SemaDecl.cpp revision 29a7f3342c3c6dd15d914c61ae22246c36d51ce7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
807      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
808      Diag(Shadow->getTargetDecl()->getLocation(),
809           diag::note_using_decl_target);
810      Diag(Shadow->getUsingDecl()->getLocation(),
811           diag::note_using_decl) << 0;
812      return true;
813    }
814
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817    Diag(OldD->getLocation(), diag::note_previous_definition);
818    return true;
819  }
820
821  // Determine whether the previous declaration was a definition,
822  // implicit declaration, or a declaration.
823  diag::kind PrevDiag;
824  if (Old->isThisDeclarationADefinition())
825    PrevDiag = diag::note_previous_definition;
826  else if (Old->isImplicit())
827    PrevDiag = diag::note_previous_implicit_declaration;
828  else
829    PrevDiag = diag::note_previous_declaration;
830
831  QualType OldQType = Context.getCanonicalType(Old->getType());
832  QualType NewQType = Context.getCanonicalType(New->getType());
833
834  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
835      New->getStorageClass() == FunctionDecl::Static &&
836      Old->getStorageClass() != FunctionDecl::Static) {
837    Diag(New->getLocation(), diag::err_static_non_static)
838      << New;
839    Diag(Old->getLocation(), PrevDiag);
840    return true;
841  }
842
843  if (getLangOptions().CPlusPlus) {
844    // (C++98 13.1p2):
845    //   Certain function declarations cannot be overloaded:
846    //     -- Function declarations that differ only in the return type
847    //        cannot be overloaded.
848    QualType OldReturnType
849      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
850    QualType NewReturnType
851      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
852    if (OldReturnType != NewReturnType) {
853      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
854      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
855      return true;
856    }
857
858    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
859    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
860    if (OldMethod && NewMethod) {
861      if (!NewMethod->getFriendObjectKind() &&
862          NewMethod->getLexicalDeclContext()->isRecord()) {
863        //    -- Member function declarations with the same name and the
864        //       same parameter types cannot be overloaded if any of them
865        //       is a static member function declaration.
866        if (OldMethod->isStatic() || NewMethod->isStatic()) {
867          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
868          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869          return true;
870        }
871
872        // C++ [class.mem]p1:
873        //   [...] A member shall not be declared twice in the
874        //   member-specification, except that a nested class or member
875        //   class template can be declared and then later defined.
876        unsigned NewDiag;
877        if (isa<CXXConstructorDecl>(OldMethod))
878          NewDiag = diag::err_constructor_redeclared;
879        else if (isa<CXXDestructorDecl>(NewMethod))
880          NewDiag = diag::err_destructor_redeclared;
881        else if (isa<CXXConversionDecl>(NewMethod))
882          NewDiag = diag::err_conv_function_redeclared;
883        else
884          NewDiag = diag::err_member_redeclared;
885
886        Diag(New->getLocation(), NewDiag);
887        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
888      } else {
889        if (OldMethod->isImplicit()) {
890          Diag(NewMethod->getLocation(),
891               diag::err_definition_of_implicitly_declared_member)
892          << New << getSpecialMember(Context, OldMethod);
893
894          Diag(OldMethod->getLocation(),
895               diag::note_previous_implicit_declaration);
896          return true;
897        }
898      }
899    }
900
901    // (C++98 8.3.5p3):
902    //   All declarations for a function shall agree exactly in both the
903    //   return type and the parameter-type-list.
904    if (OldQType == NewQType)
905      return MergeCompatibleFunctionDecls(New, Old);
906
907    // Fall through for conflicting redeclarations and redefinitions.
908  }
909
910  // C: Function types need to be compatible, not identical. This handles
911  // duplicate function decls like "void f(int); void f(enum X);" properly.
912  if (!getLangOptions().CPlusPlus &&
913      Context.typesAreCompatible(OldQType, NewQType)) {
914    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
915    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
916    const FunctionProtoType *OldProto = 0;
917    if (isa<FunctionNoProtoType>(NewFuncType) &&
918        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
919      // The old declaration provided a function prototype, but the
920      // new declaration does not. Merge in the prototype.
921      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
922      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
923                                                 OldProto->arg_type_end());
924      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
925                                         ParamTypes.data(), ParamTypes.size(),
926                                         OldProto->isVariadic(),
927                                         OldProto->getTypeQuals());
928      New->setType(NewQType);
929      New->setHasInheritedPrototype();
930
931      // Synthesize a parameter for each argument type.
932      llvm::SmallVector<ParmVarDecl*, 16> Params;
933      for (FunctionProtoType::arg_type_iterator
934             ParamType = OldProto->arg_type_begin(),
935             ParamEnd = OldProto->arg_type_end();
936           ParamType != ParamEnd; ++ParamType) {
937        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
938                                                 SourceLocation(), 0,
939                                                 *ParamType, /*TInfo=*/0,
940                                                 VarDecl::None, 0);
941        Param->setImplicit();
942        Params.push_back(Param);
943      }
944
945      New->setParams(Context, Params.data(), Params.size());
946    }
947
948    return MergeCompatibleFunctionDecls(New, Old);
949  }
950
951  // GNU C permits a K&R definition to follow a prototype declaration
952  // if the declared types of the parameters in the K&R definition
953  // match the types in the prototype declaration, even when the
954  // promoted types of the parameters from the K&R definition differ
955  // from the types in the prototype. GCC then keeps the types from
956  // the prototype.
957  //
958  // If a variadic prototype is followed by a non-variadic K&R definition,
959  // the K&R definition becomes variadic.  This is sort of an edge case, but
960  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
961  // C99 6.9.1p8.
962  if (!getLangOptions().CPlusPlus &&
963      Old->hasPrototype() && !New->hasPrototype() &&
964      New->getType()->getAs<FunctionProtoType>() &&
965      Old->getNumParams() == New->getNumParams()) {
966    llvm::SmallVector<QualType, 16> ArgTypes;
967    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
968    const FunctionProtoType *OldProto
969      = Old->getType()->getAs<FunctionProtoType>();
970    const FunctionProtoType *NewProto
971      = New->getType()->getAs<FunctionProtoType>();
972
973    // Determine whether this is the GNU C extension.
974    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
975                                               NewProto->getResultType());
976    bool LooseCompatible = !MergedReturn.isNull();
977    for (unsigned Idx = 0, End = Old->getNumParams();
978         LooseCompatible && Idx != End; ++Idx) {
979      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
980      ParmVarDecl *NewParm = New->getParamDecl(Idx);
981      if (Context.typesAreCompatible(OldParm->getType(),
982                                     NewProto->getArgType(Idx))) {
983        ArgTypes.push_back(NewParm->getType());
984      } else if (Context.typesAreCompatible(OldParm->getType(),
985                                            NewParm->getType())) {
986        GNUCompatibleParamWarning Warn
987          = { OldParm, NewParm, NewProto->getArgType(Idx) };
988        Warnings.push_back(Warn);
989        ArgTypes.push_back(NewParm->getType());
990      } else
991        LooseCompatible = false;
992    }
993
994    if (LooseCompatible) {
995      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
996        Diag(Warnings[Warn].NewParm->getLocation(),
997             diag::ext_param_promoted_not_compatible_with_prototype)
998          << Warnings[Warn].PromotedType
999          << Warnings[Warn].OldParm->getType();
1000        Diag(Warnings[Warn].OldParm->getLocation(),
1001             diag::note_previous_declaration);
1002      }
1003
1004      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1005                                           ArgTypes.size(),
1006                                           OldProto->isVariadic(), 0));
1007      return MergeCompatibleFunctionDecls(New, Old);
1008    }
1009
1010    // Fall through to diagnose conflicting types.
1011  }
1012
1013  // A function that has already been declared has been redeclared or defined
1014  // with a different type- show appropriate diagnostic
1015  if (unsigned BuiltinID = Old->getBuiltinID()) {
1016    // The user has declared a builtin function with an incompatible
1017    // signature.
1018    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1019      // The function the user is redeclaring is a library-defined
1020      // function like 'malloc' or 'printf'. Warn about the
1021      // redeclaration, then pretend that we don't know about this
1022      // library built-in.
1023      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1024      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1025        << Old << Old->getType();
1026      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1027      Old->setInvalidDecl();
1028      return false;
1029    }
1030
1031    PrevDiag = diag::note_previous_builtin_declaration;
1032  }
1033
1034  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1035  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1036  return true;
1037}
1038
1039/// \brief Completes the merge of two function declarations that are
1040/// known to be compatible.
1041///
1042/// This routine handles the merging of attributes and other
1043/// properties of function declarations form the old declaration to
1044/// the new declaration, once we know that New is in fact a
1045/// redeclaration of Old.
1046///
1047/// \returns false
1048bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1049  // Merge the attributes
1050  MergeAttributes(New, Old, Context);
1051
1052  // Merge the storage class.
1053  if (Old->getStorageClass() != FunctionDecl::Extern &&
1054      Old->getStorageClass() != FunctionDecl::None)
1055    New->setStorageClass(Old->getStorageClass());
1056
1057  // Merge "pure" flag.
1058  if (Old->isPure())
1059    New->setPure();
1060
1061  // Merge the "deleted" flag.
1062  if (Old->isDeleted())
1063    New->setDeleted();
1064
1065  if (getLangOptions().CPlusPlus)
1066    return MergeCXXFunctionDecl(New, Old);
1067
1068  return false;
1069}
1070
1071/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1072/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1073/// situation, merging decls or emitting diagnostics as appropriate.
1074///
1075/// Tentative definition rules (C99 6.9.2p2) are checked by
1076/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1077/// definitions here, since the initializer hasn't been attached.
1078///
1079void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1080  // If the new decl is already invalid, don't do any other checking.
1081  if (New->isInvalidDecl())
1082    return;
1083
1084  // Verify the old decl was also a variable.
1085  VarDecl *Old = 0;
1086  if (!Previous.isSingleResult() ||
1087      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1088    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1089      << New->getDeclName();
1090    Diag(Previous.getRepresentativeDecl()->getLocation(),
1091         diag::note_previous_definition);
1092    return New->setInvalidDecl();
1093  }
1094
1095  MergeAttributes(New, Old, Context);
1096
1097  // Merge the types
1098  QualType MergedT;
1099  if (getLangOptions().CPlusPlus) {
1100    if (Context.hasSameType(New->getType(), Old->getType()))
1101      MergedT = New->getType();
1102    // C++ [basic.link]p10:
1103    //   [...] the types specified by all declarations referring to a given
1104    //   object or function shall be identical, except that declarations for an
1105    //   array object can specify array types that differ by the presence or
1106    //   absence of a major array bound (8.3.4).
1107    else if (Old->getType()->isIncompleteArrayType() &&
1108             New->getType()->isArrayType()) {
1109      CanQual<ArrayType> OldArray
1110        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1111      CanQual<ArrayType> NewArray
1112        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1113      if (OldArray->getElementType() == NewArray->getElementType())
1114        MergedT = New->getType();
1115    } else if (Old->getType()->isArrayType() &&
1116             New->getType()->isIncompleteArrayType()) {
1117      CanQual<ArrayType> OldArray
1118        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1119      CanQual<ArrayType> NewArray
1120        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1121      if (OldArray->getElementType() == NewArray->getElementType())
1122        MergedT = Old->getType();
1123    }
1124  } else {
1125    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1126  }
1127  if (MergedT.isNull()) {
1128    Diag(New->getLocation(), diag::err_redefinition_different_type)
1129      << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  New->setType(MergedT);
1134
1135  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1136  if (New->getStorageClass() == VarDecl::Static &&
1137      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1138    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1139    Diag(Old->getLocation(), diag::note_previous_definition);
1140    return New->setInvalidDecl();
1141  }
1142  // C99 6.2.2p4:
1143  //   For an identifier declared with the storage-class specifier
1144  //   extern in a scope in which a prior declaration of that
1145  //   identifier is visible,23) if the prior declaration specifies
1146  //   internal or external linkage, the linkage of the identifier at
1147  //   the later declaration is the same as the linkage specified at
1148  //   the prior declaration. If no prior declaration is visible, or
1149  //   if the prior declaration specifies no linkage, then the
1150  //   identifier has external linkage.
1151  if (New->hasExternalStorage() && Old->hasLinkage())
1152    /* Okay */;
1153  else if (New->getStorageClass() != VarDecl::Static &&
1154           Old->getStorageClass() == VarDecl::Static) {
1155    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1156    Diag(Old->getLocation(), diag::note_previous_definition);
1157    return New->setInvalidDecl();
1158  }
1159
1160  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1161
1162  // FIXME: The test for external storage here seems wrong? We still
1163  // need to check for mismatches.
1164  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1165      // Don't complain about out-of-line definitions of static members.
1166      !(Old->getLexicalDeclContext()->isRecord() &&
1167        !New->getLexicalDeclContext()->isRecord())) {
1168    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170    return New->setInvalidDecl();
1171  }
1172
1173  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1174    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1175    Diag(Old->getLocation(), diag::note_previous_definition);
1176  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1177    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1178    Diag(Old->getLocation(), diag::note_previous_definition);
1179  }
1180
1181  // Keep a chain of previous declarations.
1182  New->setPreviousDeclaration(Old);
1183}
1184
1185/// CheckFallThrough - Check that we don't fall off the end of a
1186/// Statement that should return a value.
1187///
1188/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1189/// MaybeFallThrough iff we might or might not fall off the end,
1190/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1191/// return.  We assume NeverFallThrough iff we never fall off the end of the
1192/// statement but we may return.  We assume that functions not marked noreturn
1193/// will return.
1194Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1195  // FIXME: Eventually share this CFG object when we have other warnings based
1196  // of the CFG.  This can be done using AnalysisContext.
1197  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1198
1199  // FIXME: They should never return 0, fix that, delete this code.
1200  if (cfg == 0)
1201    // FIXME: This should be NeverFallThrough
1202    return NeverFallThroughOrReturn;
1203  // The CFG leaves in dead things, and we don't want to dead code paths to
1204  // confuse us, so we mark all live things first.
1205  std::queue<CFGBlock*> workq;
1206  llvm::BitVector live(cfg->getNumBlockIDs());
1207  // Prep work queue
1208  workq.push(&cfg->getEntry());
1209  // Solve
1210  while (!workq.empty()) {
1211    CFGBlock *item = workq.front();
1212    workq.pop();
1213    live.set(item->getBlockID());
1214    for (CFGBlock::succ_iterator I=item->succ_begin(),
1215           E=item->succ_end();
1216         I != E;
1217         ++I) {
1218      if ((*I) && !live[(*I)->getBlockID()]) {
1219        live.set((*I)->getBlockID());
1220        workq.push(*I);
1221      }
1222    }
1223  }
1224
1225  // Now we know what is live, we check the live precessors of the exit block
1226  // and look for fall through paths, being careful to ignore normal returns,
1227  // and exceptional paths.
1228  bool HasLiveReturn = false;
1229  bool HasFakeEdge = false;
1230  bool HasPlainEdge = false;
1231  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1232         E = cfg->getExit().pred_end();
1233       I != E;
1234       ++I) {
1235    CFGBlock& B = **I;
1236    if (!live[B.getBlockID()])
1237      continue;
1238    if (B.size() == 0) {
1239      // A labeled empty statement, or the entry block...
1240      HasPlainEdge = true;
1241      continue;
1242    }
1243    Stmt *S = B[B.size()-1];
1244    if (isa<ReturnStmt>(S)) {
1245      HasLiveReturn = true;
1246      continue;
1247    }
1248    if (isa<ObjCAtThrowStmt>(S)) {
1249      HasFakeEdge = true;
1250      continue;
1251    }
1252    if (isa<CXXThrowExpr>(S)) {
1253      HasFakeEdge = true;
1254      continue;
1255    }
1256    bool NoReturnEdge = false;
1257    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1258      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1259      if (CEE->getType().getNoReturnAttr()) {
1260        NoReturnEdge = true;
1261        HasFakeEdge = true;
1262      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1263        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1264          if (FD->hasAttr<NoReturnAttr>()) {
1265            NoReturnEdge = true;
1266            HasFakeEdge = true;
1267          }
1268        }
1269      }
1270    }
1271    // FIXME: Add noreturn message sends.
1272    if (NoReturnEdge == false)
1273      HasPlainEdge = true;
1274  }
1275  if (!HasPlainEdge) {
1276    if (HasLiveReturn)
1277      return NeverFallThrough;
1278    return NeverFallThroughOrReturn;
1279  }
1280  if (HasFakeEdge || HasLiveReturn)
1281    return MaybeFallThrough;
1282  // This says AlwaysFallThrough for calls to functions that are not marked
1283  // noreturn, that don't return.  If people would like this warning to be more
1284  // accurate, such functions should be marked as noreturn.
1285  return AlwaysFallThrough;
1286}
1287
1288/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1289/// function that should return a value.  Check that we don't fall off the end
1290/// of a noreturn function.  We assume that functions and blocks not marked
1291/// noreturn will return.
1292void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1293  // FIXME: Would be nice if we had a better way to control cascading errors,
1294  // but for now, avoid them.  The problem is that when Parse sees:
1295  //   int foo() { return a; }
1296  // The return is eaten and the Sema code sees just:
1297  //   int foo() { }
1298  // which this code would then warn about.
1299  if (getDiagnostics().hasErrorOccurred())
1300    return;
1301
1302  bool ReturnsVoid = false;
1303  bool HasNoReturn = false;
1304  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1305    // If the result type of the function is a dependent type, we don't know
1306    // whether it will be void or not, so don't
1307    if (FD->getResultType()->isDependentType())
1308      return;
1309    if (FD->getResultType()->isVoidType())
1310      ReturnsVoid = true;
1311    if (FD->hasAttr<NoReturnAttr>())
1312      HasNoReturn = true;
1313  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1314    if (MD->getResultType()->isVoidType())
1315      ReturnsVoid = true;
1316    if (MD->hasAttr<NoReturnAttr>())
1317      HasNoReturn = true;
1318  }
1319
1320  // Short circuit for compilation speed.
1321  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1322       == Diagnostic::Ignored || ReturnsVoid)
1323      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1324          == Diagnostic::Ignored || !HasNoReturn)
1325      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1326          == Diagnostic::Ignored || !ReturnsVoid))
1327    return;
1328  // FIXME: Function try block
1329  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1330    switch (CheckFallThrough(Body)) {
1331    case MaybeFallThrough:
1332      if (HasNoReturn)
1333        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1334      else if (!ReturnsVoid)
1335        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1336      break;
1337    case AlwaysFallThrough:
1338      if (HasNoReturn)
1339        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1340      else if (!ReturnsVoid)
1341        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1342      break;
1343    case NeverFallThroughOrReturn:
1344      if (ReturnsVoid && !HasNoReturn)
1345        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1346      break;
1347    case NeverFallThrough:
1348      break;
1349    }
1350  }
1351}
1352
1353/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1354/// that should return a value.  Check that we don't fall off the end of a
1355/// noreturn block.  We assume that functions and blocks not marked noreturn
1356/// will return.
1357void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1358  // FIXME: Would be nice if we had a better way to control cascading errors,
1359  // but for now, avoid them.  The problem is that when Parse sees:
1360  //   int foo() { return a; }
1361  // The return is eaten and the Sema code sees just:
1362  //   int foo() { }
1363  // which this code would then warn about.
1364  if (getDiagnostics().hasErrorOccurred())
1365    return;
1366  bool ReturnsVoid = false;
1367  bool HasNoReturn = false;
1368  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1369    if (FT->getResultType()->isVoidType())
1370      ReturnsVoid = true;
1371    if (FT->getNoReturnAttr())
1372      HasNoReturn = true;
1373  }
1374
1375  // Short circuit for compilation speed.
1376  if (ReturnsVoid
1377      && !HasNoReturn
1378      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1379          == Diagnostic::Ignored || !ReturnsVoid))
1380    return;
1381  // FIXME: Funtion try block
1382  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1383    switch (CheckFallThrough(Body)) {
1384    case MaybeFallThrough:
1385      if (HasNoReturn)
1386        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1387      else if (!ReturnsVoid)
1388        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1389      break;
1390    case AlwaysFallThrough:
1391      if (HasNoReturn)
1392        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1393      else if (!ReturnsVoid)
1394        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1395      break;
1396    case NeverFallThroughOrReturn:
1397      if (ReturnsVoid)
1398        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1399      break;
1400    case NeverFallThrough:
1401      break;
1402    }
1403  }
1404}
1405
1406/// CheckParmsForFunctionDef - Check that the parameters of the given
1407/// function are appropriate for the definition of a function. This
1408/// takes care of any checks that cannot be performed on the
1409/// declaration itself, e.g., that the types of each of the function
1410/// parameters are complete.
1411bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1412  bool HasInvalidParm = false;
1413  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1414    ParmVarDecl *Param = FD->getParamDecl(p);
1415
1416    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1417    // function declarator that is part of a function definition of
1418    // that function shall not have incomplete type.
1419    //
1420    // This is also C++ [dcl.fct]p6.
1421    if (!Param->isInvalidDecl() &&
1422        RequireCompleteType(Param->getLocation(), Param->getType(),
1423                               diag::err_typecheck_decl_incomplete_type)) {
1424      Param->setInvalidDecl();
1425      HasInvalidParm = true;
1426    }
1427
1428    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1429    // declaration of each parameter shall include an identifier.
1430    if (Param->getIdentifier() == 0 &&
1431        !Param->isImplicit() &&
1432        !getLangOptions().CPlusPlus)
1433      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1434  }
1435
1436  return HasInvalidParm;
1437}
1438
1439/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1440/// no declarator (e.g. "struct foo;") is parsed.
1441Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1442  // FIXME: Error on auto/register at file scope
1443  // FIXME: Error on inline/virtual/explicit
1444  // FIXME: Error on invalid restrict
1445  // FIXME: Warn on useless __thread
1446  // FIXME: Warn on useless const/volatile
1447  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1448  // FIXME: Warn on useless attributes
1449  Decl *TagD = 0;
1450  TagDecl *Tag = 0;
1451  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1452      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1453      DS.getTypeSpecType() == DeclSpec::TST_union ||
1454      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1455    TagD = static_cast<Decl *>(DS.getTypeRep());
1456
1457    if (!TagD) // We probably had an error
1458      return DeclPtrTy();
1459
1460    // Note that the above type specs guarantee that the
1461    // type rep is a Decl, whereas in many of the others
1462    // it's a Type.
1463    Tag = dyn_cast<TagDecl>(TagD);
1464  }
1465
1466  if (DS.isFriendSpecified()) {
1467    // If we're dealing with a class template decl, assume that the
1468    // template routines are handling it.
1469    if (TagD && isa<ClassTemplateDecl>(TagD))
1470      return DeclPtrTy();
1471    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1472  }
1473
1474  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1475    // If there are attributes in the DeclSpec, apply them to the record.
1476    if (const AttributeList *AL = DS.getAttributes())
1477      ProcessDeclAttributeList(S, Record, AL);
1478
1479    if (!Record->getDeclName() && Record->isDefinition() &&
1480        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1481      if (getLangOptions().CPlusPlus ||
1482          Record->getDeclContext()->isRecord())
1483        return BuildAnonymousStructOrUnion(S, DS, Record);
1484
1485      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1486        << DS.getSourceRange();
1487    }
1488
1489    // Microsoft allows unnamed struct/union fields. Don't complain
1490    // about them.
1491    // FIXME: Should we support Microsoft's extensions in this area?
1492    if (Record->getDeclName() && getLangOptions().Microsoft)
1493      return DeclPtrTy::make(Tag);
1494  }
1495
1496  if (!DS.isMissingDeclaratorOk() &&
1497      DS.getTypeSpecType() != DeclSpec::TST_error) {
1498    // Warn about typedefs of enums without names, since this is an
1499    // extension in both Microsoft an GNU.
1500    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1501        Tag && isa<EnumDecl>(Tag)) {
1502      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1503        << DS.getSourceRange();
1504      return DeclPtrTy::make(Tag);
1505    }
1506
1507    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1508      << DS.getSourceRange();
1509    return DeclPtrTy();
1510  }
1511
1512  return DeclPtrTy::make(Tag);
1513}
1514
1515/// We are trying to introduce the given name into the given context;
1516/// check if there's an existing declaration that can't be overloaded.
1517///
1518/// \return true if this is a forbidden redeclaration
1519bool Sema::CheckRedeclaration(DeclContext *DC,
1520                              DeclarationName Name,
1521                              SourceLocation NameLoc,
1522                              unsigned diagnostic) {
1523  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1524                 ForRedeclaration);
1525  LookupQualifiedName(R, DC);
1526
1527  if (R.empty()) return false;
1528
1529  if (R.getResultKind() == LookupResult::Found &&
1530      isa<TagDecl>(R.getFoundDecl()))
1531    return false;
1532
1533  // Pick a representative declaration.
1534  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1535
1536  Diag(NameLoc, diagnostic) << Name;
1537  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1538
1539  return true;
1540}
1541
1542/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1543/// anonymous struct or union AnonRecord into the owning context Owner
1544/// and scope S. This routine will be invoked just after we realize
1545/// that an unnamed union or struct is actually an anonymous union or
1546/// struct, e.g.,
1547///
1548/// @code
1549/// union {
1550///   int i;
1551///   float f;
1552/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1553///    // f into the surrounding scope.x
1554/// @endcode
1555///
1556/// This routine is recursive, injecting the names of nested anonymous
1557/// structs/unions into the owning context and scope as well.
1558bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1559                                               RecordDecl *AnonRecord) {
1560  unsigned diagKind
1561    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1562                            : diag::err_anonymous_struct_member_redecl;
1563
1564  bool Invalid = false;
1565  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1566                               FEnd = AnonRecord->field_end();
1567       F != FEnd; ++F) {
1568    if ((*F)->getDeclName()) {
1569      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1570                             (*F)->getLocation(), diagKind)) {
1571        // C++ [class.union]p2:
1572        //   The names of the members of an anonymous union shall be
1573        //   distinct from the names of any other entity in the
1574        //   scope in which the anonymous union is declared.
1575        Invalid = true;
1576      } else {
1577        // C++ [class.union]p2:
1578        //   For the purpose of name lookup, after the anonymous union
1579        //   definition, the members of the anonymous union are
1580        //   considered to have been defined in the scope in which the
1581        //   anonymous union is declared.
1582        Owner->makeDeclVisibleInContext(*F);
1583        S->AddDecl(DeclPtrTy::make(*F));
1584        IdResolver.AddDecl(*F);
1585      }
1586    } else if (const RecordType *InnerRecordType
1587                 = (*F)->getType()->getAs<RecordType>()) {
1588      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1589      if (InnerRecord->isAnonymousStructOrUnion())
1590        Invalid = Invalid ||
1591          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1592    }
1593  }
1594
1595  return Invalid;
1596}
1597
1598/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1599/// anonymous structure or union. Anonymous unions are a C++ feature
1600/// (C++ [class.union]) and a GNU C extension; anonymous structures
1601/// are a GNU C and GNU C++ extension.
1602Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1603                                                  RecordDecl *Record) {
1604  DeclContext *Owner = Record->getDeclContext();
1605
1606  // Diagnose whether this anonymous struct/union is an extension.
1607  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1608    Diag(Record->getLocation(), diag::ext_anonymous_union);
1609  else if (!Record->isUnion())
1610    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1611
1612  // C and C++ require different kinds of checks for anonymous
1613  // structs/unions.
1614  bool Invalid = false;
1615  if (getLangOptions().CPlusPlus) {
1616    const char* PrevSpec = 0;
1617    unsigned DiagID;
1618    // C++ [class.union]p3:
1619    //   Anonymous unions declared in a named namespace or in the
1620    //   global namespace shall be declared static.
1621    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1622        (isa<TranslationUnitDecl>(Owner) ||
1623         (isa<NamespaceDecl>(Owner) &&
1624          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1625      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1626      Invalid = true;
1627
1628      // Recover by adding 'static'.
1629      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1630                             PrevSpec, DiagID);
1631    }
1632    // C++ [class.union]p3:
1633    //   A storage class is not allowed in a declaration of an
1634    //   anonymous union in a class scope.
1635    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1636             isa<RecordDecl>(Owner)) {
1637      Diag(DS.getStorageClassSpecLoc(),
1638           diag::err_anonymous_union_with_storage_spec);
1639      Invalid = true;
1640
1641      // Recover by removing the storage specifier.
1642      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1643                             PrevSpec, DiagID);
1644    }
1645
1646    // C++ [class.union]p2:
1647    //   The member-specification of an anonymous union shall only
1648    //   define non-static data members. [Note: nested types and
1649    //   functions cannot be declared within an anonymous union. ]
1650    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1651                                 MemEnd = Record->decls_end();
1652         Mem != MemEnd; ++Mem) {
1653      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1654        // C++ [class.union]p3:
1655        //   An anonymous union shall not have private or protected
1656        //   members (clause 11).
1657        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1658          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1659            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1660          Invalid = true;
1661        }
1662      } else if ((*Mem)->isImplicit()) {
1663        // Any implicit members are fine.
1664      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1665        // This is a type that showed up in an
1666        // elaborated-type-specifier inside the anonymous struct or
1667        // union, but which actually declares a type outside of the
1668        // anonymous struct or union. It's okay.
1669      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1670        if (!MemRecord->isAnonymousStructOrUnion() &&
1671            MemRecord->getDeclName()) {
1672          // This is a nested type declaration.
1673          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1674            << (int)Record->isUnion();
1675          Invalid = true;
1676        }
1677      } else {
1678        // We have something that isn't a non-static data
1679        // member. Complain about it.
1680        unsigned DK = diag::err_anonymous_record_bad_member;
1681        if (isa<TypeDecl>(*Mem))
1682          DK = diag::err_anonymous_record_with_type;
1683        else if (isa<FunctionDecl>(*Mem))
1684          DK = diag::err_anonymous_record_with_function;
1685        else if (isa<VarDecl>(*Mem))
1686          DK = diag::err_anonymous_record_with_static;
1687        Diag((*Mem)->getLocation(), DK)
1688            << (int)Record->isUnion();
1689          Invalid = true;
1690      }
1691    }
1692  }
1693
1694  if (!Record->isUnion() && !Owner->isRecord()) {
1695    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1696      << (int)getLangOptions().CPlusPlus;
1697    Invalid = true;
1698  }
1699
1700  // Mock up a declarator.
1701  Declarator Dc(DS, Declarator::TypeNameContext);
1702  TypeSourceInfo *TInfo = 0;
1703  GetTypeForDeclarator(Dc, S, &TInfo);
1704  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1705
1706  // Create a declaration for this anonymous struct/union.
1707  NamedDecl *Anon = 0;
1708  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1709    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1710                             /*IdentifierInfo=*/0,
1711                             Context.getTypeDeclType(Record),
1712                             TInfo,
1713                             /*BitWidth=*/0, /*Mutable=*/false);
1714    Anon->setAccess(AS_public);
1715    if (getLangOptions().CPlusPlus)
1716      FieldCollector->Add(cast<FieldDecl>(Anon));
1717  } else {
1718    VarDecl::StorageClass SC;
1719    switch (DS.getStorageClassSpec()) {
1720    default: assert(0 && "Unknown storage class!");
1721    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1722    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1723    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1724    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1725    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1726    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1727    case DeclSpec::SCS_mutable:
1728      // mutable can only appear on non-static class members, so it's always
1729      // an error here
1730      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1731      Invalid = true;
1732      SC = VarDecl::None;
1733      break;
1734    }
1735
1736    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1737                           /*IdentifierInfo=*/0,
1738                           Context.getTypeDeclType(Record),
1739                           TInfo,
1740                           SC);
1741  }
1742  Anon->setImplicit();
1743
1744  // Add the anonymous struct/union object to the current
1745  // context. We'll be referencing this object when we refer to one of
1746  // its members.
1747  Owner->addDecl(Anon);
1748
1749  // Inject the members of the anonymous struct/union into the owning
1750  // context and into the identifier resolver chain for name lookup
1751  // purposes.
1752  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1753    Invalid = true;
1754
1755  // Mark this as an anonymous struct/union type. Note that we do not
1756  // do this until after we have already checked and injected the
1757  // members of this anonymous struct/union type, because otherwise
1758  // the members could be injected twice: once by DeclContext when it
1759  // builds its lookup table, and once by
1760  // InjectAnonymousStructOrUnionMembers.
1761  Record->setAnonymousStructOrUnion(true);
1762
1763  if (Invalid)
1764    Anon->setInvalidDecl();
1765
1766  return DeclPtrTy::make(Anon);
1767}
1768
1769
1770/// GetNameForDeclarator - Determine the full declaration name for the
1771/// given Declarator.
1772DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1773  return GetNameFromUnqualifiedId(D.getName());
1774}
1775
1776/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1777DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1778  switch (Name.getKind()) {
1779    case UnqualifiedId::IK_Identifier:
1780      return DeclarationName(Name.Identifier);
1781
1782    case UnqualifiedId::IK_OperatorFunctionId:
1783      return Context.DeclarationNames.getCXXOperatorName(
1784                                              Name.OperatorFunctionId.Operator);
1785
1786    case UnqualifiedId::IK_LiteralOperatorId:
1787      return Context.DeclarationNames.getCXXLiteralOperatorName(
1788                                                               Name.Identifier);
1789
1790    case UnqualifiedId::IK_ConversionFunctionId: {
1791      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1792      if (Ty.isNull())
1793        return DeclarationName();
1794
1795      return Context.DeclarationNames.getCXXConversionFunctionName(
1796                                                  Context.getCanonicalType(Ty));
1797    }
1798
1799    case UnqualifiedId::IK_ConstructorName: {
1800      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1801      if (Ty.isNull())
1802        return DeclarationName();
1803
1804      return Context.DeclarationNames.getCXXConstructorName(
1805                                                  Context.getCanonicalType(Ty));
1806    }
1807
1808    case UnqualifiedId::IK_DestructorName: {
1809      QualType Ty = GetTypeFromParser(Name.DestructorName);
1810      if (Ty.isNull())
1811        return DeclarationName();
1812
1813      return Context.DeclarationNames.getCXXDestructorName(
1814                                                           Context.getCanonicalType(Ty));
1815    }
1816
1817    case UnqualifiedId::IK_TemplateId: {
1818      TemplateName TName
1819        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1820      return Context.getNameForTemplate(TName);
1821    }
1822  }
1823
1824  assert(false && "Unknown name kind");
1825  return DeclarationName();
1826}
1827
1828/// isNearlyMatchingFunction - Determine whether the C++ functions
1829/// Declaration and Definition are "nearly" matching. This heuristic
1830/// is used to improve diagnostics in the case where an out-of-line
1831/// function definition doesn't match any declaration within
1832/// the class or namespace.
1833static bool isNearlyMatchingFunction(ASTContext &Context,
1834                                     FunctionDecl *Declaration,
1835                                     FunctionDecl *Definition) {
1836  if (Declaration->param_size() != Definition->param_size())
1837    return false;
1838  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1839    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1840    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1841
1842    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1843                                        DefParamTy.getNonReferenceType()))
1844      return false;
1845  }
1846
1847  return true;
1848}
1849
1850Sema::DeclPtrTy
1851Sema::HandleDeclarator(Scope *S, Declarator &D,
1852                       MultiTemplateParamsArg TemplateParamLists,
1853                       bool IsFunctionDefinition) {
1854  DeclarationName Name = GetNameForDeclarator(D);
1855
1856  // All of these full declarators require an identifier.  If it doesn't have
1857  // one, the ParsedFreeStandingDeclSpec action should be used.
1858  if (!Name) {
1859    if (!D.isInvalidType())  // Reject this if we think it is valid.
1860      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1861           diag::err_declarator_need_ident)
1862        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1863    return DeclPtrTy();
1864  }
1865
1866  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1867  // we find one that is.
1868  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1869         (S->getFlags() & Scope::TemplateParamScope) != 0)
1870    S = S->getParent();
1871
1872  // If this is an out-of-line definition of a member of a class template
1873  // or class template partial specialization, we may need to rebuild the
1874  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1875  // for more information.
1876  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1877  // handle expressions properly.
1878  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1879  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1880      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1881      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1882       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1883       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1884       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1885    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1886      // FIXME: Preserve type source info.
1887      QualType T = GetTypeFromParser(DS.getTypeRep());
1888      EnterDeclaratorContext(S, DC);
1889      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1890      ExitDeclaratorContext(S);
1891      if (T.isNull())
1892        return DeclPtrTy();
1893      DS.UpdateTypeRep(T.getAsOpaquePtr());
1894    }
1895  }
1896
1897  DeclContext *DC;
1898  NamedDecl *New;
1899
1900  TypeSourceInfo *TInfo = 0;
1901  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1902
1903  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1904                        ForRedeclaration);
1905
1906  // See if this is a redefinition of a variable in the same scope.
1907  if (D.getCXXScopeSpec().isInvalid()) {
1908    DC = CurContext;
1909    D.setInvalidType();
1910  } else if (!D.getCXXScopeSpec().isSet()) {
1911    bool IsLinkageLookup = false;
1912
1913    // If the declaration we're planning to build will be a function
1914    // or object with linkage, then look for another declaration with
1915    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1916    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1917      /* Do nothing*/;
1918    else if (R->isFunctionType()) {
1919      if (CurContext->isFunctionOrMethod() ||
1920          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1921        IsLinkageLookup = true;
1922    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1923      IsLinkageLookup = true;
1924    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1925             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1926      IsLinkageLookup = true;
1927
1928    if (IsLinkageLookup)
1929      Previous.clear(LookupRedeclarationWithLinkage);
1930
1931    DC = CurContext;
1932    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1933  } else { // Something like "int foo::x;"
1934    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1935
1936    if (!DC) {
1937      // If we could not compute the declaration context, it's because the
1938      // declaration context is dependent but does not refer to a class,
1939      // class template, or class template partial specialization. Complain
1940      // and return early, to avoid the coming semantic disaster.
1941      Diag(D.getIdentifierLoc(),
1942           diag::err_template_qualified_declarator_no_match)
1943        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1944        << D.getCXXScopeSpec().getRange();
1945      return DeclPtrTy();
1946    }
1947
1948    if (!DC->isDependentContext() &&
1949        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1950      return DeclPtrTy();
1951
1952    LookupQualifiedName(Previous, DC);
1953
1954    // Don't consider using declarations as previous declarations for
1955    // out-of-line members.
1956    RemoveUsingDecls(Previous);
1957
1958    // C++ 7.3.1.2p2:
1959    // Members (including explicit specializations of templates) of a named
1960    // namespace can also be defined outside that namespace by explicit
1961    // qualification of the name being defined, provided that the entity being
1962    // defined was already declared in the namespace and the definition appears
1963    // after the point of declaration in a namespace that encloses the
1964    // declarations namespace.
1965    //
1966    // Note that we only check the context at this point. We don't yet
1967    // have enough information to make sure that PrevDecl is actually
1968    // the declaration we want to match. For example, given:
1969    //
1970    //   class X {
1971    //     void f();
1972    //     void f(float);
1973    //   };
1974    //
1975    //   void X::f(int) { } // ill-formed
1976    //
1977    // In this case, PrevDecl will point to the overload set
1978    // containing the two f's declared in X, but neither of them
1979    // matches.
1980
1981    // First check whether we named the global scope.
1982    if (isa<TranslationUnitDecl>(DC)) {
1983      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1984        << Name << D.getCXXScopeSpec().getRange();
1985    } else {
1986      DeclContext *Cur = CurContext;
1987      while (isa<LinkageSpecDecl>(Cur))
1988        Cur = Cur->getParent();
1989      if (!Cur->Encloses(DC)) {
1990        // The qualifying scope doesn't enclose the original declaration.
1991        // Emit diagnostic based on current scope.
1992        SourceLocation L = D.getIdentifierLoc();
1993        SourceRange R = D.getCXXScopeSpec().getRange();
1994        if (isa<FunctionDecl>(Cur))
1995          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1996        else
1997          Diag(L, diag::err_invalid_declarator_scope)
1998            << Name << cast<NamedDecl>(DC) << R;
1999        D.setInvalidType();
2000      }
2001    }
2002  }
2003
2004  if (Previous.isSingleResult() &&
2005      Previous.getFoundDecl()->isTemplateParameter()) {
2006    // Maybe we will complain about the shadowed template parameter.
2007    if (!D.isInvalidType())
2008      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2009                                          Previous.getFoundDecl()))
2010        D.setInvalidType();
2011
2012    // Just pretend that we didn't see the previous declaration.
2013    Previous.clear();
2014  }
2015
2016  // In C++, the previous declaration we find might be a tag type
2017  // (class or enum). In this case, the new declaration will hide the
2018  // tag type. Note that this does does not apply if we're declaring a
2019  // typedef (C++ [dcl.typedef]p4).
2020  if (Previous.isSingleTagDecl() &&
2021      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2022    Previous.clear();
2023
2024  bool Redeclaration = false;
2025  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2026    if (TemplateParamLists.size()) {
2027      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2028      return DeclPtrTy();
2029    }
2030
2031    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2032  } else if (R->isFunctionType()) {
2033    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2034                                  move(TemplateParamLists),
2035                                  IsFunctionDefinition, Redeclaration);
2036  } else {
2037    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2038                                  move(TemplateParamLists),
2039                                  Redeclaration);
2040  }
2041
2042  if (New == 0)
2043    return DeclPtrTy();
2044
2045  // If this has an identifier and is not an invalid redeclaration or
2046  // function template specialization, add it to the scope stack.
2047  if (Name && !(Redeclaration && New->isInvalidDecl()))
2048    PushOnScopeChains(New, S);
2049
2050  return DeclPtrTy::make(New);
2051}
2052
2053/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2054/// types into constant array types in certain situations which would otherwise
2055/// be errors (for GCC compatibility).
2056static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2057                                                    ASTContext &Context,
2058                                                    bool &SizeIsNegative) {
2059  // This method tries to turn a variable array into a constant
2060  // array even when the size isn't an ICE.  This is necessary
2061  // for compatibility with code that depends on gcc's buggy
2062  // constant expression folding, like struct {char x[(int)(char*)2];}
2063  SizeIsNegative = false;
2064
2065  QualifierCollector Qs;
2066  const Type *Ty = Qs.strip(T);
2067
2068  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2069    QualType Pointee = PTy->getPointeeType();
2070    QualType FixedType =
2071        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2072    if (FixedType.isNull()) return FixedType;
2073    FixedType = Context.getPointerType(FixedType);
2074    return Qs.apply(FixedType);
2075  }
2076
2077  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2078  if (!VLATy)
2079    return QualType();
2080  // FIXME: We should probably handle this case
2081  if (VLATy->getElementType()->isVariablyModifiedType())
2082    return QualType();
2083
2084  Expr::EvalResult EvalResult;
2085  if (!VLATy->getSizeExpr() ||
2086      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2087      !EvalResult.Val.isInt())
2088    return QualType();
2089
2090  llvm::APSInt &Res = EvalResult.Val.getInt();
2091  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2092    // TODO: preserve the size expression in declarator info
2093    return Context.getConstantArrayType(VLATy->getElementType(),
2094                                        Res, ArrayType::Normal, 0);
2095  }
2096
2097  SizeIsNegative = true;
2098  return QualType();
2099}
2100
2101/// \brief Register the given locally-scoped external C declaration so
2102/// that it can be found later for redeclarations
2103void
2104Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2105                                       const LookupResult &Previous,
2106                                       Scope *S) {
2107  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2108         "Decl is not a locally-scoped decl!");
2109  // Note that we have a locally-scoped external with this name.
2110  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2111
2112  if (!Previous.isSingleResult())
2113    return;
2114
2115  NamedDecl *PrevDecl = Previous.getFoundDecl();
2116
2117  // If there was a previous declaration of this variable, it may be
2118  // in our identifier chain. Update the identifier chain with the new
2119  // declaration.
2120  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2121    // The previous declaration was found on the identifer resolver
2122    // chain, so remove it from its scope.
2123    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2124      S = S->getParent();
2125
2126    if (S)
2127      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2128  }
2129}
2130
2131/// \brief Diagnose function specifiers on a declaration of an identifier that
2132/// does not identify a function.
2133void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2134  // FIXME: We should probably indicate the identifier in question to avoid
2135  // confusion for constructs like "inline int a(), b;"
2136  if (D.getDeclSpec().isInlineSpecified())
2137    Diag(D.getDeclSpec().getInlineSpecLoc(),
2138         diag::err_inline_non_function);
2139
2140  if (D.getDeclSpec().isVirtualSpecified())
2141    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2142         diag::err_virtual_non_function);
2143
2144  if (D.getDeclSpec().isExplicitSpecified())
2145    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2146         diag::err_explicit_non_function);
2147}
2148
2149NamedDecl*
2150Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2151                             QualType R,  TypeSourceInfo *TInfo,
2152                             LookupResult &Previous, bool &Redeclaration) {
2153  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2154  if (D.getCXXScopeSpec().isSet()) {
2155    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2156      << D.getCXXScopeSpec().getRange();
2157    D.setInvalidType();
2158    // Pretend we didn't see the scope specifier.
2159    DC = 0;
2160  }
2161
2162  if (getLangOptions().CPlusPlus) {
2163    // Check that there are no default arguments (C++ only).
2164    CheckExtraCXXDefaultArguments(D);
2165  }
2166
2167  DiagnoseFunctionSpecifiers(D);
2168
2169  if (D.getDeclSpec().isThreadSpecified())
2170    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2171
2172  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2173  if (!NewTD) return 0;
2174
2175  // Handle attributes prior to checking for duplicates in MergeVarDecl
2176  ProcessDeclAttributes(S, NewTD, D);
2177
2178  // Merge the decl with the existing one if appropriate. If the decl is
2179  // in an outer scope, it isn't the same thing.
2180  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2181  if (!Previous.empty()) {
2182    Redeclaration = true;
2183    MergeTypeDefDecl(NewTD, Previous);
2184  }
2185
2186  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2187  // then it shall have block scope.
2188  QualType T = NewTD->getUnderlyingType();
2189  if (T->isVariablyModifiedType()) {
2190    CurFunctionNeedsScopeChecking = true;
2191
2192    if (S->getFnParent() == 0) {
2193      bool SizeIsNegative;
2194      QualType FixedTy =
2195          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2196      if (!FixedTy.isNull()) {
2197        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2198        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2199      } else {
2200        if (SizeIsNegative)
2201          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2202        else if (T->isVariableArrayType())
2203          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2204        else
2205          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2206        NewTD->setInvalidDecl();
2207      }
2208    }
2209  }
2210
2211  // If this is the C FILE type, notify the AST context.
2212  if (IdentifierInfo *II = NewTD->getIdentifier())
2213    if (!NewTD->isInvalidDecl() &&
2214        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2215      if (II->isStr("FILE"))
2216        Context.setFILEDecl(NewTD);
2217      else if (II->isStr("jmp_buf"))
2218        Context.setjmp_bufDecl(NewTD);
2219      else if (II->isStr("sigjmp_buf"))
2220        Context.setsigjmp_bufDecl(NewTD);
2221    }
2222
2223  return NewTD;
2224}
2225
2226/// \brief Determines whether the given declaration is an out-of-scope
2227/// previous declaration.
2228///
2229/// This routine should be invoked when name lookup has found a
2230/// previous declaration (PrevDecl) that is not in the scope where a
2231/// new declaration by the same name is being introduced. If the new
2232/// declaration occurs in a local scope, previous declarations with
2233/// linkage may still be considered previous declarations (C99
2234/// 6.2.2p4-5, C++ [basic.link]p6).
2235///
2236/// \param PrevDecl the previous declaration found by name
2237/// lookup
2238///
2239/// \param DC the context in which the new declaration is being
2240/// declared.
2241///
2242/// \returns true if PrevDecl is an out-of-scope previous declaration
2243/// for a new delcaration with the same name.
2244static bool
2245isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2246                                ASTContext &Context) {
2247  if (!PrevDecl)
2248    return 0;
2249
2250  if (!PrevDecl->hasLinkage())
2251    return false;
2252
2253  if (Context.getLangOptions().CPlusPlus) {
2254    // C++ [basic.link]p6:
2255    //   If there is a visible declaration of an entity with linkage
2256    //   having the same name and type, ignoring entities declared
2257    //   outside the innermost enclosing namespace scope, the block
2258    //   scope declaration declares that same entity and receives the
2259    //   linkage of the previous declaration.
2260    DeclContext *OuterContext = DC->getLookupContext();
2261    if (!OuterContext->isFunctionOrMethod())
2262      // This rule only applies to block-scope declarations.
2263      return false;
2264    else {
2265      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2266      if (PrevOuterContext->isRecord())
2267        // We found a member function: ignore it.
2268        return false;
2269      else {
2270        // Find the innermost enclosing namespace for the new and
2271        // previous declarations.
2272        while (!OuterContext->isFileContext())
2273          OuterContext = OuterContext->getParent();
2274        while (!PrevOuterContext->isFileContext())
2275          PrevOuterContext = PrevOuterContext->getParent();
2276
2277        // The previous declaration is in a different namespace, so it
2278        // isn't the same function.
2279        if (OuterContext->getPrimaryContext() !=
2280            PrevOuterContext->getPrimaryContext())
2281          return false;
2282      }
2283    }
2284  }
2285
2286  return true;
2287}
2288
2289NamedDecl*
2290Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2291                              QualType R, TypeSourceInfo *TInfo,
2292                              LookupResult &Previous,
2293                              MultiTemplateParamsArg TemplateParamLists,
2294                              bool &Redeclaration) {
2295  DeclarationName Name = GetNameForDeclarator(D);
2296
2297  // Check that there are no default arguments (C++ only).
2298  if (getLangOptions().CPlusPlus)
2299    CheckExtraCXXDefaultArguments(D);
2300
2301  VarDecl *NewVD;
2302  VarDecl::StorageClass SC;
2303  switch (D.getDeclSpec().getStorageClassSpec()) {
2304  default: assert(0 && "Unknown storage class!");
2305  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2306  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2307  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2308  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2309  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2310  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2311  case DeclSpec::SCS_mutable:
2312    // mutable can only appear on non-static class members, so it's always
2313    // an error here
2314    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2315    D.setInvalidType();
2316    SC = VarDecl::None;
2317    break;
2318  }
2319
2320  IdentifierInfo *II = Name.getAsIdentifierInfo();
2321  if (!II) {
2322    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2323      << Name.getAsString();
2324    return 0;
2325  }
2326
2327  DiagnoseFunctionSpecifiers(D);
2328
2329  if (!DC->isRecord() && S->getFnParent() == 0) {
2330    // C99 6.9p2: The storage-class specifiers auto and register shall not
2331    // appear in the declaration specifiers in an external declaration.
2332    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2333
2334      // If this is a register variable with an asm label specified, then this
2335      // is a GNU extension.
2336      if (SC == VarDecl::Register && D.getAsmLabel())
2337        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2338      else
2339        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2340      D.setInvalidType();
2341    }
2342  }
2343  if (DC->isRecord() && !CurContext->isRecord()) {
2344    // This is an out-of-line definition of a static data member.
2345    if (SC == VarDecl::Static) {
2346      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2347           diag::err_static_out_of_line)
2348        << CodeModificationHint::CreateRemoval(
2349                                      D.getDeclSpec().getStorageClassSpecLoc());
2350    } else if (SC == VarDecl::None)
2351      SC = VarDecl::Static;
2352  }
2353  if (SC == VarDecl::Static) {
2354    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2355      if (RD->isLocalClass())
2356        Diag(D.getIdentifierLoc(),
2357             diag::err_static_data_member_not_allowed_in_local_class)
2358          << Name << RD->getDeclName();
2359    }
2360  }
2361
2362  // Match up the template parameter lists with the scope specifier, then
2363  // determine whether we have a template or a template specialization.
2364  bool isExplicitSpecialization = false;
2365  if (TemplateParameterList *TemplateParams
2366        = MatchTemplateParametersToScopeSpecifier(
2367                                  D.getDeclSpec().getSourceRange().getBegin(),
2368                                                  D.getCXXScopeSpec(),
2369                        (TemplateParameterList**)TemplateParamLists.get(),
2370                                                   TemplateParamLists.size(),
2371                                                  isExplicitSpecialization)) {
2372    if (TemplateParams->size() > 0) {
2373      // There is no such thing as a variable template.
2374      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2375        << II
2376        << SourceRange(TemplateParams->getTemplateLoc(),
2377                       TemplateParams->getRAngleLoc());
2378      return 0;
2379    } else {
2380      // There is an extraneous 'template<>' for this variable. Complain
2381      // about it, but allow the declaration of the variable.
2382      Diag(TemplateParams->getTemplateLoc(),
2383           diag::err_template_variable_noparams)
2384        << II
2385        << SourceRange(TemplateParams->getTemplateLoc(),
2386                       TemplateParams->getRAngleLoc());
2387
2388      isExplicitSpecialization = true;
2389    }
2390  }
2391
2392  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2393                          II, R, TInfo, SC);
2394
2395  if (D.isInvalidType())
2396    NewVD->setInvalidDecl();
2397
2398  if (D.getDeclSpec().isThreadSpecified()) {
2399    if (NewVD->hasLocalStorage())
2400      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2401    else if (!Context.Target.isTLSSupported())
2402      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2403    else
2404      NewVD->setThreadSpecified(true);
2405  }
2406
2407  // Set the lexical context. If the declarator has a C++ scope specifier, the
2408  // lexical context will be different from the semantic context.
2409  NewVD->setLexicalDeclContext(CurContext);
2410
2411  // Handle attributes prior to checking for duplicates in MergeVarDecl
2412  ProcessDeclAttributes(S, NewVD, D);
2413
2414  // Handle GNU asm-label extension (encoded as an attribute).
2415  if (Expr *E = (Expr*) D.getAsmLabel()) {
2416    // The parser guarantees this is a string.
2417    StringLiteral *SE = cast<StringLiteral>(E);
2418    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2419  }
2420
2421  // Don't consider existing declarations that are in a different
2422  // scope and are out-of-semantic-context declarations (if the new
2423  // declaration has linkage).
2424  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2425
2426  // Merge the decl with the existing one if appropriate.
2427  if (!Previous.empty()) {
2428    if (Previous.isSingleResult() &&
2429        isa<FieldDecl>(Previous.getFoundDecl()) &&
2430        D.getCXXScopeSpec().isSet()) {
2431      // The user tried to define a non-static data member
2432      // out-of-line (C++ [dcl.meaning]p1).
2433      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2434        << D.getCXXScopeSpec().getRange();
2435      Previous.clear();
2436      NewVD->setInvalidDecl();
2437    }
2438  } else if (D.getCXXScopeSpec().isSet()) {
2439    // No previous declaration in the qualifying scope.
2440    Diag(D.getIdentifierLoc(), diag::err_no_member)
2441      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2442      << D.getCXXScopeSpec().getRange();
2443    NewVD->setInvalidDecl();
2444  }
2445
2446  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2447
2448  // This is an explicit specialization of a static data member. Check it.
2449  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2450      CheckMemberSpecialization(NewVD, Previous))
2451    NewVD->setInvalidDecl();
2452
2453  // attributes declared post-definition are currently ignored
2454  if (Previous.isSingleResult()) {
2455    const VarDecl *Def = 0;
2456    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2457    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2458      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2459      Diag(Def->getLocation(), diag::note_previous_definition);
2460    }
2461  }
2462
2463  // If this is a locally-scoped extern C variable, update the map of
2464  // such variables.
2465  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2466      !NewVD->isInvalidDecl())
2467    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2468
2469  return NewVD;
2470}
2471
2472/// \brief Perform semantic checking on a newly-created variable
2473/// declaration.
2474///
2475/// This routine performs all of the type-checking required for a
2476/// variable declaration once it has been built. It is used both to
2477/// check variables after they have been parsed and their declarators
2478/// have been translated into a declaration, and to check variables
2479/// that have been instantiated from a template.
2480///
2481/// Sets NewVD->isInvalidDecl() if an error was encountered.
2482void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2483                                    LookupResult &Previous,
2484                                    bool &Redeclaration) {
2485  // If the decl is already known invalid, don't check it.
2486  if (NewVD->isInvalidDecl())
2487    return;
2488
2489  QualType T = NewVD->getType();
2490
2491  if (T->isObjCInterfaceType()) {
2492    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2493    return NewVD->setInvalidDecl();
2494  }
2495
2496  // Emit an error if an address space was applied to decl with local storage.
2497  // This includes arrays of objects with address space qualifiers, but not
2498  // automatic variables that point to other address spaces.
2499  // ISO/IEC TR 18037 S5.1.2
2500  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2501    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2502    return NewVD->setInvalidDecl();
2503  }
2504
2505  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2506      && !NewVD->hasAttr<BlocksAttr>())
2507    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2508
2509  bool isVM = T->isVariablyModifiedType();
2510  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2511      NewVD->hasAttr<BlocksAttr>())
2512    CurFunctionNeedsScopeChecking = true;
2513
2514  if ((isVM && NewVD->hasLinkage()) ||
2515      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2516    bool SizeIsNegative;
2517    QualType FixedTy =
2518        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2519
2520    if (FixedTy.isNull() && T->isVariableArrayType()) {
2521      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2522      // FIXME: This won't give the correct result for
2523      // int a[10][n];
2524      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2525
2526      if (NewVD->isFileVarDecl())
2527        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2528        << SizeRange;
2529      else if (NewVD->getStorageClass() == VarDecl::Static)
2530        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2531        << SizeRange;
2532      else
2533        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2534        << SizeRange;
2535      return NewVD->setInvalidDecl();
2536    }
2537
2538    if (FixedTy.isNull()) {
2539      if (NewVD->isFileVarDecl())
2540        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2541      else
2542        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2543      return NewVD->setInvalidDecl();
2544    }
2545
2546    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2547    NewVD->setType(FixedTy);
2548  }
2549
2550  if (Previous.empty() && NewVD->isExternC()) {
2551    // Since we did not find anything by this name and we're declaring
2552    // an extern "C" variable, look for a non-visible extern "C"
2553    // declaration with the same name.
2554    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2555      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2556    if (Pos != LocallyScopedExternalDecls.end())
2557      Previous.addDecl(Pos->second);
2558  }
2559
2560  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2561    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2562      << T;
2563    return NewVD->setInvalidDecl();
2564  }
2565
2566  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2567    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2568    return NewVD->setInvalidDecl();
2569  }
2570
2571  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2572    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2573    return NewVD->setInvalidDecl();
2574  }
2575
2576  if (!Previous.empty()) {
2577    Redeclaration = true;
2578    MergeVarDecl(NewVD, Previous);
2579  }
2580}
2581
2582/// \brief Data used with FindOverriddenMethod
2583struct FindOverriddenMethodData {
2584  Sema *S;
2585  CXXMethodDecl *Method;
2586};
2587
2588/// \brief Member lookup function that determines whether a given C++
2589/// method overrides a method in a base class, to be used with
2590/// CXXRecordDecl::lookupInBases().
2591static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2592                                 CXXBasePath &Path,
2593                                 void *UserData) {
2594  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2595
2596  FindOverriddenMethodData *Data
2597    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2598
2599  DeclarationName Name = Data->Method->getDeclName();
2600
2601  // FIXME: Do we care about other names here too?
2602  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2603    // We really want to find the base class constructor here.
2604    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2605    CanQualType CT = Data->S->Context.getCanonicalType(T);
2606
2607    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2608  }
2609
2610  for (Path.Decls = BaseRecord->lookup(Name);
2611       Path.Decls.first != Path.Decls.second;
2612       ++Path.Decls.first) {
2613    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2614      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2615        return true;
2616    }
2617  }
2618
2619  return false;
2620}
2621
2622/// AddOverriddenMethods - See if a method overrides any in the base classes,
2623/// and if so, check that it's a valid override and remember it.
2624void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2625  // Look for virtual methods in base classes that this method might override.
2626  CXXBasePaths Paths;
2627  FindOverriddenMethodData Data;
2628  Data.Method = MD;
2629  Data.S = this;
2630  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2631    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2632         E = Paths.found_decls_end(); I != E; ++I) {
2633      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2634        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2635            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2636            !CheckOverridingFunctionAttributes(MD, OldMD))
2637          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2638      }
2639    }
2640  }
2641}
2642
2643NamedDecl*
2644Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2645                              QualType R, TypeSourceInfo *TInfo,
2646                              LookupResult &Previous,
2647                              MultiTemplateParamsArg TemplateParamLists,
2648                              bool IsFunctionDefinition, bool &Redeclaration) {
2649  assert(R.getTypePtr()->isFunctionType());
2650
2651  DeclarationName Name = GetNameForDeclarator(D);
2652  FunctionDecl::StorageClass SC = FunctionDecl::None;
2653  switch (D.getDeclSpec().getStorageClassSpec()) {
2654  default: assert(0 && "Unknown storage class!");
2655  case DeclSpec::SCS_auto:
2656  case DeclSpec::SCS_register:
2657  case DeclSpec::SCS_mutable:
2658    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2659         diag::err_typecheck_sclass_func);
2660    D.setInvalidType();
2661    break;
2662  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2663  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2664  case DeclSpec::SCS_static: {
2665    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2666      // C99 6.7.1p5:
2667      //   The declaration of an identifier for a function that has
2668      //   block scope shall have no explicit storage-class specifier
2669      //   other than extern
2670      // See also (C++ [dcl.stc]p4).
2671      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2672           diag::err_static_block_func);
2673      SC = FunctionDecl::None;
2674    } else
2675      SC = FunctionDecl::Static;
2676    break;
2677  }
2678  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2679  }
2680
2681  if (D.getDeclSpec().isThreadSpecified())
2682    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2683
2684  bool isFriend = D.getDeclSpec().isFriendSpecified();
2685  bool isInline = D.getDeclSpec().isInlineSpecified();
2686  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2687  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2688
2689  // Check that the return type is not an abstract class type.
2690  // For record types, this is done by the AbstractClassUsageDiagnoser once
2691  // the class has been completely parsed.
2692  if (!DC->isRecord() &&
2693      RequireNonAbstractType(D.getIdentifierLoc(),
2694                             R->getAs<FunctionType>()->getResultType(),
2695                             diag::err_abstract_type_in_decl,
2696                             AbstractReturnType))
2697    D.setInvalidType();
2698
2699  // Do not allow returning a objc interface by-value.
2700  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2701    Diag(D.getIdentifierLoc(),
2702         diag::err_object_cannot_be_passed_returned_by_value) << 0
2703      << R->getAs<FunctionType>()->getResultType();
2704    D.setInvalidType();
2705  }
2706
2707  bool isVirtualOkay = false;
2708  FunctionDecl *NewFD;
2709
2710  if (isFriend) {
2711    // C++ [class.friend]p5
2712    //   A function can be defined in a friend declaration of a
2713    //   class . . . . Such a function is implicitly inline.
2714    isInline |= IsFunctionDefinition;
2715  }
2716
2717  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2718    // This is a C++ constructor declaration.
2719    assert(DC->isRecord() &&
2720           "Constructors can only be declared in a member context");
2721
2722    R = CheckConstructorDeclarator(D, R, SC);
2723
2724    // Create the new declaration
2725    NewFD = CXXConstructorDecl::Create(Context,
2726                                       cast<CXXRecordDecl>(DC),
2727                                       D.getIdentifierLoc(), Name, R, TInfo,
2728                                       isExplicit, isInline,
2729                                       /*isImplicitlyDeclared=*/false);
2730  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2731    // This is a C++ destructor declaration.
2732    if (DC->isRecord()) {
2733      R = CheckDestructorDeclarator(D, SC);
2734
2735      NewFD = CXXDestructorDecl::Create(Context,
2736                                        cast<CXXRecordDecl>(DC),
2737                                        D.getIdentifierLoc(), Name, R,
2738                                        isInline,
2739                                        /*isImplicitlyDeclared=*/false);
2740
2741      isVirtualOkay = true;
2742    } else {
2743      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2744
2745      // Create a FunctionDecl to satisfy the function definition parsing
2746      // code path.
2747      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2748                                   Name, R, TInfo, SC, isInline,
2749                                   /*hasPrototype=*/true);
2750      D.setInvalidType();
2751    }
2752  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2753    if (!DC->isRecord()) {
2754      Diag(D.getIdentifierLoc(),
2755           diag::err_conv_function_not_member);
2756      return 0;
2757    }
2758
2759    CheckConversionDeclarator(D, R, SC);
2760    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2761                                      D.getIdentifierLoc(), Name, R, TInfo,
2762                                      isInline, isExplicit);
2763
2764    isVirtualOkay = true;
2765  } else if (DC->isRecord()) {
2766    // If the of the function is the same as the name of the record, then this
2767    // must be an invalid constructor that has a return type.
2768    // (The parser checks for a return type and makes the declarator a
2769    // constructor if it has no return type).
2770    // must have an invalid constructor that has a return type
2771    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2772      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2773        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2774        << SourceRange(D.getIdentifierLoc());
2775      return 0;
2776    }
2777
2778    bool isStatic = SC == FunctionDecl::Static;
2779
2780    // [class.free]p1:
2781    // Any allocation function for a class T is a static member
2782    // (even if not explicitly declared static).
2783    if (Name.getCXXOverloadedOperator() == OO_New ||
2784        Name.getCXXOverloadedOperator() == OO_Array_New)
2785      isStatic = true;
2786
2787    // [class.free]p6 Any deallocation function for a class X is a static member
2788    // (even if not explicitly declared static).
2789    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2790        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2791      isStatic = true;
2792
2793    // This is a C++ method declaration.
2794    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2795                                  D.getIdentifierLoc(), Name, R, TInfo,
2796                                  isStatic, isInline);
2797
2798    isVirtualOkay = !isStatic;
2799  } else {
2800    // Determine whether the function was written with a
2801    // prototype. This true when:
2802    //   - we're in C++ (where every function has a prototype),
2803    //   - there is a prototype in the declarator, or
2804    //   - the type R of the function is some kind of typedef or other reference
2805    //     to a type name (which eventually refers to a function type).
2806    bool HasPrototype =
2807       getLangOptions().CPlusPlus ||
2808       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2809       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2810
2811    NewFD = FunctionDecl::Create(Context, DC,
2812                                 D.getIdentifierLoc(),
2813                                 Name, R, TInfo, SC, isInline, HasPrototype);
2814  }
2815
2816  if (D.isInvalidType())
2817    NewFD->setInvalidDecl();
2818
2819  // Set the lexical context. If the declarator has a C++
2820  // scope specifier, or is the object of a friend declaration, the
2821  // lexical context will be different from the semantic context.
2822  NewFD->setLexicalDeclContext(CurContext);
2823
2824  // Match up the template parameter lists with the scope specifier, then
2825  // determine whether we have a template or a template specialization.
2826  FunctionTemplateDecl *FunctionTemplate = 0;
2827  bool isExplicitSpecialization = false;
2828  bool isFunctionTemplateSpecialization = false;
2829  if (TemplateParameterList *TemplateParams
2830        = MatchTemplateParametersToScopeSpecifier(
2831                                  D.getDeclSpec().getSourceRange().getBegin(),
2832                                  D.getCXXScopeSpec(),
2833                           (TemplateParameterList**)TemplateParamLists.get(),
2834                                                  TemplateParamLists.size(),
2835                                                  isExplicitSpecialization)) {
2836    if (TemplateParams->size() > 0) {
2837      // This is a function template
2838
2839      // Check that we can declare a template here.
2840      if (CheckTemplateDeclScope(S, TemplateParams))
2841        return 0;
2842
2843      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2844                                                      NewFD->getLocation(),
2845                                                      Name, TemplateParams,
2846                                                      NewFD);
2847      FunctionTemplate->setLexicalDeclContext(CurContext);
2848      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2849    } else {
2850      // This is a function template specialization.
2851      isFunctionTemplateSpecialization = true;
2852    }
2853
2854    // FIXME: Free this memory properly.
2855    TemplateParamLists.release();
2856  }
2857
2858  // C++ [dcl.fct.spec]p5:
2859  //   The virtual specifier shall only be used in declarations of
2860  //   nonstatic class member functions that appear within a
2861  //   member-specification of a class declaration; see 10.3.
2862  //
2863  if (isVirtual && !NewFD->isInvalidDecl()) {
2864    if (!isVirtualOkay) {
2865       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2866           diag::err_virtual_non_function);
2867    } else if (!CurContext->isRecord()) {
2868      // 'virtual' was specified outside of the class.
2869      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2870        << CodeModificationHint::CreateRemoval(
2871                                           D.getDeclSpec().getVirtualSpecLoc());
2872    } else {
2873      // Okay: Add virtual to the method.
2874      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2875      CurClass->setMethodAsVirtual(NewFD);
2876    }
2877  }
2878
2879  // Filter out previous declarations that don't match the scope.
2880  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2881
2882  if (isFriend) {
2883    // DC is the namespace in which the function is being declared.
2884    assert((DC->isFileContext() || !Previous.empty()) &&
2885           "previously-undeclared friend function being created "
2886           "in a non-namespace context");
2887
2888    if (FunctionTemplate) {
2889      FunctionTemplate->setObjectOfFriendDecl(
2890                                   /* PreviouslyDeclared= */ !Previous.empty());
2891      FunctionTemplate->setAccess(AS_public);
2892    }
2893    else
2894      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2895
2896    NewFD->setAccess(AS_public);
2897  }
2898
2899  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2900      !CurContext->isRecord()) {
2901    // C++ [class.static]p1:
2902    //   A data or function member of a class may be declared static
2903    //   in a class definition, in which case it is a static member of
2904    //   the class.
2905
2906    // Complain about the 'static' specifier if it's on an out-of-line
2907    // member function definition.
2908    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2909         diag::err_static_out_of_line)
2910      << CodeModificationHint::CreateRemoval(
2911                                      D.getDeclSpec().getStorageClassSpecLoc());
2912  }
2913
2914  // Handle GNU asm-label extension (encoded as an attribute).
2915  if (Expr *E = (Expr*) D.getAsmLabel()) {
2916    // The parser guarantees this is a string.
2917    StringLiteral *SE = cast<StringLiteral>(E);
2918    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2919  }
2920
2921  // Copy the parameter declarations from the declarator D to the function
2922  // declaration NewFD, if they are available.  First scavenge them into Params.
2923  llvm::SmallVector<ParmVarDecl*, 16> Params;
2924  if (D.getNumTypeObjects() > 0) {
2925    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2926
2927    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2928    // function that takes no arguments, not a function that takes a
2929    // single void argument.
2930    // We let through "const void" here because Sema::GetTypeForDeclarator
2931    // already checks for that case.
2932    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2933        FTI.ArgInfo[0].Param &&
2934        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2935      // Empty arg list, don't push any params.
2936      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2937
2938      // In C++, the empty parameter-type-list must be spelled "void"; a
2939      // typedef of void is not permitted.
2940      if (getLangOptions().CPlusPlus &&
2941          Param->getType().getUnqualifiedType() != Context.VoidTy)
2942        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2943      // FIXME: Leaks decl?
2944    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2945      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2946        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2947        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2948        Param->setDeclContext(NewFD);
2949        Params.push_back(Param);
2950      }
2951    }
2952
2953  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2954    // When we're declaring a function with a typedef, typeof, etc as in the
2955    // following example, we'll need to synthesize (unnamed)
2956    // parameters for use in the declaration.
2957    //
2958    // @code
2959    // typedef void fn(int);
2960    // fn f;
2961    // @endcode
2962
2963    // Synthesize a parameter for each argument type.
2964    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2965         AE = FT->arg_type_end(); AI != AE; ++AI) {
2966      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2967                                               SourceLocation(), 0,
2968                                               *AI, /*TInfo=*/0,
2969                                               VarDecl::None, 0);
2970      Param->setImplicit();
2971      Params.push_back(Param);
2972    }
2973  } else {
2974    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2975           "Should not need args for typedef of non-prototype fn");
2976  }
2977  // Finally, we know we have the right number of parameters, install them.
2978  NewFD->setParams(Context, Params.data(), Params.size());
2979
2980  // If the declarator is a template-id, translate the parser's template
2981  // argument list into our AST format.
2982  bool HasExplicitTemplateArgs = false;
2983  TemplateArgumentListInfo TemplateArgs;
2984  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2985    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2986    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2987    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2988    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2989                                       TemplateId->getTemplateArgs(),
2990                                       TemplateId->NumArgs);
2991    translateTemplateArguments(TemplateArgsPtr,
2992                               TemplateArgs);
2993    TemplateArgsPtr.release();
2994
2995    HasExplicitTemplateArgs = true;
2996
2997    if (FunctionTemplate) {
2998      // FIXME: Diagnose function template with explicit template
2999      // arguments.
3000      HasExplicitTemplateArgs = false;
3001    } else if (!isFunctionTemplateSpecialization &&
3002               !D.getDeclSpec().isFriendSpecified()) {
3003      // We have encountered something that the user meant to be a
3004      // specialization (because it has explicitly-specified template
3005      // arguments) but that was not introduced with a "template<>" (or had
3006      // too few of them).
3007      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3008        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3009        << CodeModificationHint::CreateInsertion(
3010                                   D.getDeclSpec().getSourceRange().getBegin(),
3011                                                 "template<> ");
3012      isFunctionTemplateSpecialization = true;
3013    }
3014  }
3015
3016  if (isFunctionTemplateSpecialization) {
3017      if (CheckFunctionTemplateSpecialization(NewFD,
3018                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3019                                              Previous))
3020        NewFD->setInvalidDecl();
3021  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3022             CheckMemberSpecialization(NewFD, Previous))
3023    NewFD->setInvalidDecl();
3024
3025  // Perform semantic checking on the function declaration.
3026  bool OverloadableAttrRequired = false; // FIXME: HACK!
3027  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3028                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3029
3030  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3031          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3032         "previous declaration set still overloaded");
3033
3034  // If we have a function template, check the template parameter
3035  // list. This will check and merge default template arguments.
3036  if (FunctionTemplate) {
3037    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3038    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3039                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3040             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3041                                                : TPC_FunctionTemplate);
3042  }
3043
3044  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3045    // An out-of-line member function declaration must also be a
3046    // definition (C++ [dcl.meaning]p1).
3047    // Note that this is not the case for explicit specializations of
3048    // function templates or member functions of class templates, per
3049    // C++ [temp.expl.spec]p2.
3050    if (!IsFunctionDefinition && !isFriend &&
3051        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3052      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3053        << D.getCXXScopeSpec().getRange();
3054      NewFD->setInvalidDecl();
3055    } else if (!Redeclaration) {
3056      // The user tried to provide an out-of-line definition for a
3057      // function that is a member of a class or namespace, but there
3058      // was no such member function declared (C++ [class.mfct]p2,
3059      // C++ [namespace.memdef]p2). For example:
3060      //
3061      // class X {
3062      //   void f() const;
3063      // };
3064      //
3065      // void X::f() { } // ill-formed
3066      //
3067      // Complain about this problem, and attempt to suggest close
3068      // matches (e.g., those that differ only in cv-qualifiers and
3069      // whether the parameter types are references).
3070      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3071        << Name << DC << D.getCXXScopeSpec().getRange();
3072      NewFD->setInvalidDecl();
3073
3074      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3075                        ForRedeclaration);
3076      LookupQualifiedName(Prev, DC);
3077      assert(!Prev.isAmbiguous() &&
3078             "Cannot have an ambiguity in previous-declaration lookup");
3079      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3080           Func != FuncEnd; ++Func) {
3081        if (isa<FunctionDecl>(*Func) &&
3082            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3083          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3084      }
3085    }
3086  }
3087
3088  // Handle attributes. We need to have merged decls when handling attributes
3089  // (for example to check for conflicts, etc).
3090  // FIXME: This needs to happen before we merge declarations. Then,
3091  // let attribute merging cope with attribute conflicts.
3092  ProcessDeclAttributes(S, NewFD, D);
3093
3094  // attributes declared post-definition are currently ignored
3095  if (Redeclaration && Previous.isSingleResult()) {
3096    const FunctionDecl *Def;
3097    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3098    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3099      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3100      Diag(Def->getLocation(), diag::note_previous_definition);
3101    }
3102  }
3103
3104  AddKnownFunctionAttributes(NewFD);
3105
3106  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3107    // If a function name is overloadable in C, then every function
3108    // with that name must be marked "overloadable".
3109    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3110      << Redeclaration << NewFD;
3111    if (!Previous.empty())
3112      Diag(Previous.getRepresentativeDecl()->getLocation(),
3113           diag::note_attribute_overloadable_prev_overload);
3114    NewFD->addAttr(::new (Context) OverloadableAttr());
3115  }
3116
3117  // If this is a locally-scoped extern C function, update the
3118  // map of such names.
3119  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3120      && !NewFD->isInvalidDecl())
3121    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3122
3123  // Set this FunctionDecl's range up to the right paren.
3124  NewFD->setLocEnd(D.getSourceRange().getEnd());
3125
3126  if (FunctionTemplate && NewFD->isInvalidDecl())
3127    FunctionTemplate->setInvalidDecl();
3128
3129  if (FunctionTemplate)
3130    return FunctionTemplate;
3131
3132  return NewFD;
3133}
3134
3135/// \brief Perform semantic checking of a new function declaration.
3136///
3137/// Performs semantic analysis of the new function declaration
3138/// NewFD. This routine performs all semantic checking that does not
3139/// require the actual declarator involved in the declaration, and is
3140/// used both for the declaration of functions as they are parsed
3141/// (called via ActOnDeclarator) and for the declaration of functions
3142/// that have been instantiated via C++ template instantiation (called
3143/// via InstantiateDecl).
3144///
3145/// \param IsExplicitSpecialiation whether this new function declaration is
3146/// an explicit specialization of the previous declaration.
3147///
3148/// This sets NewFD->isInvalidDecl() to true if there was an error.
3149void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3150                                    LookupResult &Previous,
3151                                    bool IsExplicitSpecialization,
3152                                    bool &Redeclaration,
3153                                    bool &OverloadableAttrRequired) {
3154  // If NewFD is already known erroneous, don't do any of this checking.
3155  if (NewFD->isInvalidDecl())
3156    return;
3157
3158  if (NewFD->getResultType()->isVariablyModifiedType()) {
3159    // Functions returning a variably modified type violate C99 6.7.5.2p2
3160    // because all functions have linkage.
3161    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3162    return NewFD->setInvalidDecl();
3163  }
3164
3165  if (NewFD->isMain())
3166    CheckMain(NewFD);
3167
3168  // Check for a previous declaration of this name.
3169  if (Previous.empty() && NewFD->isExternC()) {
3170    // Since we did not find anything by this name and we're declaring
3171    // an extern "C" function, look for a non-visible extern "C"
3172    // declaration with the same name.
3173    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3174      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3175    if (Pos != LocallyScopedExternalDecls.end())
3176      Previous.addDecl(Pos->second);
3177  }
3178
3179  // Merge or overload the declaration with an existing declaration of
3180  // the same name, if appropriate.
3181  if (!Previous.empty()) {
3182    // Determine whether NewFD is an overload of PrevDecl or
3183    // a declaration that requires merging. If it's an overload,
3184    // there's no more work to do here; we'll just add the new
3185    // function to the scope.
3186
3187    NamedDecl *OldDecl = 0;
3188    if (!AllowOverloadingOfFunction(Previous, Context)) {
3189      Redeclaration = true;
3190      OldDecl = Previous.getFoundDecl();
3191    } else {
3192      if (!getLangOptions().CPlusPlus) {
3193        OverloadableAttrRequired = true;
3194
3195        // Functions marked "overloadable" must have a prototype (that
3196        // we can't get through declaration merging).
3197        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3198          Diag(NewFD->getLocation(),
3199               diag::err_attribute_overloadable_no_prototype)
3200            << NewFD;
3201          Redeclaration = true;
3202
3203          // Turn this into a variadic function with no parameters.
3204          QualType R = Context.getFunctionType(
3205                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3206                     0, 0, true, 0);
3207          NewFD->setType(R);
3208          return NewFD->setInvalidDecl();
3209        }
3210      }
3211
3212      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3213      case Ovl_Match:
3214        Redeclaration = true;
3215        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3216          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3217          Redeclaration = false;
3218        }
3219        break;
3220
3221      case Ovl_NonFunction:
3222        Redeclaration = true;
3223        break;
3224
3225      case Ovl_Overload:
3226        Redeclaration = false;
3227        break;
3228      }
3229    }
3230
3231    if (Redeclaration) {
3232      // NewFD and OldDecl represent declarations that need to be
3233      // merged.
3234      if (MergeFunctionDecl(NewFD, OldDecl))
3235        return NewFD->setInvalidDecl();
3236
3237      Previous.clear();
3238      Previous.addDecl(OldDecl);
3239
3240      if (FunctionTemplateDecl *OldTemplateDecl
3241                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3242        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3243        FunctionTemplateDecl *NewTemplateDecl
3244          = NewFD->getDescribedFunctionTemplate();
3245        assert(NewTemplateDecl && "Template/non-template mismatch");
3246        if (CXXMethodDecl *Method
3247              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3248          Method->setAccess(OldTemplateDecl->getAccess());
3249          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3250        }
3251
3252        // If this is an explicit specialization of a member that is a function
3253        // template, mark it as a member specialization.
3254        if (IsExplicitSpecialization &&
3255            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3256          NewTemplateDecl->setMemberSpecialization();
3257          assert(OldTemplateDecl->isMemberSpecialization());
3258        }
3259      } else {
3260        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3261          NewFD->setAccess(OldDecl->getAccess());
3262        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3263      }
3264    }
3265  }
3266
3267  // Semantic checking for this function declaration (in isolation).
3268  if (getLangOptions().CPlusPlus) {
3269    // C++-specific checks.
3270    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3271      CheckConstructor(Constructor);
3272    } else if (CXXDestructorDecl *Destructor =
3273                dyn_cast<CXXDestructorDecl>(NewFD)) {
3274      CXXRecordDecl *Record = Destructor->getParent();
3275      QualType ClassType = Context.getTypeDeclType(Record);
3276
3277      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3278      // type is dependent? Both gcc and edg can handle that.
3279      if (!ClassType->isDependentType()) {
3280        DeclarationName Name
3281          = Context.DeclarationNames.getCXXDestructorName(
3282                                        Context.getCanonicalType(ClassType));
3283        if (NewFD->getDeclName() != Name) {
3284          Diag(NewFD->getLocation(), diag::err_destructor_name);
3285          return NewFD->setInvalidDecl();
3286        }
3287      }
3288
3289      Record->setUserDeclaredDestructor(true);
3290      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3291      // user-defined destructor.
3292      Record->setPOD(false);
3293
3294      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3295      // declared destructor.
3296      // FIXME: C++0x: don't do this for "= default" destructors
3297      Record->setHasTrivialDestructor(false);
3298    } else if (CXXConversionDecl *Conversion
3299               = dyn_cast<CXXConversionDecl>(NewFD)) {
3300      ActOnConversionDeclarator(Conversion);
3301    }
3302
3303    // Find any virtual functions that this function overrides.
3304    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3305      if (!Method->isFunctionTemplateSpecialization() &&
3306          !Method->getDescribedFunctionTemplate())
3307        AddOverriddenMethods(Method->getParent(), Method);
3308    }
3309
3310    // Additional checks for the destructor; make sure we do this after we
3311    // figure out whether the destructor is virtual.
3312    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3313      if (!Destructor->getParent()->isDependentType())
3314        CheckDestructor(Destructor);
3315
3316    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3317    if (NewFD->isOverloadedOperator() &&
3318        CheckOverloadedOperatorDeclaration(NewFD))
3319      return NewFD->setInvalidDecl();
3320
3321    // In C++, check default arguments now that we have merged decls. Unless
3322    // the lexical context is the class, because in this case this is done
3323    // during delayed parsing anyway.
3324    if (!CurContext->isRecord())
3325      CheckCXXDefaultArguments(NewFD);
3326  }
3327}
3328
3329void Sema::CheckMain(FunctionDecl* FD) {
3330  // C++ [basic.start.main]p3:  A program that declares main to be inline
3331  //   or static is ill-formed.
3332  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3333  //   shall not appear in a declaration of main.
3334  // static main is not an error under C99, but we should warn about it.
3335  bool isInline = FD->isInlineSpecified();
3336  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3337  if (isInline || isStatic) {
3338    unsigned diagID = diag::warn_unusual_main_decl;
3339    if (isInline || getLangOptions().CPlusPlus)
3340      diagID = diag::err_unusual_main_decl;
3341
3342    int which = isStatic + (isInline << 1) - 1;
3343    Diag(FD->getLocation(), diagID) << which;
3344  }
3345
3346  QualType T = FD->getType();
3347  assert(T->isFunctionType() && "function decl is not of function type");
3348  const FunctionType* FT = T->getAs<FunctionType>();
3349
3350  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3351    // TODO: add a replacement fixit to turn the return type into 'int'.
3352    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3353    FD->setInvalidDecl(true);
3354  }
3355
3356  // Treat protoless main() as nullary.
3357  if (isa<FunctionNoProtoType>(FT)) return;
3358
3359  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3360  unsigned nparams = FTP->getNumArgs();
3361  assert(FD->getNumParams() == nparams);
3362
3363  if (nparams > 3) {
3364    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3365    FD->setInvalidDecl(true);
3366    nparams = 3;
3367  }
3368
3369  // FIXME: a lot of the following diagnostics would be improved
3370  // if we had some location information about types.
3371
3372  QualType CharPP =
3373    Context.getPointerType(Context.getPointerType(Context.CharTy));
3374  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3375
3376  for (unsigned i = 0; i < nparams; ++i) {
3377    QualType AT = FTP->getArgType(i);
3378
3379    bool mismatch = true;
3380
3381    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3382      mismatch = false;
3383    else if (Expected[i] == CharPP) {
3384      // As an extension, the following forms are okay:
3385      //   char const **
3386      //   char const * const *
3387      //   char * const *
3388
3389      QualifierCollector qs;
3390      const PointerType* PT;
3391      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3392          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3393          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3394        qs.removeConst();
3395        mismatch = !qs.empty();
3396      }
3397    }
3398
3399    if (mismatch) {
3400      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3401      // TODO: suggest replacing given type with expected type
3402      FD->setInvalidDecl(true);
3403    }
3404  }
3405
3406  if (nparams == 1 && !FD->isInvalidDecl()) {
3407    Diag(FD->getLocation(), diag::warn_main_one_arg);
3408  }
3409}
3410
3411bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3412  // FIXME: Need strict checking.  In C89, we need to check for
3413  // any assignment, increment, decrement, function-calls, or
3414  // commas outside of a sizeof.  In C99, it's the same list,
3415  // except that the aforementioned are allowed in unevaluated
3416  // expressions.  Everything else falls under the
3417  // "may accept other forms of constant expressions" exception.
3418  // (We never end up here for C++, so the constant expression
3419  // rules there don't matter.)
3420  if (Init->isConstantInitializer(Context))
3421    return false;
3422  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3423    << Init->getSourceRange();
3424  return true;
3425}
3426
3427void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3428  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3429}
3430
3431/// AddInitializerToDecl - Adds the initializer Init to the
3432/// declaration dcl. If DirectInit is true, this is C++ direct
3433/// initialization rather than copy initialization.
3434void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3435  Decl *RealDecl = dcl.getAs<Decl>();
3436  // If there is no declaration, there was an error parsing it.  Just ignore
3437  // the initializer.
3438  if (RealDecl == 0)
3439    return;
3440
3441  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3442    // With declarators parsed the way they are, the parser cannot
3443    // distinguish between a normal initializer and a pure-specifier.
3444    // Thus this grotesque test.
3445    IntegerLiteral *IL;
3446    Expr *Init = static_cast<Expr *>(init.get());
3447    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3448        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3449      CheckPureMethod(Method, Init->getSourceRange());
3450    else {
3451      Diag(Method->getLocation(), diag::err_member_function_initialization)
3452        << Method->getDeclName() << Init->getSourceRange();
3453      Method->setInvalidDecl();
3454    }
3455    return;
3456  }
3457
3458  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3459  if (!VDecl) {
3460    if (getLangOptions().CPlusPlus &&
3461        RealDecl->getLexicalDeclContext()->isRecord() &&
3462        isa<NamedDecl>(RealDecl))
3463      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3464        << cast<NamedDecl>(RealDecl)->getDeclName();
3465    else
3466      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3467    RealDecl->setInvalidDecl();
3468    return;
3469  }
3470
3471  // A definition must end up with a complete type, which means it must be
3472  // complete with the restriction that an array type might be completed by the
3473  // initializer; note that later code assumes this restriction.
3474  QualType BaseDeclType = VDecl->getType();
3475  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3476    BaseDeclType = Array->getElementType();
3477  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3478                          diag::err_typecheck_decl_incomplete_type)) {
3479    RealDecl->setInvalidDecl();
3480    return;
3481  }
3482
3483  // The variable can not have an abstract class type.
3484  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3485                             diag::err_abstract_type_in_decl,
3486                             AbstractVariableType))
3487    VDecl->setInvalidDecl();
3488
3489  const VarDecl *Def = 0;
3490  if (VDecl->getDefinition(Def)) {
3491    Diag(VDecl->getLocation(), diag::err_redefinition)
3492      << VDecl->getDeclName();
3493    Diag(Def->getLocation(), diag::note_previous_definition);
3494    VDecl->setInvalidDecl();
3495    return;
3496  }
3497
3498  // Take ownership of the expression, now that we're sure we have somewhere
3499  // to put it.
3500  Expr *Init = init.takeAs<Expr>();
3501  assert(Init && "missing initializer");
3502
3503  // Get the decls type and save a reference for later, since
3504  // CheckInitializerTypes may change it.
3505  QualType DclT = VDecl->getType(), SavT = DclT;
3506  if (VDecl->isBlockVarDecl()) {
3507    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3508      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3509      VDecl->setInvalidDecl();
3510    } else if (!VDecl->isInvalidDecl()) {
3511      if (VDecl->getType()->isReferenceType()
3512          || isa<InitListExpr>(Init)) {
3513        InitializedEntity Entity
3514          = InitializedEntity::InitializeVariable(VDecl);
3515
3516        // FIXME: Poor source location information.
3517        InitializationKind Kind
3518          = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3519                                                         SourceLocation(),
3520                                                         SourceLocation())
3521                      : InitializationKind::CreateCopy(VDecl->getLocation(),
3522                                                       SourceLocation());
3523        InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3524        if (InitSeq) {
3525          OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3526                                           MultiExprArg(*this, (void**)&Init, 1),
3527                                                    &DclT);
3528          if (Result.isInvalid()) {
3529            VDecl->setInvalidDecl();
3530            return;
3531          }
3532
3533          Init = Result.takeAs<Expr>();
3534        } else {
3535          InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3536          VDecl->setInvalidDecl();
3537          return;
3538        }
3539      } else if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3540                                       VDecl->getDeclName(), DirectInit))
3541        VDecl->setInvalidDecl();
3542
3543      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3544      // Don't check invalid declarations to avoid emitting useless diagnostics.
3545      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3546        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3547          CheckForConstantInitializer(Init, DclT);
3548      }
3549    }
3550  } else if (VDecl->isStaticDataMember() &&
3551             VDecl->getLexicalDeclContext()->isRecord()) {
3552    // This is an in-class initialization for a static data member, e.g.,
3553    //
3554    // struct S {
3555    //   static const int value = 17;
3556    // };
3557
3558    // Attach the initializer
3559    VDecl->setInit(Context, Init);
3560
3561    // C++ [class.mem]p4:
3562    //   A member-declarator can contain a constant-initializer only
3563    //   if it declares a static member (9.4) of const integral or
3564    //   const enumeration type, see 9.4.2.
3565    QualType T = VDecl->getType();
3566    if (!T->isDependentType() &&
3567        (!Context.getCanonicalType(T).isConstQualified() ||
3568         !T->isIntegralType())) {
3569      Diag(VDecl->getLocation(), diag::err_member_initialization)
3570        << VDecl->getDeclName() << Init->getSourceRange();
3571      VDecl->setInvalidDecl();
3572    } else {
3573      // C++ [class.static.data]p4:
3574      //   If a static data member is of const integral or const
3575      //   enumeration type, its declaration in the class definition
3576      //   can specify a constant-initializer which shall be an
3577      //   integral constant expression (5.19).
3578      if (!Init->isTypeDependent() &&
3579          !Init->getType()->isIntegralType()) {
3580        // We have a non-dependent, non-integral or enumeration type.
3581        Diag(Init->getSourceRange().getBegin(),
3582             diag::err_in_class_initializer_non_integral_type)
3583          << Init->getType() << Init->getSourceRange();
3584        VDecl->setInvalidDecl();
3585      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3586        // Check whether the expression is a constant expression.
3587        llvm::APSInt Value;
3588        SourceLocation Loc;
3589        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3590          Diag(Loc, diag::err_in_class_initializer_non_constant)
3591            << Init->getSourceRange();
3592          VDecl->setInvalidDecl();
3593        } else if (!VDecl->getType()->isDependentType())
3594          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3595      }
3596    }
3597  } else if (VDecl->isFileVarDecl()) {
3598    if (VDecl->getStorageClass() == VarDecl::Extern)
3599      Diag(VDecl->getLocation(), diag::warn_extern_init);
3600    if (!VDecl->isInvalidDecl())
3601      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3602                                VDecl->getDeclName(), DirectInit))
3603        VDecl->setInvalidDecl();
3604
3605    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3606    // Don't check invalid declarations to avoid emitting useless diagnostics.
3607    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3608      // C99 6.7.8p4. All file scoped initializers need to be constant.
3609      CheckForConstantInitializer(Init, DclT);
3610    }
3611  }
3612  // If the type changed, it means we had an incomplete type that was
3613  // completed by the initializer. For example:
3614  //   int ary[] = { 1, 3, 5 };
3615  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3616  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3617    VDecl->setType(DclT);
3618    Init->setType(DclT);
3619  }
3620
3621  Init = MaybeCreateCXXExprWithTemporaries(Init,
3622                                           /*ShouldDestroyTemporaries=*/true);
3623  // Attach the initializer to the decl.
3624  VDecl->setInit(Context, Init);
3625
3626  // If the previous declaration of VDecl was a tentative definition,
3627  // remove it from the set of tentative definitions.
3628  if (VDecl->getPreviousDeclaration() &&
3629      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3630    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3631    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3632  }
3633
3634  return;
3635}
3636
3637void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3638                                  bool TypeContainsUndeducedAuto) {
3639  Decl *RealDecl = dcl.getAs<Decl>();
3640
3641  // If there is no declaration, there was an error parsing it. Just ignore it.
3642  if (RealDecl == 0)
3643    return;
3644
3645  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3646    QualType Type = Var->getType();
3647
3648    // Record tentative definitions.
3649    if (Var->isTentativeDefinition(Context)) {
3650      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3651        InsertPair =
3652           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3653
3654      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3655      // want the second one in the map.
3656      InsertPair.first->second = Var;
3657
3658      // However, for the list, we don't care about the order, just make sure
3659      // that there are no dupes for a given declaration name.
3660      if (InsertPair.second)
3661        TentativeDefinitionList.push_back(Var->getDeclName());
3662    }
3663
3664    // C++ [dcl.init.ref]p3:
3665    //   The initializer can be omitted for a reference only in a
3666    //   parameter declaration (8.3.5), in the declaration of a
3667    //   function return type, in the declaration of a class member
3668    //   within its class declaration (9.2), and where the extern
3669    //   specifier is explicitly used.
3670    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3671      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3672        << Var->getDeclName()
3673        << SourceRange(Var->getLocation(), Var->getLocation());
3674      Var->setInvalidDecl();
3675      return;
3676    }
3677
3678    // C++0x [dcl.spec.auto]p3
3679    if (TypeContainsUndeducedAuto) {
3680      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3681        << Var->getDeclName() << Type;
3682      Var->setInvalidDecl();
3683      return;
3684    }
3685
3686    // An array without size is an incomplete type, and there are no special
3687    // rules in C++ to make such a definition acceptable.
3688    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3689        !Var->hasExternalStorage()) {
3690      Diag(Var->getLocation(),
3691           diag::err_typecheck_incomplete_array_needs_initializer);
3692      Var->setInvalidDecl();
3693      return;
3694    }
3695
3696    // C++ [temp.expl.spec]p15:
3697    //   An explicit specialization of a static data member of a template is a
3698    //   definition if the declaration includes an initializer; otherwise, it
3699    //   is a declaration.
3700    if (Var->isStaticDataMember() &&
3701        Var->getInstantiatedFromStaticDataMember() &&
3702        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3703      return;
3704
3705    // C++ [dcl.init]p9:
3706    //   If no initializer is specified for an object, and the object
3707    //   is of (possibly cv-qualified) non-POD class type (or array
3708    //   thereof), the object shall be default-initialized; if the
3709    //   object is of const-qualified type, the underlying class type
3710    //   shall have a user-declared default constructor.
3711    //
3712    // FIXME: Diagnose the "user-declared default constructor" bit.
3713    if (getLangOptions().CPlusPlus) {
3714      QualType InitType = Type;
3715      if (const ArrayType *Array = Context.getAsArrayType(Type))
3716        InitType = Context.getBaseElementType(Array);
3717      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3718          InitType->isRecordType() && !InitType->isDependentType()) {
3719        if (!RequireCompleteType(Var->getLocation(), InitType,
3720                                 diag::err_invalid_incomplete_type_use)) {
3721          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3722
3723          CXXConstructorDecl *Constructor
3724            = PerformInitializationByConstructor(InitType,
3725                                                 MultiExprArg(*this, 0, 0),
3726                                                 Var->getLocation(),
3727                                               SourceRange(Var->getLocation(),
3728                                                           Var->getLocation()),
3729                                                 Var->getDeclName(),
3730                         InitializationKind::CreateDefault(Var->getLocation()),
3731                                                 ConstructorArgs);
3732
3733          // FIXME: Location info for the variable initialization?
3734          if (!Constructor)
3735            Var->setInvalidDecl();
3736          else {
3737            // FIXME: Cope with initialization of arrays
3738            if (!Constructor->isTrivial() &&
3739                InitializeVarWithConstructor(Var, Constructor,
3740                                             move_arg(ConstructorArgs)))
3741              Var->setInvalidDecl();
3742
3743            FinalizeVarWithDestructor(Var, InitType);
3744          }
3745        } else {
3746          Var->setInvalidDecl();
3747        }
3748      }
3749
3750      // The variable can not have an abstract class type.
3751      if (RequireNonAbstractType(Var->getLocation(), Type,
3752                                 diag::err_abstract_type_in_decl,
3753                                 AbstractVariableType))
3754        Var->setInvalidDecl();
3755    }
3756
3757#if 0
3758    // FIXME: Temporarily disabled because we are not properly parsing
3759    // linkage specifications on declarations, e.g.,
3760    //
3761    //   extern "C" const CGPoint CGPointerZero;
3762    //
3763    // C++ [dcl.init]p9:
3764    //
3765    //     If no initializer is specified for an object, and the
3766    //     object is of (possibly cv-qualified) non-POD class type (or
3767    //     array thereof), the object shall be default-initialized; if
3768    //     the object is of const-qualified type, the underlying class
3769    //     type shall have a user-declared default
3770    //     constructor. Otherwise, if no initializer is specified for
3771    //     an object, the object and its subobjects, if any, have an
3772    //     indeterminate initial value; if the object or any of its
3773    //     subobjects are of const-qualified type, the program is
3774    //     ill-formed.
3775    //
3776    // This isn't technically an error in C, so we don't diagnose it.
3777    //
3778    // FIXME: Actually perform the POD/user-defined default
3779    // constructor check.
3780    if (getLangOptions().CPlusPlus &&
3781        Context.getCanonicalType(Type).isConstQualified() &&
3782        !Var->hasExternalStorage())
3783      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3784        << Var->getName()
3785        << SourceRange(Var->getLocation(), Var->getLocation());
3786#endif
3787  }
3788}
3789
3790Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3791                                                   DeclPtrTy *Group,
3792                                                   unsigned NumDecls) {
3793  llvm::SmallVector<Decl*, 8> Decls;
3794
3795  if (DS.isTypeSpecOwned())
3796    Decls.push_back((Decl*)DS.getTypeRep());
3797
3798  for (unsigned i = 0; i != NumDecls; ++i)
3799    if (Decl *D = Group[i].getAs<Decl>())
3800      Decls.push_back(D);
3801
3802  // Perform semantic analysis that depends on having fully processed both
3803  // the declarator and initializer.
3804  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3805    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3806    if (!IDecl)
3807      continue;
3808    QualType T = IDecl->getType();
3809
3810    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3811    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3812    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3813      if (T->isDependentType()) {
3814        // If T is dependent, we should not require a complete type.
3815        // (RequireCompleteType shouldn't be called with dependent types.)
3816        // But we still can at least check if we've got an array of unspecified
3817        // size without an initializer.
3818        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3819            !IDecl->getInit()) {
3820          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3821            << T;
3822          IDecl->setInvalidDecl();
3823        }
3824      } else if (!IDecl->isInvalidDecl()) {
3825        // If T is an incomplete array type with an initializer list that is
3826        // dependent on something, its size has not been fixed. We could attempt
3827        // to fix the size for such arrays, but we would still have to check
3828        // here for initializers containing a C++0x vararg expansion, e.g.
3829        // template <typename... Args> void f(Args... args) {
3830        //   int vals[] = { args };
3831        // }
3832        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3833        Expr *Init = IDecl->getInit();
3834        if (IAT && Init &&
3835            (Init->isTypeDependent() || Init->isValueDependent())) {
3836          // Check that the member type of the array is complete, at least.
3837          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3838                                  diag::err_typecheck_decl_incomplete_type))
3839            IDecl->setInvalidDecl();
3840        } else if (RequireCompleteType(IDecl->getLocation(), T,
3841                                      diag::err_typecheck_decl_incomplete_type))
3842          IDecl->setInvalidDecl();
3843      }
3844    }
3845    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3846    // object that has file scope without an initializer, and without a
3847    // storage-class specifier or with the storage-class specifier "static",
3848    // constitutes a tentative definition. Note: A tentative definition with
3849    // external linkage is valid (C99 6.2.2p5).
3850    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3851      if (const IncompleteArrayType *ArrayT
3852          = Context.getAsIncompleteArrayType(T)) {
3853        if (RequireCompleteType(IDecl->getLocation(),
3854                                ArrayT->getElementType(),
3855                                diag::err_illegal_decl_array_incomplete_type))
3856          IDecl->setInvalidDecl();
3857      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3858        // C99 6.9.2p3: If the declaration of an identifier for an object is
3859        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3860        // declared type shall not be an incomplete type.
3861        // NOTE: code such as the following
3862        //     static struct s;
3863        //     struct s { int a; };
3864        // is accepted by gcc. Hence here we issue a warning instead of
3865        // an error and we do not invalidate the static declaration.
3866        // NOTE: to avoid multiple warnings, only check the first declaration.
3867        if (IDecl->getPreviousDeclaration() == 0)
3868          RequireCompleteType(IDecl->getLocation(), T,
3869                              diag::ext_typecheck_decl_incomplete_type);
3870      }
3871    }
3872  }
3873  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3874                                                   Decls.data(), Decls.size()));
3875}
3876
3877
3878/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3879/// to introduce parameters into function prototype scope.
3880Sema::DeclPtrTy
3881Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3882  const DeclSpec &DS = D.getDeclSpec();
3883
3884  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3885  VarDecl::StorageClass StorageClass = VarDecl::None;
3886  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3887    StorageClass = VarDecl::Register;
3888  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3889    Diag(DS.getStorageClassSpecLoc(),
3890         diag::err_invalid_storage_class_in_func_decl);
3891    D.getMutableDeclSpec().ClearStorageClassSpecs();
3892  }
3893
3894  if (D.getDeclSpec().isThreadSpecified())
3895    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3896
3897  DiagnoseFunctionSpecifiers(D);
3898
3899  // Check that there are no default arguments inside the type of this
3900  // parameter (C++ only).
3901  if (getLangOptions().CPlusPlus)
3902    CheckExtraCXXDefaultArguments(D);
3903
3904  TypeSourceInfo *TInfo = 0;
3905  TagDecl *OwnedDecl = 0;
3906  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3907
3908  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3909    // C++ [dcl.fct]p6:
3910    //   Types shall not be defined in return or parameter types.
3911    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3912      << Context.getTypeDeclType(OwnedDecl);
3913  }
3914
3915  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3916  // Can this happen for params?  We already checked that they don't conflict
3917  // among each other.  Here they can only shadow globals, which is ok.
3918  IdentifierInfo *II = D.getIdentifier();
3919  if (II) {
3920    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3921      if (PrevDecl->isTemplateParameter()) {
3922        // Maybe we will complain about the shadowed template parameter.
3923        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3924        // Just pretend that we didn't see the previous declaration.
3925        PrevDecl = 0;
3926      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3927        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3928
3929        // Recover by removing the name
3930        II = 0;
3931        D.SetIdentifier(0, D.getIdentifierLoc());
3932      }
3933    }
3934  }
3935
3936  // Parameters can not be abstract class types.
3937  // For record types, this is done by the AbstractClassUsageDiagnoser once
3938  // the class has been completely parsed.
3939  if (!CurContext->isRecord() &&
3940      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3941                             diag::err_abstract_type_in_decl,
3942                             AbstractParamType))
3943    D.setInvalidType(true);
3944
3945  QualType T = adjustParameterType(parmDeclType);
3946
3947  ParmVarDecl *New
3948    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3949                          T, TInfo, StorageClass, 0);
3950
3951  if (D.isInvalidType())
3952    New->setInvalidDecl();
3953
3954  // Parameter declarators cannot be interface types. All ObjC objects are
3955  // passed by reference.
3956  if (T->isObjCInterfaceType()) {
3957    Diag(D.getIdentifierLoc(),
3958         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3959    New->setInvalidDecl();
3960  }
3961
3962  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3963  if (D.getCXXScopeSpec().isSet()) {
3964    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3965      << D.getCXXScopeSpec().getRange();
3966    New->setInvalidDecl();
3967  }
3968
3969  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3970  // duration shall not be qualified by an address-space qualifier."
3971  // Since all parameters have automatic store duration, they can not have
3972  // an address space.
3973  if (T.getAddressSpace() != 0) {
3974    Diag(D.getIdentifierLoc(),
3975         diag::err_arg_with_address_space);
3976    New->setInvalidDecl();
3977  }
3978
3979
3980  // Add the parameter declaration into this scope.
3981  S->AddDecl(DeclPtrTy::make(New));
3982  if (II)
3983    IdResolver.AddDecl(New);
3984
3985  ProcessDeclAttributes(S, New, D);
3986
3987  if (New->hasAttr<BlocksAttr>()) {
3988    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3989  }
3990  return DeclPtrTy::make(New);
3991}
3992
3993void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3994                                           SourceLocation LocAfterDecls) {
3995  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3996         "Not a function declarator!");
3997  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3998
3999  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4000  // for a K&R function.
4001  if (!FTI.hasPrototype) {
4002    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4003      --i;
4004      if (FTI.ArgInfo[i].Param == 0) {
4005        llvm::SmallString<256> Code;
4006        llvm::raw_svector_ostream(Code) << "  int "
4007                                        << FTI.ArgInfo[i].Ident->getName()
4008                                        << ";\n";
4009        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4010          << FTI.ArgInfo[i].Ident
4011          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4012
4013        // Implicitly declare the argument as type 'int' for lack of a better
4014        // type.
4015        DeclSpec DS;
4016        const char* PrevSpec; // unused
4017        unsigned DiagID; // unused
4018        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4019                           PrevSpec, DiagID);
4020        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4021        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4022        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4023      }
4024    }
4025  }
4026}
4027
4028Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4029                                              Declarator &D) {
4030  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4031  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4032         "Not a function declarator!");
4033  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4034
4035  if (FTI.hasPrototype) {
4036    // FIXME: Diagnose arguments without names in C.
4037  }
4038
4039  Scope *ParentScope = FnBodyScope->getParent();
4040
4041  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4042                                  MultiTemplateParamsArg(*this),
4043                                  /*IsFunctionDefinition=*/true);
4044  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4045}
4046
4047static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4048  // Don't warn about invalid declarations.
4049  if (FD->isInvalidDecl())
4050    return false;
4051
4052  // Or declarations that aren't global.
4053  if (!FD->isGlobal())
4054    return false;
4055
4056  // Don't warn about C++ member functions.
4057  if (isa<CXXMethodDecl>(FD))
4058    return false;
4059
4060  // Don't warn about 'main'.
4061  if (FD->isMain())
4062    return false;
4063
4064  // Don't warn about inline functions.
4065  if (FD->isInlineSpecified())
4066    return false;
4067
4068  // Don't warn about function templates.
4069  if (FD->getDescribedFunctionTemplate())
4070    return false;
4071
4072  // Don't warn about function template specializations.
4073  if (FD->isFunctionTemplateSpecialization())
4074    return false;
4075
4076  bool MissingPrototype = true;
4077  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4078       Prev; Prev = Prev->getPreviousDeclaration()) {
4079    // Ignore any declarations that occur in function or method
4080    // scope, because they aren't visible from the header.
4081    if (Prev->getDeclContext()->isFunctionOrMethod())
4082      continue;
4083
4084    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4085    break;
4086  }
4087
4088  return MissingPrototype;
4089}
4090
4091Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4092  // Clear the last template instantiation error context.
4093  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4094
4095  if (!D)
4096    return D;
4097  FunctionDecl *FD = 0;
4098
4099  if (FunctionTemplateDecl *FunTmpl
4100        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4101    FD = FunTmpl->getTemplatedDecl();
4102  else
4103    FD = cast<FunctionDecl>(D.getAs<Decl>());
4104
4105  CurFunctionNeedsScopeChecking = false;
4106
4107  // See if this is a redefinition.
4108  const FunctionDecl *Definition;
4109  if (FD->getBody(Definition)) {
4110    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4111    Diag(Definition->getLocation(), diag::note_previous_definition);
4112  }
4113
4114  // Builtin functions cannot be defined.
4115  if (unsigned BuiltinID = FD->getBuiltinID()) {
4116    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4117      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4118      FD->setInvalidDecl();
4119    }
4120  }
4121
4122  // The return type of a function definition must be complete
4123  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4124  QualType ResultType = FD->getResultType();
4125  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4126      !FD->isInvalidDecl() &&
4127      RequireCompleteType(FD->getLocation(), ResultType,
4128                          diag::err_func_def_incomplete_result))
4129    FD->setInvalidDecl();
4130
4131  // GNU warning -Wmissing-prototypes:
4132  //   Warn if a global function is defined without a previous
4133  //   prototype declaration. This warning is issued even if the
4134  //   definition itself provides a prototype. The aim is to detect
4135  //   global functions that fail to be declared in header files.
4136  if (ShouldWarnAboutMissingPrototype(FD))
4137    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4138
4139  if (FnBodyScope)
4140    PushDeclContext(FnBodyScope, FD);
4141
4142  // Check the validity of our function parameters
4143  CheckParmsForFunctionDef(FD);
4144
4145  // Introduce our parameters into the function scope
4146  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4147    ParmVarDecl *Param = FD->getParamDecl(p);
4148    Param->setOwningFunction(FD);
4149
4150    // If this has an identifier, add it to the scope stack.
4151    if (Param->getIdentifier() && FnBodyScope)
4152      PushOnScopeChains(Param, FnBodyScope);
4153  }
4154
4155  // Checking attributes of current function definition
4156  // dllimport attribute.
4157  if (FD->getAttr<DLLImportAttr>() &&
4158      (!FD->getAttr<DLLExportAttr>())) {
4159    // dllimport attribute cannot be applied to definition.
4160    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4161      Diag(FD->getLocation(),
4162           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4163        << "dllimport";
4164      FD->setInvalidDecl();
4165      return DeclPtrTy::make(FD);
4166    } else {
4167      // If a symbol previously declared dllimport is later defined, the
4168      // attribute is ignored in subsequent references, and a warning is
4169      // emitted.
4170      Diag(FD->getLocation(),
4171           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4172        << FD->getNameAsCString() << "dllimport";
4173    }
4174  }
4175  return DeclPtrTy::make(FD);
4176}
4177
4178Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4179  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4180}
4181
4182Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4183                                              bool IsInstantiation) {
4184  Decl *dcl = D.getAs<Decl>();
4185  Stmt *Body = BodyArg.takeAs<Stmt>();
4186
4187  FunctionDecl *FD = 0;
4188  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4189  if (FunTmpl)
4190    FD = FunTmpl->getTemplatedDecl();
4191  else
4192    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4193
4194  if (FD) {
4195    FD->setBody(Body);
4196    if (FD->isMain())
4197      // C and C++ allow for main to automagically return 0.
4198      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4199      FD->setHasImplicitReturnZero(true);
4200    else
4201      CheckFallThroughForFunctionDef(FD, Body);
4202
4203    if (!FD->isInvalidDecl())
4204      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4205
4206    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4207      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4208
4209    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4210  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4211    assert(MD == getCurMethodDecl() && "Method parsing confused");
4212    MD->setBody(Body);
4213    CheckFallThroughForFunctionDef(MD, Body);
4214    MD->setEndLoc(Body->getLocEnd());
4215
4216    if (!MD->isInvalidDecl())
4217      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4218  } else {
4219    Body->Destroy(Context);
4220    return DeclPtrTy();
4221  }
4222  if (!IsInstantiation)
4223    PopDeclContext();
4224
4225  // Verify and clean out per-function state.
4226
4227  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4228
4229  // Check goto/label use.
4230  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4231       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4232    LabelStmt *L = I->second;
4233
4234    // Verify that we have no forward references left.  If so, there was a goto
4235    // or address of a label taken, but no definition of it.  Label fwd
4236    // definitions are indicated with a null substmt.
4237    if (L->getSubStmt() != 0)
4238      continue;
4239
4240    // Emit error.
4241    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4242
4243    // At this point, we have gotos that use the bogus label.  Stitch it into
4244    // the function body so that they aren't leaked and that the AST is well
4245    // formed.
4246    if (Body == 0) {
4247      // The whole function wasn't parsed correctly, just delete this.
4248      L->Destroy(Context);
4249      continue;
4250    }
4251
4252    // Otherwise, the body is valid: we want to stitch the label decl into the
4253    // function somewhere so that it is properly owned and so that the goto
4254    // has a valid target.  Do this by creating a new compound stmt with the
4255    // label in it.
4256
4257    // Give the label a sub-statement.
4258    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4259
4260    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4261                               cast<CXXTryStmt>(Body)->getTryBlock() :
4262                               cast<CompoundStmt>(Body);
4263    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4264    Elements.push_back(L);
4265    Compound->setStmts(Context, &Elements[0], Elements.size());
4266  }
4267  FunctionLabelMap.clear();
4268
4269  if (!Body) return D;
4270
4271  // Verify that that gotos and switch cases don't jump into scopes illegally.
4272  if (CurFunctionNeedsScopeChecking)
4273    DiagnoseInvalidJumps(Body);
4274
4275  // C++ constructors that have function-try-blocks can't have return
4276  // statements in the handlers of that block. (C++ [except.handle]p14)
4277  // Verify this.
4278  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4279    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4280
4281  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4282    MarkBaseAndMemberDestructorsReferenced(Destructor);
4283
4284  // If any errors have occurred, clear out any temporaries that may have
4285  // been leftover. This ensures that these temporaries won't be picked up for
4286  // deletion in some later function.
4287  if (PP.getDiagnostics().hasErrorOccurred())
4288    ExprTemporaries.clear();
4289
4290  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4291  return D;
4292}
4293
4294/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4295/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4296NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4297                                          IdentifierInfo &II, Scope *S) {
4298  // Before we produce a declaration for an implicitly defined
4299  // function, see whether there was a locally-scoped declaration of
4300  // this name as a function or variable. If so, use that
4301  // (non-visible) declaration, and complain about it.
4302  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4303    = LocallyScopedExternalDecls.find(&II);
4304  if (Pos != LocallyScopedExternalDecls.end()) {
4305    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4306    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4307    return Pos->second;
4308  }
4309
4310  // Extension in C99.  Legal in C90, but warn about it.
4311  if (II.getName().startswith("__builtin_"))
4312    Diag(Loc, diag::warn_builtin_unknown) << &II;
4313  else if (getLangOptions().C99)
4314    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4315  else
4316    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4317
4318  // Set a Declarator for the implicit definition: int foo();
4319  const char *Dummy;
4320  DeclSpec DS;
4321  unsigned DiagID;
4322  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4323  Error = Error; // Silence warning.
4324  assert(!Error && "Error setting up implicit decl!");
4325  Declarator D(DS, Declarator::BlockContext);
4326  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4327                                             0, 0, false, SourceLocation(),
4328                                             false, 0,0,0, Loc, Loc, D),
4329                SourceLocation());
4330  D.SetIdentifier(&II, Loc);
4331
4332  // Insert this function into translation-unit scope.
4333
4334  DeclContext *PrevDC = CurContext;
4335  CurContext = Context.getTranslationUnitDecl();
4336
4337  FunctionDecl *FD =
4338 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4339  FD->setImplicit();
4340
4341  CurContext = PrevDC;
4342
4343  AddKnownFunctionAttributes(FD);
4344
4345  return FD;
4346}
4347
4348/// \brief Adds any function attributes that we know a priori based on
4349/// the declaration of this function.
4350///
4351/// These attributes can apply both to implicitly-declared builtins
4352/// (like __builtin___printf_chk) or to library-declared functions
4353/// like NSLog or printf.
4354void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4355  if (FD->isInvalidDecl())
4356    return;
4357
4358  // If this is a built-in function, map its builtin attributes to
4359  // actual attributes.
4360  if (unsigned BuiltinID = FD->getBuiltinID()) {
4361    // Handle printf-formatting attributes.
4362    unsigned FormatIdx;
4363    bool HasVAListArg;
4364    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4365      if (!FD->getAttr<FormatAttr>())
4366        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4367                                             HasVAListArg ? 0 : FormatIdx + 2));
4368    }
4369
4370    // Mark const if we don't care about errno and that is the only
4371    // thing preventing the function from being const. This allows
4372    // IRgen to use LLVM intrinsics for such functions.
4373    if (!getLangOptions().MathErrno &&
4374        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4375      if (!FD->getAttr<ConstAttr>())
4376        FD->addAttr(::new (Context) ConstAttr());
4377    }
4378
4379    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4380      FD->addAttr(::new (Context) NoReturnAttr());
4381  }
4382
4383  IdentifierInfo *Name = FD->getIdentifier();
4384  if (!Name)
4385    return;
4386  if ((!getLangOptions().CPlusPlus &&
4387       FD->getDeclContext()->isTranslationUnit()) ||
4388      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4389       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4390       LinkageSpecDecl::lang_c)) {
4391    // Okay: this could be a libc/libm/Objective-C function we know
4392    // about.
4393  } else
4394    return;
4395
4396  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4397    // FIXME: NSLog and NSLogv should be target specific
4398    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4399      // FIXME: We known better than our headers.
4400      const_cast<FormatAttr *>(Format)->setType("printf");
4401    } else
4402      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4403                                             Name->isStr("NSLogv") ? 0 : 2));
4404  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4405    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4406    // target-specific builtins, perhaps?
4407    if (!FD->getAttr<FormatAttr>())
4408      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4409                                             Name->isStr("vasprintf") ? 0 : 3));
4410  }
4411}
4412
4413TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4414                                    TypeSourceInfo *TInfo) {
4415  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4416  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4417
4418  if (!TInfo) {
4419    assert(D.isInvalidType() && "no declarator info for valid type");
4420    TInfo = Context.getTrivialTypeSourceInfo(T);
4421  }
4422
4423  // Scope manipulation handled by caller.
4424  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4425                                           D.getIdentifierLoc(),
4426                                           D.getIdentifier(),
4427                                           TInfo);
4428
4429  if (const TagType *TT = T->getAs<TagType>()) {
4430    TagDecl *TD = TT->getDecl();
4431
4432    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4433    // keep track of the TypedefDecl.
4434    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4435      TD->setTypedefForAnonDecl(NewTD);
4436  }
4437
4438  if (D.isInvalidType())
4439    NewTD->setInvalidDecl();
4440  return NewTD;
4441}
4442
4443
4444/// \brief Determine whether a tag with a given kind is acceptable
4445/// as a redeclaration of the given tag declaration.
4446///
4447/// \returns true if the new tag kind is acceptable, false otherwise.
4448bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4449                                        TagDecl::TagKind NewTag,
4450                                        SourceLocation NewTagLoc,
4451                                        const IdentifierInfo &Name) {
4452  // C++ [dcl.type.elab]p3:
4453  //   The class-key or enum keyword present in the
4454  //   elaborated-type-specifier shall agree in kind with the
4455  //   declaration to which the name in theelaborated-type-specifier
4456  //   refers. This rule also applies to the form of
4457  //   elaborated-type-specifier that declares a class-name or
4458  //   friend class since it can be construed as referring to the
4459  //   definition of the class. Thus, in any
4460  //   elaborated-type-specifier, the enum keyword shall be used to
4461  //   refer to an enumeration (7.2), the union class-keyshall be
4462  //   used to refer to a union (clause 9), and either the class or
4463  //   struct class-key shall be used to refer to a class (clause 9)
4464  //   declared using the class or struct class-key.
4465  TagDecl::TagKind OldTag = Previous->getTagKind();
4466  if (OldTag == NewTag)
4467    return true;
4468
4469  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4470      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4471    // Warn about the struct/class tag mismatch.
4472    bool isTemplate = false;
4473    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4474      isTemplate = Record->getDescribedClassTemplate();
4475
4476    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4477      << (NewTag == TagDecl::TK_class)
4478      << isTemplate << &Name
4479      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4480                              OldTag == TagDecl::TK_class? "class" : "struct");
4481    Diag(Previous->getLocation(), diag::note_previous_use);
4482    return true;
4483  }
4484  return false;
4485}
4486
4487/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4488/// former case, Name will be non-null.  In the later case, Name will be null.
4489/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4490/// reference/declaration/definition of a tag.
4491Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4492                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4493                               IdentifierInfo *Name, SourceLocation NameLoc,
4494                               AttributeList *Attr, AccessSpecifier AS,
4495                               MultiTemplateParamsArg TemplateParameterLists,
4496                               bool &OwnedDecl, bool &IsDependent) {
4497  // If this is not a definition, it must have a name.
4498  assert((Name != 0 || TUK == TUK_Definition) &&
4499         "Nameless record must be a definition!");
4500
4501  OwnedDecl = false;
4502  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4503
4504  // FIXME: Check explicit specializations more carefully.
4505  bool isExplicitSpecialization = false;
4506  if (TUK != TUK_Reference) {
4507    if (TemplateParameterList *TemplateParams
4508          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4509                        (TemplateParameterList**)TemplateParameterLists.get(),
4510                                              TemplateParameterLists.size(),
4511                                                    isExplicitSpecialization)) {
4512      if (TemplateParams->size() > 0) {
4513        // This is a declaration or definition of a class template (which may
4514        // be a member of another template).
4515        OwnedDecl = false;
4516        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4517                                               SS, Name, NameLoc, Attr,
4518                                               TemplateParams,
4519                                               AS);
4520        TemplateParameterLists.release();
4521        return Result.get();
4522      } else {
4523        // The "template<>" header is extraneous.
4524        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4525          << ElaboratedType::getNameForTagKind(Kind) << Name;
4526        isExplicitSpecialization = true;
4527      }
4528    }
4529
4530    TemplateParameterLists.release();
4531  }
4532
4533  DeclContext *SearchDC = CurContext;
4534  DeclContext *DC = CurContext;
4535  bool isStdBadAlloc = false;
4536  bool Invalid = false;
4537
4538  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4539                                                   : NotForRedeclaration);
4540
4541  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4542
4543  if (Name && SS.isNotEmpty()) {
4544    // We have a nested-name tag ('struct foo::bar').
4545
4546    // Check for invalid 'foo::'.
4547    if (SS.isInvalid()) {
4548      Name = 0;
4549      goto CreateNewDecl;
4550    }
4551
4552    // If this is a friend or a reference to a class in a dependent
4553    // context, don't try to make a decl for it.
4554    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4555      DC = computeDeclContext(SS, false);
4556      if (!DC) {
4557        IsDependent = true;
4558        return DeclPtrTy();
4559      }
4560    }
4561
4562    if (RequireCompleteDeclContext(SS))
4563      return DeclPtrTy::make((Decl *)0);
4564
4565    DC = computeDeclContext(SS, true);
4566    SearchDC = DC;
4567    // Look-up name inside 'foo::'.
4568    LookupQualifiedName(Previous, DC);
4569
4570    if (Previous.isAmbiguous())
4571      return DeclPtrTy();
4572
4573    // A tag 'foo::bar' must already exist.
4574    if (Previous.empty()) {
4575      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4576      Name = 0;
4577      Invalid = true;
4578      goto CreateNewDecl;
4579    }
4580  } else if (Name) {
4581    // If this is a named struct, check to see if there was a previous forward
4582    // declaration or definition.
4583    // FIXME: We're looking into outer scopes here, even when we
4584    // shouldn't be. Doing so can result in ambiguities that we
4585    // shouldn't be diagnosing.
4586    LookupName(Previous, S);
4587
4588    // Note:  there used to be some attempt at recovery here.
4589    if (Previous.isAmbiguous())
4590      return DeclPtrTy();
4591
4592    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4593      // FIXME: This makes sure that we ignore the contexts associated
4594      // with C structs, unions, and enums when looking for a matching
4595      // tag declaration or definition. See the similar lookup tweak
4596      // in Sema::LookupName; is there a better way to deal with this?
4597      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4598        SearchDC = SearchDC->getParent();
4599    }
4600  }
4601
4602  if (Previous.isSingleResult() &&
4603      Previous.getFoundDecl()->isTemplateParameter()) {
4604    // Maybe we will complain about the shadowed template parameter.
4605    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4606    // Just pretend that we didn't see the previous declaration.
4607    Previous.clear();
4608  }
4609
4610  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4611      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4612    // This is a declaration of or a reference to "std::bad_alloc".
4613    isStdBadAlloc = true;
4614
4615    if (Previous.empty() && StdBadAlloc) {
4616      // std::bad_alloc has been implicitly declared (but made invisible to
4617      // name lookup). Fill in this implicit declaration as the previous
4618      // declaration, so that the declarations get chained appropriately.
4619      Previous.addDecl(StdBadAlloc);
4620    }
4621  }
4622
4623  if (!Previous.empty()) {
4624    assert(Previous.isSingleResult());
4625    NamedDecl *PrevDecl = Previous.getFoundDecl();
4626    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4627      // If this is a use of a previous tag, or if the tag is already declared
4628      // in the same scope (so that the definition/declaration completes or
4629      // rementions the tag), reuse the decl.
4630      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4631          isDeclInScope(PrevDecl, SearchDC, S)) {
4632        // Make sure that this wasn't declared as an enum and now used as a
4633        // struct or something similar.
4634        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4635          bool SafeToContinue
4636            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4637               Kind != TagDecl::TK_enum);
4638          if (SafeToContinue)
4639            Diag(KWLoc, diag::err_use_with_wrong_tag)
4640              << Name
4641              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4642                                                  PrevTagDecl->getKindName());
4643          else
4644            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4645          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4646
4647          if (SafeToContinue)
4648            Kind = PrevTagDecl->getTagKind();
4649          else {
4650            // Recover by making this an anonymous redefinition.
4651            Name = 0;
4652            Previous.clear();
4653            Invalid = true;
4654          }
4655        }
4656
4657        if (!Invalid) {
4658          // If this is a use, just return the declaration we found.
4659
4660          // FIXME: In the future, return a variant or some other clue
4661          // for the consumer of this Decl to know it doesn't own it.
4662          // For our current ASTs this shouldn't be a problem, but will
4663          // need to be changed with DeclGroups.
4664          if (TUK == TUK_Reference || TUK == TUK_Friend)
4665            return DeclPtrTy::make(PrevTagDecl);
4666
4667          // Diagnose attempts to redefine a tag.
4668          if (TUK == TUK_Definition) {
4669            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4670              // If we're defining a specialization and the previous definition
4671              // is from an implicit instantiation, don't emit an error
4672              // here; we'll catch this in the general case below.
4673              if (!isExplicitSpecialization ||
4674                  !isa<CXXRecordDecl>(Def) ||
4675                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4676                                               == TSK_ExplicitSpecialization) {
4677                Diag(NameLoc, diag::err_redefinition) << Name;
4678                Diag(Def->getLocation(), diag::note_previous_definition);
4679                // If this is a redefinition, recover by making this
4680                // struct be anonymous, which will make any later
4681                // references get the previous definition.
4682                Name = 0;
4683                Previous.clear();
4684                Invalid = true;
4685              }
4686            } else {
4687              // If the type is currently being defined, complain
4688              // about a nested redefinition.
4689              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4690              if (Tag->isBeingDefined()) {
4691                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4692                Diag(PrevTagDecl->getLocation(),
4693                     diag::note_previous_definition);
4694                Name = 0;
4695                Previous.clear();
4696                Invalid = true;
4697              }
4698            }
4699
4700            // Okay, this is definition of a previously declared or referenced
4701            // tag PrevDecl. We're going to create a new Decl for it.
4702          }
4703        }
4704        // If we get here we have (another) forward declaration or we
4705        // have a definition.  Just create a new decl.
4706
4707      } else {
4708        // If we get here, this is a definition of a new tag type in a nested
4709        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4710        // new decl/type.  We set PrevDecl to NULL so that the entities
4711        // have distinct types.
4712        Previous.clear();
4713      }
4714      // If we get here, we're going to create a new Decl. If PrevDecl
4715      // is non-NULL, it's a definition of the tag declared by
4716      // PrevDecl. If it's NULL, we have a new definition.
4717    } else {
4718      // PrevDecl is a namespace, template, or anything else
4719      // that lives in the IDNS_Tag identifier namespace.
4720      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4721        // The tag name clashes with a namespace name, issue an error and
4722        // recover by making this tag be anonymous.
4723        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4724        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4725        Name = 0;
4726        Previous.clear();
4727        Invalid = true;
4728      } else {
4729        // The existing declaration isn't relevant to us; we're in a
4730        // new scope, so clear out the previous declaration.
4731        Previous.clear();
4732      }
4733    }
4734  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4735    // C++ [basic.scope.pdecl]p5:
4736    //   -- for an elaborated-type-specifier of the form
4737    //
4738    //          class-key identifier
4739    //
4740    //      if the elaborated-type-specifier is used in the
4741    //      decl-specifier-seq or parameter-declaration-clause of a
4742    //      function defined in namespace scope, the identifier is
4743    //      declared as a class-name in the namespace that contains
4744    //      the declaration; otherwise, except as a friend
4745    //      declaration, the identifier is declared in the smallest
4746    //      non-class, non-function-prototype scope that contains the
4747    //      declaration.
4748    //
4749    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4750    // C structs and unions.
4751    //
4752    // It is an error in C++ to declare (rather than define) an enum
4753    // type, including via an elaborated type specifier.  We'll
4754    // diagnose that later; for now, declare the enum in the same
4755    // scope as we would have picked for any other tag type.
4756    //
4757    // GNU C also supports this behavior as part of its incomplete
4758    // enum types extension, while GNU C++ does not.
4759    //
4760    // Find the context where we'll be declaring the tag.
4761    // FIXME: We would like to maintain the current DeclContext as the
4762    // lexical context,
4763    while (SearchDC->isRecord())
4764      SearchDC = SearchDC->getParent();
4765
4766    // Find the scope where we'll be declaring the tag.
4767    while (S->isClassScope() ||
4768           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4769           ((S->getFlags() & Scope::DeclScope) == 0) ||
4770           (S->getEntity() &&
4771            ((DeclContext *)S->getEntity())->isTransparentContext()))
4772      S = S->getParent();
4773
4774  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4775    // C++ [namespace.memdef]p3:
4776    //   If a friend declaration in a non-local class first declares a
4777    //   class or function, the friend class or function is a member of
4778    //   the innermost enclosing namespace.
4779    while (!SearchDC->isFileContext())
4780      SearchDC = SearchDC->getParent();
4781
4782    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4783    while (S->getEntity() != SearchDC)
4784      S = S->getParent();
4785  }
4786
4787CreateNewDecl:
4788
4789  TagDecl *PrevDecl = 0;
4790  if (Previous.isSingleResult())
4791    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4792
4793  // If there is an identifier, use the location of the identifier as the
4794  // location of the decl, otherwise use the location of the struct/union
4795  // keyword.
4796  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4797
4798  // Otherwise, create a new declaration. If there is a previous
4799  // declaration of the same entity, the two will be linked via
4800  // PrevDecl.
4801  TagDecl *New;
4802
4803  if (Kind == TagDecl::TK_enum) {
4804    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4805    // enum X { A, B, C } D;    D should chain to X.
4806    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4807                           cast_or_null<EnumDecl>(PrevDecl));
4808    // If this is an undefined enum, warn.
4809    if (TUK != TUK_Definition && !Invalid)  {
4810      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4811                                              : diag::ext_forward_ref_enum;
4812      Diag(Loc, DK);
4813    }
4814  } else {
4815    // struct/union/class
4816
4817    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4818    // struct X { int A; } D;    D should chain to X.
4819    if (getLangOptions().CPlusPlus) {
4820      // FIXME: Look for a way to use RecordDecl for simple structs.
4821      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4822                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4823
4824      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4825        StdBadAlloc = cast<CXXRecordDecl>(New);
4826    } else
4827      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4828                               cast_or_null<RecordDecl>(PrevDecl));
4829  }
4830
4831  if (Kind != TagDecl::TK_enum) {
4832    // Handle #pragma pack: if the #pragma pack stack has non-default
4833    // alignment, make up a packed attribute for this decl. These
4834    // attributes are checked when the ASTContext lays out the
4835    // structure.
4836    //
4837    // It is important for implementing the correct semantics that this
4838    // happen here (in act on tag decl). The #pragma pack stack is
4839    // maintained as a result of parser callbacks which can occur at
4840    // many points during the parsing of a struct declaration (because
4841    // the #pragma tokens are effectively skipped over during the
4842    // parsing of the struct).
4843    if (unsigned Alignment = getPragmaPackAlignment())
4844      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4845  }
4846
4847  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4848    // C++ [dcl.typedef]p3:
4849    //   [...] Similarly, in a given scope, a class or enumeration
4850    //   shall not be declared with the same name as a typedef-name
4851    //   that is declared in that scope and refers to a type other
4852    //   than the class or enumeration itself.
4853    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4854                        ForRedeclaration);
4855    LookupName(Lookup, S);
4856    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4857    NamedDecl *PrevTypedefNamed = PrevTypedef;
4858    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4859        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4860          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4861      Diag(Loc, diag::err_tag_definition_of_typedef)
4862        << Context.getTypeDeclType(New)
4863        << PrevTypedef->getUnderlyingType();
4864      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4865      Invalid = true;
4866    }
4867  }
4868
4869  // If this is a specialization of a member class (of a class template),
4870  // check the specialization.
4871  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4872    Invalid = true;
4873
4874  if (Invalid)
4875    New->setInvalidDecl();
4876
4877  if (Attr)
4878    ProcessDeclAttributeList(S, New, Attr);
4879
4880  // If we're declaring or defining a tag in function prototype scope
4881  // in C, note that this type can only be used within the function.
4882  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4883    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4884
4885  // Set the lexical context. If the tag has a C++ scope specifier, the
4886  // lexical context will be different from the semantic context.
4887  New->setLexicalDeclContext(CurContext);
4888
4889  // Mark this as a friend decl if applicable.
4890  if (TUK == TUK_Friend)
4891    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4892
4893  // Set the access specifier.
4894  if (!Invalid && TUK != TUK_Friend)
4895    SetMemberAccessSpecifier(New, PrevDecl, AS);
4896
4897  if (TUK == TUK_Definition)
4898    New->startDefinition();
4899
4900  // If this has an identifier, add it to the scope stack.
4901  if (TUK == TUK_Friend) {
4902    // We might be replacing an existing declaration in the lookup tables;
4903    // if so, borrow its access specifier.
4904    if (PrevDecl)
4905      New->setAccess(PrevDecl->getAccess());
4906
4907    // Friend tag decls are visible in fairly strange ways.
4908    if (!CurContext->isDependentContext()) {
4909      DeclContext *DC = New->getDeclContext()->getLookupContext();
4910      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4911      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4912        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4913    }
4914  } else if (Name) {
4915    S = getNonFieldDeclScope(S);
4916    PushOnScopeChains(New, S);
4917  } else {
4918    CurContext->addDecl(New);
4919  }
4920
4921  // If this is the C FILE type, notify the AST context.
4922  if (IdentifierInfo *II = New->getIdentifier())
4923    if (!New->isInvalidDecl() &&
4924        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4925        II->isStr("FILE"))
4926      Context.setFILEDecl(New);
4927
4928  OwnedDecl = true;
4929  return DeclPtrTy::make(New);
4930}
4931
4932void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4933  AdjustDeclIfTemplate(TagD);
4934  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4935
4936  // Enter the tag context.
4937  PushDeclContext(S, Tag);
4938
4939  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4940    FieldCollector->StartClass();
4941
4942    if (Record->getIdentifier()) {
4943      // C++ [class]p2:
4944      //   [...] The class-name is also inserted into the scope of the
4945      //   class itself; this is known as the injected-class-name. For
4946      //   purposes of access checking, the injected-class-name is treated
4947      //   as if it were a public member name.
4948      CXXRecordDecl *InjectedClassName
4949        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4950                                CurContext, Record->getLocation(),
4951                                Record->getIdentifier(),
4952                                Record->getTagKeywordLoc(),
4953                                Record);
4954      InjectedClassName->setImplicit();
4955      InjectedClassName->setAccess(AS_public);
4956      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4957        InjectedClassName->setDescribedClassTemplate(Template);
4958      PushOnScopeChains(InjectedClassName, S);
4959      assert(InjectedClassName->isInjectedClassName() &&
4960             "Broken injected-class-name");
4961    }
4962  }
4963}
4964
4965void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4966                                    SourceLocation RBraceLoc) {
4967  AdjustDeclIfTemplate(TagD);
4968  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4969  Tag->setRBraceLoc(RBraceLoc);
4970
4971  if (isa<CXXRecordDecl>(Tag))
4972    FieldCollector->FinishClass();
4973
4974  // Exit this scope of this tag's definition.
4975  PopDeclContext();
4976
4977  // Notify the consumer that we've defined a tag.
4978  Consumer.HandleTagDeclDefinition(Tag);
4979}
4980
4981// Note that FieldName may be null for anonymous bitfields.
4982bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4983                          QualType FieldTy, const Expr *BitWidth,
4984                          bool *ZeroWidth) {
4985  // Default to true; that shouldn't confuse checks for emptiness
4986  if (ZeroWidth)
4987    *ZeroWidth = true;
4988
4989  // C99 6.7.2.1p4 - verify the field type.
4990  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4991  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4992    // Handle incomplete types with specific error.
4993    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4994      return true;
4995    if (FieldName)
4996      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4997        << FieldName << FieldTy << BitWidth->getSourceRange();
4998    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4999      << FieldTy << BitWidth->getSourceRange();
5000  }
5001
5002  // If the bit-width is type- or value-dependent, don't try to check
5003  // it now.
5004  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5005    return false;
5006
5007  llvm::APSInt Value;
5008  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5009    return true;
5010
5011  if (Value != 0 && ZeroWidth)
5012    *ZeroWidth = false;
5013
5014  // Zero-width bitfield is ok for anonymous field.
5015  if (Value == 0 && FieldName)
5016    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5017
5018  if (Value.isSigned() && Value.isNegative()) {
5019    if (FieldName)
5020      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5021               << FieldName << Value.toString(10);
5022    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5023      << Value.toString(10);
5024  }
5025
5026  if (!FieldTy->isDependentType()) {
5027    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5028    if (Value.getZExtValue() > TypeSize) {
5029      if (FieldName)
5030        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5031          << FieldName << (unsigned)TypeSize;
5032      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5033        << (unsigned)TypeSize;
5034    }
5035  }
5036
5037  return false;
5038}
5039
5040/// ActOnField - Each field of a struct/union/class is passed into this in order
5041/// to create a FieldDecl object for it.
5042Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5043                                 SourceLocation DeclStart,
5044                                 Declarator &D, ExprTy *BitfieldWidth) {
5045  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5046                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5047                               AS_public);
5048  return DeclPtrTy::make(Res);
5049}
5050
5051/// HandleField - Analyze a field of a C struct or a C++ data member.
5052///
5053FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5054                             SourceLocation DeclStart,
5055                             Declarator &D, Expr *BitWidth,
5056                             AccessSpecifier AS) {
5057  IdentifierInfo *II = D.getIdentifier();
5058  SourceLocation Loc = DeclStart;
5059  if (II) Loc = D.getIdentifierLoc();
5060
5061  TypeSourceInfo *TInfo = 0;
5062  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5063  if (getLangOptions().CPlusPlus)
5064    CheckExtraCXXDefaultArguments(D);
5065
5066  DiagnoseFunctionSpecifiers(D);
5067
5068  if (D.getDeclSpec().isThreadSpecified())
5069    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5070
5071  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5072                                         ForRedeclaration);
5073
5074  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5075    // Maybe we will complain about the shadowed template parameter.
5076    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5077    // Just pretend that we didn't see the previous declaration.
5078    PrevDecl = 0;
5079  }
5080
5081  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5082    PrevDecl = 0;
5083
5084  bool Mutable
5085    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5086  SourceLocation TSSL = D.getSourceRange().getBegin();
5087  FieldDecl *NewFD
5088    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5089                     AS, PrevDecl, &D);
5090  if (NewFD->isInvalidDecl() && PrevDecl) {
5091    // Don't introduce NewFD into scope; there's already something
5092    // with the same name in the same scope.
5093  } else if (II) {
5094    PushOnScopeChains(NewFD, S);
5095  } else
5096    Record->addDecl(NewFD);
5097
5098  return NewFD;
5099}
5100
5101/// \brief Build a new FieldDecl and check its well-formedness.
5102///
5103/// This routine builds a new FieldDecl given the fields name, type,
5104/// record, etc. \p PrevDecl should refer to any previous declaration
5105/// with the same name and in the same scope as the field to be
5106/// created.
5107///
5108/// \returns a new FieldDecl.
5109///
5110/// \todo The Declarator argument is a hack. It will be removed once
5111FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5112                                TypeSourceInfo *TInfo,
5113                                RecordDecl *Record, SourceLocation Loc,
5114                                bool Mutable, Expr *BitWidth,
5115                                SourceLocation TSSL,
5116                                AccessSpecifier AS, NamedDecl *PrevDecl,
5117                                Declarator *D) {
5118  IdentifierInfo *II = Name.getAsIdentifierInfo();
5119  bool InvalidDecl = false;
5120  if (D) InvalidDecl = D->isInvalidType();
5121
5122  // If we receive a broken type, recover by assuming 'int' and
5123  // marking this declaration as invalid.
5124  if (T.isNull()) {
5125    InvalidDecl = true;
5126    T = Context.IntTy;
5127  }
5128
5129  QualType EltTy = Context.getBaseElementType(T);
5130  if (!EltTy->isDependentType() &&
5131      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5132    InvalidDecl = true;
5133
5134  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5135  // than a variably modified type.
5136  if (!InvalidDecl && T->isVariablyModifiedType()) {
5137    bool SizeIsNegative;
5138    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5139                                                           SizeIsNegative);
5140    if (!FixedTy.isNull()) {
5141      Diag(Loc, diag::warn_illegal_constant_array_size);
5142      T = FixedTy;
5143    } else {
5144      if (SizeIsNegative)
5145        Diag(Loc, diag::err_typecheck_negative_array_size);
5146      else
5147        Diag(Loc, diag::err_typecheck_field_variable_size);
5148      InvalidDecl = true;
5149    }
5150  }
5151
5152  // Fields can not have abstract class types
5153  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5154                                             diag::err_abstract_type_in_decl,
5155                                             AbstractFieldType))
5156    InvalidDecl = true;
5157
5158  bool ZeroWidth = false;
5159  // If this is declared as a bit-field, check the bit-field.
5160  if (!InvalidDecl && BitWidth &&
5161      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5162    InvalidDecl = true;
5163    DeleteExpr(BitWidth);
5164    BitWidth = 0;
5165    ZeroWidth = false;
5166  }
5167
5168  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5169                                       BitWidth, Mutable);
5170  if (InvalidDecl)
5171    NewFD->setInvalidDecl();
5172
5173  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5174    Diag(Loc, diag::err_duplicate_member) << II;
5175    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5176    NewFD->setInvalidDecl();
5177  }
5178
5179  if (getLangOptions().CPlusPlus) {
5180    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5181
5182    if (!T->isPODType())
5183      CXXRecord->setPOD(false);
5184    if (!ZeroWidth)
5185      CXXRecord->setEmpty(false);
5186
5187    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5188      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5189
5190      if (!RDecl->hasTrivialConstructor())
5191        CXXRecord->setHasTrivialConstructor(false);
5192      if (!RDecl->hasTrivialCopyConstructor())
5193        CXXRecord->setHasTrivialCopyConstructor(false);
5194      if (!RDecl->hasTrivialCopyAssignment())
5195        CXXRecord->setHasTrivialCopyAssignment(false);
5196      if (!RDecl->hasTrivialDestructor())
5197        CXXRecord->setHasTrivialDestructor(false);
5198
5199      // C++ 9.5p1: An object of a class with a non-trivial
5200      // constructor, a non-trivial copy constructor, a non-trivial
5201      // destructor, or a non-trivial copy assignment operator
5202      // cannot be a member of a union, nor can an array of such
5203      // objects.
5204      // TODO: C++0x alters this restriction significantly.
5205      if (Record->isUnion()) {
5206        // We check for copy constructors before constructors
5207        // because otherwise we'll never get complaints about
5208        // copy constructors.
5209
5210        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5211
5212        CXXSpecialMember member;
5213        if (!RDecl->hasTrivialCopyConstructor())
5214          member = CXXCopyConstructor;
5215        else if (!RDecl->hasTrivialConstructor())
5216          member = CXXDefaultConstructor;
5217        else if (!RDecl->hasTrivialCopyAssignment())
5218          member = CXXCopyAssignment;
5219        else if (!RDecl->hasTrivialDestructor())
5220          member = CXXDestructor;
5221        else
5222          member = invalid;
5223
5224        if (member != invalid) {
5225          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5226          DiagnoseNontrivial(RT, member);
5227          NewFD->setInvalidDecl();
5228        }
5229      }
5230    }
5231  }
5232
5233  // FIXME: We need to pass in the attributes given an AST
5234  // representation, not a parser representation.
5235  if (D)
5236    // FIXME: What to pass instead of TUScope?
5237    ProcessDeclAttributes(TUScope, NewFD, *D);
5238
5239  if (T.isObjCGCWeak())
5240    Diag(Loc, diag::warn_attribute_weak_on_field);
5241
5242  NewFD->setAccess(AS);
5243
5244  // C++ [dcl.init.aggr]p1:
5245  //   An aggregate is an array or a class (clause 9) with [...] no
5246  //   private or protected non-static data members (clause 11).
5247  // A POD must be an aggregate.
5248  if (getLangOptions().CPlusPlus &&
5249      (AS == AS_private || AS == AS_protected)) {
5250    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5251    CXXRecord->setAggregate(false);
5252    CXXRecord->setPOD(false);
5253  }
5254
5255  return NewFD;
5256}
5257
5258/// DiagnoseNontrivial - Given that a class has a non-trivial
5259/// special member, figure out why.
5260void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5261  QualType QT(T, 0U);
5262  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5263
5264  // Check whether the member was user-declared.
5265  switch (member) {
5266  case CXXDefaultConstructor:
5267    if (RD->hasUserDeclaredConstructor()) {
5268      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5269      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5270        const FunctionDecl *body = 0;
5271        ci->getBody(body);
5272        if (!body ||
5273            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5274          SourceLocation CtorLoc = ci->getLocation();
5275          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5276          return;
5277        }
5278      }
5279
5280      assert(0 && "found no user-declared constructors");
5281      return;
5282    }
5283    break;
5284
5285  case CXXCopyConstructor:
5286    if (RD->hasUserDeclaredCopyConstructor()) {
5287      SourceLocation CtorLoc =
5288        RD->getCopyConstructor(Context, 0)->getLocation();
5289      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5290      return;
5291    }
5292    break;
5293
5294  case CXXCopyAssignment:
5295    if (RD->hasUserDeclaredCopyAssignment()) {
5296      // FIXME: this should use the location of the copy
5297      // assignment, not the type.
5298      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5299      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5300      return;
5301    }
5302    break;
5303
5304  case CXXDestructor:
5305    if (RD->hasUserDeclaredDestructor()) {
5306      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5307      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5308      return;
5309    }
5310    break;
5311  }
5312
5313  typedef CXXRecordDecl::base_class_iterator base_iter;
5314
5315  // Virtual bases and members inhibit trivial copying/construction,
5316  // but not trivial destruction.
5317  if (member != CXXDestructor) {
5318    // Check for virtual bases.  vbases includes indirect virtual bases,
5319    // so we just iterate through the direct bases.
5320    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5321      if (bi->isVirtual()) {
5322        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5323        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5324        return;
5325      }
5326
5327    // Check for virtual methods.
5328    typedef CXXRecordDecl::method_iterator meth_iter;
5329    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5330         ++mi) {
5331      if (mi->isVirtual()) {
5332        SourceLocation MLoc = mi->getSourceRange().getBegin();
5333        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5334        return;
5335      }
5336    }
5337  }
5338
5339  bool (CXXRecordDecl::*hasTrivial)() const;
5340  switch (member) {
5341  case CXXDefaultConstructor:
5342    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5343  case CXXCopyConstructor:
5344    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5345  case CXXCopyAssignment:
5346    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5347  case CXXDestructor:
5348    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5349  default:
5350    assert(0 && "unexpected special member"); return;
5351  }
5352
5353  // Check for nontrivial bases (and recurse).
5354  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5355    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5356    assert(BaseRT && "Don't know how to handle dependent bases");
5357    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5358    if (!(BaseRecTy->*hasTrivial)()) {
5359      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5360      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5361      DiagnoseNontrivial(BaseRT, member);
5362      return;
5363    }
5364  }
5365
5366  // Check for nontrivial members (and recurse).
5367  typedef RecordDecl::field_iterator field_iter;
5368  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5369       ++fi) {
5370    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5371    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5372      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5373
5374      if (!(EltRD->*hasTrivial)()) {
5375        SourceLocation FLoc = (*fi)->getLocation();
5376        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5377        DiagnoseNontrivial(EltRT, member);
5378        return;
5379      }
5380    }
5381  }
5382
5383  assert(0 && "found no explanation for non-trivial member");
5384}
5385
5386/// TranslateIvarVisibility - Translate visibility from a token ID to an
5387///  AST enum value.
5388static ObjCIvarDecl::AccessControl
5389TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5390  switch (ivarVisibility) {
5391  default: assert(0 && "Unknown visitibility kind");
5392  case tok::objc_private: return ObjCIvarDecl::Private;
5393  case tok::objc_public: return ObjCIvarDecl::Public;
5394  case tok::objc_protected: return ObjCIvarDecl::Protected;
5395  case tok::objc_package: return ObjCIvarDecl::Package;
5396  }
5397}
5398
5399/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5400/// in order to create an IvarDecl object for it.
5401Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5402                                SourceLocation DeclStart,
5403                                DeclPtrTy IntfDecl,
5404                                Declarator &D, ExprTy *BitfieldWidth,
5405                                tok::ObjCKeywordKind Visibility) {
5406
5407  IdentifierInfo *II = D.getIdentifier();
5408  Expr *BitWidth = (Expr*)BitfieldWidth;
5409  SourceLocation Loc = DeclStart;
5410  if (II) Loc = D.getIdentifierLoc();
5411
5412  // FIXME: Unnamed fields can be handled in various different ways, for
5413  // example, unnamed unions inject all members into the struct namespace!
5414
5415  TypeSourceInfo *TInfo = 0;
5416  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5417
5418  if (BitWidth) {
5419    // 6.7.2.1p3, 6.7.2.1p4
5420    if (VerifyBitField(Loc, II, T, BitWidth)) {
5421      D.setInvalidType();
5422      DeleteExpr(BitWidth);
5423      BitWidth = 0;
5424    }
5425  } else {
5426    // Not a bitfield.
5427
5428    // validate II.
5429
5430  }
5431
5432  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5433  // than a variably modified type.
5434  if (T->isVariablyModifiedType()) {
5435    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5436    D.setInvalidType();
5437  }
5438
5439  // Get the visibility (access control) for this ivar.
5440  ObjCIvarDecl::AccessControl ac =
5441    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5442                                        : ObjCIvarDecl::None;
5443  // Must set ivar's DeclContext to its enclosing interface.
5444  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5445  DeclContext *EnclosingContext;
5446  if (ObjCImplementationDecl *IMPDecl =
5447      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5448    // Case of ivar declared in an implementation. Context is that of its class.
5449    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5450    assert(IDecl && "No class- ActOnIvar");
5451    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5452  } else
5453    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5454  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5455
5456  // Construct the decl.
5457  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5458                                             EnclosingContext, Loc, II, T,
5459                                             TInfo, ac, (Expr *)BitfieldWidth);
5460
5461  if (II) {
5462    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5463                                           ForRedeclaration);
5464    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5465        && !isa<TagDecl>(PrevDecl)) {
5466      Diag(Loc, diag::err_duplicate_member) << II;
5467      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5468      NewID->setInvalidDecl();
5469    }
5470  }
5471
5472  // Process attributes attached to the ivar.
5473  ProcessDeclAttributes(S, NewID, D);
5474
5475  if (D.isInvalidType())
5476    NewID->setInvalidDecl();
5477
5478  if (II) {
5479    // FIXME: When interfaces are DeclContexts, we'll need to add
5480    // these to the interface.
5481    S->AddDecl(DeclPtrTy::make(NewID));
5482    IdResolver.AddDecl(NewID);
5483  }
5484
5485  return DeclPtrTy::make(NewID);
5486}
5487
5488void Sema::ActOnFields(Scope* S,
5489                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5490                       DeclPtrTy *Fields, unsigned NumFields,
5491                       SourceLocation LBrac, SourceLocation RBrac,
5492                       AttributeList *Attr) {
5493  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5494  assert(EnclosingDecl && "missing record or interface decl");
5495
5496  // If the decl this is being inserted into is invalid, then it may be a
5497  // redeclaration or some other bogus case.  Don't try to add fields to it.
5498  if (EnclosingDecl->isInvalidDecl()) {
5499    // FIXME: Deallocate fields?
5500    return;
5501  }
5502
5503
5504  // Verify that all the fields are okay.
5505  unsigned NumNamedMembers = 0;
5506  llvm::SmallVector<FieldDecl*, 32> RecFields;
5507
5508  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5509  for (unsigned i = 0; i != NumFields; ++i) {
5510    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5511
5512    // Get the type for the field.
5513    Type *FDTy = FD->getType().getTypePtr();
5514
5515    if (!FD->isAnonymousStructOrUnion()) {
5516      // Remember all fields written by the user.
5517      RecFields.push_back(FD);
5518    }
5519
5520    // If the field is already invalid for some reason, don't emit more
5521    // diagnostics about it.
5522    if (FD->isInvalidDecl()) {
5523      EnclosingDecl->setInvalidDecl();
5524      continue;
5525    }
5526
5527    // C99 6.7.2.1p2:
5528    //   A structure or union shall not contain a member with
5529    //   incomplete or function type (hence, a structure shall not
5530    //   contain an instance of itself, but may contain a pointer to
5531    //   an instance of itself), except that the last member of a
5532    //   structure with more than one named member may have incomplete
5533    //   array type; such a structure (and any union containing,
5534    //   possibly recursively, a member that is such a structure)
5535    //   shall not be a member of a structure or an element of an
5536    //   array.
5537    if (FDTy->isFunctionType()) {
5538      // Field declared as a function.
5539      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5540        << FD->getDeclName();
5541      FD->setInvalidDecl();
5542      EnclosingDecl->setInvalidDecl();
5543      continue;
5544    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5545               Record && Record->isStruct()) {
5546      // Flexible array member.
5547      if (NumNamedMembers < 1) {
5548        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5549          << FD->getDeclName();
5550        FD->setInvalidDecl();
5551        EnclosingDecl->setInvalidDecl();
5552        continue;
5553      }
5554      // Okay, we have a legal flexible array member at the end of the struct.
5555      if (Record)
5556        Record->setHasFlexibleArrayMember(true);
5557    } else if (!FDTy->isDependentType() &&
5558               RequireCompleteType(FD->getLocation(), FD->getType(),
5559                                   diag::err_field_incomplete)) {
5560      // Incomplete type
5561      FD->setInvalidDecl();
5562      EnclosingDecl->setInvalidDecl();
5563      continue;
5564    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5565      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5566        // If this is a member of a union, then entire union becomes "flexible".
5567        if (Record && Record->isUnion()) {
5568          Record->setHasFlexibleArrayMember(true);
5569        } else {
5570          // If this is a struct/class and this is not the last element, reject
5571          // it.  Note that GCC supports variable sized arrays in the middle of
5572          // structures.
5573          if (i != NumFields-1)
5574            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5575              << FD->getDeclName() << FD->getType();
5576          else {
5577            // We support flexible arrays at the end of structs in
5578            // other structs as an extension.
5579            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5580              << FD->getDeclName();
5581            if (Record)
5582              Record->setHasFlexibleArrayMember(true);
5583          }
5584        }
5585      }
5586      if (Record && FDTTy->getDecl()->hasObjectMember())
5587        Record->setHasObjectMember(true);
5588    } else if (FDTy->isObjCInterfaceType()) {
5589      /// A field cannot be an Objective-c object
5590      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5591      FD->setInvalidDecl();
5592      EnclosingDecl->setInvalidDecl();
5593      continue;
5594    } else if (getLangOptions().ObjC1 &&
5595               getLangOptions().getGCMode() != LangOptions::NonGC &&
5596               Record &&
5597               (FD->getType()->isObjCObjectPointerType() ||
5598                FD->getType().isObjCGCStrong()))
5599      Record->setHasObjectMember(true);
5600    // Keep track of the number of named members.
5601    if (FD->getIdentifier())
5602      ++NumNamedMembers;
5603  }
5604
5605  // Okay, we successfully defined 'Record'.
5606  if (Record) {
5607    Record->completeDefinition(Context);
5608  } else {
5609    ObjCIvarDecl **ClsFields =
5610      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5611    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5612      ID->setIVarList(ClsFields, RecFields.size(), Context);
5613      ID->setLocEnd(RBrac);
5614      // Add ivar's to class's DeclContext.
5615      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5616        ClsFields[i]->setLexicalDeclContext(ID);
5617        ID->addDecl(ClsFields[i]);
5618      }
5619      // Must enforce the rule that ivars in the base classes may not be
5620      // duplicates.
5621      if (ID->getSuperClass()) {
5622        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5623             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5624          ObjCIvarDecl* Ivar = (*IVI);
5625
5626          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5627            ObjCIvarDecl* prevIvar =
5628              ID->getSuperClass()->lookupInstanceVariable(II);
5629            if (prevIvar) {
5630              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5631              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5632            }
5633          }
5634        }
5635      }
5636    } else if (ObjCImplementationDecl *IMPDecl =
5637                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5638      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5639      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5640        // Ivar declared in @implementation never belongs to the implementation.
5641        // Only it is in implementation's lexical context.
5642        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5643      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5644    }
5645  }
5646
5647  if (Attr)
5648    ProcessDeclAttributeList(S, Record, Attr);
5649}
5650
5651EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5652                                          EnumConstantDecl *LastEnumConst,
5653                                          SourceLocation IdLoc,
5654                                          IdentifierInfo *Id,
5655                                          ExprArg val) {
5656  Expr *Val = (Expr *)val.get();
5657
5658  llvm::APSInt EnumVal(32);
5659  QualType EltTy;
5660  if (Val) {
5661    if (Val->isTypeDependent())
5662      EltTy = Context.DependentTy;
5663    else {
5664      // Make sure to promote the operand type to int.
5665      UsualUnaryConversions(Val);
5666      if (Val != val.get()) {
5667        val.release();
5668        val = Val;
5669      }
5670
5671      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5672      SourceLocation ExpLoc;
5673      if (!Val->isValueDependent() &&
5674          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5675        Val = 0;
5676      } else {
5677        EltTy = Val->getType();
5678      }
5679    }
5680  }
5681
5682  if (!Val) {
5683    if (LastEnumConst) {
5684      // Assign the last value + 1.
5685      EnumVal = LastEnumConst->getInitVal();
5686      ++EnumVal;
5687
5688      // Check for overflow on increment.
5689      if (EnumVal < LastEnumConst->getInitVal())
5690        Diag(IdLoc, diag::warn_enum_value_overflow);
5691
5692      EltTy = LastEnumConst->getType();
5693    } else {
5694      // First value, set to zero.
5695      EltTy = Context.IntTy;
5696      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5697      EnumVal.setIsSigned(true);
5698    }
5699  }
5700
5701  assert(!EltTy.isNull() && "Enum constant with NULL type");
5702
5703  val.release();
5704  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5705                                  Val, EnumVal);
5706}
5707
5708
5709Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5710                                        DeclPtrTy lastEnumConst,
5711                                        SourceLocation IdLoc,
5712                                        IdentifierInfo *Id,
5713                                        SourceLocation EqualLoc, ExprTy *val) {
5714  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5715  EnumConstantDecl *LastEnumConst =
5716    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5717  Expr *Val = static_cast<Expr*>(val);
5718
5719  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5720  // we find one that is.
5721  S = getNonFieldDeclScope(S);
5722
5723  // Verify that there isn't already something declared with this name in this
5724  // scope.
5725  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5726  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5727    // Maybe we will complain about the shadowed template parameter.
5728    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5729    // Just pretend that we didn't see the previous declaration.
5730    PrevDecl = 0;
5731  }
5732
5733  if (PrevDecl) {
5734    // When in C++, we may get a TagDecl with the same name; in this case the
5735    // enum constant will 'hide' the tag.
5736    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5737           "Received TagDecl when not in C++!");
5738    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5739      if (isa<EnumConstantDecl>(PrevDecl))
5740        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5741      else
5742        Diag(IdLoc, diag::err_redefinition) << Id;
5743      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5744      if (Val) Val->Destroy(Context);
5745      return DeclPtrTy();
5746    }
5747  }
5748
5749  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5750                                            IdLoc, Id, Owned(Val));
5751
5752  // Register this decl in the current scope stack.
5753  if (New)
5754    PushOnScopeChains(New, S);
5755
5756  return DeclPtrTy::make(New);
5757}
5758
5759void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5760                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5761                         DeclPtrTy *Elements, unsigned NumElements,
5762                         Scope *S, AttributeList *Attr) {
5763  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5764  QualType EnumType = Context.getTypeDeclType(Enum);
5765
5766  if (Attr)
5767    ProcessDeclAttributeList(S, Enum, Attr);
5768
5769  // TODO: If the result value doesn't fit in an int, it must be a long or long
5770  // long value.  ISO C does not support this, but GCC does as an extension,
5771  // emit a warning.
5772  unsigned IntWidth = Context.Target.getIntWidth();
5773  unsigned CharWidth = Context.Target.getCharWidth();
5774  unsigned ShortWidth = Context.Target.getShortWidth();
5775
5776  // Verify that all the values are okay, compute the size of the values, and
5777  // reverse the list.
5778  unsigned NumNegativeBits = 0;
5779  unsigned NumPositiveBits = 0;
5780
5781  // Keep track of whether all elements have type int.
5782  bool AllElementsInt = true;
5783
5784  for (unsigned i = 0; i != NumElements; ++i) {
5785    EnumConstantDecl *ECD =
5786      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5787    if (!ECD) continue;  // Already issued a diagnostic.
5788
5789    // If the enum value doesn't fit in an int, emit an extension warning.
5790    const llvm::APSInt &InitVal = ECD->getInitVal();
5791    assert(InitVal.getBitWidth() >= IntWidth &&
5792           "Should have promoted value to int");
5793    if (InitVal.getBitWidth() > IntWidth) {
5794      llvm::APSInt V(InitVal);
5795      V.trunc(IntWidth);
5796      V.extend(InitVal.getBitWidth());
5797      if (V != InitVal)
5798        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5799          << InitVal.toString(10);
5800    }
5801
5802    // Keep track of the size of positive and negative values.
5803    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5804      NumPositiveBits = std::max(NumPositiveBits,
5805                                 (unsigned)InitVal.getActiveBits());
5806    else
5807      NumNegativeBits = std::max(NumNegativeBits,
5808                                 (unsigned)InitVal.getMinSignedBits());
5809
5810    // Keep track of whether every enum element has type int (very commmon).
5811    if (AllElementsInt)
5812      AllElementsInt = ECD->getType() == Context.IntTy;
5813  }
5814
5815  // Figure out the type that should be used for this enum.
5816  // FIXME: Support -fshort-enums.
5817  QualType BestType;
5818  unsigned BestWidth;
5819
5820  // C++0x N3000 [conv.prom]p3:
5821  //   An rvalue of an unscoped enumeration type whose underlying
5822  //   type is not fixed can be converted to an rvalue of the first
5823  //   of the following types that can represent all the values of
5824  //   the enumeration: int, unsigned int, long int, unsigned long
5825  //   int, long long int, or unsigned long long int.
5826  // C99 6.4.4.3p2:
5827  //   An identifier declared as an enumeration constant has type int.
5828  // The C99 rule is modified by a gcc extension
5829  QualType BestPromotionType;
5830
5831  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5832
5833  if (NumNegativeBits) {
5834    // If there is a negative value, figure out the smallest integer type (of
5835    // int/long/longlong) that fits.
5836    // If it's packed, check also if it fits a char or a short.
5837    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5838      BestType = Context.SignedCharTy;
5839      BestWidth = CharWidth;
5840    } else if (Packed && NumNegativeBits <= ShortWidth &&
5841               NumPositiveBits < ShortWidth) {
5842      BestType = Context.ShortTy;
5843      BestWidth = ShortWidth;
5844    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5845      BestType = Context.IntTy;
5846      BestWidth = IntWidth;
5847    } else {
5848      BestWidth = Context.Target.getLongWidth();
5849
5850      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5851        BestType = Context.LongTy;
5852      } else {
5853        BestWidth = Context.Target.getLongLongWidth();
5854
5855        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5856          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5857        BestType = Context.LongLongTy;
5858      }
5859    }
5860    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5861  } else {
5862    // If there is no negative value, figure out which of uint, ulong, ulonglong
5863    // fits.
5864    // If it's packed, check also if it fits a char or a short.
5865    if (Packed && NumPositiveBits <= CharWidth) {
5866      BestType = Context.UnsignedCharTy;
5867      BestPromotionType = Context.IntTy;
5868      BestWidth = CharWidth;
5869    } else if (Packed && NumPositiveBits <= ShortWidth) {
5870      BestType = Context.UnsignedShortTy;
5871      BestPromotionType = Context.IntTy;
5872      BestWidth = ShortWidth;
5873    } else if (NumPositiveBits <= IntWidth) {
5874      BestType = Context.UnsignedIntTy;
5875      BestWidth = IntWidth;
5876      BestPromotionType = (NumPositiveBits == BestWidth
5877                           ? Context.UnsignedIntTy : Context.IntTy);
5878    } else if (NumPositiveBits <=
5879               (BestWidth = Context.Target.getLongWidth())) {
5880      BestType = Context.UnsignedLongTy;
5881      BestPromotionType = (NumPositiveBits == BestWidth
5882                           ? Context.UnsignedLongTy : Context.LongTy);
5883    } else {
5884      BestWidth = Context.Target.getLongLongWidth();
5885      assert(NumPositiveBits <= BestWidth &&
5886             "How could an initializer get larger than ULL?");
5887      BestType = Context.UnsignedLongLongTy;
5888      BestPromotionType = (NumPositiveBits == BestWidth
5889                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5890    }
5891  }
5892
5893  // If we're in C and the promotion type is larger than an int, just
5894  // use the underlying type, which is generally the unsigned integer
5895  // type of the same rank as the promotion type.  This is how the gcc
5896  // extension works.
5897  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5898    BestPromotionType = BestType;
5899
5900  // Loop over all of the enumerator constants, changing their types to match
5901  // the type of the enum if needed.
5902  for (unsigned i = 0; i != NumElements; ++i) {
5903    EnumConstantDecl *ECD =
5904      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5905    if (!ECD) continue;  // Already issued a diagnostic.
5906
5907    // Standard C says the enumerators have int type, but we allow, as an
5908    // extension, the enumerators to be larger than int size.  If each
5909    // enumerator value fits in an int, type it as an int, otherwise type it the
5910    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5911    // that X has type 'int', not 'unsigned'.
5912    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5913      continue;
5914
5915    // Determine whether the value fits into an int.
5916    llvm::APSInt InitVal = ECD->getInitVal();
5917    bool FitsInInt;
5918    if (InitVal.isUnsigned() || !InitVal.isNegative())
5919      FitsInInt = InitVal.getActiveBits() < IntWidth;
5920    else
5921      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5922
5923    // If it fits into an integer type, force it.  Otherwise force it to match
5924    // the enum decl type.
5925    QualType NewTy;
5926    unsigned NewWidth;
5927    bool NewSign;
5928    if (FitsInInt && !getLangOptions().CPlusPlus) {
5929      NewTy = Context.IntTy;
5930      NewWidth = IntWidth;
5931      NewSign = true;
5932    } else if (ECD->getType() == BestType) {
5933      // Already the right type!
5934      if (getLangOptions().CPlusPlus)
5935        // C++ [dcl.enum]p4: Following the closing brace of an
5936        // enum-specifier, each enumerator has the type of its
5937        // enumeration.
5938        ECD->setType(EnumType);
5939      continue;
5940    } else {
5941      NewTy = BestType;
5942      NewWidth = BestWidth;
5943      NewSign = BestType->isSignedIntegerType();
5944    }
5945
5946    // Adjust the APSInt value.
5947    InitVal.extOrTrunc(NewWidth);
5948    InitVal.setIsSigned(NewSign);
5949    ECD->setInitVal(InitVal);
5950
5951    // Adjust the Expr initializer and type.
5952    if (ECD->getInitExpr())
5953      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5954                                                      CastExpr::CK_IntegralCast,
5955                                                      ECD->getInitExpr(),
5956                                                      /*isLvalue=*/false));
5957    if (getLangOptions().CPlusPlus)
5958      // C++ [dcl.enum]p4: Following the closing brace of an
5959      // enum-specifier, each enumerator has the type of its
5960      // enumeration.
5961      ECD->setType(EnumType);
5962    else
5963      ECD->setType(NewTy);
5964  }
5965
5966  Enum->completeDefinition(Context, BestType, BestPromotionType);
5967}
5968
5969Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5970                                            ExprArg expr) {
5971  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5972
5973  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5974                                                   Loc, AsmString);
5975  CurContext->addDecl(New);
5976  return DeclPtrTy::make(New);
5977}
5978
5979void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5980                             SourceLocation PragmaLoc,
5981                             SourceLocation NameLoc) {
5982  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5983
5984  if (PrevDecl) {
5985    PrevDecl->addAttr(::new (Context) WeakAttr());
5986  } else {
5987    (void)WeakUndeclaredIdentifiers.insert(
5988      std::pair<IdentifierInfo*,WeakInfo>
5989        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5990  }
5991}
5992
5993void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5994                                IdentifierInfo* AliasName,
5995                                SourceLocation PragmaLoc,
5996                                SourceLocation NameLoc,
5997                                SourceLocation AliasNameLoc) {
5998  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5999  WeakInfo W = WeakInfo(Name, NameLoc);
6000
6001  if (PrevDecl) {
6002    if (!PrevDecl->hasAttr<AliasAttr>())
6003      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6004        DeclApplyPragmaWeak(TUScope, ND, W);
6005  } else {
6006    (void)WeakUndeclaredIdentifiers.insert(
6007      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6008  }
6009}
6010