SemaDecl.cpp revision 2c3aa2aeb55fc7d5a15eec89af13a481d290e15a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    Diag(New->getLocation(), diag::err_redefinition_different_kind)
807      << New->getDeclName();
808    Diag(OldD->getLocation(), diag::note_previous_definition);
809    return true;
810  }
811
812  // Determine whether the previous declaration was a definition,
813  // implicit declaration, or a declaration.
814  diag::kind PrevDiag;
815  if (Old->isThisDeclarationADefinition())
816    PrevDiag = diag::note_previous_definition;
817  else if (Old->isImplicit())
818    PrevDiag = diag::note_previous_implicit_declaration;
819  else
820    PrevDiag = diag::note_previous_declaration;
821
822  QualType OldQType = Context.getCanonicalType(Old->getType());
823  QualType NewQType = Context.getCanonicalType(New->getType());
824
825  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
826      New->getStorageClass() == FunctionDecl::Static &&
827      Old->getStorageClass() != FunctionDecl::Static) {
828    Diag(New->getLocation(), diag::err_static_non_static)
829      << New;
830    Diag(Old->getLocation(), PrevDiag);
831    return true;
832  }
833
834  if (getLangOptions().CPlusPlus) {
835    // (C++98 13.1p2):
836    //   Certain function declarations cannot be overloaded:
837    //     -- Function declarations that differ only in the return type
838    //        cannot be overloaded.
839    QualType OldReturnType
840      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
841    QualType NewReturnType
842      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
843    if (OldReturnType != NewReturnType) {
844      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
845      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
846      return true;
847    }
848
849    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
850    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
851    if (OldMethod && NewMethod) {
852      if (!NewMethod->getFriendObjectKind() &&
853          NewMethod->getLexicalDeclContext()->isRecord()) {
854        //    -- Member function declarations with the same name and the
855        //       same parameter types cannot be overloaded if any of them
856        //       is a static member function declaration.
857        if (OldMethod->isStatic() || NewMethod->isStatic()) {
858          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
859          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
860          return true;
861        }
862
863        // C++ [class.mem]p1:
864        //   [...] A member shall not be declared twice in the
865        //   member-specification, except that a nested class or member
866        //   class template can be declared and then later defined.
867        unsigned NewDiag;
868        if (isa<CXXConstructorDecl>(OldMethod))
869          NewDiag = diag::err_constructor_redeclared;
870        else if (isa<CXXDestructorDecl>(NewMethod))
871          NewDiag = diag::err_destructor_redeclared;
872        else if (isa<CXXConversionDecl>(NewMethod))
873          NewDiag = diag::err_conv_function_redeclared;
874        else
875          NewDiag = diag::err_member_redeclared;
876
877        Diag(New->getLocation(), NewDiag);
878        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
879      } else {
880        if (OldMethod->isImplicit()) {
881          Diag(NewMethod->getLocation(),
882               diag::err_definition_of_implicitly_declared_member)
883          << New << getSpecialMember(Context, OldMethod);
884
885          Diag(OldMethod->getLocation(),
886               diag::note_previous_implicit_declaration);
887          return true;
888        }
889      }
890    }
891
892    // (C++98 8.3.5p3):
893    //   All declarations for a function shall agree exactly in both the
894    //   return type and the parameter-type-list.
895    if (OldQType == NewQType)
896      return MergeCompatibleFunctionDecls(New, Old);
897
898    // Fall through for conflicting redeclarations and redefinitions.
899  }
900
901  // C: Function types need to be compatible, not identical. This handles
902  // duplicate function decls like "void f(int); void f(enum X);" properly.
903  if (!getLangOptions().CPlusPlus &&
904      Context.typesAreCompatible(OldQType, NewQType)) {
905    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
906    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
907    const FunctionProtoType *OldProto = 0;
908    if (isa<FunctionNoProtoType>(NewFuncType) &&
909        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
910      // The old declaration provided a function prototype, but the
911      // new declaration does not. Merge in the prototype.
912      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
913      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
914                                                 OldProto->arg_type_end());
915      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
916                                         ParamTypes.data(), ParamTypes.size(),
917                                         OldProto->isVariadic(),
918                                         OldProto->getTypeQuals());
919      New->setType(NewQType);
920      New->setHasInheritedPrototype();
921
922      // Synthesize a parameter for each argument type.
923      llvm::SmallVector<ParmVarDecl*, 16> Params;
924      for (FunctionProtoType::arg_type_iterator
925             ParamType = OldProto->arg_type_begin(),
926             ParamEnd = OldProto->arg_type_end();
927           ParamType != ParamEnd; ++ParamType) {
928        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
929                                                 SourceLocation(), 0,
930                                                 *ParamType, /*TInfo=*/0,
931                                                 VarDecl::None, 0);
932        Param->setImplicit();
933        Params.push_back(Param);
934      }
935
936      New->setParams(Context, Params.data(), Params.size());
937    }
938
939    return MergeCompatibleFunctionDecls(New, Old);
940  }
941
942  // GNU C permits a K&R definition to follow a prototype declaration
943  // if the declared types of the parameters in the K&R definition
944  // match the types in the prototype declaration, even when the
945  // promoted types of the parameters from the K&R definition differ
946  // from the types in the prototype. GCC then keeps the types from
947  // the prototype.
948  //
949  // If a variadic prototype is followed by a non-variadic K&R definition,
950  // the K&R definition becomes variadic.  This is sort of an edge case, but
951  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
952  // C99 6.9.1p8.
953  if (!getLangOptions().CPlusPlus &&
954      Old->hasPrototype() && !New->hasPrototype() &&
955      New->getType()->getAs<FunctionProtoType>() &&
956      Old->getNumParams() == New->getNumParams()) {
957    llvm::SmallVector<QualType, 16> ArgTypes;
958    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
959    const FunctionProtoType *OldProto
960      = Old->getType()->getAs<FunctionProtoType>();
961    const FunctionProtoType *NewProto
962      = New->getType()->getAs<FunctionProtoType>();
963
964    // Determine whether this is the GNU C extension.
965    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
966                                               NewProto->getResultType());
967    bool LooseCompatible = !MergedReturn.isNull();
968    for (unsigned Idx = 0, End = Old->getNumParams();
969         LooseCompatible && Idx != End; ++Idx) {
970      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
971      ParmVarDecl *NewParm = New->getParamDecl(Idx);
972      if (Context.typesAreCompatible(OldParm->getType(),
973                                     NewProto->getArgType(Idx))) {
974        ArgTypes.push_back(NewParm->getType());
975      } else if (Context.typesAreCompatible(OldParm->getType(),
976                                            NewParm->getType())) {
977        GNUCompatibleParamWarning Warn
978          = { OldParm, NewParm, NewProto->getArgType(Idx) };
979        Warnings.push_back(Warn);
980        ArgTypes.push_back(NewParm->getType());
981      } else
982        LooseCompatible = false;
983    }
984
985    if (LooseCompatible) {
986      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
987        Diag(Warnings[Warn].NewParm->getLocation(),
988             diag::ext_param_promoted_not_compatible_with_prototype)
989          << Warnings[Warn].PromotedType
990          << Warnings[Warn].OldParm->getType();
991        Diag(Warnings[Warn].OldParm->getLocation(),
992             diag::note_previous_declaration);
993      }
994
995      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
996                                           ArgTypes.size(),
997                                           OldProto->isVariadic(), 0));
998      return MergeCompatibleFunctionDecls(New, Old);
999    }
1000
1001    // Fall through to diagnose conflicting types.
1002  }
1003
1004  // A function that has already been declared has been redeclared or defined
1005  // with a different type- show appropriate diagnostic
1006  if (unsigned BuiltinID = Old->getBuiltinID()) {
1007    // The user has declared a builtin function with an incompatible
1008    // signature.
1009    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1010      // The function the user is redeclaring is a library-defined
1011      // function like 'malloc' or 'printf'. Warn about the
1012      // redeclaration, then pretend that we don't know about this
1013      // library built-in.
1014      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1015      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1016        << Old << Old->getType();
1017      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1018      Old->setInvalidDecl();
1019      return false;
1020    }
1021
1022    PrevDiag = diag::note_previous_builtin_declaration;
1023  }
1024
1025  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1026  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1027  return true;
1028}
1029
1030/// \brief Completes the merge of two function declarations that are
1031/// known to be compatible.
1032///
1033/// This routine handles the merging of attributes and other
1034/// properties of function declarations form the old declaration to
1035/// the new declaration, once we know that New is in fact a
1036/// redeclaration of Old.
1037///
1038/// \returns false
1039bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1040  // Merge the attributes
1041  MergeAttributes(New, Old, Context);
1042
1043  // Merge the storage class.
1044  if (Old->getStorageClass() != FunctionDecl::Extern &&
1045      Old->getStorageClass() != FunctionDecl::None)
1046    New->setStorageClass(Old->getStorageClass());
1047
1048  // Merge "pure" flag.
1049  if (Old->isPure())
1050    New->setPure();
1051
1052  // Merge the "deleted" flag.
1053  if (Old->isDeleted())
1054    New->setDeleted();
1055
1056  if (getLangOptions().CPlusPlus)
1057    return MergeCXXFunctionDecl(New, Old);
1058
1059  return false;
1060}
1061
1062/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1063/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1064/// situation, merging decls or emitting diagnostics as appropriate.
1065///
1066/// Tentative definition rules (C99 6.9.2p2) are checked by
1067/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1068/// definitions here, since the initializer hasn't been attached.
1069///
1070void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1071  // If the new decl is already invalid, don't do any other checking.
1072  if (New->isInvalidDecl())
1073    return;
1074
1075  // Verify the old decl was also a variable.
1076  VarDecl *Old = 0;
1077  if (!Previous.isSingleResult() ||
1078      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1079    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1080      << New->getDeclName();
1081    Diag(Previous.getRepresentativeDecl()->getLocation(),
1082         diag::note_previous_definition);
1083    return New->setInvalidDecl();
1084  }
1085
1086  MergeAttributes(New, Old, Context);
1087
1088  // Merge the types
1089  QualType MergedT;
1090  if (getLangOptions().CPlusPlus) {
1091    if (Context.hasSameType(New->getType(), Old->getType()))
1092      MergedT = New->getType();
1093    // C++ [basic.link]p10:
1094    //   [...] the types specified by all declarations referring to a given
1095    //   object or function shall be identical, except that declarations for an
1096    //   array object can specify array types that differ by the presence or
1097    //   absence of a major array bound (8.3.4).
1098    else if (Old->getType()->isIncompleteArrayType() &&
1099             New->getType()->isArrayType()) {
1100      CanQual<ArrayType> OldArray
1101        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1102      CanQual<ArrayType> NewArray
1103        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1104      if (OldArray->getElementType() == NewArray->getElementType())
1105        MergedT = New->getType();
1106    } else if (Old->getType()->isArrayType() &&
1107             New->getType()->isIncompleteArrayType()) {
1108      CanQual<ArrayType> OldArray
1109        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1110      CanQual<ArrayType> NewArray
1111        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1112      if (OldArray->getElementType() == NewArray->getElementType())
1113        MergedT = Old->getType();
1114    }
1115  } else {
1116    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1117  }
1118  if (MergedT.isNull()) {
1119    Diag(New->getLocation(), diag::err_redefinition_different_type)
1120      << New->getDeclName();
1121    Diag(Old->getLocation(), diag::note_previous_definition);
1122    return New->setInvalidDecl();
1123  }
1124  New->setType(MergedT);
1125
1126  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1127  if (New->getStorageClass() == VarDecl::Static &&
1128      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1129    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  // C99 6.2.2p4:
1134  //   For an identifier declared with the storage-class specifier
1135  //   extern in a scope in which a prior declaration of that
1136  //   identifier is visible,23) if the prior declaration specifies
1137  //   internal or external linkage, the linkage of the identifier at
1138  //   the later declaration is the same as the linkage specified at
1139  //   the prior declaration. If no prior declaration is visible, or
1140  //   if the prior declaration specifies no linkage, then the
1141  //   identifier has external linkage.
1142  if (New->hasExternalStorage() && Old->hasLinkage())
1143    /* Okay */;
1144  else if (New->getStorageClass() != VarDecl::Static &&
1145           Old->getStorageClass() == VarDecl::Static) {
1146    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1147    Diag(Old->getLocation(), diag::note_previous_definition);
1148    return New->setInvalidDecl();
1149  }
1150
1151  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1152
1153  // FIXME: The test for external storage here seems wrong? We still
1154  // need to check for mismatches.
1155  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1156      // Don't complain about out-of-line definitions of static members.
1157      !(Old->getLexicalDeclContext()->isRecord() &&
1158        !New->getLexicalDeclContext()->isRecord())) {
1159    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1160    Diag(Old->getLocation(), diag::note_previous_definition);
1161    return New->setInvalidDecl();
1162  }
1163
1164  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1165    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1166    Diag(Old->getLocation(), diag::note_previous_definition);
1167  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1168    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170  }
1171
1172  // Keep a chain of previous declarations.
1173  New->setPreviousDeclaration(Old);
1174}
1175
1176/// CheckFallThrough - Check that we don't fall off the end of a
1177/// Statement that should return a value.
1178///
1179/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1180/// MaybeFallThrough iff we might or might not fall off the end,
1181/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1182/// return.  We assume NeverFallThrough iff we never fall off the end of the
1183/// statement but we may return.  We assume that functions not marked noreturn
1184/// will return.
1185Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1186  // FIXME: Eventually share this CFG object when we have other warnings based
1187  // of the CFG.  This can be done using AnalysisContext.
1188  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1189
1190  // FIXME: They should never return 0, fix that, delete this code.
1191  if (cfg == 0)
1192    // FIXME: This should be NeverFallThrough
1193    return NeverFallThroughOrReturn;
1194  // The CFG leaves in dead things, and we don't want to dead code paths to
1195  // confuse us, so we mark all live things first.
1196  std::queue<CFGBlock*> workq;
1197  llvm::BitVector live(cfg->getNumBlockIDs());
1198  // Prep work queue
1199  workq.push(&cfg->getEntry());
1200  // Solve
1201  while (!workq.empty()) {
1202    CFGBlock *item = workq.front();
1203    workq.pop();
1204    live.set(item->getBlockID());
1205    for (CFGBlock::succ_iterator I=item->succ_begin(),
1206           E=item->succ_end();
1207         I != E;
1208         ++I) {
1209      if ((*I) && !live[(*I)->getBlockID()]) {
1210        live.set((*I)->getBlockID());
1211        workq.push(*I);
1212      }
1213    }
1214  }
1215
1216  // Now we know what is live, we check the live precessors of the exit block
1217  // and look for fall through paths, being careful to ignore normal returns,
1218  // and exceptional paths.
1219  bool HasLiveReturn = false;
1220  bool HasFakeEdge = false;
1221  bool HasPlainEdge = false;
1222  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1223         E = cfg->getExit().pred_end();
1224       I != E;
1225       ++I) {
1226    CFGBlock& B = **I;
1227    if (!live[B.getBlockID()])
1228      continue;
1229    if (B.size() == 0) {
1230      // A labeled empty statement, or the entry block...
1231      HasPlainEdge = true;
1232      continue;
1233    }
1234    Stmt *S = B[B.size()-1];
1235    if (isa<ReturnStmt>(S)) {
1236      HasLiveReturn = true;
1237      continue;
1238    }
1239    if (isa<ObjCAtThrowStmt>(S)) {
1240      HasFakeEdge = true;
1241      continue;
1242    }
1243    if (isa<CXXThrowExpr>(S)) {
1244      HasFakeEdge = true;
1245      continue;
1246    }
1247    bool NoReturnEdge = false;
1248    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1249      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1250      if (CEE->getType().getNoReturnAttr()) {
1251        NoReturnEdge = true;
1252        HasFakeEdge = true;
1253      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1254        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1255          if (FD->hasAttr<NoReturnAttr>()) {
1256            NoReturnEdge = true;
1257            HasFakeEdge = true;
1258          }
1259        }
1260      }
1261    }
1262    // FIXME: Add noreturn message sends.
1263    if (NoReturnEdge == false)
1264      HasPlainEdge = true;
1265  }
1266  if (!HasPlainEdge) {
1267    if (HasLiveReturn)
1268      return NeverFallThrough;
1269    return NeverFallThroughOrReturn;
1270  }
1271  if (HasFakeEdge || HasLiveReturn)
1272    return MaybeFallThrough;
1273  // This says AlwaysFallThrough for calls to functions that are not marked
1274  // noreturn, that don't return.  If people would like this warning to be more
1275  // accurate, such functions should be marked as noreturn.
1276  return AlwaysFallThrough;
1277}
1278
1279/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1280/// function that should return a value.  Check that we don't fall off the end
1281/// of a noreturn function.  We assume that functions and blocks not marked
1282/// noreturn will return.
1283void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1284  // FIXME: Would be nice if we had a better way to control cascading errors,
1285  // but for now, avoid them.  The problem is that when Parse sees:
1286  //   int foo() { return a; }
1287  // The return is eaten and the Sema code sees just:
1288  //   int foo() { }
1289  // which this code would then warn about.
1290  if (getDiagnostics().hasErrorOccurred())
1291    return;
1292
1293  bool ReturnsVoid = false;
1294  bool HasNoReturn = false;
1295  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1296    // If the result type of the function is a dependent type, we don't know
1297    // whether it will be void or not, so don't
1298    if (FD->getResultType()->isDependentType())
1299      return;
1300    if (FD->getResultType()->isVoidType())
1301      ReturnsVoid = true;
1302    if (FD->hasAttr<NoReturnAttr>())
1303      HasNoReturn = true;
1304  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1305    if (MD->getResultType()->isVoidType())
1306      ReturnsVoid = true;
1307    if (MD->hasAttr<NoReturnAttr>())
1308      HasNoReturn = true;
1309  }
1310
1311  // Short circuit for compilation speed.
1312  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1313       == Diagnostic::Ignored || ReturnsVoid)
1314      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1315          == Diagnostic::Ignored || !HasNoReturn)
1316      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1317          == Diagnostic::Ignored || !ReturnsVoid))
1318    return;
1319  // FIXME: Function try block
1320  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1321    switch (CheckFallThrough(Body)) {
1322    case MaybeFallThrough:
1323      if (HasNoReturn)
1324        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1325      else if (!ReturnsVoid)
1326        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1327      break;
1328    case AlwaysFallThrough:
1329      if (HasNoReturn)
1330        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1331      else if (!ReturnsVoid)
1332        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1333      break;
1334    case NeverFallThroughOrReturn:
1335      if (ReturnsVoid && !HasNoReturn)
1336        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1337      break;
1338    case NeverFallThrough:
1339      break;
1340    }
1341  }
1342}
1343
1344/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1345/// that should return a value.  Check that we don't fall off the end of a
1346/// noreturn block.  We assume that functions and blocks not marked noreturn
1347/// will return.
1348void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1349  // FIXME: Would be nice if we had a better way to control cascading errors,
1350  // but for now, avoid them.  The problem is that when Parse sees:
1351  //   int foo() { return a; }
1352  // The return is eaten and the Sema code sees just:
1353  //   int foo() { }
1354  // which this code would then warn about.
1355  if (getDiagnostics().hasErrorOccurred())
1356    return;
1357  bool ReturnsVoid = false;
1358  bool HasNoReturn = false;
1359  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1360    if (FT->getResultType()->isVoidType())
1361      ReturnsVoid = true;
1362    if (FT->getNoReturnAttr())
1363      HasNoReturn = true;
1364  }
1365
1366  // Short circuit for compilation speed.
1367  if (ReturnsVoid
1368      && !HasNoReturn
1369      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1370          == Diagnostic::Ignored || !ReturnsVoid))
1371    return;
1372  // FIXME: Funtion try block
1373  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1374    switch (CheckFallThrough(Body)) {
1375    case MaybeFallThrough:
1376      if (HasNoReturn)
1377        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1378      else if (!ReturnsVoid)
1379        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1380      break;
1381    case AlwaysFallThrough:
1382      if (HasNoReturn)
1383        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1384      else if (!ReturnsVoid)
1385        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1386      break;
1387    case NeverFallThroughOrReturn:
1388      if (ReturnsVoid)
1389        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1390      break;
1391    case NeverFallThrough:
1392      break;
1393    }
1394  }
1395}
1396
1397/// CheckParmsForFunctionDef - Check that the parameters of the given
1398/// function are appropriate for the definition of a function. This
1399/// takes care of any checks that cannot be performed on the
1400/// declaration itself, e.g., that the types of each of the function
1401/// parameters are complete.
1402bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1403  bool HasInvalidParm = false;
1404  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1405    ParmVarDecl *Param = FD->getParamDecl(p);
1406
1407    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1408    // function declarator that is part of a function definition of
1409    // that function shall not have incomplete type.
1410    //
1411    // This is also C++ [dcl.fct]p6.
1412    if (!Param->isInvalidDecl() &&
1413        RequireCompleteType(Param->getLocation(), Param->getType(),
1414                               diag::err_typecheck_decl_incomplete_type)) {
1415      Param->setInvalidDecl();
1416      HasInvalidParm = true;
1417    }
1418
1419    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1420    // declaration of each parameter shall include an identifier.
1421    if (Param->getIdentifier() == 0 &&
1422        !Param->isImplicit() &&
1423        !getLangOptions().CPlusPlus)
1424      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1425  }
1426
1427  return HasInvalidParm;
1428}
1429
1430/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1431/// no declarator (e.g. "struct foo;") is parsed.
1432Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1433  // FIXME: Error on auto/register at file scope
1434  // FIXME: Error on inline/virtual/explicit
1435  // FIXME: Error on invalid restrict
1436  // FIXME: Warn on useless __thread
1437  // FIXME: Warn on useless const/volatile
1438  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1439  // FIXME: Warn on useless attributes
1440  Decl *TagD = 0;
1441  TagDecl *Tag = 0;
1442  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1443      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1444      DS.getTypeSpecType() == DeclSpec::TST_union ||
1445      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1446    TagD = static_cast<Decl *>(DS.getTypeRep());
1447
1448    if (!TagD) // We probably had an error
1449      return DeclPtrTy();
1450
1451    // Note that the above type specs guarantee that the
1452    // type rep is a Decl, whereas in many of the others
1453    // it's a Type.
1454    Tag = dyn_cast<TagDecl>(TagD);
1455  }
1456
1457  if (DS.isFriendSpecified()) {
1458    // If we're dealing with a class template decl, assume that the
1459    // template routines are handling it.
1460    if (TagD && isa<ClassTemplateDecl>(TagD))
1461      return DeclPtrTy();
1462    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1463  }
1464
1465  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1466    // If there are attributes in the DeclSpec, apply them to the record.
1467    if (const AttributeList *AL = DS.getAttributes())
1468      ProcessDeclAttributeList(S, Record, AL);
1469
1470    if (!Record->getDeclName() && Record->isDefinition() &&
1471        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1472      if (getLangOptions().CPlusPlus ||
1473          Record->getDeclContext()->isRecord())
1474        return BuildAnonymousStructOrUnion(S, DS, Record);
1475
1476      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1477        << DS.getSourceRange();
1478    }
1479
1480    // Microsoft allows unnamed struct/union fields. Don't complain
1481    // about them.
1482    // FIXME: Should we support Microsoft's extensions in this area?
1483    if (Record->getDeclName() && getLangOptions().Microsoft)
1484      return DeclPtrTy::make(Tag);
1485  }
1486
1487  if (!DS.isMissingDeclaratorOk() &&
1488      DS.getTypeSpecType() != DeclSpec::TST_error) {
1489    // Warn about typedefs of enums without names, since this is an
1490    // extension in both Microsoft an GNU.
1491    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1492        Tag && isa<EnumDecl>(Tag)) {
1493      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1494        << DS.getSourceRange();
1495      return DeclPtrTy::make(Tag);
1496    }
1497
1498    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1499      << DS.getSourceRange();
1500    return DeclPtrTy();
1501  }
1502
1503  return DeclPtrTy::make(Tag);
1504}
1505
1506/// We are trying to introduce the given name into the given context;
1507/// check if there's an existing declaration that can't be overloaded.
1508///
1509/// \return true if this is a forbidden redeclaration
1510bool Sema::CheckRedeclaration(DeclContext *DC,
1511                              DeclarationName Name,
1512                              SourceLocation NameLoc,
1513                              unsigned diagnostic) {
1514  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1515                 ForRedeclaration);
1516  LookupQualifiedName(R, DC);
1517
1518  if (R.empty()) return false;
1519
1520  if (R.getResultKind() == LookupResult::Found &&
1521      isa<TagDecl>(R.getFoundDecl()))
1522    return false;
1523
1524  // Pick a representative declaration.
1525  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1526
1527  Diag(NameLoc, diagnostic) << Name;
1528  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1529
1530  return true;
1531}
1532
1533/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1534/// anonymous struct or union AnonRecord into the owning context Owner
1535/// and scope S. This routine will be invoked just after we realize
1536/// that an unnamed union or struct is actually an anonymous union or
1537/// struct, e.g.,
1538///
1539/// @code
1540/// union {
1541///   int i;
1542///   float f;
1543/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1544///    // f into the surrounding scope.x
1545/// @endcode
1546///
1547/// This routine is recursive, injecting the names of nested anonymous
1548/// structs/unions into the owning context and scope as well.
1549bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1550                                               RecordDecl *AnonRecord) {
1551  unsigned diagKind
1552    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1553                            : diag::err_anonymous_struct_member_redecl;
1554
1555  bool Invalid = false;
1556  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1557                               FEnd = AnonRecord->field_end();
1558       F != FEnd; ++F) {
1559    if ((*F)->getDeclName()) {
1560      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1561                             (*F)->getLocation(), diagKind)) {
1562        // C++ [class.union]p2:
1563        //   The names of the members of an anonymous union shall be
1564        //   distinct from the names of any other entity in the
1565        //   scope in which the anonymous union is declared.
1566        Invalid = true;
1567      } else {
1568        // C++ [class.union]p2:
1569        //   For the purpose of name lookup, after the anonymous union
1570        //   definition, the members of the anonymous union are
1571        //   considered to have been defined in the scope in which the
1572        //   anonymous union is declared.
1573        Owner->makeDeclVisibleInContext(*F);
1574        S->AddDecl(DeclPtrTy::make(*F));
1575        IdResolver.AddDecl(*F);
1576      }
1577    } else if (const RecordType *InnerRecordType
1578                 = (*F)->getType()->getAs<RecordType>()) {
1579      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1580      if (InnerRecord->isAnonymousStructOrUnion())
1581        Invalid = Invalid ||
1582          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1583    }
1584  }
1585
1586  return Invalid;
1587}
1588
1589/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1590/// anonymous structure or union. Anonymous unions are a C++ feature
1591/// (C++ [class.union]) and a GNU C extension; anonymous structures
1592/// are a GNU C and GNU C++ extension.
1593Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1594                                                  RecordDecl *Record) {
1595  DeclContext *Owner = Record->getDeclContext();
1596
1597  // Diagnose whether this anonymous struct/union is an extension.
1598  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1599    Diag(Record->getLocation(), diag::ext_anonymous_union);
1600  else if (!Record->isUnion())
1601    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1602
1603  // C and C++ require different kinds of checks for anonymous
1604  // structs/unions.
1605  bool Invalid = false;
1606  if (getLangOptions().CPlusPlus) {
1607    const char* PrevSpec = 0;
1608    unsigned DiagID;
1609    // C++ [class.union]p3:
1610    //   Anonymous unions declared in a named namespace or in the
1611    //   global namespace shall be declared static.
1612    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1613        (isa<TranslationUnitDecl>(Owner) ||
1614         (isa<NamespaceDecl>(Owner) &&
1615          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1616      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1617      Invalid = true;
1618
1619      // Recover by adding 'static'.
1620      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1621                             PrevSpec, DiagID);
1622    }
1623    // C++ [class.union]p3:
1624    //   A storage class is not allowed in a declaration of an
1625    //   anonymous union in a class scope.
1626    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1627             isa<RecordDecl>(Owner)) {
1628      Diag(DS.getStorageClassSpecLoc(),
1629           diag::err_anonymous_union_with_storage_spec);
1630      Invalid = true;
1631
1632      // Recover by removing the storage specifier.
1633      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1634                             PrevSpec, DiagID);
1635    }
1636
1637    // C++ [class.union]p2:
1638    //   The member-specification of an anonymous union shall only
1639    //   define non-static data members. [Note: nested types and
1640    //   functions cannot be declared within an anonymous union. ]
1641    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1642                                 MemEnd = Record->decls_end();
1643         Mem != MemEnd; ++Mem) {
1644      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1645        // C++ [class.union]p3:
1646        //   An anonymous union shall not have private or protected
1647        //   members (clause 11).
1648        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1649          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1650            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1651          Invalid = true;
1652        }
1653      } else if ((*Mem)->isImplicit()) {
1654        // Any implicit members are fine.
1655      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1656        // This is a type that showed up in an
1657        // elaborated-type-specifier inside the anonymous struct or
1658        // union, but which actually declares a type outside of the
1659        // anonymous struct or union. It's okay.
1660      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1661        if (!MemRecord->isAnonymousStructOrUnion() &&
1662            MemRecord->getDeclName()) {
1663          // This is a nested type declaration.
1664          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1665            << (int)Record->isUnion();
1666          Invalid = true;
1667        }
1668      } else {
1669        // We have something that isn't a non-static data
1670        // member. Complain about it.
1671        unsigned DK = diag::err_anonymous_record_bad_member;
1672        if (isa<TypeDecl>(*Mem))
1673          DK = diag::err_anonymous_record_with_type;
1674        else if (isa<FunctionDecl>(*Mem))
1675          DK = diag::err_anonymous_record_with_function;
1676        else if (isa<VarDecl>(*Mem))
1677          DK = diag::err_anonymous_record_with_static;
1678        Diag((*Mem)->getLocation(), DK)
1679            << (int)Record->isUnion();
1680          Invalid = true;
1681      }
1682    }
1683  }
1684
1685  if (!Record->isUnion() && !Owner->isRecord()) {
1686    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1687      << (int)getLangOptions().CPlusPlus;
1688    Invalid = true;
1689  }
1690
1691  // Mock up a declarator.
1692  Declarator Dc(DS, Declarator::TypeNameContext);
1693  TypeSourceInfo *TInfo = 0;
1694  GetTypeForDeclarator(Dc, S, &TInfo);
1695  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1696
1697  // Create a declaration for this anonymous struct/union.
1698  NamedDecl *Anon = 0;
1699  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1700    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1701                             /*IdentifierInfo=*/0,
1702                             Context.getTypeDeclType(Record),
1703                             TInfo,
1704                             /*BitWidth=*/0, /*Mutable=*/false);
1705    Anon->setAccess(AS_public);
1706    if (getLangOptions().CPlusPlus)
1707      FieldCollector->Add(cast<FieldDecl>(Anon));
1708  } else {
1709    VarDecl::StorageClass SC;
1710    switch (DS.getStorageClassSpec()) {
1711    default: assert(0 && "Unknown storage class!");
1712    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1713    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1714    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1715    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1716    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1717    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1718    case DeclSpec::SCS_mutable:
1719      // mutable can only appear on non-static class members, so it's always
1720      // an error here
1721      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1722      Invalid = true;
1723      SC = VarDecl::None;
1724      break;
1725    }
1726
1727    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1728                           /*IdentifierInfo=*/0,
1729                           Context.getTypeDeclType(Record),
1730                           TInfo,
1731                           SC);
1732  }
1733  Anon->setImplicit();
1734
1735  // Add the anonymous struct/union object to the current
1736  // context. We'll be referencing this object when we refer to one of
1737  // its members.
1738  Owner->addDecl(Anon);
1739
1740  // Inject the members of the anonymous struct/union into the owning
1741  // context and into the identifier resolver chain for name lookup
1742  // purposes.
1743  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1744    Invalid = true;
1745
1746  // Mark this as an anonymous struct/union type. Note that we do not
1747  // do this until after we have already checked and injected the
1748  // members of this anonymous struct/union type, because otherwise
1749  // the members could be injected twice: once by DeclContext when it
1750  // builds its lookup table, and once by
1751  // InjectAnonymousStructOrUnionMembers.
1752  Record->setAnonymousStructOrUnion(true);
1753
1754  if (Invalid)
1755    Anon->setInvalidDecl();
1756
1757  return DeclPtrTy::make(Anon);
1758}
1759
1760
1761/// GetNameForDeclarator - Determine the full declaration name for the
1762/// given Declarator.
1763DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1764  return GetNameFromUnqualifiedId(D.getName());
1765}
1766
1767/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1768DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1769  switch (Name.getKind()) {
1770    case UnqualifiedId::IK_Identifier:
1771      return DeclarationName(Name.Identifier);
1772
1773    case UnqualifiedId::IK_OperatorFunctionId:
1774      return Context.DeclarationNames.getCXXOperatorName(
1775                                              Name.OperatorFunctionId.Operator);
1776
1777    case UnqualifiedId::IK_LiteralOperatorId:
1778      return Context.DeclarationNames.getCXXLiteralOperatorName(
1779                                                               Name.Identifier);
1780
1781    case UnqualifiedId::IK_ConversionFunctionId: {
1782      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1783      if (Ty.isNull())
1784        return DeclarationName();
1785
1786      return Context.DeclarationNames.getCXXConversionFunctionName(
1787                                                  Context.getCanonicalType(Ty));
1788    }
1789
1790    case UnqualifiedId::IK_ConstructorName: {
1791      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1792      if (Ty.isNull())
1793        return DeclarationName();
1794
1795      return Context.DeclarationNames.getCXXConstructorName(
1796                                                  Context.getCanonicalType(Ty));
1797    }
1798
1799    case UnqualifiedId::IK_DestructorName: {
1800      QualType Ty = GetTypeFromParser(Name.DestructorName);
1801      if (Ty.isNull())
1802        return DeclarationName();
1803
1804      return Context.DeclarationNames.getCXXDestructorName(
1805                                                           Context.getCanonicalType(Ty));
1806    }
1807
1808    case UnqualifiedId::IK_TemplateId: {
1809      TemplateName TName
1810        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1811      return Context.getNameForTemplate(TName);
1812    }
1813  }
1814
1815  assert(false && "Unknown name kind");
1816  return DeclarationName();
1817}
1818
1819/// isNearlyMatchingFunction - Determine whether the C++ functions
1820/// Declaration and Definition are "nearly" matching. This heuristic
1821/// is used to improve diagnostics in the case where an out-of-line
1822/// function definition doesn't match any declaration within
1823/// the class or namespace.
1824static bool isNearlyMatchingFunction(ASTContext &Context,
1825                                     FunctionDecl *Declaration,
1826                                     FunctionDecl *Definition) {
1827  if (Declaration->param_size() != Definition->param_size())
1828    return false;
1829  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1830    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1831    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1832
1833    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1834                                        DefParamTy.getNonReferenceType()))
1835      return false;
1836  }
1837
1838  return true;
1839}
1840
1841Sema::DeclPtrTy
1842Sema::HandleDeclarator(Scope *S, Declarator &D,
1843                       MultiTemplateParamsArg TemplateParamLists,
1844                       bool IsFunctionDefinition) {
1845  DeclarationName Name = GetNameForDeclarator(D);
1846
1847  // All of these full declarators require an identifier.  If it doesn't have
1848  // one, the ParsedFreeStandingDeclSpec action should be used.
1849  if (!Name) {
1850    if (!D.isInvalidType())  // Reject this if we think it is valid.
1851      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1852           diag::err_declarator_need_ident)
1853        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1854    return DeclPtrTy();
1855  }
1856
1857  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1858  // we find one that is.
1859  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1860         (S->getFlags() & Scope::TemplateParamScope) != 0)
1861    S = S->getParent();
1862
1863  // If this is an out-of-line definition of a member of a class template
1864  // or class template partial specialization, we may need to rebuild the
1865  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1866  // for more information.
1867  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1868  // handle expressions properly.
1869  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1870  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1871      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1872      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1873       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1874       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1875       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1876    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1877      // FIXME: Preserve type source info.
1878      QualType T = GetTypeFromParser(DS.getTypeRep());
1879      EnterDeclaratorContext(S, DC);
1880      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1881      ExitDeclaratorContext(S);
1882      if (T.isNull())
1883        return DeclPtrTy();
1884      DS.UpdateTypeRep(T.getAsOpaquePtr());
1885    }
1886  }
1887
1888  DeclContext *DC;
1889  NamedDecl *New;
1890
1891  TypeSourceInfo *TInfo = 0;
1892  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1893
1894  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1895                        ForRedeclaration);
1896
1897  // See if this is a redefinition of a variable in the same scope.
1898  if (D.getCXXScopeSpec().isInvalid()) {
1899    DC = CurContext;
1900    D.setInvalidType();
1901  } else if (!D.getCXXScopeSpec().isSet()) {
1902    bool IsLinkageLookup = false;
1903
1904    // If the declaration we're planning to build will be a function
1905    // or object with linkage, then look for another declaration with
1906    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1907    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1908      /* Do nothing*/;
1909    else if (R->isFunctionType()) {
1910      if (CurContext->isFunctionOrMethod() ||
1911          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1912        IsLinkageLookup = true;
1913    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1914      IsLinkageLookup = true;
1915    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1916             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1917      IsLinkageLookup = true;
1918
1919    if (IsLinkageLookup)
1920      Previous.clear(LookupRedeclarationWithLinkage);
1921
1922    DC = CurContext;
1923    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1924  } else { // Something like "int foo::x;"
1925    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1926
1927    if (!DC) {
1928      // If we could not compute the declaration context, it's because the
1929      // declaration context is dependent but does not refer to a class,
1930      // class template, or class template partial specialization. Complain
1931      // and return early, to avoid the coming semantic disaster.
1932      Diag(D.getIdentifierLoc(),
1933           diag::err_template_qualified_declarator_no_match)
1934        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1935        << D.getCXXScopeSpec().getRange();
1936      return DeclPtrTy();
1937    }
1938
1939    if (!DC->isDependentContext() &&
1940        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1941      return DeclPtrTy();
1942
1943    LookupQualifiedName(Previous, DC);
1944
1945    // Don't consider using declarations as previous declarations for
1946    // out-of-line members.
1947    RemoveUsingDecls(Previous);
1948
1949    // C++ 7.3.1.2p2:
1950    // Members (including explicit specializations of templates) of a named
1951    // namespace can also be defined outside that namespace by explicit
1952    // qualification of the name being defined, provided that the entity being
1953    // defined was already declared in the namespace and the definition appears
1954    // after the point of declaration in a namespace that encloses the
1955    // declarations namespace.
1956    //
1957    // Note that we only check the context at this point. We don't yet
1958    // have enough information to make sure that PrevDecl is actually
1959    // the declaration we want to match. For example, given:
1960    //
1961    //   class X {
1962    //     void f();
1963    //     void f(float);
1964    //   };
1965    //
1966    //   void X::f(int) { } // ill-formed
1967    //
1968    // In this case, PrevDecl will point to the overload set
1969    // containing the two f's declared in X, but neither of them
1970    // matches.
1971
1972    // First check whether we named the global scope.
1973    if (isa<TranslationUnitDecl>(DC)) {
1974      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1975        << Name << D.getCXXScopeSpec().getRange();
1976    } else {
1977      DeclContext *Cur = CurContext;
1978      while (isa<LinkageSpecDecl>(Cur))
1979        Cur = Cur->getParent();
1980      if (!Cur->Encloses(DC)) {
1981        // The qualifying scope doesn't enclose the original declaration.
1982        // Emit diagnostic based on current scope.
1983        SourceLocation L = D.getIdentifierLoc();
1984        SourceRange R = D.getCXXScopeSpec().getRange();
1985        if (isa<FunctionDecl>(Cur))
1986          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1987        else
1988          Diag(L, diag::err_invalid_declarator_scope)
1989            << Name << cast<NamedDecl>(DC) << R;
1990        D.setInvalidType();
1991      }
1992    }
1993  }
1994
1995  if (Previous.isSingleResult() &&
1996      Previous.getFoundDecl()->isTemplateParameter()) {
1997    // Maybe we will complain about the shadowed template parameter.
1998    if (!D.isInvalidType())
1999      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2000                                          Previous.getFoundDecl()))
2001        D.setInvalidType();
2002
2003    // Just pretend that we didn't see the previous declaration.
2004    Previous.clear();
2005  }
2006
2007  // In C++, the previous declaration we find might be a tag type
2008  // (class or enum). In this case, the new declaration will hide the
2009  // tag type. Note that this does does not apply if we're declaring a
2010  // typedef (C++ [dcl.typedef]p4).
2011  if (Previous.isSingleTagDecl() &&
2012      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2013    Previous.clear();
2014
2015  bool Redeclaration = false;
2016  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2017    if (TemplateParamLists.size()) {
2018      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2019      return DeclPtrTy();
2020    }
2021
2022    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2023  } else if (R->isFunctionType()) {
2024    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2025                                  move(TemplateParamLists),
2026                                  IsFunctionDefinition, Redeclaration);
2027  } else {
2028    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2029                                  move(TemplateParamLists),
2030                                  Redeclaration);
2031  }
2032
2033  if (New == 0)
2034    return DeclPtrTy();
2035
2036  // If this has an identifier and is not an invalid redeclaration or
2037  // function template specialization, add it to the scope stack.
2038  if (Name && !(Redeclaration && New->isInvalidDecl()))
2039    PushOnScopeChains(New, S);
2040
2041  return DeclPtrTy::make(New);
2042}
2043
2044/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2045/// types into constant array types in certain situations which would otherwise
2046/// be errors (for GCC compatibility).
2047static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2048                                                    ASTContext &Context,
2049                                                    bool &SizeIsNegative) {
2050  // This method tries to turn a variable array into a constant
2051  // array even when the size isn't an ICE.  This is necessary
2052  // for compatibility with code that depends on gcc's buggy
2053  // constant expression folding, like struct {char x[(int)(char*)2];}
2054  SizeIsNegative = false;
2055
2056  QualifierCollector Qs;
2057  const Type *Ty = Qs.strip(T);
2058
2059  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2060    QualType Pointee = PTy->getPointeeType();
2061    QualType FixedType =
2062        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2063    if (FixedType.isNull()) return FixedType;
2064    FixedType = Context.getPointerType(FixedType);
2065    return Qs.apply(FixedType);
2066  }
2067
2068  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2069  if (!VLATy)
2070    return QualType();
2071  // FIXME: We should probably handle this case
2072  if (VLATy->getElementType()->isVariablyModifiedType())
2073    return QualType();
2074
2075  Expr::EvalResult EvalResult;
2076  if (!VLATy->getSizeExpr() ||
2077      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2078      !EvalResult.Val.isInt())
2079    return QualType();
2080
2081  llvm::APSInt &Res = EvalResult.Val.getInt();
2082  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2083    // TODO: preserve the size expression in declarator info
2084    return Context.getConstantArrayType(VLATy->getElementType(),
2085                                        Res, ArrayType::Normal, 0);
2086  }
2087
2088  SizeIsNegative = true;
2089  return QualType();
2090}
2091
2092/// \brief Register the given locally-scoped external C declaration so
2093/// that it can be found later for redeclarations
2094void
2095Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2096                                       const LookupResult &Previous,
2097                                       Scope *S) {
2098  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2099         "Decl is not a locally-scoped decl!");
2100  // Note that we have a locally-scoped external with this name.
2101  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2102
2103  if (!Previous.isSingleResult())
2104    return;
2105
2106  NamedDecl *PrevDecl = Previous.getFoundDecl();
2107
2108  // If there was a previous declaration of this variable, it may be
2109  // in our identifier chain. Update the identifier chain with the new
2110  // declaration.
2111  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2112    // The previous declaration was found on the identifer resolver
2113    // chain, so remove it from its scope.
2114    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2115      S = S->getParent();
2116
2117    if (S)
2118      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2119  }
2120}
2121
2122/// \brief Diagnose function specifiers on a declaration of an identifier that
2123/// does not identify a function.
2124void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2125  // FIXME: We should probably indicate the identifier in question to avoid
2126  // confusion for constructs like "inline int a(), b;"
2127  if (D.getDeclSpec().isInlineSpecified())
2128    Diag(D.getDeclSpec().getInlineSpecLoc(),
2129         diag::err_inline_non_function);
2130
2131  if (D.getDeclSpec().isVirtualSpecified())
2132    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2133         diag::err_virtual_non_function);
2134
2135  if (D.getDeclSpec().isExplicitSpecified())
2136    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2137         diag::err_explicit_non_function);
2138}
2139
2140NamedDecl*
2141Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2142                             QualType R,  TypeSourceInfo *TInfo,
2143                             LookupResult &Previous, bool &Redeclaration) {
2144  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2145  if (D.getCXXScopeSpec().isSet()) {
2146    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2147      << D.getCXXScopeSpec().getRange();
2148    D.setInvalidType();
2149    // Pretend we didn't see the scope specifier.
2150    DC = 0;
2151  }
2152
2153  if (getLangOptions().CPlusPlus) {
2154    // Check that there are no default arguments (C++ only).
2155    CheckExtraCXXDefaultArguments(D);
2156  }
2157
2158  DiagnoseFunctionSpecifiers(D);
2159
2160  if (D.getDeclSpec().isThreadSpecified())
2161    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2162
2163  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2164  if (!NewTD) return 0;
2165
2166  // Handle attributes prior to checking for duplicates in MergeVarDecl
2167  ProcessDeclAttributes(S, NewTD, D);
2168
2169  // Merge the decl with the existing one if appropriate. If the decl is
2170  // in an outer scope, it isn't the same thing.
2171  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2172  if (!Previous.empty()) {
2173    Redeclaration = true;
2174    MergeTypeDefDecl(NewTD, Previous);
2175  }
2176
2177  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2178  // then it shall have block scope.
2179  QualType T = NewTD->getUnderlyingType();
2180  if (T->isVariablyModifiedType()) {
2181    CurFunctionNeedsScopeChecking = true;
2182
2183    if (S->getFnParent() == 0) {
2184      bool SizeIsNegative;
2185      QualType FixedTy =
2186          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2187      if (!FixedTy.isNull()) {
2188        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2189        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2190      } else {
2191        if (SizeIsNegative)
2192          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2193        else if (T->isVariableArrayType())
2194          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2195        else
2196          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2197        NewTD->setInvalidDecl();
2198      }
2199    }
2200  }
2201
2202  // If this is the C FILE type, notify the AST context.
2203  if (IdentifierInfo *II = NewTD->getIdentifier())
2204    if (!NewTD->isInvalidDecl() &&
2205        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2206      if (II->isStr("FILE"))
2207        Context.setFILEDecl(NewTD);
2208      else if (II->isStr("jmp_buf"))
2209        Context.setjmp_bufDecl(NewTD);
2210      else if (II->isStr("sigjmp_buf"))
2211        Context.setsigjmp_bufDecl(NewTD);
2212    }
2213
2214  return NewTD;
2215}
2216
2217/// \brief Determines whether the given declaration is an out-of-scope
2218/// previous declaration.
2219///
2220/// This routine should be invoked when name lookup has found a
2221/// previous declaration (PrevDecl) that is not in the scope where a
2222/// new declaration by the same name is being introduced. If the new
2223/// declaration occurs in a local scope, previous declarations with
2224/// linkage may still be considered previous declarations (C99
2225/// 6.2.2p4-5, C++ [basic.link]p6).
2226///
2227/// \param PrevDecl the previous declaration found by name
2228/// lookup
2229///
2230/// \param DC the context in which the new declaration is being
2231/// declared.
2232///
2233/// \returns true if PrevDecl is an out-of-scope previous declaration
2234/// for a new delcaration with the same name.
2235static bool
2236isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2237                                ASTContext &Context) {
2238  if (!PrevDecl)
2239    return 0;
2240
2241  if (!PrevDecl->hasLinkage())
2242    return false;
2243
2244  if (Context.getLangOptions().CPlusPlus) {
2245    // C++ [basic.link]p6:
2246    //   If there is a visible declaration of an entity with linkage
2247    //   having the same name and type, ignoring entities declared
2248    //   outside the innermost enclosing namespace scope, the block
2249    //   scope declaration declares that same entity and receives the
2250    //   linkage of the previous declaration.
2251    DeclContext *OuterContext = DC->getLookupContext();
2252    if (!OuterContext->isFunctionOrMethod())
2253      // This rule only applies to block-scope declarations.
2254      return false;
2255    else {
2256      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2257      if (PrevOuterContext->isRecord())
2258        // We found a member function: ignore it.
2259        return false;
2260      else {
2261        // Find the innermost enclosing namespace for the new and
2262        // previous declarations.
2263        while (!OuterContext->isFileContext())
2264          OuterContext = OuterContext->getParent();
2265        while (!PrevOuterContext->isFileContext())
2266          PrevOuterContext = PrevOuterContext->getParent();
2267
2268        // The previous declaration is in a different namespace, so it
2269        // isn't the same function.
2270        if (OuterContext->getPrimaryContext() !=
2271            PrevOuterContext->getPrimaryContext())
2272          return false;
2273      }
2274    }
2275  }
2276
2277  return true;
2278}
2279
2280NamedDecl*
2281Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2282                              QualType R, TypeSourceInfo *TInfo,
2283                              LookupResult &Previous,
2284                              MultiTemplateParamsArg TemplateParamLists,
2285                              bool &Redeclaration) {
2286  DeclarationName Name = GetNameForDeclarator(D);
2287
2288  // Check that there are no default arguments (C++ only).
2289  if (getLangOptions().CPlusPlus)
2290    CheckExtraCXXDefaultArguments(D);
2291
2292  VarDecl *NewVD;
2293  VarDecl::StorageClass SC;
2294  switch (D.getDeclSpec().getStorageClassSpec()) {
2295  default: assert(0 && "Unknown storage class!");
2296  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2297  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2298  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2299  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2300  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2301  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2302  case DeclSpec::SCS_mutable:
2303    // mutable can only appear on non-static class members, so it's always
2304    // an error here
2305    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2306    D.setInvalidType();
2307    SC = VarDecl::None;
2308    break;
2309  }
2310
2311  IdentifierInfo *II = Name.getAsIdentifierInfo();
2312  if (!II) {
2313    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2314      << Name.getAsString();
2315    return 0;
2316  }
2317
2318  DiagnoseFunctionSpecifiers(D);
2319
2320  if (!DC->isRecord() && S->getFnParent() == 0) {
2321    // C99 6.9p2: The storage-class specifiers auto and register shall not
2322    // appear in the declaration specifiers in an external declaration.
2323    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2324
2325      // If this is a register variable with an asm label specified, then this
2326      // is a GNU extension.
2327      if (SC == VarDecl::Register && D.getAsmLabel())
2328        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2329      else
2330        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2331      D.setInvalidType();
2332    }
2333  }
2334  if (DC->isRecord() && !CurContext->isRecord()) {
2335    // This is an out-of-line definition of a static data member.
2336    if (SC == VarDecl::Static) {
2337      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2338           diag::err_static_out_of_line)
2339        << CodeModificationHint::CreateRemoval(
2340                                      D.getDeclSpec().getStorageClassSpecLoc());
2341    } else if (SC == VarDecl::None)
2342      SC = VarDecl::Static;
2343  }
2344  if (SC == VarDecl::Static) {
2345    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2346      if (RD->isLocalClass())
2347        Diag(D.getIdentifierLoc(),
2348             diag::err_static_data_member_not_allowed_in_local_class)
2349          << Name << RD->getDeclName();
2350    }
2351  }
2352
2353  // Match up the template parameter lists with the scope specifier, then
2354  // determine whether we have a template or a template specialization.
2355  bool isExplicitSpecialization = false;
2356  if (TemplateParameterList *TemplateParams
2357        = MatchTemplateParametersToScopeSpecifier(
2358                                  D.getDeclSpec().getSourceRange().getBegin(),
2359                                                  D.getCXXScopeSpec(),
2360                        (TemplateParameterList**)TemplateParamLists.get(),
2361                                                   TemplateParamLists.size(),
2362                                                  isExplicitSpecialization)) {
2363    if (TemplateParams->size() > 0) {
2364      // There is no such thing as a variable template.
2365      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2366        << II
2367        << SourceRange(TemplateParams->getTemplateLoc(),
2368                       TemplateParams->getRAngleLoc());
2369      return 0;
2370    } else {
2371      // There is an extraneous 'template<>' for this variable. Complain
2372      // about it, but allow the declaration of the variable.
2373      Diag(TemplateParams->getTemplateLoc(),
2374           diag::err_template_variable_noparams)
2375        << II
2376        << SourceRange(TemplateParams->getTemplateLoc(),
2377                       TemplateParams->getRAngleLoc());
2378
2379      isExplicitSpecialization = true;
2380    }
2381  }
2382
2383  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2384                          II, R, TInfo, SC);
2385
2386  if (D.isInvalidType())
2387    NewVD->setInvalidDecl();
2388
2389  if (D.getDeclSpec().isThreadSpecified()) {
2390    if (NewVD->hasLocalStorage())
2391      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2392    else if (!Context.Target.isTLSSupported())
2393      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2394    else
2395      NewVD->setThreadSpecified(true);
2396  }
2397
2398  // Set the lexical context. If the declarator has a C++ scope specifier, the
2399  // lexical context will be different from the semantic context.
2400  NewVD->setLexicalDeclContext(CurContext);
2401
2402  // Handle attributes prior to checking for duplicates in MergeVarDecl
2403  ProcessDeclAttributes(S, NewVD, D);
2404
2405  // Handle GNU asm-label extension (encoded as an attribute).
2406  if (Expr *E = (Expr*) D.getAsmLabel()) {
2407    // The parser guarantees this is a string.
2408    StringLiteral *SE = cast<StringLiteral>(E);
2409    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2410  }
2411
2412  // Don't consider existing declarations that are in a different
2413  // scope and are out-of-semantic-context declarations (if the new
2414  // declaration has linkage).
2415  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2416
2417  // Merge the decl with the existing one if appropriate.
2418  if (!Previous.empty()) {
2419    if (Previous.isSingleResult() &&
2420        isa<FieldDecl>(Previous.getFoundDecl()) &&
2421        D.getCXXScopeSpec().isSet()) {
2422      // The user tried to define a non-static data member
2423      // out-of-line (C++ [dcl.meaning]p1).
2424      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2425        << D.getCXXScopeSpec().getRange();
2426      Previous.clear();
2427      NewVD->setInvalidDecl();
2428    }
2429  } else if (D.getCXXScopeSpec().isSet()) {
2430    // No previous declaration in the qualifying scope.
2431    Diag(D.getIdentifierLoc(), diag::err_no_member)
2432      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2433      << D.getCXXScopeSpec().getRange();
2434    NewVD->setInvalidDecl();
2435  }
2436
2437  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2438
2439  // This is an explicit specialization of a static data member. Check it.
2440  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2441      CheckMemberSpecialization(NewVD, Previous))
2442    NewVD->setInvalidDecl();
2443
2444  // attributes declared post-definition are currently ignored
2445  if (Previous.isSingleResult()) {
2446    const VarDecl *Def = 0;
2447    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2448    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2449      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2450      Diag(Def->getLocation(), diag::note_previous_definition);
2451    }
2452  }
2453
2454  // If this is a locally-scoped extern C variable, update the map of
2455  // such variables.
2456  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2457      !NewVD->isInvalidDecl())
2458    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2459
2460  return NewVD;
2461}
2462
2463/// \brief Perform semantic checking on a newly-created variable
2464/// declaration.
2465///
2466/// This routine performs all of the type-checking required for a
2467/// variable declaration once it has been built. It is used both to
2468/// check variables after they have been parsed and their declarators
2469/// have been translated into a declaration, and to check variables
2470/// that have been instantiated from a template.
2471///
2472/// Sets NewVD->isInvalidDecl() if an error was encountered.
2473void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2474                                    LookupResult &Previous,
2475                                    bool &Redeclaration) {
2476  // If the decl is already known invalid, don't check it.
2477  if (NewVD->isInvalidDecl())
2478    return;
2479
2480  QualType T = NewVD->getType();
2481
2482  if (T->isObjCInterfaceType()) {
2483    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2484    return NewVD->setInvalidDecl();
2485  }
2486
2487  // Emit an error if an address space was applied to decl with local storage.
2488  // This includes arrays of objects with address space qualifiers, but not
2489  // automatic variables that point to other address spaces.
2490  // ISO/IEC TR 18037 S5.1.2
2491  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2492    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2493    return NewVD->setInvalidDecl();
2494  }
2495
2496  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2497      && !NewVD->hasAttr<BlocksAttr>())
2498    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2499
2500  bool isVM = T->isVariablyModifiedType();
2501  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2502      NewVD->hasAttr<BlocksAttr>())
2503    CurFunctionNeedsScopeChecking = true;
2504
2505  if ((isVM && NewVD->hasLinkage()) ||
2506      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2507    bool SizeIsNegative;
2508    QualType FixedTy =
2509        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2510
2511    if (FixedTy.isNull() && T->isVariableArrayType()) {
2512      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2513      // FIXME: This won't give the correct result for
2514      // int a[10][n];
2515      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2516
2517      if (NewVD->isFileVarDecl())
2518        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2519        << SizeRange;
2520      else if (NewVD->getStorageClass() == VarDecl::Static)
2521        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2522        << SizeRange;
2523      else
2524        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2525        << SizeRange;
2526      return NewVD->setInvalidDecl();
2527    }
2528
2529    if (FixedTy.isNull()) {
2530      if (NewVD->isFileVarDecl())
2531        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2532      else
2533        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2534      return NewVD->setInvalidDecl();
2535    }
2536
2537    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2538    NewVD->setType(FixedTy);
2539  }
2540
2541  if (Previous.empty() && NewVD->isExternC()) {
2542    // Since we did not find anything by this name and we're declaring
2543    // an extern "C" variable, look for a non-visible extern "C"
2544    // declaration with the same name.
2545    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2546      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2547    if (Pos != LocallyScopedExternalDecls.end())
2548      Previous.addDecl(Pos->second);
2549  }
2550
2551  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2552    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2553      << T;
2554    return NewVD->setInvalidDecl();
2555  }
2556
2557  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2558    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2559    return NewVD->setInvalidDecl();
2560  }
2561
2562  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2563    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2564    return NewVD->setInvalidDecl();
2565  }
2566
2567  if (!Previous.empty()) {
2568    Redeclaration = true;
2569    MergeVarDecl(NewVD, Previous);
2570  }
2571}
2572
2573/// \brief Data used with FindOverriddenMethod
2574struct FindOverriddenMethodData {
2575  Sema *S;
2576  CXXMethodDecl *Method;
2577};
2578
2579/// \brief Member lookup function that determines whether a given C++
2580/// method overrides a method in a base class, to be used with
2581/// CXXRecordDecl::lookupInBases().
2582static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2583                                 CXXBasePath &Path,
2584                                 void *UserData) {
2585  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2586
2587  FindOverriddenMethodData *Data
2588    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2589
2590  DeclarationName Name = Data->Method->getDeclName();
2591
2592  // FIXME: Do we care about other names here too?
2593  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2594    // We really want to find the base class constructor here.
2595    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2596    CanQualType CT = Data->S->Context.getCanonicalType(T);
2597
2598    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2599  }
2600
2601  for (Path.Decls = BaseRecord->lookup(Name);
2602       Path.Decls.first != Path.Decls.second;
2603       ++Path.Decls.first) {
2604    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2605      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2606        return true;
2607    }
2608  }
2609
2610  return false;
2611}
2612
2613/// AddOverriddenMethods - See if a method overrides any in the base classes,
2614/// and if so, check that it's a valid override and remember it.
2615void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2616  // Look for virtual methods in base classes that this method might override.
2617  CXXBasePaths Paths;
2618  FindOverriddenMethodData Data;
2619  Data.Method = MD;
2620  Data.S = this;
2621  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2622    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2623         E = Paths.found_decls_end(); I != E; ++I) {
2624      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2625        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2626            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2627            !CheckOverridingFunctionAttributes(MD, OldMD))
2628          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2629      }
2630    }
2631  }
2632}
2633
2634NamedDecl*
2635Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2636                              QualType R, TypeSourceInfo *TInfo,
2637                              LookupResult &Previous,
2638                              MultiTemplateParamsArg TemplateParamLists,
2639                              bool IsFunctionDefinition, bool &Redeclaration) {
2640  assert(R.getTypePtr()->isFunctionType());
2641
2642  DeclarationName Name = GetNameForDeclarator(D);
2643  FunctionDecl::StorageClass SC = FunctionDecl::None;
2644  switch (D.getDeclSpec().getStorageClassSpec()) {
2645  default: assert(0 && "Unknown storage class!");
2646  case DeclSpec::SCS_auto:
2647  case DeclSpec::SCS_register:
2648  case DeclSpec::SCS_mutable:
2649    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2650         diag::err_typecheck_sclass_func);
2651    D.setInvalidType();
2652    break;
2653  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2654  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2655  case DeclSpec::SCS_static: {
2656    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2657      // C99 6.7.1p5:
2658      //   The declaration of an identifier for a function that has
2659      //   block scope shall have no explicit storage-class specifier
2660      //   other than extern
2661      // See also (C++ [dcl.stc]p4).
2662      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2663           diag::err_static_block_func);
2664      SC = FunctionDecl::None;
2665    } else
2666      SC = FunctionDecl::Static;
2667    break;
2668  }
2669  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2670  }
2671
2672  if (D.getDeclSpec().isThreadSpecified())
2673    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2674
2675  bool isFriend = D.getDeclSpec().isFriendSpecified();
2676  bool isInline = D.getDeclSpec().isInlineSpecified();
2677  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2678  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2679
2680  // Check that the return type is not an abstract class type.
2681  // For record types, this is done by the AbstractClassUsageDiagnoser once
2682  // the class has been completely parsed.
2683  if (!DC->isRecord() &&
2684      RequireNonAbstractType(D.getIdentifierLoc(),
2685                             R->getAs<FunctionType>()->getResultType(),
2686                             diag::err_abstract_type_in_decl,
2687                             AbstractReturnType))
2688    D.setInvalidType();
2689
2690  // Do not allow returning a objc interface by-value.
2691  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2692    Diag(D.getIdentifierLoc(),
2693         diag::err_object_cannot_be_passed_returned_by_value) << 0
2694      << R->getAs<FunctionType>()->getResultType();
2695    D.setInvalidType();
2696  }
2697
2698  bool isVirtualOkay = false;
2699  FunctionDecl *NewFD;
2700
2701  if (isFriend) {
2702    // C++ [class.friend]p5
2703    //   A function can be defined in a friend declaration of a
2704    //   class . . . . Such a function is implicitly inline.
2705    isInline |= IsFunctionDefinition;
2706  }
2707
2708  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2709    // This is a C++ constructor declaration.
2710    assert(DC->isRecord() &&
2711           "Constructors can only be declared in a member context");
2712
2713    R = CheckConstructorDeclarator(D, R, SC);
2714
2715    // Create the new declaration
2716    NewFD = CXXConstructorDecl::Create(Context,
2717                                       cast<CXXRecordDecl>(DC),
2718                                       D.getIdentifierLoc(), Name, R, TInfo,
2719                                       isExplicit, isInline,
2720                                       /*isImplicitlyDeclared=*/false);
2721  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2722    // This is a C++ destructor declaration.
2723    if (DC->isRecord()) {
2724      R = CheckDestructorDeclarator(D, SC);
2725
2726      NewFD = CXXDestructorDecl::Create(Context,
2727                                        cast<CXXRecordDecl>(DC),
2728                                        D.getIdentifierLoc(), Name, R,
2729                                        isInline,
2730                                        /*isImplicitlyDeclared=*/false);
2731
2732      isVirtualOkay = true;
2733    } else {
2734      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2735
2736      // Create a FunctionDecl to satisfy the function definition parsing
2737      // code path.
2738      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2739                                   Name, R, TInfo, SC, isInline,
2740                                   /*hasPrototype=*/true);
2741      D.setInvalidType();
2742    }
2743  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2744    if (!DC->isRecord()) {
2745      Diag(D.getIdentifierLoc(),
2746           diag::err_conv_function_not_member);
2747      return 0;
2748    }
2749
2750    CheckConversionDeclarator(D, R, SC);
2751    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2752                                      D.getIdentifierLoc(), Name, R, TInfo,
2753                                      isInline, isExplicit);
2754
2755    isVirtualOkay = true;
2756  } else if (DC->isRecord()) {
2757    // If the of the function is the same as the name of the record, then this
2758    // must be an invalid constructor that has a return type.
2759    // (The parser checks for a return type and makes the declarator a
2760    // constructor if it has no return type).
2761    // must have an invalid constructor that has a return type
2762    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2763      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2764        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2765        << SourceRange(D.getIdentifierLoc());
2766      return 0;
2767    }
2768
2769    bool isStatic = SC == FunctionDecl::Static;
2770
2771    // [class.free]p1:
2772    // Any allocation function for a class T is a static member
2773    // (even if not explicitly declared static).
2774    if (Name.getCXXOverloadedOperator() == OO_New ||
2775        Name.getCXXOverloadedOperator() == OO_Array_New)
2776      isStatic = true;
2777
2778    // [class.free]p6 Any deallocation function for a class X is a static member
2779    // (even if not explicitly declared static).
2780    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2781        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2782      isStatic = true;
2783
2784    // This is a C++ method declaration.
2785    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2786                                  D.getIdentifierLoc(), Name, R, TInfo,
2787                                  isStatic, isInline);
2788
2789    isVirtualOkay = !isStatic;
2790  } else {
2791    // Determine whether the function was written with a
2792    // prototype. This true when:
2793    //   - we're in C++ (where every function has a prototype),
2794    //   - there is a prototype in the declarator, or
2795    //   - the type R of the function is some kind of typedef or other reference
2796    //     to a type name (which eventually refers to a function type).
2797    bool HasPrototype =
2798       getLangOptions().CPlusPlus ||
2799       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2800       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2801
2802    NewFD = FunctionDecl::Create(Context, DC,
2803                                 D.getIdentifierLoc(),
2804                                 Name, R, TInfo, SC, isInline, HasPrototype);
2805  }
2806
2807  if (D.isInvalidType())
2808    NewFD->setInvalidDecl();
2809
2810  // Set the lexical context. If the declarator has a C++
2811  // scope specifier, or is the object of a friend declaration, the
2812  // lexical context will be different from the semantic context.
2813  NewFD->setLexicalDeclContext(CurContext);
2814
2815  // Match up the template parameter lists with the scope specifier, then
2816  // determine whether we have a template or a template specialization.
2817  FunctionTemplateDecl *FunctionTemplate = 0;
2818  bool isExplicitSpecialization = false;
2819  bool isFunctionTemplateSpecialization = false;
2820  if (TemplateParameterList *TemplateParams
2821        = MatchTemplateParametersToScopeSpecifier(
2822                                  D.getDeclSpec().getSourceRange().getBegin(),
2823                                  D.getCXXScopeSpec(),
2824                           (TemplateParameterList**)TemplateParamLists.get(),
2825                                                  TemplateParamLists.size(),
2826                                                  isExplicitSpecialization)) {
2827    if (TemplateParams->size() > 0) {
2828      // This is a function template
2829
2830      // Check that we can declare a template here.
2831      if (CheckTemplateDeclScope(S, TemplateParams))
2832        return 0;
2833
2834      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2835                                                      NewFD->getLocation(),
2836                                                      Name, TemplateParams,
2837                                                      NewFD);
2838      FunctionTemplate->setLexicalDeclContext(CurContext);
2839      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2840    } else {
2841      // This is a function template specialization.
2842      isFunctionTemplateSpecialization = true;
2843    }
2844
2845    // FIXME: Free this memory properly.
2846    TemplateParamLists.release();
2847  }
2848
2849  // C++ [dcl.fct.spec]p5:
2850  //   The virtual specifier shall only be used in declarations of
2851  //   nonstatic class member functions that appear within a
2852  //   member-specification of a class declaration; see 10.3.
2853  //
2854  if (isVirtual && !NewFD->isInvalidDecl()) {
2855    if (!isVirtualOkay) {
2856       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2857           diag::err_virtual_non_function);
2858    } else if (!CurContext->isRecord()) {
2859      // 'virtual' was specified outside of the class.
2860      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2861        << CodeModificationHint::CreateRemoval(
2862                                           D.getDeclSpec().getVirtualSpecLoc());
2863    } else {
2864      // Okay: Add virtual to the method.
2865      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2866      CurClass->setMethodAsVirtual(NewFD);
2867    }
2868  }
2869
2870  // Filter out previous declarations that don't match the scope.
2871  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2872
2873  if (isFriend) {
2874    // DC is the namespace in which the function is being declared.
2875    assert((DC->isFileContext() || !Previous.empty()) &&
2876           "previously-undeclared friend function being created "
2877           "in a non-namespace context");
2878
2879    if (FunctionTemplate) {
2880      FunctionTemplate->setObjectOfFriendDecl(
2881                                   /* PreviouslyDeclared= */ !Previous.empty());
2882      FunctionTemplate->setAccess(AS_public);
2883    }
2884    else
2885      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2886
2887    NewFD->setAccess(AS_public);
2888  }
2889
2890  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2891      !CurContext->isRecord()) {
2892    // C++ [class.static]p1:
2893    //   A data or function member of a class may be declared static
2894    //   in a class definition, in which case it is a static member of
2895    //   the class.
2896
2897    // Complain about the 'static' specifier if it's on an out-of-line
2898    // member function definition.
2899    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2900         diag::err_static_out_of_line)
2901      << CodeModificationHint::CreateRemoval(
2902                                      D.getDeclSpec().getStorageClassSpecLoc());
2903  }
2904
2905  // Handle GNU asm-label extension (encoded as an attribute).
2906  if (Expr *E = (Expr*) D.getAsmLabel()) {
2907    // The parser guarantees this is a string.
2908    StringLiteral *SE = cast<StringLiteral>(E);
2909    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2910  }
2911
2912  // Copy the parameter declarations from the declarator D to the function
2913  // declaration NewFD, if they are available.  First scavenge them into Params.
2914  llvm::SmallVector<ParmVarDecl*, 16> Params;
2915  if (D.getNumTypeObjects() > 0) {
2916    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2917
2918    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2919    // function that takes no arguments, not a function that takes a
2920    // single void argument.
2921    // We let through "const void" here because Sema::GetTypeForDeclarator
2922    // already checks for that case.
2923    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2924        FTI.ArgInfo[0].Param &&
2925        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2926      // Empty arg list, don't push any params.
2927      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2928
2929      // In C++, the empty parameter-type-list must be spelled "void"; a
2930      // typedef of void is not permitted.
2931      if (getLangOptions().CPlusPlus &&
2932          Param->getType().getUnqualifiedType() != Context.VoidTy)
2933        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2934      // FIXME: Leaks decl?
2935    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2936      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2937        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2938        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2939        Param->setDeclContext(NewFD);
2940        Params.push_back(Param);
2941      }
2942    }
2943
2944  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2945    // When we're declaring a function with a typedef, typeof, etc as in the
2946    // following example, we'll need to synthesize (unnamed)
2947    // parameters for use in the declaration.
2948    //
2949    // @code
2950    // typedef void fn(int);
2951    // fn f;
2952    // @endcode
2953
2954    // Synthesize a parameter for each argument type.
2955    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2956         AE = FT->arg_type_end(); AI != AE; ++AI) {
2957      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2958                                               SourceLocation(), 0,
2959                                               *AI, /*TInfo=*/0,
2960                                               VarDecl::None, 0);
2961      Param->setImplicit();
2962      Params.push_back(Param);
2963    }
2964  } else {
2965    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2966           "Should not need args for typedef of non-prototype fn");
2967  }
2968  // Finally, we know we have the right number of parameters, install them.
2969  NewFD->setParams(Context, Params.data(), Params.size());
2970
2971  // If the declarator is a template-id, translate the parser's template
2972  // argument list into our AST format.
2973  bool HasExplicitTemplateArgs = false;
2974  TemplateArgumentListInfo TemplateArgs;
2975  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2976    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2977    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2978    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2979    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2980                                       TemplateId->getTemplateArgs(),
2981                                       TemplateId->NumArgs);
2982    translateTemplateArguments(TemplateArgsPtr,
2983                               TemplateArgs);
2984    TemplateArgsPtr.release();
2985
2986    HasExplicitTemplateArgs = true;
2987
2988    if (FunctionTemplate) {
2989      // FIXME: Diagnose function template with explicit template
2990      // arguments.
2991      HasExplicitTemplateArgs = false;
2992    } else if (!isFunctionTemplateSpecialization &&
2993               !D.getDeclSpec().isFriendSpecified()) {
2994      // We have encountered something that the user meant to be a
2995      // specialization (because it has explicitly-specified template
2996      // arguments) but that was not introduced with a "template<>" (or had
2997      // too few of them).
2998      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2999        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3000        << CodeModificationHint::CreateInsertion(
3001                                   D.getDeclSpec().getSourceRange().getBegin(),
3002                                                 "template<> ");
3003      isFunctionTemplateSpecialization = true;
3004    }
3005  }
3006
3007  if (isFunctionTemplateSpecialization) {
3008      if (CheckFunctionTemplateSpecialization(NewFD,
3009                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3010                                              Previous))
3011        NewFD->setInvalidDecl();
3012  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3013             CheckMemberSpecialization(NewFD, Previous))
3014    NewFD->setInvalidDecl();
3015
3016  // Perform semantic checking on the function declaration.
3017  bool OverloadableAttrRequired = false; // FIXME: HACK!
3018  CheckFunctionDeclaration(NewFD, Previous, isExplicitSpecialization,
3019                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3020
3021  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3022          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3023         "previous declaration set still overloaded");
3024
3025  // If we have a function template, check the template parameter
3026  // list. This will check and merge default template arguments.
3027  if (FunctionTemplate) {
3028    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3029    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3030                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3031             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3032                                                : TPC_FunctionTemplate);
3033  }
3034
3035  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3036    // An out-of-line member function declaration must also be a
3037    // definition (C++ [dcl.meaning]p1).
3038    // Note that this is not the case for explicit specializations of
3039    // function templates or member functions of class templates, per
3040    // C++ [temp.expl.spec]p2.
3041    if (!IsFunctionDefinition && !isFriend &&
3042        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3043      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3044        << D.getCXXScopeSpec().getRange();
3045      NewFD->setInvalidDecl();
3046    } else if (!Redeclaration) {
3047      // The user tried to provide an out-of-line definition for a
3048      // function that is a member of a class or namespace, but there
3049      // was no such member function declared (C++ [class.mfct]p2,
3050      // C++ [namespace.memdef]p2). For example:
3051      //
3052      // class X {
3053      //   void f() const;
3054      // };
3055      //
3056      // void X::f() { } // ill-formed
3057      //
3058      // Complain about this problem, and attempt to suggest close
3059      // matches (e.g., those that differ only in cv-qualifiers and
3060      // whether the parameter types are references).
3061      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3062        << Name << DC << D.getCXXScopeSpec().getRange();
3063      NewFD->setInvalidDecl();
3064
3065      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3066                        ForRedeclaration);
3067      LookupQualifiedName(Prev, DC);
3068      assert(!Prev.isAmbiguous() &&
3069             "Cannot have an ambiguity in previous-declaration lookup");
3070      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3071           Func != FuncEnd; ++Func) {
3072        if (isa<FunctionDecl>(*Func) &&
3073            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3074          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3075      }
3076    }
3077  }
3078
3079  // Handle attributes. We need to have merged decls when handling attributes
3080  // (for example to check for conflicts, etc).
3081  // FIXME: This needs to happen before we merge declarations. Then,
3082  // let attribute merging cope with attribute conflicts.
3083  ProcessDeclAttributes(S, NewFD, D);
3084
3085  // attributes declared post-definition are currently ignored
3086  if (Redeclaration && Previous.isSingleResult()) {
3087    const FunctionDecl *Def;
3088    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3089    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3090      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3091      Diag(Def->getLocation(), diag::note_previous_definition);
3092    }
3093  }
3094
3095  AddKnownFunctionAttributes(NewFD);
3096
3097  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3098    // If a function name is overloadable in C, then every function
3099    // with that name must be marked "overloadable".
3100    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3101      << Redeclaration << NewFD;
3102    if (!Previous.empty())
3103      Diag(Previous.getRepresentativeDecl()->getLocation(),
3104           diag::note_attribute_overloadable_prev_overload);
3105    NewFD->addAttr(::new (Context) OverloadableAttr());
3106  }
3107
3108  // If this is a locally-scoped extern C function, update the
3109  // map of such names.
3110  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3111      && !NewFD->isInvalidDecl())
3112    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3113
3114  // Set this FunctionDecl's range up to the right paren.
3115  NewFD->setLocEnd(D.getSourceRange().getEnd());
3116
3117  if (FunctionTemplate && NewFD->isInvalidDecl())
3118    FunctionTemplate->setInvalidDecl();
3119
3120  if (FunctionTemplate)
3121    return FunctionTemplate;
3122
3123  return NewFD;
3124}
3125
3126/// \brief Perform semantic checking of a new function declaration.
3127///
3128/// Performs semantic analysis of the new function declaration
3129/// NewFD. This routine performs all semantic checking that does not
3130/// require the actual declarator involved in the declaration, and is
3131/// used both for the declaration of functions as they are parsed
3132/// (called via ActOnDeclarator) and for the declaration of functions
3133/// that have been instantiated via C++ template instantiation (called
3134/// via InstantiateDecl).
3135///
3136/// \param IsExplicitSpecialiation whether this new function declaration is
3137/// an explicit specialization of the previous declaration.
3138///
3139/// This sets NewFD->isInvalidDecl() to true if there was an error.
3140void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD,
3141                                    LookupResult &Previous,
3142                                    bool IsExplicitSpecialization,
3143                                    bool &Redeclaration,
3144                                    bool &OverloadableAttrRequired) {
3145  // If NewFD is already known erroneous, don't do any of this checking.
3146  if (NewFD->isInvalidDecl())
3147    return;
3148
3149  if (NewFD->getResultType()->isVariablyModifiedType()) {
3150    // Functions returning a variably modified type violate C99 6.7.5.2p2
3151    // because all functions have linkage.
3152    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3153    return NewFD->setInvalidDecl();
3154  }
3155
3156  if (NewFD->isMain())
3157    CheckMain(NewFD);
3158
3159  // Check for a previous declaration of this name.
3160  if (Previous.empty() && NewFD->isExternC()) {
3161    // Since we did not find anything by this name and we're declaring
3162    // an extern "C" function, look for a non-visible extern "C"
3163    // declaration with the same name.
3164    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3165      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3166    if (Pos != LocallyScopedExternalDecls.end())
3167      Previous.addDecl(Pos->second);
3168  }
3169
3170  // Merge or overload the declaration with an existing declaration of
3171  // the same name, if appropriate.
3172  if (!Previous.empty()) {
3173    // Determine whether NewFD is an overload of PrevDecl or
3174    // a declaration that requires merging. If it's an overload,
3175    // there's no more work to do here; we'll just add the new
3176    // function to the scope.
3177
3178    NamedDecl *OldDecl = 0;
3179    if (!AllowOverloadingOfFunction(Previous, Context)) {
3180      Redeclaration = true;
3181      OldDecl = Previous.getFoundDecl();
3182    } else {
3183      if (!getLangOptions().CPlusPlus) {
3184        OverloadableAttrRequired = true;
3185
3186        // Functions marked "overloadable" must have a prototype (that
3187        // we can't get through declaration merging).
3188        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3189          Diag(NewFD->getLocation(),
3190               diag::err_attribute_overloadable_no_prototype)
3191            << NewFD;
3192          Redeclaration = true;
3193
3194          // Turn this into a variadic function with no parameters.
3195          QualType R = Context.getFunctionType(
3196                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3197                     0, 0, true, 0);
3198          NewFD->setType(R);
3199          return NewFD->setInvalidDecl();
3200        }
3201      }
3202
3203      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3204      case Ovl_Match:
3205        // FIXME: hide or conflict with using shadow decls as appropriate
3206        Redeclaration = !isa<UsingShadowDecl>(OldDecl);
3207        break;
3208
3209      case Ovl_NonFunction:
3210        Redeclaration = true;
3211        break;
3212
3213      case Ovl_Overload:
3214        Redeclaration = false;
3215        break;
3216      }
3217    }
3218
3219    if (Redeclaration) {
3220      // NewFD and OldDecl represent declarations that need to be
3221      // merged.
3222      if (MergeFunctionDecl(NewFD, OldDecl))
3223        return NewFD->setInvalidDecl();
3224
3225      Previous.clear();
3226      Previous.addDecl(OldDecl);
3227
3228      if (FunctionTemplateDecl *OldTemplateDecl
3229                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3230        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3231        FunctionTemplateDecl *NewTemplateDecl
3232          = NewFD->getDescribedFunctionTemplate();
3233        assert(NewTemplateDecl && "Template/non-template mismatch");
3234        if (CXXMethodDecl *Method
3235              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3236          Method->setAccess(OldTemplateDecl->getAccess());
3237          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3238        }
3239
3240        // If this is an explicit specialization of a member that is a function
3241        // template, mark it as a member specialization.
3242        if (IsExplicitSpecialization &&
3243            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3244          NewTemplateDecl->setMemberSpecialization();
3245          assert(OldTemplateDecl->isMemberSpecialization());
3246        }
3247      } else {
3248        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3249          NewFD->setAccess(OldDecl->getAccess());
3250        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3251      }
3252    }
3253  }
3254
3255  // Semantic checking for this function declaration (in isolation).
3256  if (getLangOptions().CPlusPlus) {
3257    // C++-specific checks.
3258    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3259      CheckConstructor(Constructor);
3260    } else if (CXXDestructorDecl *Destructor =
3261                dyn_cast<CXXDestructorDecl>(NewFD)) {
3262      CXXRecordDecl *Record = Destructor->getParent();
3263      QualType ClassType = Context.getTypeDeclType(Record);
3264
3265      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3266      // type is dependent? Both gcc and edg can handle that.
3267      if (!ClassType->isDependentType()) {
3268        DeclarationName Name
3269          = Context.DeclarationNames.getCXXDestructorName(
3270                                        Context.getCanonicalType(ClassType));
3271        if (NewFD->getDeclName() != Name) {
3272          Diag(NewFD->getLocation(), diag::err_destructor_name);
3273          return NewFD->setInvalidDecl();
3274        }
3275      }
3276
3277      Record->setUserDeclaredDestructor(true);
3278      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3279      // user-defined destructor.
3280      Record->setPOD(false);
3281
3282      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3283      // declared destructor.
3284      // FIXME: C++0x: don't do this for "= default" destructors
3285      Record->setHasTrivialDestructor(false);
3286    } else if (CXXConversionDecl *Conversion
3287               = dyn_cast<CXXConversionDecl>(NewFD)) {
3288      ActOnConversionDeclarator(Conversion);
3289    }
3290
3291    // Find any virtual functions that this function overrides.
3292    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3293      if (!Method->isFunctionTemplateSpecialization() &&
3294          !Method->getDescribedFunctionTemplate())
3295        AddOverriddenMethods(Method->getParent(), Method);
3296    }
3297
3298    // Additional checks for the destructor; make sure we do this after we
3299    // figure out whether the destructor is virtual.
3300    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3301      if (!Destructor->getParent()->isDependentType())
3302        CheckDestructor(Destructor);
3303
3304    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3305    if (NewFD->isOverloadedOperator() &&
3306        CheckOverloadedOperatorDeclaration(NewFD))
3307      return NewFD->setInvalidDecl();
3308
3309    // In C++, check default arguments now that we have merged decls. Unless
3310    // the lexical context is the class, because in this case this is done
3311    // during delayed parsing anyway.
3312    if (!CurContext->isRecord())
3313      CheckCXXDefaultArguments(NewFD);
3314  }
3315}
3316
3317void Sema::CheckMain(FunctionDecl* FD) {
3318  // C++ [basic.start.main]p3:  A program that declares main to be inline
3319  //   or static is ill-formed.
3320  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3321  //   shall not appear in a declaration of main.
3322  // static main is not an error under C99, but we should warn about it.
3323  bool isInline = FD->isInlineSpecified();
3324  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3325  if (isInline || isStatic) {
3326    unsigned diagID = diag::warn_unusual_main_decl;
3327    if (isInline || getLangOptions().CPlusPlus)
3328      diagID = diag::err_unusual_main_decl;
3329
3330    int which = isStatic + (isInline << 1) - 1;
3331    Diag(FD->getLocation(), diagID) << which;
3332  }
3333
3334  QualType T = FD->getType();
3335  assert(T->isFunctionType() && "function decl is not of function type");
3336  const FunctionType* FT = T->getAs<FunctionType>();
3337
3338  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3339    // TODO: add a replacement fixit to turn the return type into 'int'.
3340    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3341    FD->setInvalidDecl(true);
3342  }
3343
3344  // Treat protoless main() as nullary.
3345  if (isa<FunctionNoProtoType>(FT)) return;
3346
3347  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3348  unsigned nparams = FTP->getNumArgs();
3349  assert(FD->getNumParams() == nparams);
3350
3351  if (nparams > 3) {
3352    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3353    FD->setInvalidDecl(true);
3354    nparams = 3;
3355  }
3356
3357  // FIXME: a lot of the following diagnostics would be improved
3358  // if we had some location information about types.
3359
3360  QualType CharPP =
3361    Context.getPointerType(Context.getPointerType(Context.CharTy));
3362  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3363
3364  for (unsigned i = 0; i < nparams; ++i) {
3365    QualType AT = FTP->getArgType(i);
3366
3367    bool mismatch = true;
3368
3369    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3370      mismatch = false;
3371    else if (Expected[i] == CharPP) {
3372      // As an extension, the following forms are okay:
3373      //   char const **
3374      //   char const * const *
3375      //   char * const *
3376
3377      QualifierCollector qs;
3378      const PointerType* PT;
3379      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3380          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3381          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3382        qs.removeConst();
3383        mismatch = !qs.empty();
3384      }
3385    }
3386
3387    if (mismatch) {
3388      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3389      // TODO: suggest replacing given type with expected type
3390      FD->setInvalidDecl(true);
3391    }
3392  }
3393
3394  if (nparams == 1 && !FD->isInvalidDecl()) {
3395    Diag(FD->getLocation(), diag::warn_main_one_arg);
3396  }
3397}
3398
3399bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3400  // FIXME: Need strict checking.  In C89, we need to check for
3401  // any assignment, increment, decrement, function-calls, or
3402  // commas outside of a sizeof.  In C99, it's the same list,
3403  // except that the aforementioned are allowed in unevaluated
3404  // expressions.  Everything else falls under the
3405  // "may accept other forms of constant expressions" exception.
3406  // (We never end up here for C++, so the constant expression
3407  // rules there don't matter.)
3408  if (Init->isConstantInitializer(Context))
3409    return false;
3410  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3411    << Init->getSourceRange();
3412  return true;
3413}
3414
3415void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3416  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3417}
3418
3419/// AddInitializerToDecl - Adds the initializer Init to the
3420/// declaration dcl. If DirectInit is true, this is C++ direct
3421/// initialization rather than copy initialization.
3422void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3423  Decl *RealDecl = dcl.getAs<Decl>();
3424  // If there is no declaration, there was an error parsing it.  Just ignore
3425  // the initializer.
3426  if (RealDecl == 0)
3427    return;
3428
3429  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3430    // With declarators parsed the way they are, the parser cannot
3431    // distinguish between a normal initializer and a pure-specifier.
3432    // Thus this grotesque test.
3433    IntegerLiteral *IL;
3434    Expr *Init = static_cast<Expr *>(init.get());
3435    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3436        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3437      CheckPureMethod(Method, Init->getSourceRange());
3438    else {
3439      Diag(Method->getLocation(), diag::err_member_function_initialization)
3440        << Method->getDeclName() << Init->getSourceRange();
3441      Method->setInvalidDecl();
3442    }
3443    return;
3444  }
3445
3446  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3447  if (!VDecl) {
3448    if (getLangOptions().CPlusPlus &&
3449        RealDecl->getLexicalDeclContext()->isRecord() &&
3450        isa<NamedDecl>(RealDecl))
3451      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3452        << cast<NamedDecl>(RealDecl)->getDeclName();
3453    else
3454      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3455    RealDecl->setInvalidDecl();
3456    return;
3457  }
3458
3459  // A definition must end up with a complete type, which means it must be
3460  // complete with the restriction that an array type might be completed by the
3461  // initializer; note that later code assumes this restriction.
3462  QualType BaseDeclType = VDecl->getType();
3463  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3464    BaseDeclType = Array->getElementType();
3465  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3466                          diag::err_typecheck_decl_incomplete_type)) {
3467    RealDecl->setInvalidDecl();
3468    return;
3469  }
3470
3471  // The variable can not have an abstract class type.
3472  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3473                             diag::err_abstract_type_in_decl,
3474                             AbstractVariableType))
3475    VDecl->setInvalidDecl();
3476
3477  const VarDecl *Def = 0;
3478  if (VDecl->getDefinition(Def)) {
3479    Diag(VDecl->getLocation(), diag::err_redefinition)
3480      << VDecl->getDeclName();
3481    Diag(Def->getLocation(), diag::note_previous_definition);
3482    VDecl->setInvalidDecl();
3483    return;
3484  }
3485
3486  // Take ownership of the expression, now that we're sure we have somewhere
3487  // to put it.
3488  Expr *Init = init.takeAs<Expr>();
3489  assert(Init && "missing initializer");
3490
3491  // Get the decls type and save a reference for later, since
3492  // CheckInitializerTypes may change it.
3493  QualType DclT = VDecl->getType(), SavT = DclT;
3494  if (VDecl->isBlockVarDecl()) {
3495    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3496      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3497      VDecl->setInvalidDecl();
3498    } else if (!VDecl->isInvalidDecl()) {
3499      if (VDecl->getType()->isReferenceType()) {
3500        InitializedEntity Entity
3501          = InitializedEntity::InitializeVariable(VDecl);
3502
3503        // FIXME: Poor source location information.
3504        InitializationKind Kind
3505          = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3506                                                         SourceLocation(),
3507                                                         SourceLocation())
3508                      : InitializationKind::CreateCopy(VDecl->getLocation(),
3509                                                       SourceLocation());
3510        InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3511        if (InitSeq) {
3512          OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3513                                      MultiExprArg(*this, (void**)&Init, 1));
3514          if (Result.isInvalid()) {
3515            VDecl->setInvalidDecl();
3516            return;
3517          }
3518
3519          Init = Result.takeAs<Expr>();
3520        } else {
3521          InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3522          VDecl->setInvalidDecl();
3523          return;
3524        }
3525
3526      } else if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3527                                       VDecl->getDeclName(), DirectInit))
3528        VDecl->setInvalidDecl();
3529
3530      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3531      // Don't check invalid declarations to avoid emitting useless diagnostics.
3532      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3533        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3534          CheckForConstantInitializer(Init, DclT);
3535      }
3536    }
3537  } else if (VDecl->isStaticDataMember() &&
3538             VDecl->getLexicalDeclContext()->isRecord()) {
3539    // This is an in-class initialization for a static data member, e.g.,
3540    //
3541    // struct S {
3542    //   static const int value = 17;
3543    // };
3544
3545    // Attach the initializer
3546    VDecl->setInit(Context, Init);
3547
3548    // C++ [class.mem]p4:
3549    //   A member-declarator can contain a constant-initializer only
3550    //   if it declares a static member (9.4) of const integral or
3551    //   const enumeration type, see 9.4.2.
3552    QualType T = VDecl->getType();
3553    if (!T->isDependentType() &&
3554        (!Context.getCanonicalType(T).isConstQualified() ||
3555         !T->isIntegralType())) {
3556      Diag(VDecl->getLocation(), diag::err_member_initialization)
3557        << VDecl->getDeclName() << Init->getSourceRange();
3558      VDecl->setInvalidDecl();
3559    } else {
3560      // C++ [class.static.data]p4:
3561      //   If a static data member is of const integral or const
3562      //   enumeration type, its declaration in the class definition
3563      //   can specify a constant-initializer which shall be an
3564      //   integral constant expression (5.19).
3565      if (!Init->isTypeDependent() &&
3566          !Init->getType()->isIntegralType()) {
3567        // We have a non-dependent, non-integral or enumeration type.
3568        Diag(Init->getSourceRange().getBegin(),
3569             diag::err_in_class_initializer_non_integral_type)
3570          << Init->getType() << Init->getSourceRange();
3571        VDecl->setInvalidDecl();
3572      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3573        // Check whether the expression is a constant expression.
3574        llvm::APSInt Value;
3575        SourceLocation Loc;
3576        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3577          Diag(Loc, diag::err_in_class_initializer_non_constant)
3578            << Init->getSourceRange();
3579          VDecl->setInvalidDecl();
3580        } else if (!VDecl->getType()->isDependentType())
3581          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3582      }
3583    }
3584  } else if (VDecl->isFileVarDecl()) {
3585    if (VDecl->getStorageClass() == VarDecl::Extern)
3586      Diag(VDecl->getLocation(), diag::warn_extern_init);
3587    if (!VDecl->isInvalidDecl())
3588      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3589                                VDecl->getDeclName(), DirectInit))
3590        VDecl->setInvalidDecl();
3591
3592    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3593    // Don't check invalid declarations to avoid emitting useless diagnostics.
3594    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3595      // C99 6.7.8p4. All file scoped initializers need to be constant.
3596      CheckForConstantInitializer(Init, DclT);
3597    }
3598  }
3599  // If the type changed, it means we had an incomplete type that was
3600  // completed by the initializer. For example:
3601  //   int ary[] = { 1, 3, 5 };
3602  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3603  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3604    VDecl->setType(DclT);
3605    Init->setType(DclT);
3606  }
3607
3608  Init = MaybeCreateCXXExprWithTemporaries(Init,
3609                                           /*ShouldDestroyTemporaries=*/true);
3610  // Attach the initializer to the decl.
3611  VDecl->setInit(Context, Init);
3612
3613  // If the previous declaration of VDecl was a tentative definition,
3614  // remove it from the set of tentative definitions.
3615  if (VDecl->getPreviousDeclaration() &&
3616      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3617    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3618    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3619  }
3620
3621  return;
3622}
3623
3624void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3625                                  bool TypeContainsUndeducedAuto) {
3626  Decl *RealDecl = dcl.getAs<Decl>();
3627
3628  // If there is no declaration, there was an error parsing it. Just ignore it.
3629  if (RealDecl == 0)
3630    return;
3631
3632  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3633    QualType Type = Var->getType();
3634
3635    // Record tentative definitions.
3636    if (Var->isTentativeDefinition(Context)) {
3637      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3638        InsertPair =
3639           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3640
3641      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3642      // want the second one in the map.
3643      InsertPair.first->second = Var;
3644
3645      // However, for the list, we don't care about the order, just make sure
3646      // that there are no dupes for a given declaration name.
3647      if (InsertPair.second)
3648        TentativeDefinitionList.push_back(Var->getDeclName());
3649    }
3650
3651    // C++ [dcl.init.ref]p3:
3652    //   The initializer can be omitted for a reference only in a
3653    //   parameter declaration (8.3.5), in the declaration of a
3654    //   function return type, in the declaration of a class member
3655    //   within its class declaration (9.2), and where the extern
3656    //   specifier is explicitly used.
3657    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3658      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3659        << Var->getDeclName()
3660        << SourceRange(Var->getLocation(), Var->getLocation());
3661      Var->setInvalidDecl();
3662      return;
3663    }
3664
3665    // C++0x [dcl.spec.auto]p3
3666    if (TypeContainsUndeducedAuto) {
3667      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3668        << Var->getDeclName() << Type;
3669      Var->setInvalidDecl();
3670      return;
3671    }
3672
3673    // An array without size is an incomplete type, and there are no special
3674    // rules in C++ to make such a definition acceptable.
3675    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3676        !Var->hasExternalStorage()) {
3677      Diag(Var->getLocation(),
3678           diag::err_typecheck_incomplete_array_needs_initializer);
3679      Var->setInvalidDecl();
3680      return;
3681    }
3682
3683    // C++ [temp.expl.spec]p15:
3684    //   An explicit specialization of a static data member of a template is a
3685    //   definition if the declaration includes an initializer; otherwise, it
3686    //   is a declaration.
3687    if (Var->isStaticDataMember() &&
3688        Var->getInstantiatedFromStaticDataMember() &&
3689        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3690      return;
3691
3692    // C++ [dcl.init]p9:
3693    //   If no initializer is specified for an object, and the object
3694    //   is of (possibly cv-qualified) non-POD class type (or array
3695    //   thereof), the object shall be default-initialized; if the
3696    //   object is of const-qualified type, the underlying class type
3697    //   shall have a user-declared default constructor.
3698    //
3699    // FIXME: Diagnose the "user-declared default constructor" bit.
3700    if (getLangOptions().CPlusPlus) {
3701      QualType InitType = Type;
3702      if (const ArrayType *Array = Context.getAsArrayType(Type))
3703        InitType = Context.getBaseElementType(Array);
3704      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3705          InitType->isRecordType() && !InitType->isDependentType()) {
3706        if (!RequireCompleteType(Var->getLocation(), InitType,
3707                                 diag::err_invalid_incomplete_type_use)) {
3708          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3709
3710          CXXConstructorDecl *Constructor
3711            = PerformInitializationByConstructor(InitType,
3712                                                 MultiExprArg(*this, 0, 0),
3713                                                 Var->getLocation(),
3714                                               SourceRange(Var->getLocation(),
3715                                                           Var->getLocation()),
3716                                                 Var->getDeclName(),
3717                         InitializationKind::CreateDefault(Var->getLocation()),
3718                                                 ConstructorArgs);
3719
3720          // FIXME: Location info for the variable initialization?
3721          if (!Constructor)
3722            Var->setInvalidDecl();
3723          else {
3724            // FIXME: Cope with initialization of arrays
3725            if (!Constructor->isTrivial() &&
3726                InitializeVarWithConstructor(Var, Constructor,
3727                                             move_arg(ConstructorArgs)))
3728              Var->setInvalidDecl();
3729
3730            FinalizeVarWithDestructor(Var, InitType);
3731          }
3732        } else {
3733          Var->setInvalidDecl();
3734        }
3735      }
3736
3737      // The variable can not have an abstract class type.
3738      if (RequireNonAbstractType(Var->getLocation(), Type,
3739                                 diag::err_abstract_type_in_decl,
3740                                 AbstractVariableType))
3741        Var->setInvalidDecl();
3742    }
3743
3744#if 0
3745    // FIXME: Temporarily disabled because we are not properly parsing
3746    // linkage specifications on declarations, e.g.,
3747    //
3748    //   extern "C" const CGPoint CGPointerZero;
3749    //
3750    // C++ [dcl.init]p9:
3751    //
3752    //     If no initializer is specified for an object, and the
3753    //     object is of (possibly cv-qualified) non-POD class type (or
3754    //     array thereof), the object shall be default-initialized; if
3755    //     the object is of const-qualified type, the underlying class
3756    //     type shall have a user-declared default
3757    //     constructor. Otherwise, if no initializer is specified for
3758    //     an object, the object and its subobjects, if any, have an
3759    //     indeterminate initial value; if the object or any of its
3760    //     subobjects are of const-qualified type, the program is
3761    //     ill-formed.
3762    //
3763    // This isn't technically an error in C, so we don't diagnose it.
3764    //
3765    // FIXME: Actually perform the POD/user-defined default
3766    // constructor check.
3767    if (getLangOptions().CPlusPlus &&
3768        Context.getCanonicalType(Type).isConstQualified() &&
3769        !Var->hasExternalStorage())
3770      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3771        << Var->getName()
3772        << SourceRange(Var->getLocation(), Var->getLocation());
3773#endif
3774  }
3775}
3776
3777Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3778                                                   DeclPtrTy *Group,
3779                                                   unsigned NumDecls) {
3780  llvm::SmallVector<Decl*, 8> Decls;
3781
3782  if (DS.isTypeSpecOwned())
3783    Decls.push_back((Decl*)DS.getTypeRep());
3784
3785  for (unsigned i = 0; i != NumDecls; ++i)
3786    if (Decl *D = Group[i].getAs<Decl>())
3787      Decls.push_back(D);
3788
3789  // Perform semantic analysis that depends on having fully processed both
3790  // the declarator and initializer.
3791  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3792    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3793    if (!IDecl)
3794      continue;
3795    QualType T = IDecl->getType();
3796
3797    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3798    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3799    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3800      if (T->isDependentType()) {
3801        // If T is dependent, we should not require a complete type.
3802        // (RequireCompleteType shouldn't be called with dependent types.)
3803        // But we still can at least check if we've got an array of unspecified
3804        // size without an initializer.
3805        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3806            !IDecl->getInit()) {
3807          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3808            << T;
3809          IDecl->setInvalidDecl();
3810        }
3811      } else if (!IDecl->isInvalidDecl()) {
3812        // If T is an incomplete array type with an initializer list that is
3813        // dependent on something, its size has not been fixed. We could attempt
3814        // to fix the size for such arrays, but we would still have to check
3815        // here for initializers containing a C++0x vararg expansion, e.g.
3816        // template <typename... Args> void f(Args... args) {
3817        //   int vals[] = { args };
3818        // }
3819        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3820        Expr *Init = IDecl->getInit();
3821        if (IAT && Init &&
3822            (Init->isTypeDependent() || Init->isValueDependent())) {
3823          // Check that the member type of the array is complete, at least.
3824          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3825                                  diag::err_typecheck_decl_incomplete_type))
3826            IDecl->setInvalidDecl();
3827        } else if (RequireCompleteType(IDecl->getLocation(), T,
3828                                      diag::err_typecheck_decl_incomplete_type))
3829          IDecl->setInvalidDecl();
3830      }
3831    }
3832    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3833    // object that has file scope without an initializer, and without a
3834    // storage-class specifier or with the storage-class specifier "static",
3835    // constitutes a tentative definition. Note: A tentative definition with
3836    // external linkage is valid (C99 6.2.2p5).
3837    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3838      if (const IncompleteArrayType *ArrayT
3839          = Context.getAsIncompleteArrayType(T)) {
3840        if (RequireCompleteType(IDecl->getLocation(),
3841                                ArrayT->getElementType(),
3842                                diag::err_illegal_decl_array_incomplete_type))
3843          IDecl->setInvalidDecl();
3844      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3845        // C99 6.9.2p3: If the declaration of an identifier for an object is
3846        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3847        // declared type shall not be an incomplete type.
3848        // NOTE: code such as the following
3849        //     static struct s;
3850        //     struct s { int a; };
3851        // is accepted by gcc. Hence here we issue a warning instead of
3852        // an error and we do not invalidate the static declaration.
3853        // NOTE: to avoid multiple warnings, only check the first declaration.
3854        if (IDecl->getPreviousDeclaration() == 0)
3855          RequireCompleteType(IDecl->getLocation(), T,
3856                              diag::ext_typecheck_decl_incomplete_type);
3857      }
3858    }
3859  }
3860  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3861                                                   Decls.data(), Decls.size()));
3862}
3863
3864
3865/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3866/// to introduce parameters into function prototype scope.
3867Sema::DeclPtrTy
3868Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3869  const DeclSpec &DS = D.getDeclSpec();
3870
3871  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3872  VarDecl::StorageClass StorageClass = VarDecl::None;
3873  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3874    StorageClass = VarDecl::Register;
3875  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3876    Diag(DS.getStorageClassSpecLoc(),
3877         diag::err_invalid_storage_class_in_func_decl);
3878    D.getMutableDeclSpec().ClearStorageClassSpecs();
3879  }
3880
3881  if (D.getDeclSpec().isThreadSpecified())
3882    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3883
3884  DiagnoseFunctionSpecifiers(D);
3885
3886  // Check that there are no default arguments inside the type of this
3887  // parameter (C++ only).
3888  if (getLangOptions().CPlusPlus)
3889    CheckExtraCXXDefaultArguments(D);
3890
3891  TypeSourceInfo *TInfo = 0;
3892  TagDecl *OwnedDecl = 0;
3893  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3894
3895  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3896    // C++ [dcl.fct]p6:
3897    //   Types shall not be defined in return or parameter types.
3898    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3899      << Context.getTypeDeclType(OwnedDecl);
3900  }
3901
3902  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3903  // Can this happen for params?  We already checked that they don't conflict
3904  // among each other.  Here they can only shadow globals, which is ok.
3905  IdentifierInfo *II = D.getIdentifier();
3906  if (II) {
3907    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3908      if (PrevDecl->isTemplateParameter()) {
3909        // Maybe we will complain about the shadowed template parameter.
3910        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3911        // Just pretend that we didn't see the previous declaration.
3912        PrevDecl = 0;
3913      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3914        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3915
3916        // Recover by removing the name
3917        II = 0;
3918        D.SetIdentifier(0, D.getIdentifierLoc());
3919      }
3920    }
3921  }
3922
3923  // Parameters can not be abstract class types.
3924  // For record types, this is done by the AbstractClassUsageDiagnoser once
3925  // the class has been completely parsed.
3926  if (!CurContext->isRecord() &&
3927      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3928                             diag::err_abstract_type_in_decl,
3929                             AbstractParamType))
3930    D.setInvalidType(true);
3931
3932  QualType T = adjustParameterType(parmDeclType);
3933
3934  ParmVarDecl *New
3935    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3936                          T, TInfo, StorageClass, 0);
3937
3938  if (D.isInvalidType())
3939    New->setInvalidDecl();
3940
3941  // Parameter declarators cannot be interface types. All ObjC objects are
3942  // passed by reference.
3943  if (T->isObjCInterfaceType()) {
3944    Diag(D.getIdentifierLoc(),
3945         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3946    New->setInvalidDecl();
3947  }
3948
3949  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3950  if (D.getCXXScopeSpec().isSet()) {
3951    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3952      << D.getCXXScopeSpec().getRange();
3953    New->setInvalidDecl();
3954  }
3955
3956  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3957  // duration shall not be qualified by an address-space qualifier."
3958  // Since all parameters have automatic store duration, they can not have
3959  // an address space.
3960  if (T.getAddressSpace() != 0) {
3961    Diag(D.getIdentifierLoc(),
3962         diag::err_arg_with_address_space);
3963    New->setInvalidDecl();
3964  }
3965
3966
3967  // Add the parameter declaration into this scope.
3968  S->AddDecl(DeclPtrTy::make(New));
3969  if (II)
3970    IdResolver.AddDecl(New);
3971
3972  ProcessDeclAttributes(S, New, D);
3973
3974  if (New->hasAttr<BlocksAttr>()) {
3975    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3976  }
3977  return DeclPtrTy::make(New);
3978}
3979
3980void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3981                                           SourceLocation LocAfterDecls) {
3982  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3983         "Not a function declarator!");
3984  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3985
3986  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3987  // for a K&R function.
3988  if (!FTI.hasPrototype) {
3989    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3990      --i;
3991      if (FTI.ArgInfo[i].Param == 0) {
3992        llvm::SmallString<256> Code;
3993        llvm::raw_svector_ostream(Code) << "  int "
3994                                        << FTI.ArgInfo[i].Ident->getName()
3995                                        << ";\n";
3996        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3997          << FTI.ArgInfo[i].Ident
3998          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3999
4000        // Implicitly declare the argument as type 'int' for lack of a better
4001        // type.
4002        DeclSpec DS;
4003        const char* PrevSpec; // unused
4004        unsigned DiagID; // unused
4005        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4006                           PrevSpec, DiagID);
4007        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4008        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4009        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4010      }
4011    }
4012  }
4013}
4014
4015Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4016                                              Declarator &D) {
4017  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4018  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4019         "Not a function declarator!");
4020  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4021
4022  if (FTI.hasPrototype) {
4023    // FIXME: Diagnose arguments without names in C.
4024  }
4025
4026  Scope *ParentScope = FnBodyScope->getParent();
4027
4028  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4029                                  MultiTemplateParamsArg(*this),
4030                                  /*IsFunctionDefinition=*/true);
4031  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4032}
4033
4034static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4035  // Don't warn about invalid declarations.
4036  if (FD->isInvalidDecl())
4037    return false;
4038
4039  // Or declarations that aren't global.
4040  if (!FD->isGlobal())
4041    return false;
4042
4043  // Don't warn about C++ member functions.
4044  if (isa<CXXMethodDecl>(FD))
4045    return false;
4046
4047  // Don't warn about 'main'.
4048  if (FD->isMain())
4049    return false;
4050
4051  // Don't warn about inline functions.
4052  if (FD->isInlineSpecified())
4053    return false;
4054
4055  // Don't warn about function templates.
4056  if (FD->getDescribedFunctionTemplate())
4057    return false;
4058
4059  // Don't warn about function template specializations.
4060  if (FD->isFunctionTemplateSpecialization())
4061    return false;
4062
4063  bool MissingPrototype = true;
4064  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4065       Prev; Prev = Prev->getPreviousDeclaration()) {
4066    // Ignore any declarations that occur in function or method
4067    // scope, because they aren't visible from the header.
4068    if (Prev->getDeclContext()->isFunctionOrMethod())
4069      continue;
4070
4071    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4072    break;
4073  }
4074
4075  return MissingPrototype;
4076}
4077
4078Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4079  // Clear the last template instantiation error context.
4080  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4081
4082  if (!D)
4083    return D;
4084  FunctionDecl *FD = 0;
4085
4086  if (FunctionTemplateDecl *FunTmpl
4087        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4088    FD = FunTmpl->getTemplatedDecl();
4089  else
4090    FD = cast<FunctionDecl>(D.getAs<Decl>());
4091
4092  CurFunctionNeedsScopeChecking = false;
4093
4094  // See if this is a redefinition.
4095  const FunctionDecl *Definition;
4096  if (FD->getBody(Definition)) {
4097    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4098    Diag(Definition->getLocation(), diag::note_previous_definition);
4099  }
4100
4101  // Builtin functions cannot be defined.
4102  if (unsigned BuiltinID = FD->getBuiltinID()) {
4103    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4104      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4105      FD->setInvalidDecl();
4106    }
4107  }
4108
4109  // The return type of a function definition must be complete
4110  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4111  QualType ResultType = FD->getResultType();
4112  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4113      !FD->isInvalidDecl() &&
4114      RequireCompleteType(FD->getLocation(), ResultType,
4115                          diag::err_func_def_incomplete_result))
4116    FD->setInvalidDecl();
4117
4118  // GNU warning -Wmissing-prototypes:
4119  //   Warn if a global function is defined without a previous
4120  //   prototype declaration. This warning is issued even if the
4121  //   definition itself provides a prototype. The aim is to detect
4122  //   global functions that fail to be declared in header files.
4123  if (ShouldWarnAboutMissingPrototype(FD))
4124    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4125
4126  if (FnBodyScope)
4127    PushDeclContext(FnBodyScope, FD);
4128
4129  // Check the validity of our function parameters
4130  CheckParmsForFunctionDef(FD);
4131
4132  // Introduce our parameters into the function scope
4133  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4134    ParmVarDecl *Param = FD->getParamDecl(p);
4135    Param->setOwningFunction(FD);
4136
4137    // If this has an identifier, add it to the scope stack.
4138    if (Param->getIdentifier() && FnBodyScope)
4139      PushOnScopeChains(Param, FnBodyScope);
4140  }
4141
4142  // Checking attributes of current function definition
4143  // dllimport attribute.
4144  if (FD->getAttr<DLLImportAttr>() &&
4145      (!FD->getAttr<DLLExportAttr>())) {
4146    // dllimport attribute cannot be applied to definition.
4147    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4148      Diag(FD->getLocation(),
4149           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4150        << "dllimport";
4151      FD->setInvalidDecl();
4152      return DeclPtrTy::make(FD);
4153    } else {
4154      // If a symbol previously declared dllimport is later defined, the
4155      // attribute is ignored in subsequent references, and a warning is
4156      // emitted.
4157      Diag(FD->getLocation(),
4158           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4159        << FD->getNameAsCString() << "dllimport";
4160    }
4161  }
4162  return DeclPtrTy::make(FD);
4163}
4164
4165Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4166  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4167}
4168
4169Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4170                                              bool IsInstantiation) {
4171  Decl *dcl = D.getAs<Decl>();
4172  Stmt *Body = BodyArg.takeAs<Stmt>();
4173
4174  FunctionDecl *FD = 0;
4175  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4176  if (FunTmpl)
4177    FD = FunTmpl->getTemplatedDecl();
4178  else
4179    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4180
4181  if (FD) {
4182    FD->setBody(Body);
4183    if (FD->isMain())
4184      // C and C++ allow for main to automagically return 0.
4185      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4186      FD->setHasImplicitReturnZero(true);
4187    else
4188      CheckFallThroughForFunctionDef(FD, Body);
4189
4190    if (!FD->isInvalidDecl())
4191      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4192
4193    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4194      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4195
4196    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4197  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4198    assert(MD == getCurMethodDecl() && "Method parsing confused");
4199    MD->setBody(Body);
4200    CheckFallThroughForFunctionDef(MD, Body);
4201    MD->setEndLoc(Body->getLocEnd());
4202
4203    if (!MD->isInvalidDecl())
4204      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4205  } else {
4206    Body->Destroy(Context);
4207    return DeclPtrTy();
4208  }
4209  if (!IsInstantiation)
4210    PopDeclContext();
4211
4212  // Verify and clean out per-function state.
4213
4214  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4215
4216  // Check goto/label use.
4217  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4218       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4219    LabelStmt *L = I->second;
4220
4221    // Verify that we have no forward references left.  If so, there was a goto
4222    // or address of a label taken, but no definition of it.  Label fwd
4223    // definitions are indicated with a null substmt.
4224    if (L->getSubStmt() != 0)
4225      continue;
4226
4227    // Emit error.
4228    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4229
4230    // At this point, we have gotos that use the bogus label.  Stitch it into
4231    // the function body so that they aren't leaked and that the AST is well
4232    // formed.
4233    if (Body == 0) {
4234      // The whole function wasn't parsed correctly, just delete this.
4235      L->Destroy(Context);
4236      continue;
4237    }
4238
4239    // Otherwise, the body is valid: we want to stitch the label decl into the
4240    // function somewhere so that it is properly owned and so that the goto
4241    // has a valid target.  Do this by creating a new compound stmt with the
4242    // label in it.
4243
4244    // Give the label a sub-statement.
4245    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4246
4247    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4248                               cast<CXXTryStmt>(Body)->getTryBlock() :
4249                               cast<CompoundStmt>(Body);
4250    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4251    Elements.push_back(L);
4252    Compound->setStmts(Context, &Elements[0], Elements.size());
4253  }
4254  FunctionLabelMap.clear();
4255
4256  if (!Body) return D;
4257
4258  // Verify that that gotos and switch cases don't jump into scopes illegally.
4259  if (CurFunctionNeedsScopeChecking)
4260    DiagnoseInvalidJumps(Body);
4261
4262  // C++ constructors that have function-try-blocks can't have return
4263  // statements in the handlers of that block. (C++ [except.handle]p14)
4264  // Verify this.
4265  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4266    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4267
4268  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4269    MarkBaseAndMemberDestructorsReferenced(Destructor);
4270
4271  // If any errors have occurred, clear out any temporaries that may have
4272  // been leftover. This ensures that these temporaries won't be picked up for
4273  // deletion in some later function.
4274  if (PP.getDiagnostics().hasErrorOccurred())
4275    ExprTemporaries.clear();
4276
4277  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4278  return D;
4279}
4280
4281/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4282/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4283NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4284                                          IdentifierInfo &II, Scope *S) {
4285  // Before we produce a declaration for an implicitly defined
4286  // function, see whether there was a locally-scoped declaration of
4287  // this name as a function or variable. If so, use that
4288  // (non-visible) declaration, and complain about it.
4289  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4290    = LocallyScopedExternalDecls.find(&II);
4291  if (Pos != LocallyScopedExternalDecls.end()) {
4292    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4293    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4294    return Pos->second;
4295  }
4296
4297  // Extension in C99.  Legal in C90, but warn about it.
4298  if (II.getName().startswith("__builtin_"))
4299    Diag(Loc, diag::warn_builtin_unknown) << &II;
4300  else if (getLangOptions().C99)
4301    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4302  else
4303    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4304
4305  // Set a Declarator for the implicit definition: int foo();
4306  const char *Dummy;
4307  DeclSpec DS;
4308  unsigned DiagID;
4309  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4310  Error = Error; // Silence warning.
4311  assert(!Error && "Error setting up implicit decl!");
4312  Declarator D(DS, Declarator::BlockContext);
4313  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4314                                             0, 0, false, SourceLocation(),
4315                                             false, 0,0,0, Loc, Loc, D),
4316                SourceLocation());
4317  D.SetIdentifier(&II, Loc);
4318
4319  // Insert this function into translation-unit scope.
4320
4321  DeclContext *PrevDC = CurContext;
4322  CurContext = Context.getTranslationUnitDecl();
4323
4324  FunctionDecl *FD =
4325 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4326  FD->setImplicit();
4327
4328  CurContext = PrevDC;
4329
4330  AddKnownFunctionAttributes(FD);
4331
4332  return FD;
4333}
4334
4335/// \brief Adds any function attributes that we know a priori based on
4336/// the declaration of this function.
4337///
4338/// These attributes can apply both to implicitly-declared builtins
4339/// (like __builtin___printf_chk) or to library-declared functions
4340/// like NSLog or printf.
4341void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4342  if (FD->isInvalidDecl())
4343    return;
4344
4345  // If this is a built-in function, map its builtin attributes to
4346  // actual attributes.
4347  if (unsigned BuiltinID = FD->getBuiltinID()) {
4348    // Handle printf-formatting attributes.
4349    unsigned FormatIdx;
4350    bool HasVAListArg;
4351    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4352      if (!FD->getAttr<FormatAttr>())
4353        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4354                                             HasVAListArg ? 0 : FormatIdx + 2));
4355    }
4356
4357    // Mark const if we don't care about errno and that is the only
4358    // thing preventing the function from being const. This allows
4359    // IRgen to use LLVM intrinsics for such functions.
4360    if (!getLangOptions().MathErrno &&
4361        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4362      if (!FD->getAttr<ConstAttr>())
4363        FD->addAttr(::new (Context) ConstAttr());
4364    }
4365
4366    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4367      FD->addAttr(::new (Context) NoReturnAttr());
4368  }
4369
4370  IdentifierInfo *Name = FD->getIdentifier();
4371  if (!Name)
4372    return;
4373  if ((!getLangOptions().CPlusPlus &&
4374       FD->getDeclContext()->isTranslationUnit()) ||
4375      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4376       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4377       LinkageSpecDecl::lang_c)) {
4378    // Okay: this could be a libc/libm/Objective-C function we know
4379    // about.
4380  } else
4381    return;
4382
4383  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4384    // FIXME: NSLog and NSLogv should be target specific
4385    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4386      // FIXME: We known better than our headers.
4387      const_cast<FormatAttr *>(Format)->setType("printf");
4388    } else
4389      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4390                                             Name->isStr("NSLogv") ? 0 : 2));
4391  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4392    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4393    // target-specific builtins, perhaps?
4394    if (!FD->getAttr<FormatAttr>())
4395      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4396                                             Name->isStr("vasprintf") ? 0 : 3));
4397  }
4398}
4399
4400TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4401                                    TypeSourceInfo *TInfo) {
4402  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4403  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4404
4405  if (!TInfo) {
4406    assert(D.isInvalidType() && "no declarator info for valid type");
4407    TInfo = Context.getTrivialTypeSourceInfo(T);
4408  }
4409
4410  // Scope manipulation handled by caller.
4411  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4412                                           D.getIdentifierLoc(),
4413                                           D.getIdentifier(),
4414                                           TInfo);
4415
4416  if (const TagType *TT = T->getAs<TagType>()) {
4417    TagDecl *TD = TT->getDecl();
4418
4419    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4420    // keep track of the TypedefDecl.
4421    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4422      TD->setTypedefForAnonDecl(NewTD);
4423  }
4424
4425  if (D.isInvalidType())
4426    NewTD->setInvalidDecl();
4427  return NewTD;
4428}
4429
4430
4431/// \brief Determine whether a tag with a given kind is acceptable
4432/// as a redeclaration of the given tag declaration.
4433///
4434/// \returns true if the new tag kind is acceptable, false otherwise.
4435bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4436                                        TagDecl::TagKind NewTag,
4437                                        SourceLocation NewTagLoc,
4438                                        const IdentifierInfo &Name) {
4439  // C++ [dcl.type.elab]p3:
4440  //   The class-key or enum keyword present in the
4441  //   elaborated-type-specifier shall agree in kind with the
4442  //   declaration to which the name in theelaborated-type-specifier
4443  //   refers. This rule also applies to the form of
4444  //   elaborated-type-specifier that declares a class-name or
4445  //   friend class since it can be construed as referring to the
4446  //   definition of the class. Thus, in any
4447  //   elaborated-type-specifier, the enum keyword shall be used to
4448  //   refer to an enumeration (7.2), the union class-keyshall be
4449  //   used to refer to a union (clause 9), and either the class or
4450  //   struct class-key shall be used to refer to a class (clause 9)
4451  //   declared using the class or struct class-key.
4452  TagDecl::TagKind OldTag = Previous->getTagKind();
4453  if (OldTag == NewTag)
4454    return true;
4455
4456  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4457      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4458    // Warn about the struct/class tag mismatch.
4459    bool isTemplate = false;
4460    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4461      isTemplate = Record->getDescribedClassTemplate();
4462
4463    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4464      << (NewTag == TagDecl::TK_class)
4465      << isTemplate << &Name
4466      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4467                              OldTag == TagDecl::TK_class? "class" : "struct");
4468    Diag(Previous->getLocation(), diag::note_previous_use);
4469    return true;
4470  }
4471  return false;
4472}
4473
4474/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4475/// former case, Name will be non-null.  In the later case, Name will be null.
4476/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4477/// reference/declaration/definition of a tag.
4478Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4479                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4480                               IdentifierInfo *Name, SourceLocation NameLoc,
4481                               AttributeList *Attr, AccessSpecifier AS,
4482                               MultiTemplateParamsArg TemplateParameterLists,
4483                               bool &OwnedDecl, bool &IsDependent) {
4484  // If this is not a definition, it must have a name.
4485  assert((Name != 0 || TUK == TUK_Definition) &&
4486         "Nameless record must be a definition!");
4487
4488  OwnedDecl = false;
4489  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4490
4491  // FIXME: Check explicit specializations more carefully.
4492  bool isExplicitSpecialization = false;
4493  if (TUK != TUK_Reference) {
4494    if (TemplateParameterList *TemplateParams
4495          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4496                        (TemplateParameterList**)TemplateParameterLists.get(),
4497                                              TemplateParameterLists.size(),
4498                                                    isExplicitSpecialization)) {
4499      if (TemplateParams->size() > 0) {
4500        // This is a declaration or definition of a class template (which may
4501        // be a member of another template).
4502        OwnedDecl = false;
4503        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4504                                               SS, Name, NameLoc, Attr,
4505                                               TemplateParams,
4506                                               AS);
4507        TemplateParameterLists.release();
4508        return Result.get();
4509      } else {
4510        // The "template<>" header is extraneous.
4511        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4512          << ElaboratedType::getNameForTagKind(Kind) << Name;
4513        isExplicitSpecialization = true;
4514      }
4515    }
4516
4517    TemplateParameterLists.release();
4518  }
4519
4520  DeclContext *SearchDC = CurContext;
4521  DeclContext *DC = CurContext;
4522  bool isStdBadAlloc = false;
4523  bool Invalid = false;
4524
4525  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4526                                                   : NotForRedeclaration);
4527
4528  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4529
4530  if (Name && SS.isNotEmpty()) {
4531    // We have a nested-name tag ('struct foo::bar').
4532
4533    // Check for invalid 'foo::'.
4534    if (SS.isInvalid()) {
4535      Name = 0;
4536      goto CreateNewDecl;
4537    }
4538
4539    // If this is a friend or a reference to a class in a dependent
4540    // context, don't try to make a decl for it.
4541    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4542      DC = computeDeclContext(SS, false);
4543      if (!DC) {
4544        IsDependent = true;
4545        return DeclPtrTy();
4546      }
4547    }
4548
4549    if (RequireCompleteDeclContext(SS))
4550      return DeclPtrTy::make((Decl *)0);
4551
4552    DC = computeDeclContext(SS, true);
4553    SearchDC = DC;
4554    // Look-up name inside 'foo::'.
4555    LookupQualifiedName(Previous, DC);
4556
4557    if (Previous.isAmbiguous())
4558      return DeclPtrTy();
4559
4560    // A tag 'foo::bar' must already exist.
4561    if (Previous.empty()) {
4562      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4563      Name = 0;
4564      Invalid = true;
4565      goto CreateNewDecl;
4566    }
4567  } else if (Name) {
4568    // If this is a named struct, check to see if there was a previous forward
4569    // declaration or definition.
4570    // FIXME: We're looking into outer scopes here, even when we
4571    // shouldn't be. Doing so can result in ambiguities that we
4572    // shouldn't be diagnosing.
4573    LookupName(Previous, S);
4574
4575    // Note:  there used to be some attempt at recovery here.
4576    if (Previous.isAmbiguous())
4577      return DeclPtrTy();
4578
4579    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4580      // FIXME: This makes sure that we ignore the contexts associated
4581      // with C structs, unions, and enums when looking for a matching
4582      // tag declaration or definition. See the similar lookup tweak
4583      // in Sema::LookupName; is there a better way to deal with this?
4584      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4585        SearchDC = SearchDC->getParent();
4586    }
4587  }
4588
4589  if (Previous.isSingleResult() &&
4590      Previous.getFoundDecl()->isTemplateParameter()) {
4591    // Maybe we will complain about the shadowed template parameter.
4592    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4593    // Just pretend that we didn't see the previous declaration.
4594    Previous.clear();
4595  }
4596
4597  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4598      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4599    // This is a declaration of or a reference to "std::bad_alloc".
4600    isStdBadAlloc = true;
4601
4602    if (Previous.empty() && StdBadAlloc) {
4603      // std::bad_alloc has been implicitly declared (but made invisible to
4604      // name lookup). Fill in this implicit declaration as the previous
4605      // declaration, so that the declarations get chained appropriately.
4606      Previous.addDecl(StdBadAlloc);
4607    }
4608  }
4609
4610  if (!Previous.empty()) {
4611    assert(Previous.isSingleResult());
4612    NamedDecl *PrevDecl = Previous.getFoundDecl();
4613    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4614      // If this is a use of a previous tag, or if the tag is already declared
4615      // in the same scope (so that the definition/declaration completes or
4616      // rementions the tag), reuse the decl.
4617      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4618          isDeclInScope(PrevDecl, SearchDC, S)) {
4619        // Make sure that this wasn't declared as an enum and now used as a
4620        // struct or something similar.
4621        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4622          bool SafeToContinue
4623            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4624               Kind != TagDecl::TK_enum);
4625          if (SafeToContinue)
4626            Diag(KWLoc, diag::err_use_with_wrong_tag)
4627              << Name
4628              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4629                                                  PrevTagDecl->getKindName());
4630          else
4631            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4632          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4633
4634          if (SafeToContinue)
4635            Kind = PrevTagDecl->getTagKind();
4636          else {
4637            // Recover by making this an anonymous redefinition.
4638            Name = 0;
4639            Previous.clear();
4640            Invalid = true;
4641          }
4642        }
4643
4644        if (!Invalid) {
4645          // If this is a use, just return the declaration we found.
4646
4647          // FIXME: In the future, return a variant or some other clue
4648          // for the consumer of this Decl to know it doesn't own it.
4649          // For our current ASTs this shouldn't be a problem, but will
4650          // need to be changed with DeclGroups.
4651          if (TUK == TUK_Reference || TUK == TUK_Friend)
4652            return DeclPtrTy::make(PrevTagDecl);
4653
4654          // Diagnose attempts to redefine a tag.
4655          if (TUK == TUK_Definition) {
4656            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4657              // If we're defining a specialization and the previous definition
4658              // is from an implicit instantiation, don't emit an error
4659              // here; we'll catch this in the general case below.
4660              if (!isExplicitSpecialization ||
4661                  !isa<CXXRecordDecl>(Def) ||
4662                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4663                                               == TSK_ExplicitSpecialization) {
4664                Diag(NameLoc, diag::err_redefinition) << Name;
4665                Diag(Def->getLocation(), diag::note_previous_definition);
4666                // If this is a redefinition, recover by making this
4667                // struct be anonymous, which will make any later
4668                // references get the previous definition.
4669                Name = 0;
4670                Previous.clear();
4671                Invalid = true;
4672              }
4673            } else {
4674              // If the type is currently being defined, complain
4675              // about a nested redefinition.
4676              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4677              if (Tag->isBeingDefined()) {
4678                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4679                Diag(PrevTagDecl->getLocation(),
4680                     diag::note_previous_definition);
4681                Name = 0;
4682                Previous.clear();
4683                Invalid = true;
4684              }
4685            }
4686
4687            // Okay, this is definition of a previously declared or referenced
4688            // tag PrevDecl. We're going to create a new Decl for it.
4689          }
4690        }
4691        // If we get here we have (another) forward declaration or we
4692        // have a definition.  Just create a new decl.
4693
4694      } else {
4695        // If we get here, this is a definition of a new tag type in a nested
4696        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4697        // new decl/type.  We set PrevDecl to NULL so that the entities
4698        // have distinct types.
4699        Previous.clear();
4700      }
4701      // If we get here, we're going to create a new Decl. If PrevDecl
4702      // is non-NULL, it's a definition of the tag declared by
4703      // PrevDecl. If it's NULL, we have a new definition.
4704    } else {
4705      // PrevDecl is a namespace, template, or anything else
4706      // that lives in the IDNS_Tag identifier namespace.
4707      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4708        // The tag name clashes with a namespace name, issue an error and
4709        // recover by making this tag be anonymous.
4710        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4711        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4712        Name = 0;
4713        Previous.clear();
4714        Invalid = true;
4715      } else {
4716        // The existing declaration isn't relevant to us; we're in a
4717        // new scope, so clear out the previous declaration.
4718        Previous.clear();
4719      }
4720    }
4721  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4722    // C++ [basic.scope.pdecl]p5:
4723    //   -- for an elaborated-type-specifier of the form
4724    //
4725    //          class-key identifier
4726    //
4727    //      if the elaborated-type-specifier is used in the
4728    //      decl-specifier-seq or parameter-declaration-clause of a
4729    //      function defined in namespace scope, the identifier is
4730    //      declared as a class-name in the namespace that contains
4731    //      the declaration; otherwise, except as a friend
4732    //      declaration, the identifier is declared in the smallest
4733    //      non-class, non-function-prototype scope that contains the
4734    //      declaration.
4735    //
4736    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4737    // C structs and unions.
4738    //
4739    // It is an error in C++ to declare (rather than define) an enum
4740    // type, including via an elaborated type specifier.  We'll
4741    // diagnose that later; for now, declare the enum in the same
4742    // scope as we would have picked for any other tag type.
4743    //
4744    // GNU C also supports this behavior as part of its incomplete
4745    // enum types extension, while GNU C++ does not.
4746    //
4747    // Find the context where we'll be declaring the tag.
4748    // FIXME: We would like to maintain the current DeclContext as the
4749    // lexical context,
4750    while (SearchDC->isRecord())
4751      SearchDC = SearchDC->getParent();
4752
4753    // Find the scope where we'll be declaring the tag.
4754    while (S->isClassScope() ||
4755           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4756           ((S->getFlags() & Scope::DeclScope) == 0) ||
4757           (S->getEntity() &&
4758            ((DeclContext *)S->getEntity())->isTransparentContext()))
4759      S = S->getParent();
4760
4761  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4762    // C++ [namespace.memdef]p3:
4763    //   If a friend declaration in a non-local class first declares a
4764    //   class or function, the friend class or function is a member of
4765    //   the innermost enclosing namespace.
4766    while (!SearchDC->isFileContext())
4767      SearchDC = SearchDC->getParent();
4768
4769    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4770    while (S->getEntity() != SearchDC)
4771      S = S->getParent();
4772  }
4773
4774CreateNewDecl:
4775
4776  TagDecl *PrevDecl = 0;
4777  if (Previous.isSingleResult())
4778    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4779
4780  // If there is an identifier, use the location of the identifier as the
4781  // location of the decl, otherwise use the location of the struct/union
4782  // keyword.
4783  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4784
4785  // Otherwise, create a new declaration. If there is a previous
4786  // declaration of the same entity, the two will be linked via
4787  // PrevDecl.
4788  TagDecl *New;
4789
4790  if (Kind == TagDecl::TK_enum) {
4791    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4792    // enum X { A, B, C } D;    D should chain to X.
4793    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4794                           cast_or_null<EnumDecl>(PrevDecl));
4795    // If this is an undefined enum, warn.
4796    if (TUK != TUK_Definition && !Invalid)  {
4797      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4798                                              : diag::ext_forward_ref_enum;
4799      Diag(Loc, DK);
4800    }
4801  } else {
4802    // struct/union/class
4803
4804    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4805    // struct X { int A; } D;    D should chain to X.
4806    if (getLangOptions().CPlusPlus) {
4807      // FIXME: Look for a way to use RecordDecl for simple structs.
4808      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4809                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4810
4811      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4812        StdBadAlloc = cast<CXXRecordDecl>(New);
4813    } else
4814      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4815                               cast_or_null<RecordDecl>(PrevDecl));
4816  }
4817
4818  if (Kind != TagDecl::TK_enum) {
4819    // Handle #pragma pack: if the #pragma pack stack has non-default
4820    // alignment, make up a packed attribute for this decl. These
4821    // attributes are checked when the ASTContext lays out the
4822    // structure.
4823    //
4824    // It is important for implementing the correct semantics that this
4825    // happen here (in act on tag decl). The #pragma pack stack is
4826    // maintained as a result of parser callbacks which can occur at
4827    // many points during the parsing of a struct declaration (because
4828    // the #pragma tokens are effectively skipped over during the
4829    // parsing of the struct).
4830    if (unsigned Alignment = getPragmaPackAlignment())
4831      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4832  }
4833
4834  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4835    // C++ [dcl.typedef]p3:
4836    //   [...] Similarly, in a given scope, a class or enumeration
4837    //   shall not be declared with the same name as a typedef-name
4838    //   that is declared in that scope and refers to a type other
4839    //   than the class or enumeration itself.
4840    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4841                        ForRedeclaration);
4842    LookupName(Lookup, S);
4843    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4844    NamedDecl *PrevTypedefNamed = PrevTypedef;
4845    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4846        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4847          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4848      Diag(Loc, diag::err_tag_definition_of_typedef)
4849        << Context.getTypeDeclType(New)
4850        << PrevTypedef->getUnderlyingType();
4851      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4852      Invalid = true;
4853    }
4854  }
4855
4856  // If this is a specialization of a member class (of a class template),
4857  // check the specialization.
4858  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4859    Invalid = true;
4860
4861  if (Invalid)
4862    New->setInvalidDecl();
4863
4864  if (Attr)
4865    ProcessDeclAttributeList(S, New, Attr);
4866
4867  // If we're declaring or defining a tag in function prototype scope
4868  // in C, note that this type can only be used within the function.
4869  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4870    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4871
4872  // Set the lexical context. If the tag has a C++ scope specifier, the
4873  // lexical context will be different from the semantic context.
4874  New->setLexicalDeclContext(CurContext);
4875
4876  // Mark this as a friend decl if applicable.
4877  if (TUK == TUK_Friend)
4878    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4879
4880  // Set the access specifier.
4881  if (!Invalid && TUK != TUK_Friend)
4882    SetMemberAccessSpecifier(New, PrevDecl, AS);
4883
4884  if (TUK == TUK_Definition)
4885    New->startDefinition();
4886
4887  // If this has an identifier, add it to the scope stack.
4888  if (TUK == TUK_Friend) {
4889    // We might be replacing an existing declaration in the lookup tables;
4890    // if so, borrow its access specifier.
4891    if (PrevDecl)
4892      New->setAccess(PrevDecl->getAccess());
4893
4894    // Friend tag decls are visible in fairly strange ways.
4895    if (!CurContext->isDependentContext()) {
4896      DeclContext *DC = New->getDeclContext()->getLookupContext();
4897      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4898      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4899        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4900    }
4901  } else if (Name) {
4902    S = getNonFieldDeclScope(S);
4903    PushOnScopeChains(New, S);
4904  } else {
4905    CurContext->addDecl(New);
4906  }
4907
4908  // If this is the C FILE type, notify the AST context.
4909  if (IdentifierInfo *II = New->getIdentifier())
4910    if (!New->isInvalidDecl() &&
4911        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4912        II->isStr("FILE"))
4913      Context.setFILEDecl(New);
4914
4915  OwnedDecl = true;
4916  return DeclPtrTy::make(New);
4917}
4918
4919void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4920  AdjustDeclIfTemplate(TagD);
4921  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4922
4923  // Enter the tag context.
4924  PushDeclContext(S, Tag);
4925
4926  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4927    FieldCollector->StartClass();
4928
4929    if (Record->getIdentifier()) {
4930      // C++ [class]p2:
4931      //   [...] The class-name is also inserted into the scope of the
4932      //   class itself; this is known as the injected-class-name. For
4933      //   purposes of access checking, the injected-class-name is treated
4934      //   as if it were a public member name.
4935      CXXRecordDecl *InjectedClassName
4936        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4937                                CurContext, Record->getLocation(),
4938                                Record->getIdentifier(),
4939                                Record->getTagKeywordLoc(),
4940                                Record);
4941      InjectedClassName->setImplicit();
4942      InjectedClassName->setAccess(AS_public);
4943      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4944        InjectedClassName->setDescribedClassTemplate(Template);
4945      PushOnScopeChains(InjectedClassName, S);
4946      assert(InjectedClassName->isInjectedClassName() &&
4947             "Broken injected-class-name");
4948    }
4949  }
4950}
4951
4952void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4953                                    SourceLocation RBraceLoc) {
4954  AdjustDeclIfTemplate(TagD);
4955  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4956  Tag->setRBraceLoc(RBraceLoc);
4957
4958  if (isa<CXXRecordDecl>(Tag))
4959    FieldCollector->FinishClass();
4960
4961  // Exit this scope of this tag's definition.
4962  PopDeclContext();
4963
4964  // Notify the consumer that we've defined a tag.
4965  Consumer.HandleTagDeclDefinition(Tag);
4966}
4967
4968// Note that FieldName may be null for anonymous bitfields.
4969bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4970                          QualType FieldTy, const Expr *BitWidth,
4971                          bool *ZeroWidth) {
4972  // Default to true; that shouldn't confuse checks for emptiness
4973  if (ZeroWidth)
4974    *ZeroWidth = true;
4975
4976  // C99 6.7.2.1p4 - verify the field type.
4977  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4978  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4979    // Handle incomplete types with specific error.
4980    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4981      return true;
4982    if (FieldName)
4983      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4984        << FieldName << FieldTy << BitWidth->getSourceRange();
4985    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4986      << FieldTy << BitWidth->getSourceRange();
4987  }
4988
4989  // If the bit-width is type- or value-dependent, don't try to check
4990  // it now.
4991  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4992    return false;
4993
4994  llvm::APSInt Value;
4995  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4996    return true;
4997
4998  if (Value != 0 && ZeroWidth)
4999    *ZeroWidth = false;
5000
5001  // Zero-width bitfield is ok for anonymous field.
5002  if (Value == 0 && FieldName)
5003    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5004
5005  if (Value.isSigned() && Value.isNegative()) {
5006    if (FieldName)
5007      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5008               << FieldName << Value.toString(10);
5009    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5010      << Value.toString(10);
5011  }
5012
5013  if (!FieldTy->isDependentType()) {
5014    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5015    if (Value.getZExtValue() > TypeSize) {
5016      if (FieldName)
5017        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5018          << FieldName << (unsigned)TypeSize;
5019      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5020        << (unsigned)TypeSize;
5021    }
5022  }
5023
5024  return false;
5025}
5026
5027/// ActOnField - Each field of a struct/union/class is passed into this in order
5028/// to create a FieldDecl object for it.
5029Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5030                                 SourceLocation DeclStart,
5031                                 Declarator &D, ExprTy *BitfieldWidth) {
5032  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5033                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5034                               AS_public);
5035  return DeclPtrTy::make(Res);
5036}
5037
5038/// HandleField - Analyze a field of a C struct or a C++ data member.
5039///
5040FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5041                             SourceLocation DeclStart,
5042                             Declarator &D, Expr *BitWidth,
5043                             AccessSpecifier AS) {
5044  IdentifierInfo *II = D.getIdentifier();
5045  SourceLocation Loc = DeclStart;
5046  if (II) Loc = D.getIdentifierLoc();
5047
5048  TypeSourceInfo *TInfo = 0;
5049  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5050  if (getLangOptions().CPlusPlus)
5051    CheckExtraCXXDefaultArguments(D);
5052
5053  DiagnoseFunctionSpecifiers(D);
5054
5055  if (D.getDeclSpec().isThreadSpecified())
5056    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5057
5058  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5059                                         ForRedeclaration);
5060
5061  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5062    // Maybe we will complain about the shadowed template parameter.
5063    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5064    // Just pretend that we didn't see the previous declaration.
5065    PrevDecl = 0;
5066  }
5067
5068  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5069    PrevDecl = 0;
5070
5071  bool Mutable
5072    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5073  SourceLocation TSSL = D.getSourceRange().getBegin();
5074  FieldDecl *NewFD
5075    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5076                     AS, PrevDecl, &D);
5077  if (NewFD->isInvalidDecl() && PrevDecl) {
5078    // Don't introduce NewFD into scope; there's already something
5079    // with the same name in the same scope.
5080  } else if (II) {
5081    PushOnScopeChains(NewFD, S);
5082  } else
5083    Record->addDecl(NewFD);
5084
5085  return NewFD;
5086}
5087
5088/// \brief Build a new FieldDecl and check its well-formedness.
5089///
5090/// This routine builds a new FieldDecl given the fields name, type,
5091/// record, etc. \p PrevDecl should refer to any previous declaration
5092/// with the same name and in the same scope as the field to be
5093/// created.
5094///
5095/// \returns a new FieldDecl.
5096///
5097/// \todo The Declarator argument is a hack. It will be removed once
5098FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5099                                TypeSourceInfo *TInfo,
5100                                RecordDecl *Record, SourceLocation Loc,
5101                                bool Mutable, Expr *BitWidth,
5102                                SourceLocation TSSL,
5103                                AccessSpecifier AS, NamedDecl *PrevDecl,
5104                                Declarator *D) {
5105  IdentifierInfo *II = Name.getAsIdentifierInfo();
5106  bool InvalidDecl = false;
5107  if (D) InvalidDecl = D->isInvalidType();
5108
5109  // If we receive a broken type, recover by assuming 'int' and
5110  // marking this declaration as invalid.
5111  if (T.isNull()) {
5112    InvalidDecl = true;
5113    T = Context.IntTy;
5114  }
5115
5116  QualType EltTy = Context.getBaseElementType(T);
5117  if (!EltTy->isDependentType() &&
5118      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5119    InvalidDecl = true;
5120
5121  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5122  // than a variably modified type.
5123  if (!InvalidDecl && T->isVariablyModifiedType()) {
5124    bool SizeIsNegative;
5125    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5126                                                           SizeIsNegative);
5127    if (!FixedTy.isNull()) {
5128      Diag(Loc, diag::warn_illegal_constant_array_size);
5129      T = FixedTy;
5130    } else {
5131      if (SizeIsNegative)
5132        Diag(Loc, diag::err_typecheck_negative_array_size);
5133      else
5134        Diag(Loc, diag::err_typecheck_field_variable_size);
5135      InvalidDecl = true;
5136    }
5137  }
5138
5139  // Fields can not have abstract class types
5140  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5141                                             diag::err_abstract_type_in_decl,
5142                                             AbstractFieldType))
5143    InvalidDecl = true;
5144
5145  bool ZeroWidth = false;
5146  // If this is declared as a bit-field, check the bit-field.
5147  if (!InvalidDecl && BitWidth &&
5148      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5149    InvalidDecl = true;
5150    DeleteExpr(BitWidth);
5151    BitWidth = 0;
5152    ZeroWidth = false;
5153  }
5154
5155  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5156                                       BitWidth, Mutable);
5157  if (InvalidDecl)
5158    NewFD->setInvalidDecl();
5159
5160  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5161    Diag(Loc, diag::err_duplicate_member) << II;
5162    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5163    NewFD->setInvalidDecl();
5164  }
5165
5166  if (getLangOptions().CPlusPlus) {
5167    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5168
5169    if (!T->isPODType())
5170      CXXRecord->setPOD(false);
5171    if (!ZeroWidth)
5172      CXXRecord->setEmpty(false);
5173
5174    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5175      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5176
5177      if (!RDecl->hasTrivialConstructor())
5178        CXXRecord->setHasTrivialConstructor(false);
5179      if (!RDecl->hasTrivialCopyConstructor())
5180        CXXRecord->setHasTrivialCopyConstructor(false);
5181      if (!RDecl->hasTrivialCopyAssignment())
5182        CXXRecord->setHasTrivialCopyAssignment(false);
5183      if (!RDecl->hasTrivialDestructor())
5184        CXXRecord->setHasTrivialDestructor(false);
5185
5186      // C++ 9.5p1: An object of a class with a non-trivial
5187      // constructor, a non-trivial copy constructor, a non-trivial
5188      // destructor, or a non-trivial copy assignment operator
5189      // cannot be a member of a union, nor can an array of such
5190      // objects.
5191      // TODO: C++0x alters this restriction significantly.
5192      if (Record->isUnion()) {
5193        // We check for copy constructors before constructors
5194        // because otherwise we'll never get complaints about
5195        // copy constructors.
5196
5197        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5198
5199        CXXSpecialMember member;
5200        if (!RDecl->hasTrivialCopyConstructor())
5201          member = CXXCopyConstructor;
5202        else if (!RDecl->hasTrivialConstructor())
5203          member = CXXDefaultConstructor;
5204        else if (!RDecl->hasTrivialCopyAssignment())
5205          member = CXXCopyAssignment;
5206        else if (!RDecl->hasTrivialDestructor())
5207          member = CXXDestructor;
5208        else
5209          member = invalid;
5210
5211        if (member != invalid) {
5212          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5213          DiagnoseNontrivial(RT, member);
5214          NewFD->setInvalidDecl();
5215        }
5216      }
5217    }
5218  }
5219
5220  // FIXME: We need to pass in the attributes given an AST
5221  // representation, not a parser representation.
5222  if (D)
5223    // FIXME: What to pass instead of TUScope?
5224    ProcessDeclAttributes(TUScope, NewFD, *D);
5225
5226  if (T.isObjCGCWeak())
5227    Diag(Loc, diag::warn_attribute_weak_on_field);
5228
5229  NewFD->setAccess(AS);
5230
5231  // C++ [dcl.init.aggr]p1:
5232  //   An aggregate is an array or a class (clause 9) with [...] no
5233  //   private or protected non-static data members (clause 11).
5234  // A POD must be an aggregate.
5235  if (getLangOptions().CPlusPlus &&
5236      (AS == AS_private || AS == AS_protected)) {
5237    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5238    CXXRecord->setAggregate(false);
5239    CXXRecord->setPOD(false);
5240  }
5241
5242  return NewFD;
5243}
5244
5245/// DiagnoseNontrivial - Given that a class has a non-trivial
5246/// special member, figure out why.
5247void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5248  QualType QT(T, 0U);
5249  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5250
5251  // Check whether the member was user-declared.
5252  switch (member) {
5253  case CXXDefaultConstructor:
5254    if (RD->hasUserDeclaredConstructor()) {
5255      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5256      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5257        const FunctionDecl *body = 0;
5258        ci->getBody(body);
5259        if (!body ||
5260            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5261          SourceLocation CtorLoc = ci->getLocation();
5262          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5263          return;
5264        }
5265      }
5266
5267      assert(0 && "found no user-declared constructors");
5268      return;
5269    }
5270    break;
5271
5272  case CXXCopyConstructor:
5273    if (RD->hasUserDeclaredCopyConstructor()) {
5274      SourceLocation CtorLoc =
5275        RD->getCopyConstructor(Context, 0)->getLocation();
5276      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5277      return;
5278    }
5279    break;
5280
5281  case CXXCopyAssignment:
5282    if (RD->hasUserDeclaredCopyAssignment()) {
5283      // FIXME: this should use the location of the copy
5284      // assignment, not the type.
5285      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5286      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5287      return;
5288    }
5289    break;
5290
5291  case CXXDestructor:
5292    if (RD->hasUserDeclaredDestructor()) {
5293      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5294      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5295      return;
5296    }
5297    break;
5298  }
5299
5300  typedef CXXRecordDecl::base_class_iterator base_iter;
5301
5302  // Virtual bases and members inhibit trivial copying/construction,
5303  // but not trivial destruction.
5304  if (member != CXXDestructor) {
5305    // Check for virtual bases.  vbases includes indirect virtual bases,
5306    // so we just iterate through the direct bases.
5307    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5308      if (bi->isVirtual()) {
5309        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5310        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5311        return;
5312      }
5313
5314    // Check for virtual methods.
5315    typedef CXXRecordDecl::method_iterator meth_iter;
5316    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5317         ++mi) {
5318      if (mi->isVirtual()) {
5319        SourceLocation MLoc = mi->getSourceRange().getBegin();
5320        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5321        return;
5322      }
5323    }
5324  }
5325
5326  bool (CXXRecordDecl::*hasTrivial)() const;
5327  switch (member) {
5328  case CXXDefaultConstructor:
5329    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5330  case CXXCopyConstructor:
5331    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5332  case CXXCopyAssignment:
5333    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5334  case CXXDestructor:
5335    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5336  default:
5337    assert(0 && "unexpected special member"); return;
5338  }
5339
5340  // Check for nontrivial bases (and recurse).
5341  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5342    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5343    assert(BaseRT && "Don't know how to handle dependent bases");
5344    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5345    if (!(BaseRecTy->*hasTrivial)()) {
5346      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5347      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5348      DiagnoseNontrivial(BaseRT, member);
5349      return;
5350    }
5351  }
5352
5353  // Check for nontrivial members (and recurse).
5354  typedef RecordDecl::field_iterator field_iter;
5355  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5356       ++fi) {
5357    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5358    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5359      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5360
5361      if (!(EltRD->*hasTrivial)()) {
5362        SourceLocation FLoc = (*fi)->getLocation();
5363        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5364        DiagnoseNontrivial(EltRT, member);
5365        return;
5366      }
5367    }
5368  }
5369
5370  assert(0 && "found no explanation for non-trivial member");
5371}
5372
5373/// TranslateIvarVisibility - Translate visibility from a token ID to an
5374///  AST enum value.
5375static ObjCIvarDecl::AccessControl
5376TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5377  switch (ivarVisibility) {
5378  default: assert(0 && "Unknown visitibility kind");
5379  case tok::objc_private: return ObjCIvarDecl::Private;
5380  case tok::objc_public: return ObjCIvarDecl::Public;
5381  case tok::objc_protected: return ObjCIvarDecl::Protected;
5382  case tok::objc_package: return ObjCIvarDecl::Package;
5383  }
5384}
5385
5386/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5387/// in order to create an IvarDecl object for it.
5388Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5389                                SourceLocation DeclStart,
5390                                DeclPtrTy IntfDecl,
5391                                Declarator &D, ExprTy *BitfieldWidth,
5392                                tok::ObjCKeywordKind Visibility) {
5393
5394  IdentifierInfo *II = D.getIdentifier();
5395  Expr *BitWidth = (Expr*)BitfieldWidth;
5396  SourceLocation Loc = DeclStart;
5397  if (II) Loc = D.getIdentifierLoc();
5398
5399  // FIXME: Unnamed fields can be handled in various different ways, for
5400  // example, unnamed unions inject all members into the struct namespace!
5401
5402  TypeSourceInfo *TInfo = 0;
5403  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5404
5405  if (BitWidth) {
5406    // 6.7.2.1p3, 6.7.2.1p4
5407    if (VerifyBitField(Loc, II, T, BitWidth)) {
5408      D.setInvalidType();
5409      DeleteExpr(BitWidth);
5410      BitWidth = 0;
5411    }
5412  } else {
5413    // Not a bitfield.
5414
5415    // validate II.
5416
5417  }
5418
5419  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5420  // than a variably modified type.
5421  if (T->isVariablyModifiedType()) {
5422    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5423    D.setInvalidType();
5424  }
5425
5426  // Get the visibility (access control) for this ivar.
5427  ObjCIvarDecl::AccessControl ac =
5428    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5429                                        : ObjCIvarDecl::None;
5430  // Must set ivar's DeclContext to its enclosing interface.
5431  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5432  DeclContext *EnclosingContext;
5433  if (ObjCImplementationDecl *IMPDecl =
5434      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5435    // Case of ivar declared in an implementation. Context is that of its class.
5436    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5437    assert(IDecl && "No class- ActOnIvar");
5438    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5439  } else
5440    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5441  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5442
5443  // Construct the decl.
5444  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5445                                             EnclosingContext, Loc, II, T,
5446                                             TInfo, ac, (Expr *)BitfieldWidth);
5447
5448  if (II) {
5449    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5450                                           ForRedeclaration);
5451    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5452        && !isa<TagDecl>(PrevDecl)) {
5453      Diag(Loc, diag::err_duplicate_member) << II;
5454      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5455      NewID->setInvalidDecl();
5456    }
5457  }
5458
5459  // Process attributes attached to the ivar.
5460  ProcessDeclAttributes(S, NewID, D);
5461
5462  if (D.isInvalidType())
5463    NewID->setInvalidDecl();
5464
5465  if (II) {
5466    // FIXME: When interfaces are DeclContexts, we'll need to add
5467    // these to the interface.
5468    S->AddDecl(DeclPtrTy::make(NewID));
5469    IdResolver.AddDecl(NewID);
5470  }
5471
5472  return DeclPtrTy::make(NewID);
5473}
5474
5475void Sema::ActOnFields(Scope* S,
5476                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5477                       DeclPtrTy *Fields, unsigned NumFields,
5478                       SourceLocation LBrac, SourceLocation RBrac,
5479                       AttributeList *Attr) {
5480  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5481  assert(EnclosingDecl && "missing record or interface decl");
5482
5483  // If the decl this is being inserted into is invalid, then it may be a
5484  // redeclaration or some other bogus case.  Don't try to add fields to it.
5485  if (EnclosingDecl->isInvalidDecl()) {
5486    // FIXME: Deallocate fields?
5487    return;
5488  }
5489
5490
5491  // Verify that all the fields are okay.
5492  unsigned NumNamedMembers = 0;
5493  llvm::SmallVector<FieldDecl*, 32> RecFields;
5494
5495  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5496  for (unsigned i = 0; i != NumFields; ++i) {
5497    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5498
5499    // Get the type for the field.
5500    Type *FDTy = FD->getType().getTypePtr();
5501
5502    if (!FD->isAnonymousStructOrUnion()) {
5503      // Remember all fields written by the user.
5504      RecFields.push_back(FD);
5505    }
5506
5507    // If the field is already invalid for some reason, don't emit more
5508    // diagnostics about it.
5509    if (FD->isInvalidDecl()) {
5510      EnclosingDecl->setInvalidDecl();
5511      continue;
5512    }
5513
5514    // C99 6.7.2.1p2:
5515    //   A structure or union shall not contain a member with
5516    //   incomplete or function type (hence, a structure shall not
5517    //   contain an instance of itself, but may contain a pointer to
5518    //   an instance of itself), except that the last member of a
5519    //   structure with more than one named member may have incomplete
5520    //   array type; such a structure (and any union containing,
5521    //   possibly recursively, a member that is such a structure)
5522    //   shall not be a member of a structure or an element of an
5523    //   array.
5524    if (FDTy->isFunctionType()) {
5525      // Field declared as a function.
5526      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5527        << FD->getDeclName();
5528      FD->setInvalidDecl();
5529      EnclosingDecl->setInvalidDecl();
5530      continue;
5531    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5532               Record && Record->isStruct()) {
5533      // Flexible array member.
5534      if (NumNamedMembers < 1) {
5535        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5536          << FD->getDeclName();
5537        FD->setInvalidDecl();
5538        EnclosingDecl->setInvalidDecl();
5539        continue;
5540      }
5541      // Okay, we have a legal flexible array member at the end of the struct.
5542      if (Record)
5543        Record->setHasFlexibleArrayMember(true);
5544    } else if (!FDTy->isDependentType() &&
5545               RequireCompleteType(FD->getLocation(), FD->getType(),
5546                                   diag::err_field_incomplete)) {
5547      // Incomplete type
5548      FD->setInvalidDecl();
5549      EnclosingDecl->setInvalidDecl();
5550      continue;
5551    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5552      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5553        // If this is a member of a union, then entire union becomes "flexible".
5554        if (Record && Record->isUnion()) {
5555          Record->setHasFlexibleArrayMember(true);
5556        } else {
5557          // If this is a struct/class and this is not the last element, reject
5558          // it.  Note that GCC supports variable sized arrays in the middle of
5559          // structures.
5560          if (i != NumFields-1)
5561            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5562              << FD->getDeclName() << FD->getType();
5563          else {
5564            // We support flexible arrays at the end of structs in
5565            // other structs as an extension.
5566            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5567              << FD->getDeclName();
5568            if (Record)
5569              Record->setHasFlexibleArrayMember(true);
5570          }
5571        }
5572      }
5573      if (Record && FDTTy->getDecl()->hasObjectMember())
5574        Record->setHasObjectMember(true);
5575    } else if (FDTy->isObjCInterfaceType()) {
5576      /// A field cannot be an Objective-c object
5577      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5578      FD->setInvalidDecl();
5579      EnclosingDecl->setInvalidDecl();
5580      continue;
5581    } else if (getLangOptions().ObjC1 &&
5582               getLangOptions().getGCMode() != LangOptions::NonGC &&
5583               Record &&
5584               (FD->getType()->isObjCObjectPointerType() ||
5585                FD->getType().isObjCGCStrong()))
5586      Record->setHasObjectMember(true);
5587    // Keep track of the number of named members.
5588    if (FD->getIdentifier())
5589      ++NumNamedMembers;
5590  }
5591
5592  // Okay, we successfully defined 'Record'.
5593  if (Record) {
5594    Record->completeDefinition(Context);
5595  } else {
5596    ObjCIvarDecl **ClsFields =
5597      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5598    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5599      ID->setIVarList(ClsFields, RecFields.size(), Context);
5600      ID->setLocEnd(RBrac);
5601      // Add ivar's to class's DeclContext.
5602      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5603        ClsFields[i]->setLexicalDeclContext(ID);
5604        ID->addDecl(ClsFields[i]);
5605      }
5606      // Must enforce the rule that ivars in the base classes may not be
5607      // duplicates.
5608      if (ID->getSuperClass()) {
5609        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5610             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5611          ObjCIvarDecl* Ivar = (*IVI);
5612
5613          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5614            ObjCIvarDecl* prevIvar =
5615              ID->getSuperClass()->lookupInstanceVariable(II);
5616            if (prevIvar) {
5617              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5618              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5619            }
5620          }
5621        }
5622      }
5623    } else if (ObjCImplementationDecl *IMPDecl =
5624                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5625      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5626      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5627        // Ivar declared in @implementation never belongs to the implementation.
5628        // Only it is in implementation's lexical context.
5629        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5630      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5631    }
5632  }
5633
5634  if (Attr)
5635    ProcessDeclAttributeList(S, Record, Attr);
5636}
5637
5638EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5639                                          EnumConstantDecl *LastEnumConst,
5640                                          SourceLocation IdLoc,
5641                                          IdentifierInfo *Id,
5642                                          ExprArg val) {
5643  Expr *Val = (Expr *)val.get();
5644
5645  llvm::APSInt EnumVal(32);
5646  QualType EltTy;
5647  if (Val) {
5648    if (Val->isTypeDependent())
5649      EltTy = Context.DependentTy;
5650    else {
5651      // Make sure to promote the operand type to int.
5652      UsualUnaryConversions(Val);
5653      if (Val != val.get()) {
5654        val.release();
5655        val = Val;
5656      }
5657
5658      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5659      SourceLocation ExpLoc;
5660      if (!Val->isValueDependent() &&
5661          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5662        Val = 0;
5663      } else {
5664        EltTy = Val->getType();
5665      }
5666    }
5667  }
5668
5669  if (!Val) {
5670    if (LastEnumConst) {
5671      // Assign the last value + 1.
5672      EnumVal = LastEnumConst->getInitVal();
5673      ++EnumVal;
5674
5675      // Check for overflow on increment.
5676      if (EnumVal < LastEnumConst->getInitVal())
5677        Diag(IdLoc, diag::warn_enum_value_overflow);
5678
5679      EltTy = LastEnumConst->getType();
5680    } else {
5681      // First value, set to zero.
5682      EltTy = Context.IntTy;
5683      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5684    }
5685  }
5686
5687  assert(!EltTy.isNull() && "Enum constant with NULL type");
5688
5689  val.release();
5690  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5691                                  Val, EnumVal);
5692}
5693
5694
5695Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5696                                        DeclPtrTy lastEnumConst,
5697                                        SourceLocation IdLoc,
5698                                        IdentifierInfo *Id,
5699                                        SourceLocation EqualLoc, ExprTy *val) {
5700  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5701  EnumConstantDecl *LastEnumConst =
5702    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5703  Expr *Val = static_cast<Expr*>(val);
5704
5705  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5706  // we find one that is.
5707  S = getNonFieldDeclScope(S);
5708
5709  // Verify that there isn't already something declared with this name in this
5710  // scope.
5711  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5712  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5713    // Maybe we will complain about the shadowed template parameter.
5714    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5715    // Just pretend that we didn't see the previous declaration.
5716    PrevDecl = 0;
5717  }
5718
5719  if (PrevDecl) {
5720    // When in C++, we may get a TagDecl with the same name; in this case the
5721    // enum constant will 'hide' the tag.
5722    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5723           "Received TagDecl when not in C++!");
5724    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5725      if (isa<EnumConstantDecl>(PrevDecl))
5726        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5727      else
5728        Diag(IdLoc, diag::err_redefinition) << Id;
5729      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5730      if (Val) Val->Destroy(Context);
5731      return DeclPtrTy();
5732    }
5733  }
5734
5735  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5736                                            IdLoc, Id, Owned(Val));
5737
5738  // Register this decl in the current scope stack.
5739  if (New)
5740    PushOnScopeChains(New, S);
5741
5742  return DeclPtrTy::make(New);
5743}
5744
5745void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5746                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5747                         DeclPtrTy *Elements, unsigned NumElements,
5748                         Scope *S, AttributeList *Attr) {
5749  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5750  QualType EnumType = Context.getTypeDeclType(Enum);
5751
5752  if (Attr)
5753    ProcessDeclAttributeList(S, Enum, Attr);
5754
5755  // TODO: If the result value doesn't fit in an int, it must be a long or long
5756  // long value.  ISO C does not support this, but GCC does as an extension,
5757  // emit a warning.
5758  unsigned IntWidth = Context.Target.getIntWidth();
5759  unsigned CharWidth = Context.Target.getCharWidth();
5760  unsigned ShortWidth = Context.Target.getShortWidth();
5761
5762  // Verify that all the values are okay, compute the size of the values, and
5763  // reverse the list.
5764  unsigned NumNegativeBits = 0;
5765  unsigned NumPositiveBits = 0;
5766
5767  // Keep track of whether all elements have type int.
5768  bool AllElementsInt = true;
5769
5770  for (unsigned i = 0; i != NumElements; ++i) {
5771    EnumConstantDecl *ECD =
5772      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5773    if (!ECD) continue;  // Already issued a diagnostic.
5774
5775    // If the enum value doesn't fit in an int, emit an extension warning.
5776    const llvm::APSInt &InitVal = ECD->getInitVal();
5777    assert(InitVal.getBitWidth() >= IntWidth &&
5778           "Should have promoted value to int");
5779    if (InitVal.getBitWidth() > IntWidth) {
5780      llvm::APSInt V(InitVal);
5781      V.trunc(IntWidth);
5782      V.extend(InitVal.getBitWidth());
5783      if (V != InitVal)
5784        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5785          << InitVal.toString(10);
5786    }
5787
5788    // Keep track of the size of positive and negative values.
5789    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5790      NumPositiveBits = std::max(NumPositiveBits,
5791                                 (unsigned)InitVal.getActiveBits());
5792    else
5793      NumNegativeBits = std::max(NumNegativeBits,
5794                                 (unsigned)InitVal.getMinSignedBits());
5795
5796    // Keep track of whether every enum element has type int (very commmon).
5797    if (AllElementsInt)
5798      AllElementsInt = ECD->getType() == Context.IntTy;
5799  }
5800
5801  // Figure out the type that should be used for this enum.
5802  // FIXME: Support -fshort-enums.
5803  QualType BestType;
5804  unsigned BestWidth;
5805
5806  // C++0x N3000 [conv.prom]p3:
5807  //   An rvalue of an unscoped enumeration type whose underlying
5808  //   type is not fixed can be converted to an rvalue of the first
5809  //   of the following types that can represent all the values of
5810  //   the enumeration: int, unsigned int, long int, unsigned long
5811  //   int, long long int, or unsigned long long int.
5812  // C99 6.4.4.3p2:
5813  //   An identifier declared as an enumeration constant has type int.
5814  // The C99 rule is modified by a gcc extension
5815  QualType BestPromotionType;
5816
5817  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5818
5819  if (NumNegativeBits) {
5820    // If there is a negative value, figure out the smallest integer type (of
5821    // int/long/longlong) that fits.
5822    // If it's packed, check also if it fits a char or a short.
5823    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5824      BestType = Context.SignedCharTy;
5825      BestWidth = CharWidth;
5826    } else if (Packed && NumNegativeBits <= ShortWidth &&
5827               NumPositiveBits < ShortWidth) {
5828      BestType = Context.ShortTy;
5829      BestWidth = ShortWidth;
5830    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5831      BestType = Context.IntTy;
5832      BestWidth = IntWidth;
5833    } else {
5834      BestWidth = Context.Target.getLongWidth();
5835
5836      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5837        BestType = Context.LongTy;
5838      } else {
5839        BestWidth = Context.Target.getLongLongWidth();
5840
5841        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5842          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5843        BestType = Context.LongLongTy;
5844      }
5845    }
5846    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5847  } else {
5848    // If there is no negative value, figure out which of uint, ulong, ulonglong
5849    // fits.
5850    // If it's packed, check also if it fits a char or a short.
5851    if (Packed && NumPositiveBits <= CharWidth) {
5852      BestType = Context.UnsignedCharTy;
5853      BestPromotionType = Context.IntTy;
5854      BestWidth = CharWidth;
5855    } else if (Packed && NumPositiveBits <= ShortWidth) {
5856      BestType = Context.UnsignedShortTy;
5857      BestPromotionType = Context.IntTy;
5858      BestWidth = ShortWidth;
5859    } else if (NumPositiveBits <= IntWidth) {
5860      BestType = Context.UnsignedIntTy;
5861      BestWidth = IntWidth;
5862      BestPromotionType = (NumPositiveBits == BestWidth
5863                           ? Context.UnsignedIntTy : Context.IntTy);
5864    } else if (NumPositiveBits <=
5865               (BestWidth = Context.Target.getLongWidth())) {
5866      BestType = Context.UnsignedLongTy;
5867      BestPromotionType = (NumPositiveBits == BestWidth
5868                           ? Context.UnsignedLongTy : Context.LongTy);
5869    } else {
5870      BestWidth = Context.Target.getLongLongWidth();
5871      assert(NumPositiveBits <= BestWidth &&
5872             "How could an initializer get larger than ULL?");
5873      BestType = Context.UnsignedLongLongTy;
5874      BestPromotionType = (NumPositiveBits == BestWidth
5875                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5876    }
5877  }
5878
5879  // If we're in C and the promotion type is larger than an int, just
5880  // use the underlying type, which is generally the unsigned integer
5881  // type of the same rank as the promotion type.  This is how the gcc
5882  // extension works.
5883  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5884    BestPromotionType = BestType;
5885
5886  // Loop over all of the enumerator constants, changing their types to match
5887  // the type of the enum if needed.
5888  for (unsigned i = 0; i != NumElements; ++i) {
5889    EnumConstantDecl *ECD =
5890      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5891    if (!ECD) continue;  // Already issued a diagnostic.
5892
5893    // Standard C says the enumerators have int type, but we allow, as an
5894    // extension, the enumerators to be larger than int size.  If each
5895    // enumerator value fits in an int, type it as an int, otherwise type it the
5896    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5897    // that X has type 'int', not 'unsigned'.
5898    if (ECD->getType() == Context.IntTy) {
5899      // Make sure the init value is signed.
5900      llvm::APSInt IV = ECD->getInitVal();
5901      IV.setIsSigned(true);
5902      ECD->setInitVal(IV);
5903
5904      if (getLangOptions().CPlusPlus)
5905        // C++ [dcl.enum]p4: Following the closing brace of an
5906        // enum-specifier, each enumerator has the type of its
5907        // enumeration.
5908        ECD->setType(EnumType);
5909      continue;  // Already int type.
5910    }
5911
5912    // Determine whether the value fits into an int.
5913    llvm::APSInt InitVal = ECD->getInitVal();
5914    bool FitsInInt;
5915    if (InitVal.isUnsigned() || !InitVal.isNegative())
5916      FitsInInt = InitVal.getActiveBits() < IntWidth;
5917    else
5918      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5919
5920    // If it fits into an integer type, force it.  Otherwise force it to match
5921    // the enum decl type.
5922    QualType NewTy;
5923    unsigned NewWidth;
5924    bool NewSign;
5925    if (FitsInInt) {
5926      NewTy = Context.IntTy;
5927      NewWidth = IntWidth;
5928      NewSign = true;
5929    } else if (ECD->getType() == BestType) {
5930      // Already the right type!
5931      if (getLangOptions().CPlusPlus)
5932        // C++ [dcl.enum]p4: Following the closing brace of an
5933        // enum-specifier, each enumerator has the type of its
5934        // enumeration.
5935        ECD->setType(EnumType);
5936      continue;
5937    } else {
5938      NewTy = BestType;
5939      NewWidth = BestWidth;
5940      NewSign = BestType->isSignedIntegerType();
5941    }
5942
5943    // Adjust the APSInt value.
5944    InitVal.extOrTrunc(NewWidth);
5945    InitVal.setIsSigned(NewSign);
5946    ECD->setInitVal(InitVal);
5947
5948    // Adjust the Expr initializer and type.
5949    if (ECD->getInitExpr())
5950      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5951                                                      CastExpr::CK_IntegralCast,
5952                                                      ECD->getInitExpr(),
5953                                                      /*isLvalue=*/false));
5954    if (getLangOptions().CPlusPlus)
5955      // C++ [dcl.enum]p4: Following the closing brace of an
5956      // enum-specifier, each enumerator has the type of its
5957      // enumeration.
5958      ECD->setType(EnumType);
5959    else
5960      ECD->setType(NewTy);
5961  }
5962
5963  Enum->completeDefinition(Context, BestType, BestPromotionType);
5964}
5965
5966Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5967                                            ExprArg expr) {
5968  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5969
5970  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5971                                                   Loc, AsmString);
5972  CurContext->addDecl(New);
5973  return DeclPtrTy::make(New);
5974}
5975
5976void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5977                             SourceLocation PragmaLoc,
5978                             SourceLocation NameLoc) {
5979  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5980
5981  if (PrevDecl) {
5982    PrevDecl->addAttr(::new (Context) WeakAttr());
5983  } else {
5984    (void)WeakUndeclaredIdentifiers.insert(
5985      std::pair<IdentifierInfo*,WeakInfo>
5986        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5987  }
5988}
5989
5990void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5991                                IdentifierInfo* AliasName,
5992                                SourceLocation PragmaLoc,
5993                                SourceLocation NameLoc,
5994                                SourceLocation AliasNameLoc) {
5995  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5996  WeakInfo W = WeakInfo(Name, NameLoc);
5997
5998  if (PrevDecl) {
5999    if (!PrevDecl->hasAttr<AliasAttr>())
6000      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6001        DeclApplyPragmaWeak(TUScope, ND, W);
6002  } else {
6003    (void)WeakUndeclaredIdentifiers.insert(
6004      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6005  }
6006}
6007