SemaDecl.cpp revision 2b79c320b0801e0094df6c70ad8062da6c58bd1c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S, &SS)) {
552        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
553        unsigned QualifiedDiag = diag::err_no_member_suggest;
554        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
555        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
556
557        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
558        NamedDecl *UnderlyingFirstDecl
559          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
560        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
561            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
562          UnqualifiedDiag = diag::err_no_template_suggest;
563          QualifiedDiag = diag::err_no_member_template_suggest;
564        } else if (UnderlyingFirstDecl &&
565                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
566                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
568           UnqualifiedDiag = diag::err_unknown_typename_suggest;
569           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
570         }
571
572        if (SS.isEmpty())
573          Diag(NameLoc, UnqualifiedDiag)
574            << Name << CorrectedQuotedStr
575            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
576        else
577          Diag(NameLoc, QualifiedDiag)
578            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
579            << SS.getRange()
580            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
581
582        // Update the name, so that the caller has the new name.
583        Name = Corrected.getCorrectionAsIdentifierInfo();
584
585        // Also update the LookupResult...
586        // FIXME: This should probably go away at some point
587        Result.clear();
588        Result.setLookupName(Corrected.getCorrection());
589        if (FirstDecl) Result.addDecl(FirstDecl);
590
591        // Typo correction corrected to a keyword.
592        if (Corrected.isKeyword())
593          return Corrected.getCorrectionAsIdentifierInfo();
594
595        if (FirstDecl)
596          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
597            << CorrectedQuotedStr;
598
599        // If we found an Objective-C instance variable, let
600        // LookupInObjCMethod build the appropriate expression to
601        // reference the ivar.
602        // FIXME: This is a gross hack.
603        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
604          Result.clear();
605          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
606          return move(E);
607        }
608
609        goto Corrected;
610      }
611    }
612
613    // We failed to correct; just fall through and let the parser deal with it.
614    Result.suppressDiagnostics();
615    return NameClassification::Unknown();
616
617  case LookupResult::NotFoundInCurrentInstantiation:
618    // We performed name lookup into the current instantiation, and there were
619    // dependent bases, so we treat this result the same way as any other
620    // dependent nested-name-specifier.
621
622    // C++ [temp.res]p2:
623    //   A name used in a template declaration or definition and that is
624    //   dependent on a template-parameter is assumed not to name a type
625    //   unless the applicable name lookup finds a type name or the name is
626    //   qualified by the keyword typename.
627    //
628    // FIXME: If the next token is '<', we might want to ask the parser to
629    // perform some heroics to see if we actually have a
630    // template-argument-list, which would indicate a missing 'template'
631    // keyword here.
632    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
633
634  case LookupResult::Found:
635  case LookupResult::FoundOverloaded:
636  case LookupResult::FoundUnresolvedValue:
637    break;
638
639  case LookupResult::Ambiguous:
640    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
641        hasAnyAcceptableTemplateNames(Result)) {
642      // C++ [temp.local]p3:
643      //   A lookup that finds an injected-class-name (10.2) can result in an
644      //   ambiguity in certain cases (for example, if it is found in more than
645      //   one base class). If all of the injected-class-names that are found
646      //   refer to specializations of the same class template, and if the name
647      //   is followed by a template-argument-list, the reference refers to the
648      //   class template itself and not a specialization thereof, and is not
649      //   ambiguous.
650      //
651      // This filtering can make an ambiguous result into an unambiguous one,
652      // so try again after filtering out template names.
653      FilterAcceptableTemplateNames(Result);
654      if (!Result.isAmbiguous()) {
655        IsFilteredTemplateName = true;
656        break;
657      }
658    }
659
660    // Diagnose the ambiguity and return an error.
661    return NameClassification::Error();
662  }
663
664  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
665      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
666    // C++ [temp.names]p3:
667    //   After name lookup (3.4) finds that a name is a template-name or that
668    //   an operator-function-id or a literal- operator-id refers to a set of
669    //   overloaded functions any member of which is a function template if
670    //   this is followed by a <, the < is always taken as the delimiter of a
671    //   template-argument-list and never as the less-than operator.
672    if (!IsFilteredTemplateName)
673      FilterAcceptableTemplateNames(Result);
674
675    if (!Result.empty()) {
676      bool IsFunctionTemplate;
677      TemplateName Template;
678      if (Result.end() - Result.begin() > 1) {
679        IsFunctionTemplate = true;
680        Template = Context.getOverloadedTemplateName(Result.begin(),
681                                                     Result.end());
682      } else {
683        TemplateDecl *TD
684          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
685        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
686
687        if (SS.isSet() && !SS.isInvalid())
688          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
689                                                    /*TemplateKeyword=*/false,
690                                                      TD);
691        else
692          Template = TemplateName(TD);
693      }
694
695      if (IsFunctionTemplate) {
696        // Function templates always go through overload resolution, at which
697        // point we'll perform the various checks (e.g., accessibility) we need
698        // to based on which function we selected.
699        Result.suppressDiagnostics();
700
701        return NameClassification::FunctionTemplate(Template);
702      }
703
704      return NameClassification::TypeTemplate(Template);
705    }
706  }
707
708  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
709  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
710    DiagnoseUseOfDecl(Type, NameLoc);
711    QualType T = Context.getTypeDeclType(Type);
712    return ParsedType::make(T);
713  }
714
715  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
716  if (!Class) {
717    // FIXME: It's unfortunate that we don't have a Type node for handling this.
718    if (ObjCCompatibleAliasDecl *Alias
719                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
720      Class = Alias->getClassInterface();
721  }
722
723  if (Class) {
724    DiagnoseUseOfDecl(Class, NameLoc);
725
726    if (NextToken.is(tok::period)) {
727      // Interface. <something> is parsed as a property reference expression.
728      // Just return "unknown" as a fall-through for now.
729      Result.suppressDiagnostics();
730      return NameClassification::Unknown();
731    }
732
733    QualType T = Context.getObjCInterfaceType(Class);
734    return ParsedType::make(T);
735  }
736
737  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
738    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
739
740  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
741  return BuildDeclarationNameExpr(SS, Result, ADL);
742}
743
744// Determines the context to return to after temporarily entering a
745// context.  This depends in an unnecessarily complicated way on the
746// exact ordering of callbacks from the parser.
747DeclContext *Sema::getContainingDC(DeclContext *DC) {
748
749  // Functions defined inline within classes aren't parsed until we've
750  // finished parsing the top-level class, so the top-level class is
751  // the context we'll need to return to.
752  if (isa<FunctionDecl>(DC)) {
753    DC = DC->getLexicalParent();
754
755    // A function not defined within a class will always return to its
756    // lexical context.
757    if (!isa<CXXRecordDecl>(DC))
758      return DC;
759
760    // A C++ inline method/friend is parsed *after* the topmost class
761    // it was declared in is fully parsed ("complete");  the topmost
762    // class is the context we need to return to.
763    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
764      DC = RD;
765
766    // Return the declaration context of the topmost class the inline method is
767    // declared in.
768    return DC;
769  }
770
771  return DC->getLexicalParent();
772}
773
774void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
775  assert(getContainingDC(DC) == CurContext &&
776      "The next DeclContext should be lexically contained in the current one.");
777  CurContext = DC;
778  S->setEntity(DC);
779}
780
781void Sema::PopDeclContext() {
782  assert(CurContext && "DeclContext imbalance!");
783
784  CurContext = getContainingDC(CurContext);
785  assert(CurContext && "Popped translation unit!");
786}
787
788/// EnterDeclaratorContext - Used when we must lookup names in the context
789/// of a declarator's nested name specifier.
790///
791void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
792  // C++0x [basic.lookup.unqual]p13:
793  //   A name used in the definition of a static data member of class
794  //   X (after the qualified-id of the static member) is looked up as
795  //   if the name was used in a member function of X.
796  // C++0x [basic.lookup.unqual]p14:
797  //   If a variable member of a namespace is defined outside of the
798  //   scope of its namespace then any name used in the definition of
799  //   the variable member (after the declarator-id) is looked up as
800  //   if the definition of the variable member occurred in its
801  //   namespace.
802  // Both of these imply that we should push a scope whose context
803  // is the semantic context of the declaration.  We can't use
804  // PushDeclContext here because that context is not necessarily
805  // lexically contained in the current context.  Fortunately,
806  // the containing scope should have the appropriate information.
807
808  assert(!S->getEntity() && "scope already has entity");
809
810#ifndef NDEBUG
811  Scope *Ancestor = S->getParent();
812  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
813  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
814#endif
815
816  CurContext = DC;
817  S->setEntity(DC);
818}
819
820void Sema::ExitDeclaratorContext(Scope *S) {
821  assert(S->getEntity() == CurContext && "Context imbalance!");
822
823  // Switch back to the lexical context.  The safety of this is
824  // enforced by an assert in EnterDeclaratorContext.
825  Scope *Ancestor = S->getParent();
826  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
827  CurContext = (DeclContext*) Ancestor->getEntity();
828
829  // We don't need to do anything with the scope, which is going to
830  // disappear.
831}
832
833
834void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
835  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
836  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
837    // We assume that the caller has already called
838    // ActOnReenterTemplateScope
839    FD = TFD->getTemplatedDecl();
840  }
841  if (!FD)
842    return;
843
844  PushDeclContext(S, FD);
845  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
846    ParmVarDecl *Param = FD->getParamDecl(P);
847    // If the parameter has an identifier, then add it to the scope
848    if (Param->getIdentifier()) {
849      S->AddDecl(Param);
850      IdResolver.AddDecl(Param);
851    }
852  }
853}
854
855
856/// \brief Determine whether we allow overloading of the function
857/// PrevDecl with another declaration.
858///
859/// This routine determines whether overloading is possible, not
860/// whether some new function is actually an overload. It will return
861/// true in C++ (where we can always provide overloads) or, as an
862/// extension, in C when the previous function is already an
863/// overloaded function declaration or has the "overloadable"
864/// attribute.
865static bool AllowOverloadingOfFunction(LookupResult &Previous,
866                                       ASTContext &Context) {
867  if (Context.getLangOptions().CPlusPlus)
868    return true;
869
870  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
871    return true;
872
873  return (Previous.getResultKind() == LookupResult::Found
874          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
875}
876
877/// Add this decl to the scope shadowed decl chains.
878void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
879  // Move up the scope chain until we find the nearest enclosing
880  // non-transparent context. The declaration will be introduced into this
881  // scope.
882  while (S->getEntity() &&
883         ((DeclContext *)S->getEntity())->isTransparentContext())
884    S = S->getParent();
885
886  // Add scoped declarations into their context, so that they can be
887  // found later. Declarations without a context won't be inserted
888  // into any context.
889  if (AddToContext)
890    CurContext->addDecl(D);
891
892  // Out-of-line definitions shouldn't be pushed into scope in C++.
893  // Out-of-line variable and function definitions shouldn't even in C.
894  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
895      D->isOutOfLine() &&
896      !D->getDeclContext()->getRedeclContext()->Equals(
897        D->getLexicalDeclContext()->getRedeclContext()))
898    return;
899
900  // Template instantiations should also not be pushed into scope.
901  if (isa<FunctionDecl>(D) &&
902      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
903    return;
904
905  // If this replaces anything in the current scope,
906  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
907                               IEnd = IdResolver.end();
908  for (; I != IEnd; ++I) {
909    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
910      S->RemoveDecl(*I);
911      IdResolver.RemoveDecl(*I);
912
913      // Should only need to replace one decl.
914      break;
915    }
916  }
917
918  S->AddDecl(D);
919
920  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
921    // Implicitly-generated labels may end up getting generated in an order that
922    // isn't strictly lexical, which breaks name lookup. Be careful to insert
923    // the label at the appropriate place in the identifier chain.
924    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
925      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
926      if (IDC == CurContext) {
927        if (!S->isDeclScope(*I))
928          continue;
929      } else if (IDC->Encloses(CurContext))
930        break;
931    }
932
933    IdResolver.InsertDeclAfter(I, D);
934  } else {
935    IdResolver.AddDecl(D);
936  }
937}
938
939bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
940                         bool ExplicitInstantiationOrSpecialization) {
941  return IdResolver.isDeclInScope(D, Ctx, Context, S,
942                                  ExplicitInstantiationOrSpecialization);
943}
944
945Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
946  DeclContext *TargetDC = DC->getPrimaryContext();
947  do {
948    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
949      if (ScopeDC->getPrimaryContext() == TargetDC)
950        return S;
951  } while ((S = S->getParent()));
952
953  return 0;
954}
955
956static bool isOutOfScopePreviousDeclaration(NamedDecl *,
957                                            DeclContext*,
958                                            ASTContext&);
959
960/// Filters out lookup results that don't fall within the given scope
961/// as determined by isDeclInScope.
962void Sema::FilterLookupForScope(LookupResult &R,
963                                DeclContext *Ctx, Scope *S,
964                                bool ConsiderLinkage,
965                                bool ExplicitInstantiationOrSpecialization) {
966  LookupResult::Filter F = R.makeFilter();
967  while (F.hasNext()) {
968    NamedDecl *D = F.next();
969
970    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
971      continue;
972
973    if (ConsiderLinkage &&
974        isOutOfScopePreviousDeclaration(D, Ctx, Context))
975      continue;
976
977    F.erase();
978  }
979
980  F.done();
981}
982
983static bool isUsingDecl(NamedDecl *D) {
984  return isa<UsingShadowDecl>(D) ||
985         isa<UnresolvedUsingTypenameDecl>(D) ||
986         isa<UnresolvedUsingValueDecl>(D);
987}
988
989/// Removes using shadow declarations from the lookup results.
990static void RemoveUsingDecls(LookupResult &R) {
991  LookupResult::Filter F = R.makeFilter();
992  while (F.hasNext())
993    if (isUsingDecl(F.next()))
994      F.erase();
995
996  F.done();
997}
998
999/// \brief Check for this common pattern:
1000/// @code
1001/// class S {
1002///   S(const S&); // DO NOT IMPLEMENT
1003///   void operator=(const S&); // DO NOT IMPLEMENT
1004/// };
1005/// @endcode
1006static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1007  // FIXME: Should check for private access too but access is set after we get
1008  // the decl here.
1009  if (D->doesThisDeclarationHaveABody())
1010    return false;
1011
1012  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1013    return CD->isCopyConstructor();
1014  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1015    return Method->isCopyAssignmentOperator();
1016  return false;
1017}
1018
1019bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1020  assert(D);
1021
1022  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1023    return false;
1024
1025  // Ignore class templates.
1026  if (D->getDeclContext()->isDependentContext() ||
1027      D->getLexicalDeclContext()->isDependentContext())
1028    return false;
1029
1030  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1031    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1032      return false;
1033
1034    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1035      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1036        return false;
1037    } else {
1038      // 'static inline' functions are used in headers; don't warn.
1039      if (FD->getStorageClass() == SC_Static &&
1040          FD->isInlineSpecified())
1041        return false;
1042    }
1043
1044    if (FD->doesThisDeclarationHaveABody() &&
1045        Context.DeclMustBeEmitted(FD))
1046      return false;
1047  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1048    if (!VD->isFileVarDecl() ||
1049        VD->getType().isConstant(Context) ||
1050        Context.DeclMustBeEmitted(VD))
1051      return false;
1052
1053    if (VD->isStaticDataMember() &&
1054        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1055      return false;
1056
1057  } else {
1058    return false;
1059  }
1060
1061  // Only warn for unused decls internal to the translation unit.
1062  if (D->getLinkage() == ExternalLinkage)
1063    return false;
1064
1065  return true;
1066}
1067
1068void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1069  if (!D)
1070    return;
1071
1072  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1073    const FunctionDecl *First = FD->getFirstDeclaration();
1074    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1075      return; // First should already be in the vector.
1076  }
1077
1078  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1079    const VarDecl *First = VD->getFirstDeclaration();
1080    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084   if (ShouldWarnIfUnusedFileScopedDecl(D))
1085     UnusedFileScopedDecls.push_back(D);
1086 }
1087
1088static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1089  if (D->isInvalidDecl())
1090    return false;
1091
1092  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1093    return false;
1094
1095  if (isa<LabelDecl>(D))
1096    return true;
1097
1098  // White-list anything that isn't a local variable.
1099  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1100      !D->getDeclContext()->isFunctionOrMethod())
1101    return false;
1102
1103  // Types of valid local variables should be complete, so this should succeed.
1104  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1105
1106    // White-list anything with an __attribute__((unused)) type.
1107    QualType Ty = VD->getType();
1108
1109    // Only look at the outermost level of typedef.
1110    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1111      if (TT->getDecl()->hasAttr<UnusedAttr>())
1112        return false;
1113    }
1114
1115    // If we failed to complete the type for some reason, or if the type is
1116    // dependent, don't diagnose the variable.
1117    if (Ty->isIncompleteType() || Ty->isDependentType())
1118      return false;
1119
1120    if (const TagType *TT = Ty->getAs<TagType>()) {
1121      const TagDecl *Tag = TT->getDecl();
1122      if (Tag->hasAttr<UnusedAttr>())
1123        return false;
1124
1125      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1126        // FIXME: Checking for the presence of a user-declared constructor
1127        // isn't completely accurate; we'd prefer to check that the initializer
1128        // has no side effects.
1129        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1130          return false;
1131      }
1132    }
1133
1134    // TODO: __attribute__((unused)) templates?
1135  }
1136
1137  return true;
1138}
1139
1140static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1141                                     FixItHint &Hint) {
1142  if (isa<LabelDecl>(D)) {
1143    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1144                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1145    if (AfterColon.isInvalid())
1146      return;
1147    Hint = FixItHint::CreateRemoval(CharSourceRange::
1148                                    getCharRange(D->getLocStart(), AfterColon));
1149  }
1150  return;
1151}
1152
1153/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1154/// unless they are marked attr(unused).
1155void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1156  FixItHint Hint;
1157  if (!ShouldDiagnoseUnusedDecl(D))
1158    return;
1159
1160  GenerateFixForUnusedDecl(D, Context, Hint);
1161
1162  unsigned DiagID;
1163  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1164    DiagID = diag::warn_unused_exception_param;
1165  else if (isa<LabelDecl>(D))
1166    DiagID = diag::warn_unused_label;
1167  else
1168    DiagID = diag::warn_unused_variable;
1169
1170  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1171}
1172
1173static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1174  // Verify that we have no forward references left.  If so, there was a goto
1175  // or address of a label taken, but no definition of it.  Label fwd
1176  // definitions are indicated with a null substmt.
1177  if (L->getStmt() == 0)
1178    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1179}
1180
1181void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1182  if (S->decl_empty()) return;
1183  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1184         "Scope shouldn't contain decls!");
1185
1186  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1187       I != E; ++I) {
1188    Decl *TmpD = (*I);
1189    assert(TmpD && "This decl didn't get pushed??");
1190
1191    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1192    NamedDecl *D = cast<NamedDecl>(TmpD);
1193
1194    if (!D->getDeclName()) continue;
1195
1196    // Diagnose unused variables in this scope.
1197    if (!S->hasErrorOccurred())
1198      DiagnoseUnusedDecl(D);
1199
1200    // If this was a forward reference to a label, verify it was defined.
1201    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1202      CheckPoppedLabel(LD, *this);
1203
1204    // Remove this name from our lexical scope.
1205    IdResolver.RemoveDecl(D);
1206  }
1207}
1208
1209/// \brief Look for an Objective-C class in the translation unit.
1210///
1211/// \param Id The name of the Objective-C class we're looking for. If
1212/// typo-correction fixes this name, the Id will be updated
1213/// to the fixed name.
1214///
1215/// \param IdLoc The location of the name in the translation unit.
1216///
1217/// \param TypoCorrection If true, this routine will attempt typo correction
1218/// if there is no class with the given name.
1219///
1220/// \returns The declaration of the named Objective-C class, or NULL if the
1221/// class could not be found.
1222ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1223                                              SourceLocation IdLoc,
1224                                              bool DoTypoCorrection) {
1225  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1226  // creation from this context.
1227  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1228
1229  if (!IDecl && DoTypoCorrection) {
1230    // Perform typo correction at the given location, but only if we
1231    // find an Objective-C class name.
1232    TypoCorrection C;
1233    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1234                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1235        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1236      Diag(IdLoc, diag::err_undef_interface_suggest)
1237        << Id << IDecl->getDeclName()
1238        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1239      Diag(IDecl->getLocation(), diag::note_previous_decl)
1240        << IDecl->getDeclName();
1241
1242      Id = IDecl->getIdentifier();
1243    }
1244  }
1245
1246  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1247}
1248
1249/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1250/// from S, where a non-field would be declared. This routine copes
1251/// with the difference between C and C++ scoping rules in structs and
1252/// unions. For example, the following code is well-formed in C but
1253/// ill-formed in C++:
1254/// @code
1255/// struct S6 {
1256///   enum { BAR } e;
1257/// };
1258///
1259/// void test_S6() {
1260///   struct S6 a;
1261///   a.e = BAR;
1262/// }
1263/// @endcode
1264/// For the declaration of BAR, this routine will return a different
1265/// scope. The scope S will be the scope of the unnamed enumeration
1266/// within S6. In C++, this routine will return the scope associated
1267/// with S6, because the enumeration's scope is a transparent
1268/// context but structures can contain non-field names. In C, this
1269/// routine will return the translation unit scope, since the
1270/// enumeration's scope is a transparent context and structures cannot
1271/// contain non-field names.
1272Scope *Sema::getNonFieldDeclScope(Scope *S) {
1273  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1274         (S->getEntity() &&
1275          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1276         (S->isClassScope() && !getLangOptions().CPlusPlus))
1277    S = S->getParent();
1278  return S;
1279}
1280
1281/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1282/// file scope.  lazily create a decl for it. ForRedeclaration is true
1283/// if we're creating this built-in in anticipation of redeclaring the
1284/// built-in.
1285NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1286                                     Scope *S, bool ForRedeclaration,
1287                                     SourceLocation Loc) {
1288  Builtin::ID BID = (Builtin::ID)bid;
1289
1290  ASTContext::GetBuiltinTypeError Error;
1291  QualType R = Context.GetBuiltinType(BID, Error);
1292  switch (Error) {
1293  case ASTContext::GE_None:
1294    // Okay
1295    break;
1296
1297  case ASTContext::GE_Missing_stdio:
1298    if (ForRedeclaration)
1299      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1300        << Context.BuiltinInfo.GetName(BID);
1301    return 0;
1302
1303  case ASTContext::GE_Missing_setjmp:
1304    if (ForRedeclaration)
1305      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1306        << Context.BuiltinInfo.GetName(BID);
1307    return 0;
1308  }
1309
1310  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1311    Diag(Loc, diag::ext_implicit_lib_function_decl)
1312      << Context.BuiltinInfo.GetName(BID)
1313      << R;
1314    if (Context.BuiltinInfo.getHeaderName(BID) &&
1315        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1316          != DiagnosticsEngine::Ignored)
1317      Diag(Loc, diag::note_please_include_header)
1318        << Context.BuiltinInfo.getHeaderName(BID)
1319        << Context.BuiltinInfo.GetName(BID);
1320  }
1321
1322  FunctionDecl *New = FunctionDecl::Create(Context,
1323                                           Context.getTranslationUnitDecl(),
1324                                           Loc, Loc, II, R, /*TInfo=*/0,
1325                                           SC_Extern,
1326                                           SC_None, false,
1327                                           /*hasPrototype=*/true);
1328  New->setImplicit();
1329
1330  // Create Decl objects for each parameter, adding them to the
1331  // FunctionDecl.
1332  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1333    SmallVector<ParmVarDecl*, 16> Params;
1334    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1335      ParmVarDecl *parm =
1336        ParmVarDecl::Create(Context, New, SourceLocation(),
1337                            SourceLocation(), 0,
1338                            FT->getArgType(i), /*TInfo=*/0,
1339                            SC_None, SC_None, 0);
1340      parm->setScopeInfo(0, i);
1341      Params.push_back(parm);
1342    }
1343    New->setParams(Params);
1344  }
1345
1346  AddKnownFunctionAttributes(New);
1347
1348  // TUScope is the translation-unit scope to insert this function into.
1349  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1350  // relate Scopes to DeclContexts, and probably eliminate CurContext
1351  // entirely, but we're not there yet.
1352  DeclContext *SavedContext = CurContext;
1353  CurContext = Context.getTranslationUnitDecl();
1354  PushOnScopeChains(New, TUScope);
1355  CurContext = SavedContext;
1356  return New;
1357}
1358
1359/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1360/// same name and scope as a previous declaration 'Old'.  Figure out
1361/// how to resolve this situation, merging decls or emitting
1362/// diagnostics as appropriate. If there was an error, set New to be invalid.
1363///
1364void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1365  // If the new decl is known invalid already, don't bother doing any
1366  // merging checks.
1367  if (New->isInvalidDecl()) return;
1368
1369  // Allow multiple definitions for ObjC built-in typedefs.
1370  // FIXME: Verify the underlying types are equivalent!
1371  if (getLangOptions().ObjC1) {
1372    const IdentifierInfo *TypeID = New->getIdentifier();
1373    switch (TypeID->getLength()) {
1374    default: break;
1375    case 2:
1376      if (!TypeID->isStr("id"))
1377        break;
1378      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1379      // Install the built-in type for 'id', ignoring the current definition.
1380      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1381      return;
1382    case 5:
1383      if (!TypeID->isStr("Class"))
1384        break;
1385      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1386      // Install the built-in type for 'Class', ignoring the current definition.
1387      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1388      return;
1389    case 3:
1390      if (!TypeID->isStr("SEL"))
1391        break;
1392      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1393      // Install the built-in type for 'SEL', ignoring the current definition.
1394      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1395      return;
1396    }
1397    // Fall through - the typedef name was not a builtin type.
1398  }
1399
1400  // Verify the old decl was also a type.
1401  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1402  if (!Old) {
1403    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1404      << New->getDeclName();
1405
1406    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1407    if (OldD->getLocation().isValid())
1408      Diag(OldD->getLocation(), diag::note_previous_definition);
1409
1410    return New->setInvalidDecl();
1411  }
1412
1413  // If the old declaration is invalid, just give up here.
1414  if (Old->isInvalidDecl())
1415    return New->setInvalidDecl();
1416
1417  // Determine the "old" type we'll use for checking and diagnostics.
1418  QualType OldType;
1419  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1420    OldType = OldTypedef->getUnderlyingType();
1421  else
1422    OldType = Context.getTypeDeclType(Old);
1423
1424  // If the typedef types are not identical, reject them in all languages and
1425  // with any extensions enabled.
1426
1427  if (OldType != New->getUnderlyingType() &&
1428      Context.getCanonicalType(OldType) !=
1429      Context.getCanonicalType(New->getUnderlyingType())) {
1430    int Kind = 0;
1431    if (isa<TypeAliasDecl>(Old))
1432      Kind = 1;
1433    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1434      << Kind << New->getUnderlyingType() << OldType;
1435    if (Old->getLocation().isValid())
1436      Diag(Old->getLocation(), diag::note_previous_definition);
1437    return New->setInvalidDecl();
1438  }
1439
1440  // The types match.  Link up the redeclaration chain if the old
1441  // declaration was a typedef.
1442  // FIXME: this is a potential source of weirdness if the type
1443  // spellings don't match exactly.
1444  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1445    New->setPreviousDeclaration(Typedef);
1446
1447  // __module_private__ is propagated to later declarations.
1448  if (Old->isModulePrivate())
1449    New->setModulePrivate();
1450  else if (New->isModulePrivate())
1451    diagnoseModulePrivateRedeclaration(New, Old);
1452
1453  if (getLangOptions().MicrosoftExt)
1454    return;
1455
1456  if (getLangOptions().CPlusPlus) {
1457    // C++ [dcl.typedef]p2:
1458    //   In a given non-class scope, a typedef specifier can be used to
1459    //   redefine the name of any type declared in that scope to refer
1460    //   to the type to which it already refers.
1461    if (!isa<CXXRecordDecl>(CurContext))
1462      return;
1463
1464    // C++0x [dcl.typedef]p4:
1465    //   In a given class scope, a typedef specifier can be used to redefine
1466    //   any class-name declared in that scope that is not also a typedef-name
1467    //   to refer to the type to which it already refers.
1468    //
1469    // This wording came in via DR424, which was a correction to the
1470    // wording in DR56, which accidentally banned code like:
1471    //
1472    //   struct S {
1473    //     typedef struct A { } A;
1474    //   };
1475    //
1476    // in the C++03 standard. We implement the C++0x semantics, which
1477    // allow the above but disallow
1478    //
1479    //   struct S {
1480    //     typedef int I;
1481    //     typedef int I;
1482    //   };
1483    //
1484    // since that was the intent of DR56.
1485    if (!isa<TypedefNameDecl>(Old))
1486      return;
1487
1488    Diag(New->getLocation(), diag::err_redefinition)
1489      << New->getDeclName();
1490    Diag(Old->getLocation(), diag::note_previous_definition);
1491    return New->setInvalidDecl();
1492  }
1493
1494  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1495  // is normally mapped to an error, but can be controlled with
1496  // -Wtypedef-redefinition.  If either the original or the redefinition is
1497  // in a system header, don't emit this for compatibility with GCC.
1498  if (getDiagnostics().getSuppressSystemWarnings() &&
1499      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1500       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1501    return;
1502
1503  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1504    << New->getDeclName();
1505  Diag(Old->getLocation(), diag::note_previous_definition);
1506  return;
1507}
1508
1509/// DeclhasAttr - returns true if decl Declaration already has the target
1510/// attribute.
1511static bool
1512DeclHasAttr(const Decl *D, const Attr *A) {
1513  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1514  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1515  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1516    if ((*i)->getKind() == A->getKind()) {
1517      if (Ann) {
1518        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1519          return true;
1520        continue;
1521      }
1522      // FIXME: Don't hardcode this check
1523      if (OA && isa<OwnershipAttr>(*i))
1524        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1525      return true;
1526    }
1527
1528  return false;
1529}
1530
1531/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1532static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1533                                ASTContext &C, bool mergeDeprecation = true) {
1534  if (!oldDecl->hasAttrs())
1535    return;
1536
1537  bool foundAny = newDecl->hasAttrs();
1538
1539  // Ensure that any moving of objects within the allocated map is done before
1540  // we process them.
1541  if (!foundAny) newDecl->setAttrs(AttrVec());
1542
1543  for (specific_attr_iterator<InheritableAttr>
1544       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1545       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1546    // Ignore deprecated/unavailable/availability attributes if requested.
1547    if (!mergeDeprecation &&
1548        (isa<DeprecatedAttr>(*i) ||
1549         isa<UnavailableAttr>(*i) ||
1550         isa<AvailabilityAttr>(*i)))
1551      continue;
1552
1553    if (!DeclHasAttr(newDecl, *i)) {
1554      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1555      newAttr->setInherited(true);
1556      newDecl->addAttr(newAttr);
1557      foundAny = true;
1558    }
1559  }
1560
1561  if (!foundAny) newDecl->dropAttrs();
1562}
1563
1564/// mergeParamDeclAttributes - Copy attributes from the old parameter
1565/// to the new one.
1566static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1567                                     const ParmVarDecl *oldDecl,
1568                                     ASTContext &C) {
1569  if (!oldDecl->hasAttrs())
1570    return;
1571
1572  bool foundAny = newDecl->hasAttrs();
1573
1574  // Ensure that any moving of objects within the allocated map is
1575  // done before we process them.
1576  if (!foundAny) newDecl->setAttrs(AttrVec());
1577
1578  for (specific_attr_iterator<InheritableParamAttr>
1579       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1580       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1581    if (!DeclHasAttr(newDecl, *i)) {
1582      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1583      newAttr->setInherited(true);
1584      newDecl->addAttr(newAttr);
1585      foundAny = true;
1586    }
1587  }
1588
1589  if (!foundAny) newDecl->dropAttrs();
1590}
1591
1592namespace {
1593
1594/// Used in MergeFunctionDecl to keep track of function parameters in
1595/// C.
1596struct GNUCompatibleParamWarning {
1597  ParmVarDecl *OldParm;
1598  ParmVarDecl *NewParm;
1599  QualType PromotedType;
1600};
1601
1602}
1603
1604/// getSpecialMember - get the special member enum for a method.
1605Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1606  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1607    if (Ctor->isDefaultConstructor())
1608      return Sema::CXXDefaultConstructor;
1609
1610    if (Ctor->isCopyConstructor())
1611      return Sema::CXXCopyConstructor;
1612
1613    if (Ctor->isMoveConstructor())
1614      return Sema::CXXMoveConstructor;
1615  } else if (isa<CXXDestructorDecl>(MD)) {
1616    return Sema::CXXDestructor;
1617  } else if (MD->isCopyAssignmentOperator()) {
1618    return Sema::CXXCopyAssignment;
1619  } else if (MD->isMoveAssignmentOperator()) {
1620    return Sema::CXXMoveAssignment;
1621  }
1622
1623  return Sema::CXXInvalid;
1624}
1625
1626/// canRedefineFunction - checks if a function can be redefined. Currently,
1627/// only extern inline functions can be redefined, and even then only in
1628/// GNU89 mode.
1629static bool canRedefineFunction(const FunctionDecl *FD,
1630                                const LangOptions& LangOpts) {
1631  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1632          !LangOpts.CPlusPlus &&
1633          FD->isInlineSpecified() &&
1634          FD->getStorageClass() == SC_Extern);
1635}
1636
1637/// MergeFunctionDecl - We just parsed a function 'New' from
1638/// declarator D which has the same name and scope as a previous
1639/// declaration 'Old'.  Figure out how to resolve this situation,
1640/// merging decls or emitting diagnostics as appropriate.
1641///
1642/// In C++, New and Old must be declarations that are not
1643/// overloaded. Use IsOverload to determine whether New and Old are
1644/// overloaded, and to select the Old declaration that New should be
1645/// merged with.
1646///
1647/// Returns true if there was an error, false otherwise.
1648bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1649  // Verify the old decl was also a function.
1650  FunctionDecl *Old = 0;
1651  if (FunctionTemplateDecl *OldFunctionTemplate
1652        = dyn_cast<FunctionTemplateDecl>(OldD))
1653    Old = OldFunctionTemplate->getTemplatedDecl();
1654  else
1655    Old = dyn_cast<FunctionDecl>(OldD);
1656  if (!Old) {
1657    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1658      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1659      Diag(Shadow->getTargetDecl()->getLocation(),
1660           diag::note_using_decl_target);
1661      Diag(Shadow->getUsingDecl()->getLocation(),
1662           diag::note_using_decl) << 0;
1663      return true;
1664    }
1665
1666    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1667      << New->getDeclName();
1668    Diag(OldD->getLocation(), diag::note_previous_definition);
1669    return true;
1670  }
1671
1672  // Determine whether the previous declaration was a definition,
1673  // implicit declaration, or a declaration.
1674  diag::kind PrevDiag;
1675  if (Old->isThisDeclarationADefinition())
1676    PrevDiag = diag::note_previous_definition;
1677  else if (Old->isImplicit())
1678    PrevDiag = diag::note_previous_implicit_declaration;
1679  else
1680    PrevDiag = diag::note_previous_declaration;
1681
1682  QualType OldQType = Context.getCanonicalType(Old->getType());
1683  QualType NewQType = Context.getCanonicalType(New->getType());
1684
1685  // Don't complain about this if we're in GNU89 mode and the old function
1686  // is an extern inline function.
1687  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1688      New->getStorageClass() == SC_Static &&
1689      Old->getStorageClass() != SC_Static &&
1690      !canRedefineFunction(Old, getLangOptions())) {
1691    if (getLangOptions().MicrosoftExt) {
1692      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1693      Diag(Old->getLocation(), PrevDiag);
1694    } else {
1695      Diag(New->getLocation(), diag::err_static_non_static) << New;
1696      Diag(Old->getLocation(), PrevDiag);
1697      return true;
1698    }
1699  }
1700
1701  // If a function is first declared with a calling convention, but is
1702  // later declared or defined without one, the second decl assumes the
1703  // calling convention of the first.
1704  //
1705  // For the new decl, we have to look at the NON-canonical type to tell the
1706  // difference between a function that really doesn't have a calling
1707  // convention and one that is declared cdecl. That's because in
1708  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1709  // because it is the default calling convention.
1710  //
1711  // Note also that we DO NOT return at this point, because we still have
1712  // other tests to run.
1713  const FunctionType *OldType = cast<FunctionType>(OldQType);
1714  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1715  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1716  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1717  bool RequiresAdjustment = false;
1718  if (OldTypeInfo.getCC() != CC_Default &&
1719      NewTypeInfo.getCC() == CC_Default) {
1720    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1721    RequiresAdjustment = true;
1722  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1723                                     NewTypeInfo.getCC())) {
1724    // Calling conventions really aren't compatible, so complain.
1725    Diag(New->getLocation(), diag::err_cconv_change)
1726      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1727      << (OldTypeInfo.getCC() == CC_Default)
1728      << (OldTypeInfo.getCC() == CC_Default ? "" :
1729          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1730    Diag(Old->getLocation(), diag::note_previous_declaration);
1731    return true;
1732  }
1733
1734  // FIXME: diagnose the other way around?
1735  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1736    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1737    RequiresAdjustment = true;
1738  }
1739
1740  // Merge regparm attribute.
1741  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1742      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1743    if (NewTypeInfo.getHasRegParm()) {
1744      Diag(New->getLocation(), diag::err_regparm_mismatch)
1745        << NewType->getRegParmType()
1746        << OldType->getRegParmType();
1747      Diag(Old->getLocation(), diag::note_previous_declaration);
1748      return true;
1749    }
1750
1751    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1752    RequiresAdjustment = true;
1753  }
1754
1755  // Merge ns_returns_retained attribute.
1756  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1757    if (NewTypeInfo.getProducesResult()) {
1758      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1759      Diag(Old->getLocation(), diag::note_previous_declaration);
1760      return true;
1761    }
1762
1763    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1764    RequiresAdjustment = true;
1765  }
1766
1767  if (RequiresAdjustment) {
1768    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1769    New->setType(QualType(NewType, 0));
1770    NewQType = Context.getCanonicalType(New->getType());
1771  }
1772
1773  if (getLangOptions().CPlusPlus) {
1774    // (C++98 13.1p2):
1775    //   Certain function declarations cannot be overloaded:
1776    //     -- Function declarations that differ only in the return type
1777    //        cannot be overloaded.
1778    QualType OldReturnType = OldType->getResultType();
1779    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1780    QualType ResQT;
1781    if (OldReturnType != NewReturnType) {
1782      if (NewReturnType->isObjCObjectPointerType()
1783          && OldReturnType->isObjCObjectPointerType())
1784        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1785      if (ResQT.isNull()) {
1786        if (New->isCXXClassMember() && New->isOutOfLine())
1787          Diag(New->getLocation(),
1788               diag::err_member_def_does_not_match_ret_type) << New;
1789        else
1790          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1791        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1792        return true;
1793      }
1794      else
1795        NewQType = ResQT;
1796    }
1797
1798    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1799    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1800    if (OldMethod && NewMethod) {
1801      // Preserve triviality.
1802      NewMethod->setTrivial(OldMethod->isTrivial());
1803
1804      // MSVC allows explicit template specialization at class scope:
1805      // 2 CXMethodDecls referring to the same function will be injected.
1806      // We don't want a redeclartion error.
1807      bool IsClassScopeExplicitSpecialization =
1808                              OldMethod->isFunctionTemplateSpecialization() &&
1809                              NewMethod->isFunctionTemplateSpecialization();
1810      bool isFriend = NewMethod->getFriendObjectKind();
1811
1812      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1813          !IsClassScopeExplicitSpecialization) {
1814        //    -- Member function declarations with the same name and the
1815        //       same parameter types cannot be overloaded if any of them
1816        //       is a static member function declaration.
1817        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1818          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1819          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1820          return true;
1821        }
1822
1823        // C++ [class.mem]p1:
1824        //   [...] A member shall not be declared twice in the
1825        //   member-specification, except that a nested class or member
1826        //   class template can be declared and then later defined.
1827        unsigned NewDiag;
1828        if (isa<CXXConstructorDecl>(OldMethod))
1829          NewDiag = diag::err_constructor_redeclared;
1830        else if (isa<CXXDestructorDecl>(NewMethod))
1831          NewDiag = diag::err_destructor_redeclared;
1832        else if (isa<CXXConversionDecl>(NewMethod))
1833          NewDiag = diag::err_conv_function_redeclared;
1834        else
1835          NewDiag = diag::err_member_redeclared;
1836
1837        Diag(New->getLocation(), NewDiag);
1838        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1839
1840      // Complain if this is an explicit declaration of a special
1841      // member that was initially declared implicitly.
1842      //
1843      // As an exception, it's okay to befriend such methods in order
1844      // to permit the implicit constructor/destructor/operator calls.
1845      } else if (OldMethod->isImplicit()) {
1846        if (isFriend) {
1847          NewMethod->setImplicit();
1848        } else {
1849          Diag(NewMethod->getLocation(),
1850               diag::err_definition_of_implicitly_declared_member)
1851            << New << getSpecialMember(OldMethod);
1852          return true;
1853        }
1854      } else if (OldMethod->isExplicitlyDefaulted()) {
1855        Diag(NewMethod->getLocation(),
1856             diag::err_definition_of_explicitly_defaulted_member)
1857          << getSpecialMember(OldMethod);
1858        return true;
1859      }
1860    }
1861
1862    // (C++98 8.3.5p3):
1863    //   All declarations for a function shall agree exactly in both the
1864    //   return type and the parameter-type-list.
1865    // We also want to respect all the extended bits except noreturn.
1866
1867    // noreturn should now match unless the old type info didn't have it.
1868    QualType OldQTypeForComparison = OldQType;
1869    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1870      assert(OldQType == QualType(OldType, 0));
1871      const FunctionType *OldTypeForComparison
1872        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1873      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1874      assert(OldQTypeForComparison.isCanonical());
1875    }
1876
1877    if (OldQTypeForComparison == NewQType)
1878      return MergeCompatibleFunctionDecls(New, Old);
1879
1880    // Fall through for conflicting redeclarations and redefinitions.
1881  }
1882
1883  // C: Function types need to be compatible, not identical. This handles
1884  // duplicate function decls like "void f(int); void f(enum X);" properly.
1885  if (!getLangOptions().CPlusPlus &&
1886      Context.typesAreCompatible(OldQType, NewQType)) {
1887    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1888    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1889    const FunctionProtoType *OldProto = 0;
1890    if (isa<FunctionNoProtoType>(NewFuncType) &&
1891        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1892      // The old declaration provided a function prototype, but the
1893      // new declaration does not. Merge in the prototype.
1894      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1895      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1896                                                 OldProto->arg_type_end());
1897      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1898                                         ParamTypes.data(), ParamTypes.size(),
1899                                         OldProto->getExtProtoInfo());
1900      New->setType(NewQType);
1901      New->setHasInheritedPrototype();
1902
1903      // Synthesize a parameter for each argument type.
1904      SmallVector<ParmVarDecl*, 16> Params;
1905      for (FunctionProtoType::arg_type_iterator
1906             ParamType = OldProto->arg_type_begin(),
1907             ParamEnd = OldProto->arg_type_end();
1908           ParamType != ParamEnd; ++ParamType) {
1909        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1910                                                 SourceLocation(),
1911                                                 SourceLocation(), 0,
1912                                                 *ParamType, /*TInfo=*/0,
1913                                                 SC_None, SC_None,
1914                                                 0);
1915        Param->setScopeInfo(0, Params.size());
1916        Param->setImplicit();
1917        Params.push_back(Param);
1918      }
1919
1920      New->setParams(Params);
1921    }
1922
1923    return MergeCompatibleFunctionDecls(New, Old);
1924  }
1925
1926  // GNU C permits a K&R definition to follow a prototype declaration
1927  // if the declared types of the parameters in the K&R definition
1928  // match the types in the prototype declaration, even when the
1929  // promoted types of the parameters from the K&R definition differ
1930  // from the types in the prototype. GCC then keeps the types from
1931  // the prototype.
1932  //
1933  // If a variadic prototype is followed by a non-variadic K&R definition,
1934  // the K&R definition becomes variadic.  This is sort of an edge case, but
1935  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1936  // C99 6.9.1p8.
1937  if (!getLangOptions().CPlusPlus &&
1938      Old->hasPrototype() && !New->hasPrototype() &&
1939      New->getType()->getAs<FunctionProtoType>() &&
1940      Old->getNumParams() == New->getNumParams()) {
1941    SmallVector<QualType, 16> ArgTypes;
1942    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1943    const FunctionProtoType *OldProto
1944      = Old->getType()->getAs<FunctionProtoType>();
1945    const FunctionProtoType *NewProto
1946      = New->getType()->getAs<FunctionProtoType>();
1947
1948    // Determine whether this is the GNU C extension.
1949    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1950                                               NewProto->getResultType());
1951    bool LooseCompatible = !MergedReturn.isNull();
1952    for (unsigned Idx = 0, End = Old->getNumParams();
1953         LooseCompatible && Idx != End; ++Idx) {
1954      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1955      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1956      if (Context.typesAreCompatible(OldParm->getType(),
1957                                     NewProto->getArgType(Idx))) {
1958        ArgTypes.push_back(NewParm->getType());
1959      } else if (Context.typesAreCompatible(OldParm->getType(),
1960                                            NewParm->getType(),
1961                                            /*CompareUnqualified=*/true)) {
1962        GNUCompatibleParamWarning Warn
1963          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1964        Warnings.push_back(Warn);
1965        ArgTypes.push_back(NewParm->getType());
1966      } else
1967        LooseCompatible = false;
1968    }
1969
1970    if (LooseCompatible) {
1971      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1972        Diag(Warnings[Warn].NewParm->getLocation(),
1973             diag::ext_param_promoted_not_compatible_with_prototype)
1974          << Warnings[Warn].PromotedType
1975          << Warnings[Warn].OldParm->getType();
1976        if (Warnings[Warn].OldParm->getLocation().isValid())
1977          Diag(Warnings[Warn].OldParm->getLocation(),
1978               diag::note_previous_declaration);
1979      }
1980
1981      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1982                                           ArgTypes.size(),
1983                                           OldProto->getExtProtoInfo()));
1984      return MergeCompatibleFunctionDecls(New, Old);
1985    }
1986
1987    // Fall through to diagnose conflicting types.
1988  }
1989
1990  // A function that has already been declared has been redeclared or defined
1991  // with a different type- show appropriate diagnostic
1992  if (unsigned BuiltinID = Old->getBuiltinID()) {
1993    // The user has declared a builtin function with an incompatible
1994    // signature.
1995    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1996      // The function the user is redeclaring is a library-defined
1997      // function like 'malloc' or 'printf'. Warn about the
1998      // redeclaration, then pretend that we don't know about this
1999      // library built-in.
2000      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2001      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2002        << Old << Old->getType();
2003      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2004      Old->setInvalidDecl();
2005      return false;
2006    }
2007
2008    PrevDiag = diag::note_previous_builtin_declaration;
2009  }
2010
2011  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2012  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2013  return true;
2014}
2015
2016/// \brief Completes the merge of two function declarations that are
2017/// known to be compatible.
2018///
2019/// This routine handles the merging of attributes and other
2020/// properties of function declarations form the old declaration to
2021/// the new declaration, once we know that New is in fact a
2022/// redeclaration of Old.
2023///
2024/// \returns false
2025bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2026  // Merge the attributes
2027  mergeDeclAttributes(New, Old, Context);
2028
2029  // Merge the storage class.
2030  if (Old->getStorageClass() != SC_Extern &&
2031      Old->getStorageClass() != SC_None)
2032    New->setStorageClass(Old->getStorageClass());
2033
2034  // Merge "pure" flag.
2035  if (Old->isPure())
2036    New->setPure();
2037
2038  // __module_private__ is propagated to later declarations.
2039  if (Old->isModulePrivate())
2040    New->setModulePrivate();
2041  else if (New->isModulePrivate())
2042    diagnoseModulePrivateRedeclaration(New, Old);
2043
2044  // Merge attributes from the parameters.  These can mismatch with K&R
2045  // declarations.
2046  if (New->getNumParams() == Old->getNumParams())
2047    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2048      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2049                               Context);
2050
2051  if (getLangOptions().CPlusPlus)
2052    return MergeCXXFunctionDecl(New, Old);
2053
2054  return false;
2055}
2056
2057
2058void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2059                                const ObjCMethodDecl *oldMethod) {
2060  // We don't want to merge unavailable and deprecated attributes
2061  // except from interface to implementation.
2062  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2063
2064  // Merge the attributes.
2065  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2066
2067  // Merge attributes from the parameters.
2068  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2069  for (ObjCMethodDecl::param_iterator
2070         ni = newMethod->param_begin(), ne = newMethod->param_end();
2071       ni != ne; ++ni, ++oi)
2072    mergeParamDeclAttributes(*ni, *oi, Context);
2073
2074  CheckObjCMethodOverride(newMethod, oldMethod, true);
2075}
2076
2077/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2078/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2079/// emitting diagnostics as appropriate.
2080///
2081/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2082/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2083/// check them before the initializer is attached.
2084///
2085void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2086  if (New->isInvalidDecl() || Old->isInvalidDecl())
2087    return;
2088
2089  QualType MergedT;
2090  if (getLangOptions().CPlusPlus) {
2091    AutoType *AT = New->getType()->getContainedAutoType();
2092    if (AT && !AT->isDeduced()) {
2093      // We don't know what the new type is until the initializer is attached.
2094      return;
2095    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2096      // These could still be something that needs exception specs checked.
2097      return MergeVarDeclExceptionSpecs(New, Old);
2098    }
2099    // C++ [basic.link]p10:
2100    //   [...] the types specified by all declarations referring to a given
2101    //   object or function shall be identical, except that declarations for an
2102    //   array object can specify array types that differ by the presence or
2103    //   absence of a major array bound (8.3.4).
2104    else if (Old->getType()->isIncompleteArrayType() &&
2105             New->getType()->isArrayType()) {
2106      CanQual<ArrayType> OldArray
2107        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2108      CanQual<ArrayType> NewArray
2109        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2110      if (OldArray->getElementType() == NewArray->getElementType())
2111        MergedT = New->getType();
2112    } else if (Old->getType()->isArrayType() &&
2113             New->getType()->isIncompleteArrayType()) {
2114      CanQual<ArrayType> OldArray
2115        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2116      CanQual<ArrayType> NewArray
2117        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2118      if (OldArray->getElementType() == NewArray->getElementType())
2119        MergedT = Old->getType();
2120    } else if (New->getType()->isObjCObjectPointerType()
2121               && Old->getType()->isObjCObjectPointerType()) {
2122        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2123                                                        Old->getType());
2124    }
2125  } else {
2126    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2127  }
2128  if (MergedT.isNull()) {
2129    Diag(New->getLocation(), diag::err_redefinition_different_type)
2130      << New->getDeclName();
2131    Diag(Old->getLocation(), diag::note_previous_definition);
2132    return New->setInvalidDecl();
2133  }
2134  New->setType(MergedT);
2135}
2136
2137/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2138/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2139/// situation, merging decls or emitting diagnostics as appropriate.
2140///
2141/// Tentative definition rules (C99 6.9.2p2) are checked by
2142/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2143/// definitions here, since the initializer hasn't been attached.
2144///
2145void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2146  // If the new decl is already invalid, don't do any other checking.
2147  if (New->isInvalidDecl())
2148    return;
2149
2150  // Verify the old decl was also a variable.
2151  VarDecl *Old = 0;
2152  if (!Previous.isSingleResult() ||
2153      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2154    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2155      << New->getDeclName();
2156    Diag(Previous.getRepresentativeDecl()->getLocation(),
2157         diag::note_previous_definition);
2158    return New->setInvalidDecl();
2159  }
2160
2161  // C++ [class.mem]p1:
2162  //   A member shall not be declared twice in the member-specification [...]
2163  //
2164  // Here, we need only consider static data members.
2165  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2166    Diag(New->getLocation(), diag::err_duplicate_member)
2167      << New->getIdentifier();
2168    Diag(Old->getLocation(), diag::note_previous_declaration);
2169    New->setInvalidDecl();
2170  }
2171
2172  mergeDeclAttributes(New, Old, Context);
2173  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2174  if (New->getAttr<WeakImportAttr>() &&
2175      Old->getStorageClass() == SC_None &&
2176      !Old->getAttr<WeakImportAttr>()) {
2177    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2178    Diag(Old->getLocation(), diag::note_previous_definition);
2179    // Remove weak_import attribute on new declaration.
2180    New->dropAttr<WeakImportAttr>();
2181  }
2182
2183  // Merge the types.
2184  MergeVarDeclTypes(New, Old);
2185  if (New->isInvalidDecl())
2186    return;
2187
2188  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2189  if (New->getStorageClass() == SC_Static &&
2190      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2191    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    return New->setInvalidDecl();
2194  }
2195  // C99 6.2.2p4:
2196  //   For an identifier declared with the storage-class specifier
2197  //   extern in a scope in which a prior declaration of that
2198  //   identifier is visible,23) if the prior declaration specifies
2199  //   internal or external linkage, the linkage of the identifier at
2200  //   the later declaration is the same as the linkage specified at
2201  //   the prior declaration. If no prior declaration is visible, or
2202  //   if the prior declaration specifies no linkage, then the
2203  //   identifier has external linkage.
2204  if (New->hasExternalStorage() && Old->hasLinkage())
2205    /* Okay */;
2206  else if (New->getStorageClass() != SC_Static &&
2207           Old->getStorageClass() == SC_Static) {
2208    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2209    Diag(Old->getLocation(), diag::note_previous_definition);
2210    return New->setInvalidDecl();
2211  }
2212
2213  // Check if extern is followed by non-extern and vice-versa.
2214  if (New->hasExternalStorage() &&
2215      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2216    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2217    Diag(Old->getLocation(), diag::note_previous_definition);
2218    return New->setInvalidDecl();
2219  }
2220  if (Old->hasExternalStorage() &&
2221      !New->hasLinkage() && New->isLocalVarDecl()) {
2222    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2223    Diag(Old->getLocation(), diag::note_previous_definition);
2224    return New->setInvalidDecl();
2225  }
2226
2227  // __module_private__ is propagated to later declarations.
2228  if (Old->isModulePrivate())
2229    New->setModulePrivate();
2230  else if (New->isModulePrivate())
2231    diagnoseModulePrivateRedeclaration(New, Old);
2232
2233  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2234
2235  // FIXME: The test for external storage here seems wrong? We still
2236  // need to check for mismatches.
2237  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2238      // Don't complain about out-of-line definitions of static members.
2239      !(Old->getLexicalDeclContext()->isRecord() &&
2240        !New->getLexicalDeclContext()->isRecord())) {
2241    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2242    Diag(Old->getLocation(), diag::note_previous_definition);
2243    return New->setInvalidDecl();
2244  }
2245
2246  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2247    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2248    Diag(Old->getLocation(), diag::note_previous_definition);
2249  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2250    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2251    Diag(Old->getLocation(), diag::note_previous_definition);
2252  }
2253
2254  // C++ doesn't have tentative definitions, so go right ahead and check here.
2255  const VarDecl *Def;
2256  if (getLangOptions().CPlusPlus &&
2257      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2258      (Def = Old->getDefinition())) {
2259    Diag(New->getLocation(), diag::err_redefinition)
2260      << New->getDeclName();
2261    Diag(Def->getLocation(), diag::note_previous_definition);
2262    New->setInvalidDecl();
2263    return;
2264  }
2265  // c99 6.2.2 P4.
2266  // For an identifier declared with the storage-class specifier extern in a
2267  // scope in which a prior declaration of that identifier is visible, if
2268  // the prior declaration specifies internal or external linkage, the linkage
2269  // of the identifier at the later declaration is the same as the linkage
2270  // specified at the prior declaration.
2271  // FIXME. revisit this code.
2272  if (New->hasExternalStorage() &&
2273      Old->getLinkage() == InternalLinkage &&
2274      New->getDeclContext() == Old->getDeclContext())
2275    New->setStorageClass(Old->getStorageClass());
2276
2277  // Keep a chain of previous declarations.
2278  New->setPreviousDeclaration(Old);
2279
2280  // Inherit access appropriately.
2281  New->setAccess(Old->getAccess());
2282}
2283
2284/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2285/// no declarator (e.g. "struct foo;") is parsed.
2286Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2287                                       DeclSpec &DS) {
2288  return ParsedFreeStandingDeclSpec(S, AS, DS,
2289                                    MultiTemplateParamsArg(*this, 0, 0));
2290}
2291
2292/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2293/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2294/// parameters to cope with template friend declarations.
2295Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2296                                       DeclSpec &DS,
2297                                       MultiTemplateParamsArg TemplateParams) {
2298  Decl *TagD = 0;
2299  TagDecl *Tag = 0;
2300  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2301      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2302      DS.getTypeSpecType() == DeclSpec::TST_union ||
2303      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2304    TagD = DS.getRepAsDecl();
2305
2306    if (!TagD) // We probably had an error
2307      return 0;
2308
2309    // Note that the above type specs guarantee that the
2310    // type rep is a Decl, whereas in many of the others
2311    // it's a Type.
2312    Tag = dyn_cast<TagDecl>(TagD);
2313  }
2314
2315  if (Tag)
2316    Tag->setFreeStanding();
2317
2318  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2319    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2320    // or incomplete types shall not be restrict-qualified."
2321    if (TypeQuals & DeclSpec::TQ_restrict)
2322      Diag(DS.getRestrictSpecLoc(),
2323           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2324           << DS.getSourceRange();
2325  }
2326
2327  if (DS.isConstexprSpecified()) {
2328    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2329    // and definitions of functions and variables.
2330    if (Tag)
2331      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2332        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2333            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2334            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2335    else
2336      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2337    // Don't emit warnings after this error.
2338    return TagD;
2339  }
2340
2341  if (DS.isFriendSpecified()) {
2342    // If we're dealing with a decl but not a TagDecl, assume that
2343    // whatever routines created it handled the friendship aspect.
2344    if (TagD && !Tag)
2345      return 0;
2346    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2347  }
2348
2349  // Track whether we warned about the fact that there aren't any
2350  // declarators.
2351  bool emittedWarning = false;
2352
2353  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2354    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2355
2356    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2357        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2358      if (getLangOptions().CPlusPlus ||
2359          Record->getDeclContext()->isRecord())
2360        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2361
2362      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2363        << DS.getSourceRange();
2364      emittedWarning = true;
2365    }
2366  }
2367
2368  // Check for Microsoft C extension: anonymous struct.
2369  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2370      CurContext->isRecord() &&
2371      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2372    // Handle 2 kinds of anonymous struct:
2373    //   struct STRUCT;
2374    // and
2375    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2376    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2377    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2378        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2379         DS.getRepAsType().get()->isStructureType())) {
2380      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2381        << DS.getSourceRange();
2382      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2383    }
2384  }
2385
2386  if (getLangOptions().CPlusPlus &&
2387      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2388    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2389      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2390          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2391        Diag(Enum->getLocation(), diag::ext_no_declarators)
2392          << DS.getSourceRange();
2393        emittedWarning = true;
2394      }
2395
2396  // Skip all the checks below if we have a type error.
2397  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2398
2399  if (!DS.isMissingDeclaratorOk()) {
2400    // Warn about typedefs of enums without names, since this is an
2401    // extension in both Microsoft and GNU.
2402    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2403        Tag && isa<EnumDecl>(Tag)) {
2404      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2405        << DS.getSourceRange();
2406      return Tag;
2407    }
2408
2409    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2410      << DS.getSourceRange();
2411    emittedWarning = true;
2412  }
2413
2414  // We're going to complain about a bunch of spurious specifiers;
2415  // only do this if we're declaring a tag, because otherwise we
2416  // should be getting diag::ext_no_declarators.
2417  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2418    return TagD;
2419
2420  // Note that a linkage-specification sets a storage class, but
2421  // 'extern "C" struct foo;' is actually valid and not theoretically
2422  // useless.
2423  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2424    if (!DS.isExternInLinkageSpec())
2425      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2426        << DeclSpec::getSpecifierName(scs);
2427
2428  if (DS.isThreadSpecified())
2429    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2430  if (DS.getTypeQualifiers()) {
2431    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2432      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2433    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2434      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2435    // Restrict is covered above.
2436  }
2437  if (DS.isInlineSpecified())
2438    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2439  if (DS.isVirtualSpecified())
2440    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2441  if (DS.isExplicitSpecified())
2442    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2443
2444  if (DS.isModulePrivateSpecified() &&
2445      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2446    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2447      << Tag->getTagKind()
2448      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2449
2450  // FIXME: Warn on useless attributes
2451
2452  return TagD;
2453}
2454
2455/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2456/// builds a statement for it and returns it so it is evaluated.
2457StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2458  StmtResult R;
2459  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2460    Expr *Exp = DS.getRepAsExpr();
2461    QualType Ty = Exp->getType();
2462    if (Ty->isPointerType()) {
2463      do
2464        Ty = Ty->getAs<PointerType>()->getPointeeType();
2465      while (Ty->isPointerType());
2466    }
2467    if (Ty->isVariableArrayType()) {
2468      R = ActOnExprStmt(MakeFullExpr(Exp));
2469    }
2470  }
2471  return R;
2472}
2473
2474/// We are trying to inject an anonymous member into the given scope;
2475/// check if there's an existing declaration that can't be overloaded.
2476///
2477/// \return true if this is a forbidden redeclaration
2478static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2479                                         Scope *S,
2480                                         DeclContext *Owner,
2481                                         DeclarationName Name,
2482                                         SourceLocation NameLoc,
2483                                         unsigned diagnostic) {
2484  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2485                 Sema::ForRedeclaration);
2486  if (!SemaRef.LookupName(R, S)) return false;
2487
2488  if (R.getAsSingle<TagDecl>())
2489    return false;
2490
2491  // Pick a representative declaration.
2492  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2493  assert(PrevDecl && "Expected a non-null Decl");
2494
2495  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2496    return false;
2497
2498  SemaRef.Diag(NameLoc, diagnostic) << Name;
2499  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2500
2501  return true;
2502}
2503
2504/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2505/// anonymous struct or union AnonRecord into the owning context Owner
2506/// and scope S. This routine will be invoked just after we realize
2507/// that an unnamed union or struct is actually an anonymous union or
2508/// struct, e.g.,
2509///
2510/// @code
2511/// union {
2512///   int i;
2513///   float f;
2514/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2515///    // f into the surrounding scope.x
2516/// @endcode
2517///
2518/// This routine is recursive, injecting the names of nested anonymous
2519/// structs/unions into the owning context and scope as well.
2520static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2521                                                DeclContext *Owner,
2522                                                RecordDecl *AnonRecord,
2523                                                AccessSpecifier AS,
2524                              SmallVector<NamedDecl*, 2> &Chaining,
2525                                                      bool MSAnonStruct) {
2526  unsigned diagKind
2527    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2528                            : diag::err_anonymous_struct_member_redecl;
2529
2530  bool Invalid = false;
2531
2532  // Look every FieldDecl and IndirectFieldDecl with a name.
2533  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2534                               DEnd = AnonRecord->decls_end();
2535       D != DEnd; ++D) {
2536    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2537        cast<NamedDecl>(*D)->getDeclName()) {
2538      ValueDecl *VD = cast<ValueDecl>(*D);
2539      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2540                                       VD->getLocation(), diagKind)) {
2541        // C++ [class.union]p2:
2542        //   The names of the members of an anonymous union shall be
2543        //   distinct from the names of any other entity in the
2544        //   scope in which the anonymous union is declared.
2545        Invalid = true;
2546      } else {
2547        // C++ [class.union]p2:
2548        //   For the purpose of name lookup, after the anonymous union
2549        //   definition, the members of the anonymous union are
2550        //   considered to have been defined in the scope in which the
2551        //   anonymous union is declared.
2552        unsigned OldChainingSize = Chaining.size();
2553        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2554          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2555               PE = IF->chain_end(); PI != PE; ++PI)
2556            Chaining.push_back(*PI);
2557        else
2558          Chaining.push_back(VD);
2559
2560        assert(Chaining.size() >= 2);
2561        NamedDecl **NamedChain =
2562          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2563        for (unsigned i = 0; i < Chaining.size(); i++)
2564          NamedChain[i] = Chaining[i];
2565
2566        IndirectFieldDecl* IndirectField =
2567          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2568                                    VD->getIdentifier(), VD->getType(),
2569                                    NamedChain, Chaining.size());
2570
2571        IndirectField->setAccess(AS);
2572        IndirectField->setImplicit();
2573        SemaRef.PushOnScopeChains(IndirectField, S);
2574
2575        // That includes picking up the appropriate access specifier.
2576        if (AS != AS_none) IndirectField->setAccess(AS);
2577
2578        Chaining.resize(OldChainingSize);
2579      }
2580    }
2581  }
2582
2583  return Invalid;
2584}
2585
2586/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2587/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2588/// illegal input values are mapped to SC_None.
2589static StorageClass
2590StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2591  switch (StorageClassSpec) {
2592  case DeclSpec::SCS_unspecified:    return SC_None;
2593  case DeclSpec::SCS_extern:         return SC_Extern;
2594  case DeclSpec::SCS_static:         return SC_Static;
2595  case DeclSpec::SCS_auto:           return SC_Auto;
2596  case DeclSpec::SCS_register:       return SC_Register;
2597  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2598    // Illegal SCSs map to None: error reporting is up to the caller.
2599  case DeclSpec::SCS_mutable:        // Fall through.
2600  case DeclSpec::SCS_typedef:        return SC_None;
2601  }
2602  llvm_unreachable("unknown storage class specifier");
2603}
2604
2605/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2606/// a StorageClass. Any error reporting is up to the caller:
2607/// illegal input values are mapped to SC_None.
2608static StorageClass
2609StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2610  switch (StorageClassSpec) {
2611  case DeclSpec::SCS_unspecified:    return SC_None;
2612  case DeclSpec::SCS_extern:         return SC_Extern;
2613  case DeclSpec::SCS_static:         return SC_Static;
2614  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2615    // Illegal SCSs map to None: error reporting is up to the caller.
2616  case DeclSpec::SCS_auto:           // Fall through.
2617  case DeclSpec::SCS_mutable:        // Fall through.
2618  case DeclSpec::SCS_register:       // Fall through.
2619  case DeclSpec::SCS_typedef:        return SC_None;
2620  }
2621  llvm_unreachable("unknown storage class specifier");
2622}
2623
2624/// BuildAnonymousStructOrUnion - Handle the declaration of an
2625/// anonymous structure or union. Anonymous unions are a C++ feature
2626/// (C++ [class.union]) and a GNU C extension; anonymous structures
2627/// are a GNU C and GNU C++ extension.
2628Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2629                                             AccessSpecifier AS,
2630                                             RecordDecl *Record) {
2631  DeclContext *Owner = Record->getDeclContext();
2632
2633  // Diagnose whether this anonymous struct/union is an extension.
2634  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2635    Diag(Record->getLocation(), diag::ext_anonymous_union);
2636  else if (!Record->isUnion())
2637    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2638
2639  // C and C++ require different kinds of checks for anonymous
2640  // structs/unions.
2641  bool Invalid = false;
2642  if (getLangOptions().CPlusPlus) {
2643    const char* PrevSpec = 0;
2644    unsigned DiagID;
2645    if (Record->isUnion()) {
2646      // C++ [class.union]p6:
2647      //   Anonymous unions declared in a named namespace or in the
2648      //   global namespace shall be declared static.
2649      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2650          (isa<TranslationUnitDecl>(Owner) ||
2651           (isa<NamespaceDecl>(Owner) &&
2652            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2653        Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2654        Invalid = true;
2655
2656        // Recover by adding 'static'.
2657        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2658                               PrevSpec, DiagID);
2659      }
2660      // C++ [class.union]p6:
2661      //   A storage class is not allowed in a declaration of an
2662      //   anonymous union in a class scope.
2663      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2664               isa<RecordDecl>(Owner)) {
2665        Diag(DS.getStorageClassSpecLoc(),
2666             diag::err_anonymous_union_with_storage_spec);
2667        Invalid = true;
2668
2669        // Recover by removing the storage specifier.
2670        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
2671                               PrevSpec, DiagID);
2672      }
2673    }
2674
2675    // Ignore const/volatile/restrict qualifiers.
2676    if (DS.getTypeQualifiers()) {
2677      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2678        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2679          << Record->isUnion() << 0
2680          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2681      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2682        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2683          << Record->isUnion() << 1
2684          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2685      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2686        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2687          << Record->isUnion() << 2
2688          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2689
2690      DS.ClearTypeQualifiers();
2691    }
2692
2693    // C++ [class.union]p2:
2694    //   The member-specification of an anonymous union shall only
2695    //   define non-static data members. [Note: nested types and
2696    //   functions cannot be declared within an anonymous union. ]
2697    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2698                                 MemEnd = Record->decls_end();
2699         Mem != MemEnd; ++Mem) {
2700      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2701        // C++ [class.union]p3:
2702        //   An anonymous union shall not have private or protected
2703        //   members (clause 11).
2704        assert(FD->getAccess() != AS_none);
2705        if (FD->getAccess() != AS_public) {
2706          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2707            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2708          Invalid = true;
2709        }
2710
2711        // C++ [class.union]p1
2712        //   An object of a class with a non-trivial constructor, a non-trivial
2713        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2714        //   assignment operator cannot be a member of a union, nor can an
2715        //   array of such objects.
2716        if (CheckNontrivialField(FD))
2717          Invalid = true;
2718      } else if ((*Mem)->isImplicit()) {
2719        // Any implicit members are fine.
2720      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2721        // This is a type that showed up in an
2722        // elaborated-type-specifier inside the anonymous struct or
2723        // union, but which actually declares a type outside of the
2724        // anonymous struct or union. It's okay.
2725      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2726        if (!MemRecord->isAnonymousStructOrUnion() &&
2727            MemRecord->getDeclName()) {
2728          // Visual C++ allows type definition in anonymous struct or union.
2729          if (getLangOptions().MicrosoftExt)
2730            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2731              << (int)Record->isUnion();
2732          else {
2733            // This is a nested type declaration.
2734            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2735              << (int)Record->isUnion();
2736            Invalid = true;
2737          }
2738        }
2739      } else if (isa<AccessSpecDecl>(*Mem)) {
2740        // Any access specifier is fine.
2741      } else {
2742        // We have something that isn't a non-static data
2743        // member. Complain about it.
2744        unsigned DK = diag::err_anonymous_record_bad_member;
2745        if (isa<TypeDecl>(*Mem))
2746          DK = diag::err_anonymous_record_with_type;
2747        else if (isa<FunctionDecl>(*Mem))
2748          DK = diag::err_anonymous_record_with_function;
2749        else if (isa<VarDecl>(*Mem))
2750          DK = diag::err_anonymous_record_with_static;
2751
2752        // Visual C++ allows type definition in anonymous struct or union.
2753        if (getLangOptions().MicrosoftExt &&
2754            DK == diag::err_anonymous_record_with_type)
2755          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2756            << (int)Record->isUnion();
2757        else {
2758          Diag((*Mem)->getLocation(), DK)
2759              << (int)Record->isUnion();
2760          Invalid = true;
2761        }
2762      }
2763    }
2764  }
2765
2766  if (!Record->isUnion() && !Owner->isRecord()) {
2767    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2768      << (int)getLangOptions().CPlusPlus;
2769    Invalid = true;
2770  }
2771
2772  // Mock up a declarator.
2773  Declarator Dc(DS, Declarator::MemberContext);
2774  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2775  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2776
2777  // Create a declaration for this anonymous struct/union.
2778  NamedDecl *Anon = 0;
2779  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2780    Anon = FieldDecl::Create(Context, OwningClass,
2781                             DS.getSourceRange().getBegin(),
2782                             Record->getLocation(),
2783                             /*IdentifierInfo=*/0,
2784                             Context.getTypeDeclType(Record),
2785                             TInfo,
2786                             /*BitWidth=*/0, /*Mutable=*/false,
2787                             /*HasInit=*/false);
2788    Anon->setAccess(AS);
2789    if (getLangOptions().CPlusPlus)
2790      FieldCollector->Add(cast<FieldDecl>(Anon));
2791  } else {
2792    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2793    assert(SCSpec != DeclSpec::SCS_typedef &&
2794           "Parser allowed 'typedef' as storage class VarDecl.");
2795    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2796    if (SCSpec == DeclSpec::SCS_mutable) {
2797      // mutable can only appear on non-static class members, so it's always
2798      // an error here
2799      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2800      Invalid = true;
2801      SC = SC_None;
2802    }
2803    SCSpec = DS.getStorageClassSpecAsWritten();
2804    VarDecl::StorageClass SCAsWritten
2805      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2806
2807    Anon = VarDecl::Create(Context, Owner,
2808                           DS.getSourceRange().getBegin(),
2809                           Record->getLocation(), /*IdentifierInfo=*/0,
2810                           Context.getTypeDeclType(Record),
2811                           TInfo, SC, SCAsWritten);
2812
2813    // Default-initialize the implicit variable. This initialization will be
2814    // trivial in almost all cases, except if a union member has an in-class
2815    // initializer:
2816    //   union { int n = 0; };
2817    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2818  }
2819  Anon->setImplicit();
2820
2821  // Add the anonymous struct/union object to the current
2822  // context. We'll be referencing this object when we refer to one of
2823  // its members.
2824  Owner->addDecl(Anon);
2825
2826  // Inject the members of the anonymous struct/union into the owning
2827  // context and into the identifier resolver chain for name lookup
2828  // purposes.
2829  SmallVector<NamedDecl*, 2> Chain;
2830  Chain.push_back(Anon);
2831
2832  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2833                                          Chain, false))
2834    Invalid = true;
2835
2836  // Mark this as an anonymous struct/union type. Note that we do not
2837  // do this until after we have already checked and injected the
2838  // members of this anonymous struct/union type, because otherwise
2839  // the members could be injected twice: once by DeclContext when it
2840  // builds its lookup table, and once by
2841  // InjectAnonymousStructOrUnionMembers.
2842  Record->setAnonymousStructOrUnion(true);
2843
2844  if (Invalid)
2845    Anon->setInvalidDecl();
2846
2847  return Anon;
2848}
2849
2850/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2851/// Microsoft C anonymous structure.
2852/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2853/// Example:
2854///
2855/// struct A { int a; };
2856/// struct B { struct A; int b; };
2857///
2858/// void foo() {
2859///   B var;
2860///   var.a = 3;
2861/// }
2862///
2863Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2864                                           RecordDecl *Record) {
2865
2866  // If there is no Record, get the record via the typedef.
2867  if (!Record)
2868    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2869
2870  // Mock up a declarator.
2871  Declarator Dc(DS, Declarator::TypeNameContext);
2872  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2873  assert(TInfo && "couldn't build declarator info for anonymous struct");
2874
2875  // Create a declaration for this anonymous struct.
2876  NamedDecl* Anon = FieldDecl::Create(Context,
2877                             cast<RecordDecl>(CurContext),
2878                             DS.getSourceRange().getBegin(),
2879                             DS.getSourceRange().getBegin(),
2880                             /*IdentifierInfo=*/0,
2881                             Context.getTypeDeclType(Record),
2882                             TInfo,
2883                             /*BitWidth=*/0, /*Mutable=*/false,
2884                             /*HasInit=*/false);
2885  Anon->setImplicit();
2886
2887  // Add the anonymous struct object to the current context.
2888  CurContext->addDecl(Anon);
2889
2890  // Inject the members of the anonymous struct into the current
2891  // context and into the identifier resolver chain for name lookup
2892  // purposes.
2893  SmallVector<NamedDecl*, 2> Chain;
2894  Chain.push_back(Anon);
2895
2896  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2897                                          Record->getDefinition(),
2898                                          AS_none, Chain, true))
2899    Anon->setInvalidDecl();
2900
2901  return Anon;
2902}
2903
2904/// GetNameForDeclarator - Determine the full declaration name for the
2905/// given Declarator.
2906DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2907  return GetNameFromUnqualifiedId(D.getName());
2908}
2909
2910/// \brief Retrieves the declaration name from a parsed unqualified-id.
2911DeclarationNameInfo
2912Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2913  DeclarationNameInfo NameInfo;
2914  NameInfo.setLoc(Name.StartLocation);
2915
2916  switch (Name.getKind()) {
2917
2918  case UnqualifiedId::IK_ImplicitSelfParam:
2919  case UnqualifiedId::IK_Identifier:
2920    NameInfo.setName(Name.Identifier);
2921    NameInfo.setLoc(Name.StartLocation);
2922    return NameInfo;
2923
2924  case UnqualifiedId::IK_OperatorFunctionId:
2925    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2926                                           Name.OperatorFunctionId.Operator));
2927    NameInfo.setLoc(Name.StartLocation);
2928    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2929      = Name.OperatorFunctionId.SymbolLocations[0];
2930    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2931      = Name.EndLocation.getRawEncoding();
2932    return NameInfo;
2933
2934  case UnqualifiedId::IK_LiteralOperatorId:
2935    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2936                                                           Name.Identifier));
2937    NameInfo.setLoc(Name.StartLocation);
2938    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2939    return NameInfo;
2940
2941  case UnqualifiedId::IK_ConversionFunctionId: {
2942    TypeSourceInfo *TInfo;
2943    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2944    if (Ty.isNull())
2945      return DeclarationNameInfo();
2946    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2947                                               Context.getCanonicalType(Ty)));
2948    NameInfo.setLoc(Name.StartLocation);
2949    NameInfo.setNamedTypeInfo(TInfo);
2950    return NameInfo;
2951  }
2952
2953  case UnqualifiedId::IK_ConstructorName: {
2954    TypeSourceInfo *TInfo;
2955    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2956    if (Ty.isNull())
2957      return DeclarationNameInfo();
2958    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2959                                              Context.getCanonicalType(Ty)));
2960    NameInfo.setLoc(Name.StartLocation);
2961    NameInfo.setNamedTypeInfo(TInfo);
2962    return NameInfo;
2963  }
2964
2965  case UnqualifiedId::IK_ConstructorTemplateId: {
2966    // In well-formed code, we can only have a constructor
2967    // template-id that refers to the current context, so go there
2968    // to find the actual type being constructed.
2969    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2970    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2971      return DeclarationNameInfo();
2972
2973    // Determine the type of the class being constructed.
2974    QualType CurClassType = Context.getTypeDeclType(CurClass);
2975
2976    // FIXME: Check two things: that the template-id names the same type as
2977    // CurClassType, and that the template-id does not occur when the name
2978    // was qualified.
2979
2980    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2981                                    Context.getCanonicalType(CurClassType)));
2982    NameInfo.setLoc(Name.StartLocation);
2983    // FIXME: should we retrieve TypeSourceInfo?
2984    NameInfo.setNamedTypeInfo(0);
2985    return NameInfo;
2986  }
2987
2988  case UnqualifiedId::IK_DestructorName: {
2989    TypeSourceInfo *TInfo;
2990    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2991    if (Ty.isNull())
2992      return DeclarationNameInfo();
2993    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2994                                              Context.getCanonicalType(Ty)));
2995    NameInfo.setLoc(Name.StartLocation);
2996    NameInfo.setNamedTypeInfo(TInfo);
2997    return NameInfo;
2998  }
2999
3000  case UnqualifiedId::IK_TemplateId: {
3001    TemplateName TName = Name.TemplateId->Template.get();
3002    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3003    return Context.getNameForTemplate(TName, TNameLoc);
3004  }
3005
3006  } // switch (Name.getKind())
3007
3008  llvm_unreachable("Unknown name kind");
3009}
3010
3011static QualType getCoreType(QualType Ty) {
3012  do {
3013    if (Ty->isPointerType() || Ty->isReferenceType())
3014      Ty = Ty->getPointeeType();
3015    else if (Ty->isArrayType())
3016      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3017    else
3018      return Ty.withoutLocalFastQualifiers();
3019  } while (true);
3020}
3021
3022/// hasSimilarParameters - Determine whether the C++ functions Declaration
3023/// and Definition have "nearly" matching parameters. This heuristic is
3024/// used to improve diagnostics in the case where an out-of-line function
3025/// definition doesn't match any declaration within the class or namespace.
3026/// Also sets Params to the list of indices to the parameters that differ
3027/// between the declaration and the definition. If hasSimilarParameters
3028/// returns true and Params is empty, then all of the parameters match.
3029static bool hasSimilarParameters(ASTContext &Context,
3030                                     FunctionDecl *Declaration,
3031                                     FunctionDecl *Definition,
3032                                     llvm::SmallVectorImpl<unsigned> &Params) {
3033  Params.clear();
3034  if (Declaration->param_size() != Definition->param_size())
3035    return false;
3036  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3037    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3038    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3039
3040    // The parameter types are identical
3041    if (Context.hasSameType(DefParamTy, DeclParamTy))
3042      continue;
3043
3044    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3045    QualType DefParamBaseTy = getCoreType(DefParamTy);
3046    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3047    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3048
3049    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3050        (DeclTyName && DeclTyName == DefTyName))
3051      Params.push_back(Idx);
3052    else  // The two parameters aren't even close
3053      return false;
3054  }
3055
3056  return true;
3057}
3058
3059/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3060/// declarator needs to be rebuilt in the current instantiation.
3061/// Any bits of declarator which appear before the name are valid for
3062/// consideration here.  That's specifically the type in the decl spec
3063/// and the base type in any member-pointer chunks.
3064static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3065                                                    DeclarationName Name) {
3066  // The types we specifically need to rebuild are:
3067  //   - typenames, typeofs, and decltypes
3068  //   - types which will become injected class names
3069  // Of course, we also need to rebuild any type referencing such a
3070  // type.  It's safest to just say "dependent", but we call out a
3071  // few cases here.
3072
3073  DeclSpec &DS = D.getMutableDeclSpec();
3074  switch (DS.getTypeSpecType()) {
3075  case DeclSpec::TST_typename:
3076  case DeclSpec::TST_typeofType:
3077  case DeclSpec::TST_decltype:
3078  case DeclSpec::TST_underlyingType:
3079  case DeclSpec::TST_atomic: {
3080    // Grab the type from the parser.
3081    TypeSourceInfo *TSI = 0;
3082    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3083    if (T.isNull() || !T->isDependentType()) break;
3084
3085    // Make sure there's a type source info.  This isn't really much
3086    // of a waste; most dependent types should have type source info
3087    // attached already.
3088    if (!TSI)
3089      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3090
3091    // Rebuild the type in the current instantiation.
3092    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3093    if (!TSI) return true;
3094
3095    // Store the new type back in the decl spec.
3096    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3097    DS.UpdateTypeRep(LocType);
3098    break;
3099  }
3100
3101  case DeclSpec::TST_typeofExpr: {
3102    Expr *E = DS.getRepAsExpr();
3103    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3104    if (Result.isInvalid()) return true;
3105    DS.UpdateExprRep(Result.get());
3106    break;
3107  }
3108
3109  default:
3110    // Nothing to do for these decl specs.
3111    break;
3112  }
3113
3114  // It doesn't matter what order we do this in.
3115  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3116    DeclaratorChunk &Chunk = D.getTypeObject(I);
3117
3118    // The only type information in the declarator which can come
3119    // before the declaration name is the base type of a member
3120    // pointer.
3121    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3122      continue;
3123
3124    // Rebuild the scope specifier in-place.
3125    CXXScopeSpec &SS = Chunk.Mem.Scope();
3126    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3127      return true;
3128  }
3129
3130  return false;
3131}
3132
3133Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3134  D.setFunctionDefinition(false);
3135  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3136}
3137
3138/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3139///   If T is the name of a class, then each of the following shall have a
3140///   name different from T:
3141///     - every static data member of class T;
3142///     - every member function of class T
3143///     - every member of class T that is itself a type;
3144/// \returns true if the declaration name violates these rules.
3145bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3146                                   DeclarationNameInfo NameInfo) {
3147  DeclarationName Name = NameInfo.getName();
3148
3149  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3150    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3151      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3152      return true;
3153    }
3154
3155  return false;
3156}
3157
3158Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3159                             MultiTemplateParamsArg TemplateParamLists) {
3160  // TODO: consider using NameInfo for diagnostic.
3161  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3162  DeclarationName Name = NameInfo.getName();
3163
3164  // All of these full declarators require an identifier.  If it doesn't have
3165  // one, the ParsedFreeStandingDeclSpec action should be used.
3166  if (!Name) {
3167    if (!D.isInvalidType())  // Reject this if we think it is valid.
3168      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3169           diag::err_declarator_need_ident)
3170        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3171    return 0;
3172  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3173    return 0;
3174
3175  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3176  // we find one that is.
3177  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3178         (S->getFlags() & Scope::TemplateParamScope) != 0)
3179    S = S->getParent();
3180
3181  DeclContext *DC = CurContext;
3182  if (D.getCXXScopeSpec().isInvalid())
3183    D.setInvalidType();
3184  else if (D.getCXXScopeSpec().isSet()) {
3185    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3186                                        UPPC_DeclarationQualifier))
3187      return 0;
3188
3189    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3190    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3191    if (!DC) {
3192      // If we could not compute the declaration context, it's because the
3193      // declaration context is dependent but does not refer to a class,
3194      // class template, or class template partial specialization. Complain
3195      // and return early, to avoid the coming semantic disaster.
3196      Diag(D.getIdentifierLoc(),
3197           diag::err_template_qualified_declarator_no_match)
3198        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3199        << D.getCXXScopeSpec().getRange();
3200      return 0;
3201    }
3202    bool IsDependentContext = DC->isDependentContext();
3203
3204    if (!IsDependentContext &&
3205        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3206      return 0;
3207
3208    if (isa<CXXRecordDecl>(DC)) {
3209      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3210        Diag(D.getIdentifierLoc(),
3211             diag::err_member_def_undefined_record)
3212          << Name << DC << D.getCXXScopeSpec().getRange();
3213        D.setInvalidType();
3214      } else if (isa<CXXRecordDecl>(CurContext) &&
3215                 !D.getDeclSpec().isFriendSpecified()) {
3216        // The user provided a superfluous scope specifier inside a class
3217        // definition:
3218        //
3219        // class X {
3220        //   void X::f();
3221        // };
3222        if (CurContext->Equals(DC))
3223          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3224            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3225        else
3226          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3227            << Name << D.getCXXScopeSpec().getRange();
3228
3229        // Pretend that this qualifier was not here.
3230        D.getCXXScopeSpec().clear();
3231      }
3232    }
3233
3234    // Check whether we need to rebuild the type of the given
3235    // declaration in the current instantiation.
3236    if (EnteringContext && IsDependentContext &&
3237        TemplateParamLists.size() != 0) {
3238      ContextRAII SavedContext(*this, DC);
3239      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3240        D.setInvalidType();
3241    }
3242  }
3243
3244  if (DiagnoseClassNameShadow(DC, NameInfo))
3245    // If this is a typedef, we'll end up spewing multiple diagnostics.
3246    // Just return early; it's safer.
3247    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3248      return 0;
3249
3250  NamedDecl *New;
3251
3252  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3253  QualType R = TInfo->getType();
3254
3255  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3256                                      UPPC_DeclarationType))
3257    D.setInvalidType();
3258
3259  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3260                        ForRedeclaration);
3261
3262  // See if this is a redefinition of a variable in the same scope.
3263  if (!D.getCXXScopeSpec().isSet()) {
3264    bool IsLinkageLookup = false;
3265
3266    // If the declaration we're planning to build will be a function
3267    // or object with linkage, then look for another declaration with
3268    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3269    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3270      /* Do nothing*/;
3271    else if (R->isFunctionType()) {
3272      if (CurContext->isFunctionOrMethod() ||
3273          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3274        IsLinkageLookup = true;
3275    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3276      IsLinkageLookup = true;
3277    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3278             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3279      IsLinkageLookup = true;
3280
3281    if (IsLinkageLookup)
3282      Previous.clear(LookupRedeclarationWithLinkage);
3283
3284    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3285  } else { // Something like "int foo::x;"
3286    LookupQualifiedName(Previous, DC);
3287
3288    // Don't consider using declarations as previous declarations for
3289    // out-of-line members.
3290    RemoveUsingDecls(Previous);
3291
3292    // C++ 7.3.1.2p2:
3293    // Members (including explicit specializations of templates) of a named
3294    // namespace can also be defined outside that namespace by explicit
3295    // qualification of the name being defined, provided that the entity being
3296    // defined was already declared in the namespace and the definition appears
3297    // after the point of declaration in a namespace that encloses the
3298    // declarations namespace.
3299    //
3300    // Note that we only check the context at this point. We don't yet
3301    // have enough information to make sure that PrevDecl is actually
3302    // the declaration we want to match. For example, given:
3303    //
3304    //   class X {
3305    //     void f();
3306    //     void f(float);
3307    //   };
3308    //
3309    //   void X::f(int) { } // ill-formed
3310    //
3311    // In this case, PrevDecl will point to the overload set
3312    // containing the two f's declared in X, but neither of them
3313    // matches.
3314
3315    // First check whether we named the global scope.
3316    if (isa<TranslationUnitDecl>(DC)) {
3317      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3318        << Name << D.getCXXScopeSpec().getRange();
3319    } else {
3320      DeclContext *Cur = CurContext;
3321      while (isa<LinkageSpecDecl>(Cur))
3322        Cur = Cur->getParent();
3323      if (!Cur->Encloses(DC)) {
3324        // The qualifying scope doesn't enclose the original declaration.
3325        // Emit diagnostic based on current scope.
3326        SourceLocation L = D.getIdentifierLoc();
3327        SourceRange R = D.getCXXScopeSpec().getRange();
3328        if (isa<FunctionDecl>(Cur))
3329          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3330        else
3331          Diag(L, diag::err_invalid_declarator_scope)
3332            << Name << cast<NamedDecl>(DC) << R;
3333        D.setInvalidType();
3334      }
3335    }
3336  }
3337
3338  if (Previous.isSingleResult() &&
3339      Previous.getFoundDecl()->isTemplateParameter()) {
3340    // Maybe we will complain about the shadowed template parameter.
3341    if (!D.isInvalidType())
3342      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3343                                          Previous.getFoundDecl()))
3344        D.setInvalidType();
3345
3346    // Just pretend that we didn't see the previous declaration.
3347    Previous.clear();
3348  }
3349
3350  // In C++, the previous declaration we find might be a tag type
3351  // (class or enum). In this case, the new declaration will hide the
3352  // tag type. Note that this does does not apply if we're declaring a
3353  // typedef (C++ [dcl.typedef]p4).
3354  if (Previous.isSingleTagDecl() &&
3355      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3356    Previous.clear();
3357
3358  bool AddToScope = true;
3359  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3360    if (TemplateParamLists.size()) {
3361      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3362      return 0;
3363    }
3364
3365    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3366  } else if (R->isFunctionType()) {
3367    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3368                                  move(TemplateParamLists),
3369                                  AddToScope);
3370  } else {
3371    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3372                                  move(TemplateParamLists));
3373  }
3374
3375  if (New == 0)
3376    return 0;
3377
3378  // If this has an identifier and is not an invalid redeclaration or
3379  // function template specialization, add it to the scope stack.
3380  if (New->getDeclName() && AddToScope &&
3381       !(D.isRedeclaration() && New->isInvalidDecl()))
3382    PushOnScopeChains(New, S);
3383
3384  return New;
3385}
3386
3387/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3388/// types into constant array types in certain situations which would otherwise
3389/// be errors (for GCC compatibility).
3390static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3391                                                    ASTContext &Context,
3392                                                    bool &SizeIsNegative,
3393                                                    llvm::APSInt &Oversized) {
3394  // This method tries to turn a variable array into a constant
3395  // array even when the size isn't an ICE.  This is necessary
3396  // for compatibility with code that depends on gcc's buggy
3397  // constant expression folding, like struct {char x[(int)(char*)2];}
3398  SizeIsNegative = false;
3399  Oversized = 0;
3400
3401  if (T->isDependentType())
3402    return QualType();
3403
3404  QualifierCollector Qs;
3405  const Type *Ty = Qs.strip(T);
3406
3407  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3408    QualType Pointee = PTy->getPointeeType();
3409    QualType FixedType =
3410        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3411                                            Oversized);
3412    if (FixedType.isNull()) return FixedType;
3413    FixedType = Context.getPointerType(FixedType);
3414    return Qs.apply(Context, FixedType);
3415  }
3416  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3417    QualType Inner = PTy->getInnerType();
3418    QualType FixedType =
3419        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3420                                            Oversized);
3421    if (FixedType.isNull()) return FixedType;
3422    FixedType = Context.getParenType(FixedType);
3423    return Qs.apply(Context, FixedType);
3424  }
3425
3426  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3427  if (!VLATy)
3428    return QualType();
3429  // FIXME: We should probably handle this case
3430  if (VLATy->getElementType()->isVariablyModifiedType())
3431    return QualType();
3432
3433  Expr::EvalResult EvalResult;
3434  if (!VLATy->getSizeExpr() ||
3435      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3436      !EvalResult.Val.isInt())
3437    return QualType();
3438
3439  // Check whether the array size is negative.
3440  llvm::APSInt &Res = EvalResult.Val.getInt();
3441  if (Res.isSigned() && Res.isNegative()) {
3442    SizeIsNegative = true;
3443    return QualType();
3444  }
3445
3446  // Check whether the array is too large to be addressed.
3447  unsigned ActiveSizeBits
3448    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3449                                              Res);
3450  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3451    Oversized = Res;
3452    return QualType();
3453  }
3454
3455  return Context.getConstantArrayType(VLATy->getElementType(),
3456                                      Res, ArrayType::Normal, 0);
3457}
3458
3459/// \brief Register the given locally-scoped external C declaration so
3460/// that it can be found later for redeclarations
3461void
3462Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3463                                       const LookupResult &Previous,
3464                                       Scope *S) {
3465  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3466         "Decl is not a locally-scoped decl!");
3467  // Note that we have a locally-scoped external with this name.
3468  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3469
3470  if (!Previous.isSingleResult())
3471    return;
3472
3473  NamedDecl *PrevDecl = Previous.getFoundDecl();
3474
3475  // If there was a previous declaration of this variable, it may be
3476  // in our identifier chain. Update the identifier chain with the new
3477  // declaration.
3478  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3479    // The previous declaration was found on the identifer resolver
3480    // chain, so remove it from its scope.
3481
3482    if (S->isDeclScope(PrevDecl)) {
3483      // Special case for redeclarations in the SAME scope.
3484      // Because this declaration is going to be added to the identifier chain
3485      // later, we should temporarily take it OFF the chain.
3486      IdResolver.RemoveDecl(ND);
3487
3488    } else {
3489      // Find the scope for the original declaration.
3490      while (S && !S->isDeclScope(PrevDecl))
3491        S = S->getParent();
3492    }
3493
3494    if (S)
3495      S->RemoveDecl(PrevDecl);
3496  }
3497}
3498
3499llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3500Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3501  if (ExternalSource) {
3502    // Load locally-scoped external decls from the external source.
3503    SmallVector<NamedDecl *, 4> Decls;
3504    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3505    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3506      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3507        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3508      if (Pos == LocallyScopedExternalDecls.end())
3509        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3510    }
3511  }
3512
3513  return LocallyScopedExternalDecls.find(Name);
3514}
3515
3516/// \brief Diagnose function specifiers on a declaration of an identifier that
3517/// does not identify a function.
3518void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3519  // FIXME: We should probably indicate the identifier in question to avoid
3520  // confusion for constructs like "inline int a(), b;"
3521  if (D.getDeclSpec().isInlineSpecified())
3522    Diag(D.getDeclSpec().getInlineSpecLoc(),
3523         diag::err_inline_non_function);
3524
3525  if (D.getDeclSpec().isVirtualSpecified())
3526    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3527         diag::err_virtual_non_function);
3528
3529  if (D.getDeclSpec().isExplicitSpecified())
3530    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3531         diag::err_explicit_non_function);
3532}
3533
3534NamedDecl*
3535Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3536                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3537  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3538  if (D.getCXXScopeSpec().isSet()) {
3539    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3540      << D.getCXXScopeSpec().getRange();
3541    D.setInvalidType();
3542    // Pretend we didn't see the scope specifier.
3543    DC = CurContext;
3544    Previous.clear();
3545  }
3546
3547  if (getLangOptions().CPlusPlus) {
3548    // Check that there are no default arguments (C++ only).
3549    CheckExtraCXXDefaultArguments(D);
3550  }
3551
3552  DiagnoseFunctionSpecifiers(D);
3553
3554  if (D.getDeclSpec().isThreadSpecified())
3555    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3556  if (D.getDeclSpec().isConstexprSpecified())
3557    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3558      << 1;
3559
3560  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3561    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3562      << D.getName().getSourceRange();
3563    return 0;
3564  }
3565
3566  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3567  if (!NewTD) return 0;
3568
3569  // Handle attributes prior to checking for duplicates in MergeVarDecl
3570  ProcessDeclAttributes(S, NewTD, D);
3571
3572  CheckTypedefForVariablyModifiedType(S, NewTD);
3573
3574  bool Redeclaration = D.isRedeclaration();
3575  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3576  D.setRedeclaration(Redeclaration);
3577  return ND;
3578}
3579
3580void
3581Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3582  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3583  // then it shall have block scope.
3584  // Note that variably modified types must be fixed before merging the decl so
3585  // that redeclarations will match.
3586  QualType T = NewTD->getUnderlyingType();
3587  if (T->isVariablyModifiedType()) {
3588    getCurFunction()->setHasBranchProtectedScope();
3589
3590    if (S->getFnParent() == 0) {
3591      bool SizeIsNegative;
3592      llvm::APSInt Oversized;
3593      QualType FixedTy =
3594          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3595                                              Oversized);
3596      if (!FixedTy.isNull()) {
3597        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3598        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3599      } else {
3600        if (SizeIsNegative)
3601          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3602        else if (T->isVariableArrayType())
3603          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3604        else if (Oversized.getBoolValue())
3605          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3606        else
3607          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3608        NewTD->setInvalidDecl();
3609      }
3610    }
3611  }
3612}
3613
3614
3615/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3616/// declares a typedef-name, either using the 'typedef' type specifier or via
3617/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3618NamedDecl*
3619Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3620                           LookupResult &Previous, bool &Redeclaration) {
3621  // Merge the decl with the existing one if appropriate. If the decl is
3622  // in an outer scope, it isn't the same thing.
3623  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3624                       /*ExplicitInstantiationOrSpecialization=*/false);
3625  if (!Previous.empty()) {
3626    Redeclaration = true;
3627    MergeTypedefNameDecl(NewTD, Previous);
3628  }
3629
3630  // If this is the C FILE type, notify the AST context.
3631  if (IdentifierInfo *II = NewTD->getIdentifier())
3632    if (!NewTD->isInvalidDecl() &&
3633        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3634      if (II->isStr("FILE"))
3635        Context.setFILEDecl(NewTD);
3636      else if (II->isStr("jmp_buf"))
3637        Context.setjmp_bufDecl(NewTD);
3638      else if (II->isStr("sigjmp_buf"))
3639        Context.setsigjmp_bufDecl(NewTD);
3640      else if (II->isStr("__builtin_va_list"))
3641        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3642    }
3643
3644  return NewTD;
3645}
3646
3647/// \brief Determines whether the given declaration is an out-of-scope
3648/// previous declaration.
3649///
3650/// This routine should be invoked when name lookup has found a
3651/// previous declaration (PrevDecl) that is not in the scope where a
3652/// new declaration by the same name is being introduced. If the new
3653/// declaration occurs in a local scope, previous declarations with
3654/// linkage may still be considered previous declarations (C99
3655/// 6.2.2p4-5, C++ [basic.link]p6).
3656///
3657/// \param PrevDecl the previous declaration found by name
3658/// lookup
3659///
3660/// \param DC the context in which the new declaration is being
3661/// declared.
3662///
3663/// \returns true if PrevDecl is an out-of-scope previous declaration
3664/// for a new delcaration with the same name.
3665static bool
3666isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3667                                ASTContext &Context) {
3668  if (!PrevDecl)
3669    return false;
3670
3671  if (!PrevDecl->hasLinkage())
3672    return false;
3673
3674  if (Context.getLangOptions().CPlusPlus) {
3675    // C++ [basic.link]p6:
3676    //   If there is a visible declaration of an entity with linkage
3677    //   having the same name and type, ignoring entities declared
3678    //   outside the innermost enclosing namespace scope, the block
3679    //   scope declaration declares that same entity and receives the
3680    //   linkage of the previous declaration.
3681    DeclContext *OuterContext = DC->getRedeclContext();
3682    if (!OuterContext->isFunctionOrMethod())
3683      // This rule only applies to block-scope declarations.
3684      return false;
3685
3686    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3687    if (PrevOuterContext->isRecord())
3688      // We found a member function: ignore it.
3689      return false;
3690
3691    // Find the innermost enclosing namespace for the new and
3692    // previous declarations.
3693    OuterContext = OuterContext->getEnclosingNamespaceContext();
3694    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3695
3696    // The previous declaration is in a different namespace, so it
3697    // isn't the same function.
3698    if (!OuterContext->Equals(PrevOuterContext))
3699      return false;
3700  }
3701
3702  return true;
3703}
3704
3705static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3706  CXXScopeSpec &SS = D.getCXXScopeSpec();
3707  if (!SS.isSet()) return;
3708  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3709}
3710
3711bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3712  QualType type = decl->getType();
3713  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3714  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3715    // Various kinds of declaration aren't allowed to be __autoreleasing.
3716    unsigned kind = -1U;
3717    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3718      if (var->hasAttr<BlocksAttr>())
3719        kind = 0; // __block
3720      else if (!var->hasLocalStorage())
3721        kind = 1; // global
3722    } else if (isa<ObjCIvarDecl>(decl)) {
3723      kind = 3; // ivar
3724    } else if (isa<FieldDecl>(decl)) {
3725      kind = 2; // field
3726    }
3727
3728    if (kind != -1U) {
3729      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3730        << kind;
3731    }
3732  } else if (lifetime == Qualifiers::OCL_None) {
3733    // Try to infer lifetime.
3734    if (!type->isObjCLifetimeType())
3735      return false;
3736
3737    lifetime = type->getObjCARCImplicitLifetime();
3738    type = Context.getLifetimeQualifiedType(type, lifetime);
3739    decl->setType(type);
3740  }
3741
3742  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3743    // Thread-local variables cannot have lifetime.
3744    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3745        var->isThreadSpecified()) {
3746      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3747        << var->getType();
3748      return true;
3749    }
3750  }
3751
3752  return false;
3753}
3754
3755NamedDecl*
3756Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3757                              TypeSourceInfo *TInfo, LookupResult &Previous,
3758                              MultiTemplateParamsArg TemplateParamLists) {
3759  QualType R = TInfo->getType();
3760  DeclarationName Name = GetNameForDeclarator(D).getName();
3761
3762  // Check that there are no default arguments (C++ only).
3763  if (getLangOptions().CPlusPlus)
3764    CheckExtraCXXDefaultArguments(D);
3765
3766  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3767  assert(SCSpec != DeclSpec::SCS_typedef &&
3768         "Parser allowed 'typedef' as storage class VarDecl.");
3769  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3770  if (SCSpec == DeclSpec::SCS_mutable) {
3771    // mutable can only appear on non-static class members, so it's always
3772    // an error here
3773    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3774    D.setInvalidType();
3775    SC = SC_None;
3776  }
3777  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3778  VarDecl::StorageClass SCAsWritten
3779    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3780
3781  IdentifierInfo *II = Name.getAsIdentifierInfo();
3782  if (!II) {
3783    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3784      << Name;
3785    return 0;
3786  }
3787
3788  DiagnoseFunctionSpecifiers(D);
3789
3790  if (!DC->isRecord() && S->getFnParent() == 0) {
3791    // C99 6.9p2: The storage-class specifiers auto and register shall not
3792    // appear in the declaration specifiers in an external declaration.
3793    if (SC == SC_Auto || SC == SC_Register) {
3794
3795      // If this is a register variable with an asm label specified, then this
3796      // is a GNU extension.
3797      if (SC == SC_Register && D.getAsmLabel())
3798        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3799      else
3800        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3801      D.setInvalidType();
3802    }
3803  }
3804
3805  if (getLangOptions().OpenCL) {
3806    // Set up the special work-group-local storage class for variables in the
3807    // OpenCL __local address space.
3808    if (R.getAddressSpace() == LangAS::opencl_local)
3809      SC = SC_OpenCLWorkGroupLocal;
3810  }
3811
3812  bool isExplicitSpecialization = false;
3813  VarDecl *NewVD;
3814  if (!getLangOptions().CPlusPlus) {
3815    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3816                            D.getIdentifierLoc(), II,
3817                            R, TInfo, SC, SCAsWritten);
3818
3819    if (D.isInvalidType())
3820      NewVD->setInvalidDecl();
3821  } else {
3822    if (DC->isRecord() && !CurContext->isRecord()) {
3823      // This is an out-of-line definition of a static data member.
3824      if (SC == SC_Static) {
3825        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3826             diag::err_static_out_of_line)
3827          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3828      } else if (SC == SC_None)
3829        SC = SC_Static;
3830    }
3831    if (SC == SC_Static) {
3832      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3833        if (RD->isLocalClass())
3834          Diag(D.getIdentifierLoc(),
3835               diag::err_static_data_member_not_allowed_in_local_class)
3836            << Name << RD->getDeclName();
3837
3838        // C++ [class.union]p1: If a union contains a static data member,
3839        // the program is ill-formed.
3840        //
3841        // We also disallow static data members in anonymous structs.
3842        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3843          Diag(D.getIdentifierLoc(),
3844               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3845            << Name << RD->isUnion();
3846      }
3847    }
3848
3849    // Match up the template parameter lists with the scope specifier, then
3850    // determine whether we have a template or a template specialization.
3851    isExplicitSpecialization = false;
3852    bool Invalid = false;
3853    if (TemplateParameterList *TemplateParams
3854        = MatchTemplateParametersToScopeSpecifier(
3855                                  D.getDeclSpec().getSourceRange().getBegin(),
3856                                                  D.getIdentifierLoc(),
3857                                                  D.getCXXScopeSpec(),
3858                                                  TemplateParamLists.get(),
3859                                                  TemplateParamLists.size(),
3860                                                  /*never a friend*/ false,
3861                                                  isExplicitSpecialization,
3862                                                  Invalid)) {
3863      if (TemplateParams->size() > 0) {
3864        // There is no such thing as a variable template.
3865        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3866          << II
3867          << SourceRange(TemplateParams->getTemplateLoc(),
3868                         TemplateParams->getRAngleLoc());
3869        return 0;
3870      } else {
3871        // There is an extraneous 'template<>' for this variable. Complain
3872        // about it, but allow the declaration of the variable.
3873        Diag(TemplateParams->getTemplateLoc(),
3874             diag::err_template_variable_noparams)
3875          << II
3876          << SourceRange(TemplateParams->getTemplateLoc(),
3877                         TemplateParams->getRAngleLoc());
3878      }
3879    }
3880
3881    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3882                            D.getIdentifierLoc(), II,
3883                            R, TInfo, SC, SCAsWritten);
3884
3885    // If this decl has an auto type in need of deduction, make a note of the
3886    // Decl so we can diagnose uses of it in its own initializer.
3887    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3888        R->getContainedAutoType())
3889      ParsingInitForAutoVars.insert(NewVD);
3890
3891    if (D.isInvalidType() || Invalid)
3892      NewVD->setInvalidDecl();
3893
3894    SetNestedNameSpecifier(NewVD, D);
3895
3896    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3897      NewVD->setTemplateParameterListsInfo(Context,
3898                                           TemplateParamLists.size(),
3899                                           TemplateParamLists.release());
3900    }
3901
3902    if (D.getDeclSpec().isConstexprSpecified()) {
3903      // FIXME: once we know whether there's an initializer, apply this to
3904      // static data members too.
3905      if (!NewVD->isStaticDataMember() &&
3906          !NewVD->isThisDeclarationADefinition()) {
3907        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3908        // of a variable. Suggest replacing it with 'const' if appropriate.
3909        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3910        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3911        // If the declarator is complex, we need to move the keyword to the
3912        // innermost chunk as we switch it from 'constexpr' to 'const'.
3913        int Kind = DeclaratorChunk::Paren;
3914        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3915          Kind = D.getTypeObject(I).Kind;
3916          if (Kind != DeclaratorChunk::Paren)
3917            break;
3918        }
3919        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3920            Kind == DeclaratorChunk::Reference)
3921          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3922            << FixItHint::CreateRemoval(ConstexprRange);
3923        else if (Kind == DeclaratorChunk::Paren)
3924          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3925            << FixItHint::CreateReplacement(ConstexprRange, "const");
3926        else
3927          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3928            << FixItHint::CreateRemoval(ConstexprRange)
3929            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3930      } else {
3931        NewVD->setConstexpr(true);
3932      }
3933    }
3934  }
3935
3936  // Set the lexical context. If the declarator has a C++ scope specifier, the
3937  // lexical context will be different from the semantic context.
3938  NewVD->setLexicalDeclContext(CurContext);
3939
3940  if (D.getDeclSpec().isThreadSpecified()) {
3941    if (NewVD->hasLocalStorage())
3942      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3943    else if (!Context.getTargetInfo().isTLSSupported())
3944      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3945    else
3946      NewVD->setThreadSpecified(true);
3947  }
3948
3949  if (D.getDeclSpec().isModulePrivateSpecified()) {
3950    if (isExplicitSpecialization)
3951      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3952        << 2
3953        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3954    else if (NewVD->hasLocalStorage())
3955      Diag(NewVD->getLocation(), diag::err_module_private_local)
3956        << 0 << NewVD->getDeclName()
3957        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3958        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3959    else
3960      NewVD->setModulePrivate();
3961  }
3962
3963  // Handle attributes prior to checking for duplicates in MergeVarDecl
3964  ProcessDeclAttributes(S, NewVD, D);
3965
3966  // In auto-retain/release, infer strong retension for variables of
3967  // retainable type.
3968  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3969    NewVD->setInvalidDecl();
3970
3971  // Handle GNU asm-label extension (encoded as an attribute).
3972  if (Expr *E = (Expr*)D.getAsmLabel()) {
3973    // The parser guarantees this is a string.
3974    StringLiteral *SE = cast<StringLiteral>(E);
3975    StringRef Label = SE->getString();
3976    if (S->getFnParent() != 0) {
3977      switch (SC) {
3978      case SC_None:
3979      case SC_Auto:
3980        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3981        break;
3982      case SC_Register:
3983        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3984          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3985        break;
3986      case SC_Static:
3987      case SC_Extern:
3988      case SC_PrivateExtern:
3989      case SC_OpenCLWorkGroupLocal:
3990        break;
3991      }
3992    }
3993
3994    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3995                                                Context, Label));
3996  }
3997
3998  // Diagnose shadowed variables before filtering for scope.
3999  if (!D.getCXXScopeSpec().isSet())
4000    CheckShadow(S, NewVD, Previous);
4001
4002  // Don't consider existing declarations that are in a different
4003  // scope and are out-of-semantic-context declarations (if the new
4004  // declaration has linkage).
4005  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4006                       isExplicitSpecialization);
4007
4008  if (!getLangOptions().CPlusPlus) {
4009    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4010  } else {
4011    // Merge the decl with the existing one if appropriate.
4012    if (!Previous.empty()) {
4013      if (Previous.isSingleResult() &&
4014          isa<FieldDecl>(Previous.getFoundDecl()) &&
4015          D.getCXXScopeSpec().isSet()) {
4016        // The user tried to define a non-static data member
4017        // out-of-line (C++ [dcl.meaning]p1).
4018        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4019          << D.getCXXScopeSpec().getRange();
4020        Previous.clear();
4021        NewVD->setInvalidDecl();
4022      }
4023    } else if (D.getCXXScopeSpec().isSet()) {
4024      // No previous declaration in the qualifying scope.
4025      Diag(D.getIdentifierLoc(), diag::err_no_member)
4026        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4027        << D.getCXXScopeSpec().getRange();
4028      NewVD->setInvalidDecl();
4029    }
4030
4031    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4032
4033    // This is an explicit specialization of a static data member. Check it.
4034    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4035        CheckMemberSpecialization(NewVD, Previous))
4036      NewVD->setInvalidDecl();
4037  }
4038
4039  // attributes declared post-definition are currently ignored
4040  // FIXME: This should be handled in attribute merging, not
4041  // here.
4042  if (Previous.isSingleResult()) {
4043    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4044    if (Def && (Def = Def->getDefinition()) &&
4045        Def != NewVD && D.hasAttributes()) {
4046      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4047      Diag(Def->getLocation(), diag::note_previous_definition);
4048    }
4049  }
4050
4051  // If this is a locally-scoped extern C variable, update the map of
4052  // such variables.
4053  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4054      !NewVD->isInvalidDecl())
4055    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4056
4057  // If there's a #pragma GCC visibility in scope, and this isn't a class
4058  // member, set the visibility of this variable.
4059  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4060    AddPushedVisibilityAttribute(NewVD);
4061
4062  MarkUnusedFileScopedDecl(NewVD);
4063
4064  return NewVD;
4065}
4066
4067/// \brief Diagnose variable or built-in function shadowing.  Implements
4068/// -Wshadow.
4069///
4070/// This method is called whenever a VarDecl is added to a "useful"
4071/// scope.
4072///
4073/// \param S the scope in which the shadowing name is being declared
4074/// \param R the lookup of the name
4075///
4076void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4077  // Return if warning is ignored.
4078  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4079        DiagnosticsEngine::Ignored)
4080    return;
4081
4082  // Don't diagnose declarations at file scope.
4083  if (D->hasGlobalStorage())
4084    return;
4085
4086  DeclContext *NewDC = D->getDeclContext();
4087
4088  // Only diagnose if we're shadowing an unambiguous field or variable.
4089  if (R.getResultKind() != LookupResult::Found)
4090    return;
4091
4092  NamedDecl* ShadowedDecl = R.getFoundDecl();
4093  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4094    return;
4095
4096  // Fields are not shadowed by variables in C++ static methods.
4097  if (isa<FieldDecl>(ShadowedDecl))
4098    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4099      if (MD->isStatic())
4100        return;
4101
4102  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4103    if (shadowedVar->isExternC()) {
4104      // For shadowing external vars, make sure that we point to the global
4105      // declaration, not a locally scoped extern declaration.
4106      for (VarDecl::redecl_iterator
4107             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4108           I != E; ++I)
4109        if (I->isFileVarDecl()) {
4110          ShadowedDecl = *I;
4111          break;
4112        }
4113    }
4114
4115  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4116
4117  // Only warn about certain kinds of shadowing for class members.
4118  if (NewDC && NewDC->isRecord()) {
4119    // In particular, don't warn about shadowing non-class members.
4120    if (!OldDC->isRecord())
4121      return;
4122
4123    // TODO: should we warn about static data members shadowing
4124    // static data members from base classes?
4125
4126    // TODO: don't diagnose for inaccessible shadowed members.
4127    // This is hard to do perfectly because we might friend the
4128    // shadowing context, but that's just a false negative.
4129  }
4130
4131  // Determine what kind of declaration we're shadowing.
4132  unsigned Kind;
4133  if (isa<RecordDecl>(OldDC)) {
4134    if (isa<FieldDecl>(ShadowedDecl))
4135      Kind = 3; // field
4136    else
4137      Kind = 2; // static data member
4138  } else if (OldDC->isFileContext())
4139    Kind = 1; // global
4140  else
4141    Kind = 0; // local
4142
4143  DeclarationName Name = R.getLookupName();
4144
4145  // Emit warning and note.
4146  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4147  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4148}
4149
4150/// \brief Check -Wshadow without the advantage of a previous lookup.
4151void Sema::CheckShadow(Scope *S, VarDecl *D) {
4152  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4153        DiagnosticsEngine::Ignored)
4154    return;
4155
4156  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4157                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4158  LookupName(R, S);
4159  CheckShadow(S, D, R);
4160}
4161
4162/// \brief Perform semantic checking on a newly-created variable
4163/// declaration.
4164///
4165/// This routine performs all of the type-checking required for a
4166/// variable declaration once it has been built. It is used both to
4167/// check variables after they have been parsed and their declarators
4168/// have been translated into a declaration, and to check variables
4169/// that have been instantiated from a template.
4170///
4171/// Sets NewVD->isInvalidDecl() if an error was encountered.
4172///
4173/// Returns true if the variable declaration is a redeclaration.
4174bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4175                                    LookupResult &Previous) {
4176  // If the decl is already known invalid, don't check it.
4177  if (NewVD->isInvalidDecl())
4178    return false;
4179
4180  QualType T = NewVD->getType();
4181
4182  if (T->isObjCObjectType()) {
4183    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4184      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4185    T = Context.getObjCObjectPointerType(T);
4186    NewVD->setType(T);
4187  }
4188
4189  // Emit an error if an address space was applied to decl with local storage.
4190  // This includes arrays of objects with address space qualifiers, but not
4191  // automatic variables that point to other address spaces.
4192  // ISO/IEC TR 18037 S5.1.2
4193  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4194    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4195    NewVD->setInvalidDecl();
4196    return false;
4197  }
4198
4199  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4200      && !NewVD->hasAttr<BlocksAttr>()) {
4201    if (getLangOptions().getGC() != LangOptions::NonGC)
4202      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4203    else
4204      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4205  }
4206
4207  bool isVM = T->isVariablyModifiedType();
4208  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4209      NewVD->hasAttr<BlocksAttr>())
4210    getCurFunction()->setHasBranchProtectedScope();
4211
4212  if ((isVM && NewVD->hasLinkage()) ||
4213      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4214    bool SizeIsNegative;
4215    llvm::APSInt Oversized;
4216    QualType FixedTy =
4217        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4218                                            Oversized);
4219
4220    if (FixedTy.isNull() && T->isVariableArrayType()) {
4221      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4222      // FIXME: This won't give the correct result for
4223      // int a[10][n];
4224      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4225
4226      if (NewVD->isFileVarDecl())
4227        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4228        << SizeRange;
4229      else if (NewVD->getStorageClass() == SC_Static)
4230        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4231        << SizeRange;
4232      else
4233        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4234        << SizeRange;
4235      NewVD->setInvalidDecl();
4236      return false;
4237    }
4238
4239    if (FixedTy.isNull()) {
4240      if (NewVD->isFileVarDecl())
4241        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4242      else
4243        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4244      NewVD->setInvalidDecl();
4245      return false;
4246    }
4247
4248    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4249    NewVD->setType(FixedTy);
4250  }
4251
4252  if (Previous.empty() && NewVD->isExternC()) {
4253    // Since we did not find anything by this name and we're declaring
4254    // an extern "C" variable, look for a non-visible extern "C"
4255    // declaration with the same name.
4256    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4257      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4258    if (Pos != LocallyScopedExternalDecls.end())
4259      Previous.addDecl(Pos->second);
4260  }
4261
4262  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4263    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4264      << T;
4265    NewVD->setInvalidDecl();
4266    return false;
4267  }
4268
4269  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4270    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4271    NewVD->setInvalidDecl();
4272    return false;
4273  }
4274
4275  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4276    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4277    NewVD->setInvalidDecl();
4278    return false;
4279  }
4280
4281  // Function pointers and references cannot have qualified function type, only
4282  // function pointer-to-members can do that.
4283  QualType Pointee;
4284  unsigned PtrOrRef = 0;
4285  if (const PointerType *Ptr = T->getAs<PointerType>())
4286    Pointee = Ptr->getPointeeType();
4287  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4288    Pointee = Ref->getPointeeType();
4289    PtrOrRef = 1;
4290  }
4291  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4292      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4293    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4294        << PtrOrRef;
4295    NewVD->setInvalidDecl();
4296    return false;
4297  }
4298
4299  if (!Previous.empty()) {
4300    MergeVarDecl(NewVD, Previous);
4301    return true;
4302  }
4303  return false;
4304}
4305
4306/// \brief Data used with FindOverriddenMethod
4307struct FindOverriddenMethodData {
4308  Sema *S;
4309  CXXMethodDecl *Method;
4310};
4311
4312/// \brief Member lookup function that determines whether a given C++
4313/// method overrides a method in a base class, to be used with
4314/// CXXRecordDecl::lookupInBases().
4315static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4316                                 CXXBasePath &Path,
4317                                 void *UserData) {
4318  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4319
4320  FindOverriddenMethodData *Data
4321    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4322
4323  DeclarationName Name = Data->Method->getDeclName();
4324
4325  // FIXME: Do we care about other names here too?
4326  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4327    // We really want to find the base class destructor here.
4328    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4329    CanQualType CT = Data->S->Context.getCanonicalType(T);
4330
4331    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4332  }
4333
4334  for (Path.Decls = BaseRecord->lookup(Name);
4335       Path.Decls.first != Path.Decls.second;
4336       ++Path.Decls.first) {
4337    NamedDecl *D = *Path.Decls.first;
4338    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4339      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4340        return true;
4341    }
4342  }
4343
4344  return false;
4345}
4346
4347/// AddOverriddenMethods - See if a method overrides any in the base classes,
4348/// and if so, check that it's a valid override and remember it.
4349bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4350  // Look for virtual methods in base classes that this method might override.
4351  CXXBasePaths Paths;
4352  FindOverriddenMethodData Data;
4353  Data.Method = MD;
4354  Data.S = this;
4355  bool AddedAny = false;
4356  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4357    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4358         E = Paths.found_decls_end(); I != E; ++I) {
4359      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4360        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4361        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4362            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4363            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4364          AddedAny = true;
4365        }
4366      }
4367    }
4368  }
4369
4370  return AddedAny;
4371}
4372
4373namespace {
4374  // Struct for holding all of the extra arguments needed by
4375  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4376  struct ActOnFDArgs {
4377    Scope *S;
4378    Declarator &D;
4379    MultiTemplateParamsArg TemplateParamLists;
4380    bool AddToScope;
4381  };
4382}
4383
4384/// \brief Generate diagnostics for an invalid function redeclaration.
4385///
4386/// This routine handles generating the diagnostic messages for an invalid
4387/// function redeclaration, including finding possible similar declarations
4388/// or performing typo correction if there are no previous declarations with
4389/// the same name.
4390///
4391/// Returns a NamedDecl iff typo correction was performed and substituting in
4392/// the new declaration name does not cause new errors.
4393static NamedDecl* DiagnoseInvalidRedeclaration(
4394    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4395    ActOnFDArgs &ExtraArgs) {
4396  NamedDecl *Result = NULL;
4397  DeclarationName Name = NewFD->getDeclName();
4398  DeclContext *NewDC = NewFD->getDeclContext();
4399  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4400                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4401  llvm::SmallVector<unsigned, 1> MismatchedParams;
4402  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4403  TypoCorrection Correction;
4404  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4405                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4406  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4407                                  : diag::err_member_def_does_not_match;
4408
4409  NewFD->setInvalidDecl();
4410  SemaRef.LookupQualifiedName(Prev, NewDC);
4411  assert(!Prev.isAmbiguous() &&
4412         "Cannot have an ambiguity in previous-declaration lookup");
4413  if (!Prev.empty()) {
4414    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4415         Func != FuncEnd; ++Func) {
4416      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4417      if (FD &&
4418          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4419        // Add 1 to the index so that 0 can mean the mismatch didn't
4420        // involve a parameter
4421        unsigned ParamNum =
4422            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4423        NearMatches.push_back(std::make_pair(FD, ParamNum));
4424      }
4425    }
4426  // If the qualified name lookup yielded nothing, try typo correction
4427  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4428                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4429             Correction.getCorrection() != Name) {
4430    // Trap errors.
4431    Sema::SFINAETrap Trap(SemaRef);
4432
4433    // Set up everything for the call to ActOnFunctionDeclarator
4434    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4435                              ExtraArgs.D.getIdentifierLoc());
4436    Previous.clear();
4437    Previous.setLookupName(Correction.getCorrection());
4438    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4439                                    CDeclEnd = Correction.end();
4440         CDecl != CDeclEnd; ++CDecl) {
4441      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4442      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4443                                     MismatchedParams)) {
4444        Previous.addDecl(FD);
4445      }
4446    }
4447    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4448    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4449    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4450    // eliminate the need for the parameter pack ExtraArgs.
4451    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4452                                             NewFD->getDeclContext(),
4453                                             NewFD->getTypeSourceInfo(),
4454                                             Previous,
4455                                             ExtraArgs.TemplateParamLists,
4456                                             ExtraArgs.AddToScope);
4457    if (Trap.hasErrorOccurred()) {
4458      // Pretend the typo correction never occurred
4459      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4460                                ExtraArgs.D.getIdentifierLoc());
4461      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4462      Previous.clear();
4463      Previous.setLookupName(Name);
4464      Result = NULL;
4465    } else {
4466      for (LookupResult::iterator Func = Previous.begin(),
4467                               FuncEnd = Previous.end();
4468           Func != FuncEnd; ++Func) {
4469        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4470          NearMatches.push_back(std::make_pair(FD, 0));
4471      }
4472    }
4473    if (NearMatches.empty()) {
4474      // Ignore the correction if it didn't yield any close FunctionDecl matches
4475      Correction = TypoCorrection();
4476    } else {
4477      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4478                             : diag::err_member_def_does_not_match_suggest;
4479    }
4480  }
4481
4482  if (Correction)
4483    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4484        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4485        << FixItHint::CreateReplacement(
4486            NewFD->getLocation(),
4487            Correction.getAsString(SemaRef.getLangOptions()));
4488  else
4489    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4490        << Name << NewDC << NewFD->getLocation();
4491
4492  bool NewFDisConst = false;
4493  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4494    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4495
4496  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4497       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4498       NearMatch != NearMatchEnd; ++NearMatch) {
4499    FunctionDecl *FD = NearMatch->first;
4500    bool FDisConst = false;
4501    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4502      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4503
4504    if (unsigned Idx = NearMatch->second) {
4505      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4506      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4507             diag::note_member_def_close_param_match)
4508          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4509    } else if (Correction) {
4510      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4511          << Correction.getQuoted(SemaRef.getLangOptions());
4512    } else if (FDisConst != NewFDisConst) {
4513      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4514          << NewFDisConst << FD->getSourceRange().getEnd();
4515    } else
4516      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4517  }
4518  return Result;
4519}
4520
4521static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
4522  switch (D.getDeclSpec().getStorageClassSpec()) {
4523  default: llvm_unreachable("Unknown storage class!");
4524  case DeclSpec::SCS_auto:
4525  case DeclSpec::SCS_register:
4526  case DeclSpec::SCS_mutable:
4527    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4528                 diag::err_typecheck_sclass_func);
4529    D.setInvalidType();
4530    break;
4531  case DeclSpec::SCS_unspecified: break;
4532  case DeclSpec::SCS_extern: return SC_Extern;
4533  case DeclSpec::SCS_static: {
4534    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4535      // C99 6.7.1p5:
4536      //   The declaration of an identifier for a function that has
4537      //   block scope shall have no explicit storage-class specifier
4538      //   other than extern
4539      // See also (C++ [dcl.stc]p4).
4540      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4541                   diag::err_static_block_func);
4542      break;
4543    } else
4544      return SC_Static;
4545  }
4546  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4547  }
4548
4549  // No explicit storage class has already been returned
4550  return SC_None;
4551}
4552
4553static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4554                                           DeclContext *DC, QualType &R,
4555                                           TypeSourceInfo *TInfo,
4556                                           FunctionDecl::StorageClass SC,
4557                                           bool &IsVirtualOkay) {
4558  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4559  DeclarationName Name = NameInfo.getName();
4560
4561  FunctionDecl *NewFD = 0;
4562  bool isInline = D.getDeclSpec().isInlineSpecified();
4563  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4564  FunctionDecl::StorageClass SCAsWritten
4565    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4566
4567  if (!SemaRef.getLangOptions().CPlusPlus) {
4568    // Determine whether the function was written with a
4569    // prototype. This true when:
4570    //   - there is a prototype in the declarator, or
4571    //   - the type R of the function is some kind of typedef or other reference
4572    //     to a type name (which eventually refers to a function type).
4573    bool HasPrototype =
4574      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4575      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4576
4577    NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getSourceRange().getBegin(),
4578                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4579                                 HasPrototype);
4580    if (D.isInvalidType())
4581      NewFD->setInvalidDecl();
4582
4583    // Set the lexical context.
4584    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4585
4586    return NewFD;
4587  }
4588
4589  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4590  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4591
4592  // Check that the return type is not an abstract class type.
4593  // For record types, this is done by the AbstractClassUsageDiagnoser once
4594  // the class has been completely parsed.
4595  if (!DC->isRecord() &&
4596      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4597                                     R->getAs<FunctionType>()->getResultType(),
4598                                     diag::err_abstract_type_in_decl,
4599                                     SemaRef.AbstractReturnType))
4600    D.setInvalidType();
4601
4602  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4603    // This is a C++ constructor declaration.
4604    assert(DC->isRecord() &&
4605           "Constructors can only be declared in a member context");
4606
4607    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4608    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4609                                      D.getSourceRange().getBegin(), NameInfo,
4610                                      R, TInfo, isExplicit, isInline,
4611                                      /*isImplicitlyDeclared=*/false,
4612                                      isConstexpr);
4613
4614  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4615    // This is a C++ destructor declaration.
4616    if (DC->isRecord()) {
4617      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4618      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4619      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4620                                        SemaRef.Context, Record,
4621                                        D.getSourceRange().getBegin(),
4622                                        NameInfo, R, TInfo, isInline,
4623                                        /*isImplicitlyDeclared=*/false);
4624
4625      // If the class is complete, then we now create the implicit exception
4626      // specification. If the class is incomplete or dependent, we can't do
4627      // it yet.
4628      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4629          Record->getDefinition() && !Record->isBeingDefined() &&
4630          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4631        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4632      }
4633
4634      IsVirtualOkay = true;
4635      return NewDD;
4636
4637    } else {
4638      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4639      D.setInvalidType();
4640
4641      // Create a FunctionDecl to satisfy the function definition parsing
4642      // code path.
4643      return FunctionDecl::Create(SemaRef.Context, DC,
4644                                  D.getSourceRange().getBegin(),
4645                                  D.getIdentifierLoc(), Name, R, TInfo,
4646                                  SC, SCAsWritten, isInline,
4647                                  /*hasPrototype=*/true, isConstexpr);
4648    }
4649
4650  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4651    if (!DC->isRecord()) {
4652      SemaRef.Diag(D.getIdentifierLoc(),
4653           diag::err_conv_function_not_member);
4654      return 0;
4655    }
4656
4657    SemaRef.CheckConversionDeclarator(D, R, SC);
4658    IsVirtualOkay = true;
4659    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4660                                     D.getSourceRange().getBegin(), NameInfo,
4661                                     R, TInfo, isInline, isExplicit,
4662                                     isConstexpr, SourceLocation());
4663
4664  } else if (DC->isRecord()) {
4665    // If the name of the function is the same as the name of the record,
4666    // then this must be an invalid constructor that has a return type.
4667    // (The parser checks for a return type and makes the declarator a
4668    // constructor if it has no return type).
4669    if (Name.getAsIdentifierInfo() &&
4670        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4671      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4672        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4673        << SourceRange(D.getIdentifierLoc());
4674      return 0;
4675    }
4676
4677    bool isStatic = SC == SC_Static;
4678
4679    // [class.free]p1:
4680    // Any allocation function for a class T is a static member
4681    // (even if not explicitly declared static).
4682    if (Name.getCXXOverloadedOperator() == OO_New ||
4683        Name.getCXXOverloadedOperator() == OO_Array_New)
4684      isStatic = true;
4685
4686    // [class.free]p6 Any deallocation function for a class X is a static member
4687    // (even if not explicitly declared static).
4688    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4689        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4690      isStatic = true;
4691
4692    IsVirtualOkay = !isStatic;
4693
4694    // This is a C++ method declaration.
4695    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4696                                 D.getSourceRange().getBegin(), NameInfo, R,
4697                                 TInfo, isStatic, SCAsWritten, isInline,
4698                                 isConstexpr, SourceLocation());
4699
4700  } else {
4701    // Determine whether the function was written with a
4702    // prototype. This true when:
4703    //   - we're in C++ (where every function has a prototype),
4704    return FunctionDecl::Create(SemaRef.Context, DC,
4705                                D.getSourceRange().getBegin(),
4706                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4707                                true/*HasPrototype*/, isConstexpr);
4708  }
4709}
4710
4711NamedDecl*
4712Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4713                              TypeSourceInfo *TInfo, LookupResult &Previous,
4714                              MultiTemplateParamsArg TemplateParamLists,
4715                              bool &AddToScope) {
4716  QualType R = TInfo->getType();
4717
4718  assert(R.getTypePtr()->isFunctionType());
4719
4720  // TODO: consider using NameInfo for diagnostic.
4721  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4722  DeclarationName Name = NameInfo.getName();
4723  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4724
4725  if (D.getDeclSpec().isThreadSpecified())
4726    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4727
4728  // Do not allow returning a objc interface by-value.
4729  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4730    Diag(D.getIdentifierLoc(),
4731         diag::err_object_cannot_be_passed_returned_by_value) << 0
4732    << R->getAs<FunctionType>()->getResultType()
4733    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4734
4735    QualType T = R->getAs<FunctionType>()->getResultType();
4736    T = Context.getObjCObjectPointerType(T);
4737    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4738      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4739      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4740                                  FPT->getNumArgs(), EPI);
4741    }
4742    else if (isa<FunctionNoProtoType>(R))
4743      R = Context.getFunctionNoProtoType(T);
4744  }
4745
4746  bool isFriend = false;
4747  FunctionTemplateDecl *FunctionTemplate = 0;
4748  bool isExplicitSpecialization = false;
4749  bool isFunctionTemplateSpecialization = false;
4750  bool isDependentClassScopeExplicitSpecialization = false;
4751  bool isVirtualOkay = false;
4752
4753  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4754                                              isVirtualOkay);
4755  if (!NewFD) return 0;
4756
4757  if (getLangOptions().CPlusPlus) {
4758    bool isInline = D.getDeclSpec().isInlineSpecified();
4759    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4760    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4761    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4762    isFriend = D.getDeclSpec().isFriendSpecified();
4763    if (isFriend && !isInline && D.isFunctionDefinition()) {
4764      // C++ [class.friend]p5
4765      //   A function can be defined in a friend declaration of a
4766      //   class . . . . Such a function is implicitly inline.
4767      NewFD->setImplicitlyInline();
4768    }
4769
4770    SetNestedNameSpecifier(NewFD, D);
4771    isExplicitSpecialization = false;
4772    isFunctionTemplateSpecialization = false;
4773    if (D.isInvalidType())
4774      NewFD->setInvalidDecl();
4775
4776    // Set the lexical context. If the declarator has a C++
4777    // scope specifier, or is the object of a friend declaration, the
4778    // lexical context will be different from the semantic context.
4779    NewFD->setLexicalDeclContext(CurContext);
4780
4781    // Match up the template parameter lists with the scope specifier, then
4782    // determine whether we have a template or a template specialization.
4783    bool Invalid = false;
4784    if (TemplateParameterList *TemplateParams
4785          = MatchTemplateParametersToScopeSpecifier(
4786                                  D.getDeclSpec().getSourceRange().getBegin(),
4787                                  D.getIdentifierLoc(),
4788                                  D.getCXXScopeSpec(),
4789                                  TemplateParamLists.get(),
4790                                  TemplateParamLists.size(),
4791                                  isFriend,
4792                                  isExplicitSpecialization,
4793                                  Invalid)) {
4794      if (TemplateParams->size() > 0) {
4795        // This is a function template
4796
4797        // Check that we can declare a template here.
4798        if (CheckTemplateDeclScope(S, TemplateParams))
4799          return 0;
4800
4801        // A destructor cannot be a template.
4802        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4803          Diag(NewFD->getLocation(), diag::err_destructor_template);
4804          return 0;
4805        }
4806
4807        // If we're adding a template to a dependent context, we may need to
4808        // rebuilding some of the types used within the template parameter list,
4809        // now that we know what the current instantiation is.
4810        if (DC->isDependentContext()) {
4811          ContextRAII SavedContext(*this, DC);
4812          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4813            Invalid = true;
4814        }
4815
4816
4817        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4818                                                        NewFD->getLocation(),
4819                                                        Name, TemplateParams,
4820                                                        NewFD);
4821        FunctionTemplate->setLexicalDeclContext(CurContext);
4822        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4823
4824        // For source fidelity, store the other template param lists.
4825        if (TemplateParamLists.size() > 1) {
4826          NewFD->setTemplateParameterListsInfo(Context,
4827                                               TemplateParamLists.size() - 1,
4828                                               TemplateParamLists.release());
4829        }
4830      } else {
4831        // This is a function template specialization.
4832        isFunctionTemplateSpecialization = true;
4833        // For source fidelity, store all the template param lists.
4834        NewFD->setTemplateParameterListsInfo(Context,
4835                                             TemplateParamLists.size(),
4836                                             TemplateParamLists.release());
4837
4838        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4839        if (isFriend) {
4840          // We want to remove the "template<>", found here.
4841          SourceRange RemoveRange = TemplateParams->getSourceRange();
4842
4843          // If we remove the template<> and the name is not a
4844          // template-id, we're actually silently creating a problem:
4845          // the friend declaration will refer to an untemplated decl,
4846          // and clearly the user wants a template specialization.  So
4847          // we need to insert '<>' after the name.
4848          SourceLocation InsertLoc;
4849          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4850            InsertLoc = D.getName().getSourceRange().getEnd();
4851            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4852          }
4853
4854          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4855            << Name << RemoveRange
4856            << FixItHint::CreateRemoval(RemoveRange)
4857            << FixItHint::CreateInsertion(InsertLoc, "<>");
4858        }
4859      }
4860    }
4861    else {
4862      // All template param lists were matched against the scope specifier:
4863      // this is NOT (an explicit specialization of) a template.
4864      if (TemplateParamLists.size() > 0)
4865        // For source fidelity, store all the template param lists.
4866        NewFD->setTemplateParameterListsInfo(Context,
4867                                             TemplateParamLists.size(),
4868                                             TemplateParamLists.release());
4869    }
4870
4871    if (Invalid) {
4872      NewFD->setInvalidDecl();
4873      if (FunctionTemplate)
4874        FunctionTemplate->setInvalidDecl();
4875    }
4876
4877    // C++ [dcl.fct.spec]p5:
4878    //   The virtual specifier shall only be used in declarations of
4879    //   nonstatic class member functions that appear within a
4880    //   member-specification of a class declaration; see 10.3.
4881    //
4882    if (isVirtual && !NewFD->isInvalidDecl()) {
4883      if (!isVirtualOkay) {
4884        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4885             diag::err_virtual_non_function);
4886      } else if (!CurContext->isRecord()) {
4887        // 'virtual' was specified outside of the class.
4888        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4889             diag::err_virtual_out_of_class)
4890          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4891      } else if (NewFD->getDescribedFunctionTemplate()) {
4892        // C++ [temp.mem]p3:
4893        //  A member function template shall not be virtual.
4894        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4895             diag::err_virtual_member_function_template)
4896          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4897      } else {
4898        // Okay: Add virtual to the method.
4899        NewFD->setVirtualAsWritten(true);
4900      }
4901    }
4902
4903    // C++ [dcl.fct.spec]p3:
4904    //  The inline specifier shall not appear on a block scope function declaration.
4905    if (isInline && !NewFD->isInvalidDecl()) {
4906      if (CurContext->isFunctionOrMethod()) {
4907        // 'inline' is not allowed on block scope function declaration.
4908        Diag(D.getDeclSpec().getInlineSpecLoc(),
4909             diag::err_inline_declaration_block_scope) << Name
4910          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4911      }
4912    }
4913
4914    // C++ [dcl.fct.spec]p6:
4915    //  The explicit specifier shall be used only in the declaration of a
4916    //  constructor or conversion function within its class definition; see 12.3.1
4917    //  and 12.3.2.
4918    if (isExplicit && !NewFD->isInvalidDecl()) {
4919      if (!CurContext->isRecord()) {
4920        // 'explicit' was specified outside of the class.
4921        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4922             diag::err_explicit_out_of_class)
4923          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4924      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4925                 !isa<CXXConversionDecl>(NewFD)) {
4926        // 'explicit' was specified on a function that wasn't a constructor
4927        // or conversion function.
4928        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4929             diag::err_explicit_non_ctor_or_conv_function)
4930          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4931      }
4932    }
4933
4934    if (isConstexpr) {
4935      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4936      // are implicitly inline.
4937      NewFD->setImplicitlyInline();
4938
4939      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4940      // be either constructors or to return a literal type. Therefore,
4941      // destructors cannot be declared constexpr.
4942      if (isa<CXXDestructorDecl>(NewFD))
4943        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4944    }
4945
4946    // If __module_private__ was specified, mark the function accordingly.
4947    if (D.getDeclSpec().isModulePrivateSpecified()) {
4948      if (isFunctionTemplateSpecialization) {
4949        SourceLocation ModulePrivateLoc
4950          = D.getDeclSpec().getModulePrivateSpecLoc();
4951        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4952          << 0
4953          << FixItHint::CreateRemoval(ModulePrivateLoc);
4954      } else {
4955        NewFD->setModulePrivate();
4956        if (FunctionTemplate)
4957          FunctionTemplate->setModulePrivate();
4958      }
4959    }
4960
4961    if (isFriend) {
4962      // For now, claim that the objects have no previous declaration.
4963      if (FunctionTemplate) {
4964        FunctionTemplate->setObjectOfFriendDecl(false);
4965        FunctionTemplate->setAccess(AS_public);
4966      }
4967      NewFD->setObjectOfFriendDecl(false);
4968      NewFD->setAccess(AS_public);
4969    }
4970
4971    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4972        D.isFunctionDefinition()) {
4973      // A method is implicitly inline if it's defined in its class
4974      // definition.
4975      NewFD->setImplicitlyInline();
4976    }
4977
4978    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4979        !CurContext->isRecord()) {
4980      // C++ [class.static]p1:
4981      //   A data or function member of a class may be declared static
4982      //   in a class definition, in which case it is a static member of
4983      //   the class.
4984
4985      // Complain about the 'static' specifier if it's on an out-of-line
4986      // member function definition.
4987      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4988           diag::err_static_out_of_line)
4989        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4990    }
4991  }
4992
4993  // Filter out previous declarations that don't match the scope.
4994  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4995                       isExplicitSpecialization ||
4996                       isFunctionTemplateSpecialization);
4997
4998  // Handle GNU asm-label extension (encoded as an attribute).
4999  if (Expr *E = (Expr*) D.getAsmLabel()) {
5000    // The parser guarantees this is a string.
5001    StringLiteral *SE = cast<StringLiteral>(E);
5002    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5003                                                SE->getString()));
5004  }
5005
5006  // Copy the parameter declarations from the declarator D to the function
5007  // declaration NewFD, if they are available.  First scavenge them into Params.
5008  SmallVector<ParmVarDecl*, 16> Params;
5009  if (D.isFunctionDeclarator()) {
5010    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5011
5012    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5013    // function that takes no arguments, not a function that takes a
5014    // single void argument.
5015    // We let through "const void" here because Sema::GetTypeForDeclarator
5016    // already checks for that case.
5017    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5018        FTI.ArgInfo[0].Param &&
5019        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5020      // Empty arg list, don't push any params.
5021      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5022
5023      // In C++, the empty parameter-type-list must be spelled "void"; a
5024      // typedef of void is not permitted.
5025      if (getLangOptions().CPlusPlus &&
5026          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5027        bool IsTypeAlias = false;
5028        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5029          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5030        else if (const TemplateSpecializationType *TST =
5031                   Param->getType()->getAs<TemplateSpecializationType>())
5032          IsTypeAlias = TST->isTypeAlias();
5033        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5034          << IsTypeAlias;
5035      }
5036    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5037      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5038        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5039        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5040        Param->setDeclContext(NewFD);
5041        Params.push_back(Param);
5042
5043        if (Param->isInvalidDecl())
5044          NewFD->setInvalidDecl();
5045      }
5046    }
5047
5048  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5049    // When we're declaring a function with a typedef, typeof, etc as in the
5050    // following example, we'll need to synthesize (unnamed)
5051    // parameters for use in the declaration.
5052    //
5053    // @code
5054    // typedef void fn(int);
5055    // fn f;
5056    // @endcode
5057
5058    // Synthesize a parameter for each argument type.
5059    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5060         AE = FT->arg_type_end(); AI != AE; ++AI) {
5061      ParmVarDecl *Param =
5062        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5063      Param->setScopeInfo(0, Params.size());
5064      Params.push_back(Param);
5065    }
5066  } else {
5067    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5068           "Should not need args for typedef of non-prototype fn");
5069  }
5070
5071  // Finally, we know we have the right number of parameters, install them.
5072  NewFD->setParams(Params);
5073
5074  // Process the non-inheritable attributes on this declaration.
5075  ProcessDeclAttributes(S, NewFD, D,
5076                        /*NonInheritable=*/true, /*Inheritable=*/false);
5077
5078  if (!getLangOptions().CPlusPlus) {
5079    // Perform semantic checking on the function declaration.
5080    bool isExplicitSpecialization=false;
5081    if (!NewFD->isInvalidDecl()) {
5082      if (NewFD->getResultType()->isVariablyModifiedType()) {
5083        // Functions returning a variably modified type violate C99 6.7.5.2p2
5084        // because all functions have linkage.
5085        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5086        NewFD->setInvalidDecl();
5087      } else {
5088        if (NewFD->isMain())
5089          CheckMain(NewFD, D.getDeclSpec());
5090        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5091                                                    isExplicitSpecialization));
5092      }
5093    }
5094    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5095            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5096           "previous declaration set still overloaded");
5097  } else {
5098    // If the declarator is a template-id, translate the parser's template
5099    // argument list into our AST format.
5100    bool HasExplicitTemplateArgs = false;
5101    TemplateArgumentListInfo TemplateArgs;
5102    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5103      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5104      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5105      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5106      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5107                                         TemplateId->getTemplateArgs(),
5108                                         TemplateId->NumArgs);
5109      translateTemplateArguments(TemplateArgsPtr,
5110                                 TemplateArgs);
5111      TemplateArgsPtr.release();
5112
5113      HasExplicitTemplateArgs = true;
5114
5115      if (NewFD->isInvalidDecl()) {
5116        HasExplicitTemplateArgs = false;
5117      } else if (FunctionTemplate) {
5118        // Function template with explicit template arguments.
5119        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5120          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5121
5122        HasExplicitTemplateArgs = false;
5123      } else if (!isFunctionTemplateSpecialization &&
5124                 !D.getDeclSpec().isFriendSpecified()) {
5125        // We have encountered something that the user meant to be a
5126        // specialization (because it has explicitly-specified template
5127        // arguments) but that was not introduced with a "template<>" (or had
5128        // too few of them).
5129        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5130          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5131          << FixItHint::CreateInsertion(
5132                                        D.getDeclSpec().getSourceRange().getBegin(),
5133                                                  "template<> ");
5134        isFunctionTemplateSpecialization = true;
5135      } else {
5136        // "friend void foo<>(int);" is an implicit specialization decl.
5137        isFunctionTemplateSpecialization = true;
5138      }
5139    } else if (isFriend && isFunctionTemplateSpecialization) {
5140      // This combination is only possible in a recovery case;  the user
5141      // wrote something like:
5142      //   template <> friend void foo(int);
5143      // which we're recovering from as if the user had written:
5144      //   friend void foo<>(int);
5145      // Go ahead and fake up a template id.
5146      HasExplicitTemplateArgs = true;
5147        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5148      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5149    }
5150
5151    // If it's a friend (and only if it's a friend), it's possible
5152    // that either the specialized function type or the specialized
5153    // template is dependent, and therefore matching will fail.  In
5154    // this case, don't check the specialization yet.
5155    bool InstantiationDependent = false;
5156    if (isFunctionTemplateSpecialization && isFriend &&
5157        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5158         TemplateSpecializationType::anyDependentTemplateArguments(
5159            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5160            InstantiationDependent))) {
5161      assert(HasExplicitTemplateArgs &&
5162             "friend function specialization without template args");
5163      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5164                                                       Previous))
5165        NewFD->setInvalidDecl();
5166    } else if (isFunctionTemplateSpecialization) {
5167      if (CurContext->isDependentContext() && CurContext->isRecord()
5168          && !isFriend) {
5169        isDependentClassScopeExplicitSpecialization = true;
5170        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5171          diag::ext_function_specialization_in_class :
5172          diag::err_function_specialization_in_class)
5173          << NewFD->getDeclName();
5174      } else if (CheckFunctionTemplateSpecialization(NewFD,
5175                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5176                                                     Previous))
5177        NewFD->setInvalidDecl();
5178
5179      // C++ [dcl.stc]p1:
5180      //   A storage-class-specifier shall not be specified in an explicit
5181      //   specialization (14.7.3)
5182      if (SC != SC_None) {
5183        if (SC != NewFD->getStorageClass())
5184          Diag(NewFD->getLocation(),
5185               diag::err_explicit_specialization_inconsistent_storage_class)
5186            << SC
5187            << FixItHint::CreateRemoval(
5188                                      D.getDeclSpec().getStorageClassSpecLoc());
5189
5190        else
5191          Diag(NewFD->getLocation(),
5192               diag::ext_explicit_specialization_storage_class)
5193            << FixItHint::CreateRemoval(
5194                                      D.getDeclSpec().getStorageClassSpecLoc());
5195      }
5196
5197    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5198      if (CheckMemberSpecialization(NewFD, Previous))
5199          NewFD->setInvalidDecl();
5200    }
5201
5202    // Perform semantic checking on the function declaration.
5203    if (!isDependentClassScopeExplicitSpecialization) {
5204      if (NewFD->isInvalidDecl()) {
5205        // If this is a class member, mark the class invalid immediately.
5206        // This avoids some consistency errors later.
5207        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5208          methodDecl->getParent()->setInvalidDecl();
5209      } else {
5210        if (NewFD->isMain())
5211          CheckMain(NewFD, D.getDeclSpec());
5212        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5213                                                    isExplicitSpecialization));
5214      }
5215    }
5216
5217    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5218            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5219           "previous declaration set still overloaded");
5220
5221    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5222        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5223      NewFD->setInvalidDecl();
5224
5225    NamedDecl *PrincipalDecl = (FunctionTemplate
5226                                ? cast<NamedDecl>(FunctionTemplate)
5227                                : NewFD);
5228
5229    if (isFriend && D.isRedeclaration()) {
5230      AccessSpecifier Access = AS_public;
5231      if (!NewFD->isInvalidDecl())
5232        Access = NewFD->getPreviousDeclaration()->getAccess();
5233
5234      NewFD->setAccess(Access);
5235      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5236
5237      PrincipalDecl->setObjectOfFriendDecl(true);
5238    }
5239
5240    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5241        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5242      PrincipalDecl->setNonMemberOperator();
5243
5244    // If we have a function template, check the template parameter
5245    // list. This will check and merge default template arguments.
5246    if (FunctionTemplate) {
5247      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5248      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5249                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5250                            D.getDeclSpec().isFriendSpecified()
5251                              ? (D.isFunctionDefinition()
5252                                   ? TPC_FriendFunctionTemplateDefinition
5253                                   : TPC_FriendFunctionTemplate)
5254                              : (D.getCXXScopeSpec().isSet() &&
5255                                 DC && DC->isRecord() &&
5256                                 DC->isDependentContext())
5257                                  ? TPC_ClassTemplateMember
5258                                  : TPC_FunctionTemplate);
5259    }
5260
5261    if (NewFD->isInvalidDecl()) {
5262      // Ignore all the rest of this.
5263    } else if (!D.isRedeclaration()) {
5264      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5265                                       AddToScope };
5266      // Fake up an access specifier if it's supposed to be a class member.
5267      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5268        NewFD->setAccess(AS_public);
5269
5270      // Qualified decls generally require a previous declaration.
5271      if (D.getCXXScopeSpec().isSet()) {
5272        // ...with the major exception of templated-scope or
5273        // dependent-scope friend declarations.
5274
5275        // TODO: we currently also suppress this check in dependent
5276        // contexts because (1) the parameter depth will be off when
5277        // matching friend templates and (2) we might actually be
5278        // selecting a friend based on a dependent factor.  But there
5279        // are situations where these conditions don't apply and we
5280        // can actually do this check immediately.
5281        if (isFriend &&
5282            (TemplateParamLists.size() ||
5283             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5284             CurContext->isDependentContext())) {
5285          // ignore these
5286        } else {
5287          // The user tried to provide an out-of-line definition for a
5288          // function that is a member of a class or namespace, but there
5289          // was no such member function declared (C++ [class.mfct]p2,
5290          // C++ [namespace.memdef]p2). For example:
5291          //
5292          // class X {
5293          //   void f() const;
5294          // };
5295          //
5296          // void X::f() { } // ill-formed
5297          //
5298          // Complain about this problem, and attempt to suggest close
5299          // matches (e.g., those that differ only in cv-qualifiers and
5300          // whether the parameter types are references).
5301
5302          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5303                                                               NewFD,
5304                                                               ExtraArgs)) {
5305            AddToScope = ExtraArgs.AddToScope;
5306            return Result;
5307          }
5308        }
5309
5310        // Unqualified local friend declarations are required to resolve
5311        // to something.
5312      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5313        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5314                                                             NewFD,
5315                                                             ExtraArgs)) {
5316          AddToScope = ExtraArgs.AddToScope;
5317          return Result;
5318        }
5319      }
5320
5321    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5322               !isFriend && !isFunctionTemplateSpecialization &&
5323               !isExplicitSpecialization) {
5324      // An out-of-line member function declaration must also be a
5325      // definition (C++ [dcl.meaning]p1).
5326      // Note that this is not the case for explicit specializations of
5327      // function templates or member functions of class templates, per
5328      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5329      // for compatibility with old SWIG code which likes to generate them.
5330      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5331        << D.getCXXScopeSpec().getRange();
5332    }
5333  }
5334
5335
5336  // Handle attributes. We need to have merged decls when handling attributes
5337  // (for example to check for conflicts, etc).
5338  // FIXME: This needs to happen before we merge declarations. Then,
5339  // let attribute merging cope with attribute conflicts.
5340  ProcessDeclAttributes(S, NewFD, D,
5341                        /*NonInheritable=*/false, /*Inheritable=*/true);
5342
5343  // attributes declared post-definition are currently ignored
5344  // FIXME: This should happen during attribute merging
5345  if (D.isRedeclaration() && Previous.isSingleResult()) {
5346    const FunctionDecl *Def;
5347    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5348    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5349      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5350      Diag(Def->getLocation(), diag::note_previous_definition);
5351    }
5352  }
5353
5354  AddKnownFunctionAttributes(NewFD);
5355
5356  if (NewFD->hasAttr<OverloadableAttr>() &&
5357      !NewFD->getType()->getAs<FunctionProtoType>()) {
5358    Diag(NewFD->getLocation(),
5359         diag::err_attribute_overloadable_no_prototype)
5360      << NewFD;
5361
5362    // Turn this into a variadic function with no parameters.
5363    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5364    FunctionProtoType::ExtProtoInfo EPI;
5365    EPI.Variadic = true;
5366    EPI.ExtInfo = FT->getExtInfo();
5367
5368    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5369    NewFD->setType(R);
5370  }
5371
5372  // If there's a #pragma GCC visibility in scope, and this isn't a class
5373  // member, set the visibility of this function.
5374  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5375    AddPushedVisibilityAttribute(NewFD);
5376
5377  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5378  // marking the function.
5379  AddCFAuditedAttribute(NewFD);
5380
5381  // If this is a locally-scoped extern C function, update the
5382  // map of such names.
5383  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5384      && !NewFD->isInvalidDecl())
5385    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5386
5387  // Set this FunctionDecl's range up to the right paren.
5388  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5389
5390  if (getLangOptions().CPlusPlus) {
5391    if (FunctionTemplate) {
5392      if (NewFD->isInvalidDecl())
5393        FunctionTemplate->setInvalidDecl();
5394      return FunctionTemplate;
5395    }
5396  }
5397
5398  MarkUnusedFileScopedDecl(NewFD);
5399
5400  if (getLangOptions().CUDA)
5401    if (IdentifierInfo *II = NewFD->getIdentifier())
5402      if (!NewFD->isInvalidDecl() &&
5403          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5404        if (II->isStr("cudaConfigureCall")) {
5405          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5406            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5407
5408          Context.setcudaConfigureCallDecl(NewFD);
5409        }
5410      }
5411
5412  // Here we have an function template explicit specialization at class scope.
5413  // The actually specialization will be postponed to template instatiation
5414  // time via the ClassScopeFunctionSpecializationDecl node.
5415  if (isDependentClassScopeExplicitSpecialization) {
5416    ClassScopeFunctionSpecializationDecl *NewSpec =
5417                         ClassScopeFunctionSpecializationDecl::Create(
5418                                Context, CurContext,  SourceLocation(),
5419                                cast<CXXMethodDecl>(NewFD));
5420    CurContext->addDecl(NewSpec);
5421    AddToScope = false;
5422  }
5423
5424  return NewFD;
5425}
5426
5427/// \brief Perform semantic checking of a new function declaration.
5428///
5429/// Performs semantic analysis of the new function declaration
5430/// NewFD. This routine performs all semantic checking that does not
5431/// require the actual declarator involved in the declaration, and is
5432/// used both for the declaration of functions as they are parsed
5433/// (called via ActOnDeclarator) and for the declaration of functions
5434/// that have been instantiated via C++ template instantiation (called
5435/// via InstantiateDecl).
5436///
5437/// \param IsExplicitSpecialiation whether this new function declaration is
5438/// an explicit specialization of the previous declaration.
5439///
5440/// This sets NewFD->isInvalidDecl() to true if there was an error.
5441///
5442/// Returns true if the function declaration is a redeclaration.
5443bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5444                                    LookupResult &Previous,
5445                                    bool IsExplicitSpecialization) {
5446  assert(!NewFD->getResultType()->isVariablyModifiedType()
5447         && "Variably modified return types are not handled here");
5448
5449  // Check for a previous declaration of this name.
5450  if (Previous.empty() && NewFD->isExternC()) {
5451    // Since we did not find anything by this name and we're declaring
5452    // an extern "C" function, look for a non-visible extern "C"
5453    // declaration with the same name.
5454    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5455      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5456    if (Pos != LocallyScopedExternalDecls.end())
5457      Previous.addDecl(Pos->second);
5458  }
5459
5460  bool Redeclaration = false;
5461
5462  // Merge or overload the declaration with an existing declaration of
5463  // the same name, if appropriate.
5464  if (!Previous.empty()) {
5465    // Determine whether NewFD is an overload of PrevDecl or
5466    // a declaration that requires merging. If it's an overload,
5467    // there's no more work to do here; we'll just add the new
5468    // function to the scope.
5469
5470    NamedDecl *OldDecl = 0;
5471    if (!AllowOverloadingOfFunction(Previous, Context)) {
5472      Redeclaration = true;
5473      OldDecl = Previous.getFoundDecl();
5474    } else {
5475      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5476                            /*NewIsUsingDecl*/ false)) {
5477      case Ovl_Match:
5478        Redeclaration = true;
5479        break;
5480
5481      case Ovl_NonFunction:
5482        Redeclaration = true;
5483        break;
5484
5485      case Ovl_Overload:
5486        Redeclaration = false;
5487        break;
5488      }
5489
5490      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5491        // If a function name is overloadable in C, then every function
5492        // with that name must be marked "overloadable".
5493        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5494          << Redeclaration << NewFD;
5495        NamedDecl *OverloadedDecl = 0;
5496        if (Redeclaration)
5497          OverloadedDecl = OldDecl;
5498        else if (!Previous.empty())
5499          OverloadedDecl = Previous.getRepresentativeDecl();
5500        if (OverloadedDecl)
5501          Diag(OverloadedDecl->getLocation(),
5502               diag::note_attribute_overloadable_prev_overload);
5503        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5504                                                        Context));
5505      }
5506    }
5507
5508    if (Redeclaration) {
5509      // NewFD and OldDecl represent declarations that need to be
5510      // merged.
5511      if (MergeFunctionDecl(NewFD, OldDecl)) {
5512        NewFD->setInvalidDecl();
5513        return Redeclaration;
5514      }
5515
5516      Previous.clear();
5517      Previous.addDecl(OldDecl);
5518
5519      if (FunctionTemplateDecl *OldTemplateDecl
5520                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5521        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5522        FunctionTemplateDecl *NewTemplateDecl
5523          = NewFD->getDescribedFunctionTemplate();
5524        assert(NewTemplateDecl && "Template/non-template mismatch");
5525        if (CXXMethodDecl *Method
5526              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5527          Method->setAccess(OldTemplateDecl->getAccess());
5528          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5529        }
5530
5531        // If this is an explicit specialization of a member that is a function
5532        // template, mark it as a member specialization.
5533        if (IsExplicitSpecialization &&
5534            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5535          NewTemplateDecl->setMemberSpecialization();
5536          assert(OldTemplateDecl->isMemberSpecialization());
5537        }
5538
5539        if (OldTemplateDecl->isModulePrivate())
5540          NewTemplateDecl->setModulePrivate();
5541
5542      } else {
5543        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5544          NewFD->setAccess(OldDecl->getAccess());
5545        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5546      }
5547    }
5548  }
5549
5550  // Semantic checking for this function declaration (in isolation).
5551  if (getLangOptions().CPlusPlus) {
5552    // C++-specific checks.
5553    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5554      CheckConstructor(Constructor);
5555    } else if (CXXDestructorDecl *Destructor =
5556                dyn_cast<CXXDestructorDecl>(NewFD)) {
5557      CXXRecordDecl *Record = Destructor->getParent();
5558      QualType ClassType = Context.getTypeDeclType(Record);
5559
5560      // FIXME: Shouldn't we be able to perform this check even when the class
5561      // type is dependent? Both gcc and edg can handle that.
5562      if (!ClassType->isDependentType()) {
5563        DeclarationName Name
5564          = Context.DeclarationNames.getCXXDestructorName(
5565                                        Context.getCanonicalType(ClassType));
5566        if (NewFD->getDeclName() != Name) {
5567          Diag(NewFD->getLocation(), diag::err_destructor_name);
5568          NewFD->setInvalidDecl();
5569          return Redeclaration;
5570        }
5571      }
5572    } else if (CXXConversionDecl *Conversion
5573               = dyn_cast<CXXConversionDecl>(NewFD)) {
5574      ActOnConversionDeclarator(Conversion);
5575    }
5576
5577    // Find any virtual functions that this function overrides.
5578    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5579      if (!Method->isFunctionTemplateSpecialization() &&
5580          !Method->getDescribedFunctionTemplate()) {
5581        if (AddOverriddenMethods(Method->getParent(), Method)) {
5582          // If the function was marked as "static", we have a problem.
5583          if (NewFD->getStorageClass() == SC_Static) {
5584            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5585              << NewFD->getDeclName();
5586            for (CXXMethodDecl::method_iterator
5587                      Overridden = Method->begin_overridden_methods(),
5588                   OverriddenEnd = Method->end_overridden_methods();
5589                 Overridden != OverriddenEnd;
5590                 ++Overridden) {
5591              Diag((*Overridden)->getLocation(),
5592                   diag::note_overridden_virtual_function);
5593            }
5594          }
5595        }
5596      }
5597    }
5598
5599    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5600    if (NewFD->isOverloadedOperator() &&
5601        CheckOverloadedOperatorDeclaration(NewFD)) {
5602      NewFD->setInvalidDecl();
5603      return Redeclaration;
5604    }
5605
5606    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5607    if (NewFD->getLiteralIdentifier() &&
5608        CheckLiteralOperatorDeclaration(NewFD)) {
5609      NewFD->setInvalidDecl();
5610      return Redeclaration;
5611    }
5612
5613    // In C++, check default arguments now that we have merged decls. Unless
5614    // the lexical context is the class, because in this case this is done
5615    // during delayed parsing anyway.
5616    if (!CurContext->isRecord())
5617      CheckCXXDefaultArguments(NewFD);
5618
5619    // If this function declares a builtin function, check the type of this
5620    // declaration against the expected type for the builtin.
5621    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5622      ASTContext::GetBuiltinTypeError Error;
5623      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5624      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5625        // The type of this function differs from the type of the builtin,
5626        // so forget about the builtin entirely.
5627        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5628      }
5629    }
5630  }
5631  return Redeclaration;
5632}
5633
5634void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5635  // C++ [basic.start.main]p3:  A program that declares main to be inline
5636  //   or static is ill-formed.
5637  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5638  //   shall not appear in a declaration of main.
5639  // static main is not an error under C99, but we should warn about it.
5640  if (FD->getStorageClass() == SC_Static)
5641    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5642         ? diag::err_static_main : diag::warn_static_main)
5643      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5644  if (FD->isInlineSpecified())
5645    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5646      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5647
5648  QualType T = FD->getType();
5649  assert(T->isFunctionType() && "function decl is not of function type");
5650  const FunctionType* FT = T->getAs<FunctionType>();
5651
5652  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5653    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5654    FD->setInvalidDecl(true);
5655  }
5656
5657  // Treat protoless main() as nullary.
5658  if (isa<FunctionNoProtoType>(FT)) return;
5659
5660  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5661  unsigned nparams = FTP->getNumArgs();
5662  assert(FD->getNumParams() == nparams);
5663
5664  bool HasExtraParameters = (nparams > 3);
5665
5666  // Darwin passes an undocumented fourth argument of type char**.  If
5667  // other platforms start sprouting these, the logic below will start
5668  // getting shifty.
5669  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5670    HasExtraParameters = false;
5671
5672  if (HasExtraParameters) {
5673    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5674    FD->setInvalidDecl(true);
5675    nparams = 3;
5676  }
5677
5678  // FIXME: a lot of the following diagnostics would be improved
5679  // if we had some location information about types.
5680
5681  QualType CharPP =
5682    Context.getPointerType(Context.getPointerType(Context.CharTy));
5683  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5684
5685  for (unsigned i = 0; i < nparams; ++i) {
5686    QualType AT = FTP->getArgType(i);
5687
5688    bool mismatch = true;
5689
5690    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5691      mismatch = false;
5692    else if (Expected[i] == CharPP) {
5693      // As an extension, the following forms are okay:
5694      //   char const **
5695      //   char const * const *
5696      //   char * const *
5697
5698      QualifierCollector qs;
5699      const PointerType* PT;
5700      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5701          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5702          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5703        qs.removeConst();
5704        mismatch = !qs.empty();
5705      }
5706    }
5707
5708    if (mismatch) {
5709      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5710      // TODO: suggest replacing given type with expected type
5711      FD->setInvalidDecl(true);
5712    }
5713  }
5714
5715  if (nparams == 1 && !FD->isInvalidDecl()) {
5716    Diag(FD->getLocation(), diag::warn_main_one_arg);
5717  }
5718
5719  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5720    Diag(FD->getLocation(), diag::err_main_template_decl);
5721    FD->setInvalidDecl();
5722  }
5723}
5724
5725bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5726  // FIXME: Need strict checking.  In C89, we need to check for
5727  // any assignment, increment, decrement, function-calls, or
5728  // commas outside of a sizeof.  In C99, it's the same list,
5729  // except that the aforementioned are allowed in unevaluated
5730  // expressions.  Everything else falls under the
5731  // "may accept other forms of constant expressions" exception.
5732  // (We never end up here for C++, so the constant expression
5733  // rules there don't matter.)
5734  if (Init->isConstantInitializer(Context, false))
5735    return false;
5736  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5737    << Init->getSourceRange();
5738  return true;
5739}
5740
5741namespace {
5742  // Visits an initialization expression to see if OrigDecl is evaluated in
5743  // its own initialization and throws a warning if it does.
5744  class SelfReferenceChecker
5745      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5746    Sema &S;
5747    Decl *OrigDecl;
5748    bool isRecordType;
5749    bool isPODType;
5750
5751  public:
5752    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5753
5754    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5755                                                    S(S), OrigDecl(OrigDecl) {
5756      isPODType = false;
5757      isRecordType = false;
5758      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5759        isPODType = VD->getType().isPODType(S.Context);
5760        isRecordType = VD->getType()->isRecordType();
5761      }
5762    }
5763
5764    void VisitExpr(Expr *E) {
5765      if (isa<ObjCMessageExpr>(*E)) return;
5766      if (isRecordType) {
5767        Expr *expr = E;
5768        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5769          ValueDecl *VD = ME->getMemberDecl();
5770          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5771          expr = ME->getBase();
5772        }
5773        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5774          HandleDeclRefExpr(DRE);
5775          return;
5776        }
5777      }
5778      Inherited::VisitExpr(E);
5779    }
5780
5781    void VisitMemberExpr(MemberExpr *E) {
5782      if (E->getType()->canDecayToPointerType()) return;
5783      if (isa<FieldDecl>(E->getMemberDecl()))
5784        if (DeclRefExpr *DRE
5785              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5786          HandleDeclRefExpr(DRE);
5787          return;
5788        }
5789      Inherited::VisitMemberExpr(E);
5790    }
5791
5792    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5793      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5794          (isRecordType && E->getCastKind() == CK_NoOp)) {
5795        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5796        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5797          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5798        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5799          HandleDeclRefExpr(DRE);
5800          return;
5801        }
5802      }
5803      Inherited::VisitImplicitCastExpr(E);
5804    }
5805
5806    void VisitUnaryOperator(UnaryOperator *E) {
5807      // For POD record types, addresses of its own members are well-defined.
5808      if (isRecordType && isPODType) return;
5809      Inherited::VisitUnaryOperator(E);
5810    }
5811
5812    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5813      Decl* ReferenceDecl = DRE->getDecl();
5814      if (OrigDecl != ReferenceDecl) return;
5815      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5816                          Sema::NotForRedeclaration);
5817      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5818                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5819                              << Result.getLookupName()
5820                              << OrigDecl->getLocation()
5821                              << DRE->getSourceRange());
5822    }
5823  };
5824}
5825
5826/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5827void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5828  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5829}
5830
5831/// AddInitializerToDecl - Adds the initializer Init to the
5832/// declaration dcl. If DirectInit is true, this is C++ direct
5833/// initialization rather than copy initialization.
5834void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5835                                bool DirectInit, bool TypeMayContainAuto) {
5836  // If there is no declaration, there was an error parsing it.  Just ignore
5837  // the initializer.
5838  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5839    return;
5840
5841  // Check for self-references within variable initializers.
5842  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5843    // Variables declared within a function/method body are handled
5844    // by a dataflow analysis.
5845    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5846      CheckSelfReference(RealDecl, Init);
5847  }
5848  else {
5849    CheckSelfReference(RealDecl, Init);
5850  }
5851
5852  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5853    // With declarators parsed the way they are, the parser cannot
5854    // distinguish between a normal initializer and a pure-specifier.
5855    // Thus this grotesque test.
5856    IntegerLiteral *IL;
5857    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5858        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5859      CheckPureMethod(Method, Init->getSourceRange());
5860    else {
5861      Diag(Method->getLocation(), diag::err_member_function_initialization)
5862        << Method->getDeclName() << Init->getSourceRange();
5863      Method->setInvalidDecl();
5864    }
5865    return;
5866  }
5867
5868  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5869  if (!VDecl) {
5870    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5871    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5872    RealDecl->setInvalidDecl();
5873    return;
5874  }
5875
5876  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5877  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5878    TypeSourceInfo *DeducedType = 0;
5879    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5880      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5881        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5882        << Init->getSourceRange();
5883    if (!DeducedType) {
5884      RealDecl->setInvalidDecl();
5885      return;
5886    }
5887    VDecl->setTypeSourceInfo(DeducedType);
5888    VDecl->setType(DeducedType->getType());
5889
5890    // In ARC, infer lifetime.
5891    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5892      VDecl->setInvalidDecl();
5893
5894    // If this is a redeclaration, check that the type we just deduced matches
5895    // the previously declared type.
5896    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5897      MergeVarDeclTypes(VDecl, Old);
5898  }
5899
5900
5901  // A definition must end up with a complete type, which means it must be
5902  // complete with the restriction that an array type might be completed by the
5903  // initializer; note that later code assumes this restriction.
5904  QualType BaseDeclType = VDecl->getType();
5905  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5906    BaseDeclType = Array->getElementType();
5907  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5908                          diag::err_typecheck_decl_incomplete_type)) {
5909    RealDecl->setInvalidDecl();
5910    return;
5911  }
5912
5913  // The variable can not have an abstract class type.
5914  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5915                             diag::err_abstract_type_in_decl,
5916                             AbstractVariableType))
5917    VDecl->setInvalidDecl();
5918
5919  const VarDecl *Def;
5920  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5921    Diag(VDecl->getLocation(), diag::err_redefinition)
5922      << VDecl->getDeclName();
5923    Diag(Def->getLocation(), diag::note_previous_definition);
5924    VDecl->setInvalidDecl();
5925    return;
5926  }
5927
5928  const VarDecl* PrevInit = 0;
5929  if (getLangOptions().CPlusPlus) {
5930    // C++ [class.static.data]p4
5931    //   If a static data member is of const integral or const
5932    //   enumeration type, its declaration in the class definition can
5933    //   specify a constant-initializer which shall be an integral
5934    //   constant expression (5.19). In that case, the member can appear
5935    //   in integral constant expressions. The member shall still be
5936    //   defined in a namespace scope if it is used in the program and the
5937    //   namespace scope definition shall not contain an initializer.
5938    //
5939    // We already performed a redefinition check above, but for static
5940    // data members we also need to check whether there was an in-class
5941    // declaration with an initializer.
5942    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5943      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5944      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5945      return;
5946    }
5947
5948    if (VDecl->hasLocalStorage())
5949      getCurFunction()->setHasBranchProtectedScope();
5950
5951    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5952      VDecl->setInvalidDecl();
5953      return;
5954    }
5955  }
5956
5957  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5958  // a kernel function cannot be initialized."
5959  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5960    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5961    VDecl->setInvalidDecl();
5962    return;
5963  }
5964
5965  // Capture the variable that is being initialized and the style of
5966  // initialization.
5967  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5968
5969  // FIXME: Poor source location information.
5970  InitializationKind Kind
5971    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5972                                                   Init->getLocStart(),
5973                                                   Init->getLocEnd())
5974                : InitializationKind::CreateCopy(VDecl->getLocation(),
5975                                                 Init->getLocStart());
5976
5977  // Get the decls type and save a reference for later, since
5978  // CheckInitializerTypes may change it.
5979  QualType DclT = VDecl->getType(), SavT = DclT;
5980  if (VDecl->isLocalVarDecl()) {
5981    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5982      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5983      VDecl->setInvalidDecl();
5984    } else if (!VDecl->isInvalidDecl()) {
5985      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5986      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5987                                                MultiExprArg(*this, &Init, 1),
5988                                                &DclT);
5989      if (Result.isInvalid()) {
5990        VDecl->setInvalidDecl();
5991        return;
5992      }
5993
5994      Init = Result.takeAs<Expr>();
5995
5996      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5997      // Don't check invalid declarations to avoid emitting useless diagnostics.
5998      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5999        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6000          CheckForConstantInitializer(Init, DclT);
6001      }
6002    }
6003  } else if (VDecl->isStaticDataMember() &&
6004             VDecl->getLexicalDeclContext()->isRecord()) {
6005    // This is an in-class initialization for a static data member, e.g.,
6006    //
6007    // struct S {
6008    //   static const int value = 17;
6009    // };
6010
6011    // Try to perform the initialization regardless.
6012    if (!VDecl->isInvalidDecl()) {
6013      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6014      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6015                                          MultiExprArg(*this, &Init, 1),
6016                                          &DclT);
6017      if (Result.isInvalid()) {
6018        VDecl->setInvalidDecl();
6019        return;
6020      }
6021
6022      Init = Result.takeAs<Expr>();
6023    }
6024
6025    // C++ [class.mem]p4:
6026    //   A member-declarator can contain a constant-initializer only
6027    //   if it declares a static member (9.4) of const integral or
6028    //   const enumeration type, see 9.4.2.
6029    //
6030    // C++0x [class.static.data]p3:
6031    //   If a non-volatile const static data member is of integral or
6032    //   enumeration type, its declaration in the class definition can
6033    //   specify a brace-or-equal-initializer in which every initalizer-clause
6034    //   that is an assignment-expression is a constant expression. A static
6035    //   data member of literal type can be declared in the class definition
6036    //   with the constexpr specifier; if so, its declaration shall specify a
6037    //   brace-or-equal-initializer in which every initializer-clause that is
6038    //   an assignment-expression is a constant expression.
6039    QualType T = VDecl->getType();
6040
6041    // Do nothing on dependent types.
6042    if (T->isDependentType()) {
6043
6044    // Allow any 'static constexpr' members, whether or not they are of literal
6045    // type. We separately check that the initializer is a constant expression,
6046    // which implicitly requires the member to be of literal type.
6047    } else if (VDecl->isConstexpr()) {
6048
6049    // Require constness.
6050    } else if (!T.isConstQualified()) {
6051      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6052        << Init->getSourceRange();
6053      VDecl->setInvalidDecl();
6054
6055    // We allow integer constant expressions in all cases.
6056    } else if (T->isIntegralOrEnumerationType()) {
6057      // Check whether the expression is a constant expression.
6058      SourceLocation Loc;
6059      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6060        // In C++0x, a non-constexpr const static data member with an
6061        // in-class initializer cannot be volatile.
6062        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6063      else if (Init->isValueDependent())
6064        ; // Nothing to check.
6065      else if (Init->isIntegerConstantExpr(Context, &Loc))
6066        ; // Ok, it's an ICE!
6067      else if (Init->isEvaluatable(Context)) {
6068        // If we can constant fold the initializer through heroics, accept it,
6069        // but report this as a use of an extension for -pedantic.
6070        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6071          << Init->getSourceRange();
6072      } else {
6073        // Otherwise, this is some crazy unknown case.  Report the issue at the
6074        // location provided by the isIntegerConstantExpr failed check.
6075        Diag(Loc, diag::err_in_class_initializer_non_constant)
6076          << Init->getSourceRange();
6077        VDecl->setInvalidDecl();
6078      }
6079
6080    // We allow floating-point constants as an extension.
6081    } else if (T->isFloatingType()) { // also permits complex, which is ok
6082      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6083        << T << Init->getSourceRange();
6084      if (getLangOptions().CPlusPlus0x)
6085        Diag(VDecl->getLocation(),
6086             diag::note_in_class_initializer_float_type_constexpr)
6087          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6088
6089      if (!Init->isValueDependent() &&
6090          !Init->isConstantInitializer(Context, false)) {
6091        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6092          << Init->getSourceRange();
6093        VDecl->setInvalidDecl();
6094      }
6095
6096    // Suggest adding 'constexpr' in C++0x for literal types.
6097    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6098      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6099        << T << Init->getSourceRange()
6100        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6101      VDecl->setConstexpr(true);
6102
6103    } else {
6104      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6105        << T << Init->getSourceRange();
6106      VDecl->setInvalidDecl();
6107    }
6108  } else if (VDecl->isFileVarDecl()) {
6109    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6110        (!getLangOptions().CPlusPlus ||
6111         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6112      Diag(VDecl->getLocation(), diag::warn_extern_init);
6113    if (!VDecl->isInvalidDecl()) {
6114      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6115      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6116                                                MultiExprArg(*this, &Init, 1),
6117                                                &DclT);
6118      if (Result.isInvalid()) {
6119        VDecl->setInvalidDecl();
6120        return;
6121      }
6122
6123      Init = Result.takeAs<Expr>();
6124    }
6125
6126    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6127    // Don't check invalid declarations to avoid emitting useless diagnostics.
6128    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6129      // C99 6.7.8p4. All file scoped initializers need to be constant.
6130      CheckForConstantInitializer(Init, DclT);
6131    }
6132  }
6133  // If the type changed, it means we had an incomplete type that was
6134  // completed by the initializer. For example:
6135  //   int ary[] = { 1, 3, 5 };
6136  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6137  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6138    VDecl->setType(DclT);
6139    Init->setType(DclT);
6140  }
6141
6142  // Check any implicit conversions within the expression.
6143  CheckImplicitConversions(Init, VDecl->getLocation());
6144
6145  if (!VDecl->isInvalidDecl())
6146    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6147
6148  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6149      !VDecl->getType()->isDependentType() &&
6150      !Init->isTypeDependent() && !Init->isValueDependent() &&
6151      !Init->isConstantInitializer(Context,
6152                                   VDecl->getType()->isReferenceType())) {
6153    // FIXME: Improve this diagnostic to explain why the initializer is not
6154    // a constant expression.
6155    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6156      << VDecl << Init->getSourceRange();
6157  }
6158
6159  Init = MaybeCreateExprWithCleanups(Init);
6160  // Attach the initializer to the decl.
6161  VDecl->setInit(Init);
6162
6163  CheckCompleteVariableDeclaration(VDecl);
6164}
6165
6166/// ActOnInitializerError - Given that there was an error parsing an
6167/// initializer for the given declaration, try to return to some form
6168/// of sanity.
6169void Sema::ActOnInitializerError(Decl *D) {
6170  // Our main concern here is re-establishing invariants like "a
6171  // variable's type is either dependent or complete".
6172  if (!D || D->isInvalidDecl()) return;
6173
6174  VarDecl *VD = dyn_cast<VarDecl>(D);
6175  if (!VD) return;
6176
6177  // Auto types are meaningless if we can't make sense of the initializer.
6178  if (ParsingInitForAutoVars.count(D)) {
6179    D->setInvalidDecl();
6180    return;
6181  }
6182
6183  QualType Ty = VD->getType();
6184  if (Ty->isDependentType()) return;
6185
6186  // Require a complete type.
6187  if (RequireCompleteType(VD->getLocation(),
6188                          Context.getBaseElementType(Ty),
6189                          diag::err_typecheck_decl_incomplete_type)) {
6190    VD->setInvalidDecl();
6191    return;
6192  }
6193
6194  // Require an abstract type.
6195  if (RequireNonAbstractType(VD->getLocation(), Ty,
6196                             diag::err_abstract_type_in_decl,
6197                             AbstractVariableType)) {
6198    VD->setInvalidDecl();
6199    return;
6200  }
6201
6202  // Don't bother complaining about constructors or destructors,
6203  // though.
6204}
6205
6206void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6207                                  bool TypeMayContainAuto) {
6208  // If there is no declaration, there was an error parsing it. Just ignore it.
6209  if (RealDecl == 0)
6210    return;
6211
6212  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6213    QualType Type = Var->getType();
6214
6215    // C++0x [dcl.spec.auto]p3
6216    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6217      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6218        << Var->getDeclName() << Type;
6219      Var->setInvalidDecl();
6220      return;
6221    }
6222
6223    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6224    // have an initializer.
6225    // C++0x [class.static.data]p3: A static data member can be declared with
6226    // the constexpr specifier; if so, its declaration shall specify
6227    // a brace-or-equal-initializer.
6228    //
6229    // A static data member's definition may inherit an initializer from an
6230    // in-class declaration.
6231    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6232      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6233        << Var->getDeclName();
6234      Var->setInvalidDecl();
6235      return;
6236    }
6237
6238    switch (Var->isThisDeclarationADefinition()) {
6239    case VarDecl::Definition:
6240      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6241        break;
6242
6243      // We have an out-of-line definition of a static data member
6244      // that has an in-class initializer, so we type-check this like
6245      // a declaration.
6246      //
6247      // Fall through
6248
6249    case VarDecl::DeclarationOnly:
6250      // It's only a declaration.
6251
6252      // Block scope. C99 6.7p7: If an identifier for an object is
6253      // declared with no linkage (C99 6.2.2p6), the type for the
6254      // object shall be complete.
6255      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6256          !Var->getLinkage() && !Var->isInvalidDecl() &&
6257          RequireCompleteType(Var->getLocation(), Type,
6258                              diag::err_typecheck_decl_incomplete_type))
6259        Var->setInvalidDecl();
6260
6261      // Make sure that the type is not abstract.
6262      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6263          RequireNonAbstractType(Var->getLocation(), Type,
6264                                 diag::err_abstract_type_in_decl,
6265                                 AbstractVariableType))
6266        Var->setInvalidDecl();
6267      return;
6268
6269    case VarDecl::TentativeDefinition:
6270      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6271      // object that has file scope without an initializer, and without a
6272      // storage-class specifier or with the storage-class specifier "static",
6273      // constitutes a tentative definition. Note: A tentative definition with
6274      // external linkage is valid (C99 6.2.2p5).
6275      if (!Var->isInvalidDecl()) {
6276        if (const IncompleteArrayType *ArrayT
6277                                    = Context.getAsIncompleteArrayType(Type)) {
6278          if (RequireCompleteType(Var->getLocation(),
6279                                  ArrayT->getElementType(),
6280                                  diag::err_illegal_decl_array_incomplete_type))
6281            Var->setInvalidDecl();
6282        } else if (Var->getStorageClass() == SC_Static) {
6283          // C99 6.9.2p3: If the declaration of an identifier for an object is
6284          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6285          // declared type shall not be an incomplete type.
6286          // NOTE: code such as the following
6287          //     static struct s;
6288          //     struct s { int a; };
6289          // is accepted by gcc. Hence here we issue a warning instead of
6290          // an error and we do not invalidate the static declaration.
6291          // NOTE: to avoid multiple warnings, only check the first declaration.
6292          if (Var->getPreviousDeclaration() == 0)
6293            RequireCompleteType(Var->getLocation(), Type,
6294                                diag::ext_typecheck_decl_incomplete_type);
6295        }
6296      }
6297
6298      // Record the tentative definition; we're done.
6299      if (!Var->isInvalidDecl())
6300        TentativeDefinitions.push_back(Var);
6301      return;
6302    }
6303
6304    // Provide a specific diagnostic for uninitialized variable
6305    // definitions with incomplete array type.
6306    if (Type->isIncompleteArrayType()) {
6307      Diag(Var->getLocation(),
6308           diag::err_typecheck_incomplete_array_needs_initializer);
6309      Var->setInvalidDecl();
6310      return;
6311    }
6312
6313    // Provide a specific diagnostic for uninitialized variable
6314    // definitions with reference type.
6315    if (Type->isReferenceType()) {
6316      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6317        << Var->getDeclName()
6318        << SourceRange(Var->getLocation(), Var->getLocation());
6319      Var->setInvalidDecl();
6320      return;
6321    }
6322
6323    // Do not attempt to type-check the default initializer for a
6324    // variable with dependent type.
6325    if (Type->isDependentType())
6326      return;
6327
6328    if (Var->isInvalidDecl())
6329      return;
6330
6331    if (RequireCompleteType(Var->getLocation(),
6332                            Context.getBaseElementType(Type),
6333                            diag::err_typecheck_decl_incomplete_type)) {
6334      Var->setInvalidDecl();
6335      return;
6336    }
6337
6338    // The variable can not have an abstract class type.
6339    if (RequireNonAbstractType(Var->getLocation(), Type,
6340                               diag::err_abstract_type_in_decl,
6341                               AbstractVariableType)) {
6342      Var->setInvalidDecl();
6343      return;
6344    }
6345
6346    // Check for jumps past the implicit initializer.  C++0x
6347    // clarifies that this applies to a "variable with automatic
6348    // storage duration", not a "local variable".
6349    // C++0x [stmt.dcl]p3
6350    //   A program that jumps from a point where a variable with automatic
6351    //   storage duration is not in scope to a point where it is in scope is
6352    //   ill-formed unless the variable has scalar type, class type with a
6353    //   trivial default constructor and a trivial destructor, a cv-qualified
6354    //   version of one of these types, or an array of one of the preceding
6355    //   types and is declared without an initializer.
6356    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6357      if (const RecordType *Record
6358            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6359        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6360        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6361            (getLangOptions().CPlusPlus0x &&
6362             (!CXXRecord->hasTrivialDefaultConstructor() ||
6363              !CXXRecord->hasTrivialDestructor())))
6364          getCurFunction()->setHasBranchProtectedScope();
6365      }
6366    }
6367
6368    // C++03 [dcl.init]p9:
6369    //   If no initializer is specified for an object, and the
6370    //   object is of (possibly cv-qualified) non-POD class type (or
6371    //   array thereof), the object shall be default-initialized; if
6372    //   the object is of const-qualified type, the underlying class
6373    //   type shall have a user-declared default
6374    //   constructor. Otherwise, if no initializer is specified for
6375    //   a non- static object, the object and its subobjects, if
6376    //   any, have an indeterminate initial value); if the object
6377    //   or any of its subobjects are of const-qualified type, the
6378    //   program is ill-formed.
6379    // C++0x [dcl.init]p11:
6380    //   If no initializer is specified for an object, the object is
6381    //   default-initialized; [...].
6382    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6383    InitializationKind Kind
6384      = InitializationKind::CreateDefault(Var->getLocation());
6385
6386    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6387    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6388                                      MultiExprArg(*this, 0, 0));
6389    if (Init.isInvalid())
6390      Var->setInvalidDecl();
6391    else if (Init.get())
6392      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6393
6394    CheckCompleteVariableDeclaration(Var);
6395  }
6396}
6397
6398void Sema::ActOnCXXForRangeDecl(Decl *D) {
6399  VarDecl *VD = dyn_cast<VarDecl>(D);
6400  if (!VD) {
6401    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6402    D->setInvalidDecl();
6403    return;
6404  }
6405
6406  VD->setCXXForRangeDecl(true);
6407
6408  // for-range-declaration cannot be given a storage class specifier.
6409  int Error = -1;
6410  switch (VD->getStorageClassAsWritten()) {
6411  case SC_None:
6412    break;
6413  case SC_Extern:
6414    Error = 0;
6415    break;
6416  case SC_Static:
6417    Error = 1;
6418    break;
6419  case SC_PrivateExtern:
6420    Error = 2;
6421    break;
6422  case SC_Auto:
6423    Error = 3;
6424    break;
6425  case SC_Register:
6426    Error = 4;
6427    break;
6428  case SC_OpenCLWorkGroupLocal:
6429    llvm_unreachable("Unexpected storage class");
6430  }
6431  if (VD->isConstexpr())
6432    Error = 5;
6433  if (Error != -1) {
6434    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6435      << VD->getDeclName() << Error;
6436    D->setInvalidDecl();
6437  }
6438}
6439
6440void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6441  if (var->isInvalidDecl()) return;
6442
6443  // In ARC, don't allow jumps past the implicit initialization of a
6444  // local retaining variable.
6445  if (getLangOptions().ObjCAutoRefCount &&
6446      var->hasLocalStorage()) {
6447    switch (var->getType().getObjCLifetime()) {
6448    case Qualifiers::OCL_None:
6449    case Qualifiers::OCL_ExplicitNone:
6450    case Qualifiers::OCL_Autoreleasing:
6451      break;
6452
6453    case Qualifiers::OCL_Weak:
6454    case Qualifiers::OCL_Strong:
6455      getCurFunction()->setHasBranchProtectedScope();
6456      break;
6457    }
6458  }
6459
6460  // All the following checks are C++ only.
6461  if (!getLangOptions().CPlusPlus) return;
6462
6463  QualType baseType = Context.getBaseElementType(var->getType());
6464  if (baseType->isDependentType()) return;
6465
6466  // __block variables might require us to capture a copy-initializer.
6467  if (var->hasAttr<BlocksAttr>()) {
6468    // It's currently invalid to ever have a __block variable with an
6469    // array type; should we diagnose that here?
6470
6471    // Regardless, we don't want to ignore array nesting when
6472    // constructing this copy.
6473    QualType type = var->getType();
6474
6475    if (type->isStructureOrClassType()) {
6476      SourceLocation poi = var->getLocation();
6477      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6478      ExprResult result =
6479        PerformCopyInitialization(
6480                        InitializedEntity::InitializeBlock(poi, type, false),
6481                                  poi, Owned(varRef));
6482      if (!result.isInvalid()) {
6483        result = MaybeCreateExprWithCleanups(result);
6484        Expr *init = result.takeAs<Expr>();
6485        Context.setBlockVarCopyInits(var, init);
6486      }
6487    }
6488  }
6489
6490  // Check for global constructors.
6491  if (!var->getDeclContext()->isDependentContext() &&
6492      var->hasGlobalStorage() &&
6493      !var->isStaticLocal() &&
6494      var->getInit() &&
6495      !var->getInit()->isConstantInitializer(Context,
6496                                             baseType->isReferenceType()))
6497    Diag(var->getLocation(), diag::warn_global_constructor)
6498      << var->getInit()->getSourceRange();
6499
6500  // Require the destructor.
6501  if (const RecordType *recordType = baseType->getAs<RecordType>())
6502    FinalizeVarWithDestructor(var, recordType);
6503}
6504
6505/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6506/// any semantic actions necessary after any initializer has been attached.
6507void
6508Sema::FinalizeDeclaration(Decl *ThisDecl) {
6509  // Note that we are no longer parsing the initializer for this declaration.
6510  ParsingInitForAutoVars.erase(ThisDecl);
6511}
6512
6513Sema::DeclGroupPtrTy
6514Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6515                              Decl **Group, unsigned NumDecls) {
6516  SmallVector<Decl*, 8> Decls;
6517
6518  if (DS.isTypeSpecOwned())
6519    Decls.push_back(DS.getRepAsDecl());
6520
6521  for (unsigned i = 0; i != NumDecls; ++i)
6522    if (Decl *D = Group[i])
6523      Decls.push_back(D);
6524
6525  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6526                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6527}
6528
6529/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6530/// group, performing any necessary semantic checking.
6531Sema::DeclGroupPtrTy
6532Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6533                           bool TypeMayContainAuto) {
6534  // C++0x [dcl.spec.auto]p7:
6535  //   If the type deduced for the template parameter U is not the same in each
6536  //   deduction, the program is ill-formed.
6537  // FIXME: When initializer-list support is added, a distinction is needed
6538  // between the deduced type U and the deduced type which 'auto' stands for.
6539  //   auto a = 0, b = { 1, 2, 3 };
6540  // is legal because the deduced type U is 'int' in both cases.
6541  if (TypeMayContainAuto && NumDecls > 1) {
6542    QualType Deduced;
6543    CanQualType DeducedCanon;
6544    VarDecl *DeducedDecl = 0;
6545    for (unsigned i = 0; i != NumDecls; ++i) {
6546      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6547        AutoType *AT = D->getType()->getContainedAutoType();
6548        // Don't reissue diagnostics when instantiating a template.
6549        if (AT && D->isInvalidDecl())
6550          break;
6551        if (AT && AT->isDeduced()) {
6552          QualType U = AT->getDeducedType();
6553          CanQualType UCanon = Context.getCanonicalType(U);
6554          if (Deduced.isNull()) {
6555            Deduced = U;
6556            DeducedCanon = UCanon;
6557            DeducedDecl = D;
6558          } else if (DeducedCanon != UCanon) {
6559            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6560                 diag::err_auto_different_deductions)
6561              << Deduced << DeducedDecl->getDeclName()
6562              << U << D->getDeclName()
6563              << DeducedDecl->getInit()->getSourceRange()
6564              << D->getInit()->getSourceRange();
6565            D->setInvalidDecl();
6566            break;
6567          }
6568        }
6569      }
6570    }
6571  }
6572
6573  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6574}
6575
6576
6577/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6578/// to introduce parameters into function prototype scope.
6579Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6580  const DeclSpec &DS = D.getDeclSpec();
6581
6582  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6583  VarDecl::StorageClass StorageClass = SC_None;
6584  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6585  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6586    StorageClass = SC_Register;
6587    StorageClassAsWritten = SC_Register;
6588  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6589    Diag(DS.getStorageClassSpecLoc(),
6590         diag::err_invalid_storage_class_in_func_decl);
6591    D.getMutableDeclSpec().ClearStorageClassSpecs();
6592  }
6593
6594  if (D.getDeclSpec().isThreadSpecified())
6595    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6596  if (D.getDeclSpec().isConstexprSpecified())
6597    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6598      << 0;
6599
6600  DiagnoseFunctionSpecifiers(D);
6601
6602  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6603  QualType parmDeclType = TInfo->getType();
6604
6605  if (getLangOptions().CPlusPlus) {
6606    // Check that there are no default arguments inside the type of this
6607    // parameter.
6608    CheckExtraCXXDefaultArguments(D);
6609
6610    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6611    if (D.getCXXScopeSpec().isSet()) {
6612      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6613        << D.getCXXScopeSpec().getRange();
6614      D.getCXXScopeSpec().clear();
6615    }
6616  }
6617
6618  // Ensure we have a valid name
6619  IdentifierInfo *II = 0;
6620  if (D.hasName()) {
6621    II = D.getIdentifier();
6622    if (!II) {
6623      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6624        << GetNameForDeclarator(D).getName().getAsString();
6625      D.setInvalidType(true);
6626    }
6627  }
6628
6629  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6630  if (II) {
6631    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6632                   ForRedeclaration);
6633    LookupName(R, S);
6634    if (R.isSingleResult()) {
6635      NamedDecl *PrevDecl = R.getFoundDecl();
6636      if (PrevDecl->isTemplateParameter()) {
6637        // Maybe we will complain about the shadowed template parameter.
6638        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6639        // Just pretend that we didn't see the previous declaration.
6640        PrevDecl = 0;
6641      } else if (S->isDeclScope(PrevDecl)) {
6642        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6643        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6644
6645        // Recover by removing the name
6646        II = 0;
6647        D.SetIdentifier(0, D.getIdentifierLoc());
6648        D.setInvalidType(true);
6649      }
6650    }
6651  }
6652
6653  // Temporarily put parameter variables in the translation unit, not
6654  // the enclosing context.  This prevents them from accidentally
6655  // looking like class members in C++.
6656  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6657                                    D.getSourceRange().getBegin(),
6658                                    D.getIdentifierLoc(), II,
6659                                    parmDeclType, TInfo,
6660                                    StorageClass, StorageClassAsWritten);
6661
6662  if (D.isInvalidType())
6663    New->setInvalidDecl();
6664
6665  assert(S->isFunctionPrototypeScope());
6666  assert(S->getFunctionPrototypeDepth() >= 1);
6667  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6668                    S->getNextFunctionPrototypeIndex());
6669
6670  // Add the parameter declaration into this scope.
6671  S->AddDecl(New);
6672  if (II)
6673    IdResolver.AddDecl(New);
6674
6675  ProcessDeclAttributes(S, New, D);
6676
6677  if (D.getDeclSpec().isModulePrivateSpecified())
6678    Diag(New->getLocation(), diag::err_module_private_local)
6679      << 1 << New->getDeclName()
6680      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6681      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6682
6683  if (New->hasAttr<BlocksAttr>()) {
6684    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6685  }
6686  return New;
6687}
6688
6689/// \brief Synthesizes a variable for a parameter arising from a
6690/// typedef.
6691ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6692                                              SourceLocation Loc,
6693                                              QualType T) {
6694  /* FIXME: setting StartLoc == Loc.
6695     Would it be worth to modify callers so as to provide proper source
6696     location for the unnamed parameters, embedding the parameter's type? */
6697  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6698                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6699                                           SC_None, SC_None, 0);
6700  Param->setImplicit();
6701  return Param;
6702}
6703
6704void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6705                                    ParmVarDecl * const *ParamEnd) {
6706  // Don't diagnose unused-parameter errors in template instantiations; we
6707  // will already have done so in the template itself.
6708  if (!ActiveTemplateInstantiations.empty())
6709    return;
6710
6711  for (; Param != ParamEnd; ++Param) {
6712    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6713        !(*Param)->hasAttr<UnusedAttr>()) {
6714      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6715        << (*Param)->getDeclName();
6716    }
6717  }
6718}
6719
6720void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6721                                                  ParmVarDecl * const *ParamEnd,
6722                                                  QualType ReturnTy,
6723                                                  NamedDecl *D) {
6724  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6725    return;
6726
6727  // Warn if the return value is pass-by-value and larger than the specified
6728  // threshold.
6729  if (ReturnTy.isPODType(Context)) {
6730    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6731    if (Size > LangOpts.NumLargeByValueCopy)
6732      Diag(D->getLocation(), diag::warn_return_value_size)
6733          << D->getDeclName() << Size;
6734  }
6735
6736  // Warn if any parameter is pass-by-value and larger than the specified
6737  // threshold.
6738  for (; Param != ParamEnd; ++Param) {
6739    QualType T = (*Param)->getType();
6740    if (!T.isPODType(Context))
6741      continue;
6742    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6743    if (Size > LangOpts.NumLargeByValueCopy)
6744      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6745          << (*Param)->getDeclName() << Size;
6746  }
6747}
6748
6749ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6750                                  SourceLocation NameLoc, IdentifierInfo *Name,
6751                                  QualType T, TypeSourceInfo *TSInfo,
6752                                  VarDecl::StorageClass StorageClass,
6753                                  VarDecl::StorageClass StorageClassAsWritten) {
6754  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6755  if (getLangOptions().ObjCAutoRefCount &&
6756      T.getObjCLifetime() == Qualifiers::OCL_None &&
6757      T->isObjCLifetimeType()) {
6758
6759    Qualifiers::ObjCLifetime lifetime;
6760
6761    // Special cases for arrays:
6762    //   - if it's const, use __unsafe_unretained
6763    //   - otherwise, it's an error
6764    if (T->isArrayType()) {
6765      if (!T.isConstQualified()) {
6766        DelayedDiagnostics.add(
6767            sema::DelayedDiagnostic::makeForbiddenType(
6768            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6769      }
6770      lifetime = Qualifiers::OCL_ExplicitNone;
6771    } else {
6772      lifetime = T->getObjCARCImplicitLifetime();
6773    }
6774    T = Context.getLifetimeQualifiedType(T, lifetime);
6775  }
6776
6777  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6778                                         Context.getAdjustedParameterType(T),
6779                                         TSInfo,
6780                                         StorageClass, StorageClassAsWritten,
6781                                         0);
6782
6783  // Parameters can not be abstract class types.
6784  // For record types, this is done by the AbstractClassUsageDiagnoser once
6785  // the class has been completely parsed.
6786  if (!CurContext->isRecord() &&
6787      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6788                             AbstractParamType))
6789    New->setInvalidDecl();
6790
6791  // Parameter declarators cannot be interface types. All ObjC objects are
6792  // passed by reference.
6793  if (T->isObjCObjectType()) {
6794    Diag(NameLoc,
6795         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6796      << FixItHint::CreateInsertion(NameLoc, "*");
6797    T = Context.getObjCObjectPointerType(T);
6798    New->setType(T);
6799  }
6800
6801  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6802  // duration shall not be qualified by an address-space qualifier."
6803  // Since all parameters have automatic store duration, they can not have
6804  // an address space.
6805  if (T.getAddressSpace() != 0) {
6806    Diag(NameLoc, diag::err_arg_with_address_space);
6807    New->setInvalidDecl();
6808  }
6809
6810  return New;
6811}
6812
6813void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6814                                           SourceLocation LocAfterDecls) {
6815  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6816
6817  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6818  // for a K&R function.
6819  if (!FTI.hasPrototype) {
6820    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6821      --i;
6822      if (FTI.ArgInfo[i].Param == 0) {
6823        llvm::SmallString<256> Code;
6824        llvm::raw_svector_ostream(Code) << "  int "
6825                                        << FTI.ArgInfo[i].Ident->getName()
6826                                        << ";\n";
6827        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6828          << FTI.ArgInfo[i].Ident
6829          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6830
6831        // Implicitly declare the argument as type 'int' for lack of a better
6832        // type.
6833        AttributeFactory attrs;
6834        DeclSpec DS(attrs);
6835        const char* PrevSpec; // unused
6836        unsigned DiagID; // unused
6837        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6838                           PrevSpec, DiagID);
6839        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6840        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6841        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6842      }
6843    }
6844  }
6845}
6846
6847Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6848                                         Declarator &D) {
6849  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6850  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6851  Scope *ParentScope = FnBodyScope->getParent();
6852
6853  D.setFunctionDefinition(true);
6854  Decl *DP = HandleDeclarator(ParentScope, D,
6855                              MultiTemplateParamsArg(*this));
6856  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6857}
6858
6859static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6860  // Don't warn about invalid declarations.
6861  if (FD->isInvalidDecl())
6862    return false;
6863
6864  // Or declarations that aren't global.
6865  if (!FD->isGlobal())
6866    return false;
6867
6868  // Don't warn about C++ member functions.
6869  if (isa<CXXMethodDecl>(FD))
6870    return false;
6871
6872  // Don't warn about 'main'.
6873  if (FD->isMain())
6874    return false;
6875
6876  // Don't warn about inline functions.
6877  if (FD->isInlined())
6878    return false;
6879
6880  // Don't warn about function templates.
6881  if (FD->getDescribedFunctionTemplate())
6882    return false;
6883
6884  // Don't warn about function template specializations.
6885  if (FD->isFunctionTemplateSpecialization())
6886    return false;
6887
6888  bool MissingPrototype = true;
6889  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6890       Prev; Prev = Prev->getPreviousDeclaration()) {
6891    // Ignore any declarations that occur in function or method
6892    // scope, because they aren't visible from the header.
6893    if (Prev->getDeclContext()->isFunctionOrMethod())
6894      continue;
6895
6896    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6897    break;
6898  }
6899
6900  return MissingPrototype;
6901}
6902
6903void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6904  // Don't complain if we're in GNU89 mode and the previous definition
6905  // was an extern inline function.
6906  const FunctionDecl *Definition;
6907  if (FD->isDefined(Definition) &&
6908      !canRedefineFunction(Definition, getLangOptions())) {
6909    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6910        Definition->getStorageClass() == SC_Extern)
6911      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6912        << FD->getDeclName() << getLangOptions().CPlusPlus;
6913    else
6914      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6915    Diag(Definition->getLocation(), diag::note_previous_definition);
6916  }
6917}
6918
6919Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6920  // Clear the last template instantiation error context.
6921  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6922
6923  if (!D)
6924    return D;
6925  FunctionDecl *FD = 0;
6926
6927  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6928    FD = FunTmpl->getTemplatedDecl();
6929  else
6930    FD = cast<FunctionDecl>(D);
6931
6932  // Enter a new function scope
6933  PushFunctionScope();
6934
6935  // See if this is a redefinition.
6936  if (!FD->isLateTemplateParsed())
6937    CheckForFunctionRedefinition(FD);
6938
6939  // Builtin functions cannot be defined.
6940  if (unsigned BuiltinID = FD->getBuiltinID()) {
6941    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6942      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6943      FD->setInvalidDecl();
6944    }
6945  }
6946
6947  // The return type of a function definition must be complete
6948  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6949  QualType ResultType = FD->getResultType();
6950  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6951      !FD->isInvalidDecl() &&
6952      RequireCompleteType(FD->getLocation(), ResultType,
6953                          diag::err_func_def_incomplete_result))
6954    FD->setInvalidDecl();
6955
6956  // GNU warning -Wmissing-prototypes:
6957  //   Warn if a global function is defined without a previous
6958  //   prototype declaration. This warning is issued even if the
6959  //   definition itself provides a prototype. The aim is to detect
6960  //   global functions that fail to be declared in header files.
6961  if (ShouldWarnAboutMissingPrototype(FD))
6962    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6963
6964  if (FnBodyScope)
6965    PushDeclContext(FnBodyScope, FD);
6966
6967  // Check the validity of our function parameters
6968  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6969                           /*CheckParameterNames=*/true);
6970
6971  // Introduce our parameters into the function scope
6972  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6973    ParmVarDecl *Param = FD->getParamDecl(p);
6974    Param->setOwningFunction(FD);
6975
6976    // If this has an identifier, add it to the scope stack.
6977    if (Param->getIdentifier() && FnBodyScope) {
6978      CheckShadow(FnBodyScope, Param);
6979
6980      PushOnScopeChains(Param, FnBodyScope);
6981    }
6982  }
6983
6984  // Checking attributes of current function definition
6985  // dllimport attribute.
6986  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6987  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6988    // dllimport attribute cannot be directly applied to definition.
6989    // Microsoft accepts dllimport for functions defined within class scope.
6990    if (!DA->isInherited() &&
6991        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6992      Diag(FD->getLocation(),
6993           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6994        << "dllimport";
6995      FD->setInvalidDecl();
6996      return FD;
6997    }
6998
6999    // Visual C++ appears to not think this is an issue, so only issue
7000    // a warning when Microsoft extensions are disabled.
7001    if (!LangOpts.MicrosoftExt) {
7002      // If a symbol previously declared dllimport is later defined, the
7003      // attribute is ignored in subsequent references, and a warning is
7004      // emitted.
7005      Diag(FD->getLocation(),
7006           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7007        << FD->getName() << "dllimport";
7008    }
7009  }
7010  return FD;
7011}
7012
7013/// \brief Given the set of return statements within a function body,
7014/// compute the variables that are subject to the named return value
7015/// optimization.
7016///
7017/// Each of the variables that is subject to the named return value
7018/// optimization will be marked as NRVO variables in the AST, and any
7019/// return statement that has a marked NRVO variable as its NRVO candidate can
7020/// use the named return value optimization.
7021///
7022/// This function applies a very simplistic algorithm for NRVO: if every return
7023/// statement in the function has the same NRVO candidate, that candidate is
7024/// the NRVO variable.
7025///
7026/// FIXME: Employ a smarter algorithm that accounts for multiple return
7027/// statements and the lifetimes of the NRVO candidates. We should be able to
7028/// find a maximal set of NRVO variables.
7029void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7030  ReturnStmt **Returns = Scope->Returns.data();
7031
7032  const VarDecl *NRVOCandidate = 0;
7033  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7034    if (!Returns[I]->getNRVOCandidate())
7035      return;
7036
7037    if (!NRVOCandidate)
7038      NRVOCandidate = Returns[I]->getNRVOCandidate();
7039    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7040      return;
7041  }
7042
7043  if (NRVOCandidate)
7044    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7045}
7046
7047Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7048  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7049}
7050
7051Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7052                                    bool IsInstantiation) {
7053  FunctionDecl *FD = 0;
7054  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7055  if (FunTmpl)
7056    FD = FunTmpl->getTemplatedDecl();
7057  else
7058    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7059
7060  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7061  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7062
7063  if (FD) {
7064    FD->setBody(Body);
7065    if (FD->isMain()) {
7066      // C and C++ allow for main to automagically return 0.
7067      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7068      FD->setHasImplicitReturnZero(true);
7069      WP.disableCheckFallThrough();
7070    } else if (FD->hasAttr<NakedAttr>()) {
7071      // If the function is marked 'naked', don't complain about missing return
7072      // statements.
7073      WP.disableCheckFallThrough();
7074    }
7075
7076    // MSVC permits the use of pure specifier (=0) on function definition,
7077    // defined at class scope, warn about this non standard construct.
7078    if (getLangOptions().MicrosoftExt && FD->isPure())
7079      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7080
7081    if (!FD->isInvalidDecl()) {
7082      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7083      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7084                                             FD->getResultType(), FD);
7085
7086      // If this is a constructor, we need a vtable.
7087      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7088        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7089
7090      computeNRVO(Body, getCurFunction());
7091    }
7092
7093    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7094  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7095    assert(MD == getCurMethodDecl() && "Method parsing confused");
7096    MD->setBody(Body);
7097    if (Body)
7098      MD->setEndLoc(Body->getLocEnd());
7099    if (!MD->isInvalidDecl()) {
7100      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7101      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7102                                             MD->getResultType(), MD);
7103
7104      if (Body)
7105        computeNRVO(Body, getCurFunction());
7106    }
7107    if (ObjCShouldCallSuperDealloc) {
7108      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7109      ObjCShouldCallSuperDealloc = false;
7110    }
7111    if (ObjCShouldCallSuperFinalize) {
7112      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7113      ObjCShouldCallSuperFinalize = false;
7114    }
7115  } else {
7116    return 0;
7117  }
7118
7119  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7120         "ObjC methods, which should have been handled in the block above.");
7121  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7122         "ObjC methods, which should have been handled in the block above.");
7123
7124  // Verify and clean out per-function state.
7125  if (Body) {
7126    // C++ constructors that have function-try-blocks can't have return
7127    // statements in the handlers of that block. (C++ [except.handle]p14)
7128    // Verify this.
7129    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7130      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7131
7132    // Verify that gotos and switch cases don't jump into scopes illegally.
7133    if (getCurFunction()->NeedsScopeChecking() &&
7134        !dcl->isInvalidDecl() &&
7135        !hasAnyUnrecoverableErrorsInThisFunction())
7136      DiagnoseInvalidJumps(Body);
7137
7138    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7139      if (!Destructor->getParent()->isDependentType())
7140        CheckDestructor(Destructor);
7141
7142      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7143                                             Destructor->getParent());
7144    }
7145
7146    // If any errors have occurred, clear out any temporaries that may have
7147    // been leftover. This ensures that these temporaries won't be picked up for
7148    // deletion in some later function.
7149    if (PP.getDiagnostics().hasErrorOccurred() ||
7150        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7151      ExprTemporaries.clear();
7152      ExprNeedsCleanups = false;
7153    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7154      // Since the body is valid, issue any analysis-based warnings that are
7155      // enabled.
7156      ActivePolicy = &WP;
7157    }
7158
7159    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7160        !CheckConstexprFunctionBody(FD, Body))
7161      FD->setInvalidDecl();
7162
7163    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7164    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7165  }
7166
7167  if (!IsInstantiation)
7168    PopDeclContext();
7169
7170  PopFunctionOrBlockScope(ActivePolicy, dcl);
7171
7172  // If any errors have occurred, clear out any temporaries that may have
7173  // been leftover. This ensures that these temporaries won't be picked up for
7174  // deletion in some later function.
7175  if (getDiagnostics().hasErrorOccurred()) {
7176    ExprTemporaries.clear();
7177    ExprNeedsCleanups = false;
7178  }
7179
7180  return dcl;
7181}
7182
7183
7184/// When we finish delayed parsing of an attribute, we must attach it to the
7185/// relevant Decl.
7186void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7187                                       ParsedAttributes &Attrs) {
7188  ProcessDeclAttributeList(S, D, Attrs.getList());
7189}
7190
7191
7192/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7193/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7194NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7195                                          IdentifierInfo &II, Scope *S) {
7196  // Before we produce a declaration for an implicitly defined
7197  // function, see whether there was a locally-scoped declaration of
7198  // this name as a function or variable. If so, use that
7199  // (non-visible) declaration, and complain about it.
7200  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7201    = findLocallyScopedExternalDecl(&II);
7202  if (Pos != LocallyScopedExternalDecls.end()) {
7203    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7204    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7205    return Pos->second;
7206  }
7207
7208  // Extension in C99.  Legal in C90, but warn about it.
7209  if (II.getName().startswith("__builtin_"))
7210    Diag(Loc, diag::warn_builtin_unknown) << &II;
7211  else if (getLangOptions().C99)
7212    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7213  else
7214    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7215
7216  // Set a Declarator for the implicit definition: int foo();
7217  const char *Dummy;
7218  AttributeFactory attrFactory;
7219  DeclSpec DS(attrFactory);
7220  unsigned DiagID;
7221  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7222  (void)Error; // Silence warning.
7223  assert(!Error && "Error setting up implicit decl!");
7224  Declarator D(DS, Declarator::BlockContext);
7225  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7226                                             0, 0, true, SourceLocation(),
7227                                             SourceLocation(), SourceLocation(),
7228                                             SourceLocation(),
7229                                             EST_None, SourceLocation(),
7230                                             0, 0, 0, 0, Loc, Loc, D),
7231                DS.getAttributes(),
7232                SourceLocation());
7233  D.SetIdentifier(&II, Loc);
7234
7235  // Insert this function into translation-unit scope.
7236
7237  DeclContext *PrevDC = CurContext;
7238  CurContext = Context.getTranslationUnitDecl();
7239
7240  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7241  FD->setImplicit();
7242
7243  CurContext = PrevDC;
7244
7245  AddKnownFunctionAttributes(FD);
7246
7247  return FD;
7248}
7249
7250/// \brief Adds any function attributes that we know a priori based on
7251/// the declaration of this function.
7252///
7253/// These attributes can apply both to implicitly-declared builtins
7254/// (like __builtin___printf_chk) or to library-declared functions
7255/// like NSLog or printf.
7256///
7257/// We need to check for duplicate attributes both here and where user-written
7258/// attributes are applied to declarations.
7259void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7260  if (FD->isInvalidDecl())
7261    return;
7262
7263  // If this is a built-in function, map its builtin attributes to
7264  // actual attributes.
7265  if (unsigned BuiltinID = FD->getBuiltinID()) {
7266    // Handle printf-formatting attributes.
7267    unsigned FormatIdx;
7268    bool HasVAListArg;
7269    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7270      if (!FD->getAttr<FormatAttr>())
7271        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7272                                                "printf", FormatIdx+1,
7273                                               HasVAListArg ? 0 : FormatIdx+2));
7274    }
7275    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7276                                             HasVAListArg)) {
7277     if (!FD->getAttr<FormatAttr>())
7278       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7279                                              "scanf", FormatIdx+1,
7280                                              HasVAListArg ? 0 : FormatIdx+2));
7281    }
7282
7283    // Mark const if we don't care about errno and that is the only
7284    // thing preventing the function from being const. This allows
7285    // IRgen to use LLVM intrinsics for such functions.
7286    if (!getLangOptions().MathErrno &&
7287        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7288      if (!FD->getAttr<ConstAttr>())
7289        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7290    }
7291
7292    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7293        !FD->getAttr<ReturnsTwiceAttr>())
7294      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7295    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7296      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7297    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7298      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7299  }
7300
7301  IdentifierInfo *Name = FD->getIdentifier();
7302  if (!Name)
7303    return;
7304  if ((!getLangOptions().CPlusPlus &&
7305       FD->getDeclContext()->isTranslationUnit()) ||
7306      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7307       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7308       LinkageSpecDecl::lang_c)) {
7309    // Okay: this could be a libc/libm/Objective-C function we know
7310    // about.
7311  } else
7312    return;
7313
7314  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7315    // FIXME: NSLog and NSLogv should be target specific
7316    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7317      // FIXME: We known better than our headers.
7318      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7319    } else
7320      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7321                                             "printf", 1,
7322                                             Name->isStr("NSLogv") ? 0 : 2));
7323  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7324    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7325    // target-specific builtins, perhaps?
7326    if (!FD->getAttr<FormatAttr>())
7327      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7328                                             "printf", 2,
7329                                             Name->isStr("vasprintf") ? 0 : 3));
7330  }
7331}
7332
7333TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7334                                    TypeSourceInfo *TInfo) {
7335  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7336  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7337
7338  if (!TInfo) {
7339    assert(D.isInvalidType() && "no declarator info for valid type");
7340    TInfo = Context.getTrivialTypeSourceInfo(T);
7341  }
7342
7343  // Scope manipulation handled by caller.
7344  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7345                                           D.getSourceRange().getBegin(),
7346                                           D.getIdentifierLoc(),
7347                                           D.getIdentifier(),
7348                                           TInfo);
7349
7350  // Bail out immediately if we have an invalid declaration.
7351  if (D.isInvalidType()) {
7352    NewTD->setInvalidDecl();
7353    return NewTD;
7354  }
7355
7356  if (D.getDeclSpec().isModulePrivateSpecified()) {
7357    if (CurContext->isFunctionOrMethod())
7358      Diag(NewTD->getLocation(), diag::err_module_private_local)
7359        << 2 << NewTD->getDeclName()
7360        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7361        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7362    else
7363      NewTD->setModulePrivate();
7364  }
7365
7366  // C++ [dcl.typedef]p8:
7367  //   If the typedef declaration defines an unnamed class (or
7368  //   enum), the first typedef-name declared by the declaration
7369  //   to be that class type (or enum type) is used to denote the
7370  //   class type (or enum type) for linkage purposes only.
7371  // We need to check whether the type was declared in the declaration.
7372  switch (D.getDeclSpec().getTypeSpecType()) {
7373  case TST_enum:
7374  case TST_struct:
7375  case TST_union:
7376  case TST_class: {
7377    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7378
7379    // Do nothing if the tag is not anonymous or already has an
7380    // associated typedef (from an earlier typedef in this decl group).
7381    if (tagFromDeclSpec->getIdentifier()) break;
7382    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7383
7384    // A well-formed anonymous tag must always be a TUK_Definition.
7385    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7386
7387    // The type must match the tag exactly;  no qualifiers allowed.
7388    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7389      break;
7390
7391    // Otherwise, set this is the anon-decl typedef for the tag.
7392    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7393    break;
7394  }
7395
7396  default:
7397    break;
7398  }
7399
7400  return NewTD;
7401}
7402
7403
7404/// \brief Determine whether a tag with a given kind is acceptable
7405/// as a redeclaration of the given tag declaration.
7406///
7407/// \returns true if the new tag kind is acceptable, false otherwise.
7408bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7409                                        TagTypeKind NewTag, bool isDefinition,
7410                                        SourceLocation NewTagLoc,
7411                                        const IdentifierInfo &Name) {
7412  // C++ [dcl.type.elab]p3:
7413  //   The class-key or enum keyword present in the
7414  //   elaborated-type-specifier shall agree in kind with the
7415  //   declaration to which the name in the elaborated-type-specifier
7416  //   refers. This rule also applies to the form of
7417  //   elaborated-type-specifier that declares a class-name or
7418  //   friend class since it can be construed as referring to the
7419  //   definition of the class. Thus, in any
7420  //   elaborated-type-specifier, the enum keyword shall be used to
7421  //   refer to an enumeration (7.2), the union class-key shall be
7422  //   used to refer to a union (clause 9), and either the class or
7423  //   struct class-key shall be used to refer to a class (clause 9)
7424  //   declared using the class or struct class-key.
7425  TagTypeKind OldTag = Previous->getTagKind();
7426  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7427    if (OldTag == NewTag)
7428      return true;
7429
7430  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7431      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7432    // Warn about the struct/class tag mismatch.
7433    bool isTemplate = false;
7434    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7435      isTemplate = Record->getDescribedClassTemplate();
7436
7437    if (!ActiveTemplateInstantiations.empty()) {
7438      // In a template instantiation, do not offer fix-its for tag mismatches
7439      // since they usually mess up the template instead of fixing the problem.
7440      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7441        << (NewTag == TTK_Class) << isTemplate << &Name;
7442      return true;
7443    }
7444
7445    if (isDefinition) {
7446      // On definitions, check previous tags and issue a fix-it for each
7447      // one that doesn't match the current tag.
7448      if (Previous->getDefinition()) {
7449        // Don't suggest fix-its for redefinitions.
7450        return true;
7451      }
7452
7453      bool previousMismatch = false;
7454      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7455           E(Previous->redecls_end()); I != E; ++I) {
7456        if (I->getTagKind() != NewTag) {
7457          if (!previousMismatch) {
7458            previousMismatch = true;
7459            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7460              << (NewTag == TTK_Class) << isTemplate << &Name;
7461          }
7462          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7463            << (NewTag == TTK_Class)
7464            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7465                                            NewTag == TTK_Class?
7466                                            "class" : "struct");
7467        }
7468      }
7469      return true;
7470    }
7471
7472    // Check for a previous definition.  If current tag and definition
7473    // are same type, do nothing.  If no definition, but disagree with
7474    // with previous tag type, give a warning, but no fix-it.
7475    const TagDecl *Redecl = Previous->getDefinition() ?
7476                            Previous->getDefinition() : Previous;
7477    if (Redecl->getTagKind() == NewTag) {
7478      return true;
7479    }
7480
7481    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7482      << (NewTag == TTK_Class)
7483      << isTemplate << &Name;
7484    Diag(Redecl->getLocation(), diag::note_previous_use);
7485
7486    // If there is a previous defintion, suggest a fix-it.
7487    if (Previous->getDefinition()) {
7488        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7489          << (Redecl->getTagKind() == TTK_Class)
7490          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7491                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7492    }
7493
7494    return true;
7495  }
7496  return false;
7497}
7498
7499/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7500/// former case, Name will be non-null.  In the later case, Name will be null.
7501/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7502/// reference/declaration/definition of a tag.
7503Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7504                     SourceLocation KWLoc, CXXScopeSpec &SS,
7505                     IdentifierInfo *Name, SourceLocation NameLoc,
7506                     AttributeList *Attr, AccessSpecifier AS,
7507                     SourceLocation ModulePrivateLoc,
7508                     MultiTemplateParamsArg TemplateParameterLists,
7509                     bool &OwnedDecl, bool &IsDependent,
7510                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7511                     TypeResult UnderlyingType) {
7512  // If this is not a definition, it must have a name.
7513  assert((Name != 0 || TUK == TUK_Definition) &&
7514         "Nameless record must be a definition!");
7515  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7516
7517  OwnedDecl = false;
7518  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7519
7520  // FIXME: Check explicit specializations more carefully.
7521  bool isExplicitSpecialization = false;
7522  bool Invalid = false;
7523
7524  // We only need to do this matching if we have template parameters
7525  // or a scope specifier, which also conveniently avoids this work
7526  // for non-C++ cases.
7527  if (TemplateParameterLists.size() > 0 ||
7528      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7529    if (TemplateParameterList *TemplateParams
7530          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7531                                                TemplateParameterLists.get(),
7532                                                TemplateParameterLists.size(),
7533                                                    TUK == TUK_Friend,
7534                                                    isExplicitSpecialization,
7535                                                    Invalid)) {
7536      if (TemplateParams->size() > 0) {
7537        // This is a declaration or definition of a class template (which may
7538        // be a member of another template).
7539
7540        if (Invalid)
7541          return 0;
7542
7543        OwnedDecl = false;
7544        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7545                                               SS, Name, NameLoc, Attr,
7546                                               TemplateParams, AS,
7547                                               ModulePrivateLoc,
7548                                           TemplateParameterLists.size() - 1,
7549                 (TemplateParameterList**) TemplateParameterLists.release());
7550        return Result.get();
7551      } else {
7552        // The "template<>" header is extraneous.
7553        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7554          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7555        isExplicitSpecialization = true;
7556      }
7557    }
7558  }
7559
7560  // Figure out the underlying type if this a enum declaration. We need to do
7561  // this early, because it's needed to detect if this is an incompatible
7562  // redeclaration.
7563  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7564
7565  if (Kind == TTK_Enum) {
7566    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7567      // No underlying type explicitly specified, or we failed to parse the
7568      // type, default to int.
7569      EnumUnderlying = Context.IntTy.getTypePtr();
7570    else if (UnderlyingType.get()) {
7571      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7572      // integral type; any cv-qualification is ignored.
7573      TypeSourceInfo *TI = 0;
7574      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7575      EnumUnderlying = TI;
7576
7577      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7578
7579      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7580        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7581          << T;
7582        // Recover by falling back to int.
7583        EnumUnderlying = Context.IntTy.getTypePtr();
7584      }
7585
7586      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7587                                          UPPC_FixedUnderlyingType))
7588        EnumUnderlying = Context.IntTy.getTypePtr();
7589
7590    } else if (getLangOptions().MicrosoftExt)
7591      // Microsoft enums are always of int type.
7592      EnumUnderlying = Context.IntTy.getTypePtr();
7593  }
7594
7595  DeclContext *SearchDC = CurContext;
7596  DeclContext *DC = CurContext;
7597  bool isStdBadAlloc = false;
7598
7599  RedeclarationKind Redecl = ForRedeclaration;
7600  if (TUK == TUK_Friend || TUK == TUK_Reference)
7601    Redecl = NotForRedeclaration;
7602
7603  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7604
7605  if (Name && SS.isNotEmpty()) {
7606    // We have a nested-name tag ('struct foo::bar').
7607
7608    // Check for invalid 'foo::'.
7609    if (SS.isInvalid()) {
7610      Name = 0;
7611      goto CreateNewDecl;
7612    }
7613
7614    // If this is a friend or a reference to a class in a dependent
7615    // context, don't try to make a decl for it.
7616    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7617      DC = computeDeclContext(SS, false);
7618      if (!DC) {
7619        IsDependent = true;
7620        return 0;
7621      }
7622    } else {
7623      DC = computeDeclContext(SS, true);
7624      if (!DC) {
7625        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7626          << SS.getRange();
7627        return 0;
7628      }
7629    }
7630
7631    if (RequireCompleteDeclContext(SS, DC))
7632      return 0;
7633
7634    SearchDC = DC;
7635    // Look-up name inside 'foo::'.
7636    LookupQualifiedName(Previous, DC);
7637
7638    if (Previous.isAmbiguous())
7639      return 0;
7640
7641    if (Previous.empty()) {
7642      // Name lookup did not find anything. However, if the
7643      // nested-name-specifier refers to the current instantiation,
7644      // and that current instantiation has any dependent base
7645      // classes, we might find something at instantiation time: treat
7646      // this as a dependent elaborated-type-specifier.
7647      // But this only makes any sense for reference-like lookups.
7648      if (Previous.wasNotFoundInCurrentInstantiation() &&
7649          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7650        IsDependent = true;
7651        return 0;
7652      }
7653
7654      // A tag 'foo::bar' must already exist.
7655      Diag(NameLoc, diag::err_not_tag_in_scope)
7656        << Kind << Name << DC << SS.getRange();
7657      Name = 0;
7658      Invalid = true;
7659      goto CreateNewDecl;
7660    }
7661  } else if (Name) {
7662    // If this is a named struct, check to see if there was a previous forward
7663    // declaration or definition.
7664    // FIXME: We're looking into outer scopes here, even when we
7665    // shouldn't be. Doing so can result in ambiguities that we
7666    // shouldn't be diagnosing.
7667    LookupName(Previous, S);
7668
7669    if (Previous.isAmbiguous() &&
7670        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7671      LookupResult::Filter F = Previous.makeFilter();
7672      while (F.hasNext()) {
7673        NamedDecl *ND = F.next();
7674        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7675          F.erase();
7676      }
7677      F.done();
7678    }
7679
7680    // Note:  there used to be some attempt at recovery here.
7681    if (Previous.isAmbiguous())
7682      return 0;
7683
7684    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7685      // FIXME: This makes sure that we ignore the contexts associated
7686      // with C structs, unions, and enums when looking for a matching
7687      // tag declaration or definition. See the similar lookup tweak
7688      // in Sema::LookupName; is there a better way to deal with this?
7689      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7690        SearchDC = SearchDC->getParent();
7691    }
7692  } else if (S->isFunctionPrototypeScope()) {
7693    // If this is an enum declaration in function prototype scope, set its
7694    // initial context to the translation unit.
7695    SearchDC = Context.getTranslationUnitDecl();
7696  }
7697
7698  if (Previous.isSingleResult() &&
7699      Previous.getFoundDecl()->isTemplateParameter()) {
7700    // Maybe we will complain about the shadowed template parameter.
7701    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7702    // Just pretend that we didn't see the previous declaration.
7703    Previous.clear();
7704  }
7705
7706  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7707      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7708    // This is a declaration of or a reference to "std::bad_alloc".
7709    isStdBadAlloc = true;
7710
7711    if (Previous.empty() && StdBadAlloc) {
7712      // std::bad_alloc has been implicitly declared (but made invisible to
7713      // name lookup). Fill in this implicit declaration as the previous
7714      // declaration, so that the declarations get chained appropriately.
7715      Previous.addDecl(getStdBadAlloc());
7716    }
7717  }
7718
7719  // If we didn't find a previous declaration, and this is a reference
7720  // (or friend reference), move to the correct scope.  In C++, we
7721  // also need to do a redeclaration lookup there, just in case
7722  // there's a shadow friend decl.
7723  if (Name && Previous.empty() &&
7724      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7725    if (Invalid) goto CreateNewDecl;
7726    assert(SS.isEmpty());
7727
7728    if (TUK == TUK_Reference) {
7729      // C++ [basic.scope.pdecl]p5:
7730      //   -- for an elaborated-type-specifier of the form
7731      //
7732      //          class-key identifier
7733      //
7734      //      if the elaborated-type-specifier is used in the
7735      //      decl-specifier-seq or parameter-declaration-clause of a
7736      //      function defined in namespace scope, the identifier is
7737      //      declared as a class-name in the namespace that contains
7738      //      the declaration; otherwise, except as a friend
7739      //      declaration, the identifier is declared in the smallest
7740      //      non-class, non-function-prototype scope that contains the
7741      //      declaration.
7742      //
7743      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7744      // C structs and unions.
7745      //
7746      // It is an error in C++ to declare (rather than define) an enum
7747      // type, including via an elaborated type specifier.  We'll
7748      // diagnose that later; for now, declare the enum in the same
7749      // scope as we would have picked for any other tag type.
7750      //
7751      // GNU C also supports this behavior as part of its incomplete
7752      // enum types extension, while GNU C++ does not.
7753      //
7754      // Find the context where we'll be declaring the tag.
7755      // FIXME: We would like to maintain the current DeclContext as the
7756      // lexical context,
7757      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7758        SearchDC = SearchDC->getParent();
7759
7760      // Find the scope where we'll be declaring the tag.
7761      while (S->isClassScope() ||
7762             (getLangOptions().CPlusPlus &&
7763              S->isFunctionPrototypeScope()) ||
7764             ((S->getFlags() & Scope::DeclScope) == 0) ||
7765             (S->getEntity() &&
7766              ((DeclContext *)S->getEntity())->isTransparentContext()))
7767        S = S->getParent();
7768    } else {
7769      assert(TUK == TUK_Friend);
7770      // C++ [namespace.memdef]p3:
7771      //   If a friend declaration in a non-local class first declares a
7772      //   class or function, the friend class or function is a member of
7773      //   the innermost enclosing namespace.
7774      SearchDC = SearchDC->getEnclosingNamespaceContext();
7775    }
7776
7777    // In C++, we need to do a redeclaration lookup to properly
7778    // diagnose some problems.
7779    if (getLangOptions().CPlusPlus) {
7780      Previous.setRedeclarationKind(ForRedeclaration);
7781      LookupQualifiedName(Previous, SearchDC);
7782    }
7783  }
7784
7785  if (!Previous.empty()) {
7786    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7787
7788    // It's okay to have a tag decl in the same scope as a typedef
7789    // which hides a tag decl in the same scope.  Finding this
7790    // insanity with a redeclaration lookup can only actually happen
7791    // in C++.
7792    //
7793    // This is also okay for elaborated-type-specifiers, which is
7794    // technically forbidden by the current standard but which is
7795    // okay according to the likely resolution of an open issue;
7796    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7797    if (getLangOptions().CPlusPlus) {
7798      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7799        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7800          TagDecl *Tag = TT->getDecl();
7801          if (Tag->getDeclName() == Name &&
7802              Tag->getDeclContext()->getRedeclContext()
7803                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7804            PrevDecl = Tag;
7805            Previous.clear();
7806            Previous.addDecl(Tag);
7807            Previous.resolveKind();
7808          }
7809        }
7810      }
7811    }
7812
7813    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7814      // If this is a use of a previous tag, or if the tag is already declared
7815      // in the same scope (so that the definition/declaration completes or
7816      // rementions the tag), reuse the decl.
7817      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7818          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7819        // Make sure that this wasn't declared as an enum and now used as a
7820        // struct or something similar.
7821        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7822                                          TUK == TUK_Definition, KWLoc,
7823                                          *Name)) {
7824          bool SafeToContinue
7825            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7826               Kind != TTK_Enum);
7827          if (SafeToContinue)
7828            Diag(KWLoc, diag::err_use_with_wrong_tag)
7829              << Name
7830              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7831                                              PrevTagDecl->getKindName());
7832          else
7833            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7834          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7835
7836          if (SafeToContinue)
7837            Kind = PrevTagDecl->getTagKind();
7838          else {
7839            // Recover by making this an anonymous redefinition.
7840            Name = 0;
7841            Previous.clear();
7842            Invalid = true;
7843          }
7844        }
7845
7846        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7847          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7848
7849          // All conflicts with previous declarations are recovered by
7850          // returning the previous declaration.
7851          if (ScopedEnum != PrevEnum->isScoped()) {
7852            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7853              << PrevEnum->isScoped();
7854            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7855            return PrevTagDecl;
7856          }
7857          else if (EnumUnderlying && PrevEnum->isFixed()) {
7858            QualType T;
7859            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7860                T = TI->getType();
7861            else
7862                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7863
7864            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7865              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7866                   diag::err_enum_redeclare_type_mismatch)
7867                << T
7868                << PrevEnum->getIntegerType();
7869              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7870              return PrevTagDecl;
7871            }
7872          }
7873          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7874            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7875              << PrevEnum->isFixed();
7876            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7877            return PrevTagDecl;
7878          }
7879        }
7880
7881        if (!Invalid) {
7882          // If this is a use, just return the declaration we found.
7883
7884          // FIXME: In the future, return a variant or some other clue
7885          // for the consumer of this Decl to know it doesn't own it.
7886          // For our current ASTs this shouldn't be a problem, but will
7887          // need to be changed with DeclGroups.
7888          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7889               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7890            return PrevTagDecl;
7891
7892          // Diagnose attempts to redefine a tag.
7893          if (TUK == TUK_Definition) {
7894            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7895              // If we're defining a specialization and the previous definition
7896              // is from an implicit instantiation, don't emit an error
7897              // here; we'll catch this in the general case below.
7898              if (!isExplicitSpecialization ||
7899                  !isa<CXXRecordDecl>(Def) ||
7900                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7901                                               == TSK_ExplicitSpecialization) {
7902                Diag(NameLoc, diag::err_redefinition) << Name;
7903                Diag(Def->getLocation(), diag::note_previous_definition);
7904                // If this is a redefinition, recover by making this
7905                // struct be anonymous, which will make any later
7906                // references get the previous definition.
7907                Name = 0;
7908                Previous.clear();
7909                Invalid = true;
7910              }
7911            } else {
7912              // If the type is currently being defined, complain
7913              // about a nested redefinition.
7914              const TagType *Tag
7915                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7916              if (Tag->isBeingDefined()) {
7917                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7918                Diag(PrevTagDecl->getLocation(),
7919                     diag::note_previous_definition);
7920                Name = 0;
7921                Previous.clear();
7922                Invalid = true;
7923              }
7924            }
7925
7926            // Okay, this is definition of a previously declared or referenced
7927            // tag PrevDecl. We're going to create a new Decl for it.
7928          }
7929        }
7930        // If we get here we have (another) forward declaration or we
7931        // have a definition.  Just create a new decl.
7932
7933      } else {
7934        // If we get here, this is a definition of a new tag type in a nested
7935        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7936        // new decl/type.  We set PrevDecl to NULL so that the entities
7937        // have distinct types.
7938        Previous.clear();
7939      }
7940      // If we get here, we're going to create a new Decl. If PrevDecl
7941      // is non-NULL, it's a definition of the tag declared by
7942      // PrevDecl. If it's NULL, we have a new definition.
7943
7944
7945    // Otherwise, PrevDecl is not a tag, but was found with tag
7946    // lookup.  This is only actually possible in C++, where a few
7947    // things like templates still live in the tag namespace.
7948    } else {
7949      assert(getLangOptions().CPlusPlus);
7950
7951      // Use a better diagnostic if an elaborated-type-specifier
7952      // found the wrong kind of type on the first
7953      // (non-redeclaration) lookup.
7954      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7955          !Previous.isForRedeclaration()) {
7956        unsigned Kind = 0;
7957        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7958        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7959        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7960        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7961        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7962        Invalid = true;
7963
7964      // Otherwise, only diagnose if the declaration is in scope.
7965      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7966                                isExplicitSpecialization)) {
7967        // do nothing
7968
7969      // Diagnose implicit declarations introduced by elaborated types.
7970      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7971        unsigned Kind = 0;
7972        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7973        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7974        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7975        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7976        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7977        Invalid = true;
7978
7979      // Otherwise it's a declaration.  Call out a particularly common
7980      // case here.
7981      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7982        unsigned Kind = 0;
7983        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7984        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7985          << Name << Kind << TND->getUnderlyingType();
7986        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7987        Invalid = true;
7988
7989      // Otherwise, diagnose.
7990      } else {
7991        // The tag name clashes with something else in the target scope,
7992        // issue an error and recover by making this tag be anonymous.
7993        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7994        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7995        Name = 0;
7996        Invalid = true;
7997      }
7998
7999      // The existing declaration isn't relevant to us; we're in a
8000      // new scope, so clear out the previous declaration.
8001      Previous.clear();
8002    }
8003  }
8004
8005CreateNewDecl:
8006
8007  TagDecl *PrevDecl = 0;
8008  if (Previous.isSingleResult())
8009    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8010
8011  // If there is an identifier, use the location of the identifier as the
8012  // location of the decl, otherwise use the location of the struct/union
8013  // keyword.
8014  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8015
8016  // Otherwise, create a new declaration. If there is a previous
8017  // declaration of the same entity, the two will be linked via
8018  // PrevDecl.
8019  TagDecl *New;
8020
8021  bool IsForwardReference = false;
8022  if (Kind == TTK_Enum) {
8023    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8024    // enum X { A, B, C } D;    D should chain to X.
8025    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8026                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8027                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8028    // If this is an undefined enum, warn.
8029    if (TUK != TUK_Definition && !Invalid) {
8030      TagDecl *Def;
8031      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8032        // C++0x: 7.2p2: opaque-enum-declaration.
8033        // Conflicts are diagnosed above. Do nothing.
8034      }
8035      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8036        Diag(Loc, diag::ext_forward_ref_enum_def)
8037          << New;
8038        Diag(Def->getLocation(), diag::note_previous_definition);
8039      } else {
8040        unsigned DiagID = diag::ext_forward_ref_enum;
8041        if (getLangOptions().MicrosoftExt)
8042          DiagID = diag::ext_ms_forward_ref_enum;
8043        else if (getLangOptions().CPlusPlus)
8044          DiagID = diag::err_forward_ref_enum;
8045        Diag(Loc, DiagID);
8046
8047        // If this is a forward-declared reference to an enumeration, make a
8048        // note of it; we won't actually be introducing the declaration into
8049        // the declaration context.
8050        if (TUK == TUK_Reference)
8051          IsForwardReference = true;
8052      }
8053    }
8054
8055    if (EnumUnderlying) {
8056      EnumDecl *ED = cast<EnumDecl>(New);
8057      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8058        ED->setIntegerTypeSourceInfo(TI);
8059      else
8060        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8061      ED->setPromotionType(ED->getIntegerType());
8062    }
8063
8064  } else {
8065    // struct/union/class
8066
8067    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8068    // struct X { int A; } D;    D should chain to X.
8069    if (getLangOptions().CPlusPlus) {
8070      // FIXME: Look for a way to use RecordDecl for simple structs.
8071      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8072                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8073
8074      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8075        StdBadAlloc = cast<CXXRecordDecl>(New);
8076    } else
8077      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8078                               cast_or_null<RecordDecl>(PrevDecl));
8079  }
8080
8081  // Maybe add qualifier info.
8082  if (SS.isNotEmpty()) {
8083    if (SS.isSet()) {
8084      New->setQualifierInfo(SS.getWithLocInContext(Context));
8085      if (TemplateParameterLists.size() > 0) {
8086        New->setTemplateParameterListsInfo(Context,
8087                                           TemplateParameterLists.size(),
8088                    (TemplateParameterList**) TemplateParameterLists.release());
8089      }
8090    }
8091    else
8092      Invalid = true;
8093  }
8094
8095  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8096    // Add alignment attributes if necessary; these attributes are checked when
8097    // the ASTContext lays out the structure.
8098    //
8099    // It is important for implementing the correct semantics that this
8100    // happen here (in act on tag decl). The #pragma pack stack is
8101    // maintained as a result of parser callbacks which can occur at
8102    // many points during the parsing of a struct declaration (because
8103    // the #pragma tokens are effectively skipped over during the
8104    // parsing of the struct).
8105    AddAlignmentAttributesForRecord(RD);
8106
8107    AddMsStructLayoutForRecord(RD);
8108  }
8109
8110  if (PrevDecl && PrevDecl->isModulePrivate())
8111    New->setModulePrivate();
8112  else if (ModulePrivateLoc.isValid()) {
8113    if (isExplicitSpecialization)
8114      Diag(New->getLocation(), diag::err_module_private_specialization)
8115        << 2
8116        << FixItHint::CreateRemoval(ModulePrivateLoc);
8117    else if (PrevDecl && !PrevDecl->isModulePrivate())
8118      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8119    // __module_private__ does not apply to local classes. However, we only
8120    // diagnose this as an error when the declaration specifiers are
8121    // freestanding. Here, we just ignore the __module_private__.
8122    // foobar
8123    else if (!SearchDC->isFunctionOrMethod())
8124      New->setModulePrivate();
8125  }
8126
8127  // If this is a specialization of a member class (of a class template),
8128  // check the specialization.
8129  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8130    Invalid = true;
8131
8132  if (Invalid)
8133    New->setInvalidDecl();
8134
8135  if (Attr)
8136    ProcessDeclAttributeList(S, New, Attr);
8137
8138  // If we're declaring or defining a tag in function prototype scope
8139  // in C, note that this type can only be used within the function.
8140  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8141    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8142
8143  // Set the lexical context. If the tag has a C++ scope specifier, the
8144  // lexical context will be different from the semantic context.
8145  New->setLexicalDeclContext(CurContext);
8146
8147  // Mark this as a friend decl if applicable.
8148  // In Microsoft mode, a friend declaration also acts as a forward
8149  // declaration so we always pass true to setObjectOfFriendDecl to make
8150  // the tag name visible.
8151  if (TUK == TUK_Friend)
8152    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8153                               getLangOptions().MicrosoftExt);
8154
8155  // Set the access specifier.
8156  if (!Invalid && SearchDC->isRecord())
8157    SetMemberAccessSpecifier(New, PrevDecl, AS);
8158
8159  if (TUK == TUK_Definition)
8160    New->startDefinition();
8161
8162  // If this has an identifier, add it to the scope stack.
8163  if (TUK == TUK_Friend) {
8164    // We might be replacing an existing declaration in the lookup tables;
8165    // if so, borrow its access specifier.
8166    if (PrevDecl)
8167      New->setAccess(PrevDecl->getAccess());
8168
8169    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8170    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8171    if (Name) // can be null along some error paths
8172      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8173        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8174  } else if (Name) {
8175    S = getNonFieldDeclScope(S);
8176    PushOnScopeChains(New, S, !IsForwardReference);
8177    if (IsForwardReference)
8178      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8179
8180  } else {
8181    CurContext->addDecl(New);
8182  }
8183
8184  // If this is the C FILE type, notify the AST context.
8185  if (IdentifierInfo *II = New->getIdentifier())
8186    if (!New->isInvalidDecl() &&
8187        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8188        II->isStr("FILE"))
8189      Context.setFILEDecl(New);
8190
8191  OwnedDecl = true;
8192  return New;
8193}
8194
8195void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8196  AdjustDeclIfTemplate(TagD);
8197  TagDecl *Tag = cast<TagDecl>(TagD);
8198
8199  // Enter the tag context.
8200  PushDeclContext(S, Tag);
8201}
8202
8203Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8204  assert(isa<ObjCContainerDecl>(IDecl) &&
8205         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8206  DeclContext *OCD = cast<DeclContext>(IDecl);
8207  assert(getContainingDC(OCD) == CurContext &&
8208      "The next DeclContext should be lexically contained in the current one.");
8209  CurContext = OCD;
8210  return IDecl;
8211}
8212
8213void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8214                                           SourceLocation FinalLoc,
8215                                           SourceLocation LBraceLoc) {
8216  AdjustDeclIfTemplate(TagD);
8217  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8218
8219  FieldCollector->StartClass();
8220
8221  if (!Record->getIdentifier())
8222    return;
8223
8224  if (FinalLoc.isValid())
8225    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8226
8227  // C++ [class]p2:
8228  //   [...] The class-name is also inserted into the scope of the
8229  //   class itself; this is known as the injected-class-name. For
8230  //   purposes of access checking, the injected-class-name is treated
8231  //   as if it were a public member name.
8232  CXXRecordDecl *InjectedClassName
8233    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8234                            Record->getLocStart(), Record->getLocation(),
8235                            Record->getIdentifier(),
8236                            /*PrevDecl=*/0,
8237                            /*DelayTypeCreation=*/true);
8238  Context.getTypeDeclType(InjectedClassName, Record);
8239  InjectedClassName->setImplicit();
8240  InjectedClassName->setAccess(AS_public);
8241  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8242      InjectedClassName->setDescribedClassTemplate(Template);
8243  PushOnScopeChains(InjectedClassName, S);
8244  assert(InjectedClassName->isInjectedClassName() &&
8245         "Broken injected-class-name");
8246}
8247
8248void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8249                                    SourceLocation RBraceLoc) {
8250  AdjustDeclIfTemplate(TagD);
8251  TagDecl *Tag = cast<TagDecl>(TagD);
8252  Tag->setRBraceLoc(RBraceLoc);
8253
8254  if (isa<CXXRecordDecl>(Tag))
8255    FieldCollector->FinishClass();
8256
8257  // Exit this scope of this tag's definition.
8258  PopDeclContext();
8259
8260  // Notify the consumer that we've defined a tag.
8261  Consumer.HandleTagDeclDefinition(Tag);
8262}
8263
8264void Sema::ActOnObjCContainerFinishDefinition() {
8265  // Exit this scope of this interface definition.
8266  PopDeclContext();
8267}
8268
8269void Sema::ActOnObjCTemporaryExitContainerContext() {
8270  OriginalLexicalContext = CurContext;
8271  ActOnObjCContainerFinishDefinition();
8272}
8273
8274void Sema::ActOnObjCReenterContainerContext() {
8275  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8276  OriginalLexicalContext = 0;
8277}
8278
8279void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8280  AdjustDeclIfTemplate(TagD);
8281  TagDecl *Tag = cast<TagDecl>(TagD);
8282  Tag->setInvalidDecl();
8283
8284  // We're undoing ActOnTagStartDefinition here, not
8285  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8286  // the FieldCollector.
8287
8288  PopDeclContext();
8289}
8290
8291// Note that FieldName may be null for anonymous bitfields.
8292bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8293                          QualType FieldTy, const Expr *BitWidth,
8294                          bool *ZeroWidth) {
8295  // Default to true; that shouldn't confuse checks for emptiness
8296  if (ZeroWidth)
8297    *ZeroWidth = true;
8298
8299  // C99 6.7.2.1p4 - verify the field type.
8300  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8301  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8302    // Handle incomplete types with specific error.
8303    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8304      return true;
8305    if (FieldName)
8306      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8307        << FieldName << FieldTy << BitWidth->getSourceRange();
8308    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8309      << FieldTy << BitWidth->getSourceRange();
8310  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8311                                             UPPC_BitFieldWidth))
8312    return true;
8313
8314  // If the bit-width is type- or value-dependent, don't try to check
8315  // it now.
8316  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8317    return false;
8318
8319  llvm::APSInt Value;
8320  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8321    return true;
8322
8323  if (Value != 0 && ZeroWidth)
8324    *ZeroWidth = false;
8325
8326  // Zero-width bitfield is ok for anonymous field.
8327  if (Value == 0 && FieldName)
8328    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8329
8330  if (Value.isSigned() && Value.isNegative()) {
8331    if (FieldName)
8332      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8333               << FieldName << Value.toString(10);
8334    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8335      << Value.toString(10);
8336  }
8337
8338  if (!FieldTy->isDependentType()) {
8339    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8340    if (Value.getZExtValue() > TypeSize) {
8341      if (!getLangOptions().CPlusPlus) {
8342        if (FieldName)
8343          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8344            << FieldName << (unsigned)Value.getZExtValue()
8345            << (unsigned)TypeSize;
8346
8347        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8348          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8349      }
8350
8351      if (FieldName)
8352        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8353          << FieldName << (unsigned)Value.getZExtValue()
8354          << (unsigned)TypeSize;
8355      else
8356        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8357          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8358    }
8359  }
8360
8361  return false;
8362}
8363
8364/// ActOnField - Each field of a C struct/union is passed into this in order
8365/// to create a FieldDecl object for it.
8366Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8367                       Declarator &D, Expr *BitfieldWidth) {
8368  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8369                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8370                               /*HasInit=*/false, AS_public);
8371  return Res;
8372}
8373
8374/// HandleField - Analyze a field of a C struct or a C++ data member.
8375///
8376FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8377                             SourceLocation DeclStart,
8378                             Declarator &D, Expr *BitWidth, bool HasInit,
8379                             AccessSpecifier AS) {
8380  IdentifierInfo *II = D.getIdentifier();
8381  SourceLocation Loc = DeclStart;
8382  if (II) Loc = D.getIdentifierLoc();
8383
8384  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8385  QualType T = TInfo->getType();
8386  if (getLangOptions().CPlusPlus) {
8387    CheckExtraCXXDefaultArguments(D);
8388
8389    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8390                                        UPPC_DataMemberType)) {
8391      D.setInvalidType();
8392      T = Context.IntTy;
8393      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8394    }
8395  }
8396
8397  DiagnoseFunctionSpecifiers(D);
8398
8399  if (D.getDeclSpec().isThreadSpecified())
8400    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8401  if (D.getDeclSpec().isConstexprSpecified())
8402    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8403      << 2;
8404
8405  // Check to see if this name was declared as a member previously
8406  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8407  LookupName(Previous, S);
8408  assert((Previous.empty() || Previous.isOverloadedResult() ||
8409          Previous.isSingleResult())
8410    && "Lookup of member name should be either overloaded, single or null");
8411
8412  // If the name is overloaded then get any declaration else get the single result
8413  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8414    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8415
8416  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8417    // Maybe we will complain about the shadowed template parameter.
8418    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8419    // Just pretend that we didn't see the previous declaration.
8420    PrevDecl = 0;
8421  }
8422
8423  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8424    PrevDecl = 0;
8425
8426  bool Mutable
8427    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8428  SourceLocation TSSL = D.getSourceRange().getBegin();
8429  FieldDecl *NewFD
8430    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8431                     TSSL, AS, PrevDecl, &D);
8432
8433  if (NewFD->isInvalidDecl())
8434    Record->setInvalidDecl();
8435
8436  if (D.getDeclSpec().isModulePrivateSpecified())
8437    NewFD->setModulePrivate();
8438
8439  if (NewFD->isInvalidDecl() && PrevDecl) {
8440    // Don't introduce NewFD into scope; there's already something
8441    // with the same name in the same scope.
8442  } else if (II) {
8443    PushOnScopeChains(NewFD, S);
8444  } else
8445    Record->addDecl(NewFD);
8446
8447  return NewFD;
8448}
8449
8450/// \brief Build a new FieldDecl and check its well-formedness.
8451///
8452/// This routine builds a new FieldDecl given the fields name, type,
8453/// record, etc. \p PrevDecl should refer to any previous declaration
8454/// with the same name and in the same scope as the field to be
8455/// created.
8456///
8457/// \returns a new FieldDecl.
8458///
8459/// \todo The Declarator argument is a hack. It will be removed once
8460FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8461                                TypeSourceInfo *TInfo,
8462                                RecordDecl *Record, SourceLocation Loc,
8463                                bool Mutable, Expr *BitWidth, bool HasInit,
8464                                SourceLocation TSSL,
8465                                AccessSpecifier AS, NamedDecl *PrevDecl,
8466                                Declarator *D) {
8467  IdentifierInfo *II = Name.getAsIdentifierInfo();
8468  bool InvalidDecl = false;
8469  if (D) InvalidDecl = D->isInvalidType();
8470
8471  // If we receive a broken type, recover by assuming 'int' and
8472  // marking this declaration as invalid.
8473  if (T.isNull()) {
8474    InvalidDecl = true;
8475    T = Context.IntTy;
8476  }
8477
8478  QualType EltTy = Context.getBaseElementType(T);
8479  if (!EltTy->isDependentType() &&
8480      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8481    // Fields of incomplete type force their record to be invalid.
8482    Record->setInvalidDecl();
8483    InvalidDecl = true;
8484  }
8485
8486  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8487  // than a variably modified type.
8488  if (!InvalidDecl && T->isVariablyModifiedType()) {
8489    bool SizeIsNegative;
8490    llvm::APSInt Oversized;
8491    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8492                                                           SizeIsNegative,
8493                                                           Oversized);
8494    if (!FixedTy.isNull()) {
8495      Diag(Loc, diag::warn_illegal_constant_array_size);
8496      T = FixedTy;
8497    } else {
8498      if (SizeIsNegative)
8499        Diag(Loc, diag::err_typecheck_negative_array_size);
8500      else if (Oversized.getBoolValue())
8501        Diag(Loc, diag::err_array_too_large)
8502          << Oversized.toString(10);
8503      else
8504        Diag(Loc, diag::err_typecheck_field_variable_size);
8505      InvalidDecl = true;
8506    }
8507  }
8508
8509  // Fields can not have abstract class types
8510  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8511                                             diag::err_abstract_type_in_decl,
8512                                             AbstractFieldType))
8513    InvalidDecl = true;
8514
8515  bool ZeroWidth = false;
8516  // If this is declared as a bit-field, check the bit-field.
8517  if (!InvalidDecl && BitWidth &&
8518      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8519    InvalidDecl = true;
8520    BitWidth = 0;
8521    ZeroWidth = false;
8522  }
8523
8524  // Check that 'mutable' is consistent with the type of the declaration.
8525  if (!InvalidDecl && Mutable) {
8526    unsigned DiagID = 0;
8527    if (T->isReferenceType())
8528      DiagID = diag::err_mutable_reference;
8529    else if (T.isConstQualified())
8530      DiagID = diag::err_mutable_const;
8531
8532    if (DiagID) {
8533      SourceLocation ErrLoc = Loc;
8534      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8535        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8536      Diag(ErrLoc, DiagID);
8537      Mutable = false;
8538      InvalidDecl = true;
8539    }
8540  }
8541
8542  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8543                                       BitWidth, Mutable, HasInit);
8544  if (InvalidDecl)
8545    NewFD->setInvalidDecl();
8546
8547  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8548    Diag(Loc, diag::err_duplicate_member) << II;
8549    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8550    NewFD->setInvalidDecl();
8551  }
8552
8553  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8554    if (Record->isUnion()) {
8555      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8556        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8557        if (RDecl->getDefinition()) {
8558          // C++ [class.union]p1: An object of a class with a non-trivial
8559          // constructor, a non-trivial copy constructor, a non-trivial
8560          // destructor, or a non-trivial copy assignment operator
8561          // cannot be a member of a union, nor can an array of such
8562          // objects.
8563          if (CheckNontrivialField(NewFD))
8564            NewFD->setInvalidDecl();
8565        }
8566      }
8567
8568      // C++ [class.union]p1: If a union contains a member of reference type,
8569      // the program is ill-formed.
8570      if (EltTy->isReferenceType()) {
8571        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8572          << NewFD->getDeclName() << EltTy;
8573        NewFD->setInvalidDecl();
8574      }
8575    }
8576  }
8577
8578  // FIXME: We need to pass in the attributes given an AST
8579  // representation, not a parser representation.
8580  if (D)
8581    // FIXME: What to pass instead of TUScope?
8582    ProcessDeclAttributes(TUScope, NewFD, *D);
8583
8584  // In auto-retain/release, infer strong retension for fields of
8585  // retainable type.
8586  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8587    NewFD->setInvalidDecl();
8588
8589  if (T.isObjCGCWeak())
8590    Diag(Loc, diag::warn_attribute_weak_on_field);
8591
8592  NewFD->setAccess(AS);
8593  return NewFD;
8594}
8595
8596bool Sema::CheckNontrivialField(FieldDecl *FD) {
8597  assert(FD);
8598  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8599
8600  if (FD->isInvalidDecl())
8601    return true;
8602
8603  QualType EltTy = Context.getBaseElementType(FD->getType());
8604  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8605    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8606    if (RDecl->getDefinition()) {
8607      // We check for copy constructors before constructors
8608      // because otherwise we'll never get complaints about
8609      // copy constructors.
8610
8611      CXXSpecialMember member = CXXInvalid;
8612      if (!RDecl->hasTrivialCopyConstructor())
8613        member = CXXCopyConstructor;
8614      else if (!RDecl->hasTrivialDefaultConstructor())
8615        member = CXXDefaultConstructor;
8616      else if (!RDecl->hasTrivialCopyAssignment())
8617        member = CXXCopyAssignment;
8618      else if (!RDecl->hasTrivialDestructor())
8619        member = CXXDestructor;
8620
8621      if (member != CXXInvalid) {
8622        if (!getLangOptions().CPlusPlus0x &&
8623            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8624          // Objective-C++ ARC: it is an error to have a non-trivial field of
8625          // a union. However, system headers in Objective-C programs
8626          // occasionally have Objective-C lifetime objects within unions,
8627          // and rather than cause the program to fail, we make those
8628          // members unavailable.
8629          SourceLocation Loc = FD->getLocation();
8630          if (getSourceManager().isInSystemHeader(Loc)) {
8631            if (!FD->hasAttr<UnavailableAttr>())
8632              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8633                                  "this system field has retaining ownership"));
8634            return false;
8635          }
8636        }
8637
8638        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8639               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8640               diag::err_illegal_union_or_anon_struct_member)
8641          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8642        DiagnoseNontrivial(RT, member);
8643        return !getLangOptions().CPlusPlus0x;
8644      }
8645    }
8646  }
8647
8648  return false;
8649}
8650
8651/// DiagnoseNontrivial - Given that a class has a non-trivial
8652/// special member, figure out why.
8653void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8654  QualType QT(T, 0U);
8655  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8656
8657  // Check whether the member was user-declared.
8658  switch (member) {
8659  case CXXInvalid:
8660    break;
8661
8662  case CXXDefaultConstructor:
8663    if (RD->hasUserDeclaredConstructor()) {
8664      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8665      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8666        const FunctionDecl *body = 0;
8667        ci->hasBody(body);
8668        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8669          SourceLocation CtorLoc = ci->getLocation();
8670          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8671          return;
8672        }
8673      }
8674
8675      llvm_unreachable("found no user-declared constructors");
8676    }
8677    break;
8678
8679  case CXXCopyConstructor:
8680    if (RD->hasUserDeclaredCopyConstructor()) {
8681      SourceLocation CtorLoc =
8682        RD->getCopyConstructor(0)->getLocation();
8683      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8684      return;
8685    }
8686    break;
8687
8688  case CXXMoveConstructor:
8689    if (RD->hasUserDeclaredMoveConstructor()) {
8690      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8691      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8692      return;
8693    }
8694    break;
8695
8696  case CXXCopyAssignment:
8697    if (RD->hasUserDeclaredCopyAssignment()) {
8698      // FIXME: this should use the location of the copy
8699      // assignment, not the type.
8700      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8701      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8702      return;
8703    }
8704    break;
8705
8706  case CXXMoveAssignment:
8707    if (RD->hasUserDeclaredMoveAssignment()) {
8708      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8709      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8710      return;
8711    }
8712    break;
8713
8714  case CXXDestructor:
8715    if (RD->hasUserDeclaredDestructor()) {
8716      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8717      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8718      return;
8719    }
8720    break;
8721  }
8722
8723  typedef CXXRecordDecl::base_class_iterator base_iter;
8724
8725  // Virtual bases and members inhibit trivial copying/construction,
8726  // but not trivial destruction.
8727  if (member != CXXDestructor) {
8728    // Check for virtual bases.  vbases includes indirect virtual bases,
8729    // so we just iterate through the direct bases.
8730    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8731      if (bi->isVirtual()) {
8732        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8733        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8734        return;
8735      }
8736
8737    // Check for virtual methods.
8738    typedef CXXRecordDecl::method_iterator meth_iter;
8739    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8740         ++mi) {
8741      if (mi->isVirtual()) {
8742        SourceLocation MLoc = mi->getSourceRange().getBegin();
8743        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8744        return;
8745      }
8746    }
8747  }
8748
8749  bool (CXXRecordDecl::*hasTrivial)() const;
8750  switch (member) {
8751  case CXXDefaultConstructor:
8752    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8753  case CXXCopyConstructor:
8754    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8755  case CXXCopyAssignment:
8756    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8757  case CXXDestructor:
8758    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8759  default:
8760    llvm_unreachable("unexpected special member");
8761  }
8762
8763  // Check for nontrivial bases (and recurse).
8764  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8765    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8766    assert(BaseRT && "Don't know how to handle dependent bases");
8767    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8768    if (!(BaseRecTy->*hasTrivial)()) {
8769      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8770      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8771      DiagnoseNontrivial(BaseRT, member);
8772      return;
8773    }
8774  }
8775
8776  // Check for nontrivial members (and recurse).
8777  typedef RecordDecl::field_iterator field_iter;
8778  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8779       ++fi) {
8780    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8781    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8782      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8783
8784      if (!(EltRD->*hasTrivial)()) {
8785        SourceLocation FLoc = (*fi)->getLocation();
8786        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8787        DiagnoseNontrivial(EltRT, member);
8788        return;
8789      }
8790    }
8791
8792    if (EltTy->isObjCLifetimeType()) {
8793      switch (EltTy.getObjCLifetime()) {
8794      case Qualifiers::OCL_None:
8795      case Qualifiers::OCL_ExplicitNone:
8796        break;
8797
8798      case Qualifiers::OCL_Autoreleasing:
8799      case Qualifiers::OCL_Weak:
8800      case Qualifiers::OCL_Strong:
8801        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8802          << QT << EltTy.getObjCLifetime();
8803        return;
8804      }
8805    }
8806  }
8807
8808  llvm_unreachable("found no explanation for non-trivial member");
8809}
8810
8811/// TranslateIvarVisibility - Translate visibility from a token ID to an
8812///  AST enum value.
8813static ObjCIvarDecl::AccessControl
8814TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8815  switch (ivarVisibility) {
8816  default: llvm_unreachable("Unknown visitibility kind");
8817  case tok::objc_private: return ObjCIvarDecl::Private;
8818  case tok::objc_public: return ObjCIvarDecl::Public;
8819  case tok::objc_protected: return ObjCIvarDecl::Protected;
8820  case tok::objc_package: return ObjCIvarDecl::Package;
8821  }
8822}
8823
8824/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8825/// in order to create an IvarDecl object for it.
8826Decl *Sema::ActOnIvar(Scope *S,
8827                                SourceLocation DeclStart,
8828                                Declarator &D, Expr *BitfieldWidth,
8829                                tok::ObjCKeywordKind Visibility) {
8830
8831  IdentifierInfo *II = D.getIdentifier();
8832  Expr *BitWidth = (Expr*)BitfieldWidth;
8833  SourceLocation Loc = DeclStart;
8834  if (II) Loc = D.getIdentifierLoc();
8835
8836  // FIXME: Unnamed fields can be handled in various different ways, for
8837  // example, unnamed unions inject all members into the struct namespace!
8838
8839  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8840  QualType T = TInfo->getType();
8841
8842  if (BitWidth) {
8843    // 6.7.2.1p3, 6.7.2.1p4
8844    if (VerifyBitField(Loc, II, T, BitWidth)) {
8845      D.setInvalidType();
8846      BitWidth = 0;
8847    }
8848  } else {
8849    // Not a bitfield.
8850
8851    // validate II.
8852
8853  }
8854  if (T->isReferenceType()) {
8855    Diag(Loc, diag::err_ivar_reference_type);
8856    D.setInvalidType();
8857  }
8858  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8859  // than a variably modified type.
8860  else if (T->isVariablyModifiedType()) {
8861    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8862    D.setInvalidType();
8863  }
8864
8865  // Get the visibility (access control) for this ivar.
8866  ObjCIvarDecl::AccessControl ac =
8867    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8868                                        : ObjCIvarDecl::None;
8869  // Must set ivar's DeclContext to its enclosing interface.
8870  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8871  ObjCContainerDecl *EnclosingContext;
8872  if (ObjCImplementationDecl *IMPDecl =
8873      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8874    if (!LangOpts.ObjCNonFragileABI2) {
8875    // Case of ivar declared in an implementation. Context is that of its class.
8876      EnclosingContext = IMPDecl->getClassInterface();
8877      assert(EnclosingContext && "Implementation has no class interface!");
8878    }
8879    else
8880      EnclosingContext = EnclosingDecl;
8881  } else {
8882    if (ObjCCategoryDecl *CDecl =
8883        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8884      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8885        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8886        return 0;
8887      }
8888    }
8889    EnclosingContext = EnclosingDecl;
8890  }
8891
8892  // Construct the decl.
8893  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8894                                             DeclStart, Loc, II, T,
8895                                             TInfo, ac, (Expr *)BitfieldWidth);
8896
8897  if (II) {
8898    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8899                                           ForRedeclaration);
8900    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8901        && !isa<TagDecl>(PrevDecl)) {
8902      Diag(Loc, diag::err_duplicate_member) << II;
8903      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8904      NewID->setInvalidDecl();
8905    }
8906  }
8907
8908  // Process attributes attached to the ivar.
8909  ProcessDeclAttributes(S, NewID, D);
8910
8911  if (D.isInvalidType())
8912    NewID->setInvalidDecl();
8913
8914  // In ARC, infer 'retaining' for ivars of retainable type.
8915  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8916    NewID->setInvalidDecl();
8917
8918  if (D.getDeclSpec().isModulePrivateSpecified())
8919    NewID->setModulePrivate();
8920
8921  if (II) {
8922    // FIXME: When interfaces are DeclContexts, we'll need to add
8923    // these to the interface.
8924    S->AddDecl(NewID);
8925    IdResolver.AddDecl(NewID);
8926  }
8927
8928  return NewID;
8929}
8930
8931/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8932/// class and class extensions. For every class @interface and class
8933/// extension @interface, if the last ivar is a bitfield of any type,
8934/// then add an implicit `char :0` ivar to the end of that interface.
8935void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8936                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8937  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8938    return;
8939
8940  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8941  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8942
8943  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8944    return;
8945  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8946  if (!ID) {
8947    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8948      if (!CD->IsClassExtension())
8949        return;
8950    }
8951    // No need to add this to end of @implementation.
8952    else
8953      return;
8954  }
8955  // All conditions are met. Add a new bitfield to the tail end of ivars.
8956  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8957  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8958
8959  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8960                              DeclLoc, DeclLoc, 0,
8961                              Context.CharTy,
8962                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8963                                                               DeclLoc),
8964                              ObjCIvarDecl::Private, BW,
8965                              true);
8966  AllIvarDecls.push_back(Ivar);
8967}
8968
8969void Sema::ActOnFields(Scope* S,
8970                       SourceLocation RecLoc, Decl *EnclosingDecl,
8971                       llvm::ArrayRef<Decl *> Fields,
8972                       SourceLocation LBrac, SourceLocation RBrac,
8973                       AttributeList *Attr) {
8974  assert(EnclosingDecl && "missing record or interface decl");
8975
8976  // If the decl this is being inserted into is invalid, then it may be a
8977  // redeclaration or some other bogus case.  Don't try to add fields to it.
8978  if (EnclosingDecl->isInvalidDecl())
8979    return;
8980
8981  // Verify that all the fields are okay.
8982  unsigned NumNamedMembers = 0;
8983  SmallVector<FieldDecl*, 32> RecFields;
8984
8985  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8986  bool ARCErrReported = false;
8987  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8988       i != end; ++i) {
8989    FieldDecl *FD = cast<FieldDecl>(*i);
8990
8991    // Get the type for the field.
8992    const Type *FDTy = FD->getType().getTypePtr();
8993
8994    if (!FD->isAnonymousStructOrUnion()) {
8995      // Remember all fields written by the user.
8996      RecFields.push_back(FD);
8997    }
8998
8999    // If the field is already invalid for some reason, don't emit more
9000    // diagnostics about it.
9001    if (FD->isInvalidDecl()) {
9002      EnclosingDecl->setInvalidDecl();
9003      continue;
9004    }
9005
9006    // C99 6.7.2.1p2:
9007    //   A structure or union shall not contain a member with
9008    //   incomplete or function type (hence, a structure shall not
9009    //   contain an instance of itself, but may contain a pointer to
9010    //   an instance of itself), except that the last member of a
9011    //   structure with more than one named member may have incomplete
9012    //   array type; such a structure (and any union containing,
9013    //   possibly recursively, a member that is such a structure)
9014    //   shall not be a member of a structure or an element of an
9015    //   array.
9016    if (FDTy->isFunctionType()) {
9017      // Field declared as a function.
9018      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9019        << FD->getDeclName();
9020      FD->setInvalidDecl();
9021      EnclosingDecl->setInvalidDecl();
9022      continue;
9023    } else if (FDTy->isIncompleteArrayType() && Record &&
9024               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9025                ((getLangOptions().MicrosoftExt ||
9026                  getLangOptions().CPlusPlus) &&
9027                 (i + 1 == Fields.end() || Record->isUnion())))) {
9028      // Flexible array member.
9029      // Microsoft and g++ is more permissive regarding flexible array.
9030      // It will accept flexible array in union and also
9031      // as the sole element of a struct/class.
9032      if (getLangOptions().MicrosoftExt) {
9033        if (Record->isUnion())
9034          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9035            << FD->getDeclName();
9036        else if (Fields.size() == 1)
9037          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9038            << FD->getDeclName() << Record->getTagKind();
9039      } else if (getLangOptions().CPlusPlus) {
9040        if (Record->isUnion())
9041          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9042            << FD->getDeclName();
9043        else if (Fields.size() == 1)
9044          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9045            << FD->getDeclName() << Record->getTagKind();
9046      } else if (NumNamedMembers < 1) {
9047        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9048          << FD->getDeclName();
9049        FD->setInvalidDecl();
9050        EnclosingDecl->setInvalidDecl();
9051        continue;
9052      }
9053      if (!FD->getType()->isDependentType() &&
9054          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9055        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9056          << FD->getDeclName() << FD->getType();
9057        FD->setInvalidDecl();
9058        EnclosingDecl->setInvalidDecl();
9059        continue;
9060      }
9061      // Okay, we have a legal flexible array member at the end of the struct.
9062      if (Record)
9063        Record->setHasFlexibleArrayMember(true);
9064    } else if (!FDTy->isDependentType() &&
9065               RequireCompleteType(FD->getLocation(), FD->getType(),
9066                                   diag::err_field_incomplete)) {
9067      // Incomplete type
9068      FD->setInvalidDecl();
9069      EnclosingDecl->setInvalidDecl();
9070      continue;
9071    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9072      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9073        // If this is a member of a union, then entire union becomes "flexible".
9074        if (Record && Record->isUnion()) {
9075          Record->setHasFlexibleArrayMember(true);
9076        } else {
9077          // If this is a struct/class and this is not the last element, reject
9078          // it.  Note that GCC supports variable sized arrays in the middle of
9079          // structures.
9080          if (i + 1 != Fields.end())
9081            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9082              << FD->getDeclName() << FD->getType();
9083          else {
9084            // We support flexible arrays at the end of structs in
9085            // other structs as an extension.
9086            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9087              << FD->getDeclName();
9088            if (Record)
9089              Record->setHasFlexibleArrayMember(true);
9090          }
9091        }
9092      }
9093      if (Record && FDTTy->getDecl()->hasObjectMember())
9094        Record->setHasObjectMember(true);
9095    } else if (FDTy->isObjCObjectType()) {
9096      /// A field cannot be an Objective-c object
9097      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9098        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9099      QualType T = Context.getObjCObjectPointerType(FD->getType());
9100      FD->setType(T);
9101    }
9102    else if (!getLangOptions().CPlusPlus) {
9103      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9104        // It's an error in ARC if a field has lifetime.
9105        // We don't want to report this in a system header, though,
9106        // so we just make the field unavailable.
9107        // FIXME: that's really not sufficient; we need to make the type
9108        // itself invalid to, say, initialize or copy.
9109        QualType T = FD->getType();
9110        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9111        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9112          SourceLocation loc = FD->getLocation();
9113          if (getSourceManager().isInSystemHeader(loc)) {
9114            if (!FD->hasAttr<UnavailableAttr>()) {
9115              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9116                                "this system field has retaining ownership"));
9117            }
9118          } else {
9119            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9120          }
9121          ARCErrReported = true;
9122        }
9123      }
9124      else if (getLangOptions().ObjC1 &&
9125               getLangOptions().getGC() != LangOptions::NonGC &&
9126               Record && !Record->hasObjectMember()) {
9127        if (FD->getType()->isObjCObjectPointerType() ||
9128            FD->getType().isObjCGCStrong())
9129          Record->setHasObjectMember(true);
9130        else if (Context.getAsArrayType(FD->getType())) {
9131          QualType BaseType = Context.getBaseElementType(FD->getType());
9132          if (BaseType->isRecordType() &&
9133              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9134            Record->setHasObjectMember(true);
9135          else if (BaseType->isObjCObjectPointerType() ||
9136                   BaseType.isObjCGCStrong())
9137                 Record->setHasObjectMember(true);
9138        }
9139      }
9140    }
9141    // Keep track of the number of named members.
9142    if (FD->getIdentifier())
9143      ++NumNamedMembers;
9144  }
9145
9146  // Okay, we successfully defined 'Record'.
9147  if (Record) {
9148    bool Completed = false;
9149    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9150      if (!CXXRecord->isInvalidDecl()) {
9151        // Set access bits correctly on the directly-declared conversions.
9152        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9153        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9154             I != E; ++I)
9155          Convs->setAccess(I, (*I)->getAccess());
9156
9157        if (!CXXRecord->isDependentType()) {
9158          // Objective-C Automatic Reference Counting:
9159          //   If a class has a non-static data member of Objective-C pointer
9160          //   type (or array thereof), it is a non-POD type and its
9161          //   default constructor (if any), copy constructor, copy assignment
9162          //   operator, and destructor are non-trivial.
9163          //
9164          // This rule is also handled by CXXRecordDecl::completeDefinition().
9165          // However, here we check whether this particular class is only
9166          // non-POD because of the presence of an Objective-C pointer member.
9167          // If so, objects of this type cannot be shared between code compiled
9168          // with instant objects and code compiled with manual retain/release.
9169          if (getLangOptions().ObjCAutoRefCount &&
9170              CXXRecord->hasObjectMember() &&
9171              CXXRecord->getLinkage() == ExternalLinkage) {
9172            if (CXXRecord->isPOD()) {
9173              Diag(CXXRecord->getLocation(),
9174                   diag::warn_arc_non_pod_class_with_object_member)
9175               << CXXRecord;
9176            } else {
9177              // FIXME: Fix-Its would be nice here, but finding a good location
9178              // for them is going to be tricky.
9179              if (CXXRecord->hasTrivialCopyConstructor())
9180                Diag(CXXRecord->getLocation(),
9181                     diag::warn_arc_trivial_member_function_with_object_member)
9182                  << CXXRecord << 0;
9183              if (CXXRecord->hasTrivialCopyAssignment())
9184                Diag(CXXRecord->getLocation(),
9185                     diag::warn_arc_trivial_member_function_with_object_member)
9186                << CXXRecord << 1;
9187              if (CXXRecord->hasTrivialDestructor())
9188                Diag(CXXRecord->getLocation(),
9189                     diag::warn_arc_trivial_member_function_with_object_member)
9190                << CXXRecord << 2;
9191            }
9192          }
9193
9194          // Adjust user-defined destructor exception spec.
9195          if (getLangOptions().CPlusPlus0x &&
9196              CXXRecord->hasUserDeclaredDestructor())
9197            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9198
9199          // Add any implicitly-declared members to this class.
9200          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9201
9202          // If we have virtual base classes, we may end up finding multiple
9203          // final overriders for a given virtual function. Check for this
9204          // problem now.
9205          if (CXXRecord->getNumVBases()) {
9206            CXXFinalOverriderMap FinalOverriders;
9207            CXXRecord->getFinalOverriders(FinalOverriders);
9208
9209            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9210                                             MEnd = FinalOverriders.end();
9211                 M != MEnd; ++M) {
9212              for (OverridingMethods::iterator SO = M->second.begin(),
9213                                            SOEnd = M->second.end();
9214                   SO != SOEnd; ++SO) {
9215                assert(SO->second.size() > 0 &&
9216                       "Virtual function without overridding functions?");
9217                if (SO->second.size() == 1)
9218                  continue;
9219
9220                // C++ [class.virtual]p2:
9221                //   In a derived class, if a virtual member function of a base
9222                //   class subobject has more than one final overrider the
9223                //   program is ill-formed.
9224                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9225                  << (NamedDecl *)M->first << Record;
9226                Diag(M->first->getLocation(),
9227                     diag::note_overridden_virtual_function);
9228                for (OverridingMethods::overriding_iterator
9229                          OM = SO->second.begin(),
9230                       OMEnd = SO->second.end();
9231                     OM != OMEnd; ++OM)
9232                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9233                    << (NamedDecl *)M->first << OM->Method->getParent();
9234
9235                Record->setInvalidDecl();
9236              }
9237            }
9238            CXXRecord->completeDefinition(&FinalOverriders);
9239            Completed = true;
9240          }
9241        }
9242      }
9243    }
9244
9245    if (!Completed)
9246      Record->completeDefinition();
9247
9248    // Now that the record is complete, do any delayed exception spec checks
9249    // we were missing.
9250    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9251      const CXXDestructorDecl *Dtor =
9252              DelayedDestructorExceptionSpecChecks.back().first;
9253      if (Dtor->getParent() != Record)
9254        break;
9255
9256      assert(!Dtor->getParent()->isDependentType() &&
9257          "Should not ever add destructors of templates into the list.");
9258      CheckOverridingFunctionExceptionSpec(Dtor,
9259          DelayedDestructorExceptionSpecChecks.back().second);
9260      DelayedDestructorExceptionSpecChecks.pop_back();
9261    }
9262
9263  } else {
9264    ObjCIvarDecl **ClsFields =
9265      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9266    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9267      ID->setLocEnd(RBrac);
9268      // Add ivar's to class's DeclContext.
9269      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9270        ClsFields[i]->setLexicalDeclContext(ID);
9271        ID->addDecl(ClsFields[i]);
9272      }
9273      // Must enforce the rule that ivars in the base classes may not be
9274      // duplicates.
9275      if (ID->getSuperClass())
9276        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9277    } else if (ObjCImplementationDecl *IMPDecl =
9278                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9279      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9280      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9281        // Ivar declared in @implementation never belongs to the implementation.
9282        // Only it is in implementation's lexical context.
9283        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9284      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9285    } else if (ObjCCategoryDecl *CDecl =
9286                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9287      // case of ivars in class extension; all other cases have been
9288      // reported as errors elsewhere.
9289      // FIXME. Class extension does not have a LocEnd field.
9290      // CDecl->setLocEnd(RBrac);
9291      // Add ivar's to class extension's DeclContext.
9292      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9293        ClsFields[i]->setLexicalDeclContext(CDecl);
9294        CDecl->addDecl(ClsFields[i]);
9295      }
9296    }
9297  }
9298
9299  if (Attr)
9300    ProcessDeclAttributeList(S, Record, Attr);
9301
9302  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9303  // set the visibility of this record.
9304  if (Record && !Record->getDeclContext()->isRecord())
9305    AddPushedVisibilityAttribute(Record);
9306}
9307
9308/// \brief Determine whether the given integral value is representable within
9309/// the given type T.
9310static bool isRepresentableIntegerValue(ASTContext &Context,
9311                                        llvm::APSInt &Value,
9312                                        QualType T) {
9313  assert(T->isIntegralType(Context) && "Integral type required!");
9314  unsigned BitWidth = Context.getIntWidth(T);
9315
9316  if (Value.isUnsigned() || Value.isNonNegative()) {
9317    if (T->isSignedIntegerOrEnumerationType())
9318      --BitWidth;
9319    return Value.getActiveBits() <= BitWidth;
9320  }
9321  return Value.getMinSignedBits() <= BitWidth;
9322}
9323
9324// \brief Given an integral type, return the next larger integral type
9325// (or a NULL type of no such type exists).
9326static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9327  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9328  // enum checking below.
9329  assert(T->isIntegralType(Context) && "Integral type required!");
9330  const unsigned NumTypes = 4;
9331  QualType SignedIntegralTypes[NumTypes] = {
9332    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9333  };
9334  QualType UnsignedIntegralTypes[NumTypes] = {
9335    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9336    Context.UnsignedLongLongTy
9337  };
9338
9339  unsigned BitWidth = Context.getTypeSize(T);
9340  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9341                                                        : UnsignedIntegralTypes;
9342  for (unsigned I = 0; I != NumTypes; ++I)
9343    if (Context.getTypeSize(Types[I]) > BitWidth)
9344      return Types[I];
9345
9346  return QualType();
9347}
9348
9349EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9350                                          EnumConstantDecl *LastEnumConst,
9351                                          SourceLocation IdLoc,
9352                                          IdentifierInfo *Id,
9353                                          Expr *Val) {
9354  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9355  llvm::APSInt EnumVal(IntWidth);
9356  QualType EltTy;
9357
9358  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9359    Val = 0;
9360
9361  if (Val) {
9362    if (Enum->isDependentType() || Val->isTypeDependent())
9363      EltTy = Context.DependentTy;
9364    else {
9365      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9366      SourceLocation ExpLoc;
9367      if (!Val->isValueDependent() &&
9368          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9369        Val = 0;
9370      } else {
9371        if (!getLangOptions().CPlusPlus) {
9372          // C99 6.7.2.2p2:
9373          //   The expression that defines the value of an enumeration constant
9374          //   shall be an integer constant expression that has a value
9375          //   representable as an int.
9376
9377          // Complain if the value is not representable in an int.
9378          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9379            Diag(IdLoc, diag::ext_enum_value_not_int)
9380              << EnumVal.toString(10) << Val->getSourceRange()
9381              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9382          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9383            // Force the type of the expression to 'int'.
9384            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9385          }
9386        }
9387
9388        if (Enum->isFixed()) {
9389          EltTy = Enum->getIntegerType();
9390
9391          // C++0x [dcl.enum]p5:
9392          //   ... if the initializing value of an enumerator cannot be
9393          //   represented by the underlying type, the program is ill-formed.
9394          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9395            if (getLangOptions().MicrosoftExt) {
9396              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9397              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9398            } else
9399              Diag(IdLoc, diag::err_enumerator_too_large)
9400                << EltTy;
9401          } else
9402            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9403        }
9404        else {
9405          // C++0x [dcl.enum]p5:
9406          //   If the underlying type is not fixed, the type of each enumerator
9407          //   is the type of its initializing value:
9408          //     - If an initializer is specified for an enumerator, the
9409          //       initializing value has the same type as the expression.
9410          EltTy = Val->getType();
9411        }
9412      }
9413    }
9414  }
9415
9416  if (!Val) {
9417    if (Enum->isDependentType())
9418      EltTy = Context.DependentTy;
9419    else if (!LastEnumConst) {
9420      // C++0x [dcl.enum]p5:
9421      //   If the underlying type is not fixed, the type of each enumerator
9422      //   is the type of its initializing value:
9423      //     - If no initializer is specified for the first enumerator, the
9424      //       initializing value has an unspecified integral type.
9425      //
9426      // GCC uses 'int' for its unspecified integral type, as does
9427      // C99 6.7.2.2p3.
9428      if (Enum->isFixed()) {
9429        EltTy = Enum->getIntegerType();
9430      }
9431      else {
9432        EltTy = Context.IntTy;
9433      }
9434    } else {
9435      // Assign the last value + 1.
9436      EnumVal = LastEnumConst->getInitVal();
9437      ++EnumVal;
9438      EltTy = LastEnumConst->getType();
9439
9440      // Check for overflow on increment.
9441      if (EnumVal < LastEnumConst->getInitVal()) {
9442        // C++0x [dcl.enum]p5:
9443        //   If the underlying type is not fixed, the type of each enumerator
9444        //   is the type of its initializing value:
9445        //
9446        //     - Otherwise the type of the initializing value is the same as
9447        //       the type of the initializing value of the preceding enumerator
9448        //       unless the incremented value is not representable in that type,
9449        //       in which case the type is an unspecified integral type
9450        //       sufficient to contain the incremented value. If no such type
9451        //       exists, the program is ill-formed.
9452        QualType T = getNextLargerIntegralType(Context, EltTy);
9453        if (T.isNull() || Enum->isFixed()) {
9454          // There is no integral type larger enough to represent this
9455          // value. Complain, then allow the value to wrap around.
9456          EnumVal = LastEnumConst->getInitVal();
9457          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9458          ++EnumVal;
9459          if (Enum->isFixed())
9460            // When the underlying type is fixed, this is ill-formed.
9461            Diag(IdLoc, diag::err_enumerator_wrapped)
9462              << EnumVal.toString(10)
9463              << EltTy;
9464          else
9465            Diag(IdLoc, diag::warn_enumerator_too_large)
9466              << EnumVal.toString(10);
9467        } else {
9468          EltTy = T;
9469        }
9470
9471        // Retrieve the last enumerator's value, extent that type to the
9472        // type that is supposed to be large enough to represent the incremented
9473        // value, then increment.
9474        EnumVal = LastEnumConst->getInitVal();
9475        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9476        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9477        ++EnumVal;
9478
9479        // If we're not in C++, diagnose the overflow of enumerator values,
9480        // which in C99 means that the enumerator value is not representable in
9481        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9482        // permits enumerator values that are representable in some larger
9483        // integral type.
9484        if (!getLangOptions().CPlusPlus && !T.isNull())
9485          Diag(IdLoc, diag::warn_enum_value_overflow);
9486      } else if (!getLangOptions().CPlusPlus &&
9487                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9488        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9489        Diag(IdLoc, diag::ext_enum_value_not_int)
9490          << EnumVal.toString(10) << 1;
9491      }
9492    }
9493  }
9494
9495  if (!EltTy->isDependentType()) {
9496    // Make the enumerator value match the signedness and size of the
9497    // enumerator's type.
9498    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9499    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9500  }
9501
9502  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9503                                  Val, EnumVal);
9504}
9505
9506
9507Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9508                              SourceLocation IdLoc, IdentifierInfo *Id,
9509                              AttributeList *Attr,
9510                              SourceLocation EqualLoc, Expr *val) {
9511  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9512  EnumConstantDecl *LastEnumConst =
9513    cast_or_null<EnumConstantDecl>(lastEnumConst);
9514  Expr *Val = static_cast<Expr*>(val);
9515
9516  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9517  // we find one that is.
9518  S = getNonFieldDeclScope(S);
9519
9520  // Verify that there isn't already something declared with this name in this
9521  // scope.
9522  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9523                                         ForRedeclaration);
9524  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9525    // Maybe we will complain about the shadowed template parameter.
9526    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9527    // Just pretend that we didn't see the previous declaration.
9528    PrevDecl = 0;
9529  }
9530
9531  if (PrevDecl) {
9532    // When in C++, we may get a TagDecl with the same name; in this case the
9533    // enum constant will 'hide' the tag.
9534    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9535           "Received TagDecl when not in C++!");
9536    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9537      if (isa<EnumConstantDecl>(PrevDecl))
9538        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9539      else
9540        Diag(IdLoc, diag::err_redefinition) << Id;
9541      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9542      return 0;
9543    }
9544  }
9545
9546  // C++ [class.mem]p13:
9547  //   If T is the name of a class, then each of the following shall have a
9548  //   name different from T:
9549  //     - every enumerator of every member of class T that is an enumerated
9550  //       type
9551  if (CXXRecordDecl *Record
9552                      = dyn_cast<CXXRecordDecl>(
9553                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9554    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9555      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9556
9557  EnumConstantDecl *New =
9558    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9559
9560  if (New) {
9561    // Process attributes.
9562    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9563
9564    // Register this decl in the current scope stack.
9565    New->setAccess(TheEnumDecl->getAccess());
9566    PushOnScopeChains(New, S);
9567  }
9568
9569  return New;
9570}
9571
9572void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9573                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9574                         Decl **Elements, unsigned NumElements,
9575                         Scope *S, AttributeList *Attr) {
9576  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9577  QualType EnumType = Context.getTypeDeclType(Enum);
9578
9579  if (Attr)
9580    ProcessDeclAttributeList(S, Enum, Attr);
9581
9582  if (Enum->isDependentType()) {
9583    for (unsigned i = 0; i != NumElements; ++i) {
9584      EnumConstantDecl *ECD =
9585        cast_or_null<EnumConstantDecl>(Elements[i]);
9586      if (!ECD) continue;
9587
9588      ECD->setType(EnumType);
9589    }
9590
9591    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9592    return;
9593  }
9594
9595  // TODO: If the result value doesn't fit in an int, it must be a long or long
9596  // long value.  ISO C does not support this, but GCC does as an extension,
9597  // emit a warning.
9598  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9599  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9600  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9601
9602  // Verify that all the values are okay, compute the size of the values, and
9603  // reverse the list.
9604  unsigned NumNegativeBits = 0;
9605  unsigned NumPositiveBits = 0;
9606
9607  // Keep track of whether all elements have type int.
9608  bool AllElementsInt = true;
9609
9610  for (unsigned i = 0; i != NumElements; ++i) {
9611    EnumConstantDecl *ECD =
9612      cast_or_null<EnumConstantDecl>(Elements[i]);
9613    if (!ECD) continue;  // Already issued a diagnostic.
9614
9615    const llvm::APSInt &InitVal = ECD->getInitVal();
9616
9617    // Keep track of the size of positive and negative values.
9618    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9619      NumPositiveBits = std::max(NumPositiveBits,
9620                                 (unsigned)InitVal.getActiveBits());
9621    else
9622      NumNegativeBits = std::max(NumNegativeBits,
9623                                 (unsigned)InitVal.getMinSignedBits());
9624
9625    // Keep track of whether every enum element has type int (very commmon).
9626    if (AllElementsInt)
9627      AllElementsInt = ECD->getType() == Context.IntTy;
9628  }
9629
9630  // Figure out the type that should be used for this enum.
9631  QualType BestType;
9632  unsigned BestWidth;
9633
9634  // C++0x N3000 [conv.prom]p3:
9635  //   An rvalue of an unscoped enumeration type whose underlying
9636  //   type is not fixed can be converted to an rvalue of the first
9637  //   of the following types that can represent all the values of
9638  //   the enumeration: int, unsigned int, long int, unsigned long
9639  //   int, long long int, or unsigned long long int.
9640  // C99 6.4.4.3p2:
9641  //   An identifier declared as an enumeration constant has type int.
9642  // The C99 rule is modified by a gcc extension
9643  QualType BestPromotionType;
9644
9645  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9646  // -fshort-enums is the equivalent to specifying the packed attribute on all
9647  // enum definitions.
9648  if (LangOpts.ShortEnums)
9649    Packed = true;
9650
9651  if (Enum->isFixed()) {
9652    BestType = BestPromotionType = Enum->getIntegerType();
9653    // We don't need to set BestWidth, because BestType is going to be the type
9654    // of the enumerators, but we do anyway because otherwise some compilers
9655    // warn that it might be used uninitialized.
9656    BestWidth = CharWidth;
9657  }
9658  else if (NumNegativeBits) {
9659    // If there is a negative value, figure out the smallest integer type (of
9660    // int/long/longlong) that fits.
9661    // If it's packed, check also if it fits a char or a short.
9662    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9663      BestType = Context.SignedCharTy;
9664      BestWidth = CharWidth;
9665    } else if (Packed && NumNegativeBits <= ShortWidth &&
9666               NumPositiveBits < ShortWidth) {
9667      BestType = Context.ShortTy;
9668      BestWidth = ShortWidth;
9669    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9670      BestType = Context.IntTy;
9671      BestWidth = IntWidth;
9672    } else {
9673      BestWidth = Context.getTargetInfo().getLongWidth();
9674
9675      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9676        BestType = Context.LongTy;
9677      } else {
9678        BestWidth = Context.getTargetInfo().getLongLongWidth();
9679
9680        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9681          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9682        BestType = Context.LongLongTy;
9683      }
9684    }
9685    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9686  } else {
9687    // If there is no negative value, figure out the smallest type that fits
9688    // all of the enumerator values.
9689    // If it's packed, check also if it fits a char or a short.
9690    if (Packed && NumPositiveBits <= CharWidth) {
9691      BestType = Context.UnsignedCharTy;
9692      BestPromotionType = Context.IntTy;
9693      BestWidth = CharWidth;
9694    } else if (Packed && NumPositiveBits <= ShortWidth) {
9695      BestType = Context.UnsignedShortTy;
9696      BestPromotionType = Context.IntTy;
9697      BestWidth = ShortWidth;
9698    } else if (NumPositiveBits <= IntWidth) {
9699      BestType = Context.UnsignedIntTy;
9700      BestWidth = IntWidth;
9701      BestPromotionType
9702        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9703                           ? Context.UnsignedIntTy : Context.IntTy;
9704    } else if (NumPositiveBits <=
9705               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9706      BestType = Context.UnsignedLongTy;
9707      BestPromotionType
9708        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9709                           ? Context.UnsignedLongTy : Context.LongTy;
9710    } else {
9711      BestWidth = Context.getTargetInfo().getLongLongWidth();
9712      assert(NumPositiveBits <= BestWidth &&
9713             "How could an initializer get larger than ULL?");
9714      BestType = Context.UnsignedLongLongTy;
9715      BestPromotionType
9716        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9717                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9718    }
9719  }
9720
9721  // Loop over all of the enumerator constants, changing their types to match
9722  // the type of the enum if needed.
9723  for (unsigned i = 0; i != NumElements; ++i) {
9724    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9725    if (!ECD) continue;  // Already issued a diagnostic.
9726
9727    // Standard C says the enumerators have int type, but we allow, as an
9728    // extension, the enumerators to be larger than int size.  If each
9729    // enumerator value fits in an int, type it as an int, otherwise type it the
9730    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9731    // that X has type 'int', not 'unsigned'.
9732
9733    // Determine whether the value fits into an int.
9734    llvm::APSInt InitVal = ECD->getInitVal();
9735
9736    // If it fits into an integer type, force it.  Otherwise force it to match
9737    // the enum decl type.
9738    QualType NewTy;
9739    unsigned NewWidth;
9740    bool NewSign;
9741    if (!getLangOptions().CPlusPlus &&
9742        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9743      NewTy = Context.IntTy;
9744      NewWidth = IntWidth;
9745      NewSign = true;
9746    } else if (ECD->getType() == BestType) {
9747      // Already the right type!
9748      if (getLangOptions().CPlusPlus)
9749        // C++ [dcl.enum]p4: Following the closing brace of an
9750        // enum-specifier, each enumerator has the type of its
9751        // enumeration.
9752        ECD->setType(EnumType);
9753      continue;
9754    } else {
9755      NewTy = BestType;
9756      NewWidth = BestWidth;
9757      NewSign = BestType->isSignedIntegerOrEnumerationType();
9758    }
9759
9760    // Adjust the APSInt value.
9761    InitVal = InitVal.extOrTrunc(NewWidth);
9762    InitVal.setIsSigned(NewSign);
9763    ECD->setInitVal(InitVal);
9764
9765    // Adjust the Expr initializer and type.
9766    if (ECD->getInitExpr() &&
9767        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9768      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9769                                                CK_IntegralCast,
9770                                                ECD->getInitExpr(),
9771                                                /*base paths*/ 0,
9772                                                VK_RValue));
9773    if (getLangOptions().CPlusPlus)
9774      // C++ [dcl.enum]p4: Following the closing brace of an
9775      // enum-specifier, each enumerator has the type of its
9776      // enumeration.
9777      ECD->setType(EnumType);
9778    else
9779      ECD->setType(NewTy);
9780  }
9781
9782  Enum->completeDefinition(BestType, BestPromotionType,
9783                           NumPositiveBits, NumNegativeBits);
9784}
9785
9786Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9787                                  SourceLocation StartLoc,
9788                                  SourceLocation EndLoc) {
9789  StringLiteral *AsmString = cast<StringLiteral>(expr);
9790
9791  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9792                                                   AsmString, StartLoc,
9793                                                   EndLoc);
9794  CurContext->addDecl(New);
9795  return New;
9796}
9797
9798DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9799                                   IdentifierInfo &ModuleName,
9800                                   SourceLocation ModuleNameLoc) {
9801  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9802                                                     ModuleName, ModuleNameLoc);
9803  if (!Module)
9804    return true;
9805
9806  // FIXME: Actually create a declaration to describe the module import.
9807  (void)Module;
9808  return DeclResult((Decl *)0);
9809}
9810
9811void
9812Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9813                                         SourceLocation ModulePrivateKeyword) {
9814  assert(!Old->isModulePrivate() && "Old is module-private!");
9815
9816  Diag(New->getLocation(), diag::err_module_private_follows_public)
9817    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9818  Diag(Old->getLocation(), diag::note_previous_declaration)
9819    << Old->getDeclName();
9820
9821  // Drop the __module_private__ from the new declaration, since it's invalid.
9822  New->setModulePrivate(false);
9823}
9824
9825void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9826                             SourceLocation PragmaLoc,
9827                             SourceLocation NameLoc) {
9828  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9829
9830  if (PrevDecl) {
9831    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9832  } else {
9833    (void)WeakUndeclaredIdentifiers.insert(
9834      std::pair<IdentifierInfo*,WeakInfo>
9835        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9836  }
9837}
9838
9839void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9840                                IdentifierInfo* AliasName,
9841                                SourceLocation PragmaLoc,
9842                                SourceLocation NameLoc,
9843                                SourceLocation AliasNameLoc) {
9844  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9845                                    LookupOrdinaryName);
9846  WeakInfo W = WeakInfo(Name, NameLoc);
9847
9848  if (PrevDecl) {
9849    if (!PrevDecl->hasAttr<AliasAttr>())
9850      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9851        DeclApplyPragmaWeak(TUScope, ND, W);
9852  } else {
9853    (void)WeakUndeclaredIdentifiers.insert(
9854      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9855  }
9856}
9857
9858Decl *Sema::getObjCDeclContext() const {
9859  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9860}
9861
9862AvailabilityResult Sema::getCurContextAvailability() const {
9863  const Decl *D = cast<Decl>(getCurLexicalContext());
9864  // A category implicitly has the availability of the interface.
9865  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9866    D = CatD->getClassInterface();
9867
9868  return D->getAvailability();
9869}
9870