)
1364      << Context.BuiltinInfo.GetName(BID)
1365      << R;
1366    if (Context.BuiltinInfo.getHeaderName(BID) &&
1367        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1368          != DiagnosticsEngine::Ignored)
1369      Diag(Loc, diag::note_please_include_header)
1370        << Context.BuiltinInfo.getHeaderName(BID)
1371        << Context.BuiltinInfo.GetName(BID);
1372  }
1373
1374  FunctionDecl *New = FunctionDecl::Create(Context,
1375                                           Context.getTranslationUnitDecl(),
1376                                           Loc, Loc, II, R, /*TInfo=*/0,
1377                                           SC_Extern,
1378                                           SC_None, false,
1379                                           /*hasPrototype=*/true);
1380  New->setImplicit();
1381
1382  // Create Decl objects for each parameter, adding them to the
1383  // FunctionDecl.
1384  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1385    SmallVector<ParmVarDecl*, 16> Params;
1386    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1387      ParmVarDecl *parm =
1388        ParmVarDecl::Create(Context, New, SourceLocation(),
1389                            SourceLocation(), 0,
1390                            FT->getArgType(i), /*TInfo=*/0,
1391                            SC_None, SC_None, 0);
1392      parm->setScopeInfo(0, i);
1393      Params.push_back(parm);
1394    }
1395    New->setParams(Params);
1396  }
1397
1398  AddKnownFunctionAttributes(New);
1399
1400  // TUScope is the translation-unit scope to insert this function into.
1401  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1402  // relate Scopes to DeclContexts, and probably eliminate CurContext
1403  // entirely, but we're not there yet.
1404  DeclContext *SavedContext = CurContext;
1405  CurContext = Context.getTranslationUnitDecl();
1406  PushOnScopeChains(New, TUScope);
1407  CurContext = SavedContext;
1408  return New;
1409}
1410
1411bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1412  QualType OldType;
1413  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1414    OldType = OldTypedef->getUnderlyingType();
1415  else
1416    OldType = Context.getTypeDeclType(Old);
1417  QualType NewType = New->getUnderlyingType();
1418
1419  if (NewType->isVariablyModifiedType()) {
1420    // Must not redefine a typedef with a variably-modified type.
1421    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1422    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1423      << Kind << NewType;
1424    if (Old->getLocation().isValid())
1425      Diag(Old->getLocation(), diag::note_previous_definition);
1426    New->setInvalidDecl();
1427    return true;
1428  }
1429
1430  if (OldType != NewType &&
1431      !OldType->isDependentType() &&
1432      !NewType->isDependentType() &&
1433      !Context.hasSameType(OldType, NewType)) {
1434    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << NewType << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    New->setInvalidDecl();
1440    return true;
1441  }
1442  return false;
1443}
1444
1445/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1446/// same name and scope as a previous declaration 'Old'.  Figure out
1447/// how to resolve this situation, merging decls or emitting
1448/// diagnostics as appropriate. If there was an error, set New to be invalid.
1449///
1450void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1451  // If the new decl is known invalid already, don't bother doing any
1452  // merging checks.
1453  if (New->isInvalidDecl()) return;
1454
1455  // Allow multiple definitions for ObjC built-in typedefs.
1456  // FIXME: Verify the underlying types are equivalent!
1457  if (getLangOptions().ObjC1) {
1458    const IdentifierInfo *TypeID = New->getIdentifier();
1459    switch (TypeID->getLength()) {
1460    default: break;
1461    case 2:
1462      if (!TypeID->isStr("id"))
1463        break;
1464      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1465      // Install the built-in type for 'id', ignoring the current definition.
1466      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1467      return;
1468    case 5:
1469      if (!TypeID->isStr("Class"))
1470        break;
1471      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1472      // Install the built-in type for 'Class', ignoring the current definition.
1473      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1474      return;
1475    case 3:
1476      if (!TypeID->isStr("SEL"))
1477        break;
1478      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1479      // Install the built-in type for 'SEL', ignoring the current definition.
1480      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1481      return;
1482    }
1483    // Fall through - the typedef name was not a builtin type.
1484  }
1485
1486  // Verify the old decl was also a type.
1487  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1488  if (!Old) {
1489    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1490      << New->getDeclName();
1491
1492    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1493    if (OldD->getLocation().isValid())
1494      Diag(OldD->getLocation(), diag::note_previous_definition);
1495
1496    return New->setInvalidDecl();
1497  }
1498
1499  // If the old declaration is invalid, just give up here.
1500  if (Old->isInvalidDecl())
1501    return New->setInvalidDecl();
1502
1503  // If the typedef types are not identical, reject them in all languages and
1504  // with any extensions enabled.
1505  if (isIncompatibleTypedef(Old, New))
1506    return;
1507
1508  // The types match.  Link up the redeclaration chain if the old
1509  // declaration was a typedef.
1510  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1511    New->setPreviousDeclaration(Typedef);
1512
1513  if (getLangOptions().MicrosoftExt)
1514    return;
1515
1516  if (getLangOptions().CPlusPlus) {
1517    // C++ [dcl.typedef]p2:
1518    //   In a given non-class scope, a typedef specifier can be used to
1519    //   redefine the name of any type declared in that scope to refer
1520    //   to the type to which it already refers.
1521    if (!isa<CXXRecordDecl>(CurContext))
1522      return;
1523
1524    // C++0x [dcl.typedef]p4:
1525    //   In a given class scope, a typedef specifier can be used to redefine
1526    //   any class-name declared in that scope that is not also a typedef-name
1527    //   to refer to the type to which it already refers.
1528    //
1529    // This wording came in via DR424, which was a correction to the
1530    // wording in DR56, which accidentally banned code like:
1531    //
1532    //   struct S {
1533    //     typedef struct A { } A;
1534    //   };
1535    //
1536    // in the C++03 standard. We implement the C++0x semantics, which
1537    // allow the above but disallow
1538    //
1539    //   struct S {
1540    //     typedef int I;
1541    //     typedef int I;
1542    //   };
1543    //
1544    // since that was the intent of DR56.
1545    if (!isa<TypedefNameDecl>(Old))
1546      return;
1547
1548    Diag(New->getLocation(), diag::err_redefinition)
1549      << New->getDeclName();
1550    Diag(Old->getLocation(), diag::note_previous_definition);
1551    return New->setInvalidDecl();
1552  }
1553
1554  // Modules always permit redefinition of typedefs, as does C11.
1555  if (getLangOptions().Modules || getLangOptions().C11)
1556    return;
1557
1558  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1559  // is normally mapped to an error, but can be controlled with
1560  // -Wtypedef-redefinition.  If either the original or the redefinition is
1561  // in a system header, don't emit this for compatibility with GCC.
1562  if (getDiagnostics().getSuppressSystemWarnings() &&
1563      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1564       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1565    return;
1566
1567  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1568    << New->getDeclName();
1569  Diag(Old->getLocation(), diag::note_previous_definition);
1570  return;
1571}
1572
1573/// DeclhasAttr - returns true if decl Declaration already has the target
1574/// attribute.
1575static bool
1576DeclHasAttr(const Decl *D, const Attr *A) {
1577  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1578  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1579  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1580    if ((*i)->getKind() == A->getKind()) {
1581      if (Ann) {
1582        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1583          return true;
1584        continue;
1585      }
1586      // FIXME: Don't hardcode this check
1587      if (OA && isa<OwnershipAttr>(*i))
1588        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1589      return true;
1590    }
1591
1592  return false;
1593}
1594
1595/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1596void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1597                               bool MergeDeprecation) {
1598  if (!Old->hasAttrs())
1599    return;
1600
1601  bool foundAny = New->hasAttrs();
1602
1603  // Ensure that any moving of objects within the allocated map is done before
1604  // we process them.
1605  if (!foundAny) New->setAttrs(AttrVec());
1606
1607  for (specific_attr_iterator<InheritableAttr>
1608         i = Old->specific_attr_begin<InheritableAttr>(),
1609         e = Old->specific_attr_end<InheritableAttr>();
1610       i != e; ++i) {
1611    // Ignore deprecated/unavailable/availability attributes if requested.
1612    if (!MergeDeprecation &&
1613        (isa<DeprecatedAttr>(*i) ||
1614         isa<UnavailableAttr>(*i) ||
1615         isa<AvailabilityAttr>(*i)))
1616      continue;
1617
1618    if (!DeclHasAttr(New, *i)) {
1619      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1620      newAttr->setInherited(true);
1621      New->addAttr(newAttr);
1622      foundAny = true;
1623    }
1624  }
1625
1626  if (!foundAny) New->dropAttrs();
1627}
1628
1629/// mergeParamDeclAttributes - Copy attributes from the old parameter
1630/// to the new one.
1631static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1632                                     const ParmVarDecl *oldDecl,
1633                                     ASTContext &C) {
1634  if (!oldDecl->hasAttrs())
1635    return;
1636
1637  bool foundAny = newDecl->hasAttrs();
1638
1639  // Ensure that any moving of objects within the allocated map is
1640  // done before we process them.
1641  if (!foundAny) newDecl->setAttrs(AttrVec());
1642
1643  for (specific_attr_iterator<InheritableParamAttr>
1644       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1645       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1646    if (!DeclHasAttr(newDecl, *i)) {
1647      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1648      newAttr->setInherited(true);
1649      newDecl->addAttr(newAttr);
1650      foundAny = true;
1651    }
1652  }
1653
1654  if (!foundAny) newDecl->dropAttrs();
1655}
1656
1657namespace {
1658
1659/// Used in MergeFunctionDecl to keep track of function parameters in
1660/// C.
1661struct GNUCompatibleParamWarning {
1662  ParmVarDecl *OldParm;
1663  ParmVarDecl *NewParm;
1664  QualType PromotedType;
1665};
1666
1667}
1668
1669/// getSpecialMember - get the special member enum for a method.
1670Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1671  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1672    if (Ctor->isDefaultConstructor())
1673      return Sema::CXXDefaultConstructor;
1674
1675    if (Ctor->isCopyConstructor())
1676      return Sema::CXXCopyConstructor;
1677
1678    if (Ctor->isMoveConstructor())
1679      return Sema::CXXMoveConstructor;
1680  } else if (isa<CXXDestructorDecl>(MD)) {
1681    return Sema::CXXDestructor;
1682  } else if (MD->isCopyAssignmentOperator()) {
1683    return Sema::CXXCopyAssignment;
1684  } else if (MD->isMoveAssignmentOperator()) {
1685    return Sema::CXXMoveAssignment;
1686  }
1687
1688  return Sema::CXXInvalid;
1689}
1690
1691/// canRedefineFunction - checks if a function can be redefined. Currently,
1692/// only extern inline functions can be redefined, and even then only in
1693/// GNU89 mode.
1694static bool canRedefineFunction(const FunctionDecl *FD,
1695                                const LangOptions& LangOpts) {
1696  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1697          !LangOpts.CPlusPlus &&
1698          FD->isInlineSpecified() &&
1699          FD->getStorageClass() == SC_Extern);
1700}
1701
1702/// MergeFunctionDecl - We just parsed a function 'New' from
1703/// declarator D which has the same name and scope as a previous
1704/// declaration 'Old'.  Figure out how to resolve this situation,
1705/// merging decls or emitting diagnostics as appropriate.
1706///
1707/// In C++, New and Old must be declarations that are not
1708/// overloaded. Use IsOverload to determine whether New and Old are
1709/// overloaded, and to select the Old declaration that New should be
1710/// merged with.
1711///
1712/// Returns true if there was an error, false otherwise.
1713bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1714  // Verify the old decl was also a function.
1715  FunctionDecl *Old = 0;
1716  if (FunctionTemplateDecl *OldFunctionTemplate
1717        = dyn_cast<FunctionTemplateDecl>(OldD))
1718    Old = OldFunctionTemplate->getTemplatedDecl();
1719  else
1720    Old = dyn_cast<FunctionDecl>(OldD);
1721  if (!Old) {
1722    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1723      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1724      Diag(Shadow->getTargetDecl()->getLocation(),
1725           diag::note_using_decl_target);
1726      Diag(Shadow->getUsingDecl()->getLocation(),
1727           diag::note_using_decl) << 0;
1728      return true;
1729    }
1730
1731    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1732      << New->getDeclName();
1733    Diag(OldD->getLocation(), diag::note_previous_definition);
1734    return true;
1735  }
1736
1737  // Determine whether the previous declaration was a definition,
1738  // implicit declaration, or a declaration.
1739  diag::kind PrevDiag;
1740  if (Old->isThisDeclarationADefinition())
1741    PrevDiag = diag::note_previous_definition;
1742  else if (Old->isImplicit())
1743    PrevDiag = diag::note_previous_implicit_declaration;
1744  else
1745    PrevDiag = diag::note_previous_declaration;
1746
1747  QualType OldQType = Context.getCanonicalType(Old->getType());
1748  QualType NewQType = Context.getCanonicalType(New->getType());
1749
1750  // Don't complain about this if we're in GNU89 mode and the old function
1751  // is an extern inline function.
1752  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1753      New->getStorageClass() == SC_Static &&
1754      Old->getStorageClass() != SC_Static &&
1755      !canRedefineFunction(Old, getLangOptions())) {
1756    if (getLangOptions().MicrosoftExt) {
1757      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1758      Diag(Old->getLocation(), PrevDiag);
1759    } else {
1760      Diag(New->getLocation(), diag::err_static_non_static) << New;
1761      Diag(Old->getLocation(), PrevDiag);
1762      return true;
1763    }
1764  }
1765
1766  // If a function is first declared with a calling convention, but is
1767  // later declared or defined without one, the second decl assumes the
1768  // calling convention of the first.
1769  //
1770  // For the new decl, we have to look at the NON-canonical type to tell the
1771  // difference between a function that really doesn't have a calling
1772  // convention and one that is declared cdecl. That's because in
1773  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1774  // because it is the default calling convention.
1775  //
1776  // Note also that we DO NOT return at this point, because we still have
1777  // other tests to run.
1778  const FunctionType *OldType = cast<FunctionType>(OldQType);
1779  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1780  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1781  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1782  bool RequiresAdjustment = false;
1783  if (OldTypeInfo.getCC() != CC_Default &&
1784      NewTypeInfo.getCC() == CC_Default) {
1785    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1786    RequiresAdjustment = true;
1787  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1788                                     NewTypeInfo.getCC())) {
1789    // Calling conventions really aren't compatible, so complain.
1790    Diag(New->getLocation(), diag::err_cconv_change)
1791      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1792      << (OldTypeInfo.getCC() == CC_Default)
1793      << (OldTypeInfo.getCC() == CC_Default ? "" :
1794          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1795    Diag(Old->getLocation(), diag::note_previous_declaration);
1796    return true;
1797  }
1798
1799  // FIXME: diagnose the other way around?
1800  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1801    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1802    RequiresAdjustment = true;
1803  }
1804
1805  // Merge regparm attribute.
1806  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1807      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1808    if (NewTypeInfo.getHasRegParm()) {
1809      Diag(New->getLocation(), diag::err_regparm_mismatch)
1810        << NewType->getRegParmType()
1811        << OldType->getRegParmType();
1812      Diag(Old->getLocation(), diag::note_previous_declaration);
1813      return true;
1814    }
1815
1816    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1817    RequiresAdjustment = true;
1818  }
1819
1820  // Merge ns_returns_retained attribute.
1821  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1822    if (NewTypeInfo.getProducesResult()) {
1823      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1824      Diag(Old->getLocation(), diag::note_previous_declaration);
1825      return true;
1826    }
1827
1828    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1829    RequiresAdjustment = true;
1830  }
1831
1832  if (RequiresAdjustment) {
1833    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1834    New->setType(QualType(NewType, 0));
1835    NewQType = Context.getCanonicalType(New->getType());
1836  }
1837
1838  if (getLangOptions().CPlusPlus) {
1839    // (C++98 13.1p2):
1840    //   Certain function declarations cannot be overloaded:
1841    //     -- Function declarations that differ only in the return type
1842    //        cannot be overloaded.
1843    QualType OldReturnType = OldType->getResultType();
1844    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1845    QualType ResQT;
1846    if (OldReturnType != NewReturnType) {
1847      if (NewReturnType->isObjCObjectPointerType()
1848          && OldReturnType->isObjCObjectPointerType())
1849        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1850      if (ResQT.isNull()) {
1851        if (New->isCXXClassMember() && New->isOutOfLine())
1852          Diag(New->getLocation(),
1853               diag::err_member_def_does_not_match_ret_type) << New;
1854        else
1855          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1856        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1857        return true;
1858      }
1859      else
1860        NewQType = ResQT;
1861    }
1862
1863    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1864    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1865    if (OldMethod && NewMethod) {
1866      // Preserve triviality.
1867      NewMethod->setTrivial(OldMethod->isTrivial());
1868
1869      // MSVC allows explicit template specialization at class scope:
1870      // 2 CXMethodDecls referring to the same function will be injected.
1871      // We don't want a redeclartion error.
1872      bool IsClassScopeExplicitSpecialization =
1873                              OldMethod->isFunctionTemplateSpecialization() &&
1874                              NewMethod->isFunctionTemplateSpecialization();
1875      bool isFriend = NewMethod->getFriendObjectKind();
1876
1877      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1878          !IsClassScopeExplicitSpecialization) {
1879        //    -- Member function declarations with the same name and the
1880        //       same parameter types cannot be overloaded if any of them
1881        //       is a static member function declaration.
1882        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1883          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1884          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1885          return true;
1886        }
1887
1888        // C++ [class.mem]p1:
1889        //   [...] A member shall not be declared twice in the
1890        //   member-specification, except that a nested class or member
1891        //   class template can be declared and then later defined.
1892        unsigned NewDiag;
1893        if (isa<CXXConstructorDecl>(OldMethod))
1894          NewDiag = diag::err_constructor_redeclared;
1895        else if (isa<CXXDestructorDecl>(NewMethod))
1896          NewDiag = diag::err_destructor_redeclared;
1897        else if (isa<CXXConversionDecl>(NewMethod))
1898          NewDiag = diag::err_conv_function_redeclared;
1899        else
1900          NewDiag = diag::err_member_redeclared;
1901
1902        Diag(New->getLocation(), NewDiag);
1903        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1904
1905      // Complain if this is an explicit declaration of a special
1906      // member that was initially declared implicitly.
1907      //
1908      // As an exception, it's okay to befriend such methods in order
1909      // to permit the implicit constructor/destructor/operator calls.
1910      } else if (OldMethod->isImplicit()) {
1911        if (isFriend) {
1912          NewMethod->setImplicit();
1913        } else {
1914          Diag(NewMethod->getLocation(),
1915               diag::err_definition_of_implicitly_declared_member)
1916            << New << getSpecialMember(OldMethod);
1917          return true;
1918        }
1919      } else if (OldMethod->isExplicitlyDefaulted()) {
1920        Diag(NewMethod->getLocation(),
1921             diag::err_definition_of_explicitly_defaulted_member)
1922          << getSpecialMember(OldMethod);
1923        return true;
1924      }
1925    }
1926
1927    // (C++98 8.3.5p3):
1928    //   All declarations for a function shall agree exactly in both the
1929    //   return type and the parameter-type-list.
1930    // We also want to respect all the extended bits except noreturn.
1931
1932    // noreturn should now match unless the old type info didn't have it.
1933    QualType OldQTypeForComparison = OldQType;
1934    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1935      assert(OldQType == QualType(OldType, 0));
1936      const FunctionType *OldTypeForComparison
1937        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1938      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1939      assert(OldQTypeForComparison.isCanonical());
1940    }
1941
1942    if (OldQTypeForComparison == NewQType)
1943      return MergeCompatibleFunctionDecls(New, Old);
1944
1945    // Fall through for conflicting redeclarations and redefinitions.
1946  }
1947
1948  // C: Function types need to be compatible, not identical. This handles
1949  // duplicate function decls like "void f(int); void f(enum X);" properly.
1950  if (!getLangOptions().CPlusPlus &&
1951      Context.typesAreCompatible(OldQType, NewQType)) {
1952    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1953    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1954    const FunctionProtoType *OldProto = 0;
1955    if (isa<FunctionNoProtoType>(NewFuncType) &&
1956        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1957      // The old declaration provided a function prototype, but the
1958      // new declaration does not. Merge in the prototype.
1959      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1960      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1961                                                 OldProto->arg_type_end());
1962      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1963                                         ParamTypes.data(), ParamTypes.size(),
1964                                         OldProto->getExtProtoInfo());
1965      New->setType(NewQType);
1966      New->setHasInheritedPrototype();
1967
1968      // Synthesize a parameter for each argument type.
1969      SmallVector<ParmVarDecl*, 16> Params;
1970      for (FunctionProtoType::arg_type_iterator
1971             ParamType = OldProto->arg_type_begin(),
1972             ParamEnd = OldProto->arg_type_end();
1973           ParamType != ParamEnd; ++ParamType) {
1974        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1975                                                 SourceLocation(),
1976                                                 SourceLocation(), 0,
1977                                                 *ParamType, /*TInfo=*/0,
1978                                                 SC_None, SC_None,
1979                                                 0);
1980        Param->setScopeInfo(0, Params.size());
1981        Param->setImplicit();
1982        Params.push_back(Param);
1983      }
1984
1985      New->setParams(Params);
1986    }
1987
1988    return MergeCompatibleFunctionDecls(New, Old);
1989  }
1990
1991  // GNU C permits a K&R definition to follow a prototype declaration
1992  // if the declared types of the parameters in the K&R definition
1993  // match the types in the prototype declaration, even when the
1994  // promoted types of the parameters from the K&R definition differ
1995  // from the types in the prototype. GCC then keeps the types from
1996  // the prototype.
1997  //
1998  // If a variadic prototype is followed by a non-variadic K&R definition,
1999  // the K&R definition becomes variadic.  This is sort of an edge case, but
2000  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2001  // C99 6.9.1p8.
2002  if (!getLangOptions().CPlusPlus &&
2003      Old->hasPrototype() && !New->hasPrototype() &&
2004      New->getType()->getAs<FunctionProtoType>() &&
2005      Old->getNumParams() == New->getNumParams()) {
2006    SmallVector<QualType, 16> ArgTypes;
2007    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2008    const FunctionProtoType *OldProto
2009      = Old->getType()->getAs<FunctionProtoType>();
2010    const FunctionProtoType *NewProto
2011      = New->getType()->getAs<FunctionProtoType>();
2012
2013    // Determine whether this is the GNU C extension.
2014    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2015                                               NewProto->getResultType());
2016    bool LooseCompatible = !MergedReturn.isNull();
2017    for (unsigned Idx = 0, End = Old->getNumParams();
2018         LooseCompatible && Idx != End; ++Idx) {
2019      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2020      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2021      if (Context.typesAreCompatible(OldParm->getType(),
2022                                     NewProto->getArgType(Idx))) {
2023        ArgTypes.push_back(NewParm->getType());
2024      } else if (Context.typesAreCompatible(OldParm->getType(),
2025                                            NewParm->getType(),
2026                                            /*CompareUnqualified=*/true)) {
2027        GNUCompatibleParamWarning Warn
2028          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2029        Warnings.push_back(Warn);
2030        ArgTypes.push_back(NewParm->getType());
2031      } else
2032        LooseCompatible = false;
2033    }
2034
2035    if (LooseCompatible) {
2036      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2037        Diag(Warnings[Warn].NewParm->getLocation(),
2038             diag::ext_param_promoted_not_compatible_with_prototype)
2039          << Warnings[Warn].PromotedType
2040          << Warnings[Warn].OldParm->getType();
2041        if (Warnings[Warn].OldParm->getLocation().isValid())
2042          Diag(Warnings[Warn].OldParm->getLocation(),
2043               diag::note_previous_declaration);
2044      }
2045
2046      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2047                                           ArgTypes.size(),
2048                                           OldProto->getExtProtoInfo()));
2049      return MergeCompatibleFunctionDecls(New, Old);
2050    }
2051
2052    // Fall through to diagnose conflicting types.
2053  }
2054
2055  // A function that has already been declared has been redeclared or defined
2056  // with a different type- show appropriate diagnostic
2057  if (unsigned BuiltinID = Old->getBuiltinID()) {
2058    // The user has declared a builtin function with an incompatible
2059    // signature.
2060    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2061      // The function the user is redeclaring is a library-defined
2062      // function like 'malloc' or 'printf'. Warn about the
2063      // redeclaration, then pretend that we don't know about this
2064      // library built-in.
2065      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2066      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2067        << Old << Old->getType();
2068      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2069      Old->setInvalidDecl();
2070      return false;
2071    }
2072
2073    PrevDiag = diag::note_previous_builtin_declaration;
2074  }
2075
2076  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2077  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2078  return true;
2079}
2080
2081/// \brief Completes the merge of two function declarations that are
2082/// known to be compatible.
2083///
2084/// This routine handles the merging of attributes and other
2085/// properties of function declarations form the old declaration to
2086/// the new declaration, once we know that New is in fact a
2087/// redeclaration of Old.
2088///
2089/// \returns false
2090bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2091  // Merge the attributes
2092  mergeDeclAttributes(New, Old);
2093
2094  // Merge the storage class.
2095  if (Old->getStorageClass() != SC_Extern &&
2096      Old->getStorageClass() != SC_None)
2097    New->setStorageClass(Old->getStorageClass());
2098
2099  // Merge "pure" flag.
2100  if (Old->isPure())
2101    New->setPure();
2102
2103  // Merge attributes from the parameters.  These can mismatch with K&R
2104  // declarations.
2105  if (New->getNumParams() == Old->getNumParams())
2106    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2107      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2108                               Context);
2109
2110  if (getLangOptions().CPlusPlus)
2111    return MergeCXXFunctionDecl(New, Old);
2112
2113  return false;
2114}
2115
2116
2117void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2118                                ObjCMethodDecl *oldMethod) {
2119  // We don't want to merge unavailable and deprecated attributes
2120  // except from interface to implementation.
2121  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2122
2123  // Merge the attributes.
2124  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2125
2126  // Merge attributes from the parameters.
2127  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2128  for (ObjCMethodDecl::param_iterator
2129         ni = newMethod->param_begin(), ne = newMethod->param_end();
2130       ni != ne; ++ni, ++oi)
2131    mergeParamDeclAttributes(*ni, *oi, Context);
2132
2133  CheckObjCMethodOverride(newMethod, oldMethod, true);
2134}
2135
2136/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2137/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2138/// emitting diagnostics as appropriate.
2139///
2140/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2141/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2142/// check them before the initializer is attached.
2143///
2144void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2145  if (New->isInvalidDecl() || Old->isInvalidDecl())
2146    return;
2147
2148  QualType MergedT;
2149  if (getLangOptions().CPlusPlus) {
2150    AutoType *AT = New->getType()->getContainedAutoType();
2151    if (AT && !AT->isDeduced()) {
2152      // We don't know what the new type is until the initializer is attached.
2153      return;
2154    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2155      // These could still be something that needs exception specs checked.
2156      return MergeVarDeclExceptionSpecs(New, Old);
2157    }
2158    // C++ [basic.link]p10:
2159    //   [...] the types specified by all declarations referring to a given
2160    //   object or function shall be identical, except that declarations for an
2161    //   array object can specify array types that differ by the presence or
2162    //   absence of a major array bound (8.3.4).
2163    else if (Old->getType()->isIncompleteArrayType() &&
2164             New->getType()->isArrayType()) {
2165      CanQual<ArrayType> OldArray
2166        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2167      CanQual<ArrayType> NewArray
2168        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2169      if (OldArray->getElementType() == NewArray->getElementType())
2170        MergedT = New->getType();
2171    } else if (Old->getType()->isArrayType() &&
2172             New->getType()->isIncompleteArrayType()) {
2173      CanQual<ArrayType> OldArray
2174        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2175      CanQual<ArrayType> NewArray
2176        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2177      if (OldArray->getElementType() == NewArray->getElementType())
2178        MergedT = Old->getType();
2179    } else if (New->getType()->isObjCObjectPointerType()
2180               && Old->getType()->isObjCObjectPointerType()) {
2181        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2182                                                        Old->getType());
2183    }
2184  } else {
2185    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2186  }
2187  if (MergedT.isNull()) {
2188    Diag(New->getLocation(), diag::err_redefinition_different_type)
2189      << New->getDeclName();
2190    Diag(Old->getLocation(), diag::note_previous_definition);
2191    return New->setInvalidDecl();
2192  }
2193  New->setType(MergedT);
2194}
2195
2196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2198/// situation, merging decls or emitting diagnostics as appropriate.
2199///
2200/// Tentative definition rules (C99 6.9.2p2) are checked by
2201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2202/// definitions here, since the initializer hasn't been attached.
2203///
2204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2205  // If the new decl is already invalid, don't do any other checking.
2206  if (New->isInvalidDecl())
2207    return;
2208
2209  // Verify the old decl was also a variable.
2210  VarDecl *Old = 0;
2211  if (!Previous.isSingleResult() ||
2212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2214      << New->getDeclName();
2215    Diag(Previous.getRepresentativeDecl()->getLocation(),
2216         diag::note_previous_definition);
2217    return New->setInvalidDecl();
2218  }
2219
2220  // C++ [class.mem]p1:
2221  //   A member shall not be declared twice in the member-specification [...]
2222  //
2223  // Here, we need only consider static data members.
2224  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2225    Diag(New->getLocation(), diag::err_duplicate_member)
2226      << New->getIdentifier();
2227    Diag(Old->getLocation(), diag::note_previous_declaration);
2228    New->setInvalidDecl();
2229  }
2230
2231  mergeDeclAttributes(New, Old);
2232  // Warn if an already-declared variable is made a weak_import in a subsequent
2233  // declaration
2234  if (New->getAttr<WeakImportAttr>() &&
2235      Old->getStorageClass() == SC_None &&
2236      !Old->getAttr<WeakImportAttr>()) {
2237    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2238    Diag(Old->getLocation(), diag::note_previous_definition);
2239    // Remove weak_import attribute on new declaration.
2240    New->dropAttr<WeakImportAttr>();
2241  }
2242
2243  // Merge the types.
2244  MergeVarDeclTypes(New, Old);
2245  if (New->isInvalidDecl())
2246    return;
2247
2248  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2249  if (New->getStorageClass() == SC_Static &&
2250      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2251    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2252    Diag(Old->getLocation(), diag::note_previous_definition);
2253    return New->setInvalidDecl();
2254  }
2255  // C99 6.2.2p4:
2256  //   For an identifier declared with the storage-class specifier
2257  //   extern in a scope in which a prior declaration of that
2258  //   identifier is visible,23) if the prior declaration specifies
2259  //   internal or external linkage, the linkage of the identifier at
2260  //   the later declaration is the same as the linkage specified at
2261  //   the prior declaration. If no prior declaration is visible, or
2262  //   if the prior declaration specifies no linkage, then the
2263  //   identifier has external linkage.
2264  if (New->hasExternalStorage() && Old->hasLinkage())
2265    /* Okay */;
2266  else if (New->getStorageClass() != SC_Static &&
2267           Old->getStorageClass() == SC_Static) {
2268    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2269    Diag(Old->getLocation(), diag::note_previous_definition);
2270    return New->setInvalidDecl();
2271  }
2272
2273  // Check if extern is followed by non-extern and vice-versa.
2274  if (New->hasExternalStorage() &&
2275      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2276    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2277    Diag(Old->getLocation(), diag::note_previous_definition);
2278    return New->setInvalidDecl();
2279  }
2280  if (Old->hasExternalStorage() &&
2281      !New->hasLinkage() && New->isLocalVarDecl()) {
2282    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2283    Diag(Old->getLocation(), diag::note_previous_definition);
2284    return New->setInvalidDecl();
2285  }
2286
2287  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2288
2289  // FIXME: The test for external storage here seems wrong? We still
2290  // need to check for mismatches.
2291  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2292      // Don't complain about out-of-line definitions of static members.
2293      !(Old->getLexicalDeclContext()->isRecord() &&
2294        !New->getLexicalDeclContext()->isRecord())) {
2295    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2296    Diag(Old->getLocation(), diag::note_previous_definition);
2297    return New->setInvalidDecl();
2298  }
2299
2300  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2301    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2302    Diag(Old->getLocation(), diag::note_previous_definition);
2303  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2304    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2305    Diag(Old->getLocation(), diag::note_previous_definition);
2306  }
2307
2308  // C++ doesn't have tentative definitions, so go right ahead and check here.
2309  const VarDecl *Def;
2310  if (getLangOptions().CPlusPlus &&
2311      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2312      (Def = Old->getDefinition())) {
2313    Diag(New->getLocation(), diag::err_redefinition)
2314      << New->getDeclName();
2315    Diag(Def->getLocation(), diag::note_previous_definition);
2316    New->setInvalidDecl();
2317    return;
2318  }
2319  // c99 6.2.2 P4.
2320  // For an identifier declared with the storage-class specifier extern in a
2321  // scope in which a prior declaration of that identifier is visible, if
2322  // the prior declaration specifies internal or external linkage, the linkage
2323  // of the identifier at the later declaration is the same as the linkage
2324  // specified at the prior declaration.
2325  // FIXME. revisit this code.
2326  if (New->hasExternalStorage() &&
2327      Old->getLinkage() == InternalLinkage &&
2328      New->getDeclContext() == Old->getDeclContext())
2329    New->setStorageClass(Old->getStorageClass());
2330
2331  // Keep a chain of previous declarations.
2332  New->setPreviousDeclaration(Old);
2333
2334  // Inherit access appropriately.
2335  New->setAccess(Old->getAccess());
2336}
2337
2338/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2339/// no declarator (e.g. "struct foo;") is parsed.
2340Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2341                                       DeclSpec &DS) {
2342  return ParsedFreeStandingDeclSpec(S, AS, DS,
2343                                    MultiTemplateParamsArg(*this, 0, 0));
2344}
2345
2346/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2347/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2348/// parameters to cope with template friend declarations.
2349Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2350                                       DeclSpec &DS,
2351                                       MultiTemplateParamsArg TemplateParams) {
2352  Decl *TagD = 0;
2353  TagDecl *Tag = 0;
2354  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2355      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2356      DS.getTypeSpecType() == DeclSpec::TST_union ||
2357      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2358    TagD = DS.getRepAsDecl();
2359
2360    if (!TagD) // We probably had an error
2361      return 0;
2362
2363    // Note that the above type specs guarantee that the
2364    // type rep is a Decl, whereas in many of the others
2365    // it's a Type.
2366    if (isa<TagDecl>(TagD))
2367      Tag = cast<TagDecl>(TagD);
2368    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2369      Tag = CTD->getTemplatedDecl();
2370  }
2371
2372  if (Tag)
2373    Tag->setFreeStanding();
2374
2375  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2376    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2377    // or incomplete types shall not be restrict-qualified."
2378    if (TypeQuals & DeclSpec::TQ_restrict)
2379      Diag(DS.getRestrictSpecLoc(),
2380           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2381           << DS.getSourceRange();
2382  }
2383
2384  if (DS.isConstexprSpecified()) {
2385    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2386    // and definitions of functions and variables.
2387    if (Tag)
2388      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2389        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2390            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2391            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2392    else
2393      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2394    // Don't emit warnings after this error.
2395    return TagD;
2396  }
2397
2398  if (DS.isFriendSpecified()) {
2399    // If we're dealing with a decl but not a TagDecl, assume that
2400    // whatever routines created it handled the friendship aspect.
2401    if (TagD && !Tag)
2402      return 0;
2403    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2404  }
2405
2406  // Track whether we warned about the fact that there aren't any
2407  // declarators.
2408  bool emittedWarning = false;
2409
2410  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2411    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2412        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2413      if (getLangOptions().CPlusPlus ||
2414          Record->getDeclContext()->isRecord())
2415        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2416
2417      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2418        << DS.getSourceRange();
2419      emittedWarning = true;
2420    }
2421  }
2422
2423  // Check for Microsoft C extension: anonymous struct.
2424  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2425      CurContext->isRecord() &&
2426      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2427    // Handle 2 kinds of anonymous struct:
2428    //   struct STRUCT;
2429    // and
2430    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2431    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2432    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2433        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2434         DS.getRepAsType().get()->isStructureType())) {
2435      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2436        << DS.getSourceRange();
2437      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2438    }
2439  }
2440
2441  if (getLangOptions().CPlusPlus &&
2442      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2443    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2444      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2445          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2446        Diag(Enum->getLocation(), diag::ext_no_declarators)
2447          << DS.getSourceRange();
2448        emittedWarning = true;
2449      }
2450
2451  // Skip all the checks below if we have a type error.
2452  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2453
2454  if (!DS.isMissingDeclaratorOk()) {
2455    // Warn about typedefs of enums without names, since this is an
2456    // extension in both Microsoft and GNU.
2457    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2458        Tag && isa<EnumDecl>(Tag)) {
2459      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2460        << DS.getSourceRange();
2461      return Tag;
2462    }
2463
2464    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2465      << DS.getSourceRange();
2466    emittedWarning = true;
2467  }
2468
2469  // We're going to complain about a bunch of spurious specifiers;
2470  // only do this if we're declaring a tag, because otherwise we
2471  // should be getting diag::ext_no_declarators.
2472  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2473    return TagD;
2474
2475  // Note that a linkage-specification sets a storage class, but
2476  // 'extern "C" struct foo;' is actually valid and not theoretically
2477  // useless.
2478  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2479    if (!DS.isExternInLinkageSpec())
2480      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2481        << DeclSpec::getSpecifierName(scs);
2482
2483  if (DS.isThreadSpecified())
2484    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2485  if (DS.getTypeQualifiers()) {
2486    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2487      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2488    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2489      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2490    // Restrict is covered above.
2491  }
2492  if (DS.isInlineSpecified())
2493    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2494  if (DS.isVirtualSpecified())
2495    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2496  if (DS.isExplicitSpecified())
2497    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2498
2499  if (DS.isModulePrivateSpecified() &&
2500      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2501    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2502      << Tag->getTagKind()
2503      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2504
2505  // Warn about ignored type attributes, for example:
2506  // __attribute__((aligned)) struct A;
2507  // Attributes should be placed after tag to apply to type declaration.
2508  if (!DS.getAttributes().empty()) {
2509    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2510    if (TypeSpecType == DeclSpec::TST_class ||
2511        TypeSpecType == DeclSpec::TST_struct ||
2512        TypeSpecType == DeclSpec::TST_union ||
2513        TypeSpecType == DeclSpec::TST_enum) {
2514      AttributeList* attrs = DS.getAttributes().getList();
2515      while (attrs) {
2516        Diag(attrs->getScopeLoc(),
2517             diag::warn_declspec_attribute_ignored)
2518        << attrs->getName()
2519        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2520            TypeSpecType == DeclSpec::TST_struct ? 1 :
2521            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2522        attrs = attrs->getNext();
2523      }
2524    }
2525  }
2526
2527  return TagD;
2528}
2529
2530/// We are trying to inject an anonymous member into the given scope;
2531/// check if there's an existing declaration that can't be overloaded.
2532///
2533/// \return true if this is a forbidden redeclaration
2534static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2535                                         Scope *S,
2536                                         DeclContext *Owner,
2537                                         DeclarationName Name,
2538                                         SourceLocation NameLoc,
2539                                         unsigned diagnostic) {
2540  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2541                 Sema::ForRedeclaration);
2542  if (!SemaRef.LookupName(R, S)) return false;
2543
2544  if (R.getAsSingle<TagDecl>())
2545    return false;
2546
2547  // Pick a representative declaration.
2548  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2549  assert(PrevDecl && "Expected a non-null Decl");
2550
2551  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2552    return false;
2553
2554  SemaRef.Diag(NameLoc, diagnostic) << Name;
2555  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2556
2557  return true;
2558}
2559
2560/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2561/// anonymous struct or union AnonRecord into the owning context Owner
2562/// and scope S. This routine will be invoked just after we realize
2563/// that an unnamed union or struct is actually an anonymous union or
2564/// struct, e.g.,
2565///
2566/// @code
2567/// union {
2568///   int i;
2569///   float f;
2570/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2571///    // f into the surrounding scope.x
2572/// @endcode
2573///
2574/// This routine is recursive, injecting the names of nested anonymous
2575/// structs/unions into the owning context and scope as well.
2576static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2577                                                DeclContext *Owner,
2578                                                RecordDecl *AnonRecord,
2579                                                AccessSpecifier AS,
2580                              SmallVector<NamedDecl*, 2> &Chaining,
2581                                                      bool MSAnonStruct) {
2582  unsigned diagKind
2583    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2584                            : diag::err_anonymous_struct_member_redecl;
2585
2586  bool Invalid = false;
2587
2588  // Look every FieldDecl and IndirectFieldDecl with a name.
2589  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2590                               DEnd = AnonRecord->decls_end();
2591       D != DEnd; ++D) {
2592    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2593        cast<NamedDecl>(*D)->getDeclName()) {
2594      ValueDecl *VD = cast<ValueDecl>(*D);
2595      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2596                                       VD->getLocation(), diagKind)) {
2597        // C++ [class.union]p2:
2598        //   The names of the members of an anonymous union shall be
2599        //   distinct from the names of any other entity in the
2600        //   scope in which the anonymous union is declared.
2601        Invalid = true;
2602      } else {
2603        // C++ [class.union]p2:
2604        //   For the purpose of name lookup, after the anonymous union
2605        //   definition, the members of the anonymous union are
2606        //   considered to have been defined in the scope in which the
2607        //   anonymous union is declared.
2608        unsigned OldChainingSize = Chaining.size();
2609        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2610          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2611               PE = IF->chain_end(); PI != PE; ++PI)
2612            Chaining.push_back(*PI);
2613        else
2614          Chaining.push_back(VD);
2615
2616        assert(Chaining.size() >= 2);
2617        NamedDecl **NamedChain =
2618          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2619        for (unsigned i = 0; i < Chaining.size(); i++)
2620          NamedChain[i] = Chaining[i];
2621
2622        IndirectFieldDecl* IndirectField =
2623          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2624                                    VD->getIdentifier(), VD->getType(),
2625                                    NamedChain, Chaining.size());
2626
2627        IndirectField->setAccess(AS);
2628        IndirectField->setImplicit();
2629        SemaRef.PushOnScopeChains(IndirectField, S);
2630
2631        // That includes picking up the appropriate access specifier.
2632        if (AS != AS_none) IndirectField->setAccess(AS);
2633
2634        Chaining.resize(OldChainingSize);
2635      }
2636    }
2637  }
2638
2639  return Invalid;
2640}
2641
2642/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2643/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2644/// illegal input values are mapped to SC_None.
2645static StorageClass
2646StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2647  switch (StorageClassSpec) {
2648  case DeclSpec::SCS_unspecified:    return SC_None;
2649  case DeclSpec::SCS_extern:         return SC_Extern;
2650  case DeclSpec::SCS_static:         return SC_Static;
2651  case DeclSpec::SCS_auto:           return SC_Auto;
2652  case DeclSpec::SCS_register:       return SC_Register;
2653  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2654    // Illegal SCSs map to None: error reporting is up to the caller.
2655  case DeclSpec::SCS_mutable:        // Fall through.
2656  case DeclSpec::SCS_typedef:        return SC_None;
2657  }
2658  llvm_unreachable("unknown storage class specifier");
2659}
2660
2661/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2662/// a StorageClass. Any error reporting is up to the caller:
2663/// illegal input values are mapped to SC_None.
2664static StorageClass
2665StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2666  switch (StorageClassSpec) {
2667  case DeclSpec::SCS_unspecified:    return SC_None;
2668  case DeclSpec::SCS_extern:         return SC_Extern;
2669  case DeclSpec::SCS_static:         return SC_Static;
2670  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2671    // Illegal SCSs map to None: error reporting is up to the caller.
2672  case DeclSpec::SCS_auto:           // Fall through.
2673  case DeclSpec::SCS_mutable:        // Fall through.
2674  case DeclSpec::SCS_register:       // Fall through.
2675  case DeclSpec::SCS_typedef:        return SC_None;
2676  }
2677  llvm_unreachable("unknown storage class specifier");
2678}
2679
2680/// BuildAnonymousStructOrUnion - Handle the declaration of an
2681/// anonymous structure or union. Anonymous unions are a C++ feature
2682/// (C++ [class.union]) and a C11 feature; anonymous structures
2683/// are a C11 feature and GNU C++ extension.
2684Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2685                                             AccessSpecifier AS,
2686                                             RecordDecl *Record) {
2687  DeclContext *Owner = Record->getDeclContext();
2688
2689  // Diagnose whether this anonymous struct/union is an extension.
2690  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2691    Diag(Record->getLocation(), diag::ext_anonymous_union);
2692  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2693    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2694  else if (!Record->isUnion() && !getLangOptions().C11)
2695    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2696
2697  // C and C++ require different kinds of checks for anonymous
2698  // structs/unions.
2699  bool Invalid = false;
2700  if (getLangOptions().CPlusPlus) {
2701    const char* PrevSpec = 0;
2702    unsigned DiagID;
2703    if (Record->isUnion()) {
2704      // C++ [class.union]p6:
2705      //   Anonymous unions declared in a named namespace or in the
2706      //   global namespace shall be declared static.
2707      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2708          (isa<TranslationUnitDecl>(Owner) ||
2709           (isa<NamespaceDecl>(Owner) &&
2710            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2711        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2712          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2713
2714        // Recover by adding 'static'.
2715        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2716                               PrevSpec, DiagID);
2717      }
2718      // C++ [class.union]p6:
2719      //   A storage class is not allowed in a declaration of an
2720      //   anonymous union in a class scope.
2721      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2722               isa<RecordDecl>(Owner)) {
2723        Diag(DS.getStorageClassSpecLoc(),
2724             diag::err_anonymous_union_with_storage_spec)
2725          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2726
2727        // Recover by removing the storage specifier.
2728        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2729                               SourceLocation(),
2730                               PrevSpec, DiagID);
2731      }
2732    }
2733
2734    // Ignore const/volatile/restrict qualifiers.
2735    if (DS.getTypeQualifiers()) {
2736      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2737        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2738          << Record->isUnion() << 0
2739          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2740      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2741        Diag(DS.getVolatileSpecLoc(),
2742             diag::ext_anonymous_struct_union_qualified)
2743          << Record->isUnion() << 1
2744          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2745      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2746        Diag(DS.getRestrictSpecLoc(),
2747             diag::ext_anonymous_struct_union_qualified)
2748          << Record->isUnion() << 2
2749          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2750
2751      DS.ClearTypeQualifiers();
2752    }
2753
2754    // C++ [class.union]p2:
2755    //   The member-specification of an anonymous union shall only
2756    //   define non-static data members. [Note: nested types and
2757    //   functions cannot be declared within an anonymous union. ]
2758    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2759                                 MemEnd = Record->decls_end();
2760         Mem != MemEnd; ++Mem) {
2761      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2762        // C++ [class.union]p3:
2763        //   An anonymous union shall not have private or protected
2764        //   members (clause 11).
2765        assert(FD->getAccess() != AS_none);
2766        if (FD->getAccess() != AS_public) {
2767          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2768            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2769          Invalid = true;
2770        }
2771
2772        // C++ [class.union]p1
2773        //   An object of a class with a non-trivial constructor, a non-trivial
2774        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2775        //   assignment operator cannot be a member of a union, nor can an
2776        //   array of such objects.
2777        if (CheckNontrivialField(FD))
2778          Invalid = true;
2779      } else if ((*Mem)->isImplicit()) {
2780        // Any implicit members are fine.
2781      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2782        // This is a type that showed up in an
2783        // elaborated-type-specifier inside the anonymous struct or
2784        // union, but which actually declares a type outside of the
2785        // anonymous struct or union. It's okay.
2786      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2787        if (!MemRecord->isAnonymousStructOrUnion() &&
2788            MemRecord->getDeclName()) {
2789          // Visual C++ allows type definition in anonymous struct or union.
2790          if (getLangOptions().MicrosoftExt)
2791            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2792              << (int)Record->isUnion();
2793          else {
2794            // This is a nested type declaration.
2795            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2796              << (int)Record->isUnion();
2797            Invalid = true;
2798          }
2799        }
2800      } else if (isa<AccessSpecDecl>(*Mem)) {
2801        // Any access specifier is fine.
2802      } else {
2803        // We have something that isn't a non-static data
2804        // member. Complain about it.
2805        unsigned DK = diag::err_anonymous_record_bad_member;
2806        if (isa<TypeDecl>(*Mem))
2807          DK = diag::err_anonymous_record_with_type;
2808        else if (isa<FunctionDecl>(*Mem))
2809          DK = diag::err_anonymous_record_with_function;
2810        else if (isa<VarDecl>(*Mem))
2811          DK = diag::err_anonymous_record_with_static;
2812
2813        // Visual C++ allows type definition in anonymous struct or union.
2814        if (getLangOptions().MicrosoftExt &&
2815            DK == diag::err_anonymous_record_with_type)
2816          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2817            << (int)Record->isUnion();
2818        else {
2819          Diag((*Mem)->getLocation(), DK)
2820              << (int)Record->isUnion();
2821          Invalid = true;
2822        }
2823      }
2824    }
2825  }
2826
2827  if (!Record->isUnion() && !Owner->isRecord()) {
2828    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2829      << (int)getLangOptions().CPlusPlus;
2830    Invalid = true;
2831  }
2832
2833  // Mock up a declarator.
2834  Declarator Dc(DS, Declarator::MemberContext);
2835  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2836  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2837
2838  // Create a declaration for this anonymous struct/union.
2839  NamedDecl *Anon = 0;
2840  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2841    Anon = FieldDecl::Create(Context, OwningClass,
2842                             DS.getSourceRange().getBegin(),
2843                             Record->getLocation(),
2844                             /*IdentifierInfo=*/0,
2845                             Context.getTypeDeclType(Record),
2846                             TInfo,
2847                             /*BitWidth=*/0, /*Mutable=*/false,
2848                             /*HasInit=*/false);
2849    Anon->setAccess(AS);
2850    if (getLangOptions().CPlusPlus)
2851      FieldCollector->Add(cast<FieldDecl>(Anon));
2852  } else {
2853    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2854    assert(SCSpec != DeclSpec::SCS_typedef &&
2855           "Parser allowed 'typedef' as storage class VarDecl.");
2856    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2857    if (SCSpec == DeclSpec::SCS_mutable) {
2858      // mutable can only appear on non-static class members, so it's always
2859      // an error here
2860      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2861      Invalid = true;
2862      SC = SC_None;
2863    }
2864    SCSpec = DS.getStorageClassSpecAsWritten();
2865    VarDecl::StorageClass SCAsWritten
2866      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2867
2868    Anon = VarDecl::Create(Context, Owner,
2869                           DS.getSourceRange().getBegin(),
2870                           Record->getLocation(), /*IdentifierInfo=*/0,
2871                           Context.getTypeDeclType(Record),
2872                           TInfo, SC, SCAsWritten);
2873
2874    // Default-initialize the implicit variable. This initialization will be
2875    // trivial in almost all cases, except if a union member has an in-class
2876    // initializer:
2877    //   union { int n = 0; };
2878    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2879  }
2880  Anon->setImplicit();
2881
2882  // Add the anonymous struct/union object to the current
2883  // context. We'll be referencing this object when we refer to one of
2884  // its members.
2885  Owner->addDecl(Anon);
2886
2887  // Inject the members of the anonymous struct/union into the owning
2888  // context and into the identifier resolver chain for name lookup
2889  // purposes.
2890  SmallVector<NamedDecl*, 2> Chain;
2891  Chain.push_back(Anon);
2892
2893  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2894                                          Chain, false))
2895    Invalid = true;
2896
2897  // Mark this as an anonymous struct/union type. Note that we do not
2898  // do this until after we have already checked and injected the
2899  // members of this anonymous struct/union type, because otherwise
2900  // the members could be injected twice: once by DeclContext when it
2901  // builds its lookup table, and once by
2902  // InjectAnonymousStructOrUnionMembers.
2903  Record->setAnonymousStructOrUnion(true);
2904
2905  if (Invalid)
2906    Anon->setInvalidDecl();
2907
2908  return Anon;
2909}
2910
2911/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2912/// Microsoft C anonymous structure.
2913/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2914/// Example:
2915///
2916/// struct A { int a; };
2917/// struct B { struct A; int b; };
2918///
2919/// void foo() {
2920///   B var;
2921///   var.a = 3;
2922/// }
2923///
2924Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2925                                           RecordDecl *Record) {
2926
2927  // If there is no Record, get the record via the typedef.
2928  if (!Record)
2929    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2930
2931  // Mock up a declarator.
2932  Declarator Dc(DS, Declarator::TypeNameContext);
2933  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2934  assert(TInfo && "couldn't build declarator info for anonymous struct");
2935
2936  // Create a declaration for this anonymous struct.
2937  NamedDecl* Anon = FieldDecl::Create(Context,
2938                             cast<RecordDecl>(CurContext),
2939                             DS.getSourceRange().getBegin(),
2940                             DS.getSourceRange().getBegin(),
2941                             /*IdentifierInfo=*/0,
2942                             Context.getTypeDeclType(Record),
2943                             TInfo,
2944                             /*BitWidth=*/0, /*Mutable=*/false,
2945                             /*HasInit=*/false);
2946  Anon->setImplicit();
2947
2948  // Add the anonymous struct object to the current context.
2949  CurContext->addDecl(Anon);
2950
2951  // Inject the members of the anonymous struct into the current
2952  // context and into the identifier resolver chain for name lookup
2953  // purposes.
2954  SmallVector<NamedDecl*, 2> Chain;
2955  Chain.push_back(Anon);
2956
2957  RecordDecl *RecordDef = Record->getDefinition();
2958  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2959                                                        RecordDef, AS_none,
2960                                                        Chain, true))
2961    Anon->setInvalidDecl();
2962
2963  return Anon;
2964}
2965
2966/// GetNameForDeclarator - Determine the full declaration name for the
2967/// given Declarator.
2968DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2969  return GetNameFromUnqualifiedId(D.getName());
2970}
2971
2972/// \brief Retrieves the declaration name from a parsed unqualified-id.
2973DeclarationNameInfo
2974Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2975  DeclarationNameInfo NameInfo;
2976  NameInfo.setLoc(Name.StartLocation);
2977
2978  switch (Name.getKind()) {
2979
2980  case UnqualifiedId::IK_ImplicitSelfParam:
2981  case UnqualifiedId::IK_Identifier:
2982    NameInfo.setName(Name.Identifier);
2983    NameInfo.setLoc(Name.StartLocation);
2984    return NameInfo;
2985
2986  case UnqualifiedId::IK_OperatorFunctionId:
2987    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2988                                           Name.OperatorFunctionId.Operator));
2989    NameInfo.setLoc(Name.StartLocation);
2990    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2991      = Name.OperatorFunctionId.SymbolLocations[0];
2992    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2993      = Name.EndLocation.getRawEncoding();
2994    return NameInfo;
2995
2996  case UnqualifiedId::IK_LiteralOperatorId:
2997    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2998                                                           Name.Identifier));
2999    NameInfo.setLoc(Name.StartLocation);
3000    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3001    return NameInfo;
3002
3003  case UnqualifiedId::IK_ConversionFunctionId: {
3004    TypeSourceInfo *TInfo;
3005    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3006    if (Ty.isNull())
3007      return DeclarationNameInfo();
3008    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3009                                               Context.getCanonicalType(Ty)));
3010    NameInfo.setLoc(Name.StartLocation);
3011    NameInfo.setNamedTypeInfo(TInfo);
3012    return NameInfo;
3013  }
3014
3015  case UnqualifiedId::IK_ConstructorName: {
3016    TypeSourceInfo *TInfo;
3017    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3018    if (Ty.isNull())
3019      return DeclarationNameInfo();
3020    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3021                                              Context.getCanonicalType(Ty)));
3022    NameInfo.setLoc(Name.StartLocation);
3023    NameInfo.setNamedTypeInfo(TInfo);
3024    return NameInfo;
3025  }
3026
3027  case UnqualifiedId::IK_ConstructorTemplateId: {
3028    // In well-formed code, we can only have a constructor
3029    // template-id that refers to the current context, so go there
3030    // to find the actual type being constructed.
3031    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3032    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3033      return DeclarationNameInfo();
3034
3035    // Determine the type of the class being constructed.
3036    QualType CurClassType = Context.getTypeDeclType(CurClass);
3037
3038    // FIXME: Check two things: that the template-id names the same type as
3039    // CurClassType, and that the template-id does not occur when the name
3040    // was qualified.
3041
3042    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3043                                    Context.getCanonicalType(CurClassType)));
3044    NameInfo.setLoc(Name.StartLocation);
3045    // FIXME: should we retrieve TypeSourceInfo?
3046    NameInfo.setNamedTypeInfo(0);
3047    return NameInfo;
3048  }
3049
3050  case UnqualifiedId::IK_DestructorName: {
3051    TypeSourceInfo *TInfo;
3052    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3053    if (Ty.isNull())
3054      return DeclarationNameInfo();
3055    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3056                                              Context.getCanonicalType(Ty)));
3057    NameInfo.setLoc(Name.StartLocation);
3058    NameInfo.setNamedTypeInfo(TInfo);
3059    return NameInfo;
3060  }
3061
3062  case UnqualifiedId::IK_TemplateId: {
3063    TemplateName TName = Name.TemplateId->Template.get();
3064    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3065    return Context.getNameForTemplate(TName, TNameLoc);
3066  }
3067
3068  } // switch (Name.getKind())
3069
3070  llvm_unreachable("Unknown name kind");
3071}
3072
3073static QualType getCoreType(QualType Ty) {
3074  do {
3075    if (Ty->isPointerType() || Ty->isReferenceType())
3076      Ty = Ty->getPointeeType();
3077    else if (Ty->isArrayType())
3078      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3079    else
3080      return Ty.withoutLocalFastQualifiers();
3081  } while (true);
3082}
3083
3084/// hasSimilarParameters - Determine whether the C++ functions Declaration
3085/// and Definition have "nearly" matching parameters. This heuristic is
3086/// used to improve diagnostics in the case where an out-of-line function
3087/// definition doesn't match any declaration within the class or namespace.
3088/// Also sets Params to the list of indices to the parameters that differ
3089/// between the declaration and the definition. If hasSimilarParameters
3090/// returns true and Params is empty, then all of the parameters match.
3091static bool hasSimilarParameters(ASTContext &Context,
3092                                     FunctionDecl *Declaration,
3093                                     FunctionDecl *Definition,
3094                                     llvm::SmallVectorImpl<unsigned> &Params) {
3095  Params.clear();
3096  if (Declaration->param_size() != Definition->param_size())
3097    return false;
3098  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3099    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3100    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3101
3102    // The parameter types are identical
3103    if (Context.hasSameType(DefParamTy, DeclParamTy))
3104      continue;
3105
3106    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3107    QualType DefParamBaseTy = getCoreType(DefParamTy);
3108    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3109    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3110
3111    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3112        (DeclTyName && DeclTyName == DefTyName))
3113      Params.push_back(Idx);
3114    else  // The two parameters aren't even close
3115      return false;
3116  }
3117
3118  return true;
3119}
3120
3121/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3122/// declarator needs to be rebuilt in the current instantiation.
3123/// Any bits of declarator which appear before the name are valid for
3124/// consideration here.  That's specifically the type in the decl spec
3125/// and the base type in any member-pointer chunks.
3126static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3127                                                    DeclarationName Name) {
3128  // The types we specifically need to rebuild are:
3129  //   - typenames, typeofs, and decltypes
3130  //   - types which will become injected class names
3131  // Of course, we also need to rebuild any type referencing such a
3132  // type.  It's safest to just say "dependent", but we call out a
3133  // few cases here.
3134
3135  DeclSpec &DS = D.getMutableDeclSpec();
3136  switch (DS.getTypeSpecType()) {
3137  case DeclSpec::TST_typename:
3138  case DeclSpec::TST_typeofType:
3139  case DeclSpec::TST_decltype:
3140  case DeclSpec::TST_underlyingType:
3141  case DeclSpec::TST_atomic: {
3142    // Grab the type from the parser.
3143    TypeSourceInfo *TSI = 0;
3144    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3145    if (T.isNull() || !T->isDependentType()) break;
3146
3147    // Make sure there's a type source info.  This isn't really much
3148    // of a waste; most dependent types should have type source info
3149    // attached already.
3150    if (!TSI)
3151      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3152
3153    // Rebuild the type in the current instantiation.
3154    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3155    if (!TSI) return true;
3156
3157    // Store the new type back in the decl spec.
3158    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3159    DS.UpdateTypeRep(LocType);
3160    break;
3161  }
3162
3163  case DeclSpec::TST_typeofExpr: {
3164    Expr *E = DS.getRepAsExpr();
3165    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3166    if (Result.isInvalid()) return true;
3167    DS.UpdateExprRep(Result.get());
3168    break;
3169  }
3170
3171  default:
3172    // Nothing to do for these decl specs.
3173    break;
3174  }
3175
3176  // It doesn't matter what order we do this in.
3177  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3178    DeclaratorChunk &Chunk = D.getTypeObject(I);
3179
3180    // The only type information in the declarator which can come
3181    // before the declaration name is the base type of a member
3182    // pointer.
3183    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3184      continue;
3185
3186    // Rebuild the scope specifier in-place.
3187    CXXScopeSpec &SS = Chunk.Mem.Scope();
3188    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3189      return true;
3190  }
3191
3192  return false;
3193}
3194
3195Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3196  D.setFunctionDefinitionKind(FDK_Declaration);
3197  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3198
3199  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3200      Dcl->getDeclContext()->isFileContext())
3201    Dcl->setTopLevelDeclInObjCContainer();
3202
3203  return Dcl;
3204}
3205
3206/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3207///   If T is the name of a class, then each of the following shall have a
3208///   name different from T:
3209///     - every static data member of class T;
3210///     - every member function of class T
3211///     - every member of class T that is itself a type;
3212/// \returns true if the declaration name violates these rules.
3213bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3214                                   DeclarationNameInfo NameInfo) {
3215  DeclarationName Name = NameInfo.getName();
3216
3217  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3218    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3219      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3220      return true;
3221    }
3222
3223  return false;
3224}
3225
3226Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3227                             MultiTemplateParamsArg TemplateParamLists) {
3228  // TODO: consider using NameInfo for diagnostic.
3229  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3230  DeclarationName Name = NameInfo.getName();
3231
3232  // All of these full declarators require an identifier.  If it doesn't have
3233  // one, the ParsedFreeStandingDeclSpec action should be used.
3234  if (!Name) {
3235    if (!D.isInvalidType())  // Reject this if we think it is valid.
3236      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3237           diag::err_declarator_need_ident)
3238        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3239    return 0;
3240  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3241    return 0;
3242
3243  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3244  // we find one that is.
3245  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3246         (S->getFlags() & Scope::TemplateParamScope) != 0)
3247    S = S->getParent();
3248
3249  DeclContext *DC = CurContext;
3250  if (D.getCXXScopeSpec().isInvalid())
3251    D.setInvalidType();
3252  else if (D.getCXXScopeSpec().isSet()) {
3253    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3254                                        UPPC_DeclarationQualifier))
3255      return 0;
3256
3257    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3258    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3259    if (!DC) {
3260      // If we could not compute the declaration context, it's because the
3261      // declaration context is dependent but does not refer to a class,
3262      // class template, or class template partial specialization. Complain
3263      // and return early, to avoid the coming semantic disaster.
3264      Diag(D.getIdentifierLoc(),
3265           diag::err_template_qualified_declarator_no_match)
3266        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3267        << D.getCXXScopeSpec().getRange();
3268      return 0;
3269    }
3270    bool IsDependentContext = DC->isDependentContext();
3271
3272    if (!IsDependentContext &&
3273        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3274      return 0;
3275
3276    if (isa<CXXRecordDecl>(DC)) {
3277      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3278        Diag(D.getIdentifierLoc(),
3279             diag::err_member_def_undefined_record)
3280          << Name << DC << D.getCXXScopeSpec().getRange();
3281        D.setInvalidType();
3282      } else if (isa<CXXRecordDecl>(CurContext) &&
3283                 !D.getDeclSpec().isFriendSpecified()) {
3284        // The user provided a superfluous scope specifier inside a class
3285        // definition:
3286        //
3287        // class X {
3288        //   void X::f();
3289        // };
3290        if (CurContext->Equals(DC)) {
3291          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3292            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3293        } else {
3294          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3295            << Name << D.getCXXScopeSpec().getRange();
3296
3297          // C++ constructors and destructors with incorrect scopes can break
3298          // our AST invariants by having the wrong underlying types. If
3299          // that's the case, then drop this declaration entirely.
3300          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3301               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3302              !Context.hasSameType(Name.getCXXNameType(),
3303                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3304            return 0;
3305        }
3306
3307        // Pretend that this qualifier was not here.
3308        D.getCXXScopeSpec().clear();
3309      }
3310    }
3311
3312    // Check whether we need to rebuild the type of the given
3313    // declaration in the current instantiation.
3314    if (EnteringContext && IsDependentContext &&
3315        TemplateParamLists.size() != 0) {
3316      ContextRAII SavedContext(*this, DC);
3317      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3318        D.setInvalidType();
3319    }
3320  }
3321
3322  if (DiagnoseClassNameShadow(DC, NameInfo))
3323    // If this is a typedef, we'll end up spewing multiple diagnostics.
3324    // Just return early; it's safer.
3325    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3326      return 0;
3327
3328  NamedDecl *New;
3329
3330  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3331  QualType R = TInfo->getType();
3332
3333  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3334                                      UPPC_DeclarationType))
3335    D.setInvalidType();
3336
3337  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3338                        ForRedeclaration);
3339
3340  // See if this is a redefinition of a variable in the same scope.
3341  if (!D.getCXXScopeSpec().isSet()) {
3342    bool IsLinkageLookup = false;
3343
3344    // If the declaration we're planning to build will be a function
3345    // or object with linkage, then look for another declaration with
3346    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3347    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3348      /* Do nothing*/;
3349    else if (R->isFunctionType()) {
3350      if (CurContext->isFunctionOrMethod() ||
3351          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3352        IsLinkageLookup = true;
3353    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3354      IsLinkageLookup = true;
3355    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3356             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3357      IsLinkageLookup = true;
3358
3359    if (IsLinkageLookup)
3360      Previous.clear(LookupRedeclarationWithLinkage);
3361
3362    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3363  } else { // Something like "int foo::x;"
3364    LookupQualifiedName(Previous, DC);
3365
3366    // Don't consider using declarations as previous declarations for
3367    // out-of-line members.
3368    RemoveUsingDecls(Previous);
3369
3370    // C++ 7.3.1.2p2:
3371    // Members (including explicit specializations of templates) of a named
3372    // namespace can also be defined outside that namespace by explicit
3373    // qualification of the name being defined, provided that the entity being
3374    // defined was already declared in the namespace and the definition appears
3375    // after the point of declaration in a namespace that encloses the
3376    // declarations namespace.
3377    //
3378    // Note that we only check the context at this point. We don't yet
3379    // have enough information to make sure that PrevDecl is actually
3380    // the declaration we want to match. For example, given:
3381    //
3382    //   class X {
3383    //     void f();
3384    //     void f(float);
3385    //   };
3386    //
3387    //   void X::f(int) { } // ill-formed
3388    //
3389    // In this case, PrevDecl will point to the overload set
3390    // containing the two f's declared in X, but neither of them
3391    // matches.
3392
3393    // First check whether we named the global scope.
3394    if (isa<TranslationUnitDecl>(DC)) {
3395      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3396        << Name << D.getCXXScopeSpec().getRange();
3397    } else {
3398      DeclContext *Cur = CurContext;
3399      while (isa<LinkageSpecDecl>(Cur))
3400        Cur = Cur->getParent();
3401      if (!Cur->Encloses(DC)) {
3402        // The qualifying scope doesn't enclose the original declaration.
3403        // Emit diagnostic based on current scope.
3404        SourceLocation L = D.getIdentifierLoc();
3405        SourceRange R = D.getCXXScopeSpec().getRange();
3406        if (isa<FunctionDecl>(Cur))
3407          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3408        else
3409          Diag(L, diag::err_invalid_declarator_scope)
3410            << Name << cast<NamedDecl>(DC) << R;
3411        D.setInvalidType();
3412      }
3413
3414      // C++11 8.3p1:
3415      // ... "The nested-name-specifier of the qualified declarator-id shall
3416      // not begin with a decltype-specifer"
3417      NestedNameSpecifierLoc SpecLoc =
3418            D.getCXXScopeSpec().getWithLocInContext(Context);
3419      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3420                        "NestedNameSpecifierLoc");
3421      while (SpecLoc.getPrefix())
3422        SpecLoc = SpecLoc.getPrefix();
3423      if (dyn_cast_or_null<DecltypeType>(
3424            SpecLoc.getNestedNameSpecifier()->getAsType()))
3425        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3426          << SpecLoc.getTypeLoc().getSourceRange();
3427    }
3428  }
3429
3430  if (Previous.isSingleResult() &&
3431      Previous.getFoundDecl()->isTemplateParameter()) {
3432    // Maybe we will complain about the shadowed template parameter.
3433    if (!D.isInvalidType())
3434      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3435                                      Previous.getFoundDecl());
3436
3437    // Just pretend that we didn't see the previous declaration.
3438    Previous.clear();
3439  }
3440
3441  // In C++, the previous declaration we find might be a tag type
3442  // (class or enum). In this case, the new declaration will hide the
3443  // tag type. Note that this does does not apply if we're declaring a
3444  // typedef (C++ [dcl.typedef]p4).
3445  if (Previous.isSingleTagDecl() &&
3446      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3447    Previous.clear();
3448
3449  bool AddToScope = true;
3450  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3451    if (TemplateParamLists.size()) {
3452      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3453      return 0;
3454    }
3455
3456    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3457  } else if (R->isFunctionType()) {
3458    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3459                                  move(TemplateParamLists),
3460                                  AddToScope);
3461  } else {
3462    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3463                                  move(TemplateParamLists));
3464  }
3465
3466  if (New == 0)
3467    return 0;
3468
3469  // If this has an identifier and is not an invalid redeclaration or
3470  // function template specialization, add it to the scope stack.
3471  if (New->getDeclName() && AddToScope &&
3472       !(D.isRedeclaration() && New->isInvalidDecl()))
3473    PushOnScopeChains(New, S);
3474
3475  return New;
3476}
3477
3478/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3479/// types into constant array types in certain situations which would otherwise
3480/// be errors (for GCC compatibility).
3481static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3482                                                    ASTContext &Context,
3483                                                    bool &SizeIsNegative,
3484                                                    llvm::APSInt &Oversized) {
3485  // This method tries to turn a variable array into a constant
3486  // array even when the size isn't an ICE.  This is necessary
3487  // for compatibility with code that depends on gcc's buggy
3488  // constant expression folding, like struct {char x[(int)(char*)2];}
3489  SizeIsNegative = false;
3490  Oversized = 0;
3491
3492  if (T->isDependentType())
3493    return QualType();
3494
3495  QualifierCollector Qs;
3496  const Type *Ty = Qs.strip(T);
3497
3498  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3499    QualType Pointee = PTy->getPointeeType();
3500    QualType FixedType =
3501        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3502                                            Oversized);
3503    if (FixedType.isNull()) return FixedType;
3504    FixedType = Context.getPointerType(FixedType);
3505    return Qs.apply(Context, FixedType);
3506  }
3507  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3508    QualType Inner = PTy->getInnerType();
3509    QualType FixedType =
3510        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3511                                            Oversized);
3512    if (FixedType.isNull()) return FixedType;
3513    FixedType = Context.getParenType(FixedType);
3514    return Qs.apply(Context, FixedType);
3515  }
3516
3517  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3518  if (!VLATy)
3519    return QualType();
3520  // FIXME: We should probably handle this case
3521  if (VLATy->getElementType()->isVariablyModifiedType())
3522    return QualType();
3523
3524  llvm::APSInt Res;
3525  if (!VLATy->getSizeExpr() ||
3526      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3527    return QualType();
3528
3529  // Check whether the array size is negative.
3530  if (Res.isSigned() && Res.isNegative()) {
3531    SizeIsNegative = true;
3532    return QualType();
3533  }
3534
3535  // Check whether the array is too large to be addressed.
3536  unsigned ActiveSizeBits
3537    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3538                                              Res);
3539  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3540    Oversized = Res;
3541    return QualType();
3542  }
3543
3544  return Context.getConstantArrayType(VLATy->getElementType(),
3545                                      Res, ArrayType::Normal, 0);
3546}
3547
3548/// \brief Register the given locally-scoped external C declaration so
3549/// that it can be found later for redeclarations
3550void
3551Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3552                                       const LookupResult &Previous,
3553                                       Scope *S) {
3554  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3555         "Decl is not a locally-scoped decl!");
3556  // Note that we have a locally-scoped external with this name.
3557  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3558
3559  if (!Previous.isSingleResult())
3560    return;
3561
3562  NamedDecl *PrevDecl = Previous.getFoundDecl();
3563
3564  // If there was a previous declaration of this variable, it may be
3565  // in our identifier chain. Update the identifier chain with the new
3566  // declaration.
3567  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3568    // The previous declaration was found on the identifer resolver
3569    // chain, so remove it from its scope.
3570
3571    if (S->isDeclScope(PrevDecl)) {
3572      // Special case for redeclarations in the SAME scope.
3573      // Because this declaration is going to be added to the identifier chain
3574      // later, we should temporarily take it OFF the chain.
3575      IdResolver.RemoveDecl(ND);
3576
3577    } else {
3578      // Find the scope for the original declaration.
3579      while (S && !S->isDeclScope(PrevDecl))
3580        S = S->getParent();
3581    }
3582
3583    if (S)
3584      S->RemoveDecl(PrevDecl);
3585  }
3586}
3587
3588llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3589Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3590  if (ExternalSource) {
3591    // Load locally-scoped external decls from the external source.
3592    SmallVector<NamedDecl *, 4> Decls;
3593    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3594    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3595      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3596        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3597      if (Pos == LocallyScopedExternalDecls.end())
3598        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3599    }
3600  }
3601
3602  return LocallyScopedExternalDecls.find(Name);
3603}
3604
3605/// \brief Diagnose function specifiers on a declaration of an identifier that
3606/// does not identify a function.
3607void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3608  // FIXME: We should probably indicate the identifier in question to avoid
3609  // confusion for constructs like "inline int a(), b;"
3610  if (D.getDeclSpec().isInlineSpecified())
3611    Diag(D.getDeclSpec().getInlineSpecLoc(),
3612         diag::err_inline_non_function);
3613
3614  if (D.getDeclSpec().isVirtualSpecified())
3615    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3616         diag::err_virtual_non_function);
3617
3618  if (D.getDeclSpec().isExplicitSpecified())
3619    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3620         diag::err_explicit_non_function);
3621}
3622
3623NamedDecl*
3624Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3625                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3626  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3627  if (D.getCXXScopeSpec().isSet()) {
3628    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3629      << D.getCXXScopeSpec().getRange();
3630    D.setInvalidType();
3631    // Pretend we didn't see the scope specifier.
3632    DC = CurContext;
3633    Previous.clear();
3634  }
3635
3636  if (getLangOptions().CPlusPlus) {
3637    // Check that there are no default arguments (C++ only).
3638    CheckExtraCXXDefaultArguments(D);
3639  }
3640
3641  DiagnoseFunctionSpecifiers(D);
3642
3643  if (D.getDeclSpec().isThreadSpecified())
3644    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3645  if (D.getDeclSpec().isConstexprSpecified())
3646    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3647      << 1;
3648
3649  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3650    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3651      << D.getName().getSourceRange();
3652    return 0;
3653  }
3654
3655  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3656  if (!NewTD) return 0;
3657
3658  // Handle attributes prior to checking for duplicates in MergeVarDecl
3659  ProcessDeclAttributes(S, NewTD, D);
3660
3661  CheckTypedefForVariablyModifiedType(S, NewTD);
3662
3663  bool Redeclaration = D.isRedeclaration();
3664  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3665  D.setRedeclaration(Redeclaration);
3666  return ND;
3667}
3668
3669void
3670Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3671  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3672  // then it shall have block scope.
3673  // Note that variably modified types must be fixed before merging the decl so
3674  // that redeclarations will match.
3675  QualType T = NewTD->getUnderlyingType();
3676  if (T->isVariablyModifiedType()) {
3677    getCurFunction()->setHasBranchProtectedScope();
3678
3679    if (S->getFnParent() == 0) {
3680      bool SizeIsNegative;
3681      llvm::APSInt Oversized;
3682      QualType FixedTy =
3683          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3684                                              Oversized);
3685      if (!FixedTy.isNull()) {
3686        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3687        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3688      } else {
3689        if (SizeIsNegative)
3690          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3691        else if (T->isVariableArrayType())
3692          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3693        else if (Oversized.getBoolValue())
3694          Diag(NewTD->getLocation(), diag::err_array_too_large)
3695            << Oversized.toString(10);
3696        else
3697          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3698        NewTD->setInvalidDecl();
3699      }
3700    }
3701  }
3702}
3703
3704
3705/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3706/// declares a typedef-name, either using the 'typedef' type specifier or via
3707/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3708NamedDecl*
3709Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3710                           LookupResult &Previous, bool &Redeclaration) {
3711  // Merge the decl with the existing one if appropriate. If the decl is
3712  // in an outer scope, it isn't the same thing.
3713  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3714                       /*ExplicitInstantiationOrSpecialization=*/false);
3715  if (!Previous.empty()) {
3716    Redeclaration = true;
3717    MergeTypedefNameDecl(NewTD, Previous);
3718  }
3719
3720  // If this is the C FILE type, notify the AST context.
3721  if (IdentifierInfo *II = NewTD->getIdentifier())
3722    if (!NewTD->isInvalidDecl() &&
3723        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3724      if (II->isStr("FILE"))
3725        Context.setFILEDecl(NewTD);
3726      else if (II->isStr("jmp_buf"))
3727        Context.setjmp_bufDecl(NewTD);
3728      else if (II->isStr("sigjmp_buf"))
3729        Context.setsigjmp_bufDecl(NewTD);
3730      else if (II->isStr("ucontext_t"))
3731        Context.setucontext_tDecl(NewTD);
3732      else if (II->isStr("__builtin_va_list"))
3733        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3734    }
3735
3736  return NewTD;
3737}
3738
3739/// \brief Determines whether the given declaration is an out-of-scope
3740/// previous declaration.
3741///
3742/// This routine should be invoked when name lookup has found a
3743/// previous declaration (PrevDecl) that is not in the scope where a
3744/// new declaration by the same name is being introduced. If the new
3745/// declaration occurs in a local scope, previous declarations with
3746/// linkage may still be considered previous declarations (C99
3747/// 6.2.2p4-5, C++ [basic.link]p6).
3748///
3749/// \param PrevDecl the previous declaration found by name
3750/// lookup
3751///
3752/// \param DC the context in which the new declaration is being
3753/// declared.
3754///
3755/// \returns true if PrevDecl is an out-of-scope previous declaration
3756/// for a new delcaration with the same name.
3757static bool
3758isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3759                                ASTContext &Context) {
3760  if (!PrevDecl)
3761    return false;
3762
3763  if (!PrevDecl->hasLinkage())
3764    return false;
3765
3766  if (Context.getLangOptions().CPlusPlus) {
3767    // C++ [basic.link]p6:
3768    //   If there is a visible declaration of an entity with linkage
3769    //   having the same name and type, ignoring entities declared
3770    //   outside the innermost enclosing namespace scope, the block
3771    //   scope declaration declares that same entity and receives the
3772    //   linkage of the previous declaration.
3773    DeclContext *OuterContext = DC->getRedeclContext();
3774    if (!OuterContext->isFunctionOrMethod())
3775      // This rule only applies to block-scope declarations.
3776      return false;
3777
3778    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3779    if (PrevOuterContext->isRecord())
3780      // We found a member function: ignore it.
3781      return false;
3782
3783    // Find the innermost enclosing namespace for the new and
3784    // previous declarations.
3785    OuterContext = OuterContext->getEnclosingNamespaceContext();
3786    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3787
3788    // The previous declaration is in a different namespace, so it
3789    // isn't the same function.
3790    if (!OuterContext->Equals(PrevOuterContext))
3791      return false;
3792  }
3793
3794  return true;
3795}
3796
3797static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3798  CXXScopeSpec &SS = D.getCXXScopeSpec();
3799  if (!SS.isSet()) return;
3800  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3801}
3802
3803bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3804  QualType type = decl->getType();
3805  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3806  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3807    // Various kinds of declaration aren't allowed to be __autoreleasing.
3808    unsigned kind = -1U;
3809    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3810      if (var->hasAttr<BlocksAttr>())
3811        kind = 0; // __block
3812      else if (!var->hasLocalStorage())
3813        kind = 1; // global
3814    } else if (isa<ObjCIvarDecl>(decl)) {
3815      kind = 3; // ivar
3816    } else if (isa<FieldDecl>(decl)) {
3817      kind = 2; // field
3818    }
3819
3820    if (kind != -1U) {
3821      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3822        << kind;
3823    }
3824  } else if (lifetime == Qualifiers::OCL_None) {
3825    // Try to infer lifetime.
3826    if (!type->isObjCLifetimeType())
3827      return false;
3828
3829    lifetime = type->getObjCARCImplicitLifetime();
3830    type = Context.getLifetimeQualifiedType(type, lifetime);
3831    decl->setType(type);
3832  }
3833
3834  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3835    // Thread-local variables cannot have lifetime.
3836    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3837        var->isThreadSpecified()) {
3838      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3839        << var->getType();
3840      return true;
3841    }
3842  }
3843
3844  return false;
3845}
3846
3847NamedDecl*
3848Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3849                              TypeSourceInfo *TInfo, LookupResult &Previous,
3850                              MultiTemplateParamsArg TemplateParamLists) {
3851  QualType R = TInfo->getType();
3852  DeclarationName Name = GetNameForDeclarator(D).getName();
3853
3854  // Check that there are no default arguments (C++ only).
3855  if (getLangOptions().CPlusPlus)
3856    CheckExtraCXXDefaultArguments(D);
3857
3858  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3859  assert(SCSpec != DeclSpec::SCS_typedef &&
3860         "Parser allowed 'typedef' as storage class VarDecl.");
3861  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3862  if (SCSpec == DeclSpec::SCS_mutable) {
3863    // mutable can only appear on non-static class members, so it's always
3864    // an error here
3865    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3866    D.setInvalidType();
3867    SC = SC_None;
3868  }
3869  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3870  VarDecl::StorageClass SCAsWritten
3871    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3872
3873  IdentifierInfo *II = Name.getAsIdentifierInfo();
3874  if (!II) {
3875    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3876      << Name;
3877    return 0;
3878  }
3879
3880  DiagnoseFunctionSpecifiers(D);
3881
3882  if (!DC->isRecord() && S->getFnParent() == 0) {
3883    // C99 6.9p2: The storage-class specifiers auto and register shall not
3884    // appear in the declaration specifiers in an external declaration.
3885    if (SC == SC_Auto || SC == SC_Register) {
3886
3887      // If this is a register variable with an asm label specified, then this
3888      // is a GNU extension.
3889      if (SC == SC_Register && D.getAsmLabel())
3890        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3891      else
3892        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3893      D.setInvalidType();
3894    }
3895  }
3896
3897  if (getLangOptions().OpenCL) {
3898    // Set up the special work-group-local storage class for variables in the
3899    // OpenCL __local address space.
3900    if (R.getAddressSpace() == LangAS::opencl_local)
3901      SC = SC_OpenCLWorkGroupLocal;
3902  }
3903
3904  bool isExplicitSpecialization = false;
3905  VarDecl *NewVD;
3906  if (!getLangOptions().CPlusPlus) {
3907    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3908                            D.getIdentifierLoc(), II,
3909                            R, TInfo, SC, SCAsWritten);
3910
3911    if (D.isInvalidType())
3912      NewVD->setInvalidDecl();
3913  } else {
3914    if (DC->isRecord() && !CurContext->isRecord()) {
3915      // This is an out-of-line definition of a static data member.
3916      if (SC == SC_Static) {
3917        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3918             diag::err_static_out_of_line)
3919          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3920      } else if (SC == SC_None)
3921        SC = SC_Static;
3922    }
3923    if (SC == SC_Static) {
3924      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3925        if (RD->isLocalClass())
3926          Diag(D.getIdentifierLoc(),
3927               diag::err_static_data_member_not_allowed_in_local_class)
3928            << Name << RD->getDeclName();
3929
3930        // C++ [class.union]p1: If a union contains a static data member,
3931        // the program is ill-formed.
3932        //
3933        // We also disallow static data members in anonymous structs.
3934        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3935          Diag(D.getIdentifierLoc(),
3936               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3937            << Name << RD->isUnion();
3938      }
3939    }
3940
3941    // Match up the template parameter lists with the scope specifier, then
3942    // determine whether we have a template or a template specialization.
3943    isExplicitSpecialization = false;
3944    bool Invalid = false;
3945    if (TemplateParameterList *TemplateParams
3946        = MatchTemplateParametersToScopeSpecifier(
3947                                  D.getDeclSpec().getSourceRange().getBegin(),
3948                                                  D.getIdentifierLoc(),
3949                                                  D.getCXXScopeSpec(),
3950                                                  TemplateParamLists.get(),
3951                                                  TemplateParamLists.size(),
3952                                                  /*never a friend*/ false,
3953                                                  isExplicitSpecialization,
3954                                                  Invalid)) {
3955      if (TemplateParams->size() > 0) {
3956        // There is no such thing as a variable template.
3957        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3958          << II
3959          << SourceRange(TemplateParams->getTemplateLoc(),
3960                         TemplateParams->getRAngleLoc());
3961        return 0;
3962      } else {
3963        // There is an extraneous 'template<>' for this variable. Complain
3964        // about it, but allow the declaration of the variable.
3965        Diag(TemplateParams->getTemplateLoc(),
3966             diag::err_template_variable_noparams)
3967          << II
3968          << SourceRange(TemplateParams->getTemplateLoc(),
3969                         TemplateParams->getRAngleLoc());
3970      }
3971    }
3972
3973    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3974                            D.getIdentifierLoc(), II,
3975                            R, TInfo, SC, SCAsWritten);
3976
3977    // If this decl has an auto type in need of deduction, make a note of the
3978    // Decl so we can diagnose uses of it in its own initializer.
3979    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3980        R->getContainedAutoType())
3981      ParsingInitForAutoVars.insert(NewVD);
3982
3983    if (D.isInvalidType() || Invalid)
3984      NewVD->setInvalidDecl();
3985
3986    SetNestedNameSpecifier(NewVD, D);
3987
3988    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3989      NewVD->setTemplateParameterListsInfo(Context,
3990                                           TemplateParamLists.size(),
3991                                           TemplateParamLists.release());
3992    }
3993
3994    if (D.getDeclSpec().isConstexprSpecified())
3995      NewVD->setConstexpr(true);
3996  }
3997
3998  // Set the lexical context. If the declarator has a C++ scope specifier, the
3999  // lexical context will be different from the semantic context.
4000  NewVD->setLexicalDeclContext(CurContext);
4001
4002  if (D.getDeclSpec().isThreadSpecified()) {
4003    if (NewVD->hasLocalStorage())
4004      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4005    else if (!Context.getTargetInfo().isTLSSupported())
4006      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4007    else
4008      NewVD->setThreadSpecified(true);
4009  }
4010
4011  if (D.getDeclSpec().isModulePrivateSpecified()) {
4012    if (isExplicitSpecialization)
4013      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4014        << 2
4015        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4016    else if (NewVD->hasLocalStorage())
4017      Diag(NewVD->getLocation(), diag::err_module_private_local)
4018        << 0 << NewVD->getDeclName()
4019        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4020        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4021    else
4022      NewVD->setModulePrivate();
4023  }
4024
4025  // Handle attributes prior to checking for duplicates in MergeVarDecl
4026  ProcessDeclAttributes(S, NewVD, D);
4027
4028  // In auto-retain/release, infer strong retension for variables of
4029  // retainable type.
4030  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4031    NewVD->setInvalidDecl();
4032
4033  // Handle GNU asm-label extension (encoded as an attribute).
4034  if (Expr *E = (Expr*)D.getAsmLabel()) {
4035    // The parser guarantees this is a string.
4036    StringLiteral *SE = cast<StringLiteral>(E);
4037    StringRef Label = SE->getString();
4038    if (S->getFnParent() != 0) {
4039      switch (SC) {
4040      case SC_None:
4041      case SC_Auto:
4042        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4043        break;
4044      case SC_Register:
4045        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4046          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4047        break;
4048      case SC_Static:
4049      case SC_Extern:
4050      case SC_PrivateExtern:
4051      case SC_OpenCLWorkGroupLocal:
4052        break;
4053      }
4054    }
4055
4056    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4057                                                Context, Label));
4058  }
4059
4060  // Diagnose shadowed variables before filtering for scope.
4061  if (!D.getCXXScopeSpec().isSet())
4062    CheckShadow(S, NewVD, Previous);
4063
4064  // Don't consider existing declarations that are in a different
4065  // scope and are out-of-semantic-context declarations (if the new
4066  // declaration has linkage).
4067  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4068                       isExplicitSpecialization);
4069
4070  if (!getLangOptions().CPlusPlus) {
4071    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4072  } else {
4073    // Merge the decl with the existing one if appropriate.
4074    if (!Previous.empty()) {
4075      if (Previous.isSingleResult() &&
4076          isa<FieldDecl>(Previous.getFoundDecl()) &&
4077          D.getCXXScopeSpec().isSet()) {
4078        // The user tried to define a non-static data member
4079        // out-of-line (C++ [dcl.meaning]p1).
4080        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4081          << D.getCXXScopeSpec().getRange();
4082        Previous.clear();
4083        NewVD->setInvalidDecl();
4084      }
4085    } else if (D.getCXXScopeSpec().isSet()) {
4086      // No previous declaration in the qualifying scope.
4087      Diag(D.getIdentifierLoc(), diag::err_no_member)
4088        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4089        << D.getCXXScopeSpec().getRange();
4090      NewVD->setInvalidDecl();
4091    }
4092
4093    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4094
4095    // This is an explicit specialization of a static data member. Check it.
4096    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4097        CheckMemberSpecialization(NewVD, Previous))
4098      NewVD->setInvalidDecl();
4099  }
4100
4101  // attributes declared post-definition are currently ignored
4102  // FIXME: This should be handled in attribute merging, not
4103  // here.
4104  if (Previous.isSingleResult()) {
4105    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4106    if (Def && (Def = Def->getDefinition()) &&
4107        Def != NewVD && D.hasAttributes()) {
4108      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4109      Diag(Def->getLocation(), diag::note_previous_definition);
4110    }
4111  }
4112
4113  // If this is a locally-scoped extern C variable, update the map of
4114  // such variables.
4115  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4116      !NewVD->isInvalidDecl())
4117    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4118
4119  // If there's a #pragma GCC visibility in scope, and this isn't a class
4120  // member, set the visibility of this variable.
4121  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4122    AddPushedVisibilityAttribute(NewVD);
4123
4124  MarkUnusedFileScopedDecl(NewVD);
4125
4126  return NewVD;
4127}
4128
4129/// \brief Diagnose variable or built-in function shadowing.  Implements
4130/// -Wshadow.
4131///
4132/// This method is called whenever a VarDecl is added to a "useful"
4133/// scope.
4134///
4135/// \param S the scope in which the shadowing name is being declared
4136/// \param R the lookup of the name
4137///
4138void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4139  // Return if warning is ignored.
4140  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4141        DiagnosticsEngine::Ignored)
4142    return;
4143
4144  // Don't diagnose declarations at file scope.
4145  if (D->hasGlobalStorage())
4146    return;
4147
4148  DeclContext *NewDC = D->getDeclContext();
4149
4150  // Only diagnose if we're shadowing an unambiguous field or variable.
4151  if (R.getResultKind() != LookupResult::Found)
4152    return;
4153
4154  NamedDecl* ShadowedDecl = R.getFoundDecl();
4155  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4156    return;
4157
4158  // Fields are not shadowed by variables in C++ static methods.
4159  if (isa<FieldDecl>(ShadowedDecl))
4160    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4161      if (MD->isStatic())
4162        return;
4163
4164  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4165    if (shadowedVar->isExternC()) {
4166      // For shadowing external vars, make sure that we point to the global
4167      // declaration, not a locally scoped extern declaration.
4168      for (VarDecl::redecl_iterator
4169             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4170           I != E; ++I)
4171        if (I->isFileVarDecl()) {
4172          ShadowedDecl = *I;
4173          break;
4174        }
4175    }
4176
4177  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4178
4179  // Only warn about certain kinds of shadowing for class members.
4180  if (NewDC && NewDC->isRecord()) {
4181    // In particular, don't warn about shadowing non-class members.
4182    if (!OldDC->isRecord())
4183      return;
4184
4185    // TODO: should we warn about static data members shadowing
4186    // static data members from base classes?
4187
4188    // TODO: don't diagnose for inaccessible shadowed members.
4189    // This is hard to do perfectly because we might friend the
4190    // shadowing context, but that's just a false negative.
4191  }
4192
4193  // Determine what kind of declaration we're shadowing.
4194  unsigned Kind;
4195  if (isa<RecordDecl>(OldDC)) {
4196    if (isa<FieldDecl>(ShadowedDecl))
4197      Kind = 3; // field
4198    else
4199      Kind = 2; // static data member
4200  } else if (OldDC->isFileContext())
4201    Kind = 1; // global
4202  else
4203    Kind = 0; // local
4204
4205  DeclarationName Name = R.getLookupName();
4206
4207  // Emit warning and note.
4208  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4209  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4210}
4211
4212/// \brief Check -Wshadow without the advantage of a previous lookup.
4213void Sema::CheckShadow(Scope *S, VarDecl *D) {
4214  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4215        DiagnosticsEngine::Ignored)
4216    return;
4217
4218  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4219                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4220  LookupName(R, S);
4221  CheckShadow(S, D, R);
4222}
4223
4224/// \brief Perform semantic checking on a newly-created variable
4225/// declaration.
4226///
4227/// This routine performs all of the type-checking required for a
4228/// variable declaration once it has been built. It is used both to
4229/// check variables after they have been parsed and their declarators
4230/// have been translated into a declaration, and to check variables
4231/// that have been instantiated from a template.
4232///
4233/// Sets NewVD->isInvalidDecl() if an error was encountered.
4234///
4235/// Returns true if the variable declaration is a redeclaration.
4236bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4237                                    LookupResult &Previous) {
4238  // If the decl is already known invalid, don't check it.
4239  if (NewVD->isInvalidDecl())
4240    return false;
4241
4242  QualType T = NewVD->getType();
4243
4244  if (T->isObjCObjectType()) {
4245    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4246      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4247    T = Context.getObjCObjectPointerType(T);
4248    NewVD->setType(T);
4249  }
4250
4251  // Emit an error if an address space was applied to decl with local storage.
4252  // This includes arrays of objects with address space qualifiers, but not
4253  // automatic variables that point to other address spaces.
4254  // ISO/IEC TR 18037 S5.1.2
4255  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4256    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4257    NewVD->setInvalidDecl();
4258    return false;
4259  }
4260
4261  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4262      && !NewVD->hasAttr<BlocksAttr>()) {
4263    if (getLangOptions().getGC() != LangOptions::NonGC)
4264      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4265    else
4266      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4267  }
4268
4269  bool isVM = T->isVariablyModifiedType();
4270  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4271      NewVD->hasAttr<BlocksAttr>())
4272    getCurFunction()->setHasBranchProtectedScope();
4273
4274  if ((isVM && NewVD->hasLinkage()) ||
4275      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4276    bool SizeIsNegative;
4277    llvm::APSInt Oversized;
4278    QualType FixedTy =
4279        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4280                                            Oversized);
4281
4282    if (FixedTy.isNull() && T->isVariableArrayType()) {
4283      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4284      // FIXME: This won't give the correct result for
4285      // int a[10][n];
4286      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4287
4288      if (NewVD->isFileVarDecl())
4289        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4290        << SizeRange;
4291      else if (NewVD->getStorageClass() == SC_Static)
4292        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4293        << SizeRange;
4294      else
4295        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4296        << SizeRange;
4297      NewVD->setInvalidDecl();
4298      return false;
4299    }
4300
4301    if (FixedTy.isNull()) {
4302      if (NewVD->isFileVarDecl())
4303        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4304      else
4305        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4306      NewVD->setInvalidDecl();
4307      return false;
4308    }
4309
4310    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4311    NewVD->setType(FixedTy);
4312  }
4313
4314  if (Previous.empty() && NewVD->isExternC()) {
4315    // Since we did not find anything by this name and we're declaring
4316    // an extern "C" variable, look for a non-visible extern "C"
4317    // declaration with the same name.
4318    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4319      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4320    if (Pos != LocallyScopedExternalDecls.end())
4321      Previous.addDecl(Pos->second);
4322  }
4323
4324  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4325    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4326      << T;
4327    NewVD->setInvalidDecl();
4328    return false;
4329  }
4330
4331  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4332    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4333    NewVD->setInvalidDecl();
4334    return false;
4335  }
4336
4337  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4338    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4339    NewVD->setInvalidDecl();
4340    return false;
4341  }
4342
4343  // Function pointers and references cannot have qualified function type, only
4344  // function pointer-to-members can do that.
4345  QualType Pointee;
4346  unsigned PtrOrRef = 0;
4347  if (const PointerType *Ptr = T->getAs<PointerType>())
4348    Pointee = Ptr->getPointeeType();
4349  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4350    Pointee = Ref->getPointeeType();
4351    PtrOrRef = 1;
4352  }
4353  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4354      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4355    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4356        << PtrOrRef;
4357    NewVD->setInvalidDecl();
4358    return false;
4359  }
4360
4361  if (!Previous.empty()) {
4362    MergeVarDecl(NewVD, Previous);
4363    return true;
4364  }
4365  return false;
4366}
4367
4368/// \brief Data used with FindOverriddenMethod
4369struct FindOverriddenMethodData {
4370  Sema *S;
4371  CXXMethodDecl *Method;
4372};
4373
4374/// \brief Member lookup function that determines whether a given C++
4375/// method overrides a method in a base class, to be used with
4376/// CXXRecordDecl::lookupInBases().
4377static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4378                                 CXXBasePath &Path,
4379                                 void *UserData) {
4380  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4381
4382  FindOverriddenMethodData *Data
4383    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4384
4385  DeclarationName Name = Data->Method->getDeclName();
4386
4387  // FIXME: Do we care about other names here too?
4388  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4389    // We really want to find the base class destructor here.
4390    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4391    CanQualType CT = Data->S->Context.getCanonicalType(T);
4392
4393    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4394  }
4395
4396  for (Path.Decls = BaseRecord->lookup(Name);
4397       Path.Decls.first != Path.Decls.second;
4398       ++Path.Decls.first) {
4399    NamedDecl *D = *Path.Decls.first;
4400    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4401      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4402        return true;
4403    }
4404  }
4405
4406  return false;
4407}
4408
4409/// AddOverriddenMethods - See if a method overrides any in the base classes,
4410/// and if so, check that it's a valid override and remember it.
4411bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4412  // Look for virtual methods in base classes that this method might override.
4413  CXXBasePaths Paths;
4414  FindOverriddenMethodData Data;
4415  Data.Method = MD;
4416  Data.S = this;
4417  bool AddedAny = false;
4418  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4419    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4420         E = Paths.found_decls_end(); I != E; ++I) {
4421      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4422        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4423        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4424            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4425            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4426          AddedAny = true;
4427        }
4428      }
4429    }
4430  }
4431
4432  return AddedAny;
4433}
4434
4435namespace {
4436  // Struct for holding all of the extra arguments needed by
4437  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4438  struct ActOnFDArgs {
4439    Scope *S;
4440    Declarator &D;
4441    MultiTemplateParamsArg TemplateParamLists;
4442    bool AddToScope;
4443  };
4444}
4445
4446namespace {
4447
4448// Callback to only accept typo corrections that have a non-zero edit distance.
4449class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4450 public:
4451  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4452    return candidate.getEditDistance() > 0;
4453  }
4454};
4455
4456}
4457
4458/// \brief Generate diagnostics for an invalid function redeclaration.
4459///
4460/// This routine handles generating the diagnostic messages for an invalid
4461/// function redeclaration, including finding possible similar declarations
4462/// or performing typo correction if there are no previous declarations with
4463/// the same name.
4464///
4465/// Returns a NamedDecl iff typo correction was performed and substituting in
4466/// the new declaration name does not cause new errors.
4467static NamedDecl* DiagnoseInvalidRedeclaration(
4468    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4469    ActOnFDArgs &ExtraArgs) {
4470  NamedDecl *Result = NULL;
4471  DeclarationName Name = NewFD->getDeclName();
4472  DeclContext *NewDC = NewFD->getDeclContext();
4473  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4474                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4475  llvm::SmallVector<unsigned, 1> MismatchedParams;
4476  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4477  TypoCorrection Correction;
4478  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4479                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4480  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4481                                  : diag::err_member_def_does_not_match;
4482
4483  NewFD->setInvalidDecl();
4484  SemaRef.LookupQualifiedName(Prev, NewDC);
4485  assert(!Prev.isAmbiguous() &&
4486         "Cannot have an ambiguity in previous-declaration lookup");
4487  DifferentNameValidatorCCC Validator;
4488  if (!Prev.empty()) {
4489    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4490         Func != FuncEnd; ++Func) {
4491      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4492      if (FD &&
4493          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4494        // Add 1 to the index so that 0 can mean the mismatch didn't
4495        // involve a parameter
4496        unsigned ParamNum =
4497            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4498        NearMatches.push_back(std::make_pair(FD, ParamNum));
4499      }
4500    }
4501  // If the qualified name lookup yielded nothing, try typo correction
4502  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4503                                         Prev.getLookupKind(), 0, 0,
4504                                         Validator, NewDC))) {
4505    // Trap errors.
4506    Sema::SFINAETrap Trap(SemaRef);
4507
4508    // Set up everything for the call to ActOnFunctionDeclarator
4509    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4510                              ExtraArgs.D.getIdentifierLoc());
4511    Previous.clear();
4512    Previous.setLookupName(Correction.getCorrection());
4513    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4514                                    CDeclEnd = Correction.end();
4515         CDecl != CDeclEnd; ++CDecl) {
4516      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4517      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4518                                     MismatchedParams)) {
4519        Previous.addDecl(FD);
4520      }
4521    }
4522    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4523    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4524    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4525    // eliminate the need for the parameter pack ExtraArgs.
4526    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4527                                             NewFD->getDeclContext(),
4528                                             NewFD->getTypeSourceInfo(),
4529                                             Previous,
4530                                             ExtraArgs.TemplateParamLists,
4531                                             ExtraArgs.AddToScope);
4532    if (Trap.hasErrorOccurred()) {
4533      // Pretend the typo correction never occurred
4534      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4535                                ExtraArgs.D.getIdentifierLoc());
4536      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4537      Previous.clear();
4538      Previous.setLookupName(Name);
4539      Result = NULL;
4540    } else {
4541      for (LookupResult::iterator Func = Previous.begin(),
4542                               FuncEnd = Previous.end();
4543           Func != FuncEnd; ++Func) {
4544        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4545          NearMatches.push_back(std::make_pair(FD, 0));
4546      }
4547    }
4548    if (NearMatches.empty()) {
4549      // Ignore the correction if it didn't yield any close FunctionDecl matches
4550      Correction = TypoCorrection();
4551    } else {
4552      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4553                             : diag::err_member_def_does_not_match_suggest;
4554    }
4555  }
4556
4557  if (Correction)
4558    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4559        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4560        << FixItHint::CreateReplacement(
4561            NewFD->getLocation(),
4562            Correction.getAsString(SemaRef.getLangOptions()));
4563  else
4564    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4565        << Name << NewDC << NewFD->getLocation();
4566
4567  bool NewFDisConst = false;
4568  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4569    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4570
4571  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4572       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4573       NearMatch != NearMatchEnd; ++NearMatch) {
4574    FunctionDecl *FD = NearMatch->first;
4575    bool FDisConst = false;
4576    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4577      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4578
4579    if (unsigned Idx = NearMatch->second) {
4580      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4581      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4582             diag::note_member_def_close_param_match)
4583          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4584    } else if (Correction) {
4585      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4586          << Correction.getQuoted(SemaRef.getLangOptions());
4587    } else if (FDisConst != NewFDisConst) {
4588      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4589          << NewFDisConst << FD->getSourceRange().getEnd();
4590    } else
4591      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4592  }
4593  return Result;
4594}
4595
4596static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4597                                                          Declarator &D) {
4598  switch (D.getDeclSpec().getStorageClassSpec()) {
4599  default: llvm_unreachable("Unknown storage class!");
4600  case DeclSpec::SCS_auto:
4601  case DeclSpec::SCS_register:
4602  case DeclSpec::SCS_mutable:
4603    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4604                 diag::err_typecheck_sclass_func);
4605    D.setInvalidType();
4606    break;
4607  case DeclSpec::SCS_unspecified: break;
4608  case DeclSpec::SCS_extern: return SC_Extern;
4609  case DeclSpec::SCS_static: {
4610    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4611      // C99 6.7.1p5:
4612      //   The declaration of an identifier for a function that has
4613      //   block scope shall have no explicit storage-class specifier
4614      //   other than extern
4615      // See also (C++ [dcl.stc]p4).
4616      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4617                   diag::err_static_block_func);
4618      break;
4619    } else
4620      return SC_Static;
4621  }
4622  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4623  }
4624
4625  // No explicit storage class has already been returned
4626  return SC_None;
4627}
4628
4629static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4630                                           DeclContext *DC, QualType &R,
4631                                           TypeSourceInfo *TInfo,
4632                                           FunctionDecl::StorageClass SC,
4633                                           bool &IsVirtualOkay) {
4634  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4635  DeclarationName Name = NameInfo.getName();
4636
4637  FunctionDecl *NewFD = 0;
4638  bool isInline = D.getDeclSpec().isInlineSpecified();
4639  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4640  FunctionDecl::StorageClass SCAsWritten
4641    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4642
4643  if (!SemaRef.getLangOptions().CPlusPlus) {
4644    // Determine whether the function was written with a
4645    // prototype. This true when:
4646    //   - there is a prototype in the declarator, or
4647    //   - the type R of the function is some kind of typedef or other reference
4648    //     to a type name (which eventually refers to a function type).
4649    bool HasPrototype =
4650      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4651      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4652
4653    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4654                                 D.getSourceRange().getBegin(), NameInfo, R,
4655                                 TInfo, SC, SCAsWritten, isInline,
4656                                 HasPrototype);
4657    if (D.isInvalidType())
4658      NewFD->setInvalidDecl();
4659
4660    // Set the lexical context.
4661    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4662
4663    return NewFD;
4664  }
4665
4666  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4667  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4668
4669  // Check that the return type is not an abstract class type.
4670  // For record types, this is done by the AbstractClassUsageDiagnoser once
4671  // the class has been completely parsed.
4672  if (!DC->isRecord() &&
4673      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4674                                     R->getAs<FunctionType>()->getResultType(),
4675                                     diag::err_abstract_type_in_decl,
4676                                     SemaRef.AbstractReturnType))
4677    D.setInvalidType();
4678
4679  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4680    // This is a C++ constructor declaration.
4681    assert(DC->isRecord() &&
4682           "Constructors can only be declared in a member context");
4683
4684    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4685    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4686                                      D.getSourceRange().getBegin(), NameInfo,
4687                                      R, TInfo, isExplicit, isInline,
4688                                      /*isImplicitlyDeclared=*/false,
4689                                      isConstexpr);
4690
4691  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4692    // This is a C++ destructor declaration.
4693    if (DC->isRecord()) {
4694      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4695      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4696      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4697                                        SemaRef.Context, Record,
4698                                        D.getSourceRange().getBegin(),
4699                                        NameInfo, R, TInfo, isInline,
4700                                        /*isImplicitlyDeclared=*/false);
4701
4702      // If the class is complete, then we now create the implicit exception
4703      // specification. If the class is incomplete or dependent, we can't do
4704      // it yet.
4705      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4706          Record->getDefinition() && !Record->isBeingDefined() &&
4707          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4708        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4709      }
4710
4711      IsVirtualOkay = true;
4712      return NewDD;
4713
4714    } else {
4715      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4716      D.setInvalidType();
4717
4718      // Create a FunctionDecl to satisfy the function definition parsing
4719      // code path.
4720      return FunctionDecl::Create(SemaRef.Context, DC,
4721                                  D.getSourceRange().getBegin(),
4722                                  D.getIdentifierLoc(), Name, R, TInfo,
4723                                  SC, SCAsWritten, isInline,
4724                                  /*hasPrototype=*/true, isConstexpr);
4725    }
4726
4727  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4728    if (!DC->isRecord()) {
4729      SemaRef.Diag(D.getIdentifierLoc(),
4730           diag::err_conv_function_not_member);
4731      return 0;
4732    }
4733
4734    SemaRef.CheckConversionDeclarator(D, R, SC);
4735    IsVirtualOkay = true;
4736    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4737                                     D.getSourceRange().getBegin(), NameInfo,
4738                                     R, TInfo, isInline, isExplicit,
4739                                     isConstexpr, SourceLocation());
4740
4741  } else if (DC->isRecord()) {
4742    // If the name of the function is the same as the name of the record,
4743    // then this must be an invalid constructor that has a return type.
4744    // (The parser checks for a return type and makes the declarator a
4745    // constructor if it has no return type).
4746    if (Name.getAsIdentifierInfo() &&
4747        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4748      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4749        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4750        << SourceRange(D.getIdentifierLoc());
4751      return 0;
4752    }
4753
4754    bool isStatic = SC == SC_Static;
4755
4756    // [class.free]p1:
4757    // Any allocation function for a class T is a static member
4758    // (even if not explicitly declared static).
4759    if (Name.getCXXOverloadedOperator() == OO_New ||
4760        Name.getCXXOverloadedOperator() == OO_Array_New)
4761      isStatic = true;
4762
4763    // [class.free]p6 Any deallocation function for a class X is a static member
4764    // (even if not explicitly declared static).
4765    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4766        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4767      isStatic = true;
4768
4769    IsVirtualOkay = !isStatic;
4770
4771    // This is a C++ method declaration.
4772    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4773                                 D.getSourceRange().getBegin(), NameInfo, R,
4774                                 TInfo, isStatic, SCAsWritten, isInline,
4775                                 isConstexpr, SourceLocation());
4776
4777  } else {
4778    // Determine whether the function was written with a
4779    // prototype. This true when:
4780    //   - we're in C++ (where every function has a prototype),
4781    return FunctionDecl::Create(SemaRef.Context, DC,
4782                                D.getSourceRange().getBegin(),
4783                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4784                                true/*HasPrototype*/, isConstexpr);
4785  }
4786}
4787
4788NamedDecl*
4789Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4790                              TypeSourceInfo *TInfo, LookupResult &Previous,
4791                              MultiTemplateParamsArg TemplateParamLists,
4792                              bool &AddToScope) {
4793  QualType R = TInfo->getType();
4794
4795  assert(R.getTypePtr()->isFunctionType());
4796
4797  // TODO: consider using NameInfo for diagnostic.
4798  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4799  DeclarationName Name = NameInfo.getName();
4800  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4801
4802  if (D.getDeclSpec().isThreadSpecified())
4803    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4804
4805  // Do not allow returning a objc interface by-value.
4806  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4807    Diag(D.getIdentifierLoc(),
4808         diag::err_object_cannot_be_passed_returned_by_value) << 0
4809    << R->getAs<FunctionType>()->getResultType()
4810    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4811
4812    QualType T = R->getAs<FunctionType>()->getResultType();
4813    T = Context.getObjCObjectPointerType(T);
4814    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4815      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4816      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4817                                  FPT->getNumArgs(), EPI);
4818    }
4819    else if (isa<FunctionNoProtoType>(R))
4820      R = Context.getFunctionNoProtoType(T);
4821  }
4822
4823  bool isFriend = false;
4824  FunctionTemplateDecl *FunctionTemplate = 0;
4825  bool isExplicitSpecialization = false;
4826  bool isFunctionTemplateSpecialization = false;
4827  bool isDependentClassScopeExplicitSpecialization = false;
4828  bool isVirtualOkay = false;
4829
4830  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4831                                              isVirtualOkay);
4832  if (!NewFD) return 0;
4833
4834  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4835    NewFD->setTopLevelDeclInObjCContainer();
4836
4837  if (getLangOptions().CPlusPlus) {
4838    bool isInline = D.getDeclSpec().isInlineSpecified();
4839    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4840    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4841    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4842    isFriend = D.getDeclSpec().isFriendSpecified();
4843    if (isFriend && !isInline && D.isFunctionDefinition()) {
4844      // C++ [class.friend]p5
4845      //   A function can be defined in a friend declaration of a
4846      //   class . . . . Such a function is implicitly inline.
4847      NewFD->setImplicitlyInline();
4848    }
4849
4850    SetNestedNameSpecifier(NewFD, D);
4851    isExplicitSpecialization = false;
4852    isFunctionTemplateSpecialization = false;
4853    if (D.isInvalidType())
4854      NewFD->setInvalidDecl();
4855
4856    // Set the lexical context. If the declarator has a C++
4857    // scope specifier, or is the object of a friend declaration, the
4858    // lexical context will be different from the semantic context.
4859    NewFD->setLexicalDeclContext(CurContext);
4860
4861    // Match up the template parameter lists with the scope specifier, then
4862    // determine whether we have a template or a template specialization.
4863    bool Invalid = false;
4864    if (TemplateParameterList *TemplateParams
4865          = MatchTemplateParametersToScopeSpecifier(
4866                                  D.getDeclSpec().getSourceRange().getBegin(),
4867                                  D.getIdentifierLoc(),
4868                                  D.getCXXScopeSpec(),
4869                                  TemplateParamLists.get(),
4870                                  TemplateParamLists.size(),
4871                                  isFriend,
4872                                  isExplicitSpecialization,
4873                                  Invalid)) {
4874      if (TemplateParams->size() > 0) {
4875        // This is a function template
4876
4877        // Check that we can declare a template here.
4878        if (CheckTemplateDeclScope(S, TemplateParams))
4879          return 0;
4880
4881        // A destructor cannot be a template.
4882        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4883          Diag(NewFD->getLocation(), diag::err_destructor_template);
4884          return 0;
4885        }
4886
4887        // If we're adding a template to a dependent context, we may need to
4888        // rebuilding some of the types used within the template parameter list,
4889        // now that we know what the current instantiation is.
4890        if (DC->isDependentContext()) {
4891          ContextRAII SavedContext(*this, DC);
4892          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4893            Invalid = true;
4894        }
4895
4896
4897        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4898                                                        NewFD->getLocation(),
4899                                                        Name, TemplateParams,
4900                                                        NewFD);
4901        FunctionTemplate->setLexicalDeclContext(CurContext);
4902        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4903
4904        // For source fidelity, store the other template param lists.
4905        if (TemplateParamLists.size() > 1) {
4906          NewFD->setTemplateParameterListsInfo(Context,
4907                                               TemplateParamLists.size() - 1,
4908                                               TemplateParamLists.release());
4909        }
4910      } else {
4911        // This is a function template specialization.
4912        isFunctionTemplateSpecialization = true;
4913        // For source fidelity, store all the template param lists.
4914        NewFD->setTemplateParameterListsInfo(Context,
4915                                             TemplateParamLists.size(),
4916                                             TemplateParamLists.release());
4917
4918        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4919        if (isFriend) {
4920          // We want to remove the "template<>", found here.
4921          SourceRange RemoveRange = TemplateParams->getSourceRange();
4922
4923          // If we remove the template<> and the name is not a
4924          // template-id, we're actually silently creating a problem:
4925          // the friend declaration will refer to an untemplated decl,
4926          // and clearly the user wants a template specialization.  So
4927          // we need to insert '<>' after the name.
4928          SourceLocation InsertLoc;
4929          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4930            InsertLoc = D.getName().getSourceRange().getEnd();
4931            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4932          }
4933
4934          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4935            << Name << RemoveRange
4936            << FixItHint::CreateRemoval(RemoveRange)
4937            << FixItHint::CreateInsertion(InsertLoc, "<>");
4938        }
4939      }
4940    }
4941    else {
4942      // All template param lists were matched against the scope specifier:
4943      // this is NOT (an explicit specialization of) a template.
4944      if (TemplateParamLists.size() > 0)
4945        // For source fidelity, store all the template param lists.
4946        NewFD->setTemplateParameterListsInfo(Context,
4947                                             TemplateParamLists.size(),
4948                                             TemplateParamLists.release());
4949    }
4950
4951    if (Invalid) {
4952      NewFD->setInvalidDecl();
4953      if (FunctionTemplate)
4954        FunctionTemplate->setInvalidDecl();
4955    }
4956
4957    // If we see "T var();" at block scope, where T is a class type, it is
4958    // probably an attempt to initialize a variable, not a function declaration.
4959    // We don't catch this case earlier, since there is no ambiguity here.
4960    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4961        CurContext->isFunctionOrMethod() &&
4962        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4963        D.getDeclSpec().getStorageClassSpecAsWritten()
4964          == DeclSpec::SCS_unspecified) {
4965      QualType T = R->getAs<FunctionType>()->getResultType();
4966      DeclaratorChunk &C = D.getTypeObject(0);
4967      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4968          !C.Fun.TrailingReturnType &&
4969          C.Fun.getExceptionSpecType() == EST_None) {
4970        SourceRange ParenRange(C.Loc, C.EndLoc);
4971        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4972
4973        // If the declaration looks like:
4974        //   T var1,
4975        //   f();
4976        // and name lookup finds a function named 'f', then the ',' was
4977        // probably intended to be a ';'.
4978        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4979          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4980          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4981          if (Comma.getFileID() != Name.getFileID() ||
4982              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4983            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4984                                LookupOrdinaryName);
4985            if (LookupName(Result, S))
4986              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4987                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4988          }
4989        }
4990        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4991        // Empty parens mean value-initialization, and no parens mean default
4992        // initialization. These are equivalent if the default constructor is
4993        // user-provided, or if zero-initialization is a no-op.
4994        if (RD && RD->hasDefinition() &&
4995            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4996          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4997            << FixItHint::CreateRemoval(ParenRange);
4998        else if (const char *Init = getFixItZeroInitializerForType(T))
4999          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5000            << FixItHint::CreateReplacement(ParenRange, Init);
5001        else if (LangOpts.CPlusPlus0x)
5002          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5003            << FixItHint::CreateReplacement(ParenRange, "{}");
5004      }
5005    }
5006
5007    // C++ [dcl.fct.spec]p5:
5008    //   The virtual specifier shall only be used in declarations of
5009    //   nonstatic class member functions that appear within a
5010    //   member-specification of a class declaration; see 10.3.
5011    //
5012    if (isVirtual && !NewFD->isInvalidDecl()) {
5013      if (!isVirtualOkay) {
5014        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5015             diag::err_virtual_non_function);
5016      } else if (!CurContext->isRecord()) {
5017        // 'virtual' was specified outside of the class.
5018        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5019             diag::err_virtual_out_of_class)
5020          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5021      } else if (NewFD->getDescribedFunctionTemplate()) {
5022        // C++ [temp.mem]p3:
5023        //  A member function template shall not be virtual.
5024        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5025             diag::err_virtual_member_function_template)
5026          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5027      } else {
5028        // Okay: Add virtual to the method.
5029        NewFD->setVirtualAsWritten(true);
5030      }
5031    }
5032
5033    // C++ [dcl.fct.spec]p3:
5034    //  The inline specifier shall not appear on a block scope function
5035    //  declaration.
5036    if (isInline && !NewFD->isInvalidDecl()) {
5037      if (CurContext->isFunctionOrMethod()) {
5038        // 'inline' is not allowed on block scope function declaration.
5039        Diag(D.getDeclSpec().getInlineSpecLoc(),
5040             diag::err_inline_declaration_block_scope) << Name
5041          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5042      }
5043    }
5044
5045    // C++ [dcl.fct.spec]p6:
5046    //  The explicit specifier shall be used only in the declaration of a
5047    //  constructor or conversion function within its class definition;
5048    //  see 12.3.1 and 12.3.2.
5049    if (isExplicit && !NewFD->isInvalidDecl()) {
5050      if (!CurContext->isRecord()) {
5051        // 'explicit' was specified outside of the class.
5052        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5053             diag::err_explicit_out_of_class)
5054          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5055      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5056                 !isa<CXXConversionDecl>(NewFD)) {
5057        // 'explicit' was specified on a function that wasn't a constructor
5058        // or conversion function.
5059        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5060             diag::err_explicit_non_ctor_or_conv_function)
5061          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5062      }
5063    }
5064
5065    if (isConstexpr) {
5066      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5067      // are implicitly inline.
5068      NewFD->setImplicitlyInline();
5069
5070      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5071      // be either constructors or to return a literal type. Therefore,
5072      // destructors cannot be declared constexpr.
5073      if (isa<CXXDestructorDecl>(NewFD))
5074        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5075    }
5076
5077    // If __module_private__ was specified, mark the function accordingly.
5078    if (D.getDeclSpec().isModulePrivateSpecified()) {
5079      if (isFunctionTemplateSpecialization) {
5080        SourceLocation ModulePrivateLoc
5081          = D.getDeclSpec().getModulePrivateSpecLoc();
5082        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5083          << 0
5084          << FixItHint::CreateRemoval(ModulePrivateLoc);
5085      } else {
5086        NewFD->setModulePrivate();
5087        if (FunctionTemplate)
5088          FunctionTemplate->setModulePrivate();
5089      }
5090    }
5091
5092    if (isFriend) {
5093      // For now, claim that the objects have no previous declaration.
5094      if (FunctionTemplate) {
5095        FunctionTemplate->setObjectOfFriendDecl(false);
5096        FunctionTemplate->setAccess(AS_public);
5097      }
5098      NewFD->setObjectOfFriendDecl(false);
5099      NewFD->setAccess(AS_public);
5100    }
5101
5102    // If a function is defined as defaulted or deleted, mark it as such now.
5103    switch (D.getFunctionDefinitionKind()) {
5104      case FDK_Declaration:
5105      case FDK_Definition:
5106        break;
5107
5108      case FDK_Defaulted:
5109        NewFD->setDefaulted();
5110        break;
5111
5112      case FDK_Deleted:
5113        NewFD->setDeletedAsWritten();
5114        break;
5115    }
5116
5117    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5118        D.isFunctionDefinition()) {
5119      // C++ [class.mfct]p2:
5120      //   A member function may be defined (8.4) in its class definition, in
5121      //   which case it is an inline member function (7.1.2)
5122      NewFD->setImplicitlyInline();
5123    }
5124
5125    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5126        !CurContext->isRecord()) {
5127      // C++ [class.static]p1:
5128      //   A data or function member of a class may be declared static
5129      //   in a class definition, in which case it is a static member of
5130      //   the class.
5131
5132      // Complain about the 'static' specifier if it's on an out-of-line
5133      // member function definition.
5134      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5135           diag::err_static_out_of_line)
5136        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5137    }
5138  }
5139
5140  // Filter out previous declarations that don't match the scope.
5141  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5142                       isExplicitSpecialization ||
5143                       isFunctionTemplateSpecialization);
5144
5145  // Handle GNU asm-label extension (encoded as an attribute).
5146  if (Expr *E = (Expr*) D.getAsmLabel()) {
5147    // The parser guarantees this is a string.
5148    StringLiteral *SE = cast<StringLiteral>(E);
5149    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5150                                                SE->getString()));
5151  }
5152
5153  // Copy the parameter declarations from the declarator D to the function
5154  // declaration NewFD, if they are available.  First scavenge them into Params.
5155  SmallVector<ParmVarDecl*, 16> Params;
5156  if (D.isFunctionDeclarator()) {
5157    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5158
5159    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5160    // function that takes no arguments, not a function that takes a
5161    // single void argument.
5162    // We let through "const void" here because Sema::GetTypeForDeclarator
5163    // already checks for that case.
5164    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5165        FTI.ArgInfo[0].Param &&
5166        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5167      // Empty arg list, don't push any params.
5168      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5169
5170      // In C++, the empty parameter-type-list must be spelled "void"; a
5171      // typedef of void is not permitted.
5172      if (getLangOptions().CPlusPlus &&
5173          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5174        bool IsTypeAlias = false;
5175        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5176          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5177        else if (const TemplateSpecializationType *TST =
5178                   Param->getType()->getAs<TemplateSpecializationType>())
5179          IsTypeAlias = TST->isTypeAlias();
5180        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5181          << IsTypeAlias;
5182      }
5183    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5184      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5185        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5186        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5187        Param->setDeclContext(NewFD);
5188        Params.push_back(Param);
5189
5190        if (Param->isInvalidDecl())
5191          NewFD->setInvalidDecl();
5192      }
5193    }
5194
5195  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5196    // When we're declaring a function with a typedef, typeof, etc as in the
5197    // following example, we'll need to synthesize (unnamed)
5198    // parameters for use in the declaration.
5199    //
5200    // @code
5201    // typedef void fn(int);
5202    // fn f;
5203    // @endcode
5204
5205    // Synthesize a parameter for each argument type.
5206    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5207         AE = FT->arg_type_end(); AI != AE; ++AI) {
5208      ParmVarDecl *Param =
5209        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5210      Param->setScopeInfo(0, Params.size());
5211      Params.push_back(Param);
5212    }
5213  } else {
5214    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5215           "Should not need args for typedef of non-prototype fn");
5216  }
5217
5218  // Finally, we know we have the right number of parameters, install them.
5219  NewFD->setParams(Params);
5220
5221  // Process the non-inheritable attributes on this declaration.
5222  ProcessDeclAttributes(S, NewFD, D,
5223                        /*NonInheritable=*/true, /*Inheritable=*/false);
5224
5225  if (!getLangOptions().CPlusPlus) {
5226    // Perform semantic checking on the function declaration.
5227    bool isExplicitSpecialization=false;
5228    if (!NewFD->isInvalidDecl()) {
5229      if (NewFD->getResultType()->isVariablyModifiedType()) {
5230        // Functions returning a variably modified type violate C99 6.7.5.2p2
5231        // because all functions have linkage.
5232        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5233        NewFD->setInvalidDecl();
5234      } else {
5235        if (NewFD->isMain())
5236          CheckMain(NewFD, D.getDeclSpec());
5237        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5238                                                    isExplicitSpecialization));
5239      }
5240    }
5241    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5242            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5243           "previous declaration set still overloaded");
5244  } else {
5245    // If the declarator is a template-id, translate the parser's template
5246    // argument list into our AST format.
5247    bool HasExplicitTemplateArgs = false;
5248    TemplateArgumentListInfo TemplateArgs;
5249    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5250      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5251      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5252      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5253      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5254                                         TemplateId->getTemplateArgs(),
5255                                         TemplateId->NumArgs);
5256      translateTemplateArguments(TemplateArgsPtr,
5257                                 TemplateArgs);
5258      TemplateArgsPtr.release();
5259
5260      HasExplicitTemplateArgs = true;
5261
5262      if (NewFD->isInvalidDecl()) {
5263        HasExplicitTemplateArgs = false;
5264      } else if (FunctionTemplate) {
5265        // Function template with explicit template arguments.
5266        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5267          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5268
5269        HasExplicitTemplateArgs = false;
5270      } else if (!isFunctionTemplateSpecialization &&
5271                 !D.getDeclSpec().isFriendSpecified()) {
5272        // We have encountered something that the user meant to be a
5273        // specialization (because it has explicitly-specified template
5274        // arguments) but that was not introduced with a "template<>" (or had
5275        // too few of them).
5276        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5277          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5278          << FixItHint::CreateInsertion(
5279                                    D.getDeclSpec().getSourceRange().getBegin(),
5280                                        "template<> ");
5281        isFunctionTemplateSpecialization = true;
5282      } else {
5283        // "friend void foo<>(int);" is an implicit specialization decl.
5284        isFunctionTemplateSpecialization = true;
5285      }
5286    } else if (isFriend && isFunctionTemplateSpecialization) {
5287      // This combination is only possible in a recovery case;  the user
5288      // wrote something like:
5289      //   template <> friend void foo(int);
5290      // which we're recovering from as if the user had written:
5291      //   friend void foo<>(int);
5292      // Go ahead and fake up a template id.
5293      HasExplicitTemplateArgs = true;
5294        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5295      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5296    }
5297
5298    // If it's a friend (and only if it's a friend), it's possible
5299    // that either the specialized function type or the specialized
5300    // template is dependent, and therefore matching will fail.  In
5301    // this case, don't check the specialization yet.
5302    bool InstantiationDependent = false;
5303    if (isFunctionTemplateSpecialization && isFriend &&
5304        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5305         TemplateSpecializationType::anyDependentTemplateArguments(
5306            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5307            InstantiationDependent))) {
5308      assert(HasExplicitTemplateArgs &&
5309             "friend function specialization without template args");
5310      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5311                                                       Previous))
5312        NewFD->setInvalidDecl();
5313    } else if (isFunctionTemplateSpecialization) {
5314      if (CurContext->isDependentContext() && CurContext->isRecord()
5315          && !isFriend) {
5316        isDependentClassScopeExplicitSpecialization = true;
5317        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5318          diag::ext_function_specialization_in_class :
5319          diag::err_function_specialization_in_class)
5320          << NewFD->getDeclName();
5321      } else if (CheckFunctionTemplateSpecialization(NewFD,
5322                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5323                                                     Previous))
5324        NewFD->setInvalidDecl();
5325
5326      // C++ [dcl.stc]p1:
5327      //   A storage-class-specifier shall not be specified in an explicit
5328      //   specialization (14.7.3)
5329      if (SC != SC_None) {
5330        if (SC != NewFD->getStorageClass())
5331          Diag(NewFD->getLocation(),
5332               diag::err_explicit_specialization_inconsistent_storage_class)
5333            << SC
5334            << FixItHint::CreateRemoval(
5335                                      D.getDeclSpec().getStorageClassSpecLoc());
5336
5337        else
5338          Diag(NewFD->getLocation(),
5339               diag::ext_explicit_specialization_storage_class)
5340            << FixItHint::CreateRemoval(
5341                                      D.getDeclSpec().getStorageClassSpecLoc());
5342      }
5343
5344    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5345      if (CheckMemberSpecialization(NewFD, Previous))
5346          NewFD->setInvalidDecl();
5347    }
5348
5349    // Perform semantic checking on the function declaration.
5350    if (!isDependentClassScopeExplicitSpecialization) {
5351      if (NewFD->isInvalidDecl()) {
5352        // If this is a class member, mark the class invalid immediately.
5353        // This avoids some consistency errors later.
5354        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5355          methodDecl->getParent()->setInvalidDecl();
5356      } else {
5357        if (NewFD->isMain())
5358          CheckMain(NewFD, D.getDeclSpec());
5359        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5360                                                    isExplicitSpecialization));
5361      }
5362    }
5363
5364    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5365            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5366           "previous declaration set still overloaded");
5367
5368    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5369        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5370      NewFD->setInvalidDecl();
5371
5372    NamedDecl *PrincipalDecl = (FunctionTemplate
5373                                ? cast<NamedDecl>(FunctionTemplate)
5374                                : NewFD);
5375
5376    if (isFriend && D.isRedeclaration()) {
5377      AccessSpecifier Access = AS_public;
5378      if (!NewFD->isInvalidDecl())
5379        Access = NewFD->getPreviousDecl()->getAccess();
5380
5381      NewFD->setAccess(Access);
5382      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5383
5384      PrincipalDecl->setObjectOfFriendDecl(true);
5385    }
5386
5387    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5388        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5389      PrincipalDecl->setNonMemberOperator();
5390
5391    // If we have a function template, check the template parameter
5392    // list. This will check and merge default template arguments.
5393    if (FunctionTemplate) {
5394      FunctionTemplateDecl *PrevTemplate =
5395                                     FunctionTemplate->getPreviousDecl();
5396      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5397                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5398                            D.getDeclSpec().isFriendSpecified()
5399                              ? (D.isFunctionDefinition()
5400                                   ? TPC_FriendFunctionTemplateDefinition
5401                                   : TPC_FriendFunctionTemplate)
5402                              : (D.getCXXScopeSpec().isSet() &&
5403                                 DC && DC->isRecord() &&
5404                                 DC->isDependentContext())
5405                                  ? TPC_ClassTemplateMember
5406                                  : TPC_FunctionTemplate);
5407    }
5408
5409    if (NewFD->isInvalidDecl()) {
5410      // Ignore all the rest of this.
5411    } else if (!D.isRedeclaration()) {
5412      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5413                                       AddToScope };
5414      // Fake up an access specifier if it's supposed to be a class member.
5415      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5416        NewFD->setAccess(AS_public);
5417
5418      // Qualified decls generally require a previous declaration.
5419      if (D.getCXXScopeSpec().isSet()) {
5420        // ...with the major exception of templated-scope or
5421        // dependent-scope friend declarations.
5422
5423        // TODO: we currently also suppress this check in dependent
5424        // contexts because (1) the parameter depth will be off when
5425        // matching friend templates and (2) we might actually be
5426        // selecting a friend based on a dependent factor.  But there
5427        // are situations where these conditions don't apply and we
5428        // can actually do this check immediately.
5429        if (isFriend &&
5430            (TemplateParamLists.size() ||
5431             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5432             CurContext->isDependentContext())) {
5433          // ignore these
5434        } else {
5435          // The user tried to provide an out-of-line definition for a
5436          // function that is a member of a class or namespace, but there
5437          // was no such member function declared (C++ [class.mfct]p2,
5438          // C++ [namespace.memdef]p2). For example:
5439          //
5440          // class X {
5441          //   void f() const;
5442          // };
5443          //
5444          // void X::f() { } // ill-formed
5445          //
5446          // Complain about this problem, and attempt to suggest close
5447          // matches (e.g., those that differ only in cv-qualifiers and
5448          // whether the parameter types are references).
5449
5450          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5451                                                               NewFD,
5452                                                               ExtraArgs)) {
5453            AddToScope = ExtraArgs.AddToScope;
5454            return Result;
5455          }
5456        }
5457
5458        // Unqualified local friend declarations are required to resolve
5459        // to something.
5460      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5461        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5462                                                             NewFD,
5463                                                             ExtraArgs)) {
5464          AddToScope = ExtraArgs.AddToScope;
5465          return Result;
5466        }
5467      }
5468
5469    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5470               !isFriend && !isFunctionTemplateSpecialization &&
5471               !isExplicitSpecialization) {
5472      // An out-of-line member function declaration must also be a
5473      // definition (C++ [dcl.meaning]p1).
5474      // Note that this is not the case for explicit specializations of
5475      // function templates or member functions of class templates, per
5476      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5477      // extension for compatibility with old SWIG code which likes to
5478      // generate them.
5479      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5480        << D.getCXXScopeSpec().getRange();
5481    }
5482  }
5483
5484
5485  // Handle attributes. We need to have merged decls when handling attributes
5486  // (for example to check for conflicts, etc).
5487  // FIXME: This needs to happen before we merge declarations. Then,
5488  // let attribute merging cope with attribute conflicts.
5489  ProcessDeclAttributes(S, NewFD, D,
5490                        /*NonInheritable=*/false, /*Inheritable=*/true);
5491
5492  // attributes declared post-definition are currently ignored
5493  // FIXME: This should happen during attribute merging
5494  if (D.isRedeclaration() && Previous.isSingleResult()) {
5495    const FunctionDecl *Def;
5496    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5497    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5498      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5499      Diag(Def->getLocation(), diag::note_previous_definition);
5500    }
5501  }
5502
5503  AddKnownFunctionAttributes(NewFD);
5504
5505  if (NewFD->hasAttr<OverloadableAttr>() &&
5506      !NewFD->getType()->getAs<FunctionProtoType>()) {
5507    Diag(NewFD->getLocation(),
5508         diag::err_attribute_overloadable_no_prototype)
5509      << NewFD;
5510
5511    // Turn this into a variadic function with no parameters.
5512    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5513    FunctionProtoType::ExtProtoInfo EPI;
5514    EPI.Variadic = true;
5515    EPI.ExtInfo = FT->getExtInfo();
5516
5517    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5518    NewFD->setType(R);
5519  }
5520
5521  // If there's a #pragma GCC visibility in scope, and this isn't a class
5522  // member, set the visibility of this function.
5523  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5524    AddPushedVisibilityAttribute(NewFD);
5525
5526  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5527  // marking the function.
5528  AddCFAuditedAttribute(NewFD);
5529
5530  // If this is a locally-scoped extern C function, update the
5531  // map of such names.
5532  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5533      && !NewFD->isInvalidDecl())
5534    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5535
5536  // Set this FunctionDecl's range up to the right paren.
5537  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5538
5539  if (getLangOptions().CPlusPlus) {
5540    if (FunctionTemplate) {
5541      if (NewFD->isInvalidDecl())
5542        FunctionTemplate->setInvalidDecl();
5543      return FunctionTemplate;
5544    }
5545  }
5546
5547  MarkUnusedFileScopedDecl(NewFD);
5548
5549  if (getLangOptions().CUDA)
5550    if (IdentifierInfo *II = NewFD->getIdentifier())
5551      if (!NewFD->isInvalidDecl() &&
5552          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5553        if (II->isStr("cudaConfigureCall")) {
5554          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5555            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5556
5557          Context.setcudaConfigureCallDecl(NewFD);
5558        }
5559      }
5560
5561  // Here we have an function template explicit specialization at class scope.
5562  // The actually specialization will be postponed to template instatiation
5563  // time via the ClassScopeFunctionSpecializationDecl node.
5564  if (isDependentClassScopeExplicitSpecialization) {
5565    ClassScopeFunctionSpecializationDecl *NewSpec =
5566                         ClassScopeFunctionSpecializationDecl::Create(
5567                                Context, CurContext,  SourceLocation(),
5568                                cast<CXXMethodDecl>(NewFD));
5569    CurContext->addDecl(NewSpec);
5570    AddToScope = false;
5571  }
5572
5573  return NewFD;
5574}
5575
5576/// \brief Perform semantic checking of a new function declaration.
5577///
5578/// Performs semantic analysis of the new function declaration
5579/// NewFD. This routine performs all semantic checking that does not
5580/// require the actual declarator involved in the declaration, and is
5581/// used both for the declaration of functions as they are parsed
5582/// (called via ActOnDeclarator) and for the declaration of functions
5583/// that have been instantiated via C++ template instantiation (called
5584/// via InstantiateDecl).
5585///
5586/// \param IsExplicitSpecialiation whether this new function declaration is
5587/// an explicit specialization of the previous declaration.
5588///
5589/// This sets NewFD->isInvalidDecl() to true if there was an error.
5590///
5591/// Returns true if the function declaration is a redeclaration.
5592bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5593                                    LookupResult &Previous,
5594                                    bool IsExplicitSpecialization) {
5595  assert(!NewFD->getResultType()->isVariablyModifiedType()
5596         && "Variably modified return types are not handled here");
5597
5598  // Check for a previous declaration of this name.
5599  if (Previous.empty() && NewFD->isExternC()) {
5600    // Since we did not find anything by this name and we're declaring
5601    // an extern "C" function, look for a non-visible extern "C"
5602    // declaration with the same name.
5603    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5604      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5605    if (Pos != LocallyScopedExternalDecls.end())
5606      Previous.addDecl(Pos->second);
5607  }
5608
5609  bool Redeclaration = false;
5610
5611  // Merge or overload the declaration with an existing declaration of
5612  // the same name, if appropriate.
5613  if (!Previous.empty()) {
5614    // Determine whether NewFD is an overload of PrevDecl or
5615    // a declaration that requires merging. If it's an overload,
5616    // there's no more work to do here; we'll just add the new
5617    // function to the scope.
5618
5619    NamedDecl *OldDecl = 0;
5620    if (!AllowOverloadingOfFunction(Previous, Context)) {
5621      Redeclaration = true;
5622      OldDecl = Previous.getFoundDecl();
5623    } else {
5624      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5625                            /*NewIsUsingDecl*/ false)) {
5626      case Ovl_Match:
5627        Redeclaration = true;
5628        break;
5629
5630      case Ovl_NonFunction:
5631        Redeclaration = true;
5632        break;
5633
5634      case Ovl_Overload:
5635        Redeclaration = false;
5636        break;
5637      }
5638
5639      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5640        // If a function name is overloadable in C, then every function
5641        // with that name must be marked "overloadable".
5642        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5643          << Redeclaration << NewFD;
5644        NamedDecl *OverloadedDecl = 0;
5645        if (Redeclaration)
5646          OverloadedDecl = OldDecl;
5647        else if (!Previous.empty())
5648          OverloadedDecl = Previous.getRepresentativeDecl();
5649        if (OverloadedDecl)
5650          Diag(OverloadedDecl->getLocation(),
5651               diag::note_attribute_overloadable_prev_overload);
5652        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5653                                                        Context));
5654      }
5655    }
5656
5657    if (Redeclaration) {
5658      // NewFD and OldDecl represent declarations that need to be
5659      // merged.
5660      if (MergeFunctionDecl(NewFD, OldDecl)) {
5661        NewFD->setInvalidDecl();
5662        return Redeclaration;
5663      }
5664
5665      Previous.clear();
5666      Previous.addDecl(OldDecl);
5667
5668      if (FunctionTemplateDecl *OldTemplateDecl
5669                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5670        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5671        FunctionTemplateDecl *NewTemplateDecl
5672          = NewFD->getDescribedFunctionTemplate();
5673        assert(NewTemplateDecl && "Template/non-template mismatch");
5674        if (CXXMethodDecl *Method
5675              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5676          Method->setAccess(OldTemplateDecl->getAccess());
5677          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5678        }
5679
5680        // If this is an explicit specialization of a member that is a function
5681        // template, mark it as a member specialization.
5682        if (IsExplicitSpecialization &&
5683            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5684          NewTemplateDecl->setMemberSpecialization();
5685          assert(OldTemplateDecl->isMemberSpecialization());
5686        }
5687
5688      } else {
5689        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5690          NewFD->setAccess(OldDecl->getAccess());
5691        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5692      }
5693    }
5694  }
5695
5696  // Semantic checking for this function declaration (in isolation).
5697  if (getLangOptions().CPlusPlus) {
5698    // C++-specific checks.
5699    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5700      CheckConstructor(Constructor);
5701    } else if (CXXDestructorDecl *Destructor =
5702                dyn_cast<CXXDestructorDecl>(NewFD)) {
5703      CXXRecordDecl *Record = Destructor->getParent();
5704      QualType ClassType = Context.getTypeDeclType(Record);
5705
5706      // FIXME: Shouldn't we be able to perform this check even when the class
5707      // type is dependent? Both gcc and edg can handle that.
5708      if (!ClassType->isDependentType()) {
5709        DeclarationName Name
5710          = Context.DeclarationNames.getCXXDestructorName(
5711                                        Context.getCanonicalType(ClassType));
5712        if (NewFD->getDeclName() != Name) {
5713          Diag(NewFD->getLocation(), diag::err_destructor_name);
5714          NewFD->setInvalidDecl();
5715          return Redeclaration;
5716        }
5717      }
5718    } else if (CXXConversionDecl *Conversion
5719               = dyn_cast<CXXConversionDecl>(NewFD)) {
5720      ActOnConversionDeclarator(Conversion);
5721    }
5722
5723    // Find any virtual functions that this function overrides.
5724    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5725      if (!Method->isFunctionTemplateSpecialization() &&
5726          !Method->getDescribedFunctionTemplate()) {
5727        if (AddOverriddenMethods(Method->getParent(), Method)) {
5728          // If the function was marked as "static", we have a problem.
5729          if (NewFD->getStorageClass() == SC_Static) {
5730            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5731              << NewFD->getDeclName();
5732            for (CXXMethodDecl::method_iterator
5733                      Overridden = Method->begin_overridden_methods(),
5734                   OverriddenEnd = Method->end_overridden_methods();
5735                 Overridden != OverriddenEnd;
5736                 ++Overridden) {
5737              Diag((*Overridden)->getLocation(),
5738                   diag::note_overridden_virtual_function);
5739            }
5740          }
5741        }
5742      }
5743    }
5744
5745    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5746    if (NewFD->isOverloadedOperator() &&
5747        CheckOverloadedOperatorDeclaration(NewFD)) {
5748      NewFD->setInvalidDecl();
5749      return Redeclaration;
5750    }
5751
5752    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5753    if (NewFD->getLiteralIdentifier() &&
5754        CheckLiteralOperatorDeclaration(NewFD)) {
5755      NewFD->setInvalidDecl();
5756      return Redeclaration;
5757    }
5758
5759    // In C++, check default arguments now that we have merged decls. Unless
5760    // the lexical context is the class, because in this case this is done
5761    // during delayed parsing anyway.
5762    if (!CurContext->isRecord())
5763      CheckCXXDefaultArguments(NewFD);
5764
5765    // If this function declares a builtin function, check the type of this
5766    // declaration against the expected type for the builtin.
5767    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5768      ASTContext::GetBuiltinTypeError Error;
5769      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5770      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5771        // The type of this function differs from the type of the builtin,
5772        // so forget about the builtin entirely.
5773        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5774      }
5775    }
5776  }
5777  return Redeclaration;
5778}
5779
5780void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5781  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5782  //   static or constexpr is ill-formed.
5783  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5784  //   shall not appear in a declaration of main.
5785  // static main is not an error under C99, but we should warn about it.
5786  if (FD->getStorageClass() == SC_Static)
5787    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5788         ? diag::err_static_main : diag::warn_static_main)
5789      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5790  if (FD->isInlineSpecified())
5791    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5792      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5793  if (FD->isConstexpr()) {
5794    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5795      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5796    FD->setConstexpr(false);
5797  }
5798
5799  QualType T = FD->getType();
5800  assert(T->isFunctionType() && "function decl is not of function type");
5801  const FunctionType* FT = T->getAs<FunctionType>();
5802
5803  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5804    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5805    FD->setInvalidDecl(true);
5806  }
5807
5808  // Treat protoless main() as nullary.
5809  if (isa<FunctionNoProtoType>(FT)) return;
5810
5811  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5812  unsigned nparams = FTP->getNumArgs();
5813  assert(FD->getNumParams() == nparams);
5814
5815  bool HasExtraParameters = (nparams > 3);
5816
5817  // Darwin passes an undocumented fourth argument of type char**.  If
5818  // other platforms start sprouting these, the logic below will start
5819  // getting shifty.
5820  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5821    HasExtraParameters = false;
5822
5823  if (HasExtraParameters) {
5824    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5825    FD->setInvalidDecl(true);
5826    nparams = 3;
5827  }
5828
5829  // FIXME: a lot of the following diagnostics would be improved
5830  // if we had some location information about types.
5831
5832  QualType CharPP =
5833    Context.getPointerType(Context.getPointerType(Context.CharTy));
5834  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5835
5836  for (unsigned i = 0; i < nparams; ++i) {
5837    QualType AT = FTP->getArgType(i);
5838
5839    bool mismatch = true;
5840
5841    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5842      mismatch = false;
5843    else if (Expected[i] == CharPP) {
5844      // As an extension, the following forms are okay:
5845      //   char const **
5846      //   char const * const *
5847      //   char * const *
5848
5849      QualifierCollector qs;
5850      const PointerType* PT;
5851      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5852          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5853          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5854        qs.removeConst();
5855        mismatch = !qs.empty();
5856      }
5857    }
5858
5859    if (mismatch) {
5860      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5861      // TODO: suggest replacing given type with expected type
5862      FD->setInvalidDecl(true);
5863    }
5864  }
5865
5866  if (nparams == 1 && !FD->isInvalidDecl()) {
5867    Diag(FD->getLocation(), diag::warn_main_one_arg);
5868  }
5869
5870  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5871    Diag(FD->getLocation(), diag::err_main_template_decl);
5872    FD->setInvalidDecl();
5873  }
5874}
5875
5876bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5877  // FIXME: Need strict checking.  In C89, we need to check for
5878  // any assignment, increment, decrement, function-calls, or
5879  // commas outside of a sizeof.  In C99, it's the same list,
5880  // except that the aforementioned are allowed in unevaluated
5881  // expressions.  Everything else falls under the
5882  // "may accept other forms of constant expressions" exception.
5883  // (We never end up here for C++, so the constant expression
5884  // rules there don't matter.)
5885  if (Init->isConstantInitializer(Context, false))
5886    return false;
5887  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5888    << Init->getSourceRange();
5889  return true;
5890}
5891
5892namespace {
5893  // Visits an initialization expression to see if OrigDecl is evaluated in
5894  // its own initialization and throws a warning if it does.
5895  class SelfReferenceChecker
5896      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5897    Sema &S;
5898    Decl *OrigDecl;
5899    bool isRecordType;
5900    bool isPODType;
5901
5902  public:
5903    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5904
5905    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5906                                                    S(S), OrigDecl(OrigDecl) {
5907      isPODType = false;
5908      isRecordType = false;
5909      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5910        isPODType = VD->getType().isPODType(S.Context);
5911        isRecordType = VD->getType()->isRecordType();
5912      }
5913    }
5914
5915    void VisitExpr(Expr *E) {
5916      if (isa<ObjCMessageExpr>(*E)) return;
5917      if (isRecordType) {
5918        Expr *expr = E;
5919        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5920          ValueDecl *VD = ME->getMemberDecl();
5921          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5922          expr = ME->getBase();
5923        }
5924        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5925          HandleDeclRefExpr(DRE);
5926          return;
5927        }
5928      }
5929      Inherited::VisitExpr(E);
5930    }
5931
5932    void VisitMemberExpr(MemberExpr *E) {
5933      if (E->getType()->canDecayToPointerType()) return;
5934      if (isa<FieldDecl>(E->getMemberDecl()))
5935        if (DeclRefExpr *DRE
5936              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5937          HandleDeclRefExpr(DRE);
5938          return;
5939        }
5940      Inherited::VisitMemberExpr(E);
5941    }
5942
5943    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5944      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5945          (isRecordType && E->getCastKind() == CK_NoOp)) {
5946        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5947        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5948          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5949        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5950          HandleDeclRefExpr(DRE);
5951          return;
5952        }
5953      }
5954      Inherited::VisitImplicitCastExpr(E);
5955    }
5956
5957    void VisitUnaryOperator(UnaryOperator *E) {
5958      // For POD record types, addresses of its own members are well-defined.
5959      if (isRecordType && isPODType) return;
5960      Inherited::VisitUnaryOperator(E);
5961    }
5962
5963    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5964      Decl* ReferenceDecl = DRE->getDecl();
5965      if (OrigDecl != ReferenceDecl) return;
5966      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5967                          Sema::NotForRedeclaration);
5968      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5969                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5970                              << Result.getLookupName()
5971                              << OrigDecl->getLocation()
5972                              << DRE->getSourceRange());
5973    }
5974  };
5975}
5976
5977/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5978void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5979  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5980}
5981
5982/// AddInitializerToDecl - Adds the initializer Init to the
5983/// declaration dcl. If DirectInit is true, this is C++ direct
5984/// initialization rather than copy initialization.
5985void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5986                                bool DirectInit, bool TypeMayContainAuto) {
5987  // If there is no declaration, there was an error parsing it.  Just ignore
5988  // the initializer.
5989  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5990    return;
5991
5992  // Check for self-references within variable initializers.
5993  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5994    // Variables declared within a function/method body are handled
5995    // by a dataflow analysis.
5996    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5997      CheckSelfReference(RealDecl, Init);
5998  }
5999  else {
6000    CheckSelfReference(RealDecl, Init);
6001  }
6002
6003  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6004    // With declarators parsed the way they are, the parser cannot
6005    // distinguish between a normal initializer and a pure-specifier.
6006    // Thus this grotesque test.
6007    IntegerLiteral *IL;
6008    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6009        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6010      CheckPureMethod(Method, Init->getSourceRange());
6011    else {
6012      Diag(Method->getLocation(), diag::err_member_function_initialization)
6013        << Method->getDeclName() << Init->getSourceRange();
6014      Method->setInvalidDecl();
6015    }
6016    return;
6017  }
6018
6019  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6020  if (!VDecl) {
6021    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6022    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6023    RealDecl->setInvalidDecl();
6024    return;
6025  }
6026
6027  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6028  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6029    TypeSourceInfo *DeducedType = 0;
6030    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
6031            DAR_Failed)
6032      DiagnoseAutoDeductionFailure(VDecl, Init);
6033    if (!DeducedType) {
6034      RealDecl->setInvalidDecl();
6035      return;
6036    }
6037    VDecl->setTypeSourceInfo(DeducedType);
6038    VDecl->setType(DeducedType->getType());
6039
6040    // In ARC, infer lifetime.
6041    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6042      VDecl->setInvalidDecl();
6043
6044    // If this is a redeclaration, check that the type we just deduced matches
6045    // the previously declared type.
6046    if (VarDecl *Old = VDecl->getPreviousDecl())
6047      MergeVarDeclTypes(VDecl, Old);
6048  }
6049
6050  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6051    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6052    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6053    VDecl->setInvalidDecl();
6054    return;
6055  }
6056
6057
6058  // A definition must end up with a complete type, which means it must be
6059  // complete with the restriction that an array type might be completed by the
6060  // initializer; note that later code assumes this restriction.
6061  QualType BaseDeclType = VDecl->getType();
6062  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6063    BaseDeclType = Array->getElementType();
6064  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6065                          diag::err_typecheck_decl_incomplete_type)) {
6066    RealDecl->setInvalidDecl();
6067    return;
6068  }
6069
6070  // The variable can not have an abstract class type.
6071  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6072                             diag::err_abstract_type_in_decl,
6073                             AbstractVariableType))
6074    VDecl->setInvalidDecl();
6075
6076  const VarDecl *Def;
6077  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6078    Diag(VDecl->getLocation(), diag::err_redefinition)
6079      << VDecl->getDeclName();
6080    Diag(Def->getLocation(), diag::note_previous_definition);
6081    VDecl->setInvalidDecl();
6082    return;
6083  }
6084
6085  const VarDecl* PrevInit = 0;
6086  if (getLangOptions().CPlusPlus) {
6087    // C++ [class.static.data]p4
6088    //   If a static data member is of const integral or const
6089    //   enumeration type, its declaration in the class definition can
6090    //   specify a constant-initializer which shall be an integral
6091    //   constant expression (5.19). In that case, the member can appear
6092    //   in integral constant expressions. The member shall still be
6093    //   defined in a namespace scope if it is used in the program and the
6094    //   namespace scope definition shall not contain an initializer.
6095    //
6096    // We already performed a redefinition check above, but for static
6097    // data members we also need to check whether there was an in-class
6098    // declaration with an initializer.
6099    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6100      Diag(VDecl->getLocation(), diag::err_redefinition)
6101        << VDecl->getDeclName();
6102      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6103      return;
6104    }
6105
6106    if (VDecl->hasLocalStorage())
6107      getCurFunction()->setHasBranchProtectedScope();
6108
6109    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6110      VDecl->setInvalidDecl();
6111      return;
6112    }
6113  }
6114
6115  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6116  // a kernel function cannot be initialized."
6117  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6118    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6119    VDecl->setInvalidDecl();
6120    return;
6121  }
6122
6123  // Get the decls type and save a reference for later, since
6124  // CheckInitializerTypes may change it.
6125  QualType DclT = VDecl->getType(), SavT = DclT;
6126
6127  // Perform the initialization.
6128  if (!VDecl->isInvalidDecl()) {
6129    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6130    InitializationKind Kind
6131      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6132                                                      Init->getLocStart(),
6133                                                      Init->getLocEnd())
6134                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6135                                                    Init->getLocStart());
6136
6137    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6138    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6139                                              MultiExprArg(*this, &Init, 1),
6140                                              &DclT);
6141    if (Result.isInvalid()) {
6142      VDecl->setInvalidDecl();
6143      return;
6144    }
6145
6146    Init = Result.takeAs<Expr>();
6147  }
6148
6149  // If the type changed, it means we had an incomplete type that was
6150  // completed by the initializer. For example:
6151  //   int ary[] = { 1, 3, 5 };
6152  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6153  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6154    VDecl->setType(DclT);
6155    Init->setType(DclT.getNonReferenceType());
6156  }
6157
6158  // Check any implicit conversions within the expression.
6159  CheckImplicitConversions(Init, VDecl->getLocation());
6160
6161  if (!VDecl->isInvalidDecl())
6162    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6163
6164  Init = MaybeCreateExprWithCleanups(Init);
6165  // Attach the initializer to the decl.
6166  VDecl->setInit(Init);
6167
6168  if (VDecl->isLocalVarDecl()) {
6169    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6170    // static storage duration shall be constant expressions or string literals.
6171    // C++ does not have this restriction.
6172    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6173        VDecl->getStorageClass() == SC_Static)
6174      CheckForConstantInitializer(Init, DclT);
6175  } else if (VDecl->isStaticDataMember() &&
6176             VDecl->getLexicalDeclContext()->isRecord()) {
6177    // This is an in-class initialization for a static data member, e.g.,
6178    //
6179    // struct S {
6180    //   static const int value = 17;
6181    // };
6182
6183    // C++ [class.mem]p4:
6184    //   A member-declarator can contain a constant-initializer only
6185    //   if it declares a static member (9.4) of const integral or
6186    //   const enumeration type, see 9.4.2.
6187    //
6188    // C++11 [class.static.data]p3:
6189    //   If a non-volatile const static data member is of integral or
6190    //   enumeration type, its declaration in the class definition can
6191    //   specify a brace-or-equal-initializer in which every initalizer-clause
6192    //   that is an assignment-expression is a constant expression. A static
6193    //   data member of literal type can be declared in the class definition
6194    //   with the constexpr specifier; if so, its declaration shall specify a
6195    //   brace-or-equal-initializer in which every initializer-clause that is
6196    //   an assignment-expression is a constant expression.
6197
6198    // Do nothing on dependent types.
6199    if (DclT->isDependentType()) {
6200
6201    // Allow any 'static constexpr' members, whether or not they are of literal
6202    // type. We separately check that the initializer is a constant expression,
6203    // which implicitly requires the member to be of literal type.
6204    } else if (VDecl->isConstexpr()) {
6205
6206    // Require constness.
6207    } else if (!DclT.isConstQualified()) {
6208      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6209        << Init->getSourceRange();
6210      VDecl->setInvalidDecl();
6211
6212    // We allow integer constant expressions in all cases.
6213    } else if (DclT->isIntegralOrEnumerationType()) {
6214      // Check whether the expression is a constant expression.
6215      SourceLocation Loc;
6216      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6217        // In C++11, a non-constexpr const static data member with an
6218        // in-class initializer cannot be volatile.
6219        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6220      else if (Init->isValueDependent())
6221        ; // Nothing to check.
6222      else if (Init->isIntegerConstantExpr(Context, &Loc))
6223        ; // Ok, it's an ICE!
6224      else if (Init->isEvaluatable(Context)) {
6225        // If we can constant fold the initializer through heroics, accept it,
6226        // but report this as a use of an extension for -pedantic.
6227        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6228          << Init->getSourceRange();
6229      } else {
6230        // Otherwise, this is some crazy unknown case.  Report the issue at the
6231        // location provided by the isIntegerConstantExpr failed check.
6232        Diag(Loc, diag::err_in_class_initializer_non_constant)
6233          << Init->getSourceRange();
6234        VDecl->setInvalidDecl();
6235      }
6236
6237    // We allow foldable floating-point constants as an extension.
6238    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6239      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6240        << DclT << Init->getSourceRange();
6241      if (getLangOptions().CPlusPlus0x)
6242        Diag(VDecl->getLocation(),
6243             diag::note_in_class_initializer_float_type_constexpr)
6244          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6245
6246      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6247        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6248          << Init->getSourceRange();
6249        VDecl->setInvalidDecl();
6250      }
6251
6252    // Suggest adding 'constexpr' in C++11 for literal types.
6253    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6254      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6255        << DclT << Init->getSourceRange()
6256        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6257      VDecl->setConstexpr(true);
6258
6259    } else {
6260      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6261        << DclT << Init->getSourceRange();
6262      VDecl->setInvalidDecl();
6263    }
6264  } else if (VDecl->isFileVarDecl()) {
6265    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6266        (!getLangOptions().CPlusPlus ||
6267         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6268      Diag(VDecl->getLocation(), diag::warn_extern_init);
6269
6270    // C99 6.7.8p4. All file scoped initializers need to be constant.
6271    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6272      CheckForConstantInitializer(Init, DclT);
6273  }
6274
6275  CheckCompleteVariableDeclaration(VDecl);
6276}
6277
6278/// ActOnInitializerError - Given that there was an error parsing an
6279/// initializer for the given declaration, try to return to some form
6280/// of sanity.
6281void Sema::ActOnInitializerError(Decl *D) {
6282  // Our main concern here is re-establishing invariants like "a
6283  // variable's type is either dependent or complete".
6284  if (!D || D->isInvalidDecl()) return;
6285
6286  VarDecl *VD = dyn_cast<VarDecl>(D);
6287  if (!VD) return;
6288
6289  // Auto types are meaningless if we can't make sense of the initializer.
6290  if (ParsingInitForAutoVars.count(D)) {
6291    D->setInvalidDecl();
6292    return;
6293  }
6294
6295  QualType Ty = VD->getType();
6296  if (Ty->isDependentType()) return;
6297
6298  // Require a complete type.
6299  if (RequireCompleteType(VD->getLocation(),
6300                          Context.getBaseElementType(Ty),
6301                          diag::err_typecheck_decl_incomplete_type)) {
6302    VD->setInvalidDecl();
6303    return;
6304  }
6305
6306  // Require an abstract type.
6307  if (RequireNonAbstractType(VD->getLocation(), Ty,
6308                             diag::err_abstract_type_in_decl,
6309                             AbstractVariableType)) {
6310    VD->setInvalidDecl();
6311    return;
6312  }
6313
6314  // Don't bother complaining about constructors or destructors,
6315  // though.
6316}
6317
6318void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6319                                  bool TypeMayContainAuto) {
6320  // If there is no declaration, there was an error parsing it. Just ignore it.
6321  if (RealDecl == 0)
6322    return;
6323
6324  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6325    QualType Type = Var->getType();
6326
6327    // C++11 [dcl.spec.auto]p3
6328    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6329      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6330        << Var->getDeclName() << Type;
6331      Var->setInvalidDecl();
6332      return;
6333    }
6334
6335    // C++11 [class.static.data]p3: A static data member can be declared with
6336    // the constexpr specifier; if so, its declaration shall specify
6337    // a brace-or-equal-initializer.
6338    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6339    // the definition of a variable [...] or the declaration of a static data
6340    // member.
6341    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6342      if (Var->isStaticDataMember())
6343        Diag(Var->getLocation(),
6344             diag::err_constexpr_static_mem_var_requires_init)
6345          << Var->getDeclName();
6346      else
6347        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6348      Var->setInvalidDecl();
6349      return;
6350    }
6351
6352    switch (Var->isThisDeclarationADefinition()) {
6353    case VarDecl::Definition:
6354      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6355        break;
6356
6357      // We have an out-of-line definition of a static data member
6358      // that has an in-class initializer, so we type-check this like
6359      // a declaration.
6360      //
6361      // Fall through
6362
6363    case VarDecl::DeclarationOnly:
6364      // It's only a declaration.
6365
6366      // Block scope. C99 6.7p7: If an identifier for an object is
6367      // declared with no linkage (C99 6.2.2p6), the type for the
6368      // object shall be complete.
6369      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6370          !Var->getLinkage() && !Var->isInvalidDecl() &&
6371          RequireCompleteType(Var->getLocation(), Type,
6372                              diag::err_typecheck_decl_incomplete_type))
6373        Var->setInvalidDecl();
6374
6375      // Make sure that the type is not abstract.
6376      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6377          RequireNonAbstractType(Var->getLocation(), Type,
6378                                 diag::err_abstract_type_in_decl,
6379                                 AbstractVariableType))
6380        Var->setInvalidDecl();
6381      return;
6382
6383    case VarDecl::TentativeDefinition:
6384      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6385      // object that has file scope without an initializer, and without a
6386      // storage-class specifier or with the storage-class specifier "static",
6387      // constitutes a tentative definition. Note: A tentative definition with
6388      // external linkage is valid (C99 6.2.2p5).
6389      if (!Var->isInvalidDecl()) {
6390        if (const IncompleteArrayType *ArrayT
6391                                    = Context.getAsIncompleteArrayType(Type)) {
6392          if (RequireCompleteType(Var->getLocation(),
6393                                  ArrayT->getElementType(),
6394                                  diag::err_illegal_decl_array_incomplete_type))
6395            Var->setInvalidDecl();
6396        } else if (Var->getStorageClass() == SC_Static) {
6397          // C99 6.9.2p3: If the declaration of an identifier for an object is
6398          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6399          // declared type shall not be an incomplete type.
6400          // NOTE: code such as the following
6401          //     static struct s;
6402          //     struct s { int a; };
6403          // is accepted by gcc. Hence here we issue a warning instead of
6404          // an error and we do not invalidate the static declaration.
6405          // NOTE: to avoid multiple warnings, only check the first declaration.
6406          if (Var->getPreviousDecl() == 0)
6407            RequireCompleteType(Var->getLocation(), Type,
6408                                diag::ext_typecheck_decl_incomplete_type);
6409        }
6410      }
6411
6412      // Record the tentative definition; we're done.
6413      if (!Var->isInvalidDecl())
6414        TentativeDefinitions.push_back(Var);
6415      return;
6416    }
6417
6418    // Provide a specific diagnostic for uninitialized variable
6419    // definitions with incomplete array type.
6420    if (Type->isIncompleteArrayType()) {
6421      Diag(Var->getLocation(),
6422           diag::err_typecheck_incomplete_array_needs_initializer);
6423      Var->setInvalidDecl();
6424      return;
6425    }
6426
6427    // Provide a specific diagnostic for uninitialized variable
6428    // definitions with reference type.
6429    if (Type->isReferenceType()) {
6430      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6431        << Var->getDeclName()
6432        << SourceRange(Var->getLocation(), Var->getLocation());
6433      Var->setInvalidDecl();
6434      return;
6435    }
6436
6437    // Do not attempt to type-check the default initializer for a
6438    // variable with dependent type.
6439    if (Type->isDependentType())
6440      return;
6441
6442    if (Var->isInvalidDecl())
6443      return;
6444
6445    if (RequireCompleteType(Var->getLocation(),
6446                            Context.getBaseElementType(Type),
6447                            diag::err_typecheck_decl_incomplete_type)) {
6448      Var->setInvalidDecl();
6449      return;
6450    }
6451
6452    // The variable can not have an abstract class type.
6453    if (RequireNonAbstractType(Var->getLocation(), Type,
6454                               diag::err_abstract_type_in_decl,
6455                               AbstractVariableType)) {
6456      Var->setInvalidDecl();
6457      return;
6458    }
6459
6460    // Check for jumps past the implicit initializer.  C++0x
6461    // clarifies that this applies to a "variable with automatic
6462    // storage duration", not a "local variable".
6463    // C++11 [stmt.dcl]p3
6464    //   A program that jumps from a point where a variable with automatic
6465    //   storage duration is not in scope to a point where it is in scope is
6466    //   ill-formed unless the variable has scalar type, class type with a
6467    //   trivial default constructor and a trivial destructor, a cv-qualified
6468    //   version of one of these types, or an array of one of the preceding
6469    //   types and is declared without an initializer.
6470    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6471      if (const RecordType *Record
6472            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6473        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6474        // Mark the function for further checking even if the looser rules of
6475        // C++11 do not require such checks, so that we can diagnose
6476        // incompatibilities with C++98.
6477        if (!CXXRecord->isPOD())
6478          getCurFunction()->setHasBranchProtectedScope();
6479      }
6480    }
6481
6482    // C++03 [dcl.init]p9:
6483    //   If no initializer is specified for an object, and the
6484    //   object is of (possibly cv-qualified) non-POD class type (or
6485    //   array thereof), the object shall be default-initialized; if
6486    //   the object is of const-qualified type, the underlying class
6487    //   type shall have a user-declared default
6488    //   constructor. Otherwise, if no initializer is specified for
6489    //   a non- static object, the object and its subobjects, if
6490    //   any, have an indeterminate initial value); if the object
6491    //   or any of its subobjects are of const-qualified type, the
6492    //   program is ill-formed.
6493    // C++0x [dcl.init]p11:
6494    //   If no initializer is specified for an object, the object is
6495    //   default-initialized; [...].
6496    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6497    InitializationKind Kind
6498      = InitializationKind::CreateDefault(Var->getLocation());
6499
6500    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6501    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6502                                      MultiExprArg(*this, 0, 0));
6503    if (Init.isInvalid())
6504      Var->setInvalidDecl();
6505    else if (Init.get())
6506      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6507
6508    CheckCompleteVariableDeclaration(Var);
6509  }
6510}
6511
6512void Sema::ActOnCXXForRangeDecl(Decl *D) {
6513  VarDecl *VD = dyn_cast<VarDecl>(D);
6514  if (!VD) {
6515    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6516    D->setInvalidDecl();
6517    return;
6518  }
6519
6520  VD->setCXXForRangeDecl(true);
6521
6522  // for-range-declaration cannot be given a storage class specifier.
6523  int Error = -1;
6524  switch (VD->getStorageClassAsWritten()) {
6525  case SC_None:
6526    break;
6527  case SC_Extern:
6528    Error = 0;
6529    break;
6530  case SC_Static:
6531    Error = 1;
6532    break;
6533  case SC_PrivateExtern:
6534    Error = 2;
6535    break;
6536  case SC_Auto:
6537    Error = 3;
6538    break;
6539  case SC_Register:
6540    Error = 4;
6541    break;
6542  case SC_OpenCLWorkGroupLocal:
6543    llvm_unreachable("Unexpected storage class");
6544  }
6545  if (VD->isConstexpr())
6546    Error = 5;
6547  if (Error != -1) {
6548    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6549      << VD->getDeclName() << Error;
6550    D->setInvalidDecl();
6551  }
6552}
6553
6554void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6555  if (var->isInvalidDecl()) return;
6556
6557  // In ARC, don't allow jumps past the implicit initialization of a
6558  // local retaining variable.
6559  if (getLangOptions().ObjCAutoRefCount &&
6560      var->hasLocalStorage()) {
6561    switch (var->getType().getObjCLifetime()) {
6562    case Qualifiers::OCL_None:
6563    case Qualifiers::OCL_ExplicitNone:
6564    case Qualifiers::OCL_Autoreleasing:
6565      break;
6566
6567    case Qualifiers::OCL_Weak:
6568    case Qualifiers::OCL_Strong:
6569      getCurFunction()->setHasBranchProtectedScope();
6570      break;
6571    }
6572  }
6573
6574  // All the following checks are C++ only.
6575  if (!getLangOptions().CPlusPlus) return;
6576
6577  QualType baseType = Context.getBaseElementType(var->getType());
6578  if (baseType->isDependentType()) return;
6579
6580  // __block variables might require us to capture a copy-initializer.
6581  if (var->hasAttr<BlocksAttr>()) {
6582    // It's currently invalid to ever have a __block variable with an
6583    // array type; should we diagnose that here?
6584
6585    // Regardless, we don't want to ignore array nesting when
6586    // constructing this copy.
6587    QualType type = var->getType();
6588
6589    if (type->isStructureOrClassType()) {
6590      SourceLocation poi = var->getLocation();
6591      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6592      ExprResult result =
6593        PerformCopyInitialization(
6594                        InitializedEntity::InitializeBlock(poi, type, false),
6595                                  poi, Owned(varRef));
6596      if (!result.isInvalid()) {
6597        result = MaybeCreateExprWithCleanups(result);
6598        Expr *init = result.takeAs<Expr>();
6599        Context.setBlockVarCopyInits(var, init);
6600      }
6601    }
6602  }
6603
6604  Expr *Init = var->getInit();
6605  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6606
6607  if (!var->getDeclContext()->isDependentContext() && Init) {
6608    if (IsGlobal && !var->isConstexpr() &&
6609        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6610                                            var->getLocation())
6611          != DiagnosticsEngine::Ignored &&
6612        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6613      Diag(var->getLocation(), diag::warn_global_constructor)
6614        << Init->getSourceRange();
6615
6616    if (var->isConstexpr()) {
6617      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6618      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6619        SourceLocation DiagLoc = var->getLocation();
6620        // If the note doesn't add any useful information other than a source
6621        // location, fold it into the primary diagnostic.
6622        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6623              diag::note_invalid_subexpr_in_const_expr) {
6624          DiagLoc = Notes[0].first;
6625          Notes.clear();
6626        }
6627        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6628          << var << Init->getSourceRange();
6629        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6630          Diag(Notes[I].first, Notes[I].second);
6631      }
6632    } else if (var->isUsableInConstantExpressions()) {
6633      // Check whether the initializer of a const variable of integral or
6634      // enumeration type is an ICE now, since we can't tell whether it was
6635      // initialized by a constant expression if we check later.
6636      var->checkInitIsICE();
6637    }
6638  }
6639
6640  // Require the destructor.
6641  if (const RecordType *recordType = baseType->getAs<RecordType>())
6642    FinalizeVarWithDestructor(var, recordType);
6643}
6644
6645/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6646/// any semantic actions necessary after any initializer has been attached.
6647void
6648Sema::FinalizeDeclaration(Decl *ThisDecl) {
6649  // Note that we are no longer parsing the initializer for this declaration.
6650  ParsingInitForAutoVars.erase(ThisDecl);
6651}
6652
6653Sema::DeclGroupPtrTy
6654Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6655                              Decl **Group, unsigned NumDecls) {
6656  SmallVector<Decl*, 8> Decls;
6657
6658  if (DS.isTypeSpecOwned())
6659    Decls.push_back(DS.getRepAsDecl());
6660
6661  for (unsigned i = 0; i != NumDecls; ++i)
6662    if (Decl *D = Group[i])
6663      Decls.push_back(D);
6664
6665  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6666                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6667}
6668
6669/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6670/// group, performing any necessary semantic checking.
6671Sema::DeclGroupPtrTy
6672Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6673                           bool TypeMayContainAuto) {
6674  // C++0x [dcl.spec.auto]p7:
6675  //   If the type deduced for the template parameter U is not the same in each
6676  //   deduction, the program is ill-formed.
6677  // FIXME: When initializer-list support is added, a distinction is needed
6678  // between the deduced type U and the deduced type which 'auto' stands for.
6679  //   auto a = 0, b = { 1, 2, 3 };
6680  // is legal because the deduced type U is 'int' in both cases.
6681  if (TypeMayContainAuto && NumDecls > 1) {
6682    QualType Deduced;
6683    CanQualType DeducedCanon;
6684    VarDecl *DeducedDecl = 0;
6685    for (unsigned i = 0; i != NumDecls; ++i) {
6686      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6687        AutoType *AT = D->getType()->getContainedAutoType();
6688        // Don't reissue diagnostics when instantiating a template.
6689        if (AT && D->isInvalidDecl())
6690          break;
6691        if (AT && AT->isDeduced()) {
6692          QualType U = AT->getDeducedType();
6693          CanQualType UCanon = Context.getCanonicalType(U);
6694          if (Deduced.isNull()) {
6695            Deduced = U;
6696            DeducedCanon = UCanon;
6697            DeducedDecl = D;
6698          } else if (DeducedCanon != UCanon) {
6699            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6700                 diag::err_auto_different_deductions)
6701              << Deduced << DeducedDecl->getDeclName()
6702              << U << D->getDeclName()
6703              << DeducedDecl->getInit()->getSourceRange()
6704              << D->getInit()->getSourceRange();
6705            D->setInvalidDecl();
6706            break;
6707          }
6708        }
6709      }
6710    }
6711  }
6712
6713  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6714}
6715
6716
6717/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6718/// to introduce parameters into function prototype scope.
6719Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6720  const DeclSpec &DS = D.getDeclSpec();
6721
6722  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6723  // C++03 [dcl.stc]p2 also permits 'auto'.
6724  VarDecl::StorageClass StorageClass = SC_None;
6725  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6726  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6727    StorageClass = SC_Register;
6728    StorageClassAsWritten = SC_Register;
6729  } else if (getLangOptions().CPlusPlus &&
6730             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6731    StorageClass = SC_Auto;
6732    StorageClassAsWritten = SC_Auto;
6733  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6734    Diag(DS.getStorageClassSpecLoc(),
6735         diag::err_invalid_storage_class_in_func_decl);
6736    D.getMutableDeclSpec().ClearStorageClassSpecs();
6737  }
6738
6739  if (D.getDeclSpec().isThreadSpecified())
6740    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6741  if (D.getDeclSpec().isConstexprSpecified())
6742    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6743      << 0;
6744
6745  DiagnoseFunctionSpecifiers(D);
6746
6747  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6748  QualType parmDeclType = TInfo->getType();
6749
6750  if (getLangOptions().CPlusPlus) {
6751    // Check that there are no default arguments inside the type of this
6752    // parameter.
6753    CheckExtraCXXDefaultArguments(D);
6754
6755    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6756    if (D.getCXXScopeSpec().isSet()) {
6757      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6758        << D.getCXXScopeSpec().getRange();
6759      D.getCXXScopeSpec().clear();
6760    }
6761  }
6762
6763  // Ensure we have a valid name
6764  IdentifierInfo *II = 0;
6765  if (D.hasName()) {
6766    II = D.getIdentifier();
6767    if (!II) {
6768      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6769        << GetNameForDeclarator(D).getName().getAsString();
6770      D.setInvalidType(true);
6771    }
6772  }
6773
6774  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6775  if (II) {
6776    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6777                   ForRedeclaration);
6778    LookupName(R, S);
6779    if (R.isSingleResult()) {
6780      NamedDecl *PrevDecl = R.getFoundDecl();
6781      if (PrevDecl->isTemplateParameter()) {
6782        // Maybe we will complain about the shadowed template parameter.
6783        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6784        // Just pretend that we didn't see the previous declaration.
6785        PrevDecl = 0;
6786      } else if (S->isDeclScope(PrevDecl)) {
6787        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6788        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6789
6790        // Recover by removing the name
6791        II = 0;
6792        D.SetIdentifier(0, D.getIdentifierLoc());
6793        D.setInvalidType(true);
6794      }
6795    }
6796  }
6797
6798  // Temporarily put parameter variables in the translation unit, not
6799  // the enclosing context.  This prevents them from accidentally
6800  // looking like class members in C++.
6801  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6802                                    D.getSourceRange().getBegin(),
6803                                    D.getIdentifierLoc(), II,
6804                                    parmDeclType, TInfo,
6805                                    StorageClass, StorageClassAsWritten);
6806
6807  if (D.isInvalidType())
6808    New->setInvalidDecl();
6809
6810  assert(S->isFunctionPrototypeScope());
6811  assert(S->getFunctionPrototypeDepth() >= 1);
6812  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6813                    S->getNextFunctionPrototypeIndex());
6814
6815  // Add the parameter declaration into this scope.
6816  S->AddDecl(New);
6817  if (II)
6818    IdResolver.AddDecl(New);
6819
6820  ProcessDeclAttributes(S, New, D);
6821
6822  if (D.getDeclSpec().isModulePrivateSpecified())
6823    Diag(New->getLocation(), diag::err_module_private_local)
6824      << 1 << New->getDeclName()
6825      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6826      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6827
6828  if (New->hasAttr<BlocksAttr>()) {
6829    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6830  }
6831  return New;
6832}
6833
6834/// \brief Synthesizes a variable for a parameter arising from a
6835/// typedef.
6836ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6837                                              SourceLocation Loc,
6838                                              QualType T) {
6839  /* FIXME: setting StartLoc == Loc.
6840     Would it be worth to modify callers so as to provide proper source
6841     location for the unnamed parameters, embedding the parameter's type? */
6842  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6843                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6844                                           SC_None, SC_None, 0);
6845  Param->setImplicit();
6846  return Param;
6847}
6848
6849void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6850                                    ParmVarDecl * const *ParamEnd) {
6851  // Don't diagnose unused-parameter errors in template instantiations; we
6852  // will already have done so in the template itself.
6853  if (!ActiveTemplateInstantiations.empty())
6854    return;
6855
6856  for (; Param != ParamEnd; ++Param) {
6857    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6858        !(*Param)->hasAttr<UnusedAttr>()) {
6859      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6860        << (*Param)->getDeclName();
6861    }
6862  }
6863}
6864
6865void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6866                                                  ParmVarDecl * const *ParamEnd,
6867                                                  QualType ReturnTy,
6868                                                  NamedDecl *D) {
6869  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6870    return;
6871
6872  // Warn if the return value is pass-by-value and larger than the specified
6873  // threshold.
6874  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6875    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6876    if (Size > LangOpts.NumLargeByValueCopy)
6877      Diag(D->getLocation(), diag::warn_return_value_size)
6878          << D->getDeclName() << Size;
6879  }
6880
6881  // Warn if any parameter is pass-by-value and larger than the specified
6882  // threshold.
6883  for (; Param != ParamEnd; ++Param) {
6884    QualType T = (*Param)->getType();
6885    if (T->isDependentType() || !T.isPODType(Context))
6886      continue;
6887    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6888    if (Size > LangOpts.NumLargeByValueCopy)
6889      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6890          << (*Param)->getDeclName() << Size;
6891  }
6892}
6893
6894ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6895                                  SourceLocation NameLoc, IdentifierInfo *Name,
6896                                  QualType T, TypeSourceInfo *TSInfo,
6897                                  VarDecl::StorageClass StorageClass,
6898                                  VarDecl::StorageClass StorageClassAsWritten) {
6899  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6900  if (getLangOptions().ObjCAutoRefCount &&
6901      T.getObjCLifetime() == Qualifiers::OCL_None &&
6902      T->isObjCLifetimeType()) {
6903
6904    Qualifiers::ObjCLifetime lifetime;
6905
6906    // Special cases for arrays:
6907    //   - if it's const, use __unsafe_unretained
6908    //   - otherwise, it's an error
6909    if (T->isArrayType()) {
6910      if (!T.isConstQualified()) {
6911        DelayedDiagnostics.add(
6912            sema::DelayedDiagnostic::makeForbiddenType(
6913            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6914      }
6915      lifetime = Qualifiers::OCL_ExplicitNone;
6916    } else {
6917      lifetime = T->getObjCARCImplicitLifetime();
6918    }
6919    T = Context.getLifetimeQualifiedType(T, lifetime);
6920  }
6921
6922  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6923                                         Context.getAdjustedParameterType(T),
6924                                         TSInfo,
6925                                         StorageClass, StorageClassAsWritten,
6926                                         0);
6927
6928  // Parameters can not be abstract class types.
6929  // For record types, this is done by the AbstractClassUsageDiagnoser once
6930  // the class has been completely parsed.
6931  if (!CurContext->isRecord() &&
6932      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6933                             AbstractParamType))
6934    New->setInvalidDecl();
6935
6936  // Parameter declarators cannot be interface types. All ObjC objects are
6937  // passed by reference.
6938  if (T->isObjCObjectType()) {
6939    Diag(NameLoc,
6940         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6941      << FixItHint::CreateInsertion(NameLoc, "*");
6942    T = Context.getObjCObjectPointerType(T);
6943    New->setType(T);
6944  }
6945
6946  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6947  // duration shall not be qualified by an address-space qualifier."
6948  // Since all parameters have automatic store duration, they can not have
6949  // an address space.
6950  if (T.getAddressSpace() != 0) {
6951    Diag(NameLoc, diag::err_arg_with_address_space);
6952    New->setInvalidDecl();
6953  }
6954
6955  return New;
6956}
6957
6958void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6959                                           SourceLocation LocAfterDecls) {
6960  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6961
6962  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6963  // for a K&R function.
6964  if (!FTI.hasPrototype) {
6965    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6966      --i;
6967      if (FTI.ArgInfo[i].Param == 0) {
6968        llvm::SmallString<256> Code;
6969        llvm::raw_svector_ostream(Code) << "  int "
6970                                        << FTI.ArgInfo[i].Ident->getName()
6971                                        << ";\n";
6972        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6973          << FTI.ArgInfo[i].Ident
6974          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6975
6976        // Implicitly declare the argument as type 'int' for lack of a better
6977        // type.
6978        AttributeFactory attrs;
6979        DeclSpec DS(attrs);
6980        const char* PrevSpec; // unused
6981        unsigned DiagID; // unused
6982        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6983                           PrevSpec, DiagID);
6984        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6985        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6986        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6987      }
6988    }
6989  }
6990}
6991
6992Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6993                                         Declarator &D) {
6994  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6995  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6996  Scope *ParentScope = FnBodyScope->getParent();
6997
6998  D.setFunctionDefinitionKind(FDK_Definition);
6999  Decl *DP = HandleDeclarator(ParentScope, D,
7000                              MultiTemplateParamsArg(*this));
7001  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7002}
7003
7004static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7005  // Don't warn about invalid declarations.
7006  if (FD->isInvalidDecl())
7007    return false;
7008
7009  // Or declarations that aren't global.
7010  if (!FD->isGlobal())
7011    return false;
7012
7013  // Don't warn about C++ member functions.
7014  if (isa<CXXMethodDecl>(FD))
7015    return false;
7016
7017  // Don't warn about 'main'.
7018  if (FD->isMain())
7019    return false;
7020
7021  // Don't warn about inline functions.
7022  if (FD->isInlined())
7023    return false;
7024
7025  // Don't warn about function templates.
7026  if (FD->getDescribedFunctionTemplate())
7027    return false;
7028
7029  // Don't warn about function template specializations.
7030  if (FD->isFunctionTemplateSpecialization())
7031    return false;
7032
7033  bool MissingPrototype = true;
7034  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7035       Prev; Prev = Prev->getPreviousDecl()) {
7036    // Ignore any declarations that occur in function or method
7037    // scope, because they aren't visible from the header.
7038    if (Prev->getDeclContext()->isFunctionOrMethod())
7039      continue;
7040
7041    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7042    break;
7043  }
7044
7045  return MissingPrototype;
7046}
7047
7048void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7049  // Don't complain if we're in GNU89 mode and the previous definition
7050  // was an extern inline function.
7051  const FunctionDecl *Definition;
7052  if (FD->isDefined(Definition) &&
7053      !canRedefineFunction(Definition, getLangOptions())) {
7054    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7055        Definition->getStorageClass() == SC_Extern)
7056      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7057        << FD->getDeclName() << getLangOptions().CPlusPlus;
7058    else
7059      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7060    Diag(Definition->getLocation(), diag::note_previous_definition);
7061  }
7062}
7063
7064Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7065  // Clear the last template instantiation error context.
7066  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7067
7068  if (!D)
7069    return D;
7070  FunctionDecl *FD = 0;
7071
7072  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7073    FD = FunTmpl->getTemplatedDecl();
7074  else
7075    FD = cast<FunctionDecl>(D);
7076
7077  // Enter a new function scope
7078  PushFunctionScope();
7079
7080  // See if this is a redefinition.
7081  if (!FD->isLateTemplateParsed())
7082    CheckForFunctionRedefinition(FD);
7083
7084  // Builtin functions cannot be defined.
7085  if (unsigned BuiltinID = FD->getBuiltinID()) {
7086    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7087      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7088      FD->setInvalidDecl();
7089    }
7090  }
7091
7092  // The return type of a function definition must be complete
7093  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7094  QualType ResultType = FD->getResultType();
7095  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7096      !FD->isInvalidDecl() &&
7097      RequireCompleteType(FD->getLocation(), ResultType,
7098                          diag::err_func_def_incomplete_result))
7099    FD->setInvalidDecl();
7100
7101  // GNU warning -Wmissing-prototypes:
7102  //   Warn if a global function is defined without a previous
7103  //   prototype declaration. This warning is issued even if the
7104  //   definition itself provides a prototype. The aim is to detect
7105  //   global functions that fail to be declared in header files.
7106  if (ShouldWarnAboutMissingPrototype(FD))
7107    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7108
7109  if (FnBodyScope)
7110    PushDeclContext(FnBodyScope, FD);
7111
7112  // Check the validity of our function parameters
7113  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7114                           /*CheckParameterNames=*/true);
7115
7116  // Introduce our parameters into the function scope
7117  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7118    ParmVarDecl *Param = FD->getParamDecl(p);
7119    Param->setOwningFunction(FD);
7120
7121    // If this has an identifier, add it to the scope stack.
7122    if (Param->getIdentifier() && FnBodyScope) {
7123      CheckShadow(FnBodyScope, Param);
7124
7125      PushOnScopeChains(Param, FnBodyScope);
7126    }
7127  }
7128
7129  // Checking attributes of current function definition
7130  // dllimport attribute.
7131  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7132  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7133    // dllimport attribute cannot be directly applied to definition.
7134    // Microsoft accepts dllimport for functions defined within class scope.
7135    if (!DA->isInherited() &&
7136        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7137      Diag(FD->getLocation(),
7138           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7139        << "dllimport";
7140      FD->setInvalidDecl();
7141      return FD;
7142    }
7143
7144    // Visual C++ appears to not think this is an issue, so only issue
7145    // a warning when Microsoft extensions are disabled.
7146    if (!LangOpts.MicrosoftExt) {
7147      // If a symbol previously declared dllimport is later defined, the
7148      // attribute is ignored in subsequent references, and a warning is
7149      // emitted.
7150      Diag(FD->getLocation(),
7151           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7152        << FD->getName() << "dllimport";
7153    }
7154  }
7155  return FD;
7156}
7157
7158/// \brief Given the set of return statements within a function body,
7159/// compute the variables that are subject to the named return value
7160/// optimization.
7161///
7162/// Each of the variables that is subject to the named return value
7163/// optimization will be marked as NRVO variables in the AST, and any
7164/// return statement that has a marked NRVO variable as its NRVO candidate can
7165/// use the named return value optimization.
7166///
7167/// This function applies a very simplistic algorithm for NRVO: if every return
7168/// statement in the function has the same NRVO candidate, that candidate is
7169/// the NRVO variable.
7170///
7171/// FIXME: Employ a smarter algorithm that accounts for multiple return
7172/// statements and the lifetimes of the NRVO candidates. We should be able to
7173/// find a maximal set of NRVO variables.
7174void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7175  ReturnStmt **Returns = Scope->Returns.data();
7176
7177  const VarDecl *NRVOCandidate = 0;
7178  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7179    if (!Returns[I]->getNRVOCandidate())
7180      return;
7181
7182    if (!NRVOCandidate)
7183      NRVOCandidate = Returns[I]->getNRVOCandidate();
7184    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7185      return;
7186  }
7187
7188  if (NRVOCandidate)
7189    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7190}
7191
7192Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7193  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7194}
7195
7196Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7197                                    bool IsInstantiation) {
7198  FunctionDecl *FD = 0;
7199  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7200  if (FunTmpl)
7201    FD = FunTmpl->getTemplatedDecl();
7202  else
7203    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7204
7205  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7206  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7207
7208  if (FD) {
7209    FD->setBody(Body);
7210    if (FD->isMain()) {
7211      // C and C++ allow for main to automagically return 0.
7212      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7213      FD->setHasImplicitReturnZero(true);
7214      WP.disableCheckFallThrough();
7215    } else if (FD->hasAttr<NakedAttr>()) {
7216      // If the function is marked 'naked', don't complain about missing return
7217      // statements.
7218      WP.disableCheckFallThrough();
7219    }
7220
7221    // MSVC permits the use of pure specifier (=0) on function definition,
7222    // defined at class scope, warn about this non standard construct.
7223    if (getLangOptions().MicrosoftExt && FD->isPure())
7224      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7225
7226    if (!FD->isInvalidDecl()) {
7227      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7228      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7229                                             FD->getResultType(), FD);
7230
7231      // If this is a constructor, we need a vtable.
7232      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7233        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7234
7235      computeNRVO(Body, getCurFunction());
7236    }
7237
7238    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7239  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7240    assert(MD == getCurMethodDecl() && "Method parsing confused");
7241    MD->setBody(Body);
7242    if (Body)
7243      MD->setEndLoc(Body->getLocEnd());
7244    if (!MD->isInvalidDecl()) {
7245      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7246      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7247                                             MD->getResultType(), MD);
7248
7249      if (Body)
7250        computeNRVO(Body, getCurFunction());
7251    }
7252    if (ObjCShouldCallSuperDealloc) {
7253      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7254      ObjCShouldCallSuperDealloc = false;
7255    }
7256    if (ObjCShouldCallSuperFinalize) {
7257      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7258      ObjCShouldCallSuperFinalize = false;
7259    }
7260  } else {
7261    return 0;
7262  }
7263
7264  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7265         "ObjC methods, which should have been handled in the block above.");
7266  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7267         "ObjC methods, which should have been handled in the block above.");
7268
7269  // Verify and clean out per-function state.
7270  if (Body) {
7271    // C++ constructors that have function-try-blocks can't have return
7272    // statements in the handlers of that block. (C++ [except.handle]p14)
7273    // Verify this.
7274    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7275      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7276
7277    // Verify that gotos and switch cases don't jump into scopes illegally.
7278    if (getCurFunction()->NeedsScopeChecking() &&
7279        !dcl->isInvalidDecl() &&
7280        !hasAnyUnrecoverableErrorsInThisFunction())
7281      DiagnoseInvalidJumps(Body);
7282
7283    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7284      if (!Destructor->getParent()->isDependentType())
7285        CheckDestructor(Destructor);
7286
7287      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7288                                             Destructor->getParent());
7289    }
7290
7291    // If any errors have occurred, clear out any temporaries that may have
7292    // been leftover. This ensures that these temporaries won't be picked up for
7293    // deletion in some later function.
7294    if (PP.getDiagnostics().hasErrorOccurred() ||
7295        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7296      DiscardCleanupsInEvaluationContext();
7297    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7298      // Since the body is valid, issue any analysis-based warnings that are
7299      // enabled.
7300      ActivePolicy = &WP;
7301    }
7302
7303    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7304        !CheckConstexprFunctionBody(FD, Body))
7305      FD->setInvalidDecl();
7306
7307    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7308    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7309    assert(MaybeODRUseExprs.empty() &&
7310           "Leftover expressions for odr-use checking");
7311  }
7312
7313  if (!IsInstantiation)
7314    PopDeclContext();
7315
7316  PopFunctionScopeInfo(ActivePolicy, dcl);
7317
7318  // If any errors have occurred, clear out any temporaries that may have
7319  // been leftover. This ensures that these temporaries won't be picked up for
7320  // deletion in some later function.
7321  if (getDiagnostics().hasErrorOccurred()) {
7322    DiscardCleanupsInEvaluationContext();
7323  }
7324
7325  return dcl;
7326}
7327
7328
7329/// When we finish delayed parsing of an attribute, we must attach it to the
7330/// relevant Decl.
7331void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7332                                       ParsedAttributes &Attrs) {
7333  // Always attach attributes to the underlying decl.
7334  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7335    D = TD->getTemplatedDecl();
7336  ProcessDeclAttributeList(S, D, Attrs.getList());
7337}
7338
7339
7340/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7341/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7342NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7343                                          IdentifierInfo &II, Scope *S) {
7344  // Before we produce a declaration for an implicitly defined
7345  // function, see whether there was a locally-scoped declaration of
7346  // this name as a function or variable. If so, use that
7347  // (non-visible) declaration, and complain about it.
7348  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7349    = findLocallyScopedExternalDecl(&II);
7350  if (Pos != LocallyScopedExternalDecls.end()) {
7351    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7352    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7353    return Pos->second;
7354  }
7355
7356  // Extension in C99.  Legal in C90, but warn about it.
7357  unsigned diag_id;
7358  if (II.getName().startswith("__builtin_"))
7359    diag_id = diag::warn_builtin_unknown;
7360  else if (getLangOptions().C99)
7361    diag_id = diag::ext_implicit_function_decl;
7362  else
7363    diag_id = diag::warn_implicit_function_decl;
7364  Diag(Loc, diag_id) << &II;
7365
7366  // Because typo correction is expensive, only do it if the implicit
7367  // function declaration is going to be treated as an error.
7368  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7369    TypoCorrection Corrected;
7370    DeclFilterCCC<FunctionDecl> Validator;
7371    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7372                                      LookupOrdinaryName, S, 0, Validator))) {
7373      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7374      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7375      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7376
7377      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7378          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7379
7380      if (Func->getLocation().isValid()
7381          && !II.getName().startswith("__builtin_"))
7382        Diag(Func->getLocation(), diag::note_previous_decl)
7383            << CorrectedQuotedStr;
7384    }
7385  }
7386
7387  // Set a Declarator for the implicit definition: int foo();
7388  const char *Dummy;
7389  AttributeFactory attrFactory;
7390  DeclSpec DS(attrFactory);
7391  unsigned DiagID;
7392  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7393  (void)Error; // Silence warning.
7394  assert(!Error && "Error setting up implicit decl!");
7395  Declarator D(DS, Declarator::BlockContext);
7396  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7397                                             0, 0, true, SourceLocation(),
7398                                             SourceLocation(), SourceLocation(),
7399                                             SourceLocation(),
7400                                             EST_None, SourceLocation(),
7401                                             0, 0, 0, 0, Loc, Loc, D),
7402                DS.getAttributes(),
7403                SourceLocation());
7404  D.SetIdentifier(&II, Loc);
7405
7406  // Insert this function into translation-unit scope.
7407
7408  DeclContext *PrevDC = CurContext;
7409  CurContext = Context.getTranslationUnitDecl();
7410
7411  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7412  FD->setImplicit();
7413
7414  CurContext = PrevDC;
7415
7416  AddKnownFunctionAttributes(FD);
7417
7418  return FD;
7419}
7420
7421/// \brief Adds any function attributes that we know a priori based on
7422/// the declaration of this function.
7423///
7424/// These attributes can apply both to implicitly-declared builtins
7425/// (like __builtin___printf_chk) or to library-declared functions
7426/// like NSLog or printf.
7427///
7428/// We need to check for duplicate attributes both here and where user-written
7429/// attributes are applied to declarations.
7430void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7431  if (FD->isInvalidDecl())
7432    return;
7433
7434  // If this is a built-in function, map its builtin attributes to
7435  // actual attributes.
7436  if (unsigned BuiltinID = FD->getBuiltinID()) {
7437    // Handle printf-formatting attributes.
7438    unsigned FormatIdx;
7439    bool HasVAListArg;
7440    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7441      if (!FD->getAttr<FormatAttr>()) {
7442        const char *fmt = "printf";
7443        unsigned int NumParams = FD->getNumParams();
7444        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7445            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7446          fmt = "NSString";
7447        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7448                                               fmt, FormatIdx+1,
7449                                               HasVAListArg ? 0 : FormatIdx+2));
7450      }
7451    }
7452    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7453                                             HasVAListArg)) {
7454     if (!FD->getAttr<FormatAttr>())
7455       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7456                                              "scanf", FormatIdx+1,
7457                                              HasVAListArg ? 0 : FormatIdx+2));
7458    }
7459
7460    // Mark const if we don't care about errno and that is the only
7461    // thing preventing the function from being const. This allows
7462    // IRgen to use LLVM intrinsics for such functions.
7463    if (!getLangOptions().MathErrno &&
7464        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7465      if (!FD->getAttr<ConstAttr>())
7466        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7467    }
7468
7469    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7470        !FD->getAttr<ReturnsTwiceAttr>())
7471      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7472    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7473      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7474    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7475      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7476  }
7477
7478  IdentifierInfo *Name = FD->getIdentifier();
7479  if (!Name)
7480    return;
7481  if ((!getLangOptions().CPlusPlus &&
7482       FD->getDeclContext()->isTranslationUnit()) ||
7483      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7484       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7485       LinkageSpecDecl::lang_c)) {
7486    // Okay: this could be a libc/libm/Objective-C function we know
7487    // about.
7488  } else
7489    return;
7490
7491  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7492    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7493    // target-specific builtins, perhaps?
7494    if (!FD->getAttr<FormatAttr>())
7495      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7496                                             "printf", 2,
7497                                             Name->isStr("vasprintf") ? 0 : 3));
7498  }
7499}
7500
7501TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7502                                    TypeSourceInfo *TInfo) {
7503  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7504  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7505
7506  if (!TInfo) {
7507    assert(D.isInvalidType() && "no declarator info for valid type");
7508    TInfo = Context.getTrivialTypeSourceInfo(T);
7509  }
7510
7511  // Scope manipulation handled by caller.
7512  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7513                                           D.getSourceRange().getBegin(),
7514                                           D.getIdentifierLoc(),
7515                                           D.getIdentifier(),
7516                                           TInfo);
7517
7518  // Bail out immediately if we have an invalid declaration.
7519  if (D.isInvalidType()) {
7520    NewTD->setInvalidDecl();
7521    return NewTD;
7522  }
7523
7524  if (D.getDeclSpec().isModulePrivateSpecified()) {
7525    if (CurContext->isFunctionOrMethod())
7526      Diag(NewTD->getLocation(), diag::err_module_private_local)
7527        << 2 << NewTD->getDeclName()
7528        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7529        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7530    else
7531      NewTD->setModulePrivate();
7532  }
7533
7534  // C++ [dcl.typedef]p8:
7535  //   If the typedef declaration defines an unnamed class (or
7536  //   enum), the first typedef-name declared by the declaration
7537  //   to be that class type (or enum type) is used to denote the
7538  //   class type (or enum type) for linkage purposes only.
7539  // We need to check whether the type was declared in the declaration.
7540  switch (D.getDeclSpec().getTypeSpecType()) {
7541  case TST_enum:
7542  case TST_struct:
7543  case TST_union:
7544  case TST_class: {
7545    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7546
7547    // Do nothing if the tag is not anonymous or already has an
7548    // associated typedef (from an earlier typedef in this decl group).
7549    if (tagFromDeclSpec->getIdentifier()) break;
7550    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7551
7552    // A well-formed anonymous tag must always be a TUK_Definition.
7553    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7554
7555    // The type must match the tag exactly;  no qualifiers allowed.
7556    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7557      break;
7558
7559    // Otherwise, set this is the anon-decl typedef for the tag.
7560    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7561    break;
7562  }
7563
7564  default:
7565    break;
7566  }
7567
7568  return NewTD;
7569}
7570
7571
7572/// \brief Determine whether a tag with a given kind is acceptable
7573/// as a redeclaration of the given tag declaration.
7574///
7575/// \returns true if the new tag kind is acceptable, false otherwise.
7576bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7577                                        TagTypeKind NewTag, bool isDefinition,
7578                                        SourceLocation NewTagLoc,
7579                                        const IdentifierInfo &Name) {
7580  // C++ [dcl.type.elab]p3:
7581  //   The class-key or enum keyword present in the
7582  //   elaborated-type-specifier shall agree in kind with the
7583  //   declaration to which the name in the elaborated-type-specifier
7584  //   refers. This rule also applies to the form of
7585  //   elaborated-type-specifier that declares a class-name or
7586  //   friend class since it can be construed as referring to the
7587  //   definition of the class. Thus, in any
7588  //   elaborated-type-specifier, the enum keyword shall be used to
7589  //   refer to an enumeration (7.2), the union class-key shall be
7590  //   used to refer to a union (clause 9), and either the class or
7591  //   struct class-key shall be used to refer to a class (clause 9)
7592  //   declared using the class or struct class-key.
7593  TagTypeKind OldTag = Previous->getTagKind();
7594  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7595    if (OldTag == NewTag)
7596      return true;
7597
7598  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7599      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7600    // Warn about the struct/class tag mismatch.
7601    bool isTemplate = false;
7602    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7603      isTemplate = Record->getDescribedClassTemplate();
7604
7605    if (!ActiveTemplateInstantiations.empty()) {
7606      // In a template instantiation, do not offer fix-its for tag mismatches
7607      // since they usually mess up the template instead of fixing the problem.
7608      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7609        << (NewTag == TTK_Class) << isTemplate << &Name;
7610      return true;
7611    }
7612
7613    if (isDefinition) {
7614      // On definitions, check previous tags and issue a fix-it for each
7615      // one that doesn't match the current tag.
7616      if (Previous->getDefinition()) {
7617        // Don't suggest fix-its for redefinitions.
7618        return true;
7619      }
7620
7621      bool previousMismatch = false;
7622      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7623           E(Previous->redecls_end()); I != E; ++I) {
7624        if (I->getTagKind() != NewTag) {
7625          if (!previousMismatch) {
7626            previousMismatch = true;
7627            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7628              << (NewTag == TTK_Class) << isTemplate << &Name;
7629          }
7630          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7631            << (NewTag == TTK_Class)
7632            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7633                                            NewTag == TTK_Class?
7634                                            "class" : "struct");
7635        }
7636      }
7637      return true;
7638    }
7639
7640    // Check for a previous definition.  If current tag and definition
7641    // are same type, do nothing.  If no definition, but disagree with
7642    // with previous tag type, give a warning, but no fix-it.
7643    const TagDecl *Redecl = Previous->getDefinition() ?
7644                            Previous->getDefinition() : Previous;
7645    if (Redecl->getTagKind() == NewTag) {
7646      return true;
7647    }
7648
7649    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7650      << (NewTag == TTK_Class)
7651      << isTemplate << &Name;
7652    Diag(Redecl->getLocation(), diag::note_previous_use);
7653
7654    // If there is a previous defintion, suggest a fix-it.
7655    if (Previous->getDefinition()) {
7656        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7657          << (Redecl->getTagKind() == TTK_Class)
7658          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7659                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7660    }
7661
7662    return true;
7663  }
7664  return false;
7665}
7666
7667/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7668/// former case, Name will be non-null.  In the later case, Name will be null.
7669/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7670/// reference/declaration/definition of a tag.
7671Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7672                     SourceLocation KWLoc, CXXScopeSpec &SS,
7673                     IdentifierInfo *Name, SourceLocation NameLoc,
7674                     AttributeList *Attr, AccessSpecifier AS,
7675                     SourceLocation ModulePrivateLoc,
7676                     MultiTemplateParamsArg TemplateParameterLists,
7677                     bool &OwnedDecl, bool &IsDependent,
7678                     SourceLocation ScopedEnumKWLoc,
7679                     bool ScopedEnumUsesClassTag,
7680                     TypeResult UnderlyingType) {
7681  // If this is not a definition, it must have a name.
7682  assert((Name != 0 || TUK == TUK_Definition) &&
7683         "Nameless record must be a definition!");
7684  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7685
7686  OwnedDecl = false;
7687  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7688  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7689
7690  // FIXME: Check explicit specializations more carefully.
7691  bool isExplicitSpecialization = false;
7692  bool Invalid = false;
7693
7694  // We only need to do this matching if we have template parameters
7695  // or a scope specifier, which also conveniently avoids this work
7696  // for non-C++ cases.
7697  if (TemplateParameterLists.size() > 0 ||
7698      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7699    if (TemplateParameterList *TemplateParams
7700          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7701                                                TemplateParameterLists.get(),
7702                                                TemplateParameterLists.size(),
7703                                                    TUK == TUK_Friend,
7704                                                    isExplicitSpecialization,
7705                                                    Invalid)) {
7706      if (TemplateParams->size() > 0) {
7707        // This is a declaration or definition of a class template (which may
7708        // be a member of another template).
7709
7710        if (Invalid)
7711          return 0;
7712
7713        OwnedDecl = false;
7714        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7715                                               SS, Name, NameLoc, Attr,
7716                                               TemplateParams, AS,
7717                                               ModulePrivateLoc,
7718                                           TemplateParameterLists.size() - 1,
7719                 (TemplateParameterList**) TemplateParameterLists.release());
7720        return Result.get();
7721      } else {
7722        // The "template<>" header is extraneous.
7723        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7724          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7725        isExplicitSpecialization = true;
7726      }
7727    }
7728  }
7729
7730  // Figure out the underlying type if this a enum declaration. We need to do
7731  // this early, because it's needed to detect if this is an incompatible
7732  // redeclaration.
7733  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7734
7735  if (Kind == TTK_Enum) {
7736    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7737      // No underlying type explicitly specified, or we failed to parse the
7738      // type, default to int.
7739      EnumUnderlying = Context.IntTy.getTypePtr();
7740    else if (UnderlyingType.get()) {
7741      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7742      // integral type; any cv-qualification is ignored.
7743      TypeSourceInfo *TI = 0;
7744      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7745      EnumUnderlying = TI;
7746
7747      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7748
7749      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7750        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7751          << T;
7752        // Recover by falling back to int.
7753        EnumUnderlying = Context.IntTy.getTypePtr();
7754      }
7755
7756      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7757                                          UPPC_FixedUnderlyingType))
7758        EnumUnderlying = Context.IntTy.getTypePtr();
7759
7760    } else if (getLangOptions().MicrosoftExt)
7761      // Microsoft enums are always of int type.
7762      EnumUnderlying = Context.IntTy.getTypePtr();
7763  }
7764
7765  DeclContext *SearchDC = CurContext;
7766  DeclContext *DC = CurContext;
7767  bool isStdBadAlloc = false;
7768
7769  RedeclarationKind Redecl = ForRedeclaration;
7770  if (TUK == TUK_Friend || TUK == TUK_Reference)
7771    Redecl = NotForRedeclaration;
7772
7773  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7774
7775  if (Name && SS.isNotEmpty()) {
7776    // We have a nested-name tag ('struct foo::bar').
7777
7778    // Check for invalid 'foo::'.
7779    if (SS.isInvalid()) {
7780      Name = 0;
7781      goto CreateNewDecl;
7782    }
7783
7784    // If this is a friend or a reference to a class in a dependent
7785    // context, don't try to make a decl for it.
7786    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7787      DC = computeDeclContext(SS, false);
7788      if (!DC) {
7789        IsDependent = true;
7790        return 0;
7791      }
7792    } else {
7793      DC = computeDeclContext(SS, true);
7794      if (!DC) {
7795        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7796          << SS.getRange();
7797        return 0;
7798      }
7799    }
7800
7801    if (RequireCompleteDeclContext(SS, DC))
7802      return 0;
7803
7804    SearchDC = DC;
7805    // Look-up name inside 'foo::'.
7806    LookupQualifiedName(Previous, DC);
7807
7808    if (Previous.isAmbiguous())
7809      return 0;
7810
7811    if (Previous.empty()) {
7812      // Name lookup did not find anything. However, if the
7813      // nested-name-specifier refers to the current instantiation,
7814      // and that current instantiation has any dependent base
7815      // classes, we might find something at instantiation time: treat
7816      // this as a dependent elaborated-type-specifier.
7817      // But this only makes any sense for reference-like lookups.
7818      if (Previous.wasNotFoundInCurrentInstantiation() &&
7819          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7820        IsDependent = true;
7821        return 0;
7822      }
7823
7824      // A tag 'foo::bar' must already exist.
7825      Diag(NameLoc, diag::err_not_tag_in_scope)
7826        << Kind << Name << DC << SS.getRange();
7827      Name = 0;
7828      Invalid = true;
7829      goto CreateNewDecl;
7830    }
7831  } else if (Name) {
7832    // If this is a named struct, check to see if there was a previous forward
7833    // declaration or definition.
7834    // FIXME: We're looking into outer scopes here, even when we
7835    // shouldn't be. Doing so can result in ambiguities that we
7836    // shouldn't be diagnosing.
7837    LookupName(Previous, S);
7838
7839    if (Previous.isAmbiguous() &&
7840        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7841      LookupResult::Filter F = Previous.makeFilter();
7842      while (F.hasNext()) {
7843        NamedDecl *ND = F.next();
7844        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7845          F.erase();
7846      }
7847      F.done();
7848    }
7849
7850    // Note:  there used to be some attempt at recovery here.
7851    if (Previous.isAmbiguous())
7852      return 0;
7853
7854    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7855      // FIXME: This makes sure that we ignore the contexts associated
7856      // with C structs, unions, and enums when looking for a matching
7857      // tag declaration or definition. See the similar lookup tweak
7858      // in Sema::LookupName; is there a better way to deal with this?
7859      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7860        SearchDC = SearchDC->getParent();
7861    }
7862  } else if (S->isFunctionPrototypeScope()) {
7863    // If this is an enum declaration in function prototype scope, set its
7864    // initial context to the translation unit.
7865    SearchDC = Context.getTranslationUnitDecl();
7866  }
7867
7868  if (Previous.isSingleResult() &&
7869      Previous.getFoundDecl()->isTemplateParameter()) {
7870    // Maybe we will complain about the shadowed template parameter.
7871    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7872    // Just pretend that we didn't see the previous declaration.
7873    Previous.clear();
7874  }
7875
7876  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7877      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7878    // This is a declaration of or a reference to "std::bad_alloc".
7879    isStdBadAlloc = true;
7880
7881    if (Previous.empty() && StdBadAlloc) {
7882      // std::bad_alloc has been implicitly declared (but made invisible to
7883      // name lookup). Fill in this implicit declaration as the previous
7884      // declaration, so that the declarations get chained appropriately.
7885      Previous.addDecl(getStdBadAlloc());
7886    }
7887  }
7888
7889  // If we didn't find a previous declaration, and this is a reference
7890  // (or friend reference), move to the correct scope.  In C++, we
7891  // also need to do a redeclaration lookup there, just in case
7892  // there's a shadow friend decl.
7893  if (Name && Previous.empty() &&
7894      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7895    if (Invalid) goto CreateNewDecl;
7896    assert(SS.isEmpty());
7897
7898    if (TUK == TUK_Reference) {
7899      // C++ [basic.scope.pdecl]p5:
7900      //   -- for an elaborated-type-specifier of the form
7901      //
7902      //          class-key identifier
7903      //
7904      //      if the elaborated-type-specifier is used in the
7905      //      decl-specifier-seq or parameter-declaration-clause of a
7906      //      function defined in namespace scope, the identifier is
7907      //      declared as a class-name in the namespace that contains
7908      //      the declaration; otherwise, except as a friend
7909      //      declaration, the identifier is declared in the smallest
7910      //      non-class, non-function-prototype scope that contains the
7911      //      declaration.
7912      //
7913      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7914      // C structs and unions.
7915      //
7916      // It is an error in C++ to declare (rather than define) an enum
7917      // type, including via an elaborated type specifier.  We'll
7918      // diagnose that later; for now, declare the enum in the same
7919      // scope as we would have picked for any other tag type.
7920      //
7921      // GNU C also supports this behavior as part of its incomplete
7922      // enum types extension, while GNU C++ does not.
7923      //
7924      // Find the context where we'll be declaring the tag.
7925      // FIXME: We would like to maintain the current DeclContext as the
7926      // lexical context,
7927      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7928             SearchDC->isObjCContainer())
7929        SearchDC = SearchDC->getParent();
7930
7931      // Find the scope where we'll be declaring the tag.
7932      while (S->isClassScope() ||
7933             (getLangOptions().CPlusPlus &&
7934              S->isFunctionPrototypeScope()) ||
7935             ((S->getFlags() & Scope::DeclScope) == 0) ||
7936             (S->getEntity() &&
7937              ((DeclContext *)S->getEntity())->isTransparentContext()))
7938        S = S->getParent();
7939    } else {
7940      assert(TUK == TUK_Friend);
7941      // C++ [namespace.memdef]p3:
7942      //   If a friend declaration in a non-local class first declares a
7943      //   class or function, the friend class or function is a member of
7944      //   the innermost enclosing namespace.
7945      SearchDC = SearchDC->getEnclosingNamespaceContext();
7946    }
7947
7948    // In C++, we need to do a redeclaration lookup to properly
7949    // diagnose some problems.
7950    if (getLangOptions().CPlusPlus) {
7951      Previous.setRedeclarationKind(ForRedeclaration);
7952      LookupQualifiedName(Previous, SearchDC);
7953    }
7954  }
7955
7956  if (!Previous.empty()) {
7957    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7958
7959    // It's okay to have a tag decl in the same scope as a typedef
7960    // which hides a tag decl in the same scope.  Finding this
7961    // insanity with a redeclaration lookup can only actually happen
7962    // in C++.
7963    //
7964    // This is also okay for elaborated-type-specifiers, which is
7965    // technically forbidden by the current standard but which is
7966    // okay according to the likely resolution of an open issue;
7967    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7968    if (getLangOptions().CPlusPlus) {
7969      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7970        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7971          TagDecl *Tag = TT->getDecl();
7972          if (Tag->getDeclName() == Name &&
7973              Tag->getDeclContext()->getRedeclContext()
7974                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7975            PrevDecl = Tag;
7976            Previous.clear();
7977            Previous.addDecl(Tag);
7978            Previous.resolveKind();
7979          }
7980        }
7981      }
7982    }
7983
7984    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7985      // If this is a use of a previous tag, or if the tag is already declared
7986      // in the same scope (so that the definition/declaration completes or
7987      // rementions the tag), reuse the decl.
7988      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7989          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7990        // Make sure that this wasn't declared as an enum and now used as a
7991        // struct or something similar.
7992        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7993                                          TUK == TUK_Definition, KWLoc,
7994                                          *Name)) {
7995          bool SafeToContinue
7996            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7997               Kind != TTK_Enum);
7998          if (SafeToContinue)
7999            Diag(KWLoc, diag::err_use_with_wrong_tag)
8000              << Name
8001              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8002                                              PrevTagDecl->getKindName());
8003          else
8004            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8005          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8006
8007          if (SafeToContinue)
8008            Kind = PrevTagDecl->getTagKind();
8009          else {
8010            // Recover by making this an anonymous redefinition.
8011            Name = 0;
8012            Previous.clear();
8013            Invalid = true;
8014          }
8015        }
8016
8017        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8018          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8019
8020          // If this is an elaborated-type-specifier for a scoped enumeration,
8021          // the 'class' keyword is not necessary and not permitted.
8022          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8023            if (ScopedEnum)
8024              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8025                << PrevEnum->isScoped()
8026                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8027            return PrevTagDecl;
8028          }
8029
8030          // All conflicts with previous declarations are recovered by
8031          // returning the previous declaration.
8032          if (ScopedEnum != PrevEnum->isScoped()) {
8033            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8034              << PrevEnum->isScoped();
8035            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8036            return PrevTagDecl;
8037          }
8038          else if (EnumUnderlying && PrevEnum->isFixed()) {
8039            QualType T;
8040            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8041                T = TI->getType();
8042            else
8043                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8044
8045            if (!Context.hasSameUnqualifiedType(T,
8046                                                PrevEnum->getIntegerType())) {
8047              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8048                   diag::err_enum_redeclare_type_mismatch)
8049                << T
8050                << PrevEnum->getIntegerType();
8051              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8052              return PrevTagDecl;
8053            }
8054          }
8055          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8056            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8057              << PrevEnum->isFixed();
8058            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8059            return PrevTagDecl;
8060          }
8061        }
8062
8063        if (!Invalid) {
8064          // If this is a use, just return the declaration we found.
8065
8066          // FIXME: In the future, return a variant or some other clue
8067          // for the consumer of this Decl to know it doesn't own it.
8068          // For our current ASTs this shouldn't be a problem, but will
8069          // need to be changed with DeclGroups.
8070          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8071               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8072            return PrevTagDecl;
8073
8074          // Diagnose attempts to redefine a tag.
8075          if (TUK == TUK_Definition) {
8076            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8077              // If we're defining a specialization and the previous definition
8078              // is from an implicit instantiation, don't emit an error
8079              // here; we'll catch this in the general case below.
8080              if (!isExplicitSpecialization ||
8081                  !isa<CXXRecordDecl>(Def) ||
8082                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8083                                               == TSK_ExplicitSpecialization) {
8084                Diag(NameLoc, diag::err_redefinition) << Name;
8085                Diag(Def->getLocation(), diag::note_previous_definition);
8086                // If this is a redefinition, recover by making this
8087                // struct be anonymous, which will make any later
8088                // references get the previous definition.
8089                Name = 0;
8090                Previous.clear();
8091                Invalid = true;
8092              }
8093            } else {
8094              // If the type is currently being defined, complain
8095              // about a nested redefinition.
8096              const TagType *Tag
8097                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8098              if (Tag->isBeingDefined()) {
8099                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8100                Diag(PrevTagDecl->getLocation(),
8101                     diag::note_previous_definition);
8102                Name = 0;
8103                Previous.clear();
8104                Invalid = true;
8105              }
8106            }
8107
8108            // Okay, this is definition of a previously declared or referenced
8109            // tag PrevDecl. We're going to create a new Decl for it.
8110          }
8111        }
8112        // If we get here we have (another) forward declaration or we
8113        // have a definition.  Just create a new decl.
8114
8115      } else {
8116        // If we get here, this is a definition of a new tag type in a nested
8117        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8118        // new decl/type.  We set PrevDecl to NULL so that the entities
8119        // have distinct types.
8120        Previous.clear();
8121      }
8122      // If we get here, we're going to create a new Decl. If PrevDecl
8123      // is non-NULL, it's a definition of the tag declared by
8124      // PrevDecl. If it's NULL, we have a new definition.
8125
8126
8127    // Otherwise, PrevDecl is not a tag, but was found with tag
8128    // lookup.  This is only actually possible in C++, where a few
8129    // things like templates still live in the tag namespace.
8130    } else {
8131      // Use a better diagnostic if an elaborated-type-specifier
8132      // found the wrong kind of type on the first
8133      // (non-redeclaration) lookup.
8134      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8135          !Previous.isForRedeclaration()) {
8136        unsigned Kind = 0;
8137        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8138        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8139        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8140        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8141        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8142        Invalid = true;
8143
8144      // Otherwise, only diagnose if the declaration is in scope.
8145      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8146                                isExplicitSpecialization)) {
8147        // do nothing
8148
8149      // Diagnose implicit declarations introduced by elaborated types.
8150      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8151        unsigned Kind = 0;
8152        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8153        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8154        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8155        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8156        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8157        Invalid = true;
8158
8159      // Otherwise it's a declaration.  Call out a particularly common
8160      // case here.
8161      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8162        unsigned Kind = 0;
8163        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8164        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8165          << Name << Kind << TND->getUnderlyingType();
8166        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8167        Invalid = true;
8168
8169      // Otherwise, diagnose.
8170      } else {
8171        // The tag name clashes with something else in the target scope,
8172        // issue an error and recover by making this tag be anonymous.
8173        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8174        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8175        Name = 0;
8176        Invalid = true;
8177      }
8178
8179      // The existing declaration isn't relevant to us; we're in a
8180      // new scope, so clear out the previous declaration.
8181      Previous.clear();
8182    }
8183  }
8184
8185CreateNewDecl:
8186
8187  TagDecl *PrevDecl = 0;
8188  if (Previous.isSingleResult())
8189    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8190
8191  // If there is an identifier, use the location of the identifier as the
8192  // location of the decl, otherwise use the location of the struct/union
8193  // keyword.
8194  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8195
8196  // Otherwise, create a new declaration. If there is a previous
8197  // declaration of the same entity, the two will be linked via
8198  // PrevDecl.
8199  TagDecl *New;
8200
8201  bool IsForwardReference = false;
8202  if (Kind == TTK_Enum) {
8203    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8204    // enum X { A, B, C } D;    D should chain to X.
8205    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8206                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8207                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8208    // If this is an undefined enum, warn.
8209    if (TUK != TUK_Definition && !Invalid) {
8210      TagDecl *Def;
8211      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8212        // C++0x: 7.2p2: opaque-enum-declaration.
8213        // Conflicts are diagnosed above. Do nothing.
8214      }
8215      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8216        Diag(Loc, diag::ext_forward_ref_enum_def)
8217          << New;
8218        Diag(Def->getLocation(), diag::note_previous_definition);
8219      } else {
8220        unsigned DiagID = diag::ext_forward_ref_enum;
8221        if (getLangOptions().MicrosoftExt)
8222          DiagID = diag::ext_ms_forward_ref_enum;
8223        else if (getLangOptions().CPlusPlus)
8224          DiagID = diag::err_forward_ref_enum;
8225        Diag(Loc, DiagID);
8226
8227        // If this is a forward-declared reference to an enumeration, make a
8228        // note of it; we won't actually be introducing the declaration into
8229        // the declaration context.
8230        if (TUK == TUK_Reference)
8231          IsForwardReference = true;
8232      }
8233    }
8234
8235    if (EnumUnderlying) {
8236      EnumDecl *ED = cast<EnumDecl>(New);
8237      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8238        ED->setIntegerTypeSourceInfo(TI);
8239      else
8240        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8241      ED->setPromotionType(ED->getIntegerType());
8242    }
8243
8244  } else {
8245    // struct/union/class
8246
8247    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8248    // struct X { int A; } D;    D should chain to X.
8249    if (getLangOptions().CPlusPlus) {
8250      // FIXME: Look for a way to use RecordDecl for simple structs.
8251      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8252                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8253
8254      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8255        StdBadAlloc = cast<CXXRecordDecl>(New);
8256    } else
8257      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8258                               cast_or_null<RecordDecl>(PrevDecl));
8259  }
8260
8261  // Maybe add qualifier info.
8262  if (SS.isNotEmpty()) {
8263    if (SS.isSet()) {
8264      New->setQualifierInfo(SS.getWithLocInContext(Context));
8265      if (TemplateParameterLists.size() > 0) {
8266        New->setTemplateParameterListsInfo(Context,
8267                                           TemplateParameterLists.size(),
8268                    (TemplateParameterList**) TemplateParameterLists.release());
8269      }
8270    }
8271    else
8272      Invalid = true;
8273  }
8274
8275  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8276    // Add alignment attributes if necessary; these attributes are checked when
8277    // the ASTContext lays out the structure.
8278    //
8279    // It is important for implementing the correct semantics that this
8280    // happen here (in act on tag decl). The #pragma pack stack is
8281    // maintained as a result of parser callbacks which can occur at
8282    // many points during the parsing of a struct declaration (because
8283    // the #pragma tokens are effectively skipped over during the
8284    // parsing of the struct).
8285    AddAlignmentAttributesForRecord(RD);
8286
8287    AddMsStructLayoutForRecord(RD);
8288  }
8289
8290  if (ModulePrivateLoc.isValid()) {
8291    if (isExplicitSpecialization)
8292      Diag(New->getLocation(), diag::err_module_private_specialization)
8293        << 2
8294        << FixItHint::CreateRemoval(ModulePrivateLoc);
8295    // __module_private__ does not apply to local classes. However, we only
8296    // diagnose this as an error when the declaration specifiers are
8297    // freestanding. Here, we just ignore the __module_private__.
8298    else if (!SearchDC->isFunctionOrMethod())
8299      New->setModulePrivate();
8300  }
8301
8302  // If this is a specialization of a member class (of a class template),
8303  // check the specialization.
8304  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8305    Invalid = true;
8306
8307  if (Invalid)
8308    New->setInvalidDecl();
8309
8310  if (Attr)
8311    ProcessDeclAttributeList(S, New, Attr);
8312
8313  // If we're declaring or defining a tag in function prototype scope
8314  // in C, note that this type can only be used within the function.
8315  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8316    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8317
8318  // Set the lexical context. If the tag has a C++ scope specifier, the
8319  // lexical context will be different from the semantic context.
8320  New->setLexicalDeclContext(CurContext);
8321
8322  // Mark this as a friend decl if applicable.
8323  // In Microsoft mode, a friend declaration also acts as a forward
8324  // declaration so we always pass true to setObjectOfFriendDecl to make
8325  // the tag name visible.
8326  if (TUK == TUK_Friend)
8327    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8328                               getLangOptions().MicrosoftExt);
8329
8330  // Set the access specifier.
8331  if (!Invalid && SearchDC->isRecord())
8332    SetMemberAccessSpecifier(New, PrevDecl, AS);
8333
8334  if (TUK == TUK_Definition)
8335    New->startDefinition();
8336
8337  // If this has an identifier, add it to the scope stack.
8338  if (TUK == TUK_Friend) {
8339    // We might be replacing an existing declaration in the lookup tables;
8340    // if so, borrow its access specifier.
8341    if (PrevDecl)
8342      New->setAccess(PrevDecl->getAccess());
8343
8344    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8345    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8346    if (Name) // can be null along some error paths
8347      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8348        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8349  } else if (Name) {
8350    S = getNonFieldDeclScope(S);
8351    PushOnScopeChains(New, S, !IsForwardReference);
8352    if (IsForwardReference)
8353      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8354
8355  } else {
8356    CurContext->addDecl(New);
8357  }
8358
8359  // If this is the C FILE type, notify the AST context.
8360  if (IdentifierInfo *II = New->getIdentifier())
8361    if (!New->isInvalidDecl() &&
8362        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8363        II->isStr("FILE"))
8364      Context.setFILEDecl(New);
8365
8366  OwnedDecl = true;
8367  return New;
8368}
8369
8370void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8371  AdjustDeclIfTemplate(TagD);
8372  TagDecl *Tag = cast<TagDecl>(TagD);
8373
8374  // Enter the tag context.
8375  PushDeclContext(S, Tag);
8376}
8377
8378Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8379  assert(isa<ObjCContainerDecl>(IDecl) &&
8380         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8381  DeclContext *OCD = cast<DeclContext>(IDecl);
8382  assert(getContainingDC(OCD) == CurContext &&
8383      "The next DeclContext should be lexically contained in the current one.");
8384  CurContext = OCD;
8385  return IDecl;
8386}
8387
8388void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8389                                           SourceLocation FinalLoc,
8390                                           SourceLocation LBraceLoc) {
8391  AdjustDeclIfTemplate(TagD);
8392  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8393
8394  FieldCollector->StartClass();
8395
8396  if (!Record->getIdentifier())
8397    return;
8398
8399  if (FinalLoc.isValid())
8400    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8401
8402  // C++ [class]p2:
8403  //   [...] The class-name is also inserted into the scope of the
8404  //   class itself; this is known as the injected-class-name. For
8405  //   purposes of access checking, the injected-class-name is treated
8406  //   as if it were a public member name.
8407  CXXRecordDecl *InjectedClassName
8408    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8409                            Record->getLocStart(), Record->getLocation(),
8410                            Record->getIdentifier(),
8411                            /*PrevDecl=*/0,
8412                            /*DelayTypeCreation=*/true);
8413  Context.getTypeDeclType(InjectedClassName, Record);
8414  InjectedClassName->setImplicit();
8415  InjectedClassName->setAccess(AS_public);
8416  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8417      InjectedClassName->setDescribedClassTemplate(Template);
8418  PushOnScopeChains(InjectedClassName, S);
8419  assert(InjectedClassName->isInjectedClassName() &&
8420         "Broken injected-class-name");
8421}
8422
8423void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8424                                    SourceLocation RBraceLoc) {
8425  AdjustDeclIfTemplate(TagD);
8426  TagDecl *Tag = cast<TagDecl>(TagD);
8427  Tag->setRBraceLoc(RBraceLoc);
8428
8429  if (isa<CXXRecordDecl>(Tag))
8430    FieldCollector->FinishClass();
8431
8432  // Exit this scope of this tag's definition.
8433  PopDeclContext();
8434
8435  // Notify the consumer that we've defined a tag.
8436  Consumer.HandleTagDeclDefinition(Tag);
8437}
8438
8439void Sema::ActOnObjCContainerFinishDefinition() {
8440  // Exit this scope of this interface definition.
8441  PopDeclContext();
8442}
8443
8444void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8445  assert(DC == CurContext && "Mismatch of container contexts");
8446  OriginalLexicalContext = DC;
8447  ActOnObjCContainerFinishDefinition();
8448}
8449
8450void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8451  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8452  OriginalLexicalContext = 0;
8453}
8454
8455void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8456  AdjustDeclIfTemplate(TagD);
8457  TagDecl *Tag = cast<TagDecl>(TagD);
8458  Tag->setInvalidDecl();
8459
8460  // We're undoing ActOnTagStartDefinition here, not
8461  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8462  // the FieldCollector.
8463
8464  PopDeclContext();
8465}
8466
8467// Note that FieldName may be null for anonymous bitfields.
8468ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8469                                IdentifierInfo *FieldName,
8470                                QualType FieldTy, Expr *BitWidth,
8471                                bool *ZeroWidth) {
8472  // Default to true; that shouldn't confuse checks for emptiness
8473  if (ZeroWidth)
8474    *ZeroWidth = true;
8475
8476  // C99 6.7.2.1p4 - verify the field type.
8477  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8478  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8479    // Handle incomplete types with specific error.
8480    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8481      return ExprError();
8482    if (FieldName)
8483      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8484        << FieldName << FieldTy << BitWidth->getSourceRange();
8485    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8486      << FieldTy << BitWidth->getSourceRange();
8487  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8488                                             UPPC_BitFieldWidth))
8489    return ExprError();
8490
8491  // If the bit-width is type- or value-dependent, don't try to check
8492  // it now.
8493  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8494    return Owned(BitWidth);
8495
8496  llvm::APSInt Value;
8497  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8498  if (ICE.isInvalid())
8499    return ICE;
8500  BitWidth = ICE.take();
8501
8502  if (Value != 0 && ZeroWidth)
8503    *ZeroWidth = false;
8504
8505  // Zero-width bitfield is ok for anonymous field.
8506  if (Value == 0 && FieldName)
8507    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8508
8509  if (Value.isSigned() && Value.isNegative()) {
8510    if (FieldName)
8511      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8512               << FieldName << Value.toString(10);
8513    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8514      << Value.toString(10);
8515  }
8516
8517  if (!FieldTy->isDependentType()) {
8518    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8519    if (Value.getZExtValue() > TypeSize) {
8520      if (!getLangOptions().CPlusPlus) {
8521        if (FieldName)
8522          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8523            << FieldName << (unsigned)Value.getZExtValue()
8524            << (unsigned)TypeSize;
8525
8526        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8527          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8528      }
8529
8530      if (FieldName)
8531        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8532          << FieldName << (unsigned)Value.getZExtValue()
8533          << (unsigned)TypeSize;
8534      else
8535        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8536          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8537    }
8538  }
8539
8540  return Owned(BitWidth);
8541}
8542
8543/// ActOnField - Each field of a C struct/union is passed into this in order
8544/// to create a FieldDecl object for it.
8545Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8546                       Declarator &D, Expr *BitfieldWidth) {
8547  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8548                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8549                               /*HasInit=*/false, AS_public);
8550  return Res;
8551}
8552
8553/// HandleField - Analyze a field of a C struct or a C++ data member.
8554///
8555FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8556                             SourceLocation DeclStart,
8557                             Declarator &D, Expr *BitWidth, bool HasInit,
8558                             AccessSpecifier AS) {
8559  IdentifierInfo *II = D.getIdentifier();
8560  SourceLocation Loc = DeclStart;
8561  if (II) Loc = D.getIdentifierLoc();
8562
8563  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8564  QualType T = TInfo->getType();
8565  if (getLangOptions().CPlusPlus) {
8566    CheckExtraCXXDefaultArguments(D);
8567
8568    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8569                                        UPPC_DataMemberType)) {
8570      D.setInvalidType();
8571      T = Context.IntTy;
8572      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8573    }
8574  }
8575
8576  DiagnoseFunctionSpecifiers(D);
8577
8578  if (D.getDeclSpec().isThreadSpecified())
8579    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8580  if (D.getDeclSpec().isConstexprSpecified())
8581    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8582      << 2;
8583
8584  // Check to see if this name was declared as a member previously
8585  NamedDecl *PrevDecl = 0;
8586  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8587  LookupName(Previous, S);
8588  switch (Previous.getResultKind()) {
8589    case LookupResult::Found:
8590    case LookupResult::FoundUnresolvedValue:
8591      PrevDecl = Previous.getAsSingle<NamedDecl>();
8592      break;
8593
8594    case LookupResult::FoundOverloaded:
8595      PrevDecl = Previous.getRepresentativeDecl();
8596      break;
8597
8598    case LookupResult::NotFound:
8599    case LookupResult::NotFoundInCurrentInstantiation:
8600    case LookupResult::Ambiguous:
8601      break;
8602  }
8603  Previous.suppressDiagnostics();
8604
8605  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8606    // Maybe we will complain about the shadowed template parameter.
8607    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8608    // Just pretend that we didn't see the previous declaration.
8609    PrevDecl = 0;
8610  }
8611
8612  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8613    PrevDecl = 0;
8614
8615  bool Mutable
8616    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8617  SourceLocation TSSL = D.getSourceRange().getBegin();
8618  FieldDecl *NewFD
8619    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8620                     TSSL, AS, PrevDecl, &D);
8621
8622  if (NewFD->isInvalidDecl())
8623    Record->setInvalidDecl();
8624
8625  if (D.getDeclSpec().isModulePrivateSpecified())
8626    NewFD->setModulePrivate();
8627
8628  if (NewFD->isInvalidDecl() && PrevDecl) {
8629    // Don't introduce NewFD into scope; there's already something
8630    // with the same name in the same scope.
8631  } else if (II) {
8632    PushOnScopeChains(NewFD, S);
8633  } else
8634    Record->addDecl(NewFD);
8635
8636  return NewFD;
8637}
8638
8639/// \brief Build a new FieldDecl and check its well-formedness.
8640///
8641/// This routine builds a new FieldDecl given the fields name, type,
8642/// record, etc. \p PrevDecl should refer to any previous declaration
8643/// with the same name and in the same scope as the field to be
8644/// created.
8645///
8646/// \returns a new FieldDecl.
8647///
8648/// \todo The Declarator argument is a hack. It will be removed once
8649FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8650                                TypeSourceInfo *TInfo,
8651                                RecordDecl *Record, SourceLocation Loc,
8652                                bool Mutable, Expr *BitWidth, bool HasInit,
8653                                SourceLocation TSSL,
8654                                AccessSpecifier AS, NamedDecl *PrevDecl,
8655                                Declarator *D) {
8656  IdentifierInfo *II = Name.getAsIdentifierInfo();
8657  bool InvalidDecl = false;
8658  if (D) InvalidDecl = D->isInvalidType();
8659
8660  // If we receive a broken type, recover by assuming 'int' and
8661  // marking this declaration as invalid.
8662  if (T.isNull()) {
8663    InvalidDecl = true;
8664    T = Context.IntTy;
8665  }
8666
8667  QualType EltTy = Context.getBaseElementType(T);
8668  if (!EltTy->isDependentType() &&
8669      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8670    // Fields of incomplete type force their record to be invalid.
8671    Record->setInvalidDecl();
8672    InvalidDecl = true;
8673  }
8674
8675  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8676  // than a variably modified type.
8677  if (!InvalidDecl && T->isVariablyModifiedType()) {
8678    bool SizeIsNegative;
8679    llvm::APSInt Oversized;
8680    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8681                                                           SizeIsNegative,
8682                                                           Oversized);
8683    if (!FixedTy.isNull()) {
8684      Diag(Loc, diag::warn_illegal_constant_array_size);
8685      T = FixedTy;
8686    } else {
8687      if (SizeIsNegative)
8688        Diag(Loc, diag::err_typecheck_negative_array_size);
8689      else if (Oversized.getBoolValue())
8690        Diag(Loc, diag::err_array_too_large)
8691          << Oversized.toString(10);
8692      else
8693        Diag(Loc, diag::err_typecheck_field_variable_size);
8694      InvalidDecl = true;
8695    }
8696  }
8697
8698  // Fields can not have abstract class types
8699  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8700                                             diag::err_abstract_type_in_decl,
8701                                             AbstractFieldType))
8702    InvalidDecl = true;
8703
8704  bool ZeroWidth = false;
8705  // If this is declared as a bit-field, check the bit-field.
8706  if (!InvalidDecl && BitWidth) {
8707    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8708    if (!BitWidth) {
8709      InvalidDecl = true;
8710      BitWidth = 0;
8711      ZeroWidth = false;
8712    }
8713  }
8714
8715  // Check that 'mutable' is consistent with the type of the declaration.
8716  if (!InvalidDecl && Mutable) {
8717    unsigned DiagID = 0;
8718    if (T->isReferenceType())
8719      DiagID = diag::err_mutable_reference;
8720    else if (T.isConstQualified())
8721      DiagID = diag::err_mutable_const;
8722
8723    if (DiagID) {
8724      SourceLocation ErrLoc = Loc;
8725      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8726        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8727      Diag(ErrLoc, DiagID);
8728      Mutable = false;
8729      InvalidDecl = true;
8730    }
8731  }
8732
8733  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8734                                       BitWidth, Mutable, HasInit);
8735  if (InvalidDecl)
8736    NewFD->setInvalidDecl();
8737
8738  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8739    Diag(Loc, diag::err_duplicate_member) << II;
8740    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8741    NewFD->setInvalidDecl();
8742  }
8743
8744  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8745    if (Record->isUnion()) {
8746      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8747        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8748        if (RDecl->getDefinition()) {
8749          // C++ [class.union]p1: An object of a class with a non-trivial
8750          // constructor, a non-trivial copy constructor, a non-trivial
8751          // destructor, or a non-trivial copy assignment operator
8752          // cannot be a member of a union, nor can an array of such
8753          // objects.
8754          if (CheckNontrivialField(NewFD))
8755            NewFD->setInvalidDecl();
8756        }
8757      }
8758
8759      // C++ [class.union]p1: If a union contains a member of reference type,
8760      // the program is ill-formed.
8761      if (EltTy->isReferenceType()) {
8762        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8763          << NewFD->getDeclName() << EltTy;
8764        NewFD->setInvalidDecl();
8765      }
8766    }
8767  }
8768
8769  // FIXME: We need to pass in the attributes given an AST
8770  // representation, not a parser representation.
8771  if (D)
8772    // FIXME: What to pass instead of TUScope?
8773    ProcessDeclAttributes(TUScope, NewFD, *D);
8774
8775  // In auto-retain/release, infer strong retension for fields of
8776  // retainable type.
8777  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8778    NewFD->setInvalidDecl();
8779
8780  if (T.isObjCGCWeak())
8781    Diag(Loc, diag::warn_attribute_weak_on_field);
8782
8783  NewFD->setAccess(AS);
8784  return NewFD;
8785}
8786
8787bool Sema::CheckNontrivialField(FieldDecl *FD) {
8788  assert(FD);
8789  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8790
8791  if (FD->isInvalidDecl())
8792    return true;
8793
8794  QualType EltTy = Context.getBaseElementType(FD->getType());
8795  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8796    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8797    if (RDecl->getDefinition()) {
8798      // We check for copy constructors before constructors
8799      // because otherwise we'll never get complaints about
8800      // copy constructors.
8801
8802      CXXSpecialMember member = CXXInvalid;
8803      if (!RDecl->hasTrivialCopyConstructor())
8804        member = CXXCopyConstructor;
8805      else if (!RDecl->hasTrivialDefaultConstructor())
8806        member = CXXDefaultConstructor;
8807      else if (!RDecl->hasTrivialCopyAssignment())
8808        member = CXXCopyAssignment;
8809      else if (!RDecl->hasTrivialDestructor())
8810        member = CXXDestructor;
8811
8812      if (member != CXXInvalid) {
8813        if (!getLangOptions().CPlusPlus0x &&
8814            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8815          // Objective-C++ ARC: it is an error to have a non-trivial field of
8816          // a union. However, system headers in Objective-C programs
8817          // occasionally have Objective-C lifetime objects within unions,
8818          // and rather than cause the program to fail, we make those
8819          // members unavailable.
8820          SourceLocation Loc = FD->getLocation();
8821          if (getSourceManager().isInSystemHeader(Loc)) {
8822            if (!FD->hasAttr<UnavailableAttr>())
8823              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8824                                  "this system field has retaining ownership"));
8825            return false;
8826          }
8827        }
8828
8829        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8830               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8831               diag::err_illegal_union_or_anon_struct_member)
8832          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8833        DiagnoseNontrivial(RT, member);
8834        return !getLangOptions().CPlusPlus0x;
8835      }
8836    }
8837  }
8838
8839  return false;
8840}
8841
8842/// DiagnoseNontrivial - Given that a class has a non-trivial
8843/// special member, figure out why.
8844void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8845  QualType QT(T, 0U);
8846  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8847
8848  // Check whether the member was user-declared.
8849  switch (member) {
8850  case CXXInvalid:
8851    break;
8852
8853  case CXXDefaultConstructor:
8854    if (RD->hasUserDeclaredConstructor()) {
8855      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8856      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8857        const FunctionDecl *body = 0;
8858        ci->hasBody(body);
8859        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8860          SourceLocation CtorLoc = ci->getLocation();
8861          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8862          return;
8863        }
8864      }
8865
8866      llvm_unreachable("found no user-declared constructors");
8867    }
8868    break;
8869
8870  case CXXCopyConstructor:
8871    if (RD->hasUserDeclaredCopyConstructor()) {
8872      SourceLocation CtorLoc =
8873        RD->getCopyConstructor(0)->getLocation();
8874      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8875      return;
8876    }
8877    break;
8878
8879  case CXXMoveConstructor:
8880    if (RD->hasUserDeclaredMoveConstructor()) {
8881      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8882      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8883      return;
8884    }
8885    break;
8886
8887  case CXXCopyAssignment:
8888    if (RD->hasUserDeclaredCopyAssignment()) {
8889      // FIXME: this should use the location of the copy
8890      // assignment, not the type.
8891      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8892      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8893      return;
8894    }
8895    break;
8896
8897  case CXXMoveAssignment:
8898    if (RD->hasUserDeclaredMoveAssignment()) {
8899      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8900      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8901      return;
8902    }
8903    break;
8904
8905  case CXXDestructor:
8906    if (RD->hasUserDeclaredDestructor()) {
8907      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8908      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8909      return;
8910    }
8911    break;
8912  }
8913
8914  typedef CXXRecordDecl::base_class_iterator base_iter;
8915
8916  // Virtual bases and members inhibit trivial copying/construction,
8917  // but not trivial destruction.
8918  if (member != CXXDestructor) {
8919    // Check for virtual bases.  vbases includes indirect virtual bases,
8920    // so we just iterate through the direct bases.
8921    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8922      if (bi->isVirtual()) {
8923        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8924        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8925        return;
8926      }
8927
8928    // Check for virtual methods.
8929    typedef CXXRecordDecl::method_iterator meth_iter;
8930    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8931         ++mi) {
8932      if (mi->isVirtual()) {
8933        SourceLocation MLoc = mi->getSourceRange().getBegin();
8934        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8935        return;
8936      }
8937    }
8938  }
8939
8940  bool (CXXRecordDecl::*hasTrivial)() const;
8941  switch (member) {
8942  case CXXDefaultConstructor:
8943    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8944  case CXXCopyConstructor:
8945    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8946  case CXXCopyAssignment:
8947    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8948  case CXXDestructor:
8949    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8950  default:
8951    llvm_unreachable("unexpected special member");
8952  }
8953
8954  // Check for nontrivial bases (and recurse).
8955  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8956    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8957    assert(BaseRT && "Don't know how to handle dependent bases");
8958    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8959    if (!(BaseRecTy->*hasTrivial)()) {
8960      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8961      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8962      DiagnoseNontrivial(BaseRT, member);
8963      return;
8964    }
8965  }
8966
8967  // Check for nontrivial members (and recurse).
8968  typedef RecordDecl::field_iterator field_iter;
8969  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8970       ++fi) {
8971    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8972    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8973      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8974
8975      if (!(EltRD->*hasTrivial)()) {
8976        SourceLocation FLoc = (*fi)->getLocation();
8977        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8978        DiagnoseNontrivial(EltRT, member);
8979        return;
8980      }
8981    }
8982
8983    if (EltTy->isObjCLifetimeType()) {
8984      switch (EltTy.getObjCLifetime()) {
8985      case Qualifiers::OCL_None:
8986      case Qualifiers::OCL_ExplicitNone:
8987        break;
8988
8989      case Qualifiers::OCL_Autoreleasing:
8990      case Qualifiers::OCL_Weak:
8991      case Qualifiers::OCL_Strong:
8992        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8993          << QT << EltTy.getObjCLifetime();
8994        return;
8995      }
8996    }
8997  }
8998
8999  llvm_unreachable("found no explanation for non-trivial member");
9000}
9001
9002/// TranslateIvarVisibility - Translate visibility from a token ID to an
9003///  AST enum value.
9004static ObjCIvarDecl::AccessControl
9005TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9006  switch (ivarVisibility) {
9007  default: llvm_unreachable("Unknown visitibility kind");
9008  case tok::objc_private: return ObjCIvarDecl::Private;
9009  case tok::objc_public: return ObjCIvarDecl::Public;
9010  case tok::objc_protected: return ObjCIvarDecl::Protected;
9011  case tok::objc_package: return ObjCIvarDecl::Package;
9012  }
9013}
9014
9015/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9016/// in order to create an IvarDecl object for it.
9017Decl *Sema::ActOnIvar(Scope *S,
9018                                SourceLocation DeclStart,
9019                                Declarator &D, Expr *BitfieldWidth,
9020                                tok::ObjCKeywordKind Visibility) {
9021
9022  IdentifierInfo *II = D.getIdentifier();
9023  Expr *BitWidth = (Expr*)BitfieldWidth;
9024  SourceLocation Loc = DeclStart;
9025  if (II) Loc = D.getIdentifierLoc();
9026
9027  // FIXME: Unnamed fields can be handled in various different ways, for
9028  // example, unnamed unions inject all members into the struct namespace!
9029
9030  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9031  QualType T = TInfo->getType();
9032
9033  if (BitWidth) {
9034    // 6.7.2.1p3, 6.7.2.1p4
9035    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9036    if (!BitWidth)
9037      D.setInvalidType();
9038  } else {
9039    // Not a bitfield.
9040
9041    // validate II.
9042
9043  }
9044  if (T->isReferenceType()) {
9045    Diag(Loc, diag::err_ivar_reference_type);
9046    D.setInvalidType();
9047  }
9048  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9049  // than a variably modified type.
9050  else if (T->isVariablyModifiedType()) {
9051    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9052    D.setInvalidType();
9053  }
9054
9055  // Get the visibility (access control) for this ivar.
9056  ObjCIvarDecl::AccessControl ac =
9057    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9058                                        : ObjCIvarDecl::None;
9059  // Must set ivar's DeclContext to its enclosing interface.
9060  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9061  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9062    return 0;
9063  ObjCContainerDecl *EnclosingContext;
9064  if (ObjCImplementationDecl *IMPDecl =
9065      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9066    if (!LangOpts.ObjCNonFragileABI2) {
9067    // Case of ivar declared in an implementation. Context is that of its class.
9068      EnclosingContext = IMPDecl->getClassInterface();
9069      assert(EnclosingContext && "Implementation has no class interface!");
9070    }
9071    else
9072      EnclosingContext = EnclosingDecl;
9073  } else {
9074    if (ObjCCategoryDecl *CDecl =
9075        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9076      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9077        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9078        return 0;
9079      }
9080    }
9081    EnclosingContext = EnclosingDecl;
9082  }
9083
9084  // Construct the decl.
9085  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9086                                             DeclStart, Loc, II, T,
9087                                             TInfo, ac, (Expr *)BitfieldWidth);
9088
9089  if (II) {
9090    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9091                                           ForRedeclaration);
9092    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9093        && !isa<TagDecl>(PrevDecl)) {
9094      Diag(Loc, diag::err_duplicate_member) << II;
9095      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9096      NewID->setInvalidDecl();
9097    }
9098  }
9099
9100  // Process attributes attached to the ivar.
9101  ProcessDeclAttributes(S, NewID, D);
9102
9103  if (D.isInvalidType())
9104    NewID->setInvalidDecl();
9105
9106  // In ARC, infer 'retaining' for ivars of retainable type.
9107  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9108    NewID->setInvalidDecl();
9109
9110  if (D.getDeclSpec().isModulePrivateSpecified())
9111    NewID->setModulePrivate();
9112
9113  if (II) {
9114    // FIXME: When interfaces are DeclContexts, we'll need to add
9115    // these to the interface.
9116    S->AddDecl(NewID);
9117    IdResolver.AddDecl(NewID);
9118  }
9119
9120  return NewID;
9121}
9122
9123/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9124/// class and class extensions. For every class @interface and class
9125/// extension @interface, if the last ivar is a bitfield of any type,
9126/// then add an implicit `char :0` ivar to the end of that interface.
9127void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9128                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9129  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9130    return;
9131
9132  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9133  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9134
9135  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9136    return;
9137  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9138  if (!ID) {
9139    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9140      if (!CD->IsClassExtension())
9141        return;
9142    }
9143    // No need to add this to end of @implementation.
9144    else
9145      return;
9146  }
9147  // All conditions are met. Add a new bitfield to the tail end of ivars.
9148  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9149  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9150
9151  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9152                              DeclLoc, DeclLoc, 0,
9153                              Context.CharTy,
9154                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9155                                                               DeclLoc),
9156                              ObjCIvarDecl::Private, BW,
9157                              true);
9158  AllIvarDecls.push_back(Ivar);
9159}
9160
9161void Sema::ActOnFields(Scope* S,
9162                       SourceLocation RecLoc, Decl *EnclosingDecl,
9163                       llvm::ArrayRef<Decl *> Fields,
9164                       SourceLocation LBrac, SourceLocation RBrac,
9165                       AttributeList *Attr) {
9166  assert(EnclosingDecl && "missing record or interface decl");
9167
9168  // If the decl this is being inserted into is invalid, then it may be a
9169  // redeclaration or some other bogus case.  Don't try to add fields to it.
9170  if (EnclosingDecl->isInvalidDecl())
9171    return;
9172
9173  // Verify that all the fields are okay.
9174  unsigned NumNamedMembers = 0;
9175  SmallVector<FieldDecl*, 32> RecFields;
9176
9177  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9178  bool ARCErrReported = false;
9179  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9180       i != end; ++i) {
9181    FieldDecl *FD = cast<FieldDecl>(*i);
9182
9183    // Get the type for the field.
9184    const Type *FDTy = FD->getType().getTypePtr();
9185
9186    if (!FD->isAnonymousStructOrUnion()) {
9187      // Remember all fields written by the user.
9188      RecFields.push_back(FD);
9189    }
9190
9191    // If the field is already invalid for some reason, don't emit more
9192    // diagnostics about it.
9193    if (FD->isInvalidDecl()) {
9194      EnclosingDecl->setInvalidDecl();
9195      continue;
9196    }
9197
9198    // C99 6.7.2.1p2:
9199    //   A structure or union shall not contain a member with
9200    //   incomplete or function type (hence, a structure shall not
9201    //   contain an instance of itself, but may contain a pointer to
9202    //   an instance of itself), except that the last member of a
9203    //   structure with more than one named member may have incomplete
9204    //   array type; such a structure (and any union containing,
9205    //   possibly recursively, a member that is such a structure)
9206    //   shall not be a member of a structure or an element of an
9207    //   array.
9208    if (FDTy->isFunctionType()) {
9209      // Field declared as a function.
9210      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9211        << FD->getDeclName();
9212      FD->setInvalidDecl();
9213      EnclosingDecl->setInvalidDecl();
9214      continue;
9215    } else if (FDTy->isIncompleteArrayType() && Record &&
9216               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9217                ((getLangOptions().MicrosoftExt ||
9218                  getLangOptions().CPlusPlus) &&
9219                 (i + 1 == Fields.end() || Record->isUnion())))) {
9220      // Flexible array member.
9221      // Microsoft and g++ is more permissive regarding flexible array.
9222      // It will accept flexible array in union and also
9223      // as the sole element of a struct/class.
9224      if (getLangOptions().MicrosoftExt) {
9225        if (Record->isUnion())
9226          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9227            << FD->getDeclName();
9228        else if (Fields.size() == 1)
9229          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9230            << FD->getDeclName() << Record->getTagKind();
9231      } else if (getLangOptions().CPlusPlus) {
9232        if (Record->isUnion())
9233          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9234            << FD->getDeclName();
9235        else if (Fields.size() == 1)
9236          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9237            << FD->getDeclName() << Record->getTagKind();
9238      } else if (NumNamedMembers < 1) {
9239        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9240          << FD->getDeclName();
9241        FD->setInvalidDecl();
9242        EnclosingDecl->setInvalidDecl();
9243        continue;
9244      }
9245      if (!FD->getType()->isDependentType() &&
9246          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9247        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9248          << FD->getDeclName() << FD->getType();
9249        FD->setInvalidDecl();
9250        EnclosingDecl->setInvalidDecl();
9251        continue;
9252      }
9253      // Okay, we have a legal flexible array member at the end of the struct.
9254      if (Record)
9255        Record->setHasFlexibleArrayMember(true);
9256    } else if (!FDTy->isDependentType() &&
9257               RequireCompleteType(FD->getLocation(), FD->getType(),
9258                                   diag::err_field_incomplete)) {
9259      // Incomplete type
9260      FD->setInvalidDecl();
9261      EnclosingDecl->setInvalidDecl();
9262      continue;
9263    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9264      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9265        // If this is a member of a union, then entire union becomes "flexible".
9266        if (Record && Record->isUnion()) {
9267          Record->setHasFlexibleArrayMember(true);
9268        } else {
9269          // If this is a struct/class and this is not the last element, reject
9270          // it.  Note that GCC supports variable sized arrays in the middle of
9271          // structures.
9272          if (i + 1 != Fields.end())
9273            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9274              << FD->getDeclName() << FD->getType();
9275          else {
9276            // We support flexible arrays at the end of structs in
9277            // other structs as an extension.
9278            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9279              << FD->getDeclName();
9280            if (Record)
9281              Record->setHasFlexibleArrayMember(true);
9282          }
9283        }
9284      }
9285      if (Record && FDTTy->getDecl()->hasObjectMember())
9286        Record->setHasObjectMember(true);
9287    } else if (FDTy->isObjCObjectType()) {
9288      /// A field cannot be an Objective-c object
9289      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9290        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9291      QualType T = Context.getObjCObjectPointerType(FD->getType());
9292      FD->setType(T);
9293    }
9294    else if (!getLangOptions().CPlusPlus) {
9295      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9296        // It's an error in ARC if a field has lifetime.
9297        // We don't want to report this in a system header, though,
9298        // so we just make the field unavailable.
9299        // FIXME: that's really not sufficient; we need to make the type
9300        // itself invalid to, say, initialize or copy.
9301        QualType T = FD->getType();
9302        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9303        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9304          SourceLocation loc = FD->getLocation();
9305          if (getSourceManager().isInSystemHeader(loc)) {
9306            if (!FD->hasAttr<UnavailableAttr>()) {
9307              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9308                                "this system field has retaining ownership"));
9309            }
9310          } else {
9311            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9312              << T->isBlockPointerType();
9313          }
9314          ARCErrReported = true;
9315        }
9316      }
9317      else if (getLangOptions().ObjC1 &&
9318               getLangOptions().getGC() != LangOptions::NonGC &&
9319               Record && !Record->hasObjectMember()) {
9320        if (FD->getType()->isObjCObjectPointerType() ||
9321            FD->getType().isObjCGCStrong())
9322          Record->setHasObjectMember(true);
9323        else if (Context.getAsArrayType(FD->getType())) {
9324          QualType BaseType = Context.getBaseElementType(FD->getType());
9325          if (BaseType->isRecordType() &&
9326              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9327            Record->setHasObjectMember(true);
9328          else if (BaseType->isObjCObjectPointerType() ||
9329                   BaseType.isObjCGCStrong())
9330                 Record->setHasObjectMember(true);
9331        }
9332      }
9333    }
9334    // Keep track of the number of named members.
9335    if (FD->getIdentifier())
9336      ++NumNamedMembers;
9337  }
9338
9339  // Okay, we successfully defined 'Record'.
9340  if (Record) {
9341    bool Completed = false;
9342    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9343      if (!CXXRecord->isInvalidDecl()) {
9344        // Set access bits correctly on the directly-declared conversions.
9345        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9346        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9347             I != E; ++I)
9348          Convs->setAccess(I, (*I)->getAccess());
9349
9350        if (!CXXRecord->isDependentType()) {
9351          // Objective-C Automatic Reference Counting:
9352          //   If a class has a non-static data member of Objective-C pointer
9353          //   type (or array thereof), it is a non-POD type and its
9354          //   default constructor (if any), copy constructor, copy assignment
9355          //   operator, and destructor are non-trivial.
9356          //
9357          // This rule is also handled by CXXRecordDecl::completeDefinition().
9358          // However, here we check whether this particular class is only
9359          // non-POD because of the presence of an Objective-C pointer member.
9360          // If so, objects of this type cannot be shared between code compiled
9361          // with instant objects and code compiled with manual retain/release.
9362          if (getLangOptions().ObjCAutoRefCount &&
9363              CXXRecord->hasObjectMember() &&
9364              CXXRecord->getLinkage() == ExternalLinkage) {
9365            if (CXXRecord->isPOD()) {
9366              Diag(CXXRecord->getLocation(),
9367                   diag::warn_arc_non_pod_class_with_object_member)
9368               << CXXRecord;
9369            } else {
9370              // FIXME: Fix-Its would be nice here, but finding a good location
9371              // for them is going to be tricky.
9372              if (CXXRecord->hasTrivialCopyConstructor())
9373                Diag(CXXRecord->getLocation(),
9374                     diag::warn_arc_trivial_member_function_with_object_member)
9375                  << CXXRecord << 0;
9376              if (CXXRecord->hasTrivialCopyAssignment())
9377                Diag(CXXRecord->getLocation(),
9378                     diag::warn_arc_trivial_member_function_with_object_member)
9379                << CXXRecord << 1;
9380              if (CXXRecord->hasTrivialDestructor())
9381                Diag(CXXRecord->getLocation(),
9382                     diag::warn_arc_trivial_member_function_with_object_member)
9383                << CXXRecord << 2;
9384            }
9385          }
9386
9387          // Adjust user-defined destructor exception spec.
9388          if (getLangOptions().CPlusPlus0x &&
9389              CXXRecord->hasUserDeclaredDestructor())
9390            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9391
9392          // Add any implicitly-declared members to this class.
9393          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9394
9395          // If we have virtual base classes, we may end up finding multiple
9396          // final overriders for a given virtual function. Check for this
9397          // problem now.
9398          if (CXXRecord->getNumVBases()) {
9399            CXXFinalOverriderMap FinalOverriders;
9400            CXXRecord->getFinalOverriders(FinalOverriders);
9401
9402            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9403                                             MEnd = FinalOverriders.end();
9404                 M != MEnd; ++M) {
9405              for (OverridingMethods::iterator SO = M->second.begin(),
9406                                            SOEnd = M->second.end();
9407                   SO != SOEnd; ++SO) {
9408                assert(SO->second.size() > 0 &&
9409                       "Virtual function without overridding functions?");
9410                if (SO->second.size() == 1)
9411                  continue;
9412
9413                // C++ [class.virtual]p2:
9414                //   In a derived class, if a virtual member function of a base
9415                //   class subobject has more than one final overrider the
9416                //   program is ill-formed.
9417                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9418                  << (NamedDecl *)M->first << Record;
9419                Diag(M->first->getLocation(),
9420                     diag::note_overridden_virtual_function);
9421                for (OverridingMethods::overriding_iterator
9422                          OM = SO->second.begin(),
9423                       OMEnd = SO->second.end();
9424                     OM != OMEnd; ++OM)
9425                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9426                    << (NamedDecl *)M->first << OM->Method->getParent();
9427
9428                Record->setInvalidDecl();
9429              }
9430            }
9431            CXXRecord->completeDefinition(&FinalOverriders);
9432            Completed = true;
9433          }
9434        }
9435      }
9436    }
9437
9438    if (!Completed)
9439      Record->completeDefinition();
9440
9441    // Now that the record is complete, do any delayed exception spec checks
9442    // we were missing.
9443    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9444      const CXXDestructorDecl *Dtor =
9445              DelayedDestructorExceptionSpecChecks.back().first;
9446      if (Dtor->getParent() != Record)
9447        break;
9448
9449      assert(!Dtor->getParent()->isDependentType() &&
9450          "Should not ever add destructors of templates into the list.");
9451      CheckOverridingFunctionExceptionSpec(Dtor,
9452          DelayedDestructorExceptionSpecChecks.back().second);
9453      DelayedDestructorExceptionSpecChecks.pop_back();
9454    }
9455
9456  } else {
9457    ObjCIvarDecl **ClsFields =
9458      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9459    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9460      ID->setEndOfDefinitionLoc(RBrac);
9461      // Add ivar's to class's DeclContext.
9462      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9463        ClsFields[i]->setLexicalDeclContext(ID);
9464        ID->addDecl(ClsFields[i]);
9465      }
9466      // Must enforce the rule that ivars in the base classes may not be
9467      // duplicates.
9468      if (ID->getSuperClass())
9469        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9470    } else if (ObjCImplementationDecl *IMPDecl =
9471                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9472      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9473      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9474        // Ivar declared in @implementation never belongs to the implementation.
9475        // Only it is in implementation's lexical context.
9476        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9477      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9478    } else if (ObjCCategoryDecl *CDecl =
9479                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9480      // case of ivars in class extension; all other cases have been
9481      // reported as errors elsewhere.
9482      // FIXME. Class extension does not have a LocEnd field.
9483      // CDecl->setLocEnd(RBrac);
9484      // Add ivar's to class extension's DeclContext.
9485      // Diagnose redeclaration of private ivars.
9486      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9487      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9488        if (IDecl) {
9489          if (const ObjCIvarDecl *ClsIvar =
9490              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9491            Diag(ClsFields[i]->getLocation(),
9492                 diag::err_duplicate_ivar_declaration);
9493            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9494            continue;
9495          }
9496          for (const ObjCCategoryDecl *ClsExtDecl =
9497                IDecl->getFirstClassExtension();
9498               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9499            if (const ObjCIvarDecl *ClsExtIvar =
9500                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9501              Diag(ClsFields[i]->getLocation(),
9502                   diag::err_duplicate_ivar_declaration);
9503              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9504              continue;
9505            }
9506          }
9507        }
9508        ClsFields[i]->setLexicalDeclContext(CDecl);
9509        CDecl->addDecl(ClsFields[i]);
9510      }
9511    }
9512  }
9513
9514  if (Attr)
9515    ProcessDeclAttributeList(S, Record, Attr);
9516
9517  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9518  // set the visibility of this record.
9519  if (Record && !Record->getDeclContext()->isRecord())
9520    AddPushedVisibilityAttribute(Record);
9521}
9522
9523/// \brief Determine whether the given integral value is representable within
9524/// the given type T.
9525static bool isRepresentableIntegerValue(ASTContext &Context,
9526                                        llvm::APSInt &Value,
9527                                        QualType T) {
9528  assert(T->isIntegralType(Context) && "Integral type required!");
9529  unsigned BitWidth = Context.getIntWidth(T);
9530
9531  if (Value.isUnsigned() || Value.isNonNegative()) {
9532    if (T->isSignedIntegerOrEnumerationType())
9533      --BitWidth;
9534    return Value.getActiveBits() <= BitWidth;
9535  }
9536  return Value.getMinSignedBits() <= BitWidth;
9537}
9538
9539// \brief Given an integral type, return the next larger integral type
9540// (or a NULL type of no such type exists).
9541static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9542  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9543  // enum checking below.
9544  assert(T->isIntegralType(Context) && "Integral type required!");
9545  const unsigned NumTypes = 4;
9546  QualType SignedIntegralTypes[NumTypes] = {
9547    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9548  };
9549  QualType UnsignedIntegralTypes[NumTypes] = {
9550    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9551    Context.UnsignedLongLongTy
9552  };
9553
9554  unsigned BitWidth = Context.getTypeSize(T);
9555  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9556                                                        : UnsignedIntegralTypes;
9557  for (unsigned I = 0; I != NumTypes; ++I)
9558    if (Context.getTypeSize(Types[I]) > BitWidth)
9559      return Types[I];
9560
9561  return QualType();
9562}
9563
9564EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9565                                          EnumConstantDecl *LastEnumConst,
9566                                          SourceLocation IdLoc,
9567                                          IdentifierInfo *Id,
9568                                          Expr *Val) {
9569  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9570  llvm::APSInt EnumVal(IntWidth);
9571  QualType EltTy;
9572
9573  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9574    Val = 0;
9575
9576  if (Val)
9577    Val = DefaultLvalueConversion(Val).take();
9578
9579  if (Val) {
9580    if (Enum->isDependentType() || Val->isTypeDependent())
9581      EltTy = Context.DependentTy;
9582    else {
9583      SourceLocation ExpLoc;
9584      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9585          !getLangOptions().MicrosoftMode) {
9586        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9587        // constant-expression in the enumerator-definition shall be a converted
9588        // constant expression of the underlying type.
9589        EltTy = Enum->getIntegerType();
9590        ExprResult Converted =
9591          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9592                                           CCEK_Enumerator);
9593        if (Converted.isInvalid())
9594          Val = 0;
9595        else
9596          Val = Converted.take();
9597      } else if (!Val->isValueDependent() &&
9598                 !(Val = VerifyIntegerConstantExpression(Val,
9599                                                         &EnumVal).take())) {
9600        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9601      } else {
9602        if (!getLangOptions().CPlusPlus) {
9603          // C99 6.7.2.2p2:
9604          //   The expression that defines the value of an enumeration constant
9605          //   shall be an integer constant expression that has a value
9606          //   representable as an int.
9607
9608          // Complain if the value is not representable in an int.
9609          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9610            Diag(IdLoc, diag::ext_enum_value_not_int)
9611              << EnumVal.toString(10) << Val->getSourceRange()
9612              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9613          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9614            // Force the type of the expression to 'int'.
9615            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9616          }
9617        }
9618
9619        if (Enum->isFixed()) {
9620          EltTy = Enum->getIntegerType();
9621
9622          // In Obj-C and Microsoft mode, require the enumeration value to be
9623          // representable in the underlying type of the enumeration. In C++11,
9624          // we perform a non-narrowing conversion as part of converted constant
9625          // expression checking.
9626          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9627            if (getLangOptions().MicrosoftExt) {
9628              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9629              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9630            } else
9631              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9632          } else
9633            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9634        } else {
9635          // C++11 [dcl.enum]p5:
9636          //   If the underlying type is not fixed, the type of each enumerator
9637          //   is the type of its initializing value:
9638          //     - If an initializer is specified for an enumerator, the
9639          //       initializing value has the same type as the expression.
9640          EltTy = Val->getType();
9641        }
9642      }
9643    }
9644  }
9645
9646  if (!Val) {
9647    if (Enum->isDependentType())
9648      EltTy = Context.DependentTy;
9649    else if (!LastEnumConst) {
9650      // C++0x [dcl.enum]p5:
9651      //   If the underlying type is not fixed, the type of each enumerator
9652      //   is the type of its initializing value:
9653      //     - If no initializer is specified for the first enumerator, the
9654      //       initializing value has an unspecified integral type.
9655      //
9656      // GCC uses 'int' for its unspecified integral type, as does
9657      // C99 6.7.2.2p3.
9658      if (Enum->isFixed()) {
9659        EltTy = Enum->getIntegerType();
9660      }
9661      else {
9662        EltTy = Context.IntTy;
9663      }
9664    } else {
9665      // Assign the last value + 1.
9666      EnumVal = LastEnumConst->getInitVal();
9667      ++EnumVal;
9668      EltTy = LastEnumConst->getType();
9669
9670      // Check for overflow on increment.
9671      if (EnumVal < LastEnumConst->getInitVal()) {
9672        // C++0x [dcl.enum]p5:
9673        //   If the underlying type is not fixed, the type of each enumerator
9674        //   is the type of its initializing value:
9675        //
9676        //     - Otherwise the type of the initializing value is the same as
9677        //       the type of the initializing value of the preceding enumerator
9678        //       unless the incremented value is not representable in that type,
9679        //       in which case the type is an unspecified integral type
9680        //       sufficient to contain the incremented value. If no such type
9681        //       exists, the program is ill-formed.
9682        QualType T = getNextLargerIntegralType(Context, EltTy);
9683        if (T.isNull() || Enum->isFixed()) {
9684          // There is no integral type larger enough to represent this
9685          // value. Complain, then allow the value to wrap around.
9686          EnumVal = LastEnumConst->getInitVal();
9687          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9688          ++EnumVal;
9689          if (Enum->isFixed())
9690            // When the underlying type is fixed, this is ill-formed.
9691            Diag(IdLoc, diag::err_enumerator_wrapped)
9692              << EnumVal.toString(10)
9693              << EltTy;
9694          else
9695            Diag(IdLoc, diag::warn_enumerator_too_large)
9696              << EnumVal.toString(10);
9697        } else {
9698          EltTy = T;
9699        }
9700
9701        // Retrieve the last enumerator's value, extent that type to the
9702        // type that is supposed to be large enough to represent the incremented
9703        // value, then increment.
9704        EnumVal = LastEnumConst->getInitVal();
9705        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9706        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9707        ++EnumVal;
9708
9709        // If we're not in C++, diagnose the overflow of enumerator values,
9710        // which in C99 means that the enumerator value is not representable in
9711        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9712        // permits enumerator values that are representable in some larger
9713        // integral type.
9714        if (!getLangOptions().CPlusPlus && !T.isNull())
9715          Diag(IdLoc, diag::warn_enum_value_overflow);
9716      } else if (!getLangOptions().CPlusPlus &&
9717                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9718        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9719        Diag(IdLoc, diag::ext_enum_value_not_int)
9720          << EnumVal.toString(10) << 1;
9721      }
9722    }
9723  }
9724
9725  if (!EltTy->isDependentType()) {
9726    // Make the enumerator value match the signedness and size of the
9727    // enumerator's type.
9728    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9729    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9730  }
9731
9732  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9733                                  Val, EnumVal);
9734}
9735
9736
9737Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9738                              SourceLocation IdLoc, IdentifierInfo *Id,
9739                              AttributeList *Attr,
9740                              SourceLocation EqualLoc, Expr *Val) {
9741  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9742  EnumConstantDecl *LastEnumConst =
9743    cast_or_null<EnumConstantDecl>(lastEnumConst);
9744
9745  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9746  // we find one that is.
9747  S = getNonFieldDeclScope(S);
9748
9749  // Verify that there isn't already something declared with this name in this
9750  // scope.
9751  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9752                                         ForRedeclaration);
9753  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9754    // Maybe we will complain about the shadowed template parameter.
9755    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9756    // Just pretend that we didn't see the previous declaration.
9757    PrevDecl = 0;
9758  }
9759
9760  if (PrevDecl) {
9761    // When in C++, we may get a TagDecl with the same name; in this case the
9762    // enum constant will 'hide' the tag.
9763    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9764           "Received TagDecl when not in C++!");
9765    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9766      if (isa<EnumConstantDecl>(PrevDecl))
9767        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9768      else
9769        Diag(IdLoc, diag::err_redefinition) << Id;
9770      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9771      return 0;
9772    }
9773  }
9774
9775  // C++ [class.mem]p13:
9776  //   If T is the name of a class, then each of the following shall have a
9777  //   name different from T:
9778  //     - every enumerator of every member of class T that is an enumerated
9779  //       type
9780  if (CXXRecordDecl *Record
9781                      = dyn_cast<CXXRecordDecl>(
9782                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9783    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9784      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9785
9786  EnumConstantDecl *New =
9787    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9788
9789  if (New) {
9790    // Process attributes.
9791    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9792
9793    // Register this decl in the current scope stack.
9794    New->setAccess(TheEnumDecl->getAccess());
9795    PushOnScopeChains(New, S);
9796  }
9797
9798  return New;
9799}
9800
9801void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9802                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9803                         Decl **Elements, unsigned NumElements,
9804                         Scope *S, AttributeList *Attr) {
9805  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9806  QualType EnumType = Context.getTypeDeclType(Enum);
9807
9808  if (Attr)
9809    ProcessDeclAttributeList(S, Enum, Attr);
9810
9811  if (Enum->isDependentType()) {
9812    for (unsigned i = 0; i != NumElements; ++i) {
9813      EnumConstantDecl *ECD =
9814        cast_or_null<EnumConstantDecl>(Elements[i]);
9815      if (!ECD) continue;
9816
9817      ECD->setType(EnumType);
9818    }
9819
9820    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9821    return;
9822  }
9823
9824  // TODO: If the result value doesn't fit in an int, it must be a long or long
9825  // long value.  ISO C does not support this, but GCC does as an extension,
9826  // emit a warning.
9827  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9828  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9829  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9830
9831  // Verify that all the values are okay, compute the size of the values, and
9832  // reverse the list.
9833  unsigned NumNegativeBits = 0;
9834  unsigned NumPositiveBits = 0;
9835
9836  // Keep track of whether all elements have type int.
9837  bool AllElementsInt = true;
9838
9839  for (unsigned i = 0; i != NumElements; ++i) {
9840    EnumConstantDecl *ECD =
9841      cast_or_null<EnumConstantDecl>(Elements[i]);
9842    if (!ECD) continue;  // Already issued a diagnostic.
9843
9844    const llvm::APSInt &InitVal = ECD->getInitVal();
9845
9846    // Keep track of the size of positive and negative values.
9847    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9848      NumPositiveBits = std::max(NumPositiveBits,
9849                                 (unsigned)InitVal.getActiveBits());
9850    else
9851      NumNegativeBits = std::max(NumNegativeBits,
9852                                 (unsigned)InitVal.getMinSignedBits());
9853
9854    // Keep track of whether every enum element has type int (very commmon).
9855    if (AllElementsInt)
9856      AllElementsInt = ECD->getType() == Context.IntTy;
9857  }
9858
9859  // Figure out the type that should be used for this enum.
9860  QualType BestType;
9861  unsigned BestWidth;
9862
9863  // C++0x N3000 [conv.prom]p3:
9864  //   An rvalue of an unscoped enumeration type whose underlying
9865  //   type is not fixed can be converted to an rvalue of the first
9866  //   of the following types that can represent all the values of
9867  //   the enumeration: int, unsigned int, long int, unsigned long
9868  //   int, long long int, or unsigned long long int.
9869  // C99 6.4.4.3p2:
9870  //   An identifier declared as an enumeration constant has type int.
9871  // The C99 rule is modified by a gcc extension
9872  QualType BestPromotionType;
9873
9874  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9875  // -fshort-enums is the equivalent to specifying the packed attribute on all
9876  // enum definitions.
9877  if (LangOpts.ShortEnums)
9878    Packed = true;
9879
9880  if (Enum->isFixed()) {
9881    BestType = Enum->getIntegerType();
9882    if (BestType->isPromotableIntegerType())
9883      BestPromotionType = Context.getPromotedIntegerType(BestType);
9884    else
9885      BestPromotionType = BestType;
9886    // We don't need to set BestWidth, because BestType is going to be the type
9887    // of the enumerators, but we do anyway because otherwise some compilers
9888    // warn that it might be used uninitialized.
9889    BestWidth = CharWidth;
9890  }
9891  else if (NumNegativeBits) {
9892    // If there is a negative value, figure out the smallest integer type (of
9893    // int/long/longlong) that fits.
9894    // If it's packed, check also if it fits a char or a short.
9895    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9896      BestType = Context.SignedCharTy;
9897      BestWidth = CharWidth;
9898    } else if (Packed && NumNegativeBits <= ShortWidth &&
9899               NumPositiveBits < ShortWidth) {
9900      BestType = Context.ShortTy;
9901      BestWidth = ShortWidth;
9902    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9903      BestType = Context.IntTy;
9904      BestWidth = IntWidth;
9905    } else {
9906      BestWidth = Context.getTargetInfo().getLongWidth();
9907
9908      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9909        BestType = Context.LongTy;
9910      } else {
9911        BestWidth = Context.getTargetInfo().getLongLongWidth();
9912
9913        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9914          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9915        BestType = Context.LongLongTy;
9916      }
9917    }
9918    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9919  } else {
9920    // If there is no negative value, figure out the smallest type that fits
9921    // all of the enumerator values.
9922    // If it's packed, check also if it fits a char or a short.
9923    if (Packed && NumPositiveBits <= CharWidth) {
9924      BestType = Context.UnsignedCharTy;
9925      BestPromotionType = Context.IntTy;
9926      BestWidth = CharWidth;
9927    } else if (Packed && NumPositiveBits <= ShortWidth) {
9928      BestType = Context.UnsignedShortTy;
9929      BestPromotionType = Context.IntTy;
9930      BestWidth = ShortWidth;
9931    } else if (NumPositiveBits <= IntWidth) {
9932      BestType = Context.UnsignedIntTy;
9933      BestWidth = IntWidth;
9934      BestPromotionType
9935        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9936                           ? Context.UnsignedIntTy : Context.IntTy;
9937    } else if (NumPositiveBits <=
9938               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9939      BestType = Context.UnsignedLongTy;
9940      BestPromotionType
9941        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9942                           ? Context.UnsignedLongTy : Context.LongTy;
9943    } else {
9944      BestWidth = Context.getTargetInfo().getLongLongWidth();
9945      assert(NumPositiveBits <= BestWidth &&
9946             "How could an initializer get larger than ULL?");
9947      BestType = Context.UnsignedLongLongTy;
9948      BestPromotionType
9949        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9950                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9951    }
9952  }
9953
9954  // Loop over all of the enumerator constants, changing their types to match
9955  // the type of the enum if needed.
9956  for (unsigned i = 0; i != NumElements; ++i) {
9957    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9958    if (!ECD) continue;  // Already issued a diagnostic.
9959
9960    // Standard C says the enumerators have int type, but we allow, as an
9961    // extension, the enumerators to be larger than int size.  If each
9962    // enumerator value fits in an int, type it as an int, otherwise type it the
9963    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9964    // that X has type 'int', not 'unsigned'.
9965
9966    // Determine whether the value fits into an int.
9967    llvm::APSInt InitVal = ECD->getInitVal();
9968
9969    // If it fits into an integer type, force it.  Otherwise force it to match
9970    // the enum decl type.
9971    QualType NewTy;
9972    unsigned NewWidth;
9973    bool NewSign;
9974    if (!getLangOptions().CPlusPlus &&
9975        !Enum->isFixed() &&
9976        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9977      NewTy = Context.IntTy;
9978      NewWidth = IntWidth;
9979      NewSign = true;
9980    } else if (ECD->getType() == BestType) {
9981      // Already the right type!
9982      if (getLangOptions().CPlusPlus)
9983        // C++ [dcl.enum]p4: Following the closing brace of an
9984        // enum-specifier, each enumerator has the type of its
9985        // enumeration.
9986        ECD->setType(EnumType);
9987      continue;
9988    } else {
9989      NewTy = BestType;
9990      NewWidth = BestWidth;
9991      NewSign = BestType->isSignedIntegerOrEnumerationType();
9992    }
9993
9994    // Adjust the APSInt value.
9995    InitVal = InitVal.extOrTrunc(NewWidth);
9996    InitVal.setIsSigned(NewSign);
9997    ECD->setInitVal(InitVal);
9998
9999    // Adjust the Expr initializer and type.
10000    if (ECD->getInitExpr() &&
10001        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10002      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10003                                                CK_IntegralCast,
10004                                                ECD->getInitExpr(),
10005                                                /*base paths*/ 0,
10006                                                VK_RValue));
10007    if (getLangOptions().CPlusPlus)
10008      // C++ [dcl.enum]p4: Following the closing brace of an
10009      // enum-specifier, each enumerator has the type of its
10010      // enumeration.
10011      ECD->setType(EnumType);
10012    else
10013      ECD->setType(NewTy);
10014  }
10015
10016  Enum->completeDefinition(BestType, BestPromotionType,
10017                           NumPositiveBits, NumNegativeBits);
10018}
10019
10020Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10021                                  SourceLocation StartLoc,
10022                                  SourceLocation EndLoc) {
10023  StringLiteral *AsmString = cast<StringLiteral>(expr);
10024
10025  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10026                                                   AsmString, StartLoc,
10027                                                   EndLoc);
10028  CurContext->addDecl(New);
10029  return New;
10030}
10031
10032DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10033                                   SourceLocation ImportLoc,
10034                                   ModuleIdPath Path) {
10035  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10036                                                Module::AllVisible,
10037                                                /*IsIncludeDirective=*/false);
10038  if (!Mod)
10039    return true;
10040
10041  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10042  Module *ModCheck = Mod;
10043  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10044    // If we've run out of module parents, just drop the remaining identifiers.
10045    // We need the length to be consistent.
10046    if (!ModCheck)
10047      break;
10048    ModCheck = ModCheck->Parent;
10049
10050    IdentifierLocs.push_back(Path[I].second);
10051  }
10052
10053  ImportDecl *Import = ImportDecl::Create(Context,
10054                                          Context.getTranslationUnitDecl(),
10055                                          AtLoc.isValid()? AtLoc : ImportLoc,
10056                                          Mod, IdentifierLocs);
10057  Context.getTranslationUnitDecl()->addDecl(Import);
10058  return Import;
10059}
10060
10061void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10062                             SourceLocation PragmaLoc,
10063                             SourceLocation NameLoc) {
10064  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10065
10066  if (PrevDecl) {
10067    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10068  } else {
10069    (void)WeakUndeclaredIdentifiers.insert(
10070      std::pair<IdentifierInfo*,WeakInfo>
10071        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10072  }
10073}
10074
10075void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10076                                IdentifierInfo* AliasName,
10077                                SourceLocation PragmaLoc,
10078                                SourceLocation NameLoc,
10079                                SourceLocation AliasNameLoc) {
10080  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10081                                    LookupOrdinaryName);
10082  WeakInfo W = WeakInfo(Name, NameLoc);
10083
10084  if (PrevDecl) {
10085    if (!PrevDecl->hasAttr<AliasAttr>())
10086      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10087        DeclApplyPragmaWeak(TUScope, ND, W);
10088  } else {
10089    (void)WeakUndeclaredIdentifiers.insert(
10090      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10091  }
10092}
10093
10094Decl *Sema::getObjCDeclContext() const {
10095  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10096}
10097
10098AvailabilityResult Sema::getCurContextAvailability() const {
10099  const Decl *D = cast<Decl>(getCurLexicalContext());
10100  // A category implicitly has the availability of the interface.
10101  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10102    D = CatD->getClassInterface();
10103
10104  return D->getAvailability();
10105}
10106