SemaDecl.cpp revision 2d9e8838712f3fcacedaf898fd85654cd2bb3600
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->hasExternalLinkage())
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = decl->hasExternalLinkage();
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825static bool isAttributeTargetADefinition(Decl *D) {
1826  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1827    return VD->isThisDeclarationADefinition();
1828  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1829    return TD->isCompleteDefinition() || TD->isBeingDefined();
1830  return true;
1831}
1832
1833/// Merge alignment attributes from \p Old to \p New, taking into account the
1834/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1835///
1836/// \return \c true if any attributes were added to \p New.
1837static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1838  // Look for alignas attributes on Old, and pick out whichever attribute
1839  // specifies the strictest alignment requirement.
1840  AlignedAttr *OldAlignasAttr = 0;
1841  AlignedAttr *OldStrictestAlignAttr = 0;
1842  unsigned OldAlign = 0;
1843  for (specific_attr_iterator<AlignedAttr>
1844         I = Old->specific_attr_begin<AlignedAttr>(),
1845         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1846    // FIXME: We have no way of representing inherited dependent alignments
1847    // in a case like:
1848    //   template<int A, int B> struct alignas(A) X;
1849    //   template<int A, int B> struct alignas(B) X {};
1850    // For now, we just ignore any alignas attributes which are not on the
1851    // definition in such a case.
1852    if (I->isAlignmentDependent())
1853      return false;
1854
1855    if (I->isAlignas())
1856      OldAlignasAttr = *I;
1857
1858    unsigned Align = I->getAlignment(S.Context);
1859    if (Align > OldAlign) {
1860      OldAlign = Align;
1861      OldStrictestAlignAttr = *I;
1862    }
1863  }
1864
1865  // Look for alignas attributes on New.
1866  AlignedAttr *NewAlignasAttr = 0;
1867  unsigned NewAlign = 0;
1868  for (specific_attr_iterator<AlignedAttr>
1869         I = New->specific_attr_begin<AlignedAttr>(),
1870         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1871    if (I->isAlignmentDependent())
1872      return false;
1873
1874    if (I->isAlignas())
1875      NewAlignasAttr = *I;
1876
1877    unsigned Align = I->getAlignment(S.Context);
1878    if (Align > NewAlign)
1879      NewAlign = Align;
1880  }
1881
1882  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1883    // Both declarations have 'alignas' attributes. We require them to match.
1884    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1885    // fall short. (If two declarations both have alignas, they must both match
1886    // every definition, and so must match each other if there is a definition.)
1887
1888    // If either declaration only contains 'alignas(0)' specifiers, then it
1889    // specifies the natural alignment for the type.
1890    if (OldAlign == 0 || NewAlign == 0) {
1891      QualType Ty;
1892      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1893        Ty = VD->getType();
1894      else
1895        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1896
1897      if (OldAlign == 0)
1898        OldAlign = S.Context.getTypeAlign(Ty);
1899      if (NewAlign == 0)
1900        NewAlign = S.Context.getTypeAlign(Ty);
1901    }
1902
1903    if (OldAlign != NewAlign) {
1904      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1905        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1906        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1907      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1908    }
1909  }
1910
1911  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1912    // C++11 [dcl.align]p6:
1913    //   if any declaration of an entity has an alignment-specifier,
1914    //   every defining declaration of that entity shall specify an
1915    //   equivalent alignment.
1916    // C11 6.7.5/7:
1917    //   If the definition of an object does not have an alignment
1918    //   specifier, any other declaration of that object shall also
1919    //   have no alignment specifier.
1920    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1921      << OldAlignasAttr->isC11();
1922    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1923      << OldAlignasAttr->isC11();
1924  }
1925
1926  bool AnyAdded = false;
1927
1928  // Ensure we have an attribute representing the strictest alignment.
1929  if (OldAlign > NewAlign) {
1930    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1931    Clone->setInherited(true);
1932    New->addAttr(Clone);
1933    AnyAdded = true;
1934  }
1935
1936  // Ensure we have an alignas attribute if the old declaration had one.
1937  if (OldAlignasAttr && !NewAlignasAttr &&
1938      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1939    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1940    Clone->setInherited(true);
1941    New->addAttr(Clone);
1942    AnyAdded = true;
1943  }
1944
1945  return AnyAdded;
1946}
1947
1948static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1949                               bool Override) {
1950  InheritableAttr *NewAttr = NULL;
1951  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1952  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1953    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1954                                      AA->getIntroduced(), AA->getDeprecated(),
1955                                      AA->getObsoleted(), AA->getUnavailable(),
1956                                      AA->getMessage(), Override,
1957                                      AttrSpellingListIndex);
1958  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1959    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1960                                    AttrSpellingListIndex);
1961  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1962    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1963                                        AttrSpellingListIndex);
1964  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1965    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1966                                   AttrSpellingListIndex);
1967  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1968    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1969                                   AttrSpellingListIndex);
1970  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1971    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1972                                FA->getFormatIdx(), FA->getFirstArg(),
1973                                AttrSpellingListIndex);
1974  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1975    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1976                                 AttrSpellingListIndex);
1977  else if (isa<AlignedAttr>(Attr))
1978    // AlignedAttrs are handled separately, because we need to handle all
1979    // such attributes on a declaration at the same time.
1980    NewAttr = 0;
1981  else if (!DeclHasAttr(D, Attr))
1982    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
1983
1984  if (NewAttr) {
1985    NewAttr->setInherited(true);
1986    D->addAttr(NewAttr);
1987    return true;
1988  }
1989
1990  return false;
1991}
1992
1993static const Decl *getDefinition(const Decl *D) {
1994  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1995    return TD->getDefinition();
1996  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1997    return VD->getDefinition();
1998  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1999    const FunctionDecl* Def;
2000    if (FD->hasBody(Def))
2001      return Def;
2002  }
2003  return NULL;
2004}
2005
2006static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2007  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2008       I != E; ++I) {
2009    Attr *Attribute = *I;
2010    if (Attribute->getKind() == Kind)
2011      return true;
2012  }
2013  return false;
2014}
2015
2016/// checkNewAttributesAfterDef - If we already have a definition, check that
2017/// there are no new attributes in this declaration.
2018static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2019  if (!New->hasAttrs())
2020    return;
2021
2022  const Decl *Def = getDefinition(Old);
2023  if (!Def || Def == New)
2024    return;
2025
2026  AttrVec &NewAttributes = New->getAttrs();
2027  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2028    const Attr *NewAttribute = NewAttributes[I];
2029    if (hasAttribute(Def, NewAttribute->getKind())) {
2030      ++I;
2031      continue; // regular attr merging will take care of validating this.
2032    }
2033
2034    if (isa<C11NoReturnAttr>(NewAttribute)) {
2035      // C's _Noreturn is allowed to be added to a function after it is defined.
2036      ++I;
2037      continue;
2038    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2039      if (AA->isAlignas()) {
2040        // C++11 [dcl.align]p6:
2041        //   if any declaration of an entity has an alignment-specifier,
2042        //   every defining declaration of that entity shall specify an
2043        //   equivalent alignment.
2044        // C11 6.7.5/7:
2045        //   If the definition of an object does not have an alignment
2046        //   specifier, any other declaration of that object shall also
2047        //   have no alignment specifier.
2048        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2049          << AA->isC11();
2050        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2051          << AA->isC11();
2052        NewAttributes.erase(NewAttributes.begin() + I);
2053        --E;
2054        continue;
2055      }
2056    }
2057
2058    S.Diag(NewAttribute->getLocation(),
2059           diag::warn_attribute_precede_definition);
2060    S.Diag(Def->getLocation(), diag::note_previous_definition);
2061    NewAttributes.erase(NewAttributes.begin() + I);
2062    --E;
2063  }
2064}
2065
2066/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2067void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2068                               AvailabilityMergeKind AMK) {
2069  if (!Old->hasAttrs() && !New->hasAttrs())
2070    return;
2071
2072  // attributes declared post-definition are currently ignored
2073  checkNewAttributesAfterDef(*this, New, Old);
2074
2075  if (!Old->hasAttrs())
2076    return;
2077
2078  bool foundAny = New->hasAttrs();
2079
2080  // Ensure that any moving of objects within the allocated map is done before
2081  // we process them.
2082  if (!foundAny) New->setAttrs(AttrVec());
2083
2084  for (specific_attr_iterator<InheritableAttr>
2085         i = Old->specific_attr_begin<InheritableAttr>(),
2086         e = Old->specific_attr_end<InheritableAttr>();
2087       i != e; ++i) {
2088    bool Override = false;
2089    // Ignore deprecated/unavailable/availability attributes if requested.
2090    if (isa<DeprecatedAttr>(*i) ||
2091        isa<UnavailableAttr>(*i) ||
2092        isa<AvailabilityAttr>(*i)) {
2093      switch (AMK) {
2094      case AMK_None:
2095        continue;
2096
2097      case AMK_Redeclaration:
2098        break;
2099
2100      case AMK_Override:
2101        Override = true;
2102        break;
2103      }
2104    }
2105
2106    if (mergeDeclAttribute(*this, New, *i, Override))
2107      foundAny = true;
2108  }
2109
2110  if (mergeAlignedAttrs(*this, New, Old))
2111    foundAny = true;
2112
2113  if (!foundAny) New->dropAttrs();
2114}
2115
2116/// mergeParamDeclAttributes - Copy attributes from the old parameter
2117/// to the new one.
2118static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2119                                     const ParmVarDecl *oldDecl,
2120                                     Sema &S) {
2121  // C++11 [dcl.attr.depend]p2:
2122  //   The first declaration of a function shall specify the
2123  //   carries_dependency attribute for its declarator-id if any declaration
2124  //   of the function specifies the carries_dependency attribute.
2125  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2126      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2127    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2128           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2129    // Find the first declaration of the parameter.
2130    // FIXME: Should we build redeclaration chains for function parameters?
2131    const FunctionDecl *FirstFD =
2132      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2133    const ParmVarDecl *FirstVD =
2134      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2135    S.Diag(FirstVD->getLocation(),
2136           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2137  }
2138
2139  if (!oldDecl->hasAttrs())
2140    return;
2141
2142  bool foundAny = newDecl->hasAttrs();
2143
2144  // Ensure that any moving of objects within the allocated map is
2145  // done before we process them.
2146  if (!foundAny) newDecl->setAttrs(AttrVec());
2147
2148  for (specific_attr_iterator<InheritableParamAttr>
2149       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2150       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2151    if (!DeclHasAttr(newDecl, *i)) {
2152      InheritableAttr *newAttr =
2153        cast<InheritableParamAttr>((*i)->clone(S.Context));
2154      newAttr->setInherited(true);
2155      newDecl->addAttr(newAttr);
2156      foundAny = true;
2157    }
2158  }
2159
2160  if (!foundAny) newDecl->dropAttrs();
2161}
2162
2163namespace {
2164
2165/// Used in MergeFunctionDecl to keep track of function parameters in
2166/// C.
2167struct GNUCompatibleParamWarning {
2168  ParmVarDecl *OldParm;
2169  ParmVarDecl *NewParm;
2170  QualType PromotedType;
2171};
2172
2173}
2174
2175/// getSpecialMember - get the special member enum for a method.
2176Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2177  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2178    if (Ctor->isDefaultConstructor())
2179      return Sema::CXXDefaultConstructor;
2180
2181    if (Ctor->isCopyConstructor())
2182      return Sema::CXXCopyConstructor;
2183
2184    if (Ctor->isMoveConstructor())
2185      return Sema::CXXMoveConstructor;
2186  } else if (isa<CXXDestructorDecl>(MD)) {
2187    return Sema::CXXDestructor;
2188  } else if (MD->isCopyAssignmentOperator()) {
2189    return Sema::CXXCopyAssignment;
2190  } else if (MD->isMoveAssignmentOperator()) {
2191    return Sema::CXXMoveAssignment;
2192  }
2193
2194  return Sema::CXXInvalid;
2195}
2196
2197/// canRedefineFunction - checks if a function can be redefined. Currently,
2198/// only extern inline functions can be redefined, and even then only in
2199/// GNU89 mode.
2200static bool canRedefineFunction(const FunctionDecl *FD,
2201                                const LangOptions& LangOpts) {
2202  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2203          !LangOpts.CPlusPlus &&
2204          FD->isInlineSpecified() &&
2205          FD->getStorageClass() == SC_Extern);
2206}
2207
2208/// Is the given calling convention the ABI default for the given
2209/// declaration?
2210static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2211  CallingConv ABIDefaultCC;
2212  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2213    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2214  } else {
2215    // Free C function or a static method.
2216    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2217  }
2218  return ABIDefaultCC == CC;
2219}
2220
2221template <typename T>
2222static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2223  const DeclContext *DC = Old->getDeclContext();
2224  if (DC->isRecord())
2225    return false;
2226
2227  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2228  if (OldLinkage == CXXLanguageLinkage &&
2229      New->getDeclContext()->isExternCContext())
2230    return true;
2231  if (OldLinkage == CLanguageLinkage &&
2232      New->getDeclContext()->isExternCXXContext())
2233    return true;
2234  return false;
2235}
2236
2237/// MergeFunctionDecl - We just parsed a function 'New' from
2238/// declarator D which has the same name and scope as a previous
2239/// declaration 'Old'.  Figure out how to resolve this situation,
2240/// merging decls or emitting diagnostics as appropriate.
2241///
2242/// In C++, New and Old must be declarations that are not
2243/// overloaded. Use IsOverload to determine whether New and Old are
2244/// overloaded, and to select the Old declaration that New should be
2245/// merged with.
2246///
2247/// Returns true if there was an error, false otherwise.
2248bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2249  // Verify the old decl was also a function.
2250  FunctionDecl *Old = 0;
2251  if (FunctionTemplateDecl *OldFunctionTemplate
2252        = dyn_cast<FunctionTemplateDecl>(OldD))
2253    Old = OldFunctionTemplate->getTemplatedDecl();
2254  else
2255    Old = dyn_cast<FunctionDecl>(OldD);
2256  if (!Old) {
2257    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2258      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2259      Diag(Shadow->getTargetDecl()->getLocation(),
2260           diag::note_using_decl_target);
2261      Diag(Shadow->getUsingDecl()->getLocation(),
2262           diag::note_using_decl) << 0;
2263      return true;
2264    }
2265
2266    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2267      << New->getDeclName();
2268    Diag(OldD->getLocation(), diag::note_previous_definition);
2269    return true;
2270  }
2271
2272  // Determine whether the previous declaration was a definition,
2273  // implicit declaration, or a declaration.
2274  diag::kind PrevDiag;
2275  if (Old->isThisDeclarationADefinition())
2276    PrevDiag = diag::note_previous_definition;
2277  else if (Old->isImplicit())
2278    PrevDiag = diag::note_previous_implicit_declaration;
2279  else
2280    PrevDiag = diag::note_previous_declaration;
2281
2282  QualType OldQType = Context.getCanonicalType(Old->getType());
2283  QualType NewQType = Context.getCanonicalType(New->getType());
2284
2285  // Don't complain about this if we're in GNU89 mode and the old function
2286  // is an extern inline function.
2287  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2288      New->getStorageClass() == SC_Static &&
2289      Old->getStorageClass() != SC_Static &&
2290      !canRedefineFunction(Old, getLangOpts())) {
2291    if (getLangOpts().MicrosoftExt) {
2292      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2293      Diag(Old->getLocation(), PrevDiag);
2294    } else {
2295      Diag(New->getLocation(), diag::err_static_non_static) << New;
2296      Diag(Old->getLocation(), PrevDiag);
2297      return true;
2298    }
2299  }
2300
2301  // If a function is first declared with a calling convention, but is
2302  // later declared or defined without one, the second decl assumes the
2303  // calling convention of the first.
2304  //
2305  // It's OK if a function is first declared without a calling convention,
2306  // but is later declared or defined with the default calling convention.
2307  //
2308  // For the new decl, we have to look at the NON-canonical type to tell the
2309  // difference between a function that really doesn't have a calling
2310  // convention and one that is declared cdecl. That's because in
2311  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2312  // because it is the default calling convention.
2313  //
2314  // Note also that we DO NOT return at this point, because we still have
2315  // other tests to run.
2316  const FunctionType *OldType = cast<FunctionType>(OldQType);
2317  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2318  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2319  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2320  bool RequiresAdjustment = false;
2321  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2322    // Fast path: nothing to do.
2323
2324  // Inherit the CC from the previous declaration if it was specified
2325  // there but not here.
2326  } else if (NewTypeInfo.getCC() == CC_Default) {
2327    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2328    RequiresAdjustment = true;
2329
2330  // Don't complain about mismatches when the default CC is
2331  // effectively the same as the explict one. Only Old decl contains correct
2332  // information about storage class of CXXMethod.
2333  } else if (OldTypeInfo.getCC() == CC_Default &&
2334             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2335    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2336    RequiresAdjustment = true;
2337
2338  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2339                                     NewTypeInfo.getCC())) {
2340    // Calling conventions really aren't compatible, so complain.
2341    Diag(New->getLocation(), diag::err_cconv_change)
2342      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2343      << (OldTypeInfo.getCC() == CC_Default)
2344      << (OldTypeInfo.getCC() == CC_Default ? "" :
2345          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2346    Diag(Old->getLocation(), diag::note_previous_declaration);
2347    return true;
2348  }
2349
2350  // FIXME: diagnose the other way around?
2351  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2352    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2353    RequiresAdjustment = true;
2354  }
2355
2356  // Merge regparm attribute.
2357  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2358      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2359    if (NewTypeInfo.getHasRegParm()) {
2360      Diag(New->getLocation(), diag::err_regparm_mismatch)
2361        << NewType->getRegParmType()
2362        << OldType->getRegParmType();
2363      Diag(Old->getLocation(), diag::note_previous_declaration);
2364      return true;
2365    }
2366
2367    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2368    RequiresAdjustment = true;
2369  }
2370
2371  // Merge ns_returns_retained attribute.
2372  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2373    if (NewTypeInfo.getProducesResult()) {
2374      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2375      Diag(Old->getLocation(), diag::note_previous_declaration);
2376      return true;
2377    }
2378
2379    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2380    RequiresAdjustment = true;
2381  }
2382
2383  if (RequiresAdjustment) {
2384    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2385    New->setType(QualType(NewType, 0));
2386    NewQType = Context.getCanonicalType(New->getType());
2387  }
2388
2389  // If this redeclaration makes the function inline, we may need to add it to
2390  // UndefinedButUsed.
2391  if (!Old->isInlined() && New->isInlined() &&
2392      !New->hasAttr<GNUInlineAttr>() &&
2393      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2394      Old->isUsed(false) &&
2395      !Old->isDefined() && !New->isThisDeclarationADefinition())
2396    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2397                                           SourceLocation()));
2398
2399  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2400  // about it.
2401  if (New->hasAttr<GNUInlineAttr>() &&
2402      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2403    UndefinedButUsed.erase(Old->getCanonicalDecl());
2404  }
2405
2406  if (getLangOpts().CPlusPlus) {
2407    // (C++98 13.1p2):
2408    //   Certain function declarations cannot be overloaded:
2409    //     -- Function declarations that differ only in the return type
2410    //        cannot be overloaded.
2411    QualType OldReturnType = OldType->getResultType();
2412    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2413    QualType ResQT;
2414    if (OldReturnType != NewReturnType) {
2415      if (NewReturnType->isObjCObjectPointerType()
2416          && OldReturnType->isObjCObjectPointerType())
2417        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2418      if (ResQT.isNull()) {
2419        if (New->isCXXClassMember() && New->isOutOfLine())
2420          Diag(New->getLocation(),
2421               diag::err_member_def_does_not_match_ret_type) << New;
2422        else
2423          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2424        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2425        return true;
2426      }
2427      else
2428        NewQType = ResQT;
2429    }
2430
2431    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2432    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2433    if (OldMethod && NewMethod) {
2434      // Preserve triviality.
2435      NewMethod->setTrivial(OldMethod->isTrivial());
2436
2437      // MSVC allows explicit template specialization at class scope:
2438      // 2 CXMethodDecls referring to the same function will be injected.
2439      // We don't want a redeclartion error.
2440      bool IsClassScopeExplicitSpecialization =
2441                              OldMethod->isFunctionTemplateSpecialization() &&
2442                              NewMethod->isFunctionTemplateSpecialization();
2443      bool isFriend = NewMethod->getFriendObjectKind();
2444
2445      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2446          !IsClassScopeExplicitSpecialization) {
2447        //    -- Member function declarations with the same name and the
2448        //       same parameter types cannot be overloaded if any of them
2449        //       is a static member function declaration.
2450        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2451          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2452          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2453          return true;
2454        }
2455
2456        // C++ [class.mem]p1:
2457        //   [...] A member shall not be declared twice in the
2458        //   member-specification, except that a nested class or member
2459        //   class template can be declared and then later defined.
2460        if (ActiveTemplateInstantiations.empty()) {
2461          unsigned NewDiag;
2462          if (isa<CXXConstructorDecl>(OldMethod))
2463            NewDiag = diag::err_constructor_redeclared;
2464          else if (isa<CXXDestructorDecl>(NewMethod))
2465            NewDiag = diag::err_destructor_redeclared;
2466          else if (isa<CXXConversionDecl>(NewMethod))
2467            NewDiag = diag::err_conv_function_redeclared;
2468          else
2469            NewDiag = diag::err_member_redeclared;
2470
2471          Diag(New->getLocation(), NewDiag);
2472        } else {
2473          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2474            << New << New->getType();
2475        }
2476        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2477
2478      // Complain if this is an explicit declaration of a special
2479      // member that was initially declared implicitly.
2480      //
2481      // As an exception, it's okay to befriend such methods in order
2482      // to permit the implicit constructor/destructor/operator calls.
2483      } else if (OldMethod->isImplicit()) {
2484        if (isFriend) {
2485          NewMethod->setImplicit();
2486        } else {
2487          Diag(NewMethod->getLocation(),
2488               diag::err_definition_of_implicitly_declared_member)
2489            << New << getSpecialMember(OldMethod);
2490          return true;
2491        }
2492      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2493        Diag(NewMethod->getLocation(),
2494             diag::err_definition_of_explicitly_defaulted_member)
2495          << getSpecialMember(OldMethod);
2496        return true;
2497      }
2498    }
2499
2500    // C++11 [dcl.attr.noreturn]p1:
2501    //   The first declaration of a function shall specify the noreturn
2502    //   attribute if any declaration of that function specifies the noreturn
2503    //   attribute.
2504    if (New->hasAttr<CXX11NoReturnAttr>() &&
2505        !Old->hasAttr<CXX11NoReturnAttr>()) {
2506      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2507           diag::err_noreturn_missing_on_first_decl);
2508      Diag(Old->getFirstDeclaration()->getLocation(),
2509           diag::note_noreturn_missing_first_decl);
2510    }
2511
2512    // C++11 [dcl.attr.depend]p2:
2513    //   The first declaration of a function shall specify the
2514    //   carries_dependency attribute for its declarator-id if any declaration
2515    //   of the function specifies the carries_dependency attribute.
2516    if (New->hasAttr<CarriesDependencyAttr>() &&
2517        !Old->hasAttr<CarriesDependencyAttr>()) {
2518      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2519           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2520      Diag(Old->getFirstDeclaration()->getLocation(),
2521           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2522    }
2523
2524    // (C++98 8.3.5p3):
2525    //   All declarations for a function shall agree exactly in both the
2526    //   return type and the parameter-type-list.
2527    // We also want to respect all the extended bits except noreturn.
2528
2529    // noreturn should now match unless the old type info didn't have it.
2530    QualType OldQTypeForComparison = OldQType;
2531    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2532      assert(OldQType == QualType(OldType, 0));
2533      const FunctionType *OldTypeForComparison
2534        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2535      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2536      assert(OldQTypeForComparison.isCanonical());
2537    }
2538
2539    if (haveIncompatibleLanguageLinkages(Old, New)) {
2540      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2541      Diag(Old->getLocation(), PrevDiag);
2542      return true;
2543    }
2544
2545    if (OldQTypeForComparison == NewQType)
2546      return MergeCompatibleFunctionDecls(New, Old, S);
2547
2548    // Fall through for conflicting redeclarations and redefinitions.
2549  }
2550
2551  // C: Function types need to be compatible, not identical. This handles
2552  // duplicate function decls like "void f(int); void f(enum X);" properly.
2553  if (!getLangOpts().CPlusPlus &&
2554      Context.typesAreCompatible(OldQType, NewQType)) {
2555    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2556    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2557    const FunctionProtoType *OldProto = 0;
2558    if (isa<FunctionNoProtoType>(NewFuncType) &&
2559        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2560      // The old declaration provided a function prototype, but the
2561      // new declaration does not. Merge in the prototype.
2562      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2563      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2564                                                 OldProto->arg_type_end());
2565      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2566                                         ParamTypes,
2567                                         OldProto->getExtProtoInfo());
2568      New->setType(NewQType);
2569      New->setHasInheritedPrototype();
2570
2571      // Synthesize a parameter for each argument type.
2572      SmallVector<ParmVarDecl*, 16> Params;
2573      for (FunctionProtoType::arg_type_iterator
2574             ParamType = OldProto->arg_type_begin(),
2575             ParamEnd = OldProto->arg_type_end();
2576           ParamType != ParamEnd; ++ParamType) {
2577        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2578                                                 SourceLocation(),
2579                                                 SourceLocation(), 0,
2580                                                 *ParamType, /*TInfo=*/0,
2581                                                 SC_None, SC_None,
2582                                                 0);
2583        Param->setScopeInfo(0, Params.size());
2584        Param->setImplicit();
2585        Params.push_back(Param);
2586      }
2587
2588      New->setParams(Params);
2589    }
2590
2591    return MergeCompatibleFunctionDecls(New, Old, S);
2592  }
2593
2594  // GNU C permits a K&R definition to follow a prototype declaration
2595  // if the declared types of the parameters in the K&R definition
2596  // match the types in the prototype declaration, even when the
2597  // promoted types of the parameters from the K&R definition differ
2598  // from the types in the prototype. GCC then keeps the types from
2599  // the prototype.
2600  //
2601  // If a variadic prototype is followed by a non-variadic K&R definition,
2602  // the K&R definition becomes variadic.  This is sort of an edge case, but
2603  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2604  // C99 6.9.1p8.
2605  if (!getLangOpts().CPlusPlus &&
2606      Old->hasPrototype() && !New->hasPrototype() &&
2607      New->getType()->getAs<FunctionProtoType>() &&
2608      Old->getNumParams() == New->getNumParams()) {
2609    SmallVector<QualType, 16> ArgTypes;
2610    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2611    const FunctionProtoType *OldProto
2612      = Old->getType()->getAs<FunctionProtoType>();
2613    const FunctionProtoType *NewProto
2614      = New->getType()->getAs<FunctionProtoType>();
2615
2616    // Determine whether this is the GNU C extension.
2617    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2618                                               NewProto->getResultType());
2619    bool LooseCompatible = !MergedReturn.isNull();
2620    for (unsigned Idx = 0, End = Old->getNumParams();
2621         LooseCompatible && Idx != End; ++Idx) {
2622      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2623      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2624      if (Context.typesAreCompatible(OldParm->getType(),
2625                                     NewProto->getArgType(Idx))) {
2626        ArgTypes.push_back(NewParm->getType());
2627      } else if (Context.typesAreCompatible(OldParm->getType(),
2628                                            NewParm->getType(),
2629                                            /*CompareUnqualified=*/true)) {
2630        GNUCompatibleParamWarning Warn
2631          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2632        Warnings.push_back(Warn);
2633        ArgTypes.push_back(NewParm->getType());
2634      } else
2635        LooseCompatible = false;
2636    }
2637
2638    if (LooseCompatible) {
2639      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2640        Diag(Warnings[Warn].NewParm->getLocation(),
2641             diag::ext_param_promoted_not_compatible_with_prototype)
2642          << Warnings[Warn].PromotedType
2643          << Warnings[Warn].OldParm->getType();
2644        if (Warnings[Warn].OldParm->getLocation().isValid())
2645          Diag(Warnings[Warn].OldParm->getLocation(),
2646               diag::note_previous_declaration);
2647      }
2648
2649      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2650                                           OldProto->getExtProtoInfo()));
2651      return MergeCompatibleFunctionDecls(New, Old, S);
2652    }
2653
2654    // Fall through to diagnose conflicting types.
2655  }
2656
2657  // A function that has already been declared has been redeclared or defined
2658  // with a different type- show appropriate diagnostic
2659  if (unsigned BuiltinID = Old->getBuiltinID()) {
2660    // The user has declared a builtin function with an incompatible
2661    // signature.
2662    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2663      // The function the user is redeclaring is a library-defined
2664      // function like 'malloc' or 'printf'. Warn about the
2665      // redeclaration, then pretend that we don't know about this
2666      // library built-in.
2667      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2668      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2669        << Old << Old->getType();
2670      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2671      Old->setInvalidDecl();
2672      return false;
2673    }
2674
2675    PrevDiag = diag::note_previous_builtin_declaration;
2676  }
2677
2678  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2679  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2680  return true;
2681}
2682
2683/// \brief Completes the merge of two function declarations that are
2684/// known to be compatible.
2685///
2686/// This routine handles the merging of attributes and other
2687/// properties of function declarations form the old declaration to
2688/// the new declaration, once we know that New is in fact a
2689/// redeclaration of Old.
2690///
2691/// \returns false
2692bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2693                                        Scope *S) {
2694  // Merge the attributes
2695  mergeDeclAttributes(New, Old);
2696
2697  // Merge the storage class.
2698  if (Old->getStorageClass() != SC_Extern &&
2699      Old->getStorageClass() != SC_None)
2700    New->setStorageClass(Old->getStorageClass());
2701
2702  // Merge "pure" flag.
2703  if (Old->isPure())
2704    New->setPure();
2705
2706  // Merge "used" flag.
2707  if (Old->isUsed(false))
2708    New->setUsed();
2709
2710  // Merge attributes from the parameters.  These can mismatch with K&R
2711  // declarations.
2712  if (New->getNumParams() == Old->getNumParams())
2713    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2714      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2715                               *this);
2716
2717  if (getLangOpts().CPlusPlus)
2718    return MergeCXXFunctionDecl(New, Old, S);
2719
2720  // Merge the function types so the we get the composite types for the return
2721  // and argument types.
2722  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2723  if (!Merged.isNull())
2724    New->setType(Merged);
2725
2726  return false;
2727}
2728
2729
2730void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2731                                ObjCMethodDecl *oldMethod) {
2732
2733  // Merge the attributes, including deprecated/unavailable
2734  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2735
2736  // Merge attributes from the parameters.
2737  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2738                                       oe = oldMethod->param_end();
2739  for (ObjCMethodDecl::param_iterator
2740         ni = newMethod->param_begin(), ne = newMethod->param_end();
2741       ni != ne && oi != oe; ++ni, ++oi)
2742    mergeParamDeclAttributes(*ni, *oi, *this);
2743
2744  CheckObjCMethodOverride(newMethod, oldMethod);
2745}
2746
2747/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2748/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2749/// emitting diagnostics as appropriate.
2750///
2751/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2752/// to here in AddInitializerToDecl. We can't check them before the initializer
2753/// is attached.
2754void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2755  if (New->isInvalidDecl() || Old->isInvalidDecl())
2756    return;
2757
2758  QualType MergedT;
2759  if (getLangOpts().CPlusPlus) {
2760    AutoType *AT = New->getType()->getContainedAutoType();
2761    if (AT && !AT->isDeduced()) {
2762      // We don't know what the new type is until the initializer is attached.
2763      return;
2764    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2765      // These could still be something that needs exception specs checked.
2766      return MergeVarDeclExceptionSpecs(New, Old);
2767    }
2768    // C++ [basic.link]p10:
2769    //   [...] the types specified by all declarations referring to a given
2770    //   object or function shall be identical, except that declarations for an
2771    //   array object can specify array types that differ by the presence or
2772    //   absence of a major array bound (8.3.4).
2773    else if (Old->getType()->isIncompleteArrayType() &&
2774             New->getType()->isArrayType()) {
2775      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2776      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2777      if (Context.hasSameType(OldArray->getElementType(),
2778                              NewArray->getElementType()))
2779        MergedT = New->getType();
2780    } else if (Old->getType()->isArrayType() &&
2781             New->getType()->isIncompleteArrayType()) {
2782      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2783      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2784      if (Context.hasSameType(OldArray->getElementType(),
2785                              NewArray->getElementType()))
2786        MergedT = Old->getType();
2787    } else if (New->getType()->isObjCObjectPointerType()
2788               && Old->getType()->isObjCObjectPointerType()) {
2789        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2790                                                        Old->getType());
2791    }
2792  } else {
2793    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2794  }
2795  if (MergedT.isNull()) {
2796    Diag(New->getLocation(), diag::err_redefinition_different_type)
2797      << New->getDeclName() << New->getType() << Old->getType();
2798    Diag(Old->getLocation(), diag::note_previous_definition);
2799    return New->setInvalidDecl();
2800  }
2801  New->setType(MergedT);
2802}
2803
2804/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2805/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2806/// situation, merging decls or emitting diagnostics as appropriate.
2807///
2808/// Tentative definition rules (C99 6.9.2p2) are checked by
2809/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2810/// definitions here, since the initializer hasn't been attached.
2811///
2812void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2813  // If the new decl is already invalid, don't do any other checking.
2814  if (New->isInvalidDecl())
2815    return;
2816
2817  // Verify the old decl was also a variable.
2818  VarDecl *Old = 0;
2819  if (!Previous.isSingleResult() ||
2820      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2821    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2822      << New->getDeclName();
2823    Diag(Previous.getRepresentativeDecl()->getLocation(),
2824         diag::note_previous_definition);
2825    return New->setInvalidDecl();
2826  }
2827
2828  // C++ [class.mem]p1:
2829  //   A member shall not be declared twice in the member-specification [...]
2830  //
2831  // Here, we need only consider static data members.
2832  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2833    Diag(New->getLocation(), diag::err_duplicate_member)
2834      << New->getIdentifier();
2835    Diag(Old->getLocation(), diag::note_previous_declaration);
2836    New->setInvalidDecl();
2837  }
2838
2839  mergeDeclAttributes(New, Old);
2840  // Warn if an already-declared variable is made a weak_import in a subsequent
2841  // declaration
2842  if (New->getAttr<WeakImportAttr>() &&
2843      Old->getStorageClass() == SC_None &&
2844      !Old->getAttr<WeakImportAttr>()) {
2845    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2846    Diag(Old->getLocation(), diag::note_previous_definition);
2847    // Remove weak_import attribute on new declaration.
2848    New->dropAttr<WeakImportAttr>();
2849  }
2850
2851  // Merge the types.
2852  MergeVarDeclTypes(New, Old);
2853  if (New->isInvalidDecl())
2854    return;
2855
2856  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2857  if (New->getStorageClass() == SC_Static &&
2858      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2859    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2860    Diag(Old->getLocation(), diag::note_previous_definition);
2861    return New->setInvalidDecl();
2862  }
2863  // C99 6.2.2p4:
2864  //   For an identifier declared with the storage-class specifier
2865  //   extern in a scope in which a prior declaration of that
2866  //   identifier is visible,23) if the prior declaration specifies
2867  //   internal or external linkage, the linkage of the identifier at
2868  //   the later declaration is the same as the linkage specified at
2869  //   the prior declaration. If no prior declaration is visible, or
2870  //   if the prior declaration specifies no linkage, then the
2871  //   identifier has external linkage.
2872  if (New->hasExternalStorage() && Old->hasLinkage())
2873    /* Okay */;
2874  else if (New->getStorageClass() != SC_Static &&
2875           Old->getStorageClass() == SC_Static) {
2876    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2877    Diag(Old->getLocation(), diag::note_previous_definition);
2878    return New->setInvalidDecl();
2879  }
2880
2881  // Check if extern is followed by non-extern and vice-versa.
2882  if (New->hasExternalStorage() &&
2883      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2884    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2885    Diag(Old->getLocation(), diag::note_previous_definition);
2886    return New->setInvalidDecl();
2887  }
2888  if (Old->hasExternalStorage() &&
2889      !New->hasLinkage() && New->isLocalVarDecl()) {
2890    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2891    Diag(Old->getLocation(), diag::note_previous_definition);
2892    return New->setInvalidDecl();
2893  }
2894
2895  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2896
2897  // FIXME: The test for external storage here seems wrong? We still
2898  // need to check for mismatches.
2899  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2900      // Don't complain about out-of-line definitions of static members.
2901      !(Old->getLexicalDeclContext()->isRecord() &&
2902        !New->getLexicalDeclContext()->isRecord())) {
2903    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2904    Diag(Old->getLocation(), diag::note_previous_definition);
2905    return New->setInvalidDecl();
2906  }
2907
2908  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2909    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2910    Diag(Old->getLocation(), diag::note_previous_definition);
2911  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2912    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914  }
2915
2916  // C++ doesn't have tentative definitions, so go right ahead and check here.
2917  const VarDecl *Def;
2918  if (getLangOpts().CPlusPlus &&
2919      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2920      (Def = Old->getDefinition())) {
2921    Diag(New->getLocation(), diag::err_redefinition)
2922      << New->getDeclName();
2923    Diag(Def->getLocation(), diag::note_previous_definition);
2924    New->setInvalidDecl();
2925    return;
2926  }
2927
2928  if (haveIncompatibleLanguageLinkages(Old, New)) {
2929    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2930    Diag(Old->getLocation(), diag::note_previous_definition);
2931    New->setInvalidDecl();
2932    return;
2933  }
2934
2935  // c99 6.2.2 P4.
2936  // For an identifier declared with the storage-class specifier extern in a
2937  // scope in which a prior declaration of that identifier is visible, if
2938  // the prior declaration specifies internal or external linkage, the linkage
2939  // of the identifier at the later declaration is the same as the linkage
2940  // specified at the prior declaration.
2941  // FIXME. revisit this code.
2942  if (New->hasExternalStorage() &&
2943      Old->getLinkage() == InternalLinkage)
2944    New->setStorageClass(Old->getStorageClass());
2945
2946  // Merge "used" flag.
2947  if (Old->isUsed(false))
2948    New->setUsed();
2949
2950  // Keep a chain of previous declarations.
2951  New->setPreviousDeclaration(Old);
2952
2953  // Inherit access appropriately.
2954  New->setAccess(Old->getAccess());
2955}
2956
2957/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2958/// no declarator (e.g. "struct foo;") is parsed.
2959Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2960                                       DeclSpec &DS) {
2961  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2962}
2963
2964/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2965/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2966/// parameters to cope with template friend declarations.
2967Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2968                                       DeclSpec &DS,
2969                                       MultiTemplateParamsArg TemplateParams) {
2970  Decl *TagD = 0;
2971  TagDecl *Tag = 0;
2972  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2973      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2974      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2975      DS.getTypeSpecType() == DeclSpec::TST_union ||
2976      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2977    TagD = DS.getRepAsDecl();
2978
2979    if (!TagD) // We probably had an error
2980      return 0;
2981
2982    // Note that the above type specs guarantee that the
2983    // type rep is a Decl, whereas in many of the others
2984    // it's a Type.
2985    if (isa<TagDecl>(TagD))
2986      Tag = cast<TagDecl>(TagD);
2987    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2988      Tag = CTD->getTemplatedDecl();
2989  }
2990
2991  if (Tag) {
2992    getASTContext().addUnnamedTag(Tag);
2993    Tag->setFreeStanding();
2994    if (Tag->isInvalidDecl())
2995      return Tag;
2996  }
2997
2998  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2999    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3000    // or incomplete types shall not be restrict-qualified."
3001    if (TypeQuals & DeclSpec::TQ_restrict)
3002      Diag(DS.getRestrictSpecLoc(),
3003           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3004           << DS.getSourceRange();
3005  }
3006
3007  if (DS.isConstexprSpecified()) {
3008    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3009    // and definitions of functions and variables.
3010    if (Tag)
3011      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3012        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3013            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3014            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3015            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3016    else
3017      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3018    // Don't emit warnings after this error.
3019    return TagD;
3020  }
3021
3022  if (DS.isFriendSpecified()) {
3023    // If we're dealing with a decl but not a TagDecl, assume that
3024    // whatever routines created it handled the friendship aspect.
3025    if (TagD && !Tag)
3026      return 0;
3027    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3028  }
3029
3030  // Track whether we warned about the fact that there aren't any
3031  // declarators.
3032  bool emittedWarning = false;
3033
3034  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3035    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3036        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3037      if (getLangOpts().CPlusPlus ||
3038          Record->getDeclContext()->isRecord())
3039        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3040
3041      Diag(DS.getLocStart(), diag::ext_no_declarators)
3042        << DS.getSourceRange();
3043      emittedWarning = true;
3044    }
3045  }
3046
3047  // Check for Microsoft C extension: anonymous struct.
3048  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3049      CurContext->isRecord() &&
3050      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3051    // Handle 2 kinds of anonymous struct:
3052    //   struct STRUCT;
3053    // and
3054    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3055    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3056    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3057        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3058         DS.getRepAsType().get()->isStructureType())) {
3059      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3060        << DS.getSourceRange();
3061      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3062    }
3063  }
3064
3065  if (getLangOpts().CPlusPlus &&
3066      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3067    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3068      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3069          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
3070        Diag(Enum->getLocation(), diag::ext_no_declarators)
3071          << DS.getSourceRange();
3072        emittedWarning = true;
3073      }
3074
3075  // Skip all the checks below if we have a type error.
3076  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
3077
3078  if (!DS.isMissingDeclaratorOk()) {
3079    // Warn about typedefs of enums without names, since this is an
3080    // extension in both Microsoft and GNU.
3081    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
3082        Tag && isa<EnumDecl>(Tag)) {
3083      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3084        << DS.getSourceRange();
3085      return Tag;
3086    }
3087
3088    Diag(DS.getLocStart(), diag::ext_no_declarators)
3089      << DS.getSourceRange();
3090    emittedWarning = true;
3091  }
3092
3093  // We're going to complain about a bunch of spurious specifiers;
3094  // only do this if we're declaring a tag, because otherwise we
3095  // should be getting diag::ext_no_declarators.
3096  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
3097    return TagD;
3098
3099  // Note that a linkage-specification sets a storage class, but
3100  // 'extern "C" struct foo;' is actually valid and not theoretically
3101  // useless.
3102  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
3103    if (!DS.isExternInLinkageSpec())
3104      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
3105        << DeclSpec::getSpecifierName(scs);
3106
3107  if (DS.isThreadSpecified())
3108    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
3109  if (DS.getTypeQualifiers()) {
3110    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3111      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
3112    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3113      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
3114    // Restrict is covered above.
3115  }
3116  if (DS.isInlineSpecified())
3117    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
3118  if (DS.isVirtualSpecified())
3119    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
3120  if (DS.isExplicitSpecified())
3121    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
3122
3123  if (DS.isModulePrivateSpecified() &&
3124      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3125    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3126      << Tag->getTagKind()
3127      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3128
3129  // Warn about ignored type attributes, for example:
3130  // __attribute__((aligned)) struct A;
3131  // Attributes should be placed after tag to apply to type declaration.
3132  if (!DS.getAttributes().empty()) {
3133    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3134    if (TypeSpecType == DeclSpec::TST_class ||
3135        TypeSpecType == DeclSpec::TST_struct ||
3136        TypeSpecType == DeclSpec::TST_interface ||
3137        TypeSpecType == DeclSpec::TST_union ||
3138        TypeSpecType == DeclSpec::TST_enum) {
3139      AttributeList* attrs = DS.getAttributes().getList();
3140      while (attrs) {
3141        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3142        << attrs->getName()
3143        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3144            TypeSpecType == DeclSpec::TST_struct ? 1 :
3145            TypeSpecType == DeclSpec::TST_union ? 2 :
3146            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3147        attrs = attrs->getNext();
3148      }
3149    }
3150  }
3151
3152  ActOnDocumentableDecl(TagD);
3153
3154  return TagD;
3155}
3156
3157/// We are trying to inject an anonymous member into the given scope;
3158/// check if there's an existing declaration that can't be overloaded.
3159///
3160/// \return true if this is a forbidden redeclaration
3161static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3162                                         Scope *S,
3163                                         DeclContext *Owner,
3164                                         DeclarationName Name,
3165                                         SourceLocation NameLoc,
3166                                         unsigned diagnostic) {
3167  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3168                 Sema::ForRedeclaration);
3169  if (!SemaRef.LookupName(R, S)) return false;
3170
3171  if (R.getAsSingle<TagDecl>())
3172    return false;
3173
3174  // Pick a representative declaration.
3175  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3176  assert(PrevDecl && "Expected a non-null Decl");
3177
3178  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3179    return false;
3180
3181  SemaRef.Diag(NameLoc, diagnostic) << Name;
3182  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3183
3184  return true;
3185}
3186
3187/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3188/// anonymous struct or union AnonRecord into the owning context Owner
3189/// and scope S. This routine will be invoked just after we realize
3190/// that an unnamed union or struct is actually an anonymous union or
3191/// struct, e.g.,
3192///
3193/// @code
3194/// union {
3195///   int i;
3196///   float f;
3197/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3198///    // f into the surrounding scope.x
3199/// @endcode
3200///
3201/// This routine is recursive, injecting the names of nested anonymous
3202/// structs/unions into the owning context and scope as well.
3203static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3204                                                DeclContext *Owner,
3205                                                RecordDecl *AnonRecord,
3206                                                AccessSpecifier AS,
3207                              SmallVector<NamedDecl*, 2> &Chaining,
3208                                                      bool MSAnonStruct) {
3209  unsigned diagKind
3210    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3211                            : diag::err_anonymous_struct_member_redecl;
3212
3213  bool Invalid = false;
3214
3215  // Look every FieldDecl and IndirectFieldDecl with a name.
3216  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3217                               DEnd = AnonRecord->decls_end();
3218       D != DEnd; ++D) {
3219    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3220        cast<NamedDecl>(*D)->getDeclName()) {
3221      ValueDecl *VD = cast<ValueDecl>(*D);
3222      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3223                                       VD->getLocation(), diagKind)) {
3224        // C++ [class.union]p2:
3225        //   The names of the members of an anonymous union shall be
3226        //   distinct from the names of any other entity in the
3227        //   scope in which the anonymous union is declared.
3228        Invalid = true;
3229      } else {
3230        // C++ [class.union]p2:
3231        //   For the purpose of name lookup, after the anonymous union
3232        //   definition, the members of the anonymous union are
3233        //   considered to have been defined in the scope in which the
3234        //   anonymous union is declared.
3235        unsigned OldChainingSize = Chaining.size();
3236        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3237          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3238               PE = IF->chain_end(); PI != PE; ++PI)
3239            Chaining.push_back(*PI);
3240        else
3241          Chaining.push_back(VD);
3242
3243        assert(Chaining.size() >= 2);
3244        NamedDecl **NamedChain =
3245          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3246        for (unsigned i = 0; i < Chaining.size(); i++)
3247          NamedChain[i] = Chaining[i];
3248
3249        IndirectFieldDecl* IndirectField =
3250          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3251                                    VD->getIdentifier(), VD->getType(),
3252                                    NamedChain, Chaining.size());
3253
3254        IndirectField->setAccess(AS);
3255        IndirectField->setImplicit();
3256        SemaRef.PushOnScopeChains(IndirectField, S);
3257
3258        // That includes picking up the appropriate access specifier.
3259        if (AS != AS_none) IndirectField->setAccess(AS);
3260
3261        Chaining.resize(OldChainingSize);
3262      }
3263    }
3264  }
3265
3266  return Invalid;
3267}
3268
3269/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3270/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3271/// illegal input values are mapped to SC_None.
3272static StorageClass
3273StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3274  switch (StorageClassSpec) {
3275  case DeclSpec::SCS_unspecified:    return SC_None;
3276  case DeclSpec::SCS_extern:         return SC_Extern;
3277  case DeclSpec::SCS_static:         return SC_Static;
3278  case DeclSpec::SCS_auto:           return SC_Auto;
3279  case DeclSpec::SCS_register:       return SC_Register;
3280  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3281    // Illegal SCSs map to None: error reporting is up to the caller.
3282  case DeclSpec::SCS_mutable:        // Fall through.
3283  case DeclSpec::SCS_typedef:        return SC_None;
3284  }
3285  llvm_unreachable("unknown storage class specifier");
3286}
3287
3288/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3289/// a StorageClass. Any error reporting is up to the caller:
3290/// illegal input values are mapped to SC_None.
3291static StorageClass
3292StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3293  switch (StorageClassSpec) {
3294  case DeclSpec::SCS_unspecified:    return SC_None;
3295  case DeclSpec::SCS_extern:         return SC_Extern;
3296  case DeclSpec::SCS_static:         return SC_Static;
3297  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3298    // Illegal SCSs map to None: error reporting is up to the caller.
3299  case DeclSpec::SCS_auto:           // Fall through.
3300  case DeclSpec::SCS_mutable:        // Fall through.
3301  case DeclSpec::SCS_register:       // Fall through.
3302  case DeclSpec::SCS_typedef:        return SC_None;
3303  }
3304  llvm_unreachable("unknown storage class specifier");
3305}
3306
3307/// BuildAnonymousStructOrUnion - Handle the declaration of an
3308/// anonymous structure or union. Anonymous unions are a C++ feature
3309/// (C++ [class.union]) and a C11 feature; anonymous structures
3310/// are a C11 feature and GNU C++ extension.
3311Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3312                                             AccessSpecifier AS,
3313                                             RecordDecl *Record) {
3314  DeclContext *Owner = Record->getDeclContext();
3315
3316  // Diagnose whether this anonymous struct/union is an extension.
3317  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3318    Diag(Record->getLocation(), diag::ext_anonymous_union);
3319  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3320    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3321  else if (!Record->isUnion() && !getLangOpts().C11)
3322    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3323
3324  // C and C++ require different kinds of checks for anonymous
3325  // structs/unions.
3326  bool Invalid = false;
3327  if (getLangOpts().CPlusPlus) {
3328    const char* PrevSpec = 0;
3329    unsigned DiagID;
3330    if (Record->isUnion()) {
3331      // C++ [class.union]p6:
3332      //   Anonymous unions declared in a named namespace or in the
3333      //   global namespace shall be declared static.
3334      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3335          (isa<TranslationUnitDecl>(Owner) ||
3336           (isa<NamespaceDecl>(Owner) &&
3337            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3338        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3339          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3340
3341        // Recover by adding 'static'.
3342        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3343                               PrevSpec, DiagID);
3344      }
3345      // C++ [class.union]p6:
3346      //   A storage class is not allowed in a declaration of an
3347      //   anonymous union in a class scope.
3348      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3349               isa<RecordDecl>(Owner)) {
3350        Diag(DS.getStorageClassSpecLoc(),
3351             diag::err_anonymous_union_with_storage_spec)
3352          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3353
3354        // Recover by removing the storage specifier.
3355        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3356                               SourceLocation(),
3357                               PrevSpec, DiagID);
3358      }
3359    }
3360
3361    // Ignore const/volatile/restrict qualifiers.
3362    if (DS.getTypeQualifiers()) {
3363      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3364        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3365          << Record->isUnion() << 0
3366          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3367      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3368        Diag(DS.getVolatileSpecLoc(),
3369             diag::ext_anonymous_struct_union_qualified)
3370          << Record->isUnion() << 1
3371          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3372      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3373        Diag(DS.getRestrictSpecLoc(),
3374             diag::ext_anonymous_struct_union_qualified)
3375          << Record->isUnion() << 2
3376          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3377
3378      DS.ClearTypeQualifiers();
3379    }
3380
3381    // C++ [class.union]p2:
3382    //   The member-specification of an anonymous union shall only
3383    //   define non-static data members. [Note: nested types and
3384    //   functions cannot be declared within an anonymous union. ]
3385    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3386                                 MemEnd = Record->decls_end();
3387         Mem != MemEnd; ++Mem) {
3388      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3389        // C++ [class.union]p3:
3390        //   An anonymous union shall not have private or protected
3391        //   members (clause 11).
3392        assert(FD->getAccess() != AS_none);
3393        if (FD->getAccess() != AS_public) {
3394          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3395            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3396          Invalid = true;
3397        }
3398
3399        // C++ [class.union]p1
3400        //   An object of a class with a non-trivial constructor, a non-trivial
3401        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3402        //   assignment operator cannot be a member of a union, nor can an
3403        //   array of such objects.
3404        if (CheckNontrivialField(FD))
3405          Invalid = true;
3406      } else if ((*Mem)->isImplicit()) {
3407        // Any implicit members are fine.
3408      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3409        // This is a type that showed up in an
3410        // elaborated-type-specifier inside the anonymous struct or
3411        // union, but which actually declares a type outside of the
3412        // anonymous struct or union. It's okay.
3413      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3414        if (!MemRecord->isAnonymousStructOrUnion() &&
3415            MemRecord->getDeclName()) {
3416          // Visual C++ allows type definition in anonymous struct or union.
3417          if (getLangOpts().MicrosoftExt)
3418            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3419              << (int)Record->isUnion();
3420          else {
3421            // This is a nested type declaration.
3422            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3423              << (int)Record->isUnion();
3424            Invalid = true;
3425          }
3426        } else {
3427          // This is an anonymous type definition within another anonymous type.
3428          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3429          // not part of standard C++.
3430          Diag(MemRecord->getLocation(),
3431               diag::ext_anonymous_record_with_anonymous_type)
3432            << (int)Record->isUnion();
3433        }
3434      } else if (isa<AccessSpecDecl>(*Mem)) {
3435        // Any access specifier is fine.
3436      } else {
3437        // We have something that isn't a non-static data
3438        // member. Complain about it.
3439        unsigned DK = diag::err_anonymous_record_bad_member;
3440        if (isa<TypeDecl>(*Mem))
3441          DK = diag::err_anonymous_record_with_type;
3442        else if (isa<FunctionDecl>(*Mem))
3443          DK = diag::err_anonymous_record_with_function;
3444        else if (isa<VarDecl>(*Mem))
3445          DK = diag::err_anonymous_record_with_static;
3446
3447        // Visual C++ allows type definition in anonymous struct or union.
3448        if (getLangOpts().MicrosoftExt &&
3449            DK == diag::err_anonymous_record_with_type)
3450          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3451            << (int)Record->isUnion();
3452        else {
3453          Diag((*Mem)->getLocation(), DK)
3454              << (int)Record->isUnion();
3455          Invalid = true;
3456        }
3457      }
3458    }
3459  }
3460
3461  if (!Record->isUnion() && !Owner->isRecord()) {
3462    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3463      << (int)getLangOpts().CPlusPlus;
3464    Invalid = true;
3465  }
3466
3467  // Mock up a declarator.
3468  Declarator Dc(DS, Declarator::MemberContext);
3469  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3470  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3471
3472  // Create a declaration for this anonymous struct/union.
3473  NamedDecl *Anon = 0;
3474  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3475    Anon = FieldDecl::Create(Context, OwningClass,
3476                             DS.getLocStart(),
3477                             Record->getLocation(),
3478                             /*IdentifierInfo=*/0,
3479                             Context.getTypeDeclType(Record),
3480                             TInfo,
3481                             /*BitWidth=*/0, /*Mutable=*/false,
3482                             /*InitStyle=*/ICIS_NoInit);
3483    Anon->setAccess(AS);
3484    if (getLangOpts().CPlusPlus)
3485      FieldCollector->Add(cast<FieldDecl>(Anon));
3486  } else {
3487    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3488    assert(SCSpec != DeclSpec::SCS_typedef &&
3489           "Parser allowed 'typedef' as storage class VarDecl.");
3490    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3491    if (SCSpec == DeclSpec::SCS_mutable) {
3492      // mutable can only appear on non-static class members, so it's always
3493      // an error here
3494      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3495      Invalid = true;
3496      SC = SC_None;
3497    }
3498    SCSpec = DS.getStorageClassSpecAsWritten();
3499    VarDecl::StorageClass SCAsWritten
3500      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3501
3502    Anon = VarDecl::Create(Context, Owner,
3503                           DS.getLocStart(),
3504                           Record->getLocation(), /*IdentifierInfo=*/0,
3505                           Context.getTypeDeclType(Record),
3506                           TInfo, SC, SCAsWritten);
3507
3508    // Default-initialize the implicit variable. This initialization will be
3509    // trivial in almost all cases, except if a union member has an in-class
3510    // initializer:
3511    //   union { int n = 0; };
3512    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3513  }
3514  Anon->setImplicit();
3515
3516  // Add the anonymous struct/union object to the current
3517  // context. We'll be referencing this object when we refer to one of
3518  // its members.
3519  Owner->addDecl(Anon);
3520
3521  // Inject the members of the anonymous struct/union into the owning
3522  // context and into the identifier resolver chain for name lookup
3523  // purposes.
3524  SmallVector<NamedDecl*, 2> Chain;
3525  Chain.push_back(Anon);
3526
3527  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3528                                          Chain, false))
3529    Invalid = true;
3530
3531  // Mark this as an anonymous struct/union type. Note that we do not
3532  // do this until after we have already checked and injected the
3533  // members of this anonymous struct/union type, because otherwise
3534  // the members could be injected twice: once by DeclContext when it
3535  // builds its lookup table, and once by
3536  // InjectAnonymousStructOrUnionMembers.
3537  Record->setAnonymousStructOrUnion(true);
3538
3539  if (Invalid)
3540    Anon->setInvalidDecl();
3541
3542  return Anon;
3543}
3544
3545/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3546/// Microsoft C anonymous structure.
3547/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3548/// Example:
3549///
3550/// struct A { int a; };
3551/// struct B { struct A; int b; };
3552///
3553/// void foo() {
3554///   B var;
3555///   var.a = 3;
3556/// }
3557///
3558Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3559                                           RecordDecl *Record) {
3560
3561  // If there is no Record, get the record via the typedef.
3562  if (!Record)
3563    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3564
3565  // Mock up a declarator.
3566  Declarator Dc(DS, Declarator::TypeNameContext);
3567  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3568  assert(TInfo && "couldn't build declarator info for anonymous struct");
3569
3570  // Create a declaration for this anonymous struct.
3571  NamedDecl* Anon = FieldDecl::Create(Context,
3572                             cast<RecordDecl>(CurContext),
3573                             DS.getLocStart(),
3574                             DS.getLocStart(),
3575                             /*IdentifierInfo=*/0,
3576                             Context.getTypeDeclType(Record),
3577                             TInfo,
3578                             /*BitWidth=*/0, /*Mutable=*/false,
3579                             /*InitStyle=*/ICIS_NoInit);
3580  Anon->setImplicit();
3581
3582  // Add the anonymous struct object to the current context.
3583  CurContext->addDecl(Anon);
3584
3585  // Inject the members of the anonymous struct into the current
3586  // context and into the identifier resolver chain for name lookup
3587  // purposes.
3588  SmallVector<NamedDecl*, 2> Chain;
3589  Chain.push_back(Anon);
3590
3591  RecordDecl *RecordDef = Record->getDefinition();
3592  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3593                                                        RecordDef, AS_none,
3594                                                        Chain, true))
3595    Anon->setInvalidDecl();
3596
3597  return Anon;
3598}
3599
3600/// GetNameForDeclarator - Determine the full declaration name for the
3601/// given Declarator.
3602DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3603  return GetNameFromUnqualifiedId(D.getName());
3604}
3605
3606/// \brief Retrieves the declaration name from a parsed unqualified-id.
3607DeclarationNameInfo
3608Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3609  DeclarationNameInfo NameInfo;
3610  NameInfo.setLoc(Name.StartLocation);
3611
3612  switch (Name.getKind()) {
3613
3614  case UnqualifiedId::IK_ImplicitSelfParam:
3615  case UnqualifiedId::IK_Identifier:
3616    NameInfo.setName(Name.Identifier);
3617    NameInfo.setLoc(Name.StartLocation);
3618    return NameInfo;
3619
3620  case UnqualifiedId::IK_OperatorFunctionId:
3621    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3622                                           Name.OperatorFunctionId.Operator));
3623    NameInfo.setLoc(Name.StartLocation);
3624    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3625      = Name.OperatorFunctionId.SymbolLocations[0];
3626    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3627      = Name.EndLocation.getRawEncoding();
3628    return NameInfo;
3629
3630  case UnqualifiedId::IK_LiteralOperatorId:
3631    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3632                                                           Name.Identifier));
3633    NameInfo.setLoc(Name.StartLocation);
3634    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3635    return NameInfo;
3636
3637  case UnqualifiedId::IK_ConversionFunctionId: {
3638    TypeSourceInfo *TInfo;
3639    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3640    if (Ty.isNull())
3641      return DeclarationNameInfo();
3642    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3643                                               Context.getCanonicalType(Ty)));
3644    NameInfo.setLoc(Name.StartLocation);
3645    NameInfo.setNamedTypeInfo(TInfo);
3646    return NameInfo;
3647  }
3648
3649  case UnqualifiedId::IK_ConstructorName: {
3650    TypeSourceInfo *TInfo;
3651    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3652    if (Ty.isNull())
3653      return DeclarationNameInfo();
3654    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3655                                              Context.getCanonicalType(Ty)));
3656    NameInfo.setLoc(Name.StartLocation);
3657    NameInfo.setNamedTypeInfo(TInfo);
3658    return NameInfo;
3659  }
3660
3661  case UnqualifiedId::IK_ConstructorTemplateId: {
3662    // In well-formed code, we can only have a constructor
3663    // template-id that refers to the current context, so go there
3664    // to find the actual type being constructed.
3665    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3666    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3667      return DeclarationNameInfo();
3668
3669    // Determine the type of the class being constructed.
3670    QualType CurClassType = Context.getTypeDeclType(CurClass);
3671
3672    // FIXME: Check two things: that the template-id names the same type as
3673    // CurClassType, and that the template-id does not occur when the name
3674    // was qualified.
3675
3676    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3677                                    Context.getCanonicalType(CurClassType)));
3678    NameInfo.setLoc(Name.StartLocation);
3679    // FIXME: should we retrieve TypeSourceInfo?
3680    NameInfo.setNamedTypeInfo(0);
3681    return NameInfo;
3682  }
3683
3684  case UnqualifiedId::IK_DestructorName: {
3685    TypeSourceInfo *TInfo;
3686    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3687    if (Ty.isNull())
3688      return DeclarationNameInfo();
3689    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3690                                              Context.getCanonicalType(Ty)));
3691    NameInfo.setLoc(Name.StartLocation);
3692    NameInfo.setNamedTypeInfo(TInfo);
3693    return NameInfo;
3694  }
3695
3696  case UnqualifiedId::IK_TemplateId: {
3697    TemplateName TName = Name.TemplateId->Template.get();
3698    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3699    return Context.getNameForTemplate(TName, TNameLoc);
3700  }
3701
3702  } // switch (Name.getKind())
3703
3704  llvm_unreachable("Unknown name kind");
3705}
3706
3707static QualType getCoreType(QualType Ty) {
3708  do {
3709    if (Ty->isPointerType() || Ty->isReferenceType())
3710      Ty = Ty->getPointeeType();
3711    else if (Ty->isArrayType())
3712      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3713    else
3714      return Ty.withoutLocalFastQualifiers();
3715  } while (true);
3716}
3717
3718/// hasSimilarParameters - Determine whether the C++ functions Declaration
3719/// and Definition have "nearly" matching parameters. This heuristic is
3720/// used to improve diagnostics in the case where an out-of-line function
3721/// definition doesn't match any declaration within the class or namespace.
3722/// Also sets Params to the list of indices to the parameters that differ
3723/// between the declaration and the definition. If hasSimilarParameters
3724/// returns true and Params is empty, then all of the parameters match.
3725static bool hasSimilarParameters(ASTContext &Context,
3726                                     FunctionDecl *Declaration,
3727                                     FunctionDecl *Definition,
3728                                     SmallVectorImpl<unsigned> &Params) {
3729  Params.clear();
3730  if (Declaration->param_size() != Definition->param_size())
3731    return false;
3732  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3733    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3734    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3735
3736    // The parameter types are identical
3737    if (Context.hasSameType(DefParamTy, DeclParamTy))
3738      continue;
3739
3740    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3741    QualType DefParamBaseTy = getCoreType(DefParamTy);
3742    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3743    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3744
3745    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3746        (DeclTyName && DeclTyName == DefTyName))
3747      Params.push_back(Idx);
3748    else  // The two parameters aren't even close
3749      return false;
3750  }
3751
3752  return true;
3753}
3754
3755/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3756/// declarator needs to be rebuilt in the current instantiation.
3757/// Any bits of declarator which appear before the name are valid for
3758/// consideration here.  That's specifically the type in the decl spec
3759/// and the base type in any member-pointer chunks.
3760static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3761                                                    DeclarationName Name) {
3762  // The types we specifically need to rebuild are:
3763  //   - typenames, typeofs, and decltypes
3764  //   - types which will become injected class names
3765  // Of course, we also need to rebuild any type referencing such a
3766  // type.  It's safest to just say "dependent", but we call out a
3767  // few cases here.
3768
3769  DeclSpec &DS = D.getMutableDeclSpec();
3770  switch (DS.getTypeSpecType()) {
3771  case DeclSpec::TST_typename:
3772  case DeclSpec::TST_typeofType:
3773  case DeclSpec::TST_underlyingType:
3774  case DeclSpec::TST_atomic: {
3775    // Grab the type from the parser.
3776    TypeSourceInfo *TSI = 0;
3777    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3778    if (T.isNull() || !T->isDependentType()) break;
3779
3780    // Make sure there's a type source info.  This isn't really much
3781    // of a waste; most dependent types should have type source info
3782    // attached already.
3783    if (!TSI)
3784      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3785
3786    // Rebuild the type in the current instantiation.
3787    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3788    if (!TSI) return true;
3789
3790    // Store the new type back in the decl spec.
3791    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3792    DS.UpdateTypeRep(LocType);
3793    break;
3794  }
3795
3796  case DeclSpec::TST_decltype:
3797  case DeclSpec::TST_typeofExpr: {
3798    Expr *E = DS.getRepAsExpr();
3799    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3800    if (Result.isInvalid()) return true;
3801    DS.UpdateExprRep(Result.get());
3802    break;
3803  }
3804
3805  default:
3806    // Nothing to do for these decl specs.
3807    break;
3808  }
3809
3810  // It doesn't matter what order we do this in.
3811  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3812    DeclaratorChunk &Chunk = D.getTypeObject(I);
3813
3814    // The only type information in the declarator which can come
3815    // before the declaration name is the base type of a member
3816    // pointer.
3817    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3818      continue;
3819
3820    // Rebuild the scope specifier in-place.
3821    CXXScopeSpec &SS = Chunk.Mem.Scope();
3822    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3823      return true;
3824  }
3825
3826  return false;
3827}
3828
3829Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3830  D.setFunctionDefinitionKind(FDK_Declaration);
3831  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3832
3833  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3834      Dcl && Dcl->getDeclContext()->isFileContext())
3835    Dcl->setTopLevelDeclInObjCContainer();
3836
3837  return Dcl;
3838}
3839
3840/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3841///   If T is the name of a class, then each of the following shall have a
3842///   name different from T:
3843///     - every static data member of class T;
3844///     - every member function of class T
3845///     - every member of class T that is itself a type;
3846/// \returns true if the declaration name violates these rules.
3847bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3848                                   DeclarationNameInfo NameInfo) {
3849  DeclarationName Name = NameInfo.getName();
3850
3851  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3852    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3853      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3854      return true;
3855    }
3856
3857  return false;
3858}
3859
3860/// \brief Diagnose a declaration whose declarator-id has the given
3861/// nested-name-specifier.
3862///
3863/// \param SS The nested-name-specifier of the declarator-id.
3864///
3865/// \param DC The declaration context to which the nested-name-specifier
3866/// resolves.
3867///
3868/// \param Name The name of the entity being declared.
3869///
3870/// \param Loc The location of the name of the entity being declared.
3871///
3872/// \returns true if we cannot safely recover from this error, false otherwise.
3873bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3874                                        DeclarationName Name,
3875                                      SourceLocation Loc) {
3876  DeclContext *Cur = CurContext;
3877  while (isa<LinkageSpecDecl>(Cur))
3878    Cur = Cur->getParent();
3879
3880  // C++ [dcl.meaning]p1:
3881  //   A declarator-id shall not be qualified except for the definition
3882  //   of a member function (9.3) or static data member (9.4) outside of
3883  //   its class, the definition or explicit instantiation of a function
3884  //   or variable member of a namespace outside of its namespace, or the
3885  //   definition of an explicit specialization outside of its namespace,
3886  //   or the declaration of a friend function that is a member of
3887  //   another class or namespace (11.3). [...]
3888
3889  // The user provided a superfluous scope specifier that refers back to the
3890  // class or namespaces in which the entity is already declared.
3891  //
3892  // class X {
3893  //   void X::f();
3894  // };
3895  if (Cur->Equals(DC)) {
3896    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3897                                   : diag::err_member_extra_qualification)
3898      << Name << FixItHint::CreateRemoval(SS.getRange());
3899    SS.clear();
3900    return false;
3901  }
3902
3903  // Check whether the qualifying scope encloses the scope of the original
3904  // declaration.
3905  if (!Cur->Encloses(DC)) {
3906    if (Cur->isRecord())
3907      Diag(Loc, diag::err_member_qualification)
3908        << Name << SS.getRange();
3909    else if (isa<TranslationUnitDecl>(DC))
3910      Diag(Loc, diag::err_invalid_declarator_global_scope)
3911        << Name << SS.getRange();
3912    else if (isa<FunctionDecl>(Cur))
3913      Diag(Loc, diag::err_invalid_declarator_in_function)
3914        << Name << SS.getRange();
3915    else
3916      Diag(Loc, diag::err_invalid_declarator_scope)
3917      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3918
3919    return true;
3920  }
3921
3922  if (Cur->isRecord()) {
3923    // Cannot qualify members within a class.
3924    Diag(Loc, diag::err_member_qualification)
3925      << Name << SS.getRange();
3926    SS.clear();
3927
3928    // C++ constructors and destructors with incorrect scopes can break
3929    // our AST invariants by having the wrong underlying types. If
3930    // that's the case, then drop this declaration entirely.
3931    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3932         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3933        !Context.hasSameType(Name.getCXXNameType(),
3934                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3935      return true;
3936
3937    return false;
3938  }
3939
3940  // C++11 [dcl.meaning]p1:
3941  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3942  //   not begin with a decltype-specifer"
3943  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3944  while (SpecLoc.getPrefix())
3945    SpecLoc = SpecLoc.getPrefix();
3946  if (dyn_cast_or_null<DecltypeType>(
3947        SpecLoc.getNestedNameSpecifier()->getAsType()))
3948    Diag(Loc, diag::err_decltype_in_declarator)
3949      << SpecLoc.getTypeLoc().getSourceRange();
3950
3951  return false;
3952}
3953
3954NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3955                                  MultiTemplateParamsArg TemplateParamLists) {
3956  // TODO: consider using NameInfo for diagnostic.
3957  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3958  DeclarationName Name = NameInfo.getName();
3959
3960  // All of these full declarators require an identifier.  If it doesn't have
3961  // one, the ParsedFreeStandingDeclSpec action should be used.
3962  if (!Name) {
3963    if (!D.isInvalidType())  // Reject this if we think it is valid.
3964      Diag(D.getDeclSpec().getLocStart(),
3965           diag::err_declarator_need_ident)
3966        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3967    return 0;
3968  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3969    return 0;
3970
3971  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3972  // we find one that is.
3973  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3974         (S->getFlags() & Scope::TemplateParamScope) != 0)
3975    S = S->getParent();
3976
3977  DeclContext *DC = CurContext;
3978  if (D.getCXXScopeSpec().isInvalid())
3979    D.setInvalidType();
3980  else if (D.getCXXScopeSpec().isSet()) {
3981    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3982                                        UPPC_DeclarationQualifier))
3983      return 0;
3984
3985    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3986    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3987    if (!DC) {
3988      // If we could not compute the declaration context, it's because the
3989      // declaration context is dependent but does not refer to a class,
3990      // class template, or class template partial specialization. Complain
3991      // and return early, to avoid the coming semantic disaster.
3992      Diag(D.getIdentifierLoc(),
3993           diag::err_template_qualified_declarator_no_match)
3994        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3995        << D.getCXXScopeSpec().getRange();
3996      return 0;
3997    }
3998    bool IsDependentContext = DC->isDependentContext();
3999
4000    if (!IsDependentContext &&
4001        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4002      return 0;
4003
4004    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4005      Diag(D.getIdentifierLoc(),
4006           diag::err_member_def_undefined_record)
4007        << Name << DC << D.getCXXScopeSpec().getRange();
4008      D.setInvalidType();
4009    } else if (!D.getDeclSpec().isFriendSpecified()) {
4010      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4011                                      Name, D.getIdentifierLoc())) {
4012        if (DC->isRecord())
4013          return 0;
4014
4015        D.setInvalidType();
4016      }
4017    }
4018
4019    // Check whether we need to rebuild the type of the given
4020    // declaration in the current instantiation.
4021    if (EnteringContext && IsDependentContext &&
4022        TemplateParamLists.size() != 0) {
4023      ContextRAII SavedContext(*this, DC);
4024      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4025        D.setInvalidType();
4026    }
4027  }
4028
4029  if (DiagnoseClassNameShadow(DC, NameInfo))
4030    // If this is a typedef, we'll end up spewing multiple diagnostics.
4031    // Just return early; it's safer.
4032    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4033      return 0;
4034
4035  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4036  QualType R = TInfo->getType();
4037
4038  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4039                                      UPPC_DeclarationType))
4040    D.setInvalidType();
4041
4042  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4043                        ForRedeclaration);
4044
4045  // See if this is a redefinition of a variable in the same scope.
4046  if (!D.getCXXScopeSpec().isSet()) {
4047    bool IsLinkageLookup = false;
4048
4049    // If the declaration we're planning to build will be a function
4050    // or object with linkage, then look for another declaration with
4051    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4052    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4053      /* Do nothing*/;
4054    else if (R->isFunctionType()) {
4055      if (CurContext->isFunctionOrMethod() ||
4056          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4057        IsLinkageLookup = true;
4058    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4059      IsLinkageLookup = true;
4060    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4061             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4062      IsLinkageLookup = true;
4063
4064    if (IsLinkageLookup)
4065      Previous.clear(LookupRedeclarationWithLinkage);
4066
4067    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4068  } else { // Something like "int foo::x;"
4069    LookupQualifiedName(Previous, DC);
4070
4071    // C++ [dcl.meaning]p1:
4072    //   When the declarator-id is qualified, the declaration shall refer to a
4073    //  previously declared member of the class or namespace to which the
4074    //  qualifier refers (or, in the case of a namespace, of an element of the
4075    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4076    //  thereof; [...]
4077    //
4078    // Note that we already checked the context above, and that we do not have
4079    // enough information to make sure that Previous contains the declaration
4080    // we want to match. For example, given:
4081    //
4082    //   class X {
4083    //     void f();
4084    //     void f(float);
4085    //   };
4086    //
4087    //   void X::f(int) { } // ill-formed
4088    //
4089    // In this case, Previous will point to the overload set
4090    // containing the two f's declared in X, but neither of them
4091    // matches.
4092
4093    // C++ [dcl.meaning]p1:
4094    //   [...] the member shall not merely have been introduced by a
4095    //   using-declaration in the scope of the class or namespace nominated by
4096    //   the nested-name-specifier of the declarator-id.
4097    RemoveUsingDecls(Previous);
4098  }
4099
4100  if (Previous.isSingleResult() &&
4101      Previous.getFoundDecl()->isTemplateParameter()) {
4102    // Maybe we will complain about the shadowed template parameter.
4103    if (!D.isInvalidType())
4104      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4105                                      Previous.getFoundDecl());
4106
4107    // Just pretend that we didn't see the previous declaration.
4108    Previous.clear();
4109  }
4110
4111  // In C++, the previous declaration we find might be a tag type
4112  // (class or enum). In this case, the new declaration will hide the
4113  // tag type. Note that this does does not apply if we're declaring a
4114  // typedef (C++ [dcl.typedef]p4).
4115  if (Previous.isSingleTagDecl() &&
4116      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4117    Previous.clear();
4118
4119  // Check that there are no default arguments other than in the parameters
4120  // of a function declaration (C++ only).
4121  if (getLangOpts().CPlusPlus)
4122    CheckExtraCXXDefaultArguments(D);
4123
4124  NamedDecl *New;
4125
4126  bool AddToScope = true;
4127  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4128    if (TemplateParamLists.size()) {
4129      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4130      return 0;
4131    }
4132
4133    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4134  } else if (R->isFunctionType()) {
4135    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4136                                  TemplateParamLists,
4137                                  AddToScope);
4138  } else {
4139    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4140                                  TemplateParamLists);
4141  }
4142
4143  if (New == 0)
4144    return 0;
4145
4146  // If this has an identifier and is not an invalid redeclaration or
4147  // function template specialization, add it to the scope stack.
4148  if (New->getDeclName() && AddToScope &&
4149       !(D.isRedeclaration() && New->isInvalidDecl()))
4150    PushOnScopeChains(New, S);
4151
4152  return New;
4153}
4154
4155/// Helper method to turn variable array types into constant array
4156/// types in certain situations which would otherwise be errors (for
4157/// GCC compatibility).
4158static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4159                                                    ASTContext &Context,
4160                                                    bool &SizeIsNegative,
4161                                                    llvm::APSInt &Oversized) {
4162  // This method tries to turn a variable array into a constant
4163  // array even when the size isn't an ICE.  This is necessary
4164  // for compatibility with code that depends on gcc's buggy
4165  // constant expression folding, like struct {char x[(int)(char*)2];}
4166  SizeIsNegative = false;
4167  Oversized = 0;
4168
4169  if (T->isDependentType())
4170    return QualType();
4171
4172  QualifierCollector Qs;
4173  const Type *Ty = Qs.strip(T);
4174
4175  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4176    QualType Pointee = PTy->getPointeeType();
4177    QualType FixedType =
4178        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4179                                            Oversized);
4180    if (FixedType.isNull()) return FixedType;
4181    FixedType = Context.getPointerType(FixedType);
4182    return Qs.apply(Context, FixedType);
4183  }
4184  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4185    QualType Inner = PTy->getInnerType();
4186    QualType FixedType =
4187        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4188                                            Oversized);
4189    if (FixedType.isNull()) return FixedType;
4190    FixedType = Context.getParenType(FixedType);
4191    return Qs.apply(Context, FixedType);
4192  }
4193
4194  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4195  if (!VLATy)
4196    return QualType();
4197  // FIXME: We should probably handle this case
4198  if (VLATy->getElementType()->isVariablyModifiedType())
4199    return QualType();
4200
4201  llvm::APSInt Res;
4202  if (!VLATy->getSizeExpr() ||
4203      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4204    return QualType();
4205
4206  // Check whether the array size is negative.
4207  if (Res.isSigned() && Res.isNegative()) {
4208    SizeIsNegative = true;
4209    return QualType();
4210  }
4211
4212  // Check whether the array is too large to be addressed.
4213  unsigned ActiveSizeBits
4214    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4215                                              Res);
4216  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4217    Oversized = Res;
4218    return QualType();
4219  }
4220
4221  return Context.getConstantArrayType(VLATy->getElementType(),
4222                                      Res, ArrayType::Normal, 0);
4223}
4224
4225static void
4226FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4227  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4228    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4229    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4230                                      DstPTL.getPointeeLoc());
4231    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4232    return;
4233  }
4234  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4235    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4236    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4237                                      DstPTL.getInnerLoc());
4238    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4239    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4240    return;
4241  }
4242  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4243  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4244  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4245  TypeLoc DstElemTL = DstATL.getElementLoc();
4246  DstElemTL.initializeFullCopy(SrcElemTL);
4247  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4248  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4249  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4250}
4251
4252/// Helper method to turn variable array types into constant array
4253/// types in certain situations which would otherwise be errors (for
4254/// GCC compatibility).
4255static TypeSourceInfo*
4256TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4257                                              ASTContext &Context,
4258                                              bool &SizeIsNegative,
4259                                              llvm::APSInt &Oversized) {
4260  QualType FixedTy
4261    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4262                                          SizeIsNegative, Oversized);
4263  if (FixedTy.isNull())
4264    return 0;
4265  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4266  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4267                                    FixedTInfo->getTypeLoc());
4268  return FixedTInfo;
4269}
4270
4271/// \brief Register the given locally-scoped extern "C" declaration so
4272/// that it can be found later for redeclarations
4273void
4274Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4275                                       const LookupResult &Previous,
4276                                       Scope *S) {
4277  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4278         "Decl is not a locally-scoped decl!");
4279  // Note that we have a locally-scoped external with this name.
4280  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4281
4282  if (!Previous.isSingleResult())
4283    return;
4284
4285  NamedDecl *PrevDecl = Previous.getFoundDecl();
4286
4287  // If there was a previous declaration of this entity, it may be in
4288  // our identifier chain. Update the identifier chain with the new
4289  // declaration.
4290  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4291    // The previous declaration was found on the identifer resolver
4292    // chain, so remove it from its scope.
4293
4294    if (S->isDeclScope(PrevDecl)) {
4295      // Special case for redeclarations in the SAME scope.
4296      // Because this declaration is going to be added to the identifier chain
4297      // later, we should temporarily take it OFF the chain.
4298      IdResolver.RemoveDecl(ND);
4299
4300    } else {
4301      // Find the scope for the original declaration.
4302      while (S && !S->isDeclScope(PrevDecl))
4303        S = S->getParent();
4304    }
4305
4306    if (S)
4307      S->RemoveDecl(PrevDecl);
4308  }
4309}
4310
4311llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4312Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4313  if (ExternalSource) {
4314    // Load locally-scoped external decls from the external source.
4315    SmallVector<NamedDecl *, 4> Decls;
4316    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4317    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4318      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4319        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4320      if (Pos == LocallyScopedExternCDecls.end())
4321        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4322    }
4323  }
4324
4325  return LocallyScopedExternCDecls.find(Name);
4326}
4327
4328/// \brief Diagnose function specifiers on a declaration of an identifier that
4329/// does not identify a function.
4330void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4331  // FIXME: We should probably indicate the identifier in question to avoid
4332  // confusion for constructs like "inline int a(), b;"
4333  if (D.getDeclSpec().isInlineSpecified())
4334    Diag(D.getDeclSpec().getInlineSpecLoc(),
4335         diag::err_inline_non_function);
4336
4337  if (D.getDeclSpec().isVirtualSpecified())
4338    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4339         diag::err_virtual_non_function);
4340
4341  if (D.getDeclSpec().isExplicitSpecified())
4342    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4343         diag::err_explicit_non_function);
4344
4345  if (D.getDeclSpec().isNoreturnSpecified())
4346    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4347         diag::err_noreturn_non_function);
4348}
4349
4350NamedDecl*
4351Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4352                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4353  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4354  if (D.getCXXScopeSpec().isSet()) {
4355    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4356      << D.getCXXScopeSpec().getRange();
4357    D.setInvalidType();
4358    // Pretend we didn't see the scope specifier.
4359    DC = CurContext;
4360    Previous.clear();
4361  }
4362
4363  DiagnoseFunctionSpecifiers(D);
4364
4365  if (D.getDeclSpec().isThreadSpecified())
4366    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4367  if (D.getDeclSpec().isConstexprSpecified())
4368    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4369      << 1;
4370
4371  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4372    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4373      << D.getName().getSourceRange();
4374    return 0;
4375  }
4376
4377  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4378  if (!NewTD) return 0;
4379
4380  // Handle attributes prior to checking for duplicates in MergeVarDecl
4381  ProcessDeclAttributes(S, NewTD, D);
4382
4383  CheckTypedefForVariablyModifiedType(S, NewTD);
4384
4385  bool Redeclaration = D.isRedeclaration();
4386  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4387  D.setRedeclaration(Redeclaration);
4388  return ND;
4389}
4390
4391void
4392Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4393  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4394  // then it shall have block scope.
4395  // Note that variably modified types must be fixed before merging the decl so
4396  // that redeclarations will match.
4397  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4398  QualType T = TInfo->getType();
4399  if (T->isVariablyModifiedType()) {
4400    getCurFunction()->setHasBranchProtectedScope();
4401
4402    if (S->getFnParent() == 0) {
4403      bool SizeIsNegative;
4404      llvm::APSInt Oversized;
4405      TypeSourceInfo *FixedTInfo =
4406        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4407                                                      SizeIsNegative,
4408                                                      Oversized);
4409      if (FixedTInfo) {
4410        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4411        NewTD->setTypeSourceInfo(FixedTInfo);
4412      } else {
4413        if (SizeIsNegative)
4414          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4415        else if (T->isVariableArrayType())
4416          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4417        else if (Oversized.getBoolValue())
4418          Diag(NewTD->getLocation(), diag::err_array_too_large)
4419            << Oversized.toString(10);
4420        else
4421          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4422        NewTD->setInvalidDecl();
4423      }
4424    }
4425  }
4426}
4427
4428
4429/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4430/// declares a typedef-name, either using the 'typedef' type specifier or via
4431/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4432NamedDecl*
4433Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4434                           LookupResult &Previous, bool &Redeclaration) {
4435  // Merge the decl with the existing one if appropriate. If the decl is
4436  // in an outer scope, it isn't the same thing.
4437  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4438                       /*ExplicitInstantiationOrSpecialization=*/false);
4439  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4440  if (!Previous.empty()) {
4441    Redeclaration = true;
4442    MergeTypedefNameDecl(NewTD, Previous);
4443  }
4444
4445  // If this is the C FILE type, notify the AST context.
4446  if (IdentifierInfo *II = NewTD->getIdentifier())
4447    if (!NewTD->isInvalidDecl() &&
4448        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4449      if (II->isStr("FILE"))
4450        Context.setFILEDecl(NewTD);
4451      else if (II->isStr("jmp_buf"))
4452        Context.setjmp_bufDecl(NewTD);
4453      else if (II->isStr("sigjmp_buf"))
4454        Context.setsigjmp_bufDecl(NewTD);
4455      else if (II->isStr("ucontext_t"))
4456        Context.setucontext_tDecl(NewTD);
4457    }
4458
4459  return NewTD;
4460}
4461
4462/// \brief Determines whether the given declaration is an out-of-scope
4463/// previous declaration.
4464///
4465/// This routine should be invoked when name lookup has found a
4466/// previous declaration (PrevDecl) that is not in the scope where a
4467/// new declaration by the same name is being introduced. If the new
4468/// declaration occurs in a local scope, previous declarations with
4469/// linkage may still be considered previous declarations (C99
4470/// 6.2.2p4-5, C++ [basic.link]p6).
4471///
4472/// \param PrevDecl the previous declaration found by name
4473/// lookup
4474///
4475/// \param DC the context in which the new declaration is being
4476/// declared.
4477///
4478/// \returns true if PrevDecl is an out-of-scope previous declaration
4479/// for a new delcaration with the same name.
4480static bool
4481isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4482                                ASTContext &Context) {
4483  if (!PrevDecl)
4484    return false;
4485
4486  if (!PrevDecl->hasLinkage())
4487    return false;
4488
4489  if (Context.getLangOpts().CPlusPlus) {
4490    // C++ [basic.link]p6:
4491    //   If there is a visible declaration of an entity with linkage
4492    //   having the same name and type, ignoring entities declared
4493    //   outside the innermost enclosing namespace scope, the block
4494    //   scope declaration declares that same entity and receives the
4495    //   linkage of the previous declaration.
4496    DeclContext *OuterContext = DC->getRedeclContext();
4497    if (!OuterContext->isFunctionOrMethod())
4498      // This rule only applies to block-scope declarations.
4499      return false;
4500
4501    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4502    if (PrevOuterContext->isRecord())
4503      // We found a member function: ignore it.
4504      return false;
4505
4506    // Find the innermost enclosing namespace for the new and
4507    // previous declarations.
4508    OuterContext = OuterContext->getEnclosingNamespaceContext();
4509    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4510
4511    // The previous declaration is in a different namespace, so it
4512    // isn't the same function.
4513    if (!OuterContext->Equals(PrevOuterContext))
4514      return false;
4515  }
4516
4517  return true;
4518}
4519
4520static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4521  CXXScopeSpec &SS = D.getCXXScopeSpec();
4522  if (!SS.isSet()) return;
4523  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4524}
4525
4526bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4527  QualType type = decl->getType();
4528  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4529  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4530    // Various kinds of declaration aren't allowed to be __autoreleasing.
4531    unsigned kind = -1U;
4532    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4533      if (var->hasAttr<BlocksAttr>())
4534        kind = 0; // __block
4535      else if (!var->hasLocalStorage())
4536        kind = 1; // global
4537    } else if (isa<ObjCIvarDecl>(decl)) {
4538      kind = 3; // ivar
4539    } else if (isa<FieldDecl>(decl)) {
4540      kind = 2; // field
4541    }
4542
4543    if (kind != -1U) {
4544      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4545        << kind;
4546    }
4547  } else if (lifetime == Qualifiers::OCL_None) {
4548    // Try to infer lifetime.
4549    if (!type->isObjCLifetimeType())
4550      return false;
4551
4552    lifetime = type->getObjCARCImplicitLifetime();
4553    type = Context.getLifetimeQualifiedType(type, lifetime);
4554    decl->setType(type);
4555  }
4556
4557  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4558    // Thread-local variables cannot have lifetime.
4559    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4560        var->isThreadSpecified()) {
4561      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4562        << var->getType();
4563      return true;
4564    }
4565  }
4566
4567  return false;
4568}
4569
4570static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4571  // 'weak' only applies to declarations with external linkage.
4572  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4573    if (ND.getLinkage() != ExternalLinkage) {
4574      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4575      ND.dropAttr<WeakAttr>();
4576    }
4577  }
4578  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4579    if (ND.hasExternalLinkage()) {
4580      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4581      ND.dropAttr<WeakRefAttr>();
4582    }
4583  }
4584}
4585
4586NamedDecl*
4587Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4588                              TypeSourceInfo *TInfo, LookupResult &Previous,
4589                              MultiTemplateParamsArg TemplateParamLists) {
4590  QualType R = TInfo->getType();
4591  DeclarationName Name = GetNameForDeclarator(D).getName();
4592
4593  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4594  assert(SCSpec != DeclSpec::SCS_typedef &&
4595         "Parser allowed 'typedef' as storage class VarDecl.");
4596  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4597
4598  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4599  {
4600    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4601    // half array type (unless the cl_khr_fp16 extension is enabled).
4602    if (Context.getBaseElementType(R)->isHalfType()) {
4603      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4604      D.setInvalidType();
4605    }
4606  }
4607
4608  if (SCSpec == DeclSpec::SCS_mutable) {
4609    // mutable can only appear on non-static class members, so it's always
4610    // an error here
4611    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4612    D.setInvalidType();
4613    SC = SC_None;
4614  }
4615  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4616  VarDecl::StorageClass SCAsWritten
4617    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4618
4619  IdentifierInfo *II = Name.getAsIdentifierInfo();
4620  if (!II) {
4621    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4622      << Name;
4623    return 0;
4624  }
4625
4626  DiagnoseFunctionSpecifiers(D);
4627
4628  if (!DC->isRecord() && S->getFnParent() == 0) {
4629    // C99 6.9p2: The storage-class specifiers auto and register shall not
4630    // appear in the declaration specifiers in an external declaration.
4631    if (SC == SC_Auto || SC == SC_Register) {
4632
4633      // If this is a register variable with an asm label specified, then this
4634      // is a GNU extension.
4635      if (SC == SC_Register && D.getAsmLabel())
4636        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4637      else
4638        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4639      D.setInvalidType();
4640    }
4641  }
4642
4643  if (getLangOpts().OpenCL) {
4644    // Set up the special work-group-local storage class for variables in the
4645    // OpenCL __local address space.
4646    if (R.getAddressSpace() == LangAS::opencl_local) {
4647      SC = SC_OpenCLWorkGroupLocal;
4648      SCAsWritten = SC_OpenCLWorkGroupLocal;
4649    }
4650
4651    // OpenCL v1.2 s6.9.b p4:
4652    // The sampler type cannot be used with the __local and __global address
4653    // space qualifiers.
4654    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4655      R.getAddressSpace() == LangAS::opencl_global)) {
4656      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4657    }
4658
4659    // OpenCL 1.2 spec, p6.9 r:
4660    // The event type cannot be used to declare a program scope variable.
4661    // The event type cannot be used with the __local, __constant and __global
4662    // address space qualifiers.
4663    if (R->isEventT()) {
4664      if (S->getParent() == 0) {
4665        Diag(D.getLocStart(), diag::err_event_t_global_var);
4666        D.setInvalidType();
4667      }
4668
4669      if (R.getAddressSpace()) {
4670        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4671        D.setInvalidType();
4672      }
4673    }
4674  }
4675
4676  bool isExplicitSpecialization = false;
4677  VarDecl *NewVD;
4678  if (!getLangOpts().CPlusPlus) {
4679    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4680                            D.getIdentifierLoc(), II,
4681                            R, TInfo, SC, SCAsWritten);
4682
4683    if (D.isInvalidType())
4684      NewVD->setInvalidDecl();
4685  } else {
4686    if (DC->isRecord() && !CurContext->isRecord()) {
4687      // This is an out-of-line definition of a static data member.
4688      if (SC == SC_Static) {
4689        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4690             diag::err_static_out_of_line)
4691          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4692      } else if (SC == SC_None)
4693        SC = SC_Static;
4694    }
4695    if (SC == SC_Static && CurContext->isRecord()) {
4696      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4697        if (RD->isLocalClass())
4698          Diag(D.getIdentifierLoc(),
4699               diag::err_static_data_member_not_allowed_in_local_class)
4700            << Name << RD->getDeclName();
4701
4702        // C++98 [class.union]p1: If a union contains a static data member,
4703        // the program is ill-formed. C++11 drops this restriction.
4704        if (RD->isUnion())
4705          Diag(D.getIdentifierLoc(),
4706               getLangOpts().CPlusPlus11
4707                 ? diag::warn_cxx98_compat_static_data_member_in_union
4708                 : diag::ext_static_data_member_in_union) << Name;
4709        // We conservatively disallow static data members in anonymous structs.
4710        else if (!RD->getDeclName())
4711          Diag(D.getIdentifierLoc(),
4712               diag::err_static_data_member_not_allowed_in_anon_struct)
4713            << Name << RD->isUnion();
4714      }
4715    }
4716
4717    // Match up the template parameter lists with the scope specifier, then
4718    // determine whether we have a template or a template specialization.
4719    isExplicitSpecialization = false;
4720    bool Invalid = false;
4721    if (TemplateParameterList *TemplateParams
4722        = MatchTemplateParametersToScopeSpecifier(
4723                                  D.getDeclSpec().getLocStart(),
4724                                                  D.getIdentifierLoc(),
4725                                                  D.getCXXScopeSpec(),
4726                                                  TemplateParamLists.data(),
4727                                                  TemplateParamLists.size(),
4728                                                  /*never a friend*/ false,
4729                                                  isExplicitSpecialization,
4730                                                  Invalid)) {
4731      if (TemplateParams->size() > 0) {
4732        // There is no such thing as a variable template.
4733        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4734          << II
4735          << SourceRange(TemplateParams->getTemplateLoc(),
4736                         TemplateParams->getRAngleLoc());
4737        return 0;
4738      } else {
4739        // There is an extraneous 'template<>' for this variable. Complain
4740        // about it, but allow the declaration of the variable.
4741        Diag(TemplateParams->getTemplateLoc(),
4742             diag::err_template_variable_noparams)
4743          << II
4744          << SourceRange(TemplateParams->getTemplateLoc(),
4745                         TemplateParams->getRAngleLoc());
4746      }
4747    }
4748
4749    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4750                            D.getIdentifierLoc(), II,
4751                            R, TInfo, SC, SCAsWritten);
4752
4753    // If this decl has an auto type in need of deduction, make a note of the
4754    // Decl so we can diagnose uses of it in its own initializer.
4755    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4756        R->getContainedAutoType())
4757      ParsingInitForAutoVars.insert(NewVD);
4758
4759    if (D.isInvalidType() || Invalid)
4760      NewVD->setInvalidDecl();
4761
4762    SetNestedNameSpecifier(NewVD, D);
4763
4764    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4765      NewVD->setTemplateParameterListsInfo(Context,
4766                                           TemplateParamLists.size(),
4767                                           TemplateParamLists.data());
4768    }
4769
4770    if (D.getDeclSpec().isConstexprSpecified())
4771      NewVD->setConstexpr(true);
4772  }
4773
4774  // Set the lexical context. If the declarator has a C++ scope specifier, the
4775  // lexical context will be different from the semantic context.
4776  NewVD->setLexicalDeclContext(CurContext);
4777
4778  if (D.getDeclSpec().isThreadSpecified()) {
4779    if (NewVD->hasLocalStorage())
4780      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4781    else if (!Context.getTargetInfo().isTLSSupported())
4782      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4783    else
4784      NewVD->setThreadSpecified(true);
4785  }
4786
4787  if (D.getDeclSpec().isModulePrivateSpecified()) {
4788    if (isExplicitSpecialization)
4789      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4790        << 2
4791        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4792    else if (NewVD->hasLocalStorage())
4793      Diag(NewVD->getLocation(), diag::err_module_private_local)
4794        << 0 << NewVD->getDeclName()
4795        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4796        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4797    else
4798      NewVD->setModulePrivate();
4799  }
4800
4801  // Handle attributes prior to checking for duplicates in MergeVarDecl
4802  ProcessDeclAttributes(S, NewVD, D);
4803
4804  if (NewVD->hasAttrs())
4805    CheckAlignasUnderalignment(NewVD);
4806
4807  if (getLangOpts().CUDA) {
4808    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4809    // storage [duration]."
4810    if (SC == SC_None && S->getFnParent() != 0 &&
4811        (NewVD->hasAttr<CUDASharedAttr>() ||
4812         NewVD->hasAttr<CUDAConstantAttr>())) {
4813      NewVD->setStorageClass(SC_Static);
4814      NewVD->setStorageClassAsWritten(SC_Static);
4815    }
4816  }
4817
4818  // In auto-retain/release, infer strong retension for variables of
4819  // retainable type.
4820  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4821    NewVD->setInvalidDecl();
4822
4823  // Handle GNU asm-label extension (encoded as an attribute).
4824  if (Expr *E = (Expr*)D.getAsmLabel()) {
4825    // The parser guarantees this is a string.
4826    StringLiteral *SE = cast<StringLiteral>(E);
4827    StringRef Label = SE->getString();
4828    if (S->getFnParent() != 0) {
4829      switch (SC) {
4830      case SC_None:
4831      case SC_Auto:
4832        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4833        break;
4834      case SC_Register:
4835        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4836          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4837        break;
4838      case SC_Static:
4839      case SC_Extern:
4840      case SC_PrivateExtern:
4841      case SC_OpenCLWorkGroupLocal:
4842        break;
4843      }
4844    }
4845
4846    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4847                                                Context, Label));
4848  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4849    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4850      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4851    if (I != ExtnameUndeclaredIdentifiers.end()) {
4852      NewVD->addAttr(I->second);
4853      ExtnameUndeclaredIdentifiers.erase(I);
4854    }
4855  }
4856
4857  // Diagnose shadowed variables before filtering for scope.
4858  if (!D.getCXXScopeSpec().isSet())
4859    CheckShadow(S, NewVD, Previous);
4860
4861  // Don't consider existing declarations that are in a different
4862  // scope and are out-of-semantic-context declarations (if the new
4863  // declaration has linkage).
4864  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4865                       isExplicitSpecialization);
4866
4867  if (!getLangOpts().CPlusPlus) {
4868    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4869  } else {
4870    // Merge the decl with the existing one if appropriate.
4871    if (!Previous.empty()) {
4872      if (Previous.isSingleResult() &&
4873          isa<FieldDecl>(Previous.getFoundDecl()) &&
4874          D.getCXXScopeSpec().isSet()) {
4875        // The user tried to define a non-static data member
4876        // out-of-line (C++ [dcl.meaning]p1).
4877        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4878          << D.getCXXScopeSpec().getRange();
4879        Previous.clear();
4880        NewVD->setInvalidDecl();
4881      }
4882    } else if (D.getCXXScopeSpec().isSet()) {
4883      // No previous declaration in the qualifying scope.
4884      Diag(D.getIdentifierLoc(), diag::err_no_member)
4885        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4886        << D.getCXXScopeSpec().getRange();
4887      NewVD->setInvalidDecl();
4888    }
4889
4890    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4891
4892    // This is an explicit specialization of a static data member. Check it.
4893    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4894        CheckMemberSpecialization(NewVD, Previous))
4895      NewVD->setInvalidDecl();
4896  }
4897
4898  ProcessPragmaWeak(S, NewVD);
4899  checkAttributesAfterMerging(*this, *NewVD);
4900
4901  // If this is a locally-scoped extern C variable, update the map of
4902  // such variables.
4903  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4904      !NewVD->isInvalidDecl())
4905    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4906
4907  return NewVD;
4908}
4909
4910/// \brief Diagnose variable or built-in function shadowing.  Implements
4911/// -Wshadow.
4912///
4913/// This method is called whenever a VarDecl is added to a "useful"
4914/// scope.
4915///
4916/// \param S the scope in which the shadowing name is being declared
4917/// \param R the lookup of the name
4918///
4919void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4920  // Return if warning is ignored.
4921  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4922        DiagnosticsEngine::Ignored)
4923    return;
4924
4925  // Don't diagnose declarations at file scope.
4926  if (D->hasGlobalStorage())
4927    return;
4928
4929  DeclContext *NewDC = D->getDeclContext();
4930
4931  // Only diagnose if we're shadowing an unambiguous field or variable.
4932  if (R.getResultKind() != LookupResult::Found)
4933    return;
4934
4935  NamedDecl* ShadowedDecl = R.getFoundDecl();
4936  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4937    return;
4938
4939  // Fields are not shadowed by variables in C++ static methods.
4940  if (isa<FieldDecl>(ShadowedDecl))
4941    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4942      if (MD->isStatic())
4943        return;
4944
4945  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4946    if (shadowedVar->isExternC()) {
4947      // For shadowing external vars, make sure that we point to the global
4948      // declaration, not a locally scoped extern declaration.
4949      for (VarDecl::redecl_iterator
4950             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4951           I != E; ++I)
4952        if (I->isFileVarDecl()) {
4953          ShadowedDecl = *I;
4954          break;
4955        }
4956    }
4957
4958  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4959
4960  // Only warn about certain kinds of shadowing for class members.
4961  if (NewDC && NewDC->isRecord()) {
4962    // In particular, don't warn about shadowing non-class members.
4963    if (!OldDC->isRecord())
4964      return;
4965
4966    // TODO: should we warn about static data members shadowing
4967    // static data members from base classes?
4968
4969    // TODO: don't diagnose for inaccessible shadowed members.
4970    // This is hard to do perfectly because we might friend the
4971    // shadowing context, but that's just a false negative.
4972  }
4973
4974  // Determine what kind of declaration we're shadowing.
4975  unsigned Kind;
4976  if (isa<RecordDecl>(OldDC)) {
4977    if (isa<FieldDecl>(ShadowedDecl))
4978      Kind = 3; // field
4979    else
4980      Kind = 2; // static data member
4981  } else if (OldDC->isFileContext())
4982    Kind = 1; // global
4983  else
4984    Kind = 0; // local
4985
4986  DeclarationName Name = R.getLookupName();
4987
4988  // Emit warning and note.
4989  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4990  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4991}
4992
4993/// \brief Check -Wshadow without the advantage of a previous lookup.
4994void Sema::CheckShadow(Scope *S, VarDecl *D) {
4995  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4996        DiagnosticsEngine::Ignored)
4997    return;
4998
4999  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5000                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5001  LookupName(R, S);
5002  CheckShadow(S, D, R);
5003}
5004
5005template<typename T>
5006static bool mayConflictWithNonVisibleExternC(const T *ND) {
5007  return ND->isExternC() ||
5008    ND->getDeclContext()->getRedeclContext()->isTranslationUnit();
5009}
5010
5011/// \brief Perform semantic checking on a newly-created variable
5012/// declaration.
5013///
5014/// This routine performs all of the type-checking required for a
5015/// variable declaration once it has been built. It is used both to
5016/// check variables after they have been parsed and their declarators
5017/// have been translated into a declaration, and to check variables
5018/// that have been instantiated from a template.
5019///
5020/// Sets NewVD->isInvalidDecl() if an error was encountered.
5021///
5022/// Returns true if the variable declaration is a redeclaration.
5023bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5024                                    LookupResult &Previous) {
5025  // If the decl is already known invalid, don't check it.
5026  if (NewVD->isInvalidDecl())
5027    return false;
5028
5029  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5030  QualType T = TInfo->getType();
5031
5032  if (T->isObjCObjectType()) {
5033    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5034      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5035    T = Context.getObjCObjectPointerType(T);
5036    NewVD->setType(T);
5037  }
5038
5039  // Emit an error if an address space was applied to decl with local storage.
5040  // This includes arrays of objects with address space qualifiers, but not
5041  // automatic variables that point to other address spaces.
5042  // ISO/IEC TR 18037 S5.1.2
5043  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5044    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5045    NewVD->setInvalidDecl();
5046    return false;
5047  }
5048
5049  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5050  // scope.
5051  if ((getLangOpts().OpenCLVersion >= 120)
5052      && NewVD->isStaticLocal()) {
5053    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5054    NewVD->setInvalidDecl();
5055    return false;
5056  }
5057
5058  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5059      && !NewVD->hasAttr<BlocksAttr>()) {
5060    if (getLangOpts().getGC() != LangOptions::NonGC)
5061      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5062    else {
5063      assert(!getLangOpts().ObjCAutoRefCount);
5064      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5065    }
5066  }
5067
5068  bool isVM = T->isVariablyModifiedType();
5069  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5070      NewVD->hasAttr<BlocksAttr>())
5071    getCurFunction()->setHasBranchProtectedScope();
5072
5073  if ((isVM && NewVD->hasLinkage()) ||
5074      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5075    bool SizeIsNegative;
5076    llvm::APSInt Oversized;
5077    TypeSourceInfo *FixedTInfo =
5078      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5079                                                    SizeIsNegative, Oversized);
5080    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5081      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5082      // FIXME: This won't give the correct result for
5083      // int a[10][n];
5084      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5085
5086      if (NewVD->isFileVarDecl())
5087        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5088        << SizeRange;
5089      else if (NewVD->getStorageClass() == SC_Static)
5090        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5091        << SizeRange;
5092      else
5093        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5094        << SizeRange;
5095      NewVD->setInvalidDecl();
5096      return false;
5097    }
5098
5099    if (FixedTInfo == 0) {
5100      if (NewVD->isFileVarDecl())
5101        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5102      else
5103        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5104      NewVD->setInvalidDecl();
5105      return false;
5106    }
5107
5108    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5109    NewVD->setType(FixedTInfo->getType());
5110    NewVD->setTypeSourceInfo(FixedTInfo);
5111  }
5112
5113  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5114    // Since we did not find anything by this name, look for a non-visible
5115    // extern "C" declaration with the same name.
5116    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5117      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5118    if (Pos != LocallyScopedExternCDecls.end())
5119      Previous.addDecl(Pos->second);
5120  }
5121
5122  // Filter out any non-conflicting previous declarations.
5123  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5124
5125  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5126    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5127      << T;
5128    NewVD->setInvalidDecl();
5129    return false;
5130  }
5131
5132  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5133    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5134    NewVD->setInvalidDecl();
5135    return false;
5136  }
5137
5138  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5139    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5140    NewVD->setInvalidDecl();
5141    return false;
5142  }
5143
5144  if (NewVD->isConstexpr() && !T->isDependentType() &&
5145      RequireLiteralType(NewVD->getLocation(), T,
5146                         diag::err_constexpr_var_non_literal)) {
5147    NewVD->setInvalidDecl();
5148    return false;
5149  }
5150
5151  if (!Previous.empty()) {
5152    MergeVarDecl(NewVD, Previous);
5153    return true;
5154  }
5155  return false;
5156}
5157
5158/// \brief Data used with FindOverriddenMethod
5159struct FindOverriddenMethodData {
5160  Sema *S;
5161  CXXMethodDecl *Method;
5162};
5163
5164/// \brief Member lookup function that determines whether a given C++
5165/// method overrides a method in a base class, to be used with
5166/// CXXRecordDecl::lookupInBases().
5167static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5168                                 CXXBasePath &Path,
5169                                 void *UserData) {
5170  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5171
5172  FindOverriddenMethodData *Data
5173    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5174
5175  DeclarationName Name = Data->Method->getDeclName();
5176
5177  // FIXME: Do we care about other names here too?
5178  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5179    // We really want to find the base class destructor here.
5180    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5181    CanQualType CT = Data->S->Context.getCanonicalType(T);
5182
5183    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5184  }
5185
5186  for (Path.Decls = BaseRecord->lookup(Name);
5187       !Path.Decls.empty();
5188       Path.Decls = Path.Decls.slice(1)) {
5189    NamedDecl *D = Path.Decls.front();
5190    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5191      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5192        return true;
5193    }
5194  }
5195
5196  return false;
5197}
5198
5199namespace {
5200  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5201}
5202/// \brief Report an error regarding overriding, along with any relevant
5203/// overriden methods.
5204///
5205/// \param DiagID the primary error to report.
5206/// \param MD the overriding method.
5207/// \param OEK which overrides to include as notes.
5208static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5209                            OverrideErrorKind OEK = OEK_All) {
5210  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5211  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5212                                      E = MD->end_overridden_methods();
5213       I != E; ++I) {
5214    // This check (& the OEK parameter) could be replaced by a predicate, but
5215    // without lambdas that would be overkill. This is still nicer than writing
5216    // out the diag loop 3 times.
5217    if ((OEK == OEK_All) ||
5218        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5219        (OEK == OEK_Deleted && (*I)->isDeleted()))
5220      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5221  }
5222}
5223
5224/// AddOverriddenMethods - See if a method overrides any in the base classes,
5225/// and if so, check that it's a valid override and remember it.
5226bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5227  // Look for virtual methods in base classes that this method might override.
5228  CXXBasePaths Paths;
5229  FindOverriddenMethodData Data;
5230  Data.Method = MD;
5231  Data.S = this;
5232  bool hasDeletedOverridenMethods = false;
5233  bool hasNonDeletedOverridenMethods = false;
5234  bool AddedAny = false;
5235  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5236    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5237         E = Paths.found_decls_end(); I != E; ++I) {
5238      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5239        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5240        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5241            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5242            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5243            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5244          hasDeletedOverridenMethods |= OldMD->isDeleted();
5245          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5246          AddedAny = true;
5247        }
5248      }
5249    }
5250  }
5251
5252  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5253    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5254  }
5255  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5256    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5257  }
5258
5259  return AddedAny;
5260}
5261
5262namespace {
5263  // Struct for holding all of the extra arguments needed by
5264  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5265  struct ActOnFDArgs {
5266    Scope *S;
5267    Declarator &D;
5268    MultiTemplateParamsArg TemplateParamLists;
5269    bool AddToScope;
5270  };
5271}
5272
5273namespace {
5274
5275// Callback to only accept typo corrections that have a non-zero edit distance.
5276// Also only accept corrections that have the same parent decl.
5277class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5278 public:
5279  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5280                            CXXRecordDecl *Parent)
5281      : Context(Context), OriginalFD(TypoFD),
5282        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5283
5284  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5285    if (candidate.getEditDistance() == 0)
5286      return false;
5287
5288    SmallVector<unsigned, 1> MismatchedParams;
5289    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5290                                          CDeclEnd = candidate.end();
5291         CDecl != CDeclEnd; ++CDecl) {
5292      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5293
5294      if (FD && !FD->hasBody() &&
5295          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5296        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5297          CXXRecordDecl *Parent = MD->getParent();
5298          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5299            return true;
5300        } else if (!ExpectedParent) {
5301          return true;
5302        }
5303      }
5304    }
5305
5306    return false;
5307  }
5308
5309 private:
5310  ASTContext &Context;
5311  FunctionDecl *OriginalFD;
5312  CXXRecordDecl *ExpectedParent;
5313};
5314
5315}
5316
5317/// \brief Generate diagnostics for an invalid function redeclaration.
5318///
5319/// This routine handles generating the diagnostic messages for an invalid
5320/// function redeclaration, including finding possible similar declarations
5321/// or performing typo correction if there are no previous declarations with
5322/// the same name.
5323///
5324/// Returns a NamedDecl iff typo correction was performed and substituting in
5325/// the new declaration name does not cause new errors.
5326static NamedDecl* DiagnoseInvalidRedeclaration(
5327    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5328    ActOnFDArgs &ExtraArgs) {
5329  NamedDecl *Result = NULL;
5330  DeclarationName Name = NewFD->getDeclName();
5331  DeclContext *NewDC = NewFD->getDeclContext();
5332  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5333                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5334  SmallVector<unsigned, 1> MismatchedParams;
5335  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5336  TypoCorrection Correction;
5337  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5338                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5339  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5340                                  : diag::err_member_def_does_not_match;
5341
5342  NewFD->setInvalidDecl();
5343  SemaRef.LookupQualifiedName(Prev, NewDC);
5344  assert(!Prev.isAmbiguous() &&
5345         "Cannot have an ambiguity in previous-declaration lookup");
5346  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5347  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5348                                      MD ? MD->getParent() : 0);
5349  if (!Prev.empty()) {
5350    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5351         Func != FuncEnd; ++Func) {
5352      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5353      if (FD &&
5354          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5355        // Add 1 to the index so that 0 can mean the mismatch didn't
5356        // involve a parameter
5357        unsigned ParamNum =
5358            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5359        NearMatches.push_back(std::make_pair(FD, ParamNum));
5360      }
5361    }
5362  // If the qualified name lookup yielded nothing, try typo correction
5363  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5364                                         Prev.getLookupKind(), 0, 0,
5365                                         Validator, NewDC))) {
5366    // Trap errors.
5367    Sema::SFINAETrap Trap(SemaRef);
5368
5369    // Set up everything for the call to ActOnFunctionDeclarator
5370    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5371                              ExtraArgs.D.getIdentifierLoc());
5372    Previous.clear();
5373    Previous.setLookupName(Correction.getCorrection());
5374    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5375                                    CDeclEnd = Correction.end();
5376         CDecl != CDeclEnd; ++CDecl) {
5377      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5378      if (FD && !FD->hasBody() &&
5379          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5380        Previous.addDecl(FD);
5381      }
5382    }
5383    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5384    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5385    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5386    // eliminate the need for the parameter pack ExtraArgs.
5387    Result = SemaRef.ActOnFunctionDeclarator(
5388        ExtraArgs.S, ExtraArgs.D,
5389        Correction.getCorrectionDecl()->getDeclContext(),
5390        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5391        ExtraArgs.AddToScope);
5392    if (Trap.hasErrorOccurred()) {
5393      // Pretend the typo correction never occurred
5394      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5395                                ExtraArgs.D.getIdentifierLoc());
5396      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5397      Previous.clear();
5398      Previous.setLookupName(Name);
5399      Result = NULL;
5400    } else {
5401      for (LookupResult::iterator Func = Previous.begin(),
5402                               FuncEnd = Previous.end();
5403           Func != FuncEnd; ++Func) {
5404        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5405          NearMatches.push_back(std::make_pair(FD, 0));
5406      }
5407    }
5408    if (NearMatches.empty()) {
5409      // Ignore the correction if it didn't yield any close FunctionDecl matches
5410      Correction = TypoCorrection();
5411    } else {
5412      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5413                             : diag::err_member_def_does_not_match_suggest;
5414    }
5415  }
5416
5417  if (Correction) {
5418    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5419    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5420    // turn causes the correction to fully qualify the name. If we fix
5421    // CorrectTypo to minimally qualify then this change should be good.
5422    SourceRange FixItLoc(NewFD->getLocation());
5423    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5424    if (Correction.getCorrectionSpecifier() && SS.isValid())
5425      FixItLoc.setBegin(SS.getBeginLoc());
5426    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5427        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5428        << FixItHint::CreateReplacement(
5429            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5430  } else {
5431    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5432        << Name << NewDC << NewFD->getLocation();
5433  }
5434
5435  bool NewFDisConst = false;
5436  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5437    NewFDisConst = NewMD->isConst();
5438
5439  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5440       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5441       NearMatch != NearMatchEnd; ++NearMatch) {
5442    FunctionDecl *FD = NearMatch->first;
5443    bool FDisConst = false;
5444    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5445      FDisConst = MD->isConst();
5446
5447    if (unsigned Idx = NearMatch->second) {
5448      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5449      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5450      if (Loc.isInvalid()) Loc = FD->getLocation();
5451      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5452          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5453    } else if (Correction) {
5454      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5455          << Correction.getQuoted(SemaRef.getLangOpts());
5456    } else if (FDisConst != NewFDisConst) {
5457      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5458          << NewFDisConst << FD->getSourceRange().getEnd();
5459    } else
5460      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5461  }
5462  return Result;
5463}
5464
5465static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5466                                                          Declarator &D) {
5467  switch (D.getDeclSpec().getStorageClassSpec()) {
5468  default: llvm_unreachable("Unknown storage class!");
5469  case DeclSpec::SCS_auto:
5470  case DeclSpec::SCS_register:
5471  case DeclSpec::SCS_mutable:
5472    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5473                 diag::err_typecheck_sclass_func);
5474    D.setInvalidType();
5475    break;
5476  case DeclSpec::SCS_unspecified: break;
5477  case DeclSpec::SCS_extern: return SC_Extern;
5478  case DeclSpec::SCS_static: {
5479    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5480      // C99 6.7.1p5:
5481      //   The declaration of an identifier for a function that has
5482      //   block scope shall have no explicit storage-class specifier
5483      //   other than extern
5484      // See also (C++ [dcl.stc]p4).
5485      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5486                   diag::err_static_block_func);
5487      break;
5488    } else
5489      return SC_Static;
5490  }
5491  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5492  }
5493
5494  // No explicit storage class has already been returned
5495  return SC_None;
5496}
5497
5498static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5499                                           DeclContext *DC, QualType &R,
5500                                           TypeSourceInfo *TInfo,
5501                                           FunctionDecl::StorageClass SC,
5502                                           bool &IsVirtualOkay) {
5503  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5504  DeclarationName Name = NameInfo.getName();
5505
5506  FunctionDecl *NewFD = 0;
5507  bool isInline = D.getDeclSpec().isInlineSpecified();
5508  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5509  FunctionDecl::StorageClass SCAsWritten
5510    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5511
5512  if (!SemaRef.getLangOpts().CPlusPlus) {
5513    // Determine whether the function was written with a
5514    // prototype. This true when:
5515    //   - there is a prototype in the declarator, or
5516    //   - the type R of the function is some kind of typedef or other reference
5517    //     to a type name (which eventually refers to a function type).
5518    bool HasPrototype =
5519      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5520      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5521
5522    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5523                                 D.getLocStart(), NameInfo, R,
5524                                 TInfo, SC, SCAsWritten, isInline,
5525                                 HasPrototype);
5526    if (D.isInvalidType())
5527      NewFD->setInvalidDecl();
5528
5529    // Set the lexical context.
5530    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5531
5532    return NewFD;
5533  }
5534
5535  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5536  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5537
5538  // Check that the return type is not an abstract class type.
5539  // For record types, this is done by the AbstractClassUsageDiagnoser once
5540  // the class has been completely parsed.
5541  if (!DC->isRecord() &&
5542      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5543                                     R->getAs<FunctionType>()->getResultType(),
5544                                     diag::err_abstract_type_in_decl,
5545                                     SemaRef.AbstractReturnType))
5546    D.setInvalidType();
5547
5548  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5549    // This is a C++ constructor declaration.
5550    assert(DC->isRecord() &&
5551           "Constructors can only be declared in a member context");
5552
5553    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5554    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5555                                      D.getLocStart(), NameInfo,
5556                                      R, TInfo, isExplicit, isInline,
5557                                      /*isImplicitlyDeclared=*/false,
5558                                      isConstexpr);
5559
5560  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5561    // This is a C++ destructor declaration.
5562    if (DC->isRecord()) {
5563      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5564      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5565      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5566                                        SemaRef.Context, Record,
5567                                        D.getLocStart(),
5568                                        NameInfo, R, TInfo, isInline,
5569                                        /*isImplicitlyDeclared=*/false);
5570
5571      // If the class is complete, then we now create the implicit exception
5572      // specification. If the class is incomplete or dependent, we can't do
5573      // it yet.
5574      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5575          Record->getDefinition() && !Record->isBeingDefined() &&
5576          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5577        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5578      }
5579
5580      IsVirtualOkay = true;
5581      return NewDD;
5582
5583    } else {
5584      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5585      D.setInvalidType();
5586
5587      // Create a FunctionDecl to satisfy the function definition parsing
5588      // code path.
5589      return FunctionDecl::Create(SemaRef.Context, DC,
5590                                  D.getLocStart(),
5591                                  D.getIdentifierLoc(), Name, R, TInfo,
5592                                  SC, SCAsWritten, isInline,
5593                                  /*hasPrototype=*/true, isConstexpr);
5594    }
5595
5596  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5597    if (!DC->isRecord()) {
5598      SemaRef.Diag(D.getIdentifierLoc(),
5599           diag::err_conv_function_not_member);
5600      return 0;
5601    }
5602
5603    SemaRef.CheckConversionDeclarator(D, R, SC);
5604    IsVirtualOkay = true;
5605    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5606                                     D.getLocStart(), NameInfo,
5607                                     R, TInfo, isInline, isExplicit,
5608                                     isConstexpr, SourceLocation());
5609
5610  } else if (DC->isRecord()) {
5611    // If the name of the function is the same as the name of the record,
5612    // then this must be an invalid constructor that has a return type.
5613    // (The parser checks for a return type and makes the declarator a
5614    // constructor if it has no return type).
5615    if (Name.getAsIdentifierInfo() &&
5616        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5617      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5618        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5619        << SourceRange(D.getIdentifierLoc());
5620      return 0;
5621    }
5622
5623    bool isStatic = SC == SC_Static;
5624
5625    // [class.free]p1:
5626    // Any allocation function for a class T is a static member
5627    // (even if not explicitly declared static).
5628    if (Name.getCXXOverloadedOperator() == OO_New ||
5629        Name.getCXXOverloadedOperator() == OO_Array_New)
5630      isStatic = true;
5631
5632    // [class.free]p6 Any deallocation function for a class X is a static member
5633    // (even if not explicitly declared static).
5634    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5635        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5636      isStatic = true;
5637
5638    IsVirtualOkay = !isStatic;
5639
5640    // This is a C++ method declaration.
5641    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5642                                 D.getLocStart(), NameInfo, R,
5643                                 TInfo, isStatic, SCAsWritten, isInline,
5644                                 isConstexpr, SourceLocation());
5645
5646  } else {
5647    // Determine whether the function was written with a
5648    // prototype. This true when:
5649    //   - we're in C++ (where every function has a prototype),
5650    return FunctionDecl::Create(SemaRef.Context, DC,
5651                                D.getLocStart(),
5652                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5653                                true/*HasPrototype*/, isConstexpr);
5654  }
5655}
5656
5657void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5658  // In C++, the empty parameter-type-list must be spelled "void"; a
5659  // typedef of void is not permitted.
5660  if (getLangOpts().CPlusPlus &&
5661      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5662    bool IsTypeAlias = false;
5663    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5664      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5665    else if (const TemplateSpecializationType *TST =
5666               Param->getType()->getAs<TemplateSpecializationType>())
5667      IsTypeAlias = TST->isTypeAlias();
5668    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5669      << IsTypeAlias;
5670  }
5671}
5672
5673NamedDecl*
5674Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5675                              TypeSourceInfo *TInfo, LookupResult &Previous,
5676                              MultiTemplateParamsArg TemplateParamLists,
5677                              bool &AddToScope) {
5678  QualType R = TInfo->getType();
5679
5680  assert(R.getTypePtr()->isFunctionType());
5681
5682  // TODO: consider using NameInfo for diagnostic.
5683  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5684  DeclarationName Name = NameInfo.getName();
5685  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5686
5687  if (D.getDeclSpec().isThreadSpecified())
5688    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5689
5690  // Do not allow returning a objc interface by-value.
5691  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5692    Diag(D.getIdentifierLoc(),
5693         diag::err_object_cannot_be_passed_returned_by_value) << 0
5694    << R->getAs<FunctionType>()->getResultType()
5695    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5696
5697    QualType T = R->getAs<FunctionType>()->getResultType();
5698    T = Context.getObjCObjectPointerType(T);
5699    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5700      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5701      R = Context.getFunctionType(T,
5702                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5703                                                     FPT->getNumArgs()),
5704                                  EPI);
5705    }
5706    else if (isa<FunctionNoProtoType>(R))
5707      R = Context.getFunctionNoProtoType(T);
5708  }
5709
5710  bool isFriend = false;
5711  FunctionTemplateDecl *FunctionTemplate = 0;
5712  bool isExplicitSpecialization = false;
5713  bool isFunctionTemplateSpecialization = false;
5714
5715  bool isDependentClassScopeExplicitSpecialization = false;
5716  bool HasExplicitTemplateArgs = false;
5717  TemplateArgumentListInfo TemplateArgs;
5718
5719  bool isVirtualOkay = false;
5720
5721  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5722                                              isVirtualOkay);
5723  if (!NewFD) return 0;
5724
5725  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5726    NewFD->setTopLevelDeclInObjCContainer();
5727
5728  if (getLangOpts().CPlusPlus) {
5729    bool isInline = D.getDeclSpec().isInlineSpecified();
5730    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5731    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5732    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5733    isFriend = D.getDeclSpec().isFriendSpecified();
5734    if (isFriend && !isInline && D.isFunctionDefinition()) {
5735      // C++ [class.friend]p5
5736      //   A function can be defined in a friend declaration of a
5737      //   class . . . . Such a function is implicitly inline.
5738      NewFD->setImplicitlyInline();
5739    }
5740
5741    // If this is a method defined in an __interface, and is not a constructor
5742    // or an overloaded operator, then set the pure flag (isVirtual will already
5743    // return true).
5744    if (const CXXRecordDecl *Parent =
5745          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5746      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5747        NewFD->setPure(true);
5748    }
5749
5750    SetNestedNameSpecifier(NewFD, D);
5751    isExplicitSpecialization = false;
5752    isFunctionTemplateSpecialization = false;
5753    if (D.isInvalidType())
5754      NewFD->setInvalidDecl();
5755
5756    // Set the lexical context. If the declarator has a C++
5757    // scope specifier, or is the object of a friend declaration, the
5758    // lexical context will be different from the semantic context.
5759    NewFD->setLexicalDeclContext(CurContext);
5760
5761    // Match up the template parameter lists with the scope specifier, then
5762    // determine whether we have a template or a template specialization.
5763    bool Invalid = false;
5764    if (TemplateParameterList *TemplateParams
5765          = MatchTemplateParametersToScopeSpecifier(
5766                                  D.getDeclSpec().getLocStart(),
5767                                  D.getIdentifierLoc(),
5768                                  D.getCXXScopeSpec(),
5769                                  TemplateParamLists.data(),
5770                                  TemplateParamLists.size(),
5771                                  isFriend,
5772                                  isExplicitSpecialization,
5773                                  Invalid)) {
5774      if (TemplateParams->size() > 0) {
5775        // This is a function template
5776
5777        // Check that we can declare a template here.
5778        if (CheckTemplateDeclScope(S, TemplateParams))
5779          return 0;
5780
5781        // A destructor cannot be a template.
5782        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5783          Diag(NewFD->getLocation(), diag::err_destructor_template);
5784          return 0;
5785        }
5786
5787        // If we're adding a template to a dependent context, we may need to
5788        // rebuilding some of the types used within the template parameter list,
5789        // now that we know what the current instantiation is.
5790        if (DC->isDependentContext()) {
5791          ContextRAII SavedContext(*this, DC);
5792          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5793            Invalid = true;
5794        }
5795
5796
5797        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5798                                                        NewFD->getLocation(),
5799                                                        Name, TemplateParams,
5800                                                        NewFD);
5801        FunctionTemplate->setLexicalDeclContext(CurContext);
5802        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5803
5804        // For source fidelity, store the other template param lists.
5805        if (TemplateParamLists.size() > 1) {
5806          NewFD->setTemplateParameterListsInfo(Context,
5807                                               TemplateParamLists.size() - 1,
5808                                               TemplateParamLists.data());
5809        }
5810      } else {
5811        // This is a function template specialization.
5812        isFunctionTemplateSpecialization = true;
5813        // For source fidelity, store all the template param lists.
5814        NewFD->setTemplateParameterListsInfo(Context,
5815                                             TemplateParamLists.size(),
5816                                             TemplateParamLists.data());
5817
5818        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5819        if (isFriend) {
5820          // We want to remove the "template<>", found here.
5821          SourceRange RemoveRange = TemplateParams->getSourceRange();
5822
5823          // If we remove the template<> and the name is not a
5824          // template-id, we're actually silently creating a problem:
5825          // the friend declaration will refer to an untemplated decl,
5826          // and clearly the user wants a template specialization.  So
5827          // we need to insert '<>' after the name.
5828          SourceLocation InsertLoc;
5829          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5830            InsertLoc = D.getName().getSourceRange().getEnd();
5831            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5832          }
5833
5834          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5835            << Name << RemoveRange
5836            << FixItHint::CreateRemoval(RemoveRange)
5837            << FixItHint::CreateInsertion(InsertLoc, "<>");
5838        }
5839      }
5840    }
5841    else {
5842      // All template param lists were matched against the scope specifier:
5843      // this is NOT (an explicit specialization of) a template.
5844      if (TemplateParamLists.size() > 0)
5845        // For source fidelity, store all the template param lists.
5846        NewFD->setTemplateParameterListsInfo(Context,
5847                                             TemplateParamLists.size(),
5848                                             TemplateParamLists.data());
5849    }
5850
5851    if (Invalid) {
5852      NewFD->setInvalidDecl();
5853      if (FunctionTemplate)
5854        FunctionTemplate->setInvalidDecl();
5855    }
5856
5857    // C++ [dcl.fct.spec]p5:
5858    //   The virtual specifier shall only be used in declarations of
5859    //   nonstatic class member functions that appear within a
5860    //   member-specification of a class declaration; see 10.3.
5861    //
5862    if (isVirtual && !NewFD->isInvalidDecl()) {
5863      if (!isVirtualOkay) {
5864        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5865             diag::err_virtual_non_function);
5866      } else if (!CurContext->isRecord()) {
5867        // 'virtual' was specified outside of the class.
5868        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5869             diag::err_virtual_out_of_class)
5870          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5871      } else if (NewFD->getDescribedFunctionTemplate()) {
5872        // C++ [temp.mem]p3:
5873        //  A member function template shall not be virtual.
5874        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5875             diag::err_virtual_member_function_template)
5876          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5877      } else {
5878        // Okay: Add virtual to the method.
5879        NewFD->setVirtualAsWritten(true);
5880      }
5881    }
5882
5883    // C++ [dcl.fct.spec]p3:
5884    //  The inline specifier shall not appear on a block scope function
5885    //  declaration.
5886    if (isInline && !NewFD->isInvalidDecl()) {
5887      if (CurContext->isFunctionOrMethod()) {
5888        // 'inline' is not allowed on block scope function declaration.
5889        Diag(D.getDeclSpec().getInlineSpecLoc(),
5890             diag::err_inline_declaration_block_scope) << Name
5891          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5892      }
5893    }
5894
5895    // C++ [dcl.fct.spec]p6:
5896    //  The explicit specifier shall be used only in the declaration of a
5897    //  constructor or conversion function within its class definition;
5898    //  see 12.3.1 and 12.3.2.
5899    if (isExplicit && !NewFD->isInvalidDecl()) {
5900      if (!CurContext->isRecord()) {
5901        // 'explicit' was specified outside of the class.
5902        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5903             diag::err_explicit_out_of_class)
5904          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5905      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5906                 !isa<CXXConversionDecl>(NewFD)) {
5907        // 'explicit' was specified on a function that wasn't a constructor
5908        // or conversion function.
5909        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5910             diag::err_explicit_non_ctor_or_conv_function)
5911          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5912      }
5913    }
5914
5915    if (isConstexpr) {
5916      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5917      // are implicitly inline.
5918      NewFD->setImplicitlyInline();
5919
5920      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5921      // be either constructors or to return a literal type. Therefore,
5922      // destructors cannot be declared constexpr.
5923      if (isa<CXXDestructorDecl>(NewFD))
5924        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5925    }
5926
5927    // If __module_private__ was specified, mark the function accordingly.
5928    if (D.getDeclSpec().isModulePrivateSpecified()) {
5929      if (isFunctionTemplateSpecialization) {
5930        SourceLocation ModulePrivateLoc
5931          = D.getDeclSpec().getModulePrivateSpecLoc();
5932        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5933          << 0
5934          << FixItHint::CreateRemoval(ModulePrivateLoc);
5935      } else {
5936        NewFD->setModulePrivate();
5937        if (FunctionTemplate)
5938          FunctionTemplate->setModulePrivate();
5939      }
5940    }
5941
5942    if (isFriend) {
5943      // For now, claim that the objects have no previous declaration.
5944      if (FunctionTemplate) {
5945        FunctionTemplate->setObjectOfFriendDecl(false);
5946        FunctionTemplate->setAccess(AS_public);
5947      }
5948      NewFD->setObjectOfFriendDecl(false);
5949      NewFD->setAccess(AS_public);
5950    }
5951
5952    // If a function is defined as defaulted or deleted, mark it as such now.
5953    switch (D.getFunctionDefinitionKind()) {
5954      case FDK_Declaration:
5955      case FDK_Definition:
5956        break;
5957
5958      case FDK_Defaulted:
5959        NewFD->setDefaulted();
5960        break;
5961
5962      case FDK_Deleted:
5963        NewFD->setDeletedAsWritten();
5964        break;
5965    }
5966
5967    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5968        D.isFunctionDefinition()) {
5969      // C++ [class.mfct]p2:
5970      //   A member function may be defined (8.4) in its class definition, in
5971      //   which case it is an inline member function (7.1.2)
5972      NewFD->setImplicitlyInline();
5973    }
5974
5975    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5976        !CurContext->isRecord()) {
5977      // C++ [class.static]p1:
5978      //   A data or function member of a class may be declared static
5979      //   in a class definition, in which case it is a static member of
5980      //   the class.
5981
5982      // Complain about the 'static' specifier if it's on an out-of-line
5983      // member function definition.
5984      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5985           diag::err_static_out_of_line)
5986        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5987    }
5988
5989    // C++11 [except.spec]p15:
5990    //   A deallocation function with no exception-specification is treated
5991    //   as if it were specified with noexcept(true).
5992    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5993    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5994         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5995        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5996      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5997      EPI.ExceptionSpecType = EST_BasicNoexcept;
5998      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5999                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6000                                                         FPT->getNumArgs()),
6001                                             EPI));
6002    }
6003  }
6004
6005  // Filter out previous declarations that don't match the scope.
6006  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
6007                       isExplicitSpecialization ||
6008                       isFunctionTemplateSpecialization);
6009
6010  // Handle GNU asm-label extension (encoded as an attribute).
6011  if (Expr *E = (Expr*) D.getAsmLabel()) {
6012    // The parser guarantees this is a string.
6013    StringLiteral *SE = cast<StringLiteral>(E);
6014    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6015                                                SE->getString()));
6016  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6017    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6018      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6019    if (I != ExtnameUndeclaredIdentifiers.end()) {
6020      NewFD->addAttr(I->second);
6021      ExtnameUndeclaredIdentifiers.erase(I);
6022    }
6023  }
6024
6025  // Copy the parameter declarations from the declarator D to the function
6026  // declaration NewFD, if they are available.  First scavenge them into Params.
6027  SmallVector<ParmVarDecl*, 16> Params;
6028  if (D.isFunctionDeclarator()) {
6029    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6030
6031    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6032    // function that takes no arguments, not a function that takes a
6033    // single void argument.
6034    // We let through "const void" here because Sema::GetTypeForDeclarator
6035    // already checks for that case.
6036    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6037        FTI.ArgInfo[0].Param &&
6038        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6039      // Empty arg list, don't push any params.
6040      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6041    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6042      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6043        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6044        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6045        Param->setDeclContext(NewFD);
6046        Params.push_back(Param);
6047
6048        if (Param->isInvalidDecl())
6049          NewFD->setInvalidDecl();
6050      }
6051    }
6052
6053  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6054    // When we're declaring a function with a typedef, typeof, etc as in the
6055    // following example, we'll need to synthesize (unnamed)
6056    // parameters for use in the declaration.
6057    //
6058    // @code
6059    // typedef void fn(int);
6060    // fn f;
6061    // @endcode
6062
6063    // Synthesize a parameter for each argument type.
6064    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6065         AE = FT->arg_type_end(); AI != AE; ++AI) {
6066      ParmVarDecl *Param =
6067        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6068      Param->setScopeInfo(0, Params.size());
6069      Params.push_back(Param);
6070    }
6071  } else {
6072    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6073           "Should not need args for typedef of non-prototype fn");
6074  }
6075
6076  // Finally, we know we have the right number of parameters, install them.
6077  NewFD->setParams(Params);
6078
6079  // Find all anonymous symbols defined during the declaration of this function
6080  // and add to NewFD. This lets us track decls such 'enum Y' in:
6081  //
6082  //   void f(enum Y {AA} x) {}
6083  //
6084  // which would otherwise incorrectly end up in the translation unit scope.
6085  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6086  DeclsInPrototypeScope.clear();
6087
6088  if (D.getDeclSpec().isNoreturnSpecified())
6089    NewFD->addAttr(
6090        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6091                                       Context));
6092
6093  // Process the non-inheritable attributes on this declaration.
6094  ProcessDeclAttributes(S, NewFD, D,
6095                        /*NonInheritable=*/true, /*Inheritable=*/false);
6096
6097  // Functions returning a variably modified type violate C99 6.7.5.2p2
6098  // because all functions have linkage.
6099  if (!NewFD->isInvalidDecl() &&
6100      NewFD->getResultType()->isVariablyModifiedType()) {
6101    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6102    NewFD->setInvalidDecl();
6103  }
6104
6105  // Handle attributes.
6106  ProcessDeclAttributes(S, NewFD, D,
6107                        /*NonInheritable=*/false, /*Inheritable=*/true);
6108
6109  QualType RetType = NewFD->getResultType();
6110  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6111      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6112  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6113      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6114    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6115    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6116      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6117                                                        Context));
6118    }
6119  }
6120
6121  if (!getLangOpts().CPlusPlus) {
6122    // Perform semantic checking on the function declaration.
6123    bool isExplicitSpecialization=false;
6124    if (!NewFD->isInvalidDecl()) {
6125      if (NewFD->isMain())
6126        CheckMain(NewFD, D.getDeclSpec());
6127      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6128                                                  isExplicitSpecialization));
6129    }
6130    // Make graceful recovery from an invalid redeclaration.
6131    else if (!Previous.empty())
6132           D.setRedeclaration(true);
6133    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6134            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6135           "previous declaration set still overloaded");
6136  } else {
6137    // If the declarator is a template-id, translate the parser's template
6138    // argument list into our AST format.
6139    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6140      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6141      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6142      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6143      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6144                                         TemplateId->NumArgs);
6145      translateTemplateArguments(TemplateArgsPtr,
6146                                 TemplateArgs);
6147
6148      HasExplicitTemplateArgs = true;
6149
6150      if (NewFD->isInvalidDecl()) {
6151        HasExplicitTemplateArgs = false;
6152      } else if (FunctionTemplate) {
6153        // Function template with explicit template arguments.
6154        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6155          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6156
6157        HasExplicitTemplateArgs = false;
6158      } else if (!isFunctionTemplateSpecialization &&
6159                 !D.getDeclSpec().isFriendSpecified()) {
6160        // We have encountered something that the user meant to be a
6161        // specialization (because it has explicitly-specified template
6162        // arguments) but that was not introduced with a "template<>" (or had
6163        // too few of them).
6164        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6165          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6166          << FixItHint::CreateInsertion(
6167                                    D.getDeclSpec().getLocStart(),
6168                                        "template<> ");
6169        isFunctionTemplateSpecialization = true;
6170      } else {
6171        // "friend void foo<>(int);" is an implicit specialization decl.
6172        isFunctionTemplateSpecialization = true;
6173      }
6174    } else if (isFriend && isFunctionTemplateSpecialization) {
6175      // This combination is only possible in a recovery case;  the user
6176      // wrote something like:
6177      //   template <> friend void foo(int);
6178      // which we're recovering from as if the user had written:
6179      //   friend void foo<>(int);
6180      // Go ahead and fake up a template id.
6181      HasExplicitTemplateArgs = true;
6182        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6183      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6184    }
6185
6186    // If it's a friend (and only if it's a friend), it's possible
6187    // that either the specialized function type or the specialized
6188    // template is dependent, and therefore matching will fail.  In
6189    // this case, don't check the specialization yet.
6190    bool InstantiationDependent = false;
6191    if (isFunctionTemplateSpecialization && isFriend &&
6192        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6193         TemplateSpecializationType::anyDependentTemplateArguments(
6194            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6195            InstantiationDependent))) {
6196      assert(HasExplicitTemplateArgs &&
6197             "friend function specialization without template args");
6198      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6199                                                       Previous))
6200        NewFD->setInvalidDecl();
6201    } else if (isFunctionTemplateSpecialization) {
6202      if (CurContext->isDependentContext() && CurContext->isRecord()
6203          && !isFriend) {
6204        isDependentClassScopeExplicitSpecialization = true;
6205        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6206          diag::ext_function_specialization_in_class :
6207          diag::err_function_specialization_in_class)
6208          << NewFD->getDeclName();
6209      } else if (CheckFunctionTemplateSpecialization(NewFD,
6210                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6211                                                     Previous))
6212        NewFD->setInvalidDecl();
6213
6214      // C++ [dcl.stc]p1:
6215      //   A storage-class-specifier shall not be specified in an explicit
6216      //   specialization (14.7.3)
6217      if (SC != SC_None) {
6218        if (SC != NewFD->getStorageClass())
6219          Diag(NewFD->getLocation(),
6220               diag::err_explicit_specialization_inconsistent_storage_class)
6221            << SC
6222            << FixItHint::CreateRemoval(
6223                                      D.getDeclSpec().getStorageClassSpecLoc());
6224
6225        else
6226          Diag(NewFD->getLocation(),
6227               diag::ext_explicit_specialization_storage_class)
6228            << FixItHint::CreateRemoval(
6229                                      D.getDeclSpec().getStorageClassSpecLoc());
6230      }
6231
6232    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6233      if (CheckMemberSpecialization(NewFD, Previous))
6234          NewFD->setInvalidDecl();
6235    }
6236
6237    // Perform semantic checking on the function declaration.
6238    if (!isDependentClassScopeExplicitSpecialization) {
6239      if (NewFD->isInvalidDecl()) {
6240        // If this is a class member, mark the class invalid immediately.
6241        // This avoids some consistency errors later.
6242        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6243          methodDecl->getParent()->setInvalidDecl();
6244      } else {
6245        if (NewFD->isMain())
6246          CheckMain(NewFD, D.getDeclSpec());
6247        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6248                                                    isExplicitSpecialization));
6249      }
6250    }
6251
6252    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6253            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6254           "previous declaration set still overloaded");
6255
6256    NamedDecl *PrincipalDecl = (FunctionTemplate
6257                                ? cast<NamedDecl>(FunctionTemplate)
6258                                : NewFD);
6259
6260    if (isFriend && D.isRedeclaration()) {
6261      AccessSpecifier Access = AS_public;
6262      if (!NewFD->isInvalidDecl())
6263        Access = NewFD->getPreviousDecl()->getAccess();
6264
6265      NewFD->setAccess(Access);
6266      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6267
6268      PrincipalDecl->setObjectOfFriendDecl(true);
6269    }
6270
6271    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6272        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6273      PrincipalDecl->setNonMemberOperator();
6274
6275    // If we have a function template, check the template parameter
6276    // list. This will check and merge default template arguments.
6277    if (FunctionTemplate) {
6278      FunctionTemplateDecl *PrevTemplate =
6279                                     FunctionTemplate->getPreviousDecl();
6280      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6281                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6282                            D.getDeclSpec().isFriendSpecified()
6283                              ? (D.isFunctionDefinition()
6284                                   ? TPC_FriendFunctionTemplateDefinition
6285                                   : TPC_FriendFunctionTemplate)
6286                              : (D.getCXXScopeSpec().isSet() &&
6287                                 DC && DC->isRecord() &&
6288                                 DC->isDependentContext())
6289                                  ? TPC_ClassTemplateMember
6290                                  : TPC_FunctionTemplate);
6291    }
6292
6293    if (NewFD->isInvalidDecl()) {
6294      // Ignore all the rest of this.
6295    } else if (!D.isRedeclaration()) {
6296      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6297                                       AddToScope };
6298      // Fake up an access specifier if it's supposed to be a class member.
6299      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6300        NewFD->setAccess(AS_public);
6301
6302      // Qualified decls generally require a previous declaration.
6303      if (D.getCXXScopeSpec().isSet()) {
6304        // ...with the major exception of templated-scope or
6305        // dependent-scope friend declarations.
6306
6307        // TODO: we currently also suppress this check in dependent
6308        // contexts because (1) the parameter depth will be off when
6309        // matching friend templates and (2) we might actually be
6310        // selecting a friend based on a dependent factor.  But there
6311        // are situations where these conditions don't apply and we
6312        // can actually do this check immediately.
6313        if (isFriend &&
6314            (TemplateParamLists.size() ||
6315             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6316             CurContext->isDependentContext())) {
6317          // ignore these
6318        } else {
6319          // The user tried to provide an out-of-line definition for a
6320          // function that is a member of a class or namespace, but there
6321          // was no such member function declared (C++ [class.mfct]p2,
6322          // C++ [namespace.memdef]p2). For example:
6323          //
6324          // class X {
6325          //   void f() const;
6326          // };
6327          //
6328          // void X::f() { } // ill-formed
6329          //
6330          // Complain about this problem, and attempt to suggest close
6331          // matches (e.g., those that differ only in cv-qualifiers and
6332          // whether the parameter types are references).
6333
6334          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6335                                                               NewFD,
6336                                                               ExtraArgs)) {
6337            AddToScope = ExtraArgs.AddToScope;
6338            return Result;
6339          }
6340        }
6341
6342        // Unqualified local friend declarations are required to resolve
6343        // to something.
6344      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6345        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6346                                                             NewFD,
6347                                                             ExtraArgs)) {
6348          AddToScope = ExtraArgs.AddToScope;
6349          return Result;
6350        }
6351      }
6352
6353    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6354               !isFriend && !isFunctionTemplateSpecialization &&
6355               !isExplicitSpecialization) {
6356      // An out-of-line member function declaration must also be a
6357      // definition (C++ [dcl.meaning]p1).
6358      // Note that this is not the case for explicit specializations of
6359      // function templates or member functions of class templates, per
6360      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6361      // extension for compatibility with old SWIG code which likes to
6362      // generate them.
6363      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6364        << D.getCXXScopeSpec().getRange();
6365    }
6366  }
6367
6368  ProcessPragmaWeak(S, NewFD);
6369  checkAttributesAfterMerging(*this, *NewFD);
6370
6371  AddKnownFunctionAttributes(NewFD);
6372
6373  if (NewFD->hasAttr<OverloadableAttr>() &&
6374      !NewFD->getType()->getAs<FunctionProtoType>()) {
6375    Diag(NewFD->getLocation(),
6376         diag::err_attribute_overloadable_no_prototype)
6377      << NewFD;
6378
6379    // Turn this into a variadic function with no parameters.
6380    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6381    FunctionProtoType::ExtProtoInfo EPI;
6382    EPI.Variadic = true;
6383    EPI.ExtInfo = FT->getExtInfo();
6384
6385    QualType R = Context.getFunctionType(FT->getResultType(),
6386                                         ArrayRef<QualType>(),
6387                                         EPI);
6388    NewFD->setType(R);
6389  }
6390
6391  // If there's a #pragma GCC visibility in scope, and this isn't a class
6392  // member, set the visibility of this function.
6393  if (NewFD->hasExternalLinkage() && !DC->isRecord())
6394    AddPushedVisibilityAttribute(NewFD);
6395
6396  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6397  // marking the function.
6398  AddCFAuditedAttribute(NewFD);
6399
6400  // If this is a locally-scoped extern C function, update the
6401  // map of such names.
6402  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6403      && !NewFD->isInvalidDecl())
6404    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6405
6406  // Set this FunctionDecl's range up to the right paren.
6407  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6408
6409  if (getLangOpts().CPlusPlus) {
6410    if (FunctionTemplate) {
6411      if (NewFD->isInvalidDecl())
6412        FunctionTemplate->setInvalidDecl();
6413      return FunctionTemplate;
6414    }
6415  }
6416
6417  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6418    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6419    if ((getLangOpts().OpenCLVersion >= 120)
6420        && (SC == SC_Static)) {
6421      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6422      D.setInvalidType();
6423    }
6424
6425    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6426    if (!NewFD->getResultType()->isVoidType()) {
6427      Diag(D.getIdentifierLoc(),
6428           diag::err_expected_kernel_void_return_type);
6429      D.setInvalidType();
6430    }
6431
6432    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6433         PE = NewFD->param_end(); PI != PE; ++PI) {
6434      ParmVarDecl *Param = *PI;
6435      QualType PT = Param->getType();
6436
6437      // OpenCL v1.2 s6.9.a:
6438      // A kernel function argument cannot be declared as a
6439      // pointer to a pointer type.
6440      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6441        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6442        D.setInvalidType();
6443      }
6444
6445      // OpenCL v1.2 s6.8 n:
6446      // A kernel function argument cannot be declared
6447      // of event_t type.
6448      if (PT->isEventT()) {
6449        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6450        D.setInvalidType();
6451      }
6452    }
6453  }
6454
6455  MarkUnusedFileScopedDecl(NewFD);
6456
6457  if (getLangOpts().CUDA)
6458    if (IdentifierInfo *II = NewFD->getIdentifier())
6459      if (!NewFD->isInvalidDecl() &&
6460          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6461        if (II->isStr("cudaConfigureCall")) {
6462          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6463            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6464
6465          Context.setcudaConfigureCallDecl(NewFD);
6466        }
6467      }
6468
6469  // Here we have an function template explicit specialization at class scope.
6470  // The actually specialization will be postponed to template instatiation
6471  // time via the ClassScopeFunctionSpecializationDecl node.
6472  if (isDependentClassScopeExplicitSpecialization) {
6473    ClassScopeFunctionSpecializationDecl *NewSpec =
6474                         ClassScopeFunctionSpecializationDecl::Create(
6475                                Context, CurContext, SourceLocation(),
6476                                cast<CXXMethodDecl>(NewFD),
6477                                HasExplicitTemplateArgs, TemplateArgs);
6478    CurContext->addDecl(NewSpec);
6479    AddToScope = false;
6480  }
6481
6482  return NewFD;
6483}
6484
6485/// \brief Perform semantic checking of a new function declaration.
6486///
6487/// Performs semantic analysis of the new function declaration
6488/// NewFD. This routine performs all semantic checking that does not
6489/// require the actual declarator involved in the declaration, and is
6490/// used both for the declaration of functions as they are parsed
6491/// (called via ActOnDeclarator) and for the declaration of functions
6492/// that have been instantiated via C++ template instantiation (called
6493/// via InstantiateDecl).
6494///
6495/// \param IsExplicitSpecialization whether this new function declaration is
6496/// an explicit specialization of the previous declaration.
6497///
6498/// This sets NewFD->isInvalidDecl() to true if there was an error.
6499///
6500/// \returns true if the function declaration is a redeclaration.
6501bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6502                                    LookupResult &Previous,
6503                                    bool IsExplicitSpecialization) {
6504  assert(!NewFD->getResultType()->isVariablyModifiedType()
6505         && "Variably modified return types are not handled here");
6506
6507  // Check for a previous declaration of this name.
6508  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6509    // Since we did not find anything by this name, look for a non-visible
6510    // extern "C" declaration with the same name.
6511    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6512      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6513    if (Pos != LocallyScopedExternCDecls.end())
6514      Previous.addDecl(Pos->second);
6515  }
6516
6517  // Filter out any non-conflicting previous declarations.
6518  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6519
6520  bool Redeclaration = false;
6521  NamedDecl *OldDecl = 0;
6522
6523  // Merge or overload the declaration with an existing declaration of
6524  // the same name, if appropriate.
6525  if (!Previous.empty()) {
6526    // Determine whether NewFD is an overload of PrevDecl or
6527    // a declaration that requires merging. If it's an overload,
6528    // there's no more work to do here; we'll just add the new
6529    // function to the scope.
6530    if (!AllowOverloadingOfFunction(Previous, Context)) {
6531      Redeclaration = true;
6532      OldDecl = Previous.getFoundDecl();
6533    } else {
6534      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6535                            /*NewIsUsingDecl*/ false)) {
6536      case Ovl_Match:
6537        Redeclaration = true;
6538        break;
6539
6540      case Ovl_NonFunction:
6541        Redeclaration = true;
6542        break;
6543
6544      case Ovl_Overload:
6545        Redeclaration = false;
6546        break;
6547      }
6548
6549      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6550        // If a function name is overloadable in C, then every function
6551        // with that name must be marked "overloadable".
6552        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6553          << Redeclaration << NewFD;
6554        NamedDecl *OverloadedDecl = 0;
6555        if (Redeclaration)
6556          OverloadedDecl = OldDecl;
6557        else if (!Previous.empty())
6558          OverloadedDecl = Previous.getRepresentativeDecl();
6559        if (OverloadedDecl)
6560          Diag(OverloadedDecl->getLocation(),
6561               diag::note_attribute_overloadable_prev_overload);
6562        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6563                                                        Context));
6564      }
6565    }
6566  }
6567
6568  // C++11 [dcl.constexpr]p8:
6569  //   A constexpr specifier for a non-static member function that is not
6570  //   a constructor declares that member function to be const.
6571  //
6572  // This needs to be delayed until we know whether this is an out-of-line
6573  // definition of a static member function.
6574  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6575  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6576      !isa<CXXConstructorDecl>(MD) &&
6577      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6578    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6579    if (FunctionTemplateDecl *OldTD =
6580          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6581      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6582    if (!OldMD || !OldMD->isStatic()) {
6583      const FunctionProtoType *FPT =
6584        MD->getType()->castAs<FunctionProtoType>();
6585      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6586      EPI.TypeQuals |= Qualifiers::Const;
6587      MD->setType(Context.getFunctionType(FPT->getResultType(),
6588                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6589                                                         FPT->getNumArgs()),
6590                                          EPI));
6591    }
6592  }
6593
6594  if (Redeclaration) {
6595    // NewFD and OldDecl represent declarations that need to be
6596    // merged.
6597    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6598      NewFD->setInvalidDecl();
6599      return Redeclaration;
6600    }
6601
6602    Previous.clear();
6603    Previous.addDecl(OldDecl);
6604
6605    if (FunctionTemplateDecl *OldTemplateDecl
6606                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6607      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6608      FunctionTemplateDecl *NewTemplateDecl
6609        = NewFD->getDescribedFunctionTemplate();
6610      assert(NewTemplateDecl && "Template/non-template mismatch");
6611      if (CXXMethodDecl *Method
6612            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6613        Method->setAccess(OldTemplateDecl->getAccess());
6614        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6615      }
6616
6617      // If this is an explicit specialization of a member that is a function
6618      // template, mark it as a member specialization.
6619      if (IsExplicitSpecialization &&
6620          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6621        NewTemplateDecl->setMemberSpecialization();
6622        assert(OldTemplateDecl->isMemberSpecialization());
6623      }
6624
6625    } else {
6626      // This needs to happen first so that 'inline' propagates.
6627      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6628
6629      if (isa<CXXMethodDecl>(NewFD)) {
6630        // A valid redeclaration of a C++ method must be out-of-line,
6631        // but (unfortunately) it's not necessarily a definition
6632        // because of templates, which means that the previous
6633        // declaration is not necessarily from the class definition.
6634
6635        // For just setting the access, that doesn't matter.
6636        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6637        NewFD->setAccess(oldMethod->getAccess());
6638
6639        // Update the key-function state if necessary for this ABI.
6640        if (NewFD->isInlined() &&
6641            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6642          // setNonKeyFunction needs to work with the original
6643          // declaration from the class definition, and isVirtual() is
6644          // just faster in that case, so map back to that now.
6645          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6646          if (oldMethod->isVirtual()) {
6647            Context.setNonKeyFunction(oldMethod);
6648          }
6649        }
6650      }
6651    }
6652  }
6653
6654  // Semantic checking for this function declaration (in isolation).
6655  if (getLangOpts().CPlusPlus) {
6656    // C++-specific checks.
6657    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6658      CheckConstructor(Constructor);
6659    } else if (CXXDestructorDecl *Destructor =
6660                dyn_cast<CXXDestructorDecl>(NewFD)) {
6661      CXXRecordDecl *Record = Destructor->getParent();
6662      QualType ClassType = Context.getTypeDeclType(Record);
6663
6664      // FIXME: Shouldn't we be able to perform this check even when the class
6665      // type is dependent? Both gcc and edg can handle that.
6666      if (!ClassType->isDependentType()) {
6667        DeclarationName Name
6668          = Context.DeclarationNames.getCXXDestructorName(
6669                                        Context.getCanonicalType(ClassType));
6670        if (NewFD->getDeclName() != Name) {
6671          Diag(NewFD->getLocation(), diag::err_destructor_name);
6672          NewFD->setInvalidDecl();
6673          return Redeclaration;
6674        }
6675      }
6676    } else if (CXXConversionDecl *Conversion
6677               = dyn_cast<CXXConversionDecl>(NewFD)) {
6678      ActOnConversionDeclarator(Conversion);
6679    }
6680
6681    // Find any virtual functions that this function overrides.
6682    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6683      if (!Method->isFunctionTemplateSpecialization() &&
6684          !Method->getDescribedFunctionTemplate() &&
6685          Method->isCanonicalDecl()) {
6686        if (AddOverriddenMethods(Method->getParent(), Method)) {
6687          // If the function was marked as "static", we have a problem.
6688          if (NewFD->getStorageClass() == SC_Static) {
6689            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6690          }
6691        }
6692      }
6693
6694      if (Method->isStatic())
6695        checkThisInStaticMemberFunctionType(Method);
6696    }
6697
6698    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6699    if (NewFD->isOverloadedOperator() &&
6700        CheckOverloadedOperatorDeclaration(NewFD)) {
6701      NewFD->setInvalidDecl();
6702      return Redeclaration;
6703    }
6704
6705    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6706    if (NewFD->getLiteralIdentifier() &&
6707        CheckLiteralOperatorDeclaration(NewFD)) {
6708      NewFD->setInvalidDecl();
6709      return Redeclaration;
6710    }
6711
6712    // In C++, check default arguments now that we have merged decls. Unless
6713    // the lexical context is the class, because in this case this is done
6714    // during delayed parsing anyway.
6715    if (!CurContext->isRecord())
6716      CheckCXXDefaultArguments(NewFD);
6717
6718    // If this function declares a builtin function, check the type of this
6719    // declaration against the expected type for the builtin.
6720    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6721      ASTContext::GetBuiltinTypeError Error;
6722      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6723      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6724      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6725        // The type of this function differs from the type of the builtin,
6726        // so forget about the builtin entirely.
6727        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6728      }
6729    }
6730
6731    // If this function is declared as being extern "C", then check to see if
6732    // the function returns a UDT (class, struct, or union type) that is not C
6733    // compatible, and if it does, warn the user.
6734    if (NewFD->isExternC()) {
6735      QualType R = NewFD->getResultType();
6736      if (R->isIncompleteType() && !R->isVoidType())
6737        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6738            << NewFD << R;
6739      else if (!R.isPODType(Context) && !R->isVoidType() &&
6740               !R->isObjCObjectPointerType())
6741        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6742    }
6743  }
6744  return Redeclaration;
6745}
6746
6747static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6748  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6749  if (!TSI)
6750    return SourceRange();
6751
6752  TypeLoc TL = TSI->getTypeLoc();
6753  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6754  if (!FunctionTL)
6755    return SourceRange();
6756
6757  TypeLoc ResultTL = FunctionTL.getResultLoc();
6758  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6759    return ResultTL.getSourceRange();
6760
6761  return SourceRange();
6762}
6763
6764void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6765  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6766  //   static or constexpr is ill-formed.
6767  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6768  //   appear in a declaration of main.
6769  // static main is not an error under C99, but we should warn about it.
6770  // We accept _Noreturn main as an extension.
6771  if (FD->getStorageClass() == SC_Static)
6772    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6773         ? diag::err_static_main : diag::warn_static_main)
6774      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6775  if (FD->isInlineSpecified())
6776    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6777      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6778  if (DS.isNoreturnSpecified()) {
6779    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6780    SourceRange NoreturnRange(NoreturnLoc,
6781                              PP.getLocForEndOfToken(NoreturnLoc));
6782    Diag(NoreturnLoc, diag::ext_noreturn_main);
6783    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6784      << FixItHint::CreateRemoval(NoreturnRange);
6785  }
6786  if (FD->isConstexpr()) {
6787    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6788      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6789    FD->setConstexpr(false);
6790  }
6791
6792  QualType T = FD->getType();
6793  assert(T->isFunctionType() && "function decl is not of function type");
6794  const FunctionType* FT = T->castAs<FunctionType>();
6795
6796  // All the standards say that main() should should return 'int'.
6797  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6798    // In C and C++, main magically returns 0 if you fall off the end;
6799    // set the flag which tells us that.
6800    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6801    FD->setHasImplicitReturnZero(true);
6802
6803  // In C with GNU extensions we allow main() to have non-integer return
6804  // type, but we should warn about the extension, and we disable the
6805  // implicit-return-zero rule.
6806  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6807    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6808
6809    SourceRange ResultRange = getResultSourceRange(FD);
6810    if (ResultRange.isValid())
6811      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6812          << FixItHint::CreateReplacement(ResultRange, "int");
6813
6814  // Otherwise, this is just a flat-out error.
6815  } else {
6816    SourceRange ResultRange = getResultSourceRange(FD);
6817    if (ResultRange.isValid())
6818      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6819          << FixItHint::CreateReplacement(ResultRange, "int");
6820    else
6821      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6822
6823    FD->setInvalidDecl(true);
6824  }
6825
6826  // Treat protoless main() as nullary.
6827  if (isa<FunctionNoProtoType>(FT)) return;
6828
6829  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6830  unsigned nparams = FTP->getNumArgs();
6831  assert(FD->getNumParams() == nparams);
6832
6833  bool HasExtraParameters = (nparams > 3);
6834
6835  // Darwin passes an undocumented fourth argument of type char**.  If
6836  // other platforms start sprouting these, the logic below will start
6837  // getting shifty.
6838  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6839    HasExtraParameters = false;
6840
6841  if (HasExtraParameters) {
6842    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6843    FD->setInvalidDecl(true);
6844    nparams = 3;
6845  }
6846
6847  // FIXME: a lot of the following diagnostics would be improved
6848  // if we had some location information about types.
6849
6850  QualType CharPP =
6851    Context.getPointerType(Context.getPointerType(Context.CharTy));
6852  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6853
6854  for (unsigned i = 0; i < nparams; ++i) {
6855    QualType AT = FTP->getArgType(i);
6856
6857    bool mismatch = true;
6858
6859    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6860      mismatch = false;
6861    else if (Expected[i] == CharPP) {
6862      // As an extension, the following forms are okay:
6863      //   char const **
6864      //   char const * const *
6865      //   char * const *
6866
6867      QualifierCollector qs;
6868      const PointerType* PT;
6869      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6870          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6871          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6872                              Context.CharTy)) {
6873        qs.removeConst();
6874        mismatch = !qs.empty();
6875      }
6876    }
6877
6878    if (mismatch) {
6879      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6880      // TODO: suggest replacing given type with expected type
6881      FD->setInvalidDecl(true);
6882    }
6883  }
6884
6885  if (nparams == 1 && !FD->isInvalidDecl()) {
6886    Diag(FD->getLocation(), diag::warn_main_one_arg);
6887  }
6888
6889  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6890    Diag(FD->getLocation(), diag::err_main_template_decl);
6891    FD->setInvalidDecl();
6892  }
6893}
6894
6895bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6896  // FIXME: Need strict checking.  In C89, we need to check for
6897  // any assignment, increment, decrement, function-calls, or
6898  // commas outside of a sizeof.  In C99, it's the same list,
6899  // except that the aforementioned are allowed in unevaluated
6900  // expressions.  Everything else falls under the
6901  // "may accept other forms of constant expressions" exception.
6902  // (We never end up here for C++, so the constant expression
6903  // rules there don't matter.)
6904  if (Init->isConstantInitializer(Context, false))
6905    return false;
6906  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6907    << Init->getSourceRange();
6908  return true;
6909}
6910
6911namespace {
6912  // Visits an initialization expression to see if OrigDecl is evaluated in
6913  // its own initialization and throws a warning if it does.
6914  class SelfReferenceChecker
6915      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6916    Sema &S;
6917    Decl *OrigDecl;
6918    bool isRecordType;
6919    bool isPODType;
6920    bool isReferenceType;
6921
6922  public:
6923    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6924
6925    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6926                                                    S(S), OrigDecl(OrigDecl) {
6927      isPODType = false;
6928      isRecordType = false;
6929      isReferenceType = false;
6930      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6931        isPODType = VD->getType().isPODType(S.Context);
6932        isRecordType = VD->getType()->isRecordType();
6933        isReferenceType = VD->getType()->isReferenceType();
6934      }
6935    }
6936
6937    // For most expressions, the cast is directly above the DeclRefExpr.
6938    // For conditional operators, the cast can be outside the conditional
6939    // operator if both expressions are DeclRefExpr's.
6940    void HandleValue(Expr *E) {
6941      if (isReferenceType)
6942        return;
6943      E = E->IgnoreParenImpCasts();
6944      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6945        HandleDeclRefExpr(DRE);
6946        return;
6947      }
6948
6949      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6950        HandleValue(CO->getTrueExpr());
6951        HandleValue(CO->getFalseExpr());
6952        return;
6953      }
6954
6955      if (isa<MemberExpr>(E)) {
6956        Expr *Base = E->IgnoreParenImpCasts();
6957        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6958          // Check for static member variables and don't warn on them.
6959          if (!isa<FieldDecl>(ME->getMemberDecl()))
6960            return;
6961          Base = ME->getBase()->IgnoreParenImpCasts();
6962        }
6963        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6964          HandleDeclRefExpr(DRE);
6965        return;
6966      }
6967    }
6968
6969    // Reference types are handled here since all uses of references are
6970    // bad, not just r-value uses.
6971    void VisitDeclRefExpr(DeclRefExpr *E) {
6972      if (isReferenceType)
6973        HandleDeclRefExpr(E);
6974    }
6975
6976    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6977      if (E->getCastKind() == CK_LValueToRValue ||
6978          (isRecordType && E->getCastKind() == CK_NoOp))
6979        HandleValue(E->getSubExpr());
6980
6981      Inherited::VisitImplicitCastExpr(E);
6982    }
6983
6984    void VisitMemberExpr(MemberExpr *E) {
6985      // Don't warn on arrays since they can be treated as pointers.
6986      if (E->getType()->canDecayToPointerType()) return;
6987
6988      // Warn when a non-static method call is followed by non-static member
6989      // field accesses, which is followed by a DeclRefExpr.
6990      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6991      bool Warn = (MD && !MD->isStatic());
6992      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6993      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6994        if (!isa<FieldDecl>(ME->getMemberDecl()))
6995          Warn = false;
6996        Base = ME->getBase()->IgnoreParenImpCasts();
6997      }
6998
6999      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7000        if (Warn)
7001          HandleDeclRefExpr(DRE);
7002        return;
7003      }
7004
7005      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7006      // Visit that expression.
7007      Visit(Base);
7008    }
7009
7010    void VisitUnaryOperator(UnaryOperator *E) {
7011      // For POD record types, addresses of its own members are well-defined.
7012      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7013          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7014        if (!isPODType)
7015          HandleValue(E->getSubExpr());
7016        return;
7017      }
7018      Inherited::VisitUnaryOperator(E);
7019    }
7020
7021    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7022
7023    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7024      Decl* ReferenceDecl = DRE->getDecl();
7025      if (OrigDecl != ReferenceDecl) return;
7026      unsigned diag;
7027      if (isReferenceType) {
7028        diag = diag::warn_uninit_self_reference_in_reference_init;
7029      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7030        diag = diag::warn_static_self_reference_in_init;
7031      } else {
7032        diag = diag::warn_uninit_self_reference_in_init;
7033      }
7034
7035      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7036                            S.PDiag(diag)
7037                              << DRE->getNameInfo().getName()
7038                              << OrigDecl->getLocation()
7039                              << DRE->getSourceRange());
7040    }
7041  };
7042
7043  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7044  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7045                                 bool DirectInit) {
7046    // Parameters arguments are occassionially constructed with itself,
7047    // for instance, in recursive functions.  Skip them.
7048    if (isa<ParmVarDecl>(OrigDecl))
7049      return;
7050
7051    E = E->IgnoreParens();
7052
7053    // Skip checking T a = a where T is not a record or reference type.
7054    // Doing so is a way to silence uninitialized warnings.
7055    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7056      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7057        if (ICE->getCastKind() == CK_LValueToRValue)
7058          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7059            if (DRE->getDecl() == OrigDecl)
7060              return;
7061
7062    SelfReferenceChecker(S, OrigDecl).Visit(E);
7063  }
7064}
7065
7066/// AddInitializerToDecl - Adds the initializer Init to the
7067/// declaration dcl. If DirectInit is true, this is C++ direct
7068/// initialization rather than copy initialization.
7069void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7070                                bool DirectInit, bool TypeMayContainAuto) {
7071  // If there is no declaration, there was an error parsing it.  Just ignore
7072  // the initializer.
7073  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7074    return;
7075
7076  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7077    // With declarators parsed the way they are, the parser cannot
7078    // distinguish between a normal initializer and a pure-specifier.
7079    // Thus this grotesque test.
7080    IntegerLiteral *IL;
7081    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7082        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7083      CheckPureMethod(Method, Init->getSourceRange());
7084    else {
7085      Diag(Method->getLocation(), diag::err_member_function_initialization)
7086        << Method->getDeclName() << Init->getSourceRange();
7087      Method->setInvalidDecl();
7088    }
7089    return;
7090  }
7091
7092  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7093  if (!VDecl) {
7094    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7095    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7096    RealDecl->setInvalidDecl();
7097    return;
7098  }
7099
7100  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7101
7102  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7103  AutoType *Auto = 0;
7104  if (TypeMayContainAuto &&
7105      (Auto = VDecl->getType()->getContainedAutoType()) &&
7106      !Auto->isDeduced()) {
7107    Expr *DeduceInit = Init;
7108    // Initializer could be a C++ direct-initializer. Deduction only works if it
7109    // contains exactly one expression.
7110    if (CXXDirectInit) {
7111      if (CXXDirectInit->getNumExprs() == 0) {
7112        // It isn't possible to write this directly, but it is possible to
7113        // end up in this situation with "auto x(some_pack...);"
7114        Diag(CXXDirectInit->getLocStart(),
7115             diag::err_auto_var_init_no_expression)
7116          << VDecl->getDeclName() << VDecl->getType()
7117          << VDecl->getSourceRange();
7118        RealDecl->setInvalidDecl();
7119        return;
7120      } else if (CXXDirectInit->getNumExprs() > 1) {
7121        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7122             diag::err_auto_var_init_multiple_expressions)
7123          << VDecl->getDeclName() << VDecl->getType()
7124          << VDecl->getSourceRange();
7125        RealDecl->setInvalidDecl();
7126        return;
7127      } else {
7128        DeduceInit = CXXDirectInit->getExpr(0);
7129      }
7130    }
7131
7132    // Expressions default to 'id' when we're in a debugger.
7133    bool DefaultedToAuto = false;
7134    if (getLangOpts().DebuggerCastResultToId &&
7135        Init->getType() == Context.UnknownAnyTy) {
7136      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7137      if (Result.isInvalid()) {
7138        VDecl->setInvalidDecl();
7139        return;
7140      }
7141      Init = Result.take();
7142      DefaultedToAuto = true;
7143    }
7144
7145    TypeSourceInfo *DeducedType = 0;
7146    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7147            DAR_Failed)
7148      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7149    if (!DeducedType) {
7150      RealDecl->setInvalidDecl();
7151      return;
7152    }
7153    VDecl->setTypeSourceInfo(DeducedType);
7154    VDecl->setType(DeducedType->getType());
7155    VDecl->ClearLinkageCache();
7156
7157    // In ARC, infer lifetime.
7158    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7159      VDecl->setInvalidDecl();
7160
7161    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7162    // 'id' instead of a specific object type prevents most of our usual checks.
7163    // We only want to warn outside of template instantiations, though:
7164    // inside a template, the 'id' could have come from a parameter.
7165    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7166        DeducedType->getType()->isObjCIdType()) {
7167      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7168      Diag(Loc, diag::warn_auto_var_is_id)
7169        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7170    }
7171
7172    // If this is a redeclaration, check that the type we just deduced matches
7173    // the previously declared type.
7174    if (VarDecl *Old = VDecl->getPreviousDecl())
7175      MergeVarDeclTypes(VDecl, Old);
7176  }
7177
7178  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7179    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7180    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7181    VDecl->setInvalidDecl();
7182    return;
7183  }
7184
7185  if (!VDecl->getType()->isDependentType()) {
7186    // A definition must end up with a complete type, which means it must be
7187    // complete with the restriction that an array type might be completed by
7188    // the initializer; note that later code assumes this restriction.
7189    QualType BaseDeclType = VDecl->getType();
7190    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7191      BaseDeclType = Array->getElementType();
7192    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7193                            diag::err_typecheck_decl_incomplete_type)) {
7194      RealDecl->setInvalidDecl();
7195      return;
7196    }
7197
7198    // The variable can not have an abstract class type.
7199    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7200                               diag::err_abstract_type_in_decl,
7201                               AbstractVariableType))
7202      VDecl->setInvalidDecl();
7203  }
7204
7205  const VarDecl *Def;
7206  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7207    Diag(VDecl->getLocation(), diag::err_redefinition)
7208      << VDecl->getDeclName();
7209    Diag(Def->getLocation(), diag::note_previous_definition);
7210    VDecl->setInvalidDecl();
7211    return;
7212  }
7213
7214  const VarDecl* PrevInit = 0;
7215  if (getLangOpts().CPlusPlus) {
7216    // C++ [class.static.data]p4
7217    //   If a static data member is of const integral or const
7218    //   enumeration type, its declaration in the class definition can
7219    //   specify a constant-initializer which shall be an integral
7220    //   constant expression (5.19). In that case, the member can appear
7221    //   in integral constant expressions. The member shall still be
7222    //   defined in a namespace scope if it is used in the program and the
7223    //   namespace scope definition shall not contain an initializer.
7224    //
7225    // We already performed a redefinition check above, but for static
7226    // data members we also need to check whether there was an in-class
7227    // declaration with an initializer.
7228    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7229      Diag(VDecl->getLocation(), diag::err_redefinition)
7230        << VDecl->getDeclName();
7231      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7232      return;
7233    }
7234
7235    if (VDecl->hasLocalStorage())
7236      getCurFunction()->setHasBranchProtectedScope();
7237
7238    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7239      VDecl->setInvalidDecl();
7240      return;
7241    }
7242  }
7243
7244  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7245  // a kernel function cannot be initialized."
7246  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7247    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7248    VDecl->setInvalidDecl();
7249    return;
7250  }
7251
7252  // Get the decls type and save a reference for later, since
7253  // CheckInitializerTypes may change it.
7254  QualType DclT = VDecl->getType(), SavT = DclT;
7255
7256  // Expressions default to 'id' when we're in a debugger
7257  // and we are assigning it to a variable of Objective-C pointer type.
7258  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7259      Init->getType() == Context.UnknownAnyTy) {
7260    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7261    if (Result.isInvalid()) {
7262      VDecl->setInvalidDecl();
7263      return;
7264    }
7265    Init = Result.take();
7266  }
7267
7268  // Perform the initialization.
7269  if (!VDecl->isInvalidDecl()) {
7270    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7271    InitializationKind Kind
7272      = DirectInit ?
7273          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7274                                                           Init->getLocStart(),
7275                                                           Init->getLocEnd())
7276                        : InitializationKind::CreateDirectList(
7277                                                          VDecl->getLocation())
7278                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7279                                                    Init->getLocStart());
7280
7281    Expr **Args = &Init;
7282    unsigned NumArgs = 1;
7283    if (CXXDirectInit) {
7284      Args = CXXDirectInit->getExprs();
7285      NumArgs = CXXDirectInit->getNumExprs();
7286    }
7287    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7288    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7289                                        MultiExprArg(Args, NumArgs), &DclT);
7290    if (Result.isInvalid()) {
7291      VDecl->setInvalidDecl();
7292      return;
7293    }
7294
7295    Init = Result.takeAs<Expr>();
7296  }
7297
7298  // Check for self-references within variable initializers.
7299  // Variables declared within a function/method body (except for references)
7300  // are handled by a dataflow analysis.
7301  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7302      VDecl->getType()->isReferenceType()) {
7303    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7304  }
7305
7306  // If the type changed, it means we had an incomplete type that was
7307  // completed by the initializer. For example:
7308  //   int ary[] = { 1, 3, 5 };
7309  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7310  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7311    VDecl->setType(DclT);
7312
7313  if (!VDecl->isInvalidDecl()) {
7314    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7315
7316    if (VDecl->hasAttr<BlocksAttr>())
7317      checkRetainCycles(VDecl, Init);
7318
7319    // It is safe to assign a weak reference into a strong variable.
7320    // Although this code can still have problems:
7321    //   id x = self.weakProp;
7322    //   id y = self.weakProp;
7323    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7324    // paths through the function. This should be revisited if
7325    // -Wrepeated-use-of-weak is made flow-sensitive.
7326    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7327      DiagnosticsEngine::Level Level =
7328        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7329                                 Init->getLocStart());
7330      if (Level != DiagnosticsEngine::Ignored)
7331        getCurFunction()->markSafeWeakUse(Init);
7332    }
7333  }
7334
7335  // The initialization is usually a full-expression.
7336  //
7337  // FIXME: If this is a braced initialization of an aggregate, it is not
7338  // an expression, and each individual field initializer is a separate
7339  // full-expression. For instance, in:
7340  //
7341  //   struct Temp { ~Temp(); };
7342  //   struct S { S(Temp); };
7343  //   struct T { S a, b; } t = { Temp(), Temp() }
7344  //
7345  // we should destroy the first Temp before constructing the second.
7346  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7347                                          false,
7348                                          VDecl->isConstexpr());
7349  if (Result.isInvalid()) {
7350    VDecl->setInvalidDecl();
7351    return;
7352  }
7353  Init = Result.take();
7354
7355  // Attach the initializer to the decl.
7356  VDecl->setInit(Init);
7357
7358  if (VDecl->isLocalVarDecl()) {
7359    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7360    // static storage duration shall be constant expressions or string literals.
7361    // C++ does not have this restriction.
7362    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7363        VDecl->getStorageClass() == SC_Static)
7364      CheckForConstantInitializer(Init, DclT);
7365  } else if (VDecl->isStaticDataMember() &&
7366             VDecl->getLexicalDeclContext()->isRecord()) {
7367    // This is an in-class initialization for a static data member, e.g.,
7368    //
7369    // struct S {
7370    //   static const int value = 17;
7371    // };
7372
7373    // C++ [class.mem]p4:
7374    //   A member-declarator can contain a constant-initializer only
7375    //   if it declares a static member (9.4) of const integral or
7376    //   const enumeration type, see 9.4.2.
7377    //
7378    // C++11 [class.static.data]p3:
7379    //   If a non-volatile const static data member is of integral or
7380    //   enumeration type, its declaration in the class definition can
7381    //   specify a brace-or-equal-initializer in which every initalizer-clause
7382    //   that is an assignment-expression is a constant expression. A static
7383    //   data member of literal type can be declared in the class definition
7384    //   with the constexpr specifier; if so, its declaration shall specify a
7385    //   brace-or-equal-initializer in which every initializer-clause that is
7386    //   an assignment-expression is a constant expression.
7387
7388    // Do nothing on dependent types.
7389    if (DclT->isDependentType()) {
7390
7391    // Allow any 'static constexpr' members, whether or not they are of literal
7392    // type. We separately check that every constexpr variable is of literal
7393    // type.
7394    } else if (VDecl->isConstexpr()) {
7395
7396    // Require constness.
7397    } else if (!DclT.isConstQualified()) {
7398      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7399        << Init->getSourceRange();
7400      VDecl->setInvalidDecl();
7401
7402    // We allow integer constant expressions in all cases.
7403    } else if (DclT->isIntegralOrEnumerationType()) {
7404      // Check whether the expression is a constant expression.
7405      SourceLocation Loc;
7406      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7407        // In C++11, a non-constexpr const static data member with an
7408        // in-class initializer cannot be volatile.
7409        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7410      else if (Init->isValueDependent())
7411        ; // Nothing to check.
7412      else if (Init->isIntegerConstantExpr(Context, &Loc))
7413        ; // Ok, it's an ICE!
7414      else if (Init->isEvaluatable(Context)) {
7415        // If we can constant fold the initializer through heroics, accept it,
7416        // but report this as a use of an extension for -pedantic.
7417        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7418          << Init->getSourceRange();
7419      } else {
7420        // Otherwise, this is some crazy unknown case.  Report the issue at the
7421        // location provided by the isIntegerConstantExpr failed check.
7422        Diag(Loc, diag::err_in_class_initializer_non_constant)
7423          << Init->getSourceRange();
7424        VDecl->setInvalidDecl();
7425      }
7426
7427    // We allow foldable floating-point constants as an extension.
7428    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7429      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7430      // it anyway and provide a fixit to add the 'constexpr'.
7431      if (getLangOpts().CPlusPlus11) {
7432        Diag(VDecl->getLocation(),
7433             diag::ext_in_class_initializer_float_type_cxx11)
7434            << DclT << Init->getSourceRange();
7435        Diag(VDecl->getLocStart(),
7436             diag::note_in_class_initializer_float_type_cxx11)
7437            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7438      } else {
7439        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7440          << DclT << Init->getSourceRange();
7441
7442        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7443          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7444            << Init->getSourceRange();
7445          VDecl->setInvalidDecl();
7446        }
7447      }
7448
7449    // Suggest adding 'constexpr' in C++11 for literal types.
7450    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7451      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7452        << DclT << Init->getSourceRange()
7453        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7454      VDecl->setConstexpr(true);
7455
7456    } else {
7457      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7458        << DclT << Init->getSourceRange();
7459      VDecl->setInvalidDecl();
7460    }
7461  } else if (VDecl->isFileVarDecl()) {
7462    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7463        (!getLangOpts().CPlusPlus ||
7464         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7465      Diag(VDecl->getLocation(), diag::warn_extern_init);
7466
7467    // C99 6.7.8p4. All file scoped initializers need to be constant.
7468    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7469      CheckForConstantInitializer(Init, DclT);
7470  }
7471
7472  // We will represent direct-initialization similarly to copy-initialization:
7473  //    int x(1);  -as-> int x = 1;
7474  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7475  //
7476  // Clients that want to distinguish between the two forms, can check for
7477  // direct initializer using VarDecl::getInitStyle().
7478  // A major benefit is that clients that don't particularly care about which
7479  // exactly form was it (like the CodeGen) can handle both cases without
7480  // special case code.
7481
7482  // C++ 8.5p11:
7483  // The form of initialization (using parentheses or '=') is generally
7484  // insignificant, but does matter when the entity being initialized has a
7485  // class type.
7486  if (CXXDirectInit) {
7487    assert(DirectInit && "Call-style initializer must be direct init.");
7488    VDecl->setInitStyle(VarDecl::CallInit);
7489  } else if (DirectInit) {
7490    // This must be list-initialization. No other way is direct-initialization.
7491    VDecl->setInitStyle(VarDecl::ListInit);
7492  }
7493
7494  CheckCompleteVariableDeclaration(VDecl);
7495}
7496
7497/// ActOnInitializerError - Given that there was an error parsing an
7498/// initializer for the given declaration, try to return to some form
7499/// of sanity.
7500void Sema::ActOnInitializerError(Decl *D) {
7501  // Our main concern here is re-establishing invariants like "a
7502  // variable's type is either dependent or complete".
7503  if (!D || D->isInvalidDecl()) return;
7504
7505  VarDecl *VD = dyn_cast<VarDecl>(D);
7506  if (!VD) return;
7507
7508  // Auto types are meaningless if we can't make sense of the initializer.
7509  if (ParsingInitForAutoVars.count(D)) {
7510    D->setInvalidDecl();
7511    return;
7512  }
7513
7514  QualType Ty = VD->getType();
7515  if (Ty->isDependentType()) return;
7516
7517  // Require a complete type.
7518  if (RequireCompleteType(VD->getLocation(),
7519                          Context.getBaseElementType(Ty),
7520                          diag::err_typecheck_decl_incomplete_type)) {
7521    VD->setInvalidDecl();
7522    return;
7523  }
7524
7525  // Require an abstract type.
7526  if (RequireNonAbstractType(VD->getLocation(), Ty,
7527                             diag::err_abstract_type_in_decl,
7528                             AbstractVariableType)) {
7529    VD->setInvalidDecl();
7530    return;
7531  }
7532
7533  // Don't bother complaining about constructors or destructors,
7534  // though.
7535}
7536
7537void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7538                                  bool TypeMayContainAuto) {
7539  // If there is no declaration, there was an error parsing it. Just ignore it.
7540  if (RealDecl == 0)
7541    return;
7542
7543  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7544    QualType Type = Var->getType();
7545
7546    // C++11 [dcl.spec.auto]p3
7547    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7548      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7549        << Var->getDeclName() << Type;
7550      Var->setInvalidDecl();
7551      return;
7552    }
7553
7554    // C++11 [class.static.data]p3: A static data member can be declared with
7555    // the constexpr specifier; if so, its declaration shall specify
7556    // a brace-or-equal-initializer.
7557    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7558    // the definition of a variable [...] or the declaration of a static data
7559    // member.
7560    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7561      if (Var->isStaticDataMember())
7562        Diag(Var->getLocation(),
7563             diag::err_constexpr_static_mem_var_requires_init)
7564          << Var->getDeclName();
7565      else
7566        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7567      Var->setInvalidDecl();
7568      return;
7569    }
7570
7571    switch (Var->isThisDeclarationADefinition()) {
7572    case VarDecl::Definition:
7573      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7574        break;
7575
7576      // We have an out-of-line definition of a static data member
7577      // that has an in-class initializer, so we type-check this like
7578      // a declaration.
7579      //
7580      // Fall through
7581
7582    case VarDecl::DeclarationOnly:
7583      // It's only a declaration.
7584
7585      // Block scope. C99 6.7p7: If an identifier for an object is
7586      // declared with no linkage (C99 6.2.2p6), the type for the
7587      // object shall be complete.
7588      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7589          !Var->getLinkage() && !Var->isInvalidDecl() &&
7590          RequireCompleteType(Var->getLocation(), Type,
7591                              diag::err_typecheck_decl_incomplete_type))
7592        Var->setInvalidDecl();
7593
7594      // Make sure that the type is not abstract.
7595      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7596          RequireNonAbstractType(Var->getLocation(), Type,
7597                                 diag::err_abstract_type_in_decl,
7598                                 AbstractVariableType))
7599        Var->setInvalidDecl();
7600      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7601          Var->getStorageClass() == SC_PrivateExtern) {
7602        Diag(Var->getLocation(), diag::warn_private_extern);
7603        Diag(Var->getLocation(), diag::note_private_extern);
7604      }
7605
7606      return;
7607
7608    case VarDecl::TentativeDefinition:
7609      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7610      // object that has file scope without an initializer, and without a
7611      // storage-class specifier or with the storage-class specifier "static",
7612      // constitutes a tentative definition. Note: A tentative definition with
7613      // external linkage is valid (C99 6.2.2p5).
7614      if (!Var->isInvalidDecl()) {
7615        if (const IncompleteArrayType *ArrayT
7616                                    = Context.getAsIncompleteArrayType(Type)) {
7617          if (RequireCompleteType(Var->getLocation(),
7618                                  ArrayT->getElementType(),
7619                                  diag::err_illegal_decl_array_incomplete_type))
7620            Var->setInvalidDecl();
7621        } else if (Var->getStorageClass() == SC_Static) {
7622          // C99 6.9.2p3: If the declaration of an identifier for an object is
7623          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7624          // declared type shall not be an incomplete type.
7625          // NOTE: code such as the following
7626          //     static struct s;
7627          //     struct s { int a; };
7628          // is accepted by gcc. Hence here we issue a warning instead of
7629          // an error and we do not invalidate the static declaration.
7630          // NOTE: to avoid multiple warnings, only check the first declaration.
7631          if (Var->getPreviousDecl() == 0)
7632            RequireCompleteType(Var->getLocation(), Type,
7633                                diag::ext_typecheck_decl_incomplete_type);
7634        }
7635      }
7636
7637      // Record the tentative definition; we're done.
7638      if (!Var->isInvalidDecl())
7639        TentativeDefinitions.push_back(Var);
7640      return;
7641    }
7642
7643    // Provide a specific diagnostic for uninitialized variable
7644    // definitions with incomplete array type.
7645    if (Type->isIncompleteArrayType()) {
7646      Diag(Var->getLocation(),
7647           diag::err_typecheck_incomplete_array_needs_initializer);
7648      Var->setInvalidDecl();
7649      return;
7650    }
7651
7652    // Provide a specific diagnostic for uninitialized variable
7653    // definitions with reference type.
7654    if (Type->isReferenceType()) {
7655      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7656        << Var->getDeclName()
7657        << SourceRange(Var->getLocation(), Var->getLocation());
7658      Var->setInvalidDecl();
7659      return;
7660    }
7661
7662    // Do not attempt to type-check the default initializer for a
7663    // variable with dependent type.
7664    if (Type->isDependentType())
7665      return;
7666
7667    if (Var->isInvalidDecl())
7668      return;
7669
7670    if (RequireCompleteType(Var->getLocation(),
7671                            Context.getBaseElementType(Type),
7672                            diag::err_typecheck_decl_incomplete_type)) {
7673      Var->setInvalidDecl();
7674      return;
7675    }
7676
7677    // The variable can not have an abstract class type.
7678    if (RequireNonAbstractType(Var->getLocation(), Type,
7679                               diag::err_abstract_type_in_decl,
7680                               AbstractVariableType)) {
7681      Var->setInvalidDecl();
7682      return;
7683    }
7684
7685    // Check for jumps past the implicit initializer.  C++0x
7686    // clarifies that this applies to a "variable with automatic
7687    // storage duration", not a "local variable".
7688    // C++11 [stmt.dcl]p3
7689    //   A program that jumps from a point where a variable with automatic
7690    //   storage duration is not in scope to a point where it is in scope is
7691    //   ill-formed unless the variable has scalar type, class type with a
7692    //   trivial default constructor and a trivial destructor, a cv-qualified
7693    //   version of one of these types, or an array of one of the preceding
7694    //   types and is declared without an initializer.
7695    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7696      if (const RecordType *Record
7697            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7698        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7699        // Mark the function for further checking even if the looser rules of
7700        // C++11 do not require such checks, so that we can diagnose
7701        // incompatibilities with C++98.
7702        if (!CXXRecord->isPOD())
7703          getCurFunction()->setHasBranchProtectedScope();
7704      }
7705    }
7706
7707    // C++03 [dcl.init]p9:
7708    //   If no initializer is specified for an object, and the
7709    //   object is of (possibly cv-qualified) non-POD class type (or
7710    //   array thereof), the object shall be default-initialized; if
7711    //   the object is of const-qualified type, the underlying class
7712    //   type shall have a user-declared default
7713    //   constructor. Otherwise, if no initializer is specified for
7714    //   a non- static object, the object and its subobjects, if
7715    //   any, have an indeterminate initial value); if the object
7716    //   or any of its subobjects are of const-qualified type, the
7717    //   program is ill-formed.
7718    // C++0x [dcl.init]p11:
7719    //   If no initializer is specified for an object, the object is
7720    //   default-initialized; [...].
7721    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7722    InitializationKind Kind
7723      = InitializationKind::CreateDefault(Var->getLocation());
7724
7725    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7726    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7727    if (Init.isInvalid())
7728      Var->setInvalidDecl();
7729    else if (Init.get()) {
7730      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7731      // This is important for template substitution.
7732      Var->setInitStyle(VarDecl::CallInit);
7733    }
7734
7735    CheckCompleteVariableDeclaration(Var);
7736  }
7737}
7738
7739void Sema::ActOnCXXForRangeDecl(Decl *D) {
7740  VarDecl *VD = dyn_cast<VarDecl>(D);
7741  if (!VD) {
7742    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7743    D->setInvalidDecl();
7744    return;
7745  }
7746
7747  VD->setCXXForRangeDecl(true);
7748
7749  // for-range-declaration cannot be given a storage class specifier.
7750  int Error = -1;
7751  switch (VD->getStorageClassAsWritten()) {
7752  case SC_None:
7753    break;
7754  case SC_Extern:
7755    Error = 0;
7756    break;
7757  case SC_Static:
7758    Error = 1;
7759    break;
7760  case SC_PrivateExtern:
7761    Error = 2;
7762    break;
7763  case SC_Auto:
7764    Error = 3;
7765    break;
7766  case SC_Register:
7767    Error = 4;
7768    break;
7769  case SC_OpenCLWorkGroupLocal:
7770    llvm_unreachable("Unexpected storage class");
7771  }
7772  if (VD->isConstexpr())
7773    Error = 5;
7774  if (Error != -1) {
7775    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7776      << VD->getDeclName() << Error;
7777    D->setInvalidDecl();
7778  }
7779}
7780
7781void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7782  if (var->isInvalidDecl()) return;
7783
7784  // In ARC, don't allow jumps past the implicit initialization of a
7785  // local retaining variable.
7786  if (getLangOpts().ObjCAutoRefCount &&
7787      var->hasLocalStorage()) {
7788    switch (var->getType().getObjCLifetime()) {
7789    case Qualifiers::OCL_None:
7790    case Qualifiers::OCL_ExplicitNone:
7791    case Qualifiers::OCL_Autoreleasing:
7792      break;
7793
7794    case Qualifiers::OCL_Weak:
7795    case Qualifiers::OCL_Strong:
7796      getCurFunction()->setHasBranchProtectedScope();
7797      break;
7798    }
7799  }
7800
7801  if (var->isThisDeclarationADefinition() &&
7802      var->hasExternalLinkage() &&
7803      getDiagnostics().getDiagnosticLevel(
7804                       diag::warn_missing_variable_declarations,
7805                       var->getLocation())) {
7806    // Find a previous declaration that's not a definition.
7807    VarDecl *prev = var->getPreviousDecl();
7808    while (prev && prev->isThisDeclarationADefinition())
7809      prev = prev->getPreviousDecl();
7810
7811    if (!prev)
7812      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7813  }
7814
7815  // All the following checks are C++ only.
7816  if (!getLangOpts().CPlusPlus) return;
7817
7818  QualType type = var->getType();
7819  if (type->isDependentType()) return;
7820
7821  // __block variables might require us to capture a copy-initializer.
7822  if (var->hasAttr<BlocksAttr>()) {
7823    // It's currently invalid to ever have a __block variable with an
7824    // array type; should we diagnose that here?
7825
7826    // Regardless, we don't want to ignore array nesting when
7827    // constructing this copy.
7828    if (type->isStructureOrClassType()) {
7829      SourceLocation poi = var->getLocation();
7830      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7831      ExprResult result
7832        = PerformMoveOrCopyInitialization(
7833            InitializedEntity::InitializeBlock(poi, type, false),
7834            var, var->getType(), varRef, /*AllowNRVO=*/true);
7835      if (!result.isInvalid()) {
7836        result = MaybeCreateExprWithCleanups(result);
7837        Expr *init = result.takeAs<Expr>();
7838        Context.setBlockVarCopyInits(var, init);
7839      }
7840    }
7841  }
7842
7843  Expr *Init = var->getInit();
7844  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7845  QualType baseType = Context.getBaseElementType(type);
7846
7847  if (!var->getDeclContext()->isDependentContext() &&
7848      Init && !Init->isValueDependent()) {
7849    if (IsGlobal && !var->isConstexpr() &&
7850        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7851                                            var->getLocation())
7852          != DiagnosticsEngine::Ignored &&
7853        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7854      Diag(var->getLocation(), diag::warn_global_constructor)
7855        << Init->getSourceRange();
7856
7857    if (var->isConstexpr()) {
7858      SmallVector<PartialDiagnosticAt, 8> Notes;
7859      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7860        SourceLocation DiagLoc = var->getLocation();
7861        // If the note doesn't add any useful information other than a source
7862        // location, fold it into the primary diagnostic.
7863        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7864              diag::note_invalid_subexpr_in_const_expr) {
7865          DiagLoc = Notes[0].first;
7866          Notes.clear();
7867        }
7868        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7869          << var << Init->getSourceRange();
7870        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7871          Diag(Notes[I].first, Notes[I].second);
7872      }
7873    } else if (var->isUsableInConstantExpressions(Context)) {
7874      // Check whether the initializer of a const variable of integral or
7875      // enumeration type is an ICE now, since we can't tell whether it was
7876      // initialized by a constant expression if we check later.
7877      var->checkInitIsICE();
7878    }
7879  }
7880
7881  // Require the destructor.
7882  if (const RecordType *recordType = baseType->getAs<RecordType>())
7883    FinalizeVarWithDestructor(var, recordType);
7884}
7885
7886/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7887/// any semantic actions necessary after any initializer has been attached.
7888void
7889Sema::FinalizeDeclaration(Decl *ThisDecl) {
7890  // Note that we are no longer parsing the initializer for this declaration.
7891  ParsingInitForAutoVars.erase(ThisDecl);
7892
7893  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7894  if (!VD)
7895    return;
7896
7897  const DeclContext *DC = VD->getDeclContext();
7898  // If there's a #pragma GCC visibility in scope, and this isn't a class
7899  // member, set the visibility of this variable.
7900  if (VD->hasExternalLinkage() && !DC->isRecord())
7901    AddPushedVisibilityAttribute(VD);
7902
7903  if (VD->isFileVarDecl())
7904    MarkUnusedFileScopedDecl(VD);
7905
7906  // Now we have parsed the initializer and can update the table of magic
7907  // tag values.
7908  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7909      !VD->getType()->isIntegralOrEnumerationType())
7910    return;
7911
7912  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7913         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7914         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7915       I != E; ++I) {
7916    const Expr *MagicValueExpr = VD->getInit();
7917    if (!MagicValueExpr) {
7918      continue;
7919    }
7920    llvm::APSInt MagicValueInt;
7921    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7922      Diag(I->getRange().getBegin(),
7923           diag::err_type_tag_for_datatype_not_ice)
7924        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7925      continue;
7926    }
7927    if (MagicValueInt.getActiveBits() > 64) {
7928      Diag(I->getRange().getBegin(),
7929           diag::err_type_tag_for_datatype_too_large)
7930        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7931      continue;
7932    }
7933    uint64_t MagicValue = MagicValueInt.getZExtValue();
7934    RegisterTypeTagForDatatype(I->getArgumentKind(),
7935                               MagicValue,
7936                               I->getMatchingCType(),
7937                               I->getLayoutCompatible(),
7938                               I->getMustBeNull());
7939  }
7940}
7941
7942Sema::DeclGroupPtrTy
7943Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7944                              Decl **Group, unsigned NumDecls) {
7945  SmallVector<Decl*, 8> Decls;
7946
7947  if (DS.isTypeSpecOwned())
7948    Decls.push_back(DS.getRepAsDecl());
7949
7950  for (unsigned i = 0; i != NumDecls; ++i)
7951    if (Decl *D = Group[i])
7952      Decls.push_back(D);
7953
7954  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7955    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7956      getASTContext().addUnnamedTag(Tag);
7957
7958  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7959                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7960}
7961
7962/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7963/// group, performing any necessary semantic checking.
7964Sema::DeclGroupPtrTy
7965Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7966                           bool TypeMayContainAuto) {
7967  // C++0x [dcl.spec.auto]p7:
7968  //   If the type deduced for the template parameter U is not the same in each
7969  //   deduction, the program is ill-formed.
7970  // FIXME: When initializer-list support is added, a distinction is needed
7971  // between the deduced type U and the deduced type which 'auto' stands for.
7972  //   auto a = 0, b = { 1, 2, 3 };
7973  // is legal because the deduced type U is 'int' in both cases.
7974  if (TypeMayContainAuto && NumDecls > 1) {
7975    QualType Deduced;
7976    CanQualType DeducedCanon;
7977    VarDecl *DeducedDecl = 0;
7978    for (unsigned i = 0; i != NumDecls; ++i) {
7979      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7980        AutoType *AT = D->getType()->getContainedAutoType();
7981        // Don't reissue diagnostics when instantiating a template.
7982        if (AT && D->isInvalidDecl())
7983          break;
7984        if (AT && AT->isDeduced()) {
7985          QualType U = AT->getDeducedType();
7986          CanQualType UCanon = Context.getCanonicalType(U);
7987          if (Deduced.isNull()) {
7988            Deduced = U;
7989            DeducedCanon = UCanon;
7990            DeducedDecl = D;
7991          } else if (DeducedCanon != UCanon) {
7992            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7993                 diag::err_auto_different_deductions)
7994              << Deduced << DeducedDecl->getDeclName()
7995              << U << D->getDeclName()
7996              << DeducedDecl->getInit()->getSourceRange()
7997              << D->getInit()->getSourceRange();
7998            D->setInvalidDecl();
7999            break;
8000          }
8001        }
8002      }
8003    }
8004  }
8005
8006  ActOnDocumentableDecls(Group, NumDecls);
8007
8008  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8009}
8010
8011void Sema::ActOnDocumentableDecl(Decl *D) {
8012  ActOnDocumentableDecls(&D, 1);
8013}
8014
8015void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8016  // Don't parse the comment if Doxygen diagnostics are ignored.
8017  if (NumDecls == 0 || !Group[0])
8018   return;
8019
8020  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8021                               Group[0]->getLocation())
8022        == DiagnosticsEngine::Ignored)
8023    return;
8024
8025  if (NumDecls >= 2) {
8026    // This is a decl group.  Normally it will contain only declarations
8027    // procuded from declarator list.  But in case we have any definitions or
8028    // additional declaration references:
8029    //   'typedef struct S {} S;'
8030    //   'typedef struct S *S;'
8031    //   'struct S *pS;'
8032    // FinalizeDeclaratorGroup adds these as separate declarations.
8033    Decl *MaybeTagDecl = Group[0];
8034    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8035      Group++;
8036      NumDecls--;
8037    }
8038  }
8039
8040  // See if there are any new comments that are not attached to a decl.
8041  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8042  if (!Comments.empty() &&
8043      !Comments.back()->isAttached()) {
8044    // There is at least one comment that not attached to a decl.
8045    // Maybe it should be attached to one of these decls?
8046    //
8047    // Note that this way we pick up not only comments that precede the
8048    // declaration, but also comments that *follow* the declaration -- thanks to
8049    // the lookahead in the lexer: we've consumed the semicolon and looked
8050    // ahead through comments.
8051    for (unsigned i = 0; i != NumDecls; ++i)
8052      Context.getCommentForDecl(Group[i], &PP);
8053  }
8054}
8055
8056/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8057/// to introduce parameters into function prototype scope.
8058Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8059  const DeclSpec &DS = D.getDeclSpec();
8060
8061  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8062  // C++03 [dcl.stc]p2 also permits 'auto'.
8063  VarDecl::StorageClass StorageClass = SC_None;
8064  VarDecl::StorageClass StorageClassAsWritten = SC_None;
8065  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8066    StorageClass = SC_Register;
8067    StorageClassAsWritten = SC_Register;
8068  } else if (getLangOpts().CPlusPlus &&
8069             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8070    StorageClass = SC_Auto;
8071    StorageClassAsWritten = SC_Auto;
8072  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8073    Diag(DS.getStorageClassSpecLoc(),
8074         diag::err_invalid_storage_class_in_func_decl);
8075    D.getMutableDeclSpec().ClearStorageClassSpecs();
8076  }
8077
8078  if (D.getDeclSpec().isThreadSpecified())
8079    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8080  if (D.getDeclSpec().isConstexprSpecified())
8081    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8082      << 0;
8083
8084  DiagnoseFunctionSpecifiers(D);
8085
8086  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8087  QualType parmDeclType = TInfo->getType();
8088
8089  if (getLangOpts().CPlusPlus) {
8090    // Check that there are no default arguments inside the type of this
8091    // parameter.
8092    CheckExtraCXXDefaultArguments(D);
8093
8094    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8095    if (D.getCXXScopeSpec().isSet()) {
8096      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8097        << D.getCXXScopeSpec().getRange();
8098      D.getCXXScopeSpec().clear();
8099    }
8100  }
8101
8102  // Ensure we have a valid name
8103  IdentifierInfo *II = 0;
8104  if (D.hasName()) {
8105    II = D.getIdentifier();
8106    if (!II) {
8107      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8108        << GetNameForDeclarator(D).getName().getAsString();
8109      D.setInvalidType(true);
8110    }
8111  }
8112
8113  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8114  if (II) {
8115    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8116                   ForRedeclaration);
8117    LookupName(R, S);
8118    if (R.isSingleResult()) {
8119      NamedDecl *PrevDecl = R.getFoundDecl();
8120      if (PrevDecl->isTemplateParameter()) {
8121        // Maybe we will complain about the shadowed template parameter.
8122        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8123        // Just pretend that we didn't see the previous declaration.
8124        PrevDecl = 0;
8125      } else if (S->isDeclScope(PrevDecl)) {
8126        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8127        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8128
8129        // Recover by removing the name
8130        II = 0;
8131        D.SetIdentifier(0, D.getIdentifierLoc());
8132        D.setInvalidType(true);
8133      }
8134    }
8135  }
8136
8137  // Temporarily put parameter variables in the translation unit, not
8138  // the enclosing context.  This prevents them from accidentally
8139  // looking like class members in C++.
8140  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8141                                    D.getLocStart(),
8142                                    D.getIdentifierLoc(), II,
8143                                    parmDeclType, TInfo,
8144                                    StorageClass, StorageClassAsWritten);
8145
8146  if (D.isInvalidType())
8147    New->setInvalidDecl();
8148
8149  assert(S->isFunctionPrototypeScope());
8150  assert(S->getFunctionPrototypeDepth() >= 1);
8151  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8152                    S->getNextFunctionPrototypeIndex());
8153
8154  // Add the parameter declaration into this scope.
8155  S->AddDecl(New);
8156  if (II)
8157    IdResolver.AddDecl(New);
8158
8159  ProcessDeclAttributes(S, New, D);
8160
8161  if (D.getDeclSpec().isModulePrivateSpecified())
8162    Diag(New->getLocation(), diag::err_module_private_local)
8163      << 1 << New->getDeclName()
8164      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8165      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8166
8167  if (New->hasAttr<BlocksAttr>()) {
8168    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8169  }
8170  return New;
8171}
8172
8173/// \brief Synthesizes a variable for a parameter arising from a
8174/// typedef.
8175ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8176                                              SourceLocation Loc,
8177                                              QualType T) {
8178  /* FIXME: setting StartLoc == Loc.
8179     Would it be worth to modify callers so as to provide proper source
8180     location for the unnamed parameters, embedding the parameter's type? */
8181  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8182                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8183                                           SC_None, SC_None, 0);
8184  Param->setImplicit();
8185  return Param;
8186}
8187
8188void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8189                                    ParmVarDecl * const *ParamEnd) {
8190  // Don't diagnose unused-parameter errors in template instantiations; we
8191  // will already have done so in the template itself.
8192  if (!ActiveTemplateInstantiations.empty())
8193    return;
8194
8195  for (; Param != ParamEnd; ++Param) {
8196    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8197        !(*Param)->hasAttr<UnusedAttr>()) {
8198      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8199        << (*Param)->getDeclName();
8200    }
8201  }
8202}
8203
8204void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8205                                                  ParmVarDecl * const *ParamEnd,
8206                                                  QualType ReturnTy,
8207                                                  NamedDecl *D) {
8208  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8209    return;
8210
8211  // Warn if the return value is pass-by-value and larger than the specified
8212  // threshold.
8213  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8214    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8215    if (Size > LangOpts.NumLargeByValueCopy)
8216      Diag(D->getLocation(), diag::warn_return_value_size)
8217          << D->getDeclName() << Size;
8218  }
8219
8220  // Warn if any parameter is pass-by-value and larger than the specified
8221  // threshold.
8222  for (; Param != ParamEnd; ++Param) {
8223    QualType T = (*Param)->getType();
8224    if (T->isDependentType() || !T.isPODType(Context))
8225      continue;
8226    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8227    if (Size > LangOpts.NumLargeByValueCopy)
8228      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8229          << (*Param)->getDeclName() << Size;
8230  }
8231}
8232
8233ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8234                                  SourceLocation NameLoc, IdentifierInfo *Name,
8235                                  QualType T, TypeSourceInfo *TSInfo,
8236                                  VarDecl::StorageClass StorageClass,
8237                                  VarDecl::StorageClass StorageClassAsWritten) {
8238  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8239  if (getLangOpts().ObjCAutoRefCount &&
8240      T.getObjCLifetime() == Qualifiers::OCL_None &&
8241      T->isObjCLifetimeType()) {
8242
8243    Qualifiers::ObjCLifetime lifetime;
8244
8245    // Special cases for arrays:
8246    //   - if it's const, use __unsafe_unretained
8247    //   - otherwise, it's an error
8248    if (T->isArrayType()) {
8249      if (!T.isConstQualified()) {
8250        DelayedDiagnostics.add(
8251            sema::DelayedDiagnostic::makeForbiddenType(
8252            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8253      }
8254      lifetime = Qualifiers::OCL_ExplicitNone;
8255    } else {
8256      lifetime = T->getObjCARCImplicitLifetime();
8257    }
8258    T = Context.getLifetimeQualifiedType(T, lifetime);
8259  }
8260
8261  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8262                                         Context.getAdjustedParameterType(T),
8263                                         TSInfo,
8264                                         StorageClass, StorageClassAsWritten,
8265                                         0);
8266
8267  // Parameters can not be abstract class types.
8268  // For record types, this is done by the AbstractClassUsageDiagnoser once
8269  // the class has been completely parsed.
8270  if (!CurContext->isRecord() &&
8271      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8272                             AbstractParamType))
8273    New->setInvalidDecl();
8274
8275  // Parameter declarators cannot be interface types. All ObjC objects are
8276  // passed by reference.
8277  if (T->isObjCObjectType()) {
8278    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8279    Diag(NameLoc,
8280         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8281      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8282    T = Context.getObjCObjectPointerType(T);
8283    New->setType(T);
8284  }
8285
8286  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8287  // duration shall not be qualified by an address-space qualifier."
8288  // Since all parameters have automatic store duration, they can not have
8289  // an address space.
8290  if (T.getAddressSpace() != 0) {
8291    Diag(NameLoc, diag::err_arg_with_address_space);
8292    New->setInvalidDecl();
8293  }
8294
8295  return New;
8296}
8297
8298void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8299                                           SourceLocation LocAfterDecls) {
8300  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8301
8302  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8303  // for a K&R function.
8304  if (!FTI.hasPrototype) {
8305    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8306      --i;
8307      if (FTI.ArgInfo[i].Param == 0) {
8308        SmallString<256> Code;
8309        llvm::raw_svector_ostream(Code) << "  int "
8310                                        << FTI.ArgInfo[i].Ident->getName()
8311                                        << ";\n";
8312        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8313          << FTI.ArgInfo[i].Ident
8314          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8315
8316        // Implicitly declare the argument as type 'int' for lack of a better
8317        // type.
8318        AttributeFactory attrs;
8319        DeclSpec DS(attrs);
8320        const char* PrevSpec; // unused
8321        unsigned DiagID; // unused
8322        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8323                           PrevSpec, DiagID);
8324        // Use the identifier location for the type source range.
8325        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8326        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8327        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8328        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8329        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8330      }
8331    }
8332  }
8333}
8334
8335Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8336  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8337  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8338  Scope *ParentScope = FnBodyScope->getParent();
8339
8340  D.setFunctionDefinitionKind(FDK_Definition);
8341  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8342  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8343}
8344
8345static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8346                             const FunctionDecl*& PossibleZeroParamPrototype) {
8347  // Don't warn about invalid declarations.
8348  if (FD->isInvalidDecl())
8349    return false;
8350
8351  // Or declarations that aren't global.
8352  if (!FD->isGlobal())
8353    return false;
8354
8355  // Don't warn about C++ member functions.
8356  if (isa<CXXMethodDecl>(FD))
8357    return false;
8358
8359  // Don't warn about 'main'.
8360  if (FD->isMain())
8361    return false;
8362
8363  // Don't warn about inline functions.
8364  if (FD->isInlined())
8365    return false;
8366
8367  // Don't warn about function templates.
8368  if (FD->getDescribedFunctionTemplate())
8369    return false;
8370
8371  // Don't warn about function template specializations.
8372  if (FD->isFunctionTemplateSpecialization())
8373    return false;
8374
8375  // Don't warn for OpenCL kernels.
8376  if (FD->hasAttr<OpenCLKernelAttr>())
8377    return false;
8378
8379  bool MissingPrototype = true;
8380  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8381       Prev; Prev = Prev->getPreviousDecl()) {
8382    // Ignore any declarations that occur in function or method
8383    // scope, because they aren't visible from the header.
8384    if (Prev->getDeclContext()->isFunctionOrMethod())
8385      continue;
8386
8387    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8388    if (FD->getNumParams() == 0)
8389      PossibleZeroParamPrototype = Prev;
8390    break;
8391  }
8392
8393  return MissingPrototype;
8394}
8395
8396void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8397  // Don't complain if we're in GNU89 mode and the previous definition
8398  // was an extern inline function.
8399  const FunctionDecl *Definition;
8400  if (FD->isDefined(Definition) &&
8401      !canRedefineFunction(Definition, getLangOpts())) {
8402    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8403        Definition->getStorageClass() == SC_Extern)
8404      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8405        << FD->getDeclName() << getLangOpts().CPlusPlus;
8406    else
8407      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8408    Diag(Definition->getLocation(), diag::note_previous_definition);
8409    FD->setInvalidDecl();
8410  }
8411}
8412
8413Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8414  // Clear the last template instantiation error context.
8415  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8416
8417  if (!D)
8418    return D;
8419  FunctionDecl *FD = 0;
8420
8421  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8422    FD = FunTmpl->getTemplatedDecl();
8423  else
8424    FD = cast<FunctionDecl>(D);
8425
8426  // Enter a new function scope
8427  PushFunctionScope();
8428
8429  // See if this is a redefinition.
8430  if (!FD->isLateTemplateParsed())
8431    CheckForFunctionRedefinition(FD);
8432
8433  // Builtin functions cannot be defined.
8434  if (unsigned BuiltinID = FD->getBuiltinID()) {
8435    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8436      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8437      FD->setInvalidDecl();
8438    }
8439  }
8440
8441  // The return type of a function definition must be complete
8442  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8443  QualType ResultType = FD->getResultType();
8444  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8445      !FD->isInvalidDecl() &&
8446      RequireCompleteType(FD->getLocation(), ResultType,
8447                          diag::err_func_def_incomplete_result))
8448    FD->setInvalidDecl();
8449
8450  // GNU warning -Wmissing-prototypes:
8451  //   Warn if a global function is defined without a previous
8452  //   prototype declaration. This warning is issued even if the
8453  //   definition itself provides a prototype. The aim is to detect
8454  //   global functions that fail to be declared in header files.
8455  const FunctionDecl *PossibleZeroParamPrototype = 0;
8456  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8457    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8458
8459    if (PossibleZeroParamPrototype) {
8460      // We found a declaration that is not a prototype,
8461      // but that could be a zero-parameter prototype
8462      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8463      TypeLoc TL = TI->getTypeLoc();
8464      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8465        Diag(PossibleZeroParamPrototype->getLocation(),
8466             diag::note_declaration_not_a_prototype)
8467          << PossibleZeroParamPrototype
8468          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8469    }
8470  }
8471
8472  if (FnBodyScope)
8473    PushDeclContext(FnBodyScope, FD);
8474
8475  // Check the validity of our function parameters
8476  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8477                           /*CheckParameterNames=*/true);
8478
8479  // Introduce our parameters into the function scope
8480  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8481    ParmVarDecl *Param = FD->getParamDecl(p);
8482    Param->setOwningFunction(FD);
8483
8484    // If this has an identifier, add it to the scope stack.
8485    if (Param->getIdentifier() && FnBodyScope) {
8486      CheckShadow(FnBodyScope, Param);
8487
8488      PushOnScopeChains(Param, FnBodyScope);
8489    }
8490  }
8491
8492  // If we had any tags defined in the function prototype,
8493  // introduce them into the function scope.
8494  if (FnBodyScope) {
8495    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8496           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8497      NamedDecl *D = *I;
8498
8499      // Some of these decls (like enums) may have been pinned to the translation unit
8500      // for lack of a real context earlier. If so, remove from the translation unit
8501      // and reattach to the current context.
8502      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8503        // Is the decl actually in the context?
8504        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8505               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8506          if (*DI == D) {
8507            Context.getTranslationUnitDecl()->removeDecl(D);
8508            break;
8509          }
8510        }
8511        // Either way, reassign the lexical decl context to our FunctionDecl.
8512        D->setLexicalDeclContext(CurContext);
8513      }
8514
8515      // If the decl has a non-null name, make accessible in the current scope.
8516      if (!D->getName().empty())
8517        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8518
8519      // Similarly, dive into enums and fish their constants out, making them
8520      // accessible in this scope.
8521      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8522        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8523               EE = ED->enumerator_end(); EI != EE; ++EI)
8524          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8525      }
8526    }
8527  }
8528
8529  // Ensure that the function's exception specification is instantiated.
8530  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8531    ResolveExceptionSpec(D->getLocation(), FPT);
8532
8533  // Checking attributes of current function definition
8534  // dllimport attribute.
8535  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8536  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8537    // dllimport attribute cannot be directly applied to definition.
8538    // Microsoft accepts dllimport for functions defined within class scope.
8539    if (!DA->isInherited() &&
8540        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8541      Diag(FD->getLocation(),
8542           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8543        << "dllimport";
8544      FD->setInvalidDecl();
8545      return D;
8546    }
8547
8548    // Visual C++ appears to not think this is an issue, so only issue
8549    // a warning when Microsoft extensions are disabled.
8550    if (!LangOpts.MicrosoftExt) {
8551      // If a symbol previously declared dllimport is later defined, the
8552      // attribute is ignored in subsequent references, and a warning is
8553      // emitted.
8554      Diag(FD->getLocation(),
8555           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8556        << FD->getName() << "dllimport";
8557    }
8558  }
8559  // We want to attach documentation to original Decl (which might be
8560  // a function template).
8561  ActOnDocumentableDecl(D);
8562  return D;
8563}
8564
8565/// \brief Given the set of return statements within a function body,
8566/// compute the variables that are subject to the named return value
8567/// optimization.
8568///
8569/// Each of the variables that is subject to the named return value
8570/// optimization will be marked as NRVO variables in the AST, and any
8571/// return statement that has a marked NRVO variable as its NRVO candidate can
8572/// use the named return value optimization.
8573///
8574/// This function applies a very simplistic algorithm for NRVO: if every return
8575/// statement in the function has the same NRVO candidate, that candidate is
8576/// the NRVO variable.
8577///
8578/// FIXME: Employ a smarter algorithm that accounts for multiple return
8579/// statements and the lifetimes of the NRVO candidates. We should be able to
8580/// find a maximal set of NRVO variables.
8581void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8582  ReturnStmt **Returns = Scope->Returns.data();
8583
8584  const VarDecl *NRVOCandidate = 0;
8585  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8586    if (!Returns[I]->getNRVOCandidate())
8587      return;
8588
8589    if (!NRVOCandidate)
8590      NRVOCandidate = Returns[I]->getNRVOCandidate();
8591    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8592      return;
8593  }
8594
8595  if (NRVOCandidate)
8596    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8597}
8598
8599bool Sema::canSkipFunctionBody(Decl *D) {
8600  if (!Consumer.shouldSkipFunctionBody(D))
8601    return false;
8602
8603  if (isa<ObjCMethodDecl>(D))
8604    return true;
8605
8606  FunctionDecl *FD = 0;
8607  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8608    FD = FTD->getTemplatedDecl();
8609  else
8610    FD = cast<FunctionDecl>(D);
8611
8612  // We cannot skip the body of a function (or function template) which is
8613  // constexpr, since we may need to evaluate its body in order to parse the
8614  // rest of the file.
8615  return !FD->isConstexpr();
8616}
8617
8618Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8619  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8620    FD->setHasSkippedBody();
8621  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8622    MD->setHasSkippedBody();
8623  return ActOnFinishFunctionBody(Decl, 0);
8624}
8625
8626Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8627  return ActOnFinishFunctionBody(D, BodyArg, false);
8628}
8629
8630Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8631                                    bool IsInstantiation) {
8632  FunctionDecl *FD = 0;
8633  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8634  if (FunTmpl)
8635    FD = FunTmpl->getTemplatedDecl();
8636  else
8637    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8638
8639  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8640  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8641
8642  if (FD) {
8643    FD->setBody(Body);
8644
8645    // The only way to be included in UndefinedButUsed is if there is an
8646    // ODR use before the definition. Avoid the expensive map lookup if this
8647    // is the first declaration.
8648    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8649      if (FD->getLinkage() != ExternalLinkage)
8650        UndefinedButUsed.erase(FD);
8651      else if (FD->isInlined() &&
8652               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8653               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8654        UndefinedButUsed.erase(FD);
8655    }
8656
8657    // If the function implicitly returns zero (like 'main') or is naked,
8658    // don't complain about missing return statements.
8659    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8660      WP.disableCheckFallThrough();
8661
8662    // MSVC permits the use of pure specifier (=0) on function definition,
8663    // defined at class scope, warn about this non standard construct.
8664    if (getLangOpts().MicrosoftExt && FD->isPure())
8665      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8666
8667    if (!FD->isInvalidDecl()) {
8668      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8669      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8670                                             FD->getResultType(), FD);
8671
8672      // If this is a constructor, we need a vtable.
8673      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8674        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8675
8676      // Try to apply the named return value optimization. We have to check
8677      // if we can do this here because lambdas keep return statements around
8678      // to deduce an implicit return type.
8679      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8680          !FD->isDependentContext())
8681        computeNRVO(Body, getCurFunction());
8682    }
8683
8684    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8685           "Function parsing confused");
8686  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8687    assert(MD == getCurMethodDecl() && "Method parsing confused");
8688    MD->setBody(Body);
8689    if (!MD->isInvalidDecl()) {
8690      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8691      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8692                                             MD->getResultType(), MD);
8693
8694      if (Body)
8695        computeNRVO(Body, getCurFunction());
8696    }
8697    if (getCurFunction()->ObjCShouldCallSuper) {
8698      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8699        << MD->getSelector().getAsString();
8700      getCurFunction()->ObjCShouldCallSuper = false;
8701    }
8702  } else {
8703    return 0;
8704  }
8705
8706  assert(!getCurFunction()->ObjCShouldCallSuper &&
8707         "This should only be set for ObjC methods, which should have been "
8708         "handled in the block above.");
8709
8710  // Verify and clean out per-function state.
8711  if (Body) {
8712    // C++ constructors that have function-try-blocks can't have return
8713    // statements in the handlers of that block. (C++ [except.handle]p14)
8714    // Verify this.
8715    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8716      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8717
8718    // Verify that gotos and switch cases don't jump into scopes illegally.
8719    if (getCurFunction()->NeedsScopeChecking() &&
8720        !dcl->isInvalidDecl() &&
8721        !hasAnyUnrecoverableErrorsInThisFunction() &&
8722        !PP.isCodeCompletionEnabled())
8723      DiagnoseInvalidJumps(Body);
8724
8725    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8726      if (!Destructor->getParent()->isDependentType())
8727        CheckDestructor(Destructor);
8728
8729      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8730                                             Destructor->getParent());
8731    }
8732
8733    // If any errors have occurred, clear out any temporaries that may have
8734    // been leftover. This ensures that these temporaries won't be picked up for
8735    // deletion in some later function.
8736    if (PP.getDiagnostics().hasErrorOccurred() ||
8737        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8738      DiscardCleanupsInEvaluationContext();
8739    }
8740    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8741        !isa<FunctionTemplateDecl>(dcl)) {
8742      // Since the body is valid, issue any analysis-based warnings that are
8743      // enabled.
8744      ActivePolicy = &WP;
8745    }
8746
8747    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8748        (!CheckConstexprFunctionDecl(FD) ||
8749         !CheckConstexprFunctionBody(FD, Body)))
8750      FD->setInvalidDecl();
8751
8752    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8753    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8754    assert(MaybeODRUseExprs.empty() &&
8755           "Leftover expressions for odr-use checking");
8756  }
8757
8758  if (!IsInstantiation)
8759    PopDeclContext();
8760
8761  PopFunctionScopeInfo(ActivePolicy, dcl);
8762
8763  // If any errors have occurred, clear out any temporaries that may have
8764  // been leftover. This ensures that these temporaries won't be picked up for
8765  // deletion in some later function.
8766  if (getDiagnostics().hasErrorOccurred()) {
8767    DiscardCleanupsInEvaluationContext();
8768  }
8769
8770  return dcl;
8771}
8772
8773
8774/// When we finish delayed parsing of an attribute, we must attach it to the
8775/// relevant Decl.
8776void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8777                                       ParsedAttributes &Attrs) {
8778  // Always attach attributes to the underlying decl.
8779  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8780    D = TD->getTemplatedDecl();
8781  ProcessDeclAttributeList(S, D, Attrs.getList());
8782
8783  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8784    if (Method->isStatic())
8785      checkThisInStaticMemberFunctionAttributes(Method);
8786}
8787
8788
8789/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8790/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8791NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8792                                          IdentifierInfo &II, Scope *S) {
8793  // Before we produce a declaration for an implicitly defined
8794  // function, see whether there was a locally-scoped declaration of
8795  // this name as a function or variable. If so, use that
8796  // (non-visible) declaration, and complain about it.
8797  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8798    = findLocallyScopedExternCDecl(&II);
8799  if (Pos != LocallyScopedExternCDecls.end()) {
8800    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8801    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8802    return Pos->second;
8803  }
8804
8805  // Extension in C99.  Legal in C90, but warn about it.
8806  unsigned diag_id;
8807  if (II.getName().startswith("__builtin_"))
8808    diag_id = diag::warn_builtin_unknown;
8809  else if (getLangOpts().C99)
8810    diag_id = diag::ext_implicit_function_decl;
8811  else
8812    diag_id = diag::warn_implicit_function_decl;
8813  Diag(Loc, diag_id) << &II;
8814
8815  // Because typo correction is expensive, only do it if the implicit
8816  // function declaration is going to be treated as an error.
8817  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8818    TypoCorrection Corrected;
8819    DeclFilterCCC<FunctionDecl> Validator;
8820    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8821                                      LookupOrdinaryName, S, 0, Validator))) {
8822      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8823      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8824      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8825
8826      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8827          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8828
8829      if (Func->getLocation().isValid()
8830          && !II.getName().startswith("__builtin_"))
8831        Diag(Func->getLocation(), diag::note_previous_decl)
8832            << CorrectedQuotedStr;
8833    }
8834  }
8835
8836  // Set a Declarator for the implicit definition: int foo();
8837  const char *Dummy;
8838  AttributeFactory attrFactory;
8839  DeclSpec DS(attrFactory);
8840  unsigned DiagID;
8841  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8842  (void)Error; // Silence warning.
8843  assert(!Error && "Error setting up implicit decl!");
8844  SourceLocation NoLoc;
8845  Declarator D(DS, Declarator::BlockContext);
8846  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8847                                             /*IsAmbiguous=*/false,
8848                                             /*RParenLoc=*/NoLoc,
8849                                             /*ArgInfo=*/0,
8850                                             /*NumArgs=*/0,
8851                                             /*EllipsisLoc=*/NoLoc,
8852                                             /*RParenLoc=*/NoLoc,
8853                                             /*TypeQuals=*/0,
8854                                             /*RefQualifierIsLvalueRef=*/true,
8855                                             /*RefQualifierLoc=*/NoLoc,
8856                                             /*ConstQualifierLoc=*/NoLoc,
8857                                             /*VolatileQualifierLoc=*/NoLoc,
8858                                             /*MutableLoc=*/NoLoc,
8859                                             EST_None,
8860                                             /*ESpecLoc=*/NoLoc,
8861                                             /*Exceptions=*/0,
8862                                             /*ExceptionRanges=*/0,
8863                                             /*NumExceptions=*/0,
8864                                             /*NoexceptExpr=*/0,
8865                                             Loc, Loc, D),
8866                DS.getAttributes(),
8867                SourceLocation());
8868  D.SetIdentifier(&II, Loc);
8869
8870  // Insert this function into translation-unit scope.
8871
8872  DeclContext *PrevDC = CurContext;
8873  CurContext = Context.getTranslationUnitDecl();
8874
8875  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8876  FD->setImplicit();
8877
8878  CurContext = PrevDC;
8879
8880  AddKnownFunctionAttributes(FD);
8881
8882  return FD;
8883}
8884
8885/// \brief Adds any function attributes that we know a priori based on
8886/// the declaration of this function.
8887///
8888/// These attributes can apply both to implicitly-declared builtins
8889/// (like __builtin___printf_chk) or to library-declared functions
8890/// like NSLog or printf.
8891///
8892/// We need to check for duplicate attributes both here and where user-written
8893/// attributes are applied to declarations.
8894void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8895  if (FD->isInvalidDecl())
8896    return;
8897
8898  // If this is a built-in function, map its builtin attributes to
8899  // actual attributes.
8900  if (unsigned BuiltinID = FD->getBuiltinID()) {
8901    // Handle printf-formatting attributes.
8902    unsigned FormatIdx;
8903    bool HasVAListArg;
8904    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8905      if (!FD->getAttr<FormatAttr>()) {
8906        const char *fmt = "printf";
8907        unsigned int NumParams = FD->getNumParams();
8908        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8909            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8910          fmt = "NSString";
8911        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8912                                               fmt, FormatIdx+1,
8913                                               HasVAListArg ? 0 : FormatIdx+2));
8914      }
8915    }
8916    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8917                                             HasVAListArg)) {
8918     if (!FD->getAttr<FormatAttr>())
8919       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8920                                              "scanf", FormatIdx+1,
8921                                              HasVAListArg ? 0 : FormatIdx+2));
8922    }
8923
8924    // Mark const if we don't care about errno and that is the only
8925    // thing preventing the function from being const. This allows
8926    // IRgen to use LLVM intrinsics for such functions.
8927    if (!getLangOpts().MathErrno &&
8928        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8929      if (!FD->getAttr<ConstAttr>())
8930        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8931    }
8932
8933    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8934        !FD->getAttr<ReturnsTwiceAttr>())
8935      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8936    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8937      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8938    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8939      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8940  }
8941
8942  IdentifierInfo *Name = FD->getIdentifier();
8943  if (!Name)
8944    return;
8945  if ((!getLangOpts().CPlusPlus &&
8946       FD->getDeclContext()->isTranslationUnit()) ||
8947      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8948       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8949       LinkageSpecDecl::lang_c)) {
8950    // Okay: this could be a libc/libm/Objective-C function we know
8951    // about.
8952  } else
8953    return;
8954
8955  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8956    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8957    // target-specific builtins, perhaps?
8958    if (!FD->getAttr<FormatAttr>())
8959      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8960                                             "printf", 2,
8961                                             Name->isStr("vasprintf") ? 0 : 3));
8962  }
8963
8964  if (Name->isStr("__CFStringMakeConstantString")) {
8965    // We already have a __builtin___CFStringMakeConstantString,
8966    // but builds that use -fno-constant-cfstrings don't go through that.
8967    if (!FD->getAttr<FormatArgAttr>())
8968      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8969  }
8970}
8971
8972TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8973                                    TypeSourceInfo *TInfo) {
8974  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8975  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8976
8977  if (!TInfo) {
8978    assert(D.isInvalidType() && "no declarator info for valid type");
8979    TInfo = Context.getTrivialTypeSourceInfo(T);
8980  }
8981
8982  // Scope manipulation handled by caller.
8983  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8984                                           D.getLocStart(),
8985                                           D.getIdentifierLoc(),
8986                                           D.getIdentifier(),
8987                                           TInfo);
8988
8989  // Bail out immediately if we have an invalid declaration.
8990  if (D.isInvalidType()) {
8991    NewTD->setInvalidDecl();
8992    return NewTD;
8993  }
8994
8995  if (D.getDeclSpec().isModulePrivateSpecified()) {
8996    if (CurContext->isFunctionOrMethod())
8997      Diag(NewTD->getLocation(), diag::err_module_private_local)
8998        << 2 << NewTD->getDeclName()
8999        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9000        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9001    else
9002      NewTD->setModulePrivate();
9003  }
9004
9005  // C++ [dcl.typedef]p8:
9006  //   If the typedef declaration defines an unnamed class (or
9007  //   enum), the first typedef-name declared by the declaration
9008  //   to be that class type (or enum type) is used to denote the
9009  //   class type (or enum type) for linkage purposes only.
9010  // We need to check whether the type was declared in the declaration.
9011  switch (D.getDeclSpec().getTypeSpecType()) {
9012  case TST_enum:
9013  case TST_struct:
9014  case TST_interface:
9015  case TST_union:
9016  case TST_class: {
9017    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9018
9019    // Do nothing if the tag is not anonymous or already has an
9020    // associated typedef (from an earlier typedef in this decl group).
9021    if (tagFromDeclSpec->getIdentifier()) break;
9022    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9023
9024    // A well-formed anonymous tag must always be a TUK_Definition.
9025    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9026
9027    // The type must match the tag exactly;  no qualifiers allowed.
9028    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9029      break;
9030
9031    // Otherwise, set this is the anon-decl typedef for the tag.
9032    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9033    break;
9034  }
9035
9036  default:
9037    break;
9038  }
9039
9040  return NewTD;
9041}
9042
9043
9044/// \brief Check that this is a valid underlying type for an enum declaration.
9045bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9046  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9047  QualType T = TI->getType();
9048
9049  if (T->isDependentType())
9050    return false;
9051
9052  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9053    if (BT->isInteger())
9054      return false;
9055
9056  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9057  return true;
9058}
9059
9060/// Check whether this is a valid redeclaration of a previous enumeration.
9061/// \return true if the redeclaration was invalid.
9062bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9063                                  QualType EnumUnderlyingTy,
9064                                  const EnumDecl *Prev) {
9065  bool IsFixed = !EnumUnderlyingTy.isNull();
9066
9067  if (IsScoped != Prev->isScoped()) {
9068    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9069      << Prev->isScoped();
9070    Diag(Prev->getLocation(), diag::note_previous_use);
9071    return true;
9072  }
9073
9074  if (IsFixed && Prev->isFixed()) {
9075    if (!EnumUnderlyingTy->isDependentType() &&
9076        !Prev->getIntegerType()->isDependentType() &&
9077        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9078                                        Prev->getIntegerType())) {
9079      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9080        << EnumUnderlyingTy << Prev->getIntegerType();
9081      Diag(Prev->getLocation(), diag::note_previous_use);
9082      return true;
9083    }
9084  } else if (IsFixed != Prev->isFixed()) {
9085    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9086      << Prev->isFixed();
9087    Diag(Prev->getLocation(), diag::note_previous_use);
9088    return true;
9089  }
9090
9091  return false;
9092}
9093
9094/// \brief Get diagnostic %select index for tag kind for
9095/// redeclaration diagnostic message.
9096/// WARNING: Indexes apply to particular diagnostics only!
9097///
9098/// \returns diagnostic %select index.
9099static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9100  switch (Tag) {
9101  case TTK_Struct: return 0;
9102  case TTK_Interface: return 1;
9103  case TTK_Class:  return 2;
9104  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9105  }
9106}
9107
9108/// \brief Determine if tag kind is a class-key compatible with
9109/// class for redeclaration (class, struct, or __interface).
9110///
9111/// \returns true iff the tag kind is compatible.
9112static bool isClassCompatTagKind(TagTypeKind Tag)
9113{
9114  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9115}
9116
9117/// \brief Determine whether a tag with a given kind is acceptable
9118/// as a redeclaration of the given tag declaration.
9119///
9120/// \returns true if the new tag kind is acceptable, false otherwise.
9121bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9122                                        TagTypeKind NewTag, bool isDefinition,
9123                                        SourceLocation NewTagLoc,
9124                                        const IdentifierInfo &Name) {
9125  // C++ [dcl.type.elab]p3:
9126  //   The class-key or enum keyword present in the
9127  //   elaborated-type-specifier shall agree in kind with the
9128  //   declaration to which the name in the elaborated-type-specifier
9129  //   refers. This rule also applies to the form of
9130  //   elaborated-type-specifier that declares a class-name or
9131  //   friend class since it can be construed as referring to the
9132  //   definition of the class. Thus, in any
9133  //   elaborated-type-specifier, the enum keyword shall be used to
9134  //   refer to an enumeration (7.2), the union class-key shall be
9135  //   used to refer to a union (clause 9), and either the class or
9136  //   struct class-key shall be used to refer to a class (clause 9)
9137  //   declared using the class or struct class-key.
9138  TagTypeKind OldTag = Previous->getTagKind();
9139  if (!isDefinition || !isClassCompatTagKind(NewTag))
9140    if (OldTag == NewTag)
9141      return true;
9142
9143  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9144    // Warn about the struct/class tag mismatch.
9145    bool isTemplate = false;
9146    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9147      isTemplate = Record->getDescribedClassTemplate();
9148
9149    if (!ActiveTemplateInstantiations.empty()) {
9150      // In a template instantiation, do not offer fix-its for tag mismatches
9151      // since they usually mess up the template instead of fixing the problem.
9152      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9153        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9154        << getRedeclDiagFromTagKind(OldTag);
9155      return true;
9156    }
9157
9158    if (isDefinition) {
9159      // On definitions, check previous tags and issue a fix-it for each
9160      // one that doesn't match the current tag.
9161      if (Previous->getDefinition()) {
9162        // Don't suggest fix-its for redefinitions.
9163        return true;
9164      }
9165
9166      bool previousMismatch = false;
9167      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9168           E(Previous->redecls_end()); I != E; ++I) {
9169        if (I->getTagKind() != NewTag) {
9170          if (!previousMismatch) {
9171            previousMismatch = true;
9172            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9173              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9174              << getRedeclDiagFromTagKind(I->getTagKind());
9175          }
9176          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9177            << getRedeclDiagFromTagKind(NewTag)
9178            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9179                 TypeWithKeyword::getTagTypeKindName(NewTag));
9180        }
9181      }
9182      return true;
9183    }
9184
9185    // Check for a previous definition.  If current tag and definition
9186    // are same type, do nothing.  If no definition, but disagree with
9187    // with previous tag type, give a warning, but no fix-it.
9188    const TagDecl *Redecl = Previous->getDefinition() ?
9189                            Previous->getDefinition() : Previous;
9190    if (Redecl->getTagKind() == NewTag) {
9191      return true;
9192    }
9193
9194    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9195      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9196      << getRedeclDiagFromTagKind(OldTag);
9197    Diag(Redecl->getLocation(), diag::note_previous_use);
9198
9199    // If there is a previous defintion, suggest a fix-it.
9200    if (Previous->getDefinition()) {
9201        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9202          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9203          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9204               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9205    }
9206
9207    return true;
9208  }
9209  return false;
9210}
9211
9212/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9213/// former case, Name will be non-null.  In the later case, Name will be null.
9214/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9215/// reference/declaration/definition of a tag.
9216Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9217                     SourceLocation KWLoc, CXXScopeSpec &SS,
9218                     IdentifierInfo *Name, SourceLocation NameLoc,
9219                     AttributeList *Attr, AccessSpecifier AS,
9220                     SourceLocation ModulePrivateLoc,
9221                     MultiTemplateParamsArg TemplateParameterLists,
9222                     bool &OwnedDecl, bool &IsDependent,
9223                     SourceLocation ScopedEnumKWLoc,
9224                     bool ScopedEnumUsesClassTag,
9225                     TypeResult UnderlyingType) {
9226  // If this is not a definition, it must have a name.
9227  IdentifierInfo *OrigName = Name;
9228  assert((Name != 0 || TUK == TUK_Definition) &&
9229         "Nameless record must be a definition!");
9230  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9231
9232  OwnedDecl = false;
9233  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9234  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9235
9236  // FIXME: Check explicit specializations more carefully.
9237  bool isExplicitSpecialization = false;
9238  bool Invalid = false;
9239
9240  // We only need to do this matching if we have template parameters
9241  // or a scope specifier, which also conveniently avoids this work
9242  // for non-C++ cases.
9243  if (TemplateParameterLists.size() > 0 ||
9244      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9245    if (TemplateParameterList *TemplateParams
9246          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9247                                                TemplateParameterLists.data(),
9248                                                TemplateParameterLists.size(),
9249                                                    TUK == TUK_Friend,
9250                                                    isExplicitSpecialization,
9251                                                    Invalid)) {
9252      if (TemplateParams->size() > 0) {
9253        // This is a declaration or definition of a class template (which may
9254        // be a member of another template).
9255
9256        if (Invalid)
9257          return 0;
9258
9259        OwnedDecl = false;
9260        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9261                                               SS, Name, NameLoc, Attr,
9262                                               TemplateParams, AS,
9263                                               ModulePrivateLoc,
9264                                               TemplateParameterLists.size()-1,
9265                                               TemplateParameterLists.data());
9266        return Result.get();
9267      } else {
9268        // The "template<>" header is extraneous.
9269        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9270          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9271        isExplicitSpecialization = true;
9272      }
9273    }
9274  }
9275
9276  // Figure out the underlying type if this a enum declaration. We need to do
9277  // this early, because it's needed to detect if this is an incompatible
9278  // redeclaration.
9279  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9280
9281  if (Kind == TTK_Enum) {
9282    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9283      // No underlying type explicitly specified, or we failed to parse the
9284      // type, default to int.
9285      EnumUnderlying = Context.IntTy.getTypePtr();
9286    else if (UnderlyingType.get()) {
9287      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9288      // integral type; any cv-qualification is ignored.
9289      TypeSourceInfo *TI = 0;
9290      GetTypeFromParser(UnderlyingType.get(), &TI);
9291      EnumUnderlying = TI;
9292
9293      if (CheckEnumUnderlyingType(TI))
9294        // Recover by falling back to int.
9295        EnumUnderlying = Context.IntTy.getTypePtr();
9296
9297      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9298                                          UPPC_FixedUnderlyingType))
9299        EnumUnderlying = Context.IntTy.getTypePtr();
9300
9301    } else if (getLangOpts().MicrosoftMode)
9302      // Microsoft enums are always of int type.
9303      EnumUnderlying = Context.IntTy.getTypePtr();
9304  }
9305
9306  DeclContext *SearchDC = CurContext;
9307  DeclContext *DC = CurContext;
9308  bool isStdBadAlloc = false;
9309
9310  RedeclarationKind Redecl = ForRedeclaration;
9311  if (TUK == TUK_Friend || TUK == TUK_Reference)
9312    Redecl = NotForRedeclaration;
9313
9314  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9315
9316  if (Name && SS.isNotEmpty()) {
9317    // We have a nested-name tag ('struct foo::bar').
9318
9319    // Check for invalid 'foo::'.
9320    if (SS.isInvalid()) {
9321      Name = 0;
9322      goto CreateNewDecl;
9323    }
9324
9325    // If this is a friend or a reference to a class in a dependent
9326    // context, don't try to make a decl for it.
9327    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9328      DC = computeDeclContext(SS, false);
9329      if (!DC) {
9330        IsDependent = true;
9331        return 0;
9332      }
9333    } else {
9334      DC = computeDeclContext(SS, true);
9335      if (!DC) {
9336        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9337          << SS.getRange();
9338        return 0;
9339      }
9340    }
9341
9342    if (RequireCompleteDeclContext(SS, DC))
9343      return 0;
9344
9345    SearchDC = DC;
9346    // Look-up name inside 'foo::'.
9347    LookupQualifiedName(Previous, DC);
9348
9349    if (Previous.isAmbiguous())
9350      return 0;
9351
9352    if (Previous.empty()) {
9353      // Name lookup did not find anything. However, if the
9354      // nested-name-specifier refers to the current instantiation,
9355      // and that current instantiation has any dependent base
9356      // classes, we might find something at instantiation time: treat
9357      // this as a dependent elaborated-type-specifier.
9358      // But this only makes any sense for reference-like lookups.
9359      if (Previous.wasNotFoundInCurrentInstantiation() &&
9360          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9361        IsDependent = true;
9362        return 0;
9363      }
9364
9365      // A tag 'foo::bar' must already exist.
9366      Diag(NameLoc, diag::err_not_tag_in_scope)
9367        << Kind << Name << DC << SS.getRange();
9368      Name = 0;
9369      Invalid = true;
9370      goto CreateNewDecl;
9371    }
9372  } else if (Name) {
9373    // If this is a named struct, check to see if there was a previous forward
9374    // declaration or definition.
9375    // FIXME: We're looking into outer scopes here, even when we
9376    // shouldn't be. Doing so can result in ambiguities that we
9377    // shouldn't be diagnosing.
9378    LookupName(Previous, S);
9379
9380    if (Previous.isAmbiguous() &&
9381        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9382      LookupResult::Filter F = Previous.makeFilter();
9383      while (F.hasNext()) {
9384        NamedDecl *ND = F.next();
9385        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9386          F.erase();
9387      }
9388      F.done();
9389    }
9390
9391    // Note:  there used to be some attempt at recovery here.
9392    if (Previous.isAmbiguous())
9393      return 0;
9394
9395    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9396      // FIXME: This makes sure that we ignore the contexts associated
9397      // with C structs, unions, and enums when looking for a matching
9398      // tag declaration or definition. See the similar lookup tweak
9399      // in Sema::LookupName; is there a better way to deal with this?
9400      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9401        SearchDC = SearchDC->getParent();
9402    }
9403  } else if (S->isFunctionPrototypeScope()) {
9404    // If this is an enum declaration in function prototype scope, set its
9405    // initial context to the translation unit.
9406    // FIXME: [citation needed]
9407    SearchDC = Context.getTranslationUnitDecl();
9408  }
9409
9410  if (Previous.isSingleResult() &&
9411      Previous.getFoundDecl()->isTemplateParameter()) {
9412    // Maybe we will complain about the shadowed template parameter.
9413    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9414    // Just pretend that we didn't see the previous declaration.
9415    Previous.clear();
9416  }
9417
9418  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9419      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9420    // This is a declaration of or a reference to "std::bad_alloc".
9421    isStdBadAlloc = true;
9422
9423    if (Previous.empty() && StdBadAlloc) {
9424      // std::bad_alloc has been implicitly declared (but made invisible to
9425      // name lookup). Fill in this implicit declaration as the previous
9426      // declaration, so that the declarations get chained appropriately.
9427      Previous.addDecl(getStdBadAlloc());
9428    }
9429  }
9430
9431  // If we didn't find a previous declaration, and this is a reference
9432  // (or friend reference), move to the correct scope.  In C++, we
9433  // also need to do a redeclaration lookup there, just in case
9434  // there's a shadow friend decl.
9435  if (Name && Previous.empty() &&
9436      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9437    if (Invalid) goto CreateNewDecl;
9438    assert(SS.isEmpty());
9439
9440    if (TUK == TUK_Reference) {
9441      // C++ [basic.scope.pdecl]p5:
9442      //   -- for an elaborated-type-specifier of the form
9443      //
9444      //          class-key identifier
9445      //
9446      //      if the elaborated-type-specifier is used in the
9447      //      decl-specifier-seq or parameter-declaration-clause of a
9448      //      function defined in namespace scope, the identifier is
9449      //      declared as a class-name in the namespace that contains
9450      //      the declaration; otherwise, except as a friend
9451      //      declaration, the identifier is declared in the smallest
9452      //      non-class, non-function-prototype scope that contains the
9453      //      declaration.
9454      //
9455      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9456      // C structs and unions.
9457      //
9458      // It is an error in C++ to declare (rather than define) an enum
9459      // type, including via an elaborated type specifier.  We'll
9460      // diagnose that later; for now, declare the enum in the same
9461      // scope as we would have picked for any other tag type.
9462      //
9463      // GNU C also supports this behavior as part of its incomplete
9464      // enum types extension, while GNU C++ does not.
9465      //
9466      // Find the context where we'll be declaring the tag.
9467      // FIXME: We would like to maintain the current DeclContext as the
9468      // lexical context,
9469      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9470        SearchDC = SearchDC->getParent();
9471
9472      // Find the scope where we'll be declaring the tag.
9473      while (S->isClassScope() ||
9474             (getLangOpts().CPlusPlus &&
9475              S->isFunctionPrototypeScope()) ||
9476             ((S->getFlags() & Scope::DeclScope) == 0) ||
9477             (S->getEntity() &&
9478              ((DeclContext *)S->getEntity())->isTransparentContext()))
9479        S = S->getParent();
9480    } else {
9481      assert(TUK == TUK_Friend);
9482      // C++ [namespace.memdef]p3:
9483      //   If a friend declaration in a non-local class first declares a
9484      //   class or function, the friend class or function is a member of
9485      //   the innermost enclosing namespace.
9486      SearchDC = SearchDC->getEnclosingNamespaceContext();
9487    }
9488
9489    // In C++, we need to do a redeclaration lookup to properly
9490    // diagnose some problems.
9491    if (getLangOpts().CPlusPlus) {
9492      Previous.setRedeclarationKind(ForRedeclaration);
9493      LookupQualifiedName(Previous, SearchDC);
9494    }
9495  }
9496
9497  if (!Previous.empty()) {
9498    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9499
9500    // It's okay to have a tag decl in the same scope as a typedef
9501    // which hides a tag decl in the same scope.  Finding this
9502    // insanity with a redeclaration lookup can only actually happen
9503    // in C++.
9504    //
9505    // This is also okay for elaborated-type-specifiers, which is
9506    // technically forbidden by the current standard but which is
9507    // okay according to the likely resolution of an open issue;
9508    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9509    if (getLangOpts().CPlusPlus) {
9510      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9511        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9512          TagDecl *Tag = TT->getDecl();
9513          if (Tag->getDeclName() == Name &&
9514              Tag->getDeclContext()->getRedeclContext()
9515                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9516            PrevDecl = Tag;
9517            Previous.clear();
9518            Previous.addDecl(Tag);
9519            Previous.resolveKind();
9520          }
9521        }
9522      }
9523    }
9524
9525    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9526      // If this is a use of a previous tag, or if the tag is already declared
9527      // in the same scope (so that the definition/declaration completes or
9528      // rementions the tag), reuse the decl.
9529      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9530          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9531        // Make sure that this wasn't declared as an enum and now used as a
9532        // struct or something similar.
9533        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9534                                          TUK == TUK_Definition, KWLoc,
9535                                          *Name)) {
9536          bool SafeToContinue
9537            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9538               Kind != TTK_Enum);
9539          if (SafeToContinue)
9540            Diag(KWLoc, diag::err_use_with_wrong_tag)
9541              << Name
9542              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9543                                              PrevTagDecl->getKindName());
9544          else
9545            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9546          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9547
9548          if (SafeToContinue)
9549            Kind = PrevTagDecl->getTagKind();
9550          else {
9551            // Recover by making this an anonymous redefinition.
9552            Name = 0;
9553            Previous.clear();
9554            Invalid = true;
9555          }
9556        }
9557
9558        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9559          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9560
9561          // If this is an elaborated-type-specifier for a scoped enumeration,
9562          // the 'class' keyword is not necessary and not permitted.
9563          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9564            if (ScopedEnum)
9565              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9566                << PrevEnum->isScoped()
9567                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9568            return PrevTagDecl;
9569          }
9570
9571          QualType EnumUnderlyingTy;
9572          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9573            EnumUnderlyingTy = TI->getType();
9574          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9575            EnumUnderlyingTy = QualType(T, 0);
9576
9577          // All conflicts with previous declarations are recovered by
9578          // returning the previous declaration, unless this is a definition,
9579          // in which case we want the caller to bail out.
9580          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9581                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9582            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9583        }
9584
9585        if (!Invalid) {
9586          // If this is a use, just return the declaration we found.
9587
9588          // FIXME: In the future, return a variant or some other clue
9589          // for the consumer of this Decl to know it doesn't own it.
9590          // For our current ASTs this shouldn't be a problem, but will
9591          // need to be changed with DeclGroups.
9592          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9593               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9594            return PrevTagDecl;
9595
9596          // Diagnose attempts to redefine a tag.
9597          if (TUK == TUK_Definition) {
9598            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9599              // If we're defining a specialization and the previous definition
9600              // is from an implicit instantiation, don't emit an error
9601              // here; we'll catch this in the general case below.
9602              bool IsExplicitSpecializationAfterInstantiation = false;
9603              if (isExplicitSpecialization) {
9604                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9605                  IsExplicitSpecializationAfterInstantiation =
9606                    RD->getTemplateSpecializationKind() !=
9607                    TSK_ExplicitSpecialization;
9608                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9609                  IsExplicitSpecializationAfterInstantiation =
9610                    ED->getTemplateSpecializationKind() !=
9611                    TSK_ExplicitSpecialization;
9612              }
9613
9614              if (!IsExplicitSpecializationAfterInstantiation) {
9615                // A redeclaration in function prototype scope in C isn't
9616                // visible elsewhere, so merely issue a warning.
9617                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9618                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9619                else
9620                  Diag(NameLoc, diag::err_redefinition) << Name;
9621                Diag(Def->getLocation(), diag::note_previous_definition);
9622                // If this is a redefinition, recover by making this
9623                // struct be anonymous, which will make any later
9624                // references get the previous definition.
9625                Name = 0;
9626                Previous.clear();
9627                Invalid = true;
9628              }
9629            } else {
9630              // If the type is currently being defined, complain
9631              // about a nested redefinition.
9632              const TagType *Tag
9633                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9634              if (Tag->isBeingDefined()) {
9635                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9636                Diag(PrevTagDecl->getLocation(),
9637                     diag::note_previous_definition);
9638                Name = 0;
9639                Previous.clear();
9640                Invalid = true;
9641              }
9642            }
9643
9644            // Okay, this is definition of a previously declared or referenced
9645            // tag PrevDecl. We're going to create a new Decl for it.
9646          }
9647        }
9648        // If we get here we have (another) forward declaration or we
9649        // have a definition.  Just create a new decl.
9650
9651      } else {
9652        // If we get here, this is a definition of a new tag type in a nested
9653        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9654        // new decl/type.  We set PrevDecl to NULL so that the entities
9655        // have distinct types.
9656        Previous.clear();
9657      }
9658      // If we get here, we're going to create a new Decl. If PrevDecl
9659      // is non-NULL, it's a definition of the tag declared by
9660      // PrevDecl. If it's NULL, we have a new definition.
9661
9662
9663    // Otherwise, PrevDecl is not a tag, but was found with tag
9664    // lookup.  This is only actually possible in C++, where a few
9665    // things like templates still live in the tag namespace.
9666    } else {
9667      // Use a better diagnostic if an elaborated-type-specifier
9668      // found the wrong kind of type on the first
9669      // (non-redeclaration) lookup.
9670      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9671          !Previous.isForRedeclaration()) {
9672        unsigned Kind = 0;
9673        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9674        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9675        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9676        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9677        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9678        Invalid = true;
9679
9680      // Otherwise, only diagnose if the declaration is in scope.
9681      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9682                                isExplicitSpecialization)) {
9683        // do nothing
9684
9685      // Diagnose implicit declarations introduced by elaborated types.
9686      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9687        unsigned Kind = 0;
9688        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9689        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9690        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9691        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9692        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9693        Invalid = true;
9694
9695      // Otherwise it's a declaration.  Call out a particularly common
9696      // case here.
9697      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9698        unsigned Kind = 0;
9699        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9700        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9701          << Name << Kind << TND->getUnderlyingType();
9702        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9703        Invalid = true;
9704
9705      // Otherwise, diagnose.
9706      } else {
9707        // The tag name clashes with something else in the target scope,
9708        // issue an error and recover by making this tag be anonymous.
9709        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9710        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9711        Name = 0;
9712        Invalid = true;
9713      }
9714
9715      // The existing declaration isn't relevant to us; we're in a
9716      // new scope, so clear out the previous declaration.
9717      Previous.clear();
9718    }
9719  }
9720
9721CreateNewDecl:
9722
9723  TagDecl *PrevDecl = 0;
9724  if (Previous.isSingleResult())
9725    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9726
9727  // If there is an identifier, use the location of the identifier as the
9728  // location of the decl, otherwise use the location of the struct/union
9729  // keyword.
9730  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9731
9732  // Otherwise, create a new declaration. If there is a previous
9733  // declaration of the same entity, the two will be linked via
9734  // PrevDecl.
9735  TagDecl *New;
9736
9737  bool IsForwardReference = false;
9738  if (Kind == TTK_Enum) {
9739    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9740    // enum X { A, B, C } D;    D should chain to X.
9741    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9742                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9743                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9744    // If this is an undefined enum, warn.
9745    if (TUK != TUK_Definition && !Invalid) {
9746      TagDecl *Def;
9747      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9748        // C++0x: 7.2p2: opaque-enum-declaration.
9749        // Conflicts are diagnosed above. Do nothing.
9750      }
9751      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9752        Diag(Loc, diag::ext_forward_ref_enum_def)
9753          << New;
9754        Diag(Def->getLocation(), diag::note_previous_definition);
9755      } else {
9756        unsigned DiagID = diag::ext_forward_ref_enum;
9757        if (getLangOpts().MicrosoftMode)
9758          DiagID = diag::ext_ms_forward_ref_enum;
9759        else if (getLangOpts().CPlusPlus)
9760          DiagID = diag::err_forward_ref_enum;
9761        Diag(Loc, DiagID);
9762
9763        // If this is a forward-declared reference to an enumeration, make a
9764        // note of it; we won't actually be introducing the declaration into
9765        // the declaration context.
9766        if (TUK == TUK_Reference)
9767          IsForwardReference = true;
9768      }
9769    }
9770
9771    if (EnumUnderlying) {
9772      EnumDecl *ED = cast<EnumDecl>(New);
9773      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9774        ED->setIntegerTypeSourceInfo(TI);
9775      else
9776        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9777      ED->setPromotionType(ED->getIntegerType());
9778    }
9779
9780  } else {
9781    // struct/union/class
9782
9783    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9784    // struct X { int A; } D;    D should chain to X.
9785    if (getLangOpts().CPlusPlus) {
9786      // FIXME: Look for a way to use RecordDecl for simple structs.
9787      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9788                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9789
9790      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9791        StdBadAlloc = cast<CXXRecordDecl>(New);
9792    } else
9793      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9794                               cast_or_null<RecordDecl>(PrevDecl));
9795  }
9796
9797  // Maybe add qualifier info.
9798  if (SS.isNotEmpty()) {
9799    if (SS.isSet()) {
9800      // If this is either a declaration or a definition, check the
9801      // nested-name-specifier against the current context. We don't do this
9802      // for explicit specializations, because they have similar checking
9803      // (with more specific diagnostics) in the call to
9804      // CheckMemberSpecialization, below.
9805      if (!isExplicitSpecialization &&
9806          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9807          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9808        Invalid = true;
9809
9810      New->setQualifierInfo(SS.getWithLocInContext(Context));
9811      if (TemplateParameterLists.size() > 0) {
9812        New->setTemplateParameterListsInfo(Context,
9813                                           TemplateParameterLists.size(),
9814                                           TemplateParameterLists.data());
9815      }
9816    }
9817    else
9818      Invalid = true;
9819  }
9820
9821  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9822    // Add alignment attributes if necessary; these attributes are checked when
9823    // the ASTContext lays out the structure.
9824    //
9825    // It is important for implementing the correct semantics that this
9826    // happen here (in act on tag decl). The #pragma pack stack is
9827    // maintained as a result of parser callbacks which can occur at
9828    // many points during the parsing of a struct declaration (because
9829    // the #pragma tokens are effectively skipped over during the
9830    // parsing of the struct).
9831    if (TUK == TUK_Definition) {
9832      AddAlignmentAttributesForRecord(RD);
9833      AddMsStructLayoutForRecord(RD);
9834    }
9835  }
9836
9837  if (ModulePrivateLoc.isValid()) {
9838    if (isExplicitSpecialization)
9839      Diag(New->getLocation(), diag::err_module_private_specialization)
9840        << 2
9841        << FixItHint::CreateRemoval(ModulePrivateLoc);
9842    // __module_private__ does not apply to local classes. However, we only
9843    // diagnose this as an error when the declaration specifiers are
9844    // freestanding. Here, we just ignore the __module_private__.
9845    else if (!SearchDC->isFunctionOrMethod())
9846      New->setModulePrivate();
9847  }
9848
9849  // If this is a specialization of a member class (of a class template),
9850  // check the specialization.
9851  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9852    Invalid = true;
9853
9854  if (Invalid)
9855    New->setInvalidDecl();
9856
9857  if (Attr)
9858    ProcessDeclAttributeList(S, New, Attr);
9859
9860  // If we're declaring or defining a tag in function prototype scope
9861  // in C, note that this type can only be used within the function.
9862  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9863    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9864
9865  // Set the lexical context. If the tag has a C++ scope specifier, the
9866  // lexical context will be different from the semantic context.
9867  New->setLexicalDeclContext(CurContext);
9868
9869  // Mark this as a friend decl if applicable.
9870  // In Microsoft mode, a friend declaration also acts as a forward
9871  // declaration so we always pass true to setObjectOfFriendDecl to make
9872  // the tag name visible.
9873  if (TUK == TUK_Friend)
9874    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9875                               getLangOpts().MicrosoftExt);
9876
9877  // Set the access specifier.
9878  if (!Invalid && SearchDC->isRecord())
9879    SetMemberAccessSpecifier(New, PrevDecl, AS);
9880
9881  if (TUK == TUK_Definition)
9882    New->startDefinition();
9883
9884  // If this has an identifier, add it to the scope stack.
9885  if (TUK == TUK_Friend) {
9886    // We might be replacing an existing declaration in the lookup tables;
9887    // if so, borrow its access specifier.
9888    if (PrevDecl)
9889      New->setAccess(PrevDecl->getAccess());
9890
9891    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9892    DC->makeDeclVisibleInContext(New);
9893    if (Name) // can be null along some error paths
9894      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9895        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9896  } else if (Name) {
9897    S = getNonFieldDeclScope(S);
9898    PushOnScopeChains(New, S, !IsForwardReference);
9899    if (IsForwardReference)
9900      SearchDC->makeDeclVisibleInContext(New);
9901
9902  } else {
9903    CurContext->addDecl(New);
9904  }
9905
9906  // If this is the C FILE type, notify the AST context.
9907  if (IdentifierInfo *II = New->getIdentifier())
9908    if (!New->isInvalidDecl() &&
9909        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9910        II->isStr("FILE"))
9911      Context.setFILEDecl(New);
9912
9913  // If we were in function prototype scope (and not in C++ mode), add this
9914  // tag to the list of decls to inject into the function definition scope.
9915  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9916      InFunctionDeclarator && Name)
9917    DeclsInPrototypeScope.push_back(New);
9918
9919  if (PrevDecl)
9920    mergeDeclAttributes(New, PrevDecl);
9921
9922  // If there's a #pragma GCC visibility in scope, set the visibility of this
9923  // record.
9924  AddPushedVisibilityAttribute(New);
9925
9926  OwnedDecl = true;
9927  // In C++, don't return an invalid declaration. We can't recover well from
9928  // the cases where we make the type anonymous.
9929  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9930}
9931
9932void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9933  AdjustDeclIfTemplate(TagD);
9934  TagDecl *Tag = cast<TagDecl>(TagD);
9935
9936  // Enter the tag context.
9937  PushDeclContext(S, Tag);
9938
9939  ActOnDocumentableDecl(TagD);
9940
9941  // If there's a #pragma GCC visibility in scope, set the visibility of this
9942  // record.
9943  AddPushedVisibilityAttribute(Tag);
9944}
9945
9946Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9947  assert(isa<ObjCContainerDecl>(IDecl) &&
9948         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9949  DeclContext *OCD = cast<DeclContext>(IDecl);
9950  assert(getContainingDC(OCD) == CurContext &&
9951      "The next DeclContext should be lexically contained in the current one.");
9952  CurContext = OCD;
9953  return IDecl;
9954}
9955
9956void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9957                                           SourceLocation FinalLoc,
9958                                           SourceLocation LBraceLoc) {
9959  AdjustDeclIfTemplate(TagD);
9960  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9961
9962  FieldCollector->StartClass();
9963
9964  if (!Record->getIdentifier())
9965    return;
9966
9967  if (FinalLoc.isValid())
9968    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9969
9970  // C++ [class]p2:
9971  //   [...] The class-name is also inserted into the scope of the
9972  //   class itself; this is known as the injected-class-name. For
9973  //   purposes of access checking, the injected-class-name is treated
9974  //   as if it were a public member name.
9975  CXXRecordDecl *InjectedClassName
9976    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9977                            Record->getLocStart(), Record->getLocation(),
9978                            Record->getIdentifier(),
9979                            /*PrevDecl=*/0,
9980                            /*DelayTypeCreation=*/true);
9981  Context.getTypeDeclType(InjectedClassName, Record);
9982  InjectedClassName->setImplicit();
9983  InjectedClassName->setAccess(AS_public);
9984  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9985      InjectedClassName->setDescribedClassTemplate(Template);
9986  PushOnScopeChains(InjectedClassName, S);
9987  assert(InjectedClassName->isInjectedClassName() &&
9988         "Broken injected-class-name");
9989}
9990
9991void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9992                                    SourceLocation RBraceLoc) {
9993  AdjustDeclIfTemplate(TagD);
9994  TagDecl *Tag = cast<TagDecl>(TagD);
9995  Tag->setRBraceLoc(RBraceLoc);
9996
9997  // Make sure we "complete" the definition even it is invalid.
9998  if (Tag->isBeingDefined()) {
9999    assert(Tag->isInvalidDecl() && "We should already have completed it");
10000    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10001      RD->completeDefinition();
10002  }
10003
10004  if (isa<CXXRecordDecl>(Tag))
10005    FieldCollector->FinishClass();
10006
10007  // Exit this scope of this tag's definition.
10008  PopDeclContext();
10009
10010  if (getCurLexicalContext()->isObjCContainer() &&
10011      Tag->getDeclContext()->isFileContext())
10012    Tag->setTopLevelDeclInObjCContainer();
10013
10014  // Notify the consumer that we've defined a tag.
10015  Consumer.HandleTagDeclDefinition(Tag);
10016}
10017
10018void Sema::ActOnObjCContainerFinishDefinition() {
10019  // Exit this scope of this interface definition.
10020  PopDeclContext();
10021}
10022
10023void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10024  assert(DC == CurContext && "Mismatch of container contexts");
10025  OriginalLexicalContext = DC;
10026  ActOnObjCContainerFinishDefinition();
10027}
10028
10029void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10030  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10031  OriginalLexicalContext = 0;
10032}
10033
10034void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10035  AdjustDeclIfTemplate(TagD);
10036  TagDecl *Tag = cast<TagDecl>(TagD);
10037  Tag->setInvalidDecl();
10038
10039  // Make sure we "complete" the definition even it is invalid.
10040  if (Tag->isBeingDefined()) {
10041    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10042      RD->completeDefinition();
10043  }
10044
10045  // We're undoing ActOnTagStartDefinition here, not
10046  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10047  // the FieldCollector.
10048
10049  PopDeclContext();
10050}
10051
10052// Note that FieldName may be null for anonymous bitfields.
10053ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10054                                IdentifierInfo *FieldName,
10055                                QualType FieldTy, Expr *BitWidth,
10056                                bool *ZeroWidth) {
10057  // Default to true; that shouldn't confuse checks for emptiness
10058  if (ZeroWidth)
10059    *ZeroWidth = true;
10060
10061  // C99 6.7.2.1p4 - verify the field type.
10062  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10063  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10064    // Handle incomplete types with specific error.
10065    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10066      return ExprError();
10067    if (FieldName)
10068      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10069        << FieldName << FieldTy << BitWidth->getSourceRange();
10070    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10071      << FieldTy << BitWidth->getSourceRange();
10072  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10073                                             UPPC_BitFieldWidth))
10074    return ExprError();
10075
10076  // If the bit-width is type- or value-dependent, don't try to check
10077  // it now.
10078  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10079    return Owned(BitWidth);
10080
10081  llvm::APSInt Value;
10082  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10083  if (ICE.isInvalid())
10084    return ICE;
10085  BitWidth = ICE.take();
10086
10087  if (Value != 0 && ZeroWidth)
10088    *ZeroWidth = false;
10089
10090  // Zero-width bitfield is ok for anonymous field.
10091  if (Value == 0 && FieldName)
10092    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10093
10094  if (Value.isSigned() && Value.isNegative()) {
10095    if (FieldName)
10096      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10097               << FieldName << Value.toString(10);
10098    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10099      << Value.toString(10);
10100  }
10101
10102  if (!FieldTy->isDependentType()) {
10103    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10104    if (Value.getZExtValue() > TypeSize) {
10105      if (!getLangOpts().CPlusPlus) {
10106        if (FieldName)
10107          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10108            << FieldName << (unsigned)Value.getZExtValue()
10109            << (unsigned)TypeSize;
10110
10111        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10112          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10113      }
10114
10115      if (FieldName)
10116        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10117          << FieldName << (unsigned)Value.getZExtValue()
10118          << (unsigned)TypeSize;
10119      else
10120        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10121          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10122    }
10123  }
10124
10125  return Owned(BitWidth);
10126}
10127
10128/// ActOnField - Each field of a C struct/union is passed into this in order
10129/// to create a FieldDecl object for it.
10130Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10131                       Declarator &D, Expr *BitfieldWidth) {
10132  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10133                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10134                               /*InitStyle=*/ICIS_NoInit, AS_public);
10135  return Res;
10136}
10137
10138/// HandleField - Analyze a field of a C struct or a C++ data member.
10139///
10140FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10141                             SourceLocation DeclStart,
10142                             Declarator &D, Expr *BitWidth,
10143                             InClassInitStyle InitStyle,
10144                             AccessSpecifier AS) {
10145  IdentifierInfo *II = D.getIdentifier();
10146  SourceLocation Loc = DeclStart;
10147  if (II) Loc = D.getIdentifierLoc();
10148
10149  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10150  QualType T = TInfo->getType();
10151  if (getLangOpts().CPlusPlus) {
10152    CheckExtraCXXDefaultArguments(D);
10153
10154    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10155                                        UPPC_DataMemberType)) {
10156      D.setInvalidType();
10157      T = Context.IntTy;
10158      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10159    }
10160  }
10161
10162  // TR 18037 does not allow fields to be declared with address spaces.
10163  if (T.getQualifiers().hasAddressSpace()) {
10164    Diag(Loc, diag::err_field_with_address_space);
10165    D.setInvalidType();
10166  }
10167
10168  // OpenCL 1.2 spec, s6.9 r:
10169  // The event type cannot be used to declare a structure or union field.
10170  if (LangOpts.OpenCL && T->isEventT()) {
10171    Diag(Loc, diag::err_event_t_struct_field);
10172    D.setInvalidType();
10173  }
10174
10175  DiagnoseFunctionSpecifiers(D);
10176
10177  if (D.getDeclSpec().isThreadSpecified())
10178    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10179
10180  // Check to see if this name was declared as a member previously
10181  NamedDecl *PrevDecl = 0;
10182  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10183  LookupName(Previous, S);
10184  switch (Previous.getResultKind()) {
10185    case LookupResult::Found:
10186    case LookupResult::FoundUnresolvedValue:
10187      PrevDecl = Previous.getAsSingle<NamedDecl>();
10188      break;
10189
10190    case LookupResult::FoundOverloaded:
10191      PrevDecl = Previous.getRepresentativeDecl();
10192      break;
10193
10194    case LookupResult::NotFound:
10195    case LookupResult::NotFoundInCurrentInstantiation:
10196    case LookupResult::Ambiguous:
10197      break;
10198  }
10199  Previous.suppressDiagnostics();
10200
10201  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10202    // Maybe we will complain about the shadowed template parameter.
10203    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10204    // Just pretend that we didn't see the previous declaration.
10205    PrevDecl = 0;
10206  }
10207
10208  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10209    PrevDecl = 0;
10210
10211  bool Mutable
10212    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10213  SourceLocation TSSL = D.getLocStart();
10214  FieldDecl *NewFD
10215    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10216                     TSSL, AS, PrevDecl, &D);
10217
10218  if (NewFD->isInvalidDecl())
10219    Record->setInvalidDecl();
10220
10221  if (D.getDeclSpec().isModulePrivateSpecified())
10222    NewFD->setModulePrivate();
10223
10224  if (NewFD->isInvalidDecl() && PrevDecl) {
10225    // Don't introduce NewFD into scope; there's already something
10226    // with the same name in the same scope.
10227  } else if (II) {
10228    PushOnScopeChains(NewFD, S);
10229  } else
10230    Record->addDecl(NewFD);
10231
10232  return NewFD;
10233}
10234
10235/// \brief Build a new FieldDecl and check its well-formedness.
10236///
10237/// This routine builds a new FieldDecl given the fields name, type,
10238/// record, etc. \p PrevDecl should refer to any previous declaration
10239/// with the same name and in the same scope as the field to be
10240/// created.
10241///
10242/// \returns a new FieldDecl.
10243///
10244/// \todo The Declarator argument is a hack. It will be removed once
10245FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10246                                TypeSourceInfo *TInfo,
10247                                RecordDecl *Record, SourceLocation Loc,
10248                                bool Mutable, Expr *BitWidth,
10249                                InClassInitStyle InitStyle,
10250                                SourceLocation TSSL,
10251                                AccessSpecifier AS, NamedDecl *PrevDecl,
10252                                Declarator *D) {
10253  IdentifierInfo *II = Name.getAsIdentifierInfo();
10254  bool InvalidDecl = false;
10255  if (D) InvalidDecl = D->isInvalidType();
10256
10257  // If we receive a broken type, recover by assuming 'int' and
10258  // marking this declaration as invalid.
10259  if (T.isNull()) {
10260    InvalidDecl = true;
10261    T = Context.IntTy;
10262  }
10263
10264  QualType EltTy = Context.getBaseElementType(T);
10265  if (!EltTy->isDependentType()) {
10266    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10267      // Fields of incomplete type force their record to be invalid.
10268      Record->setInvalidDecl();
10269      InvalidDecl = true;
10270    } else {
10271      NamedDecl *Def;
10272      EltTy->isIncompleteType(&Def);
10273      if (Def && Def->isInvalidDecl()) {
10274        Record->setInvalidDecl();
10275        InvalidDecl = true;
10276      }
10277    }
10278  }
10279
10280  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10281  if (BitWidth && getLangOpts().OpenCL) {
10282    Diag(Loc, diag::err_opencl_bitfields);
10283    InvalidDecl = true;
10284  }
10285
10286  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10287  // than a variably modified type.
10288  if (!InvalidDecl && T->isVariablyModifiedType()) {
10289    bool SizeIsNegative;
10290    llvm::APSInt Oversized;
10291
10292    TypeSourceInfo *FixedTInfo =
10293      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10294                                                    SizeIsNegative,
10295                                                    Oversized);
10296    if (FixedTInfo) {
10297      Diag(Loc, diag::warn_illegal_constant_array_size);
10298      TInfo = FixedTInfo;
10299      T = FixedTInfo->getType();
10300    } else {
10301      if (SizeIsNegative)
10302        Diag(Loc, diag::err_typecheck_negative_array_size);
10303      else if (Oversized.getBoolValue())
10304        Diag(Loc, diag::err_array_too_large)
10305          << Oversized.toString(10);
10306      else
10307        Diag(Loc, diag::err_typecheck_field_variable_size);
10308      InvalidDecl = true;
10309    }
10310  }
10311
10312  // Fields can not have abstract class types
10313  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10314                                             diag::err_abstract_type_in_decl,
10315                                             AbstractFieldType))
10316    InvalidDecl = true;
10317
10318  bool ZeroWidth = false;
10319  // If this is declared as a bit-field, check the bit-field.
10320  if (!InvalidDecl && BitWidth) {
10321    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10322    if (!BitWidth) {
10323      InvalidDecl = true;
10324      BitWidth = 0;
10325      ZeroWidth = false;
10326    }
10327  }
10328
10329  // Check that 'mutable' is consistent with the type of the declaration.
10330  if (!InvalidDecl && Mutable) {
10331    unsigned DiagID = 0;
10332    if (T->isReferenceType())
10333      DiagID = diag::err_mutable_reference;
10334    else if (T.isConstQualified())
10335      DiagID = diag::err_mutable_const;
10336
10337    if (DiagID) {
10338      SourceLocation ErrLoc = Loc;
10339      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10340        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10341      Diag(ErrLoc, DiagID);
10342      Mutable = false;
10343      InvalidDecl = true;
10344    }
10345  }
10346
10347  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10348                                       BitWidth, Mutable, InitStyle);
10349  if (InvalidDecl)
10350    NewFD->setInvalidDecl();
10351
10352  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10353    Diag(Loc, diag::err_duplicate_member) << II;
10354    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10355    NewFD->setInvalidDecl();
10356  }
10357
10358  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10359    if (Record->isUnion()) {
10360      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10361        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10362        if (RDecl->getDefinition()) {
10363          // C++ [class.union]p1: An object of a class with a non-trivial
10364          // constructor, a non-trivial copy constructor, a non-trivial
10365          // destructor, or a non-trivial copy assignment operator
10366          // cannot be a member of a union, nor can an array of such
10367          // objects.
10368          if (CheckNontrivialField(NewFD))
10369            NewFD->setInvalidDecl();
10370        }
10371      }
10372
10373      // C++ [class.union]p1: If a union contains a member of reference type,
10374      // the program is ill-formed.
10375      if (EltTy->isReferenceType()) {
10376        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10377          << NewFD->getDeclName() << EltTy;
10378        NewFD->setInvalidDecl();
10379      }
10380    }
10381  }
10382
10383  // FIXME: We need to pass in the attributes given an AST
10384  // representation, not a parser representation.
10385  if (D) {
10386    // FIXME: What to pass instead of TUScope?
10387    ProcessDeclAttributes(TUScope, NewFD, *D);
10388
10389    if (NewFD->hasAttrs())
10390      CheckAlignasUnderalignment(NewFD);
10391  }
10392
10393  // In auto-retain/release, infer strong retension for fields of
10394  // retainable type.
10395  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10396    NewFD->setInvalidDecl();
10397
10398  if (T.isObjCGCWeak())
10399    Diag(Loc, diag::warn_attribute_weak_on_field);
10400
10401  NewFD->setAccess(AS);
10402  return NewFD;
10403}
10404
10405bool Sema::CheckNontrivialField(FieldDecl *FD) {
10406  assert(FD);
10407  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10408
10409  if (FD->isInvalidDecl())
10410    return true;
10411
10412  QualType EltTy = Context.getBaseElementType(FD->getType());
10413  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10414    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10415    if (RDecl->getDefinition()) {
10416      // We check for copy constructors before constructors
10417      // because otherwise we'll never get complaints about
10418      // copy constructors.
10419
10420      CXXSpecialMember member = CXXInvalid;
10421      // We're required to check for any non-trivial constructors. Since the
10422      // implicit default constructor is suppressed if there are any
10423      // user-declared constructors, we just need to check that there is a
10424      // trivial default constructor and a trivial copy constructor. (We don't
10425      // worry about move constructors here, since this is a C++98 check.)
10426      if (RDecl->hasNonTrivialCopyConstructor())
10427        member = CXXCopyConstructor;
10428      else if (!RDecl->hasTrivialDefaultConstructor())
10429        member = CXXDefaultConstructor;
10430      else if (RDecl->hasNonTrivialCopyAssignment())
10431        member = CXXCopyAssignment;
10432      else if (RDecl->hasNonTrivialDestructor())
10433        member = CXXDestructor;
10434
10435      if (member != CXXInvalid) {
10436        if (!getLangOpts().CPlusPlus11 &&
10437            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10438          // Objective-C++ ARC: it is an error to have a non-trivial field of
10439          // a union. However, system headers in Objective-C programs
10440          // occasionally have Objective-C lifetime objects within unions,
10441          // and rather than cause the program to fail, we make those
10442          // members unavailable.
10443          SourceLocation Loc = FD->getLocation();
10444          if (getSourceManager().isInSystemHeader(Loc)) {
10445            if (!FD->hasAttr<UnavailableAttr>())
10446              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10447                                  "this system field has retaining ownership"));
10448            return false;
10449          }
10450        }
10451
10452        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10453               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10454               diag::err_illegal_union_or_anon_struct_member)
10455          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10456        DiagnoseNontrivial(RDecl, member);
10457        return !getLangOpts().CPlusPlus11;
10458      }
10459    }
10460  }
10461
10462  return false;
10463}
10464
10465/// TranslateIvarVisibility - Translate visibility from a token ID to an
10466///  AST enum value.
10467static ObjCIvarDecl::AccessControl
10468TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10469  switch (ivarVisibility) {
10470  default: llvm_unreachable("Unknown visitibility kind");
10471  case tok::objc_private: return ObjCIvarDecl::Private;
10472  case tok::objc_public: return ObjCIvarDecl::Public;
10473  case tok::objc_protected: return ObjCIvarDecl::Protected;
10474  case tok::objc_package: return ObjCIvarDecl::Package;
10475  }
10476}
10477
10478/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10479/// in order to create an IvarDecl object for it.
10480Decl *Sema::ActOnIvar(Scope *S,
10481                                SourceLocation DeclStart,
10482                                Declarator &D, Expr *BitfieldWidth,
10483                                tok::ObjCKeywordKind Visibility) {
10484
10485  IdentifierInfo *II = D.getIdentifier();
10486  Expr *BitWidth = (Expr*)BitfieldWidth;
10487  SourceLocation Loc = DeclStart;
10488  if (II) Loc = D.getIdentifierLoc();
10489
10490  // FIXME: Unnamed fields can be handled in various different ways, for
10491  // example, unnamed unions inject all members into the struct namespace!
10492
10493  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10494  QualType T = TInfo->getType();
10495
10496  if (BitWidth) {
10497    // 6.7.2.1p3, 6.7.2.1p4
10498    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10499    if (!BitWidth)
10500      D.setInvalidType();
10501  } else {
10502    // Not a bitfield.
10503
10504    // validate II.
10505
10506  }
10507  if (T->isReferenceType()) {
10508    Diag(Loc, diag::err_ivar_reference_type);
10509    D.setInvalidType();
10510  }
10511  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10512  // than a variably modified type.
10513  else if (T->isVariablyModifiedType()) {
10514    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10515    D.setInvalidType();
10516  }
10517
10518  // Get the visibility (access control) for this ivar.
10519  ObjCIvarDecl::AccessControl ac =
10520    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10521                                        : ObjCIvarDecl::None;
10522  // Must set ivar's DeclContext to its enclosing interface.
10523  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10524  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10525    return 0;
10526  ObjCContainerDecl *EnclosingContext;
10527  if (ObjCImplementationDecl *IMPDecl =
10528      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10529    if (LangOpts.ObjCRuntime.isFragile()) {
10530    // Case of ivar declared in an implementation. Context is that of its class.
10531      EnclosingContext = IMPDecl->getClassInterface();
10532      assert(EnclosingContext && "Implementation has no class interface!");
10533    }
10534    else
10535      EnclosingContext = EnclosingDecl;
10536  } else {
10537    if (ObjCCategoryDecl *CDecl =
10538        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10539      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10540        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10541        return 0;
10542      }
10543    }
10544    EnclosingContext = EnclosingDecl;
10545  }
10546
10547  // Construct the decl.
10548  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10549                                             DeclStart, Loc, II, T,
10550                                             TInfo, ac, (Expr *)BitfieldWidth);
10551
10552  if (II) {
10553    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10554                                           ForRedeclaration);
10555    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10556        && !isa<TagDecl>(PrevDecl)) {
10557      Diag(Loc, diag::err_duplicate_member) << II;
10558      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10559      NewID->setInvalidDecl();
10560    }
10561  }
10562
10563  // Process attributes attached to the ivar.
10564  ProcessDeclAttributes(S, NewID, D);
10565
10566  if (D.isInvalidType())
10567    NewID->setInvalidDecl();
10568
10569  // In ARC, infer 'retaining' for ivars of retainable type.
10570  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10571    NewID->setInvalidDecl();
10572
10573  if (D.getDeclSpec().isModulePrivateSpecified())
10574    NewID->setModulePrivate();
10575
10576  if (II) {
10577    // FIXME: When interfaces are DeclContexts, we'll need to add
10578    // these to the interface.
10579    S->AddDecl(NewID);
10580    IdResolver.AddDecl(NewID);
10581  }
10582
10583  if (LangOpts.ObjCRuntime.isNonFragile() &&
10584      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10585    Diag(Loc, diag::warn_ivars_in_interface);
10586
10587  return NewID;
10588}
10589
10590/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10591/// class and class extensions. For every class @interface and class
10592/// extension @interface, if the last ivar is a bitfield of any type,
10593/// then add an implicit `char :0` ivar to the end of that interface.
10594void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10595                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10596  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10597    return;
10598
10599  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10600  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10601
10602  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10603    return;
10604  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10605  if (!ID) {
10606    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10607      if (!CD->IsClassExtension())
10608        return;
10609    }
10610    // No need to add this to end of @implementation.
10611    else
10612      return;
10613  }
10614  // All conditions are met. Add a new bitfield to the tail end of ivars.
10615  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10616  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10617
10618  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10619                              DeclLoc, DeclLoc, 0,
10620                              Context.CharTy,
10621                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10622                                                               DeclLoc),
10623                              ObjCIvarDecl::Private, BW,
10624                              true);
10625  AllIvarDecls.push_back(Ivar);
10626}
10627
10628void Sema::ActOnFields(Scope* S,
10629                       SourceLocation RecLoc, Decl *EnclosingDecl,
10630                       llvm::ArrayRef<Decl *> Fields,
10631                       SourceLocation LBrac, SourceLocation RBrac,
10632                       AttributeList *Attr) {
10633  assert(EnclosingDecl && "missing record or interface decl");
10634
10635  // If this is an Objective-C @implementation or category and we have
10636  // new fields here we should reset the layout of the interface since
10637  // it will now change.
10638  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10639    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10640    switch (DC->getKind()) {
10641    default: break;
10642    case Decl::ObjCCategory:
10643      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10644      break;
10645    case Decl::ObjCImplementation:
10646      Context.
10647        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10648      break;
10649    }
10650  }
10651
10652  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10653
10654  // Start counting up the number of named members; make sure to include
10655  // members of anonymous structs and unions in the total.
10656  unsigned NumNamedMembers = 0;
10657  if (Record) {
10658    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10659                                   e = Record->decls_end(); i != e; i++) {
10660      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10661        if (IFD->getDeclName())
10662          ++NumNamedMembers;
10663    }
10664  }
10665
10666  // Verify that all the fields are okay.
10667  SmallVector<FieldDecl*, 32> RecFields;
10668
10669  bool ARCErrReported = false;
10670  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10671       i != end; ++i) {
10672    FieldDecl *FD = cast<FieldDecl>(*i);
10673
10674    // Get the type for the field.
10675    const Type *FDTy = FD->getType().getTypePtr();
10676
10677    if (!FD->isAnonymousStructOrUnion()) {
10678      // Remember all fields written by the user.
10679      RecFields.push_back(FD);
10680    }
10681
10682    // If the field is already invalid for some reason, don't emit more
10683    // diagnostics about it.
10684    if (FD->isInvalidDecl()) {
10685      EnclosingDecl->setInvalidDecl();
10686      continue;
10687    }
10688
10689    // C99 6.7.2.1p2:
10690    //   A structure or union shall not contain a member with
10691    //   incomplete or function type (hence, a structure shall not
10692    //   contain an instance of itself, but may contain a pointer to
10693    //   an instance of itself), except that the last member of a
10694    //   structure with more than one named member may have incomplete
10695    //   array type; such a structure (and any union containing,
10696    //   possibly recursively, a member that is such a structure)
10697    //   shall not be a member of a structure or an element of an
10698    //   array.
10699    if (FDTy->isFunctionType()) {
10700      // Field declared as a function.
10701      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10702        << FD->getDeclName();
10703      FD->setInvalidDecl();
10704      EnclosingDecl->setInvalidDecl();
10705      continue;
10706    } else if (FDTy->isIncompleteArrayType() && Record &&
10707               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10708                ((getLangOpts().MicrosoftExt ||
10709                  getLangOpts().CPlusPlus) &&
10710                 (i + 1 == Fields.end() || Record->isUnion())))) {
10711      // Flexible array member.
10712      // Microsoft and g++ is more permissive regarding flexible array.
10713      // It will accept flexible array in union and also
10714      // as the sole element of a struct/class.
10715      if (getLangOpts().MicrosoftExt) {
10716        if (Record->isUnion())
10717          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10718            << FD->getDeclName();
10719        else if (Fields.size() == 1)
10720          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10721            << FD->getDeclName() << Record->getTagKind();
10722      } else if (getLangOpts().CPlusPlus) {
10723        if (Record->isUnion())
10724          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10725            << FD->getDeclName();
10726        else if (Fields.size() == 1)
10727          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10728            << FD->getDeclName() << Record->getTagKind();
10729      } else if (!getLangOpts().C99) {
10730      if (Record->isUnion())
10731        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10732          << FD->getDeclName();
10733      else
10734        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10735          << FD->getDeclName() << Record->getTagKind();
10736      } else if (NumNamedMembers < 1) {
10737        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10738          << FD->getDeclName();
10739        FD->setInvalidDecl();
10740        EnclosingDecl->setInvalidDecl();
10741        continue;
10742      }
10743      if (!FD->getType()->isDependentType() &&
10744          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10745        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10746          << FD->getDeclName() << FD->getType();
10747        FD->setInvalidDecl();
10748        EnclosingDecl->setInvalidDecl();
10749        continue;
10750      }
10751      // Okay, we have a legal flexible array member at the end of the struct.
10752      if (Record)
10753        Record->setHasFlexibleArrayMember(true);
10754    } else if (!FDTy->isDependentType() &&
10755               RequireCompleteType(FD->getLocation(), FD->getType(),
10756                                   diag::err_field_incomplete)) {
10757      // Incomplete type
10758      FD->setInvalidDecl();
10759      EnclosingDecl->setInvalidDecl();
10760      continue;
10761    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10762      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10763        // If this is a member of a union, then entire union becomes "flexible".
10764        if (Record && Record->isUnion()) {
10765          Record->setHasFlexibleArrayMember(true);
10766        } else {
10767          // If this is a struct/class and this is not the last element, reject
10768          // it.  Note that GCC supports variable sized arrays in the middle of
10769          // structures.
10770          if (i + 1 != Fields.end())
10771            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10772              << FD->getDeclName() << FD->getType();
10773          else {
10774            // We support flexible arrays at the end of structs in
10775            // other structs as an extension.
10776            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10777              << FD->getDeclName();
10778            if (Record)
10779              Record->setHasFlexibleArrayMember(true);
10780          }
10781        }
10782      }
10783      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10784          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10785                                 diag::err_abstract_type_in_decl,
10786                                 AbstractIvarType)) {
10787        // Ivars can not have abstract class types
10788        FD->setInvalidDecl();
10789      }
10790      if (Record && FDTTy->getDecl()->hasObjectMember())
10791        Record->setHasObjectMember(true);
10792      if (Record && FDTTy->getDecl()->hasVolatileMember())
10793        Record->setHasVolatileMember(true);
10794    } else if (FDTy->isObjCObjectType()) {
10795      /// A field cannot be an Objective-c object
10796      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10797        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10798      QualType T = Context.getObjCObjectPointerType(FD->getType());
10799      FD->setType(T);
10800    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10801               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10802      // It's an error in ARC if a field has lifetime.
10803      // We don't want to report this in a system header, though,
10804      // so we just make the field unavailable.
10805      // FIXME: that's really not sufficient; we need to make the type
10806      // itself invalid to, say, initialize or copy.
10807      QualType T = FD->getType();
10808      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10809      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10810        SourceLocation loc = FD->getLocation();
10811        if (getSourceManager().isInSystemHeader(loc)) {
10812          if (!FD->hasAttr<UnavailableAttr>()) {
10813            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10814                              "this system field has retaining ownership"));
10815          }
10816        } else {
10817          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10818            << T->isBlockPointerType() << Record->getTagKind();
10819        }
10820        ARCErrReported = true;
10821      }
10822    } else if (getLangOpts().ObjC1 &&
10823               getLangOpts().getGC() != LangOptions::NonGC &&
10824               Record && !Record->hasObjectMember()) {
10825      if (FD->getType()->isObjCObjectPointerType() ||
10826          FD->getType().isObjCGCStrong())
10827        Record->setHasObjectMember(true);
10828      else if (Context.getAsArrayType(FD->getType())) {
10829        QualType BaseType = Context.getBaseElementType(FD->getType());
10830        if (BaseType->isRecordType() &&
10831            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10832          Record->setHasObjectMember(true);
10833        else if (BaseType->isObjCObjectPointerType() ||
10834                 BaseType.isObjCGCStrong())
10835               Record->setHasObjectMember(true);
10836      }
10837    }
10838    if (Record && FD->getType().isVolatileQualified())
10839      Record->setHasVolatileMember(true);
10840    // Keep track of the number of named members.
10841    if (FD->getIdentifier())
10842      ++NumNamedMembers;
10843  }
10844
10845  // Okay, we successfully defined 'Record'.
10846  if (Record) {
10847    bool Completed = false;
10848    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10849      if (!CXXRecord->isInvalidDecl()) {
10850        // Set access bits correctly on the directly-declared conversions.
10851        for (CXXRecordDecl::conversion_iterator
10852               I = CXXRecord->conversion_begin(),
10853               E = CXXRecord->conversion_end(); I != E; ++I)
10854          I.setAccess((*I)->getAccess());
10855
10856        if (!CXXRecord->isDependentType()) {
10857          // Adjust user-defined destructor exception spec.
10858          if (getLangOpts().CPlusPlus11 &&
10859              CXXRecord->hasUserDeclaredDestructor())
10860            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10861
10862          // Add any implicitly-declared members to this class.
10863          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10864
10865          // If we have virtual base classes, we may end up finding multiple
10866          // final overriders for a given virtual function. Check for this
10867          // problem now.
10868          if (CXXRecord->getNumVBases()) {
10869            CXXFinalOverriderMap FinalOverriders;
10870            CXXRecord->getFinalOverriders(FinalOverriders);
10871
10872            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10873                                             MEnd = FinalOverriders.end();
10874                 M != MEnd; ++M) {
10875              for (OverridingMethods::iterator SO = M->second.begin(),
10876                                            SOEnd = M->second.end();
10877                   SO != SOEnd; ++SO) {
10878                assert(SO->second.size() > 0 &&
10879                       "Virtual function without overridding functions?");
10880                if (SO->second.size() == 1)
10881                  continue;
10882
10883                // C++ [class.virtual]p2:
10884                //   In a derived class, if a virtual member function of a base
10885                //   class subobject has more than one final overrider the
10886                //   program is ill-formed.
10887                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10888                  << (const NamedDecl *)M->first << Record;
10889                Diag(M->first->getLocation(),
10890                     diag::note_overridden_virtual_function);
10891                for (OverridingMethods::overriding_iterator
10892                          OM = SO->second.begin(),
10893                       OMEnd = SO->second.end();
10894                     OM != OMEnd; ++OM)
10895                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10896                    << (const NamedDecl *)M->first << OM->Method->getParent();
10897
10898                Record->setInvalidDecl();
10899              }
10900            }
10901            CXXRecord->completeDefinition(&FinalOverriders);
10902            Completed = true;
10903          }
10904        }
10905      }
10906    }
10907
10908    if (!Completed)
10909      Record->completeDefinition();
10910
10911    if (Record->hasAttrs())
10912      CheckAlignasUnderalignment(Record);
10913  } else {
10914    ObjCIvarDecl **ClsFields =
10915      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10916    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10917      ID->setEndOfDefinitionLoc(RBrac);
10918      // Add ivar's to class's DeclContext.
10919      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10920        ClsFields[i]->setLexicalDeclContext(ID);
10921        ID->addDecl(ClsFields[i]);
10922      }
10923      // Must enforce the rule that ivars in the base classes may not be
10924      // duplicates.
10925      if (ID->getSuperClass())
10926        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10927    } else if (ObjCImplementationDecl *IMPDecl =
10928                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10929      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10930      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10931        // Ivar declared in @implementation never belongs to the implementation.
10932        // Only it is in implementation's lexical context.
10933        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10934      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10935      IMPDecl->setIvarLBraceLoc(LBrac);
10936      IMPDecl->setIvarRBraceLoc(RBrac);
10937    } else if (ObjCCategoryDecl *CDecl =
10938                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10939      // case of ivars in class extension; all other cases have been
10940      // reported as errors elsewhere.
10941      // FIXME. Class extension does not have a LocEnd field.
10942      // CDecl->setLocEnd(RBrac);
10943      // Add ivar's to class extension's DeclContext.
10944      // Diagnose redeclaration of private ivars.
10945      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10946      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10947        if (IDecl) {
10948          if (const ObjCIvarDecl *ClsIvar =
10949              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10950            Diag(ClsFields[i]->getLocation(),
10951                 diag::err_duplicate_ivar_declaration);
10952            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10953            continue;
10954          }
10955          for (ObjCInterfaceDecl::known_extensions_iterator
10956                 Ext = IDecl->known_extensions_begin(),
10957                 ExtEnd = IDecl->known_extensions_end();
10958               Ext != ExtEnd; ++Ext) {
10959            if (const ObjCIvarDecl *ClsExtIvar
10960                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10961              Diag(ClsFields[i]->getLocation(),
10962                   diag::err_duplicate_ivar_declaration);
10963              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10964              continue;
10965            }
10966          }
10967        }
10968        ClsFields[i]->setLexicalDeclContext(CDecl);
10969        CDecl->addDecl(ClsFields[i]);
10970      }
10971      CDecl->setIvarLBraceLoc(LBrac);
10972      CDecl->setIvarRBraceLoc(RBrac);
10973    }
10974  }
10975
10976  if (Attr)
10977    ProcessDeclAttributeList(S, Record, Attr);
10978}
10979
10980/// \brief Determine whether the given integral value is representable within
10981/// the given type T.
10982static bool isRepresentableIntegerValue(ASTContext &Context,
10983                                        llvm::APSInt &Value,
10984                                        QualType T) {
10985  assert(T->isIntegralType(Context) && "Integral type required!");
10986  unsigned BitWidth = Context.getIntWidth(T);
10987
10988  if (Value.isUnsigned() || Value.isNonNegative()) {
10989    if (T->isSignedIntegerOrEnumerationType())
10990      --BitWidth;
10991    return Value.getActiveBits() <= BitWidth;
10992  }
10993  return Value.getMinSignedBits() <= BitWidth;
10994}
10995
10996// \brief Given an integral type, return the next larger integral type
10997// (or a NULL type of no such type exists).
10998static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10999  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11000  // enum checking below.
11001  assert(T->isIntegralType(Context) && "Integral type required!");
11002  const unsigned NumTypes = 4;
11003  QualType SignedIntegralTypes[NumTypes] = {
11004    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11005  };
11006  QualType UnsignedIntegralTypes[NumTypes] = {
11007    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11008    Context.UnsignedLongLongTy
11009  };
11010
11011  unsigned BitWidth = Context.getTypeSize(T);
11012  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11013                                                        : UnsignedIntegralTypes;
11014  for (unsigned I = 0; I != NumTypes; ++I)
11015    if (Context.getTypeSize(Types[I]) > BitWidth)
11016      return Types[I];
11017
11018  return QualType();
11019}
11020
11021EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11022                                          EnumConstantDecl *LastEnumConst,
11023                                          SourceLocation IdLoc,
11024                                          IdentifierInfo *Id,
11025                                          Expr *Val) {
11026  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11027  llvm::APSInt EnumVal(IntWidth);
11028  QualType EltTy;
11029
11030  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11031    Val = 0;
11032
11033  if (Val)
11034    Val = DefaultLvalueConversion(Val).take();
11035
11036  if (Val) {
11037    if (Enum->isDependentType() || Val->isTypeDependent())
11038      EltTy = Context.DependentTy;
11039    else {
11040      SourceLocation ExpLoc;
11041      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11042          !getLangOpts().MicrosoftMode) {
11043        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11044        // constant-expression in the enumerator-definition shall be a converted
11045        // constant expression of the underlying type.
11046        EltTy = Enum->getIntegerType();
11047        ExprResult Converted =
11048          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11049                                           CCEK_Enumerator);
11050        if (Converted.isInvalid())
11051          Val = 0;
11052        else
11053          Val = Converted.take();
11054      } else if (!Val->isValueDependent() &&
11055                 !(Val = VerifyIntegerConstantExpression(Val,
11056                                                         &EnumVal).take())) {
11057        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11058      } else {
11059        if (Enum->isFixed()) {
11060          EltTy = Enum->getIntegerType();
11061
11062          // In Obj-C and Microsoft mode, require the enumeration value to be
11063          // representable in the underlying type of the enumeration. In C++11,
11064          // we perform a non-narrowing conversion as part of converted constant
11065          // expression checking.
11066          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11067            if (getLangOpts().MicrosoftMode) {
11068              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11069              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11070            } else
11071              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11072          } else
11073            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11074        } else if (getLangOpts().CPlusPlus) {
11075          // C++11 [dcl.enum]p5:
11076          //   If the underlying type is not fixed, the type of each enumerator
11077          //   is the type of its initializing value:
11078          //     - If an initializer is specified for an enumerator, the
11079          //       initializing value has the same type as the expression.
11080          EltTy = Val->getType();
11081        } else {
11082          // C99 6.7.2.2p2:
11083          //   The expression that defines the value of an enumeration constant
11084          //   shall be an integer constant expression that has a value
11085          //   representable as an int.
11086
11087          // Complain if the value is not representable in an int.
11088          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11089            Diag(IdLoc, diag::ext_enum_value_not_int)
11090              << EnumVal.toString(10) << Val->getSourceRange()
11091              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11092          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11093            // Force the type of the expression to 'int'.
11094            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11095          }
11096          EltTy = Val->getType();
11097        }
11098      }
11099    }
11100  }
11101
11102  if (!Val) {
11103    if (Enum->isDependentType())
11104      EltTy = Context.DependentTy;
11105    else if (!LastEnumConst) {
11106      // C++0x [dcl.enum]p5:
11107      //   If the underlying type is not fixed, the type of each enumerator
11108      //   is the type of its initializing value:
11109      //     - If no initializer is specified for the first enumerator, the
11110      //       initializing value has an unspecified integral type.
11111      //
11112      // GCC uses 'int' for its unspecified integral type, as does
11113      // C99 6.7.2.2p3.
11114      if (Enum->isFixed()) {
11115        EltTy = Enum->getIntegerType();
11116      }
11117      else {
11118        EltTy = Context.IntTy;
11119      }
11120    } else {
11121      // Assign the last value + 1.
11122      EnumVal = LastEnumConst->getInitVal();
11123      ++EnumVal;
11124      EltTy = LastEnumConst->getType();
11125
11126      // Check for overflow on increment.
11127      if (EnumVal < LastEnumConst->getInitVal()) {
11128        // C++0x [dcl.enum]p5:
11129        //   If the underlying type is not fixed, the type of each enumerator
11130        //   is the type of its initializing value:
11131        //
11132        //     - Otherwise the type of the initializing value is the same as
11133        //       the type of the initializing value of the preceding enumerator
11134        //       unless the incremented value is not representable in that type,
11135        //       in which case the type is an unspecified integral type
11136        //       sufficient to contain the incremented value. If no such type
11137        //       exists, the program is ill-formed.
11138        QualType T = getNextLargerIntegralType(Context, EltTy);
11139        if (T.isNull() || Enum->isFixed()) {
11140          // There is no integral type larger enough to represent this
11141          // value. Complain, then allow the value to wrap around.
11142          EnumVal = LastEnumConst->getInitVal();
11143          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11144          ++EnumVal;
11145          if (Enum->isFixed())
11146            // When the underlying type is fixed, this is ill-formed.
11147            Diag(IdLoc, diag::err_enumerator_wrapped)
11148              << EnumVal.toString(10)
11149              << EltTy;
11150          else
11151            Diag(IdLoc, diag::warn_enumerator_too_large)
11152              << EnumVal.toString(10);
11153        } else {
11154          EltTy = T;
11155        }
11156
11157        // Retrieve the last enumerator's value, extent that type to the
11158        // type that is supposed to be large enough to represent the incremented
11159        // value, then increment.
11160        EnumVal = LastEnumConst->getInitVal();
11161        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11162        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11163        ++EnumVal;
11164
11165        // If we're not in C++, diagnose the overflow of enumerator values,
11166        // which in C99 means that the enumerator value is not representable in
11167        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11168        // permits enumerator values that are representable in some larger
11169        // integral type.
11170        if (!getLangOpts().CPlusPlus && !T.isNull())
11171          Diag(IdLoc, diag::warn_enum_value_overflow);
11172      } else if (!getLangOpts().CPlusPlus &&
11173                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11174        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11175        Diag(IdLoc, diag::ext_enum_value_not_int)
11176          << EnumVal.toString(10) << 1;
11177      }
11178    }
11179  }
11180
11181  if (!EltTy->isDependentType()) {
11182    // Make the enumerator value match the signedness and size of the
11183    // enumerator's type.
11184    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11185    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11186  }
11187
11188  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11189                                  Val, EnumVal);
11190}
11191
11192
11193Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11194                              SourceLocation IdLoc, IdentifierInfo *Id,
11195                              AttributeList *Attr,
11196                              SourceLocation EqualLoc, Expr *Val) {
11197  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11198  EnumConstantDecl *LastEnumConst =
11199    cast_or_null<EnumConstantDecl>(lastEnumConst);
11200
11201  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11202  // we find one that is.
11203  S = getNonFieldDeclScope(S);
11204
11205  // Verify that there isn't already something declared with this name in this
11206  // scope.
11207  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11208                                         ForRedeclaration);
11209  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11210    // Maybe we will complain about the shadowed template parameter.
11211    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11212    // Just pretend that we didn't see the previous declaration.
11213    PrevDecl = 0;
11214  }
11215
11216  if (PrevDecl) {
11217    // When in C++, we may get a TagDecl with the same name; in this case the
11218    // enum constant will 'hide' the tag.
11219    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11220           "Received TagDecl when not in C++!");
11221    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11222      if (isa<EnumConstantDecl>(PrevDecl))
11223        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11224      else
11225        Diag(IdLoc, diag::err_redefinition) << Id;
11226      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11227      return 0;
11228    }
11229  }
11230
11231  // C++ [class.mem]p15:
11232  // If T is the name of a class, then each of the following shall have a name
11233  // different from T:
11234  // - every enumerator of every member of class T that is an unscoped
11235  // enumerated type
11236  if (CXXRecordDecl *Record
11237                      = dyn_cast<CXXRecordDecl>(
11238                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11239    if (!TheEnumDecl->isScoped() &&
11240        Record->getIdentifier() && Record->getIdentifier() == Id)
11241      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11242
11243  EnumConstantDecl *New =
11244    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11245
11246  if (New) {
11247    // Process attributes.
11248    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11249
11250    // Register this decl in the current scope stack.
11251    New->setAccess(TheEnumDecl->getAccess());
11252    PushOnScopeChains(New, S);
11253  }
11254
11255  ActOnDocumentableDecl(New);
11256
11257  return New;
11258}
11259
11260// Returns true when the enum initial expression does not trigger the
11261// duplicate enum warning.  A few common cases are exempted as follows:
11262// Element2 = Element1
11263// Element2 = Element1 + 1
11264// Element2 = Element1 - 1
11265// Where Element2 and Element1 are from the same enum.
11266static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11267  Expr *InitExpr = ECD->getInitExpr();
11268  if (!InitExpr)
11269    return true;
11270  InitExpr = InitExpr->IgnoreImpCasts();
11271
11272  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11273    if (!BO->isAdditiveOp())
11274      return true;
11275    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11276    if (!IL)
11277      return true;
11278    if (IL->getValue() != 1)
11279      return true;
11280
11281    InitExpr = BO->getLHS();
11282  }
11283
11284  // This checks if the elements are from the same enum.
11285  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11286  if (!DRE)
11287    return true;
11288
11289  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11290  if (!EnumConstant)
11291    return true;
11292
11293  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11294      Enum)
11295    return true;
11296
11297  return false;
11298}
11299
11300struct DupKey {
11301  int64_t val;
11302  bool isTombstoneOrEmptyKey;
11303  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11304    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11305};
11306
11307static DupKey GetDupKey(const llvm::APSInt& Val) {
11308  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11309                false);
11310}
11311
11312struct DenseMapInfoDupKey {
11313  static DupKey getEmptyKey() { return DupKey(0, true); }
11314  static DupKey getTombstoneKey() { return DupKey(1, true); }
11315  static unsigned getHashValue(const DupKey Key) {
11316    return (unsigned)(Key.val * 37);
11317  }
11318  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11319    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11320           LHS.val == RHS.val;
11321  }
11322};
11323
11324// Emits a warning when an element is implicitly set a value that
11325// a previous element has already been set to.
11326static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11327                                        unsigned NumElements, EnumDecl *Enum,
11328                                        QualType EnumType) {
11329  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11330                                 Enum->getLocation()) ==
11331      DiagnosticsEngine::Ignored)
11332    return;
11333  // Avoid anonymous enums
11334  if (!Enum->getIdentifier())
11335    return;
11336
11337  // Only check for small enums.
11338  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11339    return;
11340
11341  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11342  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11343
11344  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11345  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11346          ValueToVectorMap;
11347
11348  DuplicatesVector DupVector;
11349  ValueToVectorMap EnumMap;
11350
11351  // Populate the EnumMap with all values represented by enum constants without
11352  // an initialier.
11353  for (unsigned i = 0; i < NumElements; ++i) {
11354    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11355
11356    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11357    // this constant.  Skip this enum since it may be ill-formed.
11358    if (!ECD) {
11359      return;
11360    }
11361
11362    if (ECD->getInitExpr())
11363      continue;
11364
11365    DupKey Key = GetDupKey(ECD->getInitVal());
11366    DeclOrVector &Entry = EnumMap[Key];
11367
11368    // First time encountering this value.
11369    if (Entry.isNull())
11370      Entry = ECD;
11371  }
11372
11373  // Create vectors for any values that has duplicates.
11374  for (unsigned i = 0; i < NumElements; ++i) {
11375    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11376    if (!ValidDuplicateEnum(ECD, Enum))
11377      continue;
11378
11379    DupKey Key = GetDupKey(ECD->getInitVal());
11380
11381    DeclOrVector& Entry = EnumMap[Key];
11382    if (Entry.isNull())
11383      continue;
11384
11385    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11386      // Ensure constants are different.
11387      if (D == ECD)
11388        continue;
11389
11390      // Create new vector and push values onto it.
11391      ECDVector *Vec = new ECDVector();
11392      Vec->push_back(D);
11393      Vec->push_back(ECD);
11394
11395      // Update entry to point to the duplicates vector.
11396      Entry = Vec;
11397
11398      // Store the vector somewhere we can consult later for quick emission of
11399      // diagnostics.
11400      DupVector.push_back(Vec);
11401      continue;
11402    }
11403
11404    ECDVector *Vec = Entry.get<ECDVector*>();
11405    // Make sure constants are not added more than once.
11406    if (*Vec->begin() == ECD)
11407      continue;
11408
11409    Vec->push_back(ECD);
11410  }
11411
11412  // Emit diagnostics.
11413  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11414                                  DupVectorEnd = DupVector.end();
11415       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11416    ECDVector *Vec = *DupVectorIter;
11417    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11418
11419    // Emit warning for one enum constant.
11420    ECDVector::iterator I = Vec->begin();
11421    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11422      << (*I)->getName() << (*I)->getInitVal().toString(10)
11423      << (*I)->getSourceRange();
11424    ++I;
11425
11426    // Emit one note for each of the remaining enum constants with
11427    // the same value.
11428    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11429      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11430        << (*I)->getName() << (*I)->getInitVal().toString(10)
11431        << (*I)->getSourceRange();
11432    delete Vec;
11433  }
11434}
11435
11436void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11437                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11438                         Decl **Elements, unsigned NumElements,
11439                         Scope *S, AttributeList *Attr) {
11440  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11441  QualType EnumType = Context.getTypeDeclType(Enum);
11442
11443  if (Attr)
11444    ProcessDeclAttributeList(S, Enum, Attr);
11445
11446  if (Enum->isDependentType()) {
11447    for (unsigned i = 0; i != NumElements; ++i) {
11448      EnumConstantDecl *ECD =
11449        cast_or_null<EnumConstantDecl>(Elements[i]);
11450      if (!ECD) continue;
11451
11452      ECD->setType(EnumType);
11453    }
11454
11455    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11456    return;
11457  }
11458
11459  // TODO: If the result value doesn't fit in an int, it must be a long or long
11460  // long value.  ISO C does not support this, but GCC does as an extension,
11461  // emit a warning.
11462  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11463  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11464  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11465
11466  // Verify that all the values are okay, compute the size of the values, and
11467  // reverse the list.
11468  unsigned NumNegativeBits = 0;
11469  unsigned NumPositiveBits = 0;
11470
11471  // Keep track of whether all elements have type int.
11472  bool AllElementsInt = true;
11473
11474  for (unsigned i = 0; i != NumElements; ++i) {
11475    EnumConstantDecl *ECD =
11476      cast_or_null<EnumConstantDecl>(Elements[i]);
11477    if (!ECD) continue;  // Already issued a diagnostic.
11478
11479    const llvm::APSInt &InitVal = ECD->getInitVal();
11480
11481    // Keep track of the size of positive and negative values.
11482    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11483      NumPositiveBits = std::max(NumPositiveBits,
11484                                 (unsigned)InitVal.getActiveBits());
11485    else
11486      NumNegativeBits = std::max(NumNegativeBits,
11487                                 (unsigned)InitVal.getMinSignedBits());
11488
11489    // Keep track of whether every enum element has type int (very commmon).
11490    if (AllElementsInt)
11491      AllElementsInt = ECD->getType() == Context.IntTy;
11492  }
11493
11494  // Figure out the type that should be used for this enum.
11495  QualType BestType;
11496  unsigned BestWidth;
11497
11498  // C++0x N3000 [conv.prom]p3:
11499  //   An rvalue of an unscoped enumeration type whose underlying
11500  //   type is not fixed can be converted to an rvalue of the first
11501  //   of the following types that can represent all the values of
11502  //   the enumeration: int, unsigned int, long int, unsigned long
11503  //   int, long long int, or unsigned long long int.
11504  // C99 6.4.4.3p2:
11505  //   An identifier declared as an enumeration constant has type int.
11506  // The C99 rule is modified by a gcc extension
11507  QualType BestPromotionType;
11508
11509  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11510  // -fshort-enums is the equivalent to specifying the packed attribute on all
11511  // enum definitions.
11512  if (LangOpts.ShortEnums)
11513    Packed = true;
11514
11515  if (Enum->isFixed()) {
11516    BestType = Enum->getIntegerType();
11517    if (BestType->isPromotableIntegerType())
11518      BestPromotionType = Context.getPromotedIntegerType(BestType);
11519    else
11520      BestPromotionType = BestType;
11521    // We don't need to set BestWidth, because BestType is going to be the type
11522    // of the enumerators, but we do anyway because otherwise some compilers
11523    // warn that it might be used uninitialized.
11524    BestWidth = CharWidth;
11525  }
11526  else if (NumNegativeBits) {
11527    // If there is a negative value, figure out the smallest integer type (of
11528    // int/long/longlong) that fits.
11529    // If it's packed, check also if it fits a char or a short.
11530    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11531      BestType = Context.SignedCharTy;
11532      BestWidth = CharWidth;
11533    } else if (Packed && NumNegativeBits <= ShortWidth &&
11534               NumPositiveBits < ShortWidth) {
11535      BestType = Context.ShortTy;
11536      BestWidth = ShortWidth;
11537    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11538      BestType = Context.IntTy;
11539      BestWidth = IntWidth;
11540    } else {
11541      BestWidth = Context.getTargetInfo().getLongWidth();
11542
11543      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11544        BestType = Context.LongTy;
11545      } else {
11546        BestWidth = Context.getTargetInfo().getLongLongWidth();
11547
11548        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11549          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11550        BestType = Context.LongLongTy;
11551      }
11552    }
11553    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11554  } else {
11555    // If there is no negative value, figure out the smallest type that fits
11556    // all of the enumerator values.
11557    // If it's packed, check also if it fits a char or a short.
11558    if (Packed && NumPositiveBits <= CharWidth) {
11559      BestType = Context.UnsignedCharTy;
11560      BestPromotionType = Context.IntTy;
11561      BestWidth = CharWidth;
11562    } else if (Packed && NumPositiveBits <= ShortWidth) {
11563      BestType = Context.UnsignedShortTy;
11564      BestPromotionType = Context.IntTy;
11565      BestWidth = ShortWidth;
11566    } else if (NumPositiveBits <= IntWidth) {
11567      BestType = Context.UnsignedIntTy;
11568      BestWidth = IntWidth;
11569      BestPromotionType
11570        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11571                           ? Context.UnsignedIntTy : Context.IntTy;
11572    } else if (NumPositiveBits <=
11573               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11574      BestType = Context.UnsignedLongTy;
11575      BestPromotionType
11576        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11577                           ? Context.UnsignedLongTy : Context.LongTy;
11578    } else {
11579      BestWidth = Context.getTargetInfo().getLongLongWidth();
11580      assert(NumPositiveBits <= BestWidth &&
11581             "How could an initializer get larger than ULL?");
11582      BestType = Context.UnsignedLongLongTy;
11583      BestPromotionType
11584        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11585                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11586    }
11587  }
11588
11589  // Loop over all of the enumerator constants, changing their types to match
11590  // the type of the enum if needed.
11591  for (unsigned i = 0; i != NumElements; ++i) {
11592    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11593    if (!ECD) continue;  // Already issued a diagnostic.
11594
11595    // Standard C says the enumerators have int type, but we allow, as an
11596    // extension, the enumerators to be larger than int size.  If each
11597    // enumerator value fits in an int, type it as an int, otherwise type it the
11598    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11599    // that X has type 'int', not 'unsigned'.
11600
11601    // Determine whether the value fits into an int.
11602    llvm::APSInt InitVal = ECD->getInitVal();
11603
11604    // If it fits into an integer type, force it.  Otherwise force it to match
11605    // the enum decl type.
11606    QualType NewTy;
11607    unsigned NewWidth;
11608    bool NewSign;
11609    if (!getLangOpts().CPlusPlus &&
11610        !Enum->isFixed() &&
11611        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11612      NewTy = Context.IntTy;
11613      NewWidth = IntWidth;
11614      NewSign = true;
11615    } else if (ECD->getType() == BestType) {
11616      // Already the right type!
11617      if (getLangOpts().CPlusPlus)
11618        // C++ [dcl.enum]p4: Following the closing brace of an
11619        // enum-specifier, each enumerator has the type of its
11620        // enumeration.
11621        ECD->setType(EnumType);
11622      continue;
11623    } else {
11624      NewTy = BestType;
11625      NewWidth = BestWidth;
11626      NewSign = BestType->isSignedIntegerOrEnumerationType();
11627    }
11628
11629    // Adjust the APSInt value.
11630    InitVal = InitVal.extOrTrunc(NewWidth);
11631    InitVal.setIsSigned(NewSign);
11632    ECD->setInitVal(InitVal);
11633
11634    // Adjust the Expr initializer and type.
11635    if (ECD->getInitExpr() &&
11636        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11637      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11638                                                CK_IntegralCast,
11639                                                ECD->getInitExpr(),
11640                                                /*base paths*/ 0,
11641                                                VK_RValue));
11642    if (getLangOpts().CPlusPlus)
11643      // C++ [dcl.enum]p4: Following the closing brace of an
11644      // enum-specifier, each enumerator has the type of its
11645      // enumeration.
11646      ECD->setType(EnumType);
11647    else
11648      ECD->setType(NewTy);
11649  }
11650
11651  Enum->completeDefinition(BestType, BestPromotionType,
11652                           NumPositiveBits, NumNegativeBits);
11653
11654  // If we're declaring a function, ensure this decl isn't forgotten about -
11655  // it needs to go into the function scope.
11656  if (InFunctionDeclarator)
11657    DeclsInPrototypeScope.push_back(Enum);
11658
11659  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11660
11661  // Now that the enum type is defined, ensure it's not been underaligned.
11662  if (Enum->hasAttrs())
11663    CheckAlignasUnderalignment(Enum);
11664}
11665
11666Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11667                                  SourceLocation StartLoc,
11668                                  SourceLocation EndLoc) {
11669  StringLiteral *AsmString = cast<StringLiteral>(expr);
11670
11671  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11672                                                   AsmString, StartLoc,
11673                                                   EndLoc);
11674  CurContext->addDecl(New);
11675  return New;
11676}
11677
11678DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11679                                   SourceLocation ImportLoc,
11680                                   ModuleIdPath Path) {
11681  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11682                                                Module::AllVisible,
11683                                                /*IsIncludeDirective=*/false);
11684  if (!Mod)
11685    return true;
11686
11687  SmallVector<SourceLocation, 2> IdentifierLocs;
11688  Module *ModCheck = Mod;
11689  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11690    // If we've run out of module parents, just drop the remaining identifiers.
11691    // We need the length to be consistent.
11692    if (!ModCheck)
11693      break;
11694    ModCheck = ModCheck->Parent;
11695
11696    IdentifierLocs.push_back(Path[I].second);
11697  }
11698
11699  ImportDecl *Import = ImportDecl::Create(Context,
11700                                          Context.getTranslationUnitDecl(),
11701                                          AtLoc.isValid()? AtLoc : ImportLoc,
11702                                          Mod, IdentifierLocs);
11703  Context.getTranslationUnitDecl()->addDecl(Import);
11704  return Import;
11705}
11706
11707void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11708  // Create the implicit import declaration.
11709  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11710  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11711                                                   Loc, Mod, Loc);
11712  TU->addDecl(ImportD);
11713  Consumer.HandleImplicitImportDecl(ImportD);
11714
11715  // Make the module visible.
11716  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
11717}
11718
11719void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11720                                      IdentifierInfo* AliasName,
11721                                      SourceLocation PragmaLoc,
11722                                      SourceLocation NameLoc,
11723                                      SourceLocation AliasNameLoc) {
11724  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11725                                    LookupOrdinaryName);
11726  AsmLabelAttr *Attr =
11727     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11728
11729  if (PrevDecl)
11730    PrevDecl->addAttr(Attr);
11731  else
11732    (void)ExtnameUndeclaredIdentifiers.insert(
11733      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11734}
11735
11736void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11737                             SourceLocation PragmaLoc,
11738                             SourceLocation NameLoc) {
11739  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11740
11741  if (PrevDecl) {
11742    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11743  } else {
11744    (void)WeakUndeclaredIdentifiers.insert(
11745      std::pair<IdentifierInfo*,WeakInfo>
11746        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11747  }
11748}
11749
11750void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11751                                IdentifierInfo* AliasName,
11752                                SourceLocation PragmaLoc,
11753                                SourceLocation NameLoc,
11754                                SourceLocation AliasNameLoc) {
11755  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11756                                    LookupOrdinaryName);
11757  WeakInfo W = WeakInfo(Name, NameLoc);
11758
11759  if (PrevDecl) {
11760    if (!PrevDecl->hasAttr<AliasAttr>())
11761      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11762        DeclApplyPragmaWeak(TUScope, ND, W);
11763  } else {
11764    (void)WeakUndeclaredIdentifiers.insert(
11765      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11766  }
11767}
11768
11769Decl *Sema::getObjCDeclContext() const {
11770  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11771}
11772
11773AvailabilityResult Sema::getCurContextAvailability() const {
11774  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11775  return D->getAvailability();
11776}
11777