SemaDecl.cpp revision 2dc0e64e57b2a1786fa53a7dbd1d5c8e255eadb0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  // C++ [temp.res]p3:
56  //   A qualified-id that refers to a type and in which the
57  //   nested-name-specifier depends on a template-parameter (14.6.2)
58  //   shall be prefixed by the keyword typename to indicate that the
59  //   qualified-id denotes a type, forming an
60  //   elaborated-type-specifier (7.1.5.3).
61  //
62  // We therefore do not perform any name lookup up SS is a dependent
63  // scope name. FIXME: we will need to perform a special kind of
64  // lookup if the scope specifier names a member of the current
65  // instantiation.
66  if (SS && isDependentScopeSpecifier(*SS))
67    return 0;
68
69  NamedDecl *IIDecl = 0;
70  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
71                                         false, false);
72  switch (Result.getKind()) {
73  case LookupResult::NotFound:
74  case LookupResult::FoundOverloaded:
75    return 0;
76
77  case LookupResult::AmbiguousBaseSubobjectTypes:
78  case LookupResult::AmbiguousBaseSubobjects:
79  case LookupResult::AmbiguousReference:
80    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
81    return 0;
82
83  case LookupResult::Found:
84    IIDecl = Result.getAsDecl();
85    break;
86  }
87
88  if (IIDecl) {
89    QualType T;
90
91    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
92      // Check whether we can use this type
93      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
94
95      T = Context.getTypeDeclType(TD);
96    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
97      // Check whether we can use this interface.
98      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
99
100      T = Context.getObjCInterfaceType(IDecl);
101    } else
102      return 0;
103
104    if (SS)
105      T = getQualifiedNameType(*SS, T);
106
107    return T.getAsOpaquePtr();
108  }
109
110  return 0;
111}
112
113DeclContext *Sema::getContainingDC(DeclContext *DC) {
114  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
115    // A C++ out-of-line method will return to the file declaration context.
116    if (MD->isOutOfLineDefinition())
117      return MD->getLexicalDeclContext();
118
119    // A C++ inline method is parsed *after* the topmost class it was declared
120    // in is fully parsed (it's "complete").
121    // The parsing of a C++ inline method happens at the declaration context of
122    // the topmost (non-nested) class it is lexically declared in.
123    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
124    DC = MD->getParent();
125    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
126      DC = RD;
127
128    // Return the declaration context of the topmost class the inline method is
129    // declared in.
130    return DC;
131  }
132
133  if (isa<ObjCMethodDecl>(DC))
134    return Context.getTranslationUnitDecl();
135
136  return DC->getLexicalParent();
137}
138
139void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
140  assert(getContainingDC(DC) == CurContext &&
141      "The next DeclContext should be lexically contained in the current one.");
142  CurContext = DC;
143  S->setEntity(DC);
144}
145
146void Sema::PopDeclContext() {
147  assert(CurContext && "DeclContext imbalance!");
148
149  CurContext = getContainingDC(CurContext);
150}
151
152/// \brief Determine whether we allow overloading of the function
153/// PrevDecl with another declaration.
154///
155/// This routine determines whether overloading is possible, not
156/// whether some new function is actually an overload. It will return
157/// true in C++ (where we can always provide overloads) or, as an
158/// extension, in C when the previous function is already an
159/// overloaded function declaration or has the "overloadable"
160/// attribute.
161static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
162  if (Context.getLangOptions().CPlusPlus)
163    return true;
164
165  if (isa<OverloadedFunctionDecl>(PrevDecl))
166    return true;
167
168  return PrevDecl->getAttr<OverloadableAttr>() != 0;
169}
170
171/// Add this decl to the scope shadowed decl chains.
172void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
173  // Move up the scope chain until we find the nearest enclosing
174  // non-transparent context. The declaration will be introduced into this
175  // scope.
176  while (S->getEntity() &&
177         ((DeclContext *)S->getEntity())->isTransparentContext())
178    S = S->getParent();
179
180  S->AddDecl(D);
181
182  // Add scoped declarations into their context, so that they can be
183  // found later. Declarations without a context won't be inserted
184  // into any context.
185  CurContext->addDecl(D);
186
187  // C++ [basic.scope]p4:
188  //   -- exactly one declaration shall declare a class name or
189  //   enumeration name that is not a typedef name and the other
190  //   declarations shall all refer to the same object or
191  //   enumerator, or all refer to functions and function templates;
192  //   in this case the class name or enumeration name is hidden.
193  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
194    // We are pushing the name of a tag (enum or class).
195    if (CurContext->getLookupContext()
196          == TD->getDeclContext()->getLookupContext()) {
197      // We're pushing the tag into the current context, which might
198      // require some reshuffling in the identifier resolver.
199      IdentifierResolver::iterator
200        I = IdResolver.begin(TD->getDeclName()),
201        IEnd = IdResolver.end();
202      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
203        NamedDecl *PrevDecl = *I;
204        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
205             PrevDecl = *I, ++I) {
206          if (TD->declarationReplaces(*I)) {
207            // This is a redeclaration. Remove it from the chain and
208            // break out, so that we'll add in the shadowed
209            // declaration.
210            S->RemoveDecl(*I);
211            if (PrevDecl == *I) {
212              IdResolver.RemoveDecl(*I);
213              IdResolver.AddDecl(TD);
214              return;
215            } else {
216              IdResolver.RemoveDecl(*I);
217              break;
218            }
219          }
220        }
221
222        // There is already a declaration with the same name in the same
223        // scope, which is not a tag declaration. It must be found
224        // before we find the new declaration, so insert the new
225        // declaration at the end of the chain.
226        IdResolver.AddShadowedDecl(TD, PrevDecl);
227
228        return;
229      }
230    }
231  } else if (isa<FunctionDecl>(D) &&
232             AllowOverloadingOfFunction(D, Context)) {
233    // We are pushing the name of a function, which might be an
234    // overloaded name.
235    FunctionDecl *FD = cast<FunctionDecl>(D);
236    IdentifierResolver::iterator Redecl
237      = std::find_if(IdResolver.begin(FD->getDeclName()),
238                     IdResolver.end(),
239                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
240                                  FD));
241    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
242      // There is already a declaration of a function on our
243      // IdResolver chain. Replace it with this declaration.
244      S->RemoveDecl(*Redecl);
245      IdResolver.RemoveDecl(*Redecl);
246    }
247  }
248
249  IdResolver.AddDecl(D);
250}
251
252void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
253  if (S->decl_empty()) return;
254  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
255	 "Scope shouldn't contain decls!");
256
257  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
258       I != E; ++I) {
259    Decl *TmpD = static_cast<Decl*>(*I);
260    assert(TmpD && "This decl didn't get pushed??");
261
262    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
263    NamedDecl *D = cast<NamedDecl>(TmpD);
264
265    if (!D->getDeclName()) continue;
266
267    // Remove this name from our lexical scope.
268    IdResolver.RemoveDecl(D);
269  }
270}
271
272/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
273/// return 0 if one not found.
274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
275  // The third "scope" argument is 0 since we aren't enabling lazy built-in
276  // creation from this context.
277  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
278
279  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
280}
281
282/// getNonFieldDeclScope - Retrieves the innermost scope, starting
283/// from S, where a non-field would be declared. This routine copes
284/// with the difference between C and C++ scoping rules in structs and
285/// unions. For example, the following code is well-formed in C but
286/// ill-formed in C++:
287/// @code
288/// struct S6 {
289///   enum { BAR } e;
290/// };
291///
292/// void test_S6() {
293///   struct S6 a;
294///   a.e = BAR;
295/// }
296/// @endcode
297/// For the declaration of BAR, this routine will return a different
298/// scope. The scope S will be the scope of the unnamed enumeration
299/// within S6. In C++, this routine will return the scope associated
300/// with S6, because the enumeration's scope is a transparent
301/// context but structures can contain non-field names. In C, this
302/// routine will return the translation unit scope, since the
303/// enumeration's scope is a transparent context and structures cannot
304/// contain non-field names.
305Scope *Sema::getNonFieldDeclScope(Scope *S) {
306  while (((S->getFlags() & Scope::DeclScope) == 0) ||
307         (S->getEntity() &&
308          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
309         (S->isClassScope() && !getLangOptions().CPlusPlus))
310    S = S->getParent();
311  return S;
312}
313
314void Sema::InitBuiltinVaListType() {
315  if (!Context.getBuiltinVaListType().isNull())
316    return;
317
318  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
319  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
320  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
321  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
322}
323
324/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
325/// file scope.  lazily create a decl for it. ForRedeclaration is true
326/// if we're creating this built-in in anticipation of redeclaring the
327/// built-in.
328NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
329                                     Scope *S, bool ForRedeclaration,
330                                     SourceLocation Loc) {
331  Builtin::ID BID = (Builtin::ID)bid;
332
333  if (Context.BuiltinInfo.hasVAListUse(BID))
334    InitBuiltinVaListType();
335
336  Builtin::Context::GetBuiltinTypeError Error;
337  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
338  switch (Error) {
339  case Builtin::Context::GE_None:
340    // Okay
341    break;
342
343  case Builtin::Context::GE_Missing_FILE:
344    if (ForRedeclaration)
345      Diag(Loc, diag::err_implicit_decl_requires_stdio)
346        << Context.BuiltinInfo.GetName(BID);
347    return 0;
348  }
349
350  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
351    Diag(Loc, diag::ext_implicit_lib_function_decl)
352      << Context.BuiltinInfo.GetName(BID)
353      << R;
354    if (Context.BuiltinInfo.getHeaderName(BID) &&
355        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
356          != diag::MAP_IGNORE)
357      Diag(Loc, diag::note_please_include_header)
358        << Context.BuiltinInfo.getHeaderName(BID)
359        << Context.BuiltinInfo.GetName(BID);
360  }
361
362  FunctionDecl *New = FunctionDecl::Create(Context,
363                                           Context.getTranslationUnitDecl(),
364                                           Loc, II, R,
365                                           FunctionDecl::Extern, false,
366                                           /*hasPrototype=*/true);
367  New->setImplicit();
368
369  // Create Decl objects for each parameter, adding them to the
370  // FunctionDecl.
371  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
372    llvm::SmallVector<ParmVarDecl*, 16> Params;
373    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
374      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
375                                           FT->getArgType(i), VarDecl::None, 0));
376    New->setParams(Context, &Params[0], Params.size());
377  }
378
379  AddKnownFunctionAttributes(New);
380
381  // TUScope is the translation-unit scope to insert this function into.
382  // FIXME: This is hideous. We need to teach PushOnScopeChains to
383  // relate Scopes to DeclContexts, and probably eliminate CurContext
384  // entirely, but we're not there yet.
385  DeclContext *SavedContext = CurContext;
386  CurContext = Context.getTranslationUnitDecl();
387  PushOnScopeChains(New, TUScope);
388  CurContext = SavedContext;
389  return New;
390}
391
392/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
393/// everything from the standard library is defined.
394NamespaceDecl *Sema::GetStdNamespace() {
395  if (!StdNamespace) {
396    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
397    DeclContext *Global = Context.getTranslationUnitDecl();
398    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
399    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
400  }
401  return StdNamespace;
402}
403
404/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
405/// same name and scope as a previous declaration 'Old'.  Figure out
406/// how to resolve this situation, merging decls or emitting
407/// diagnostics as appropriate. Returns true if there was an error,
408/// false otherwise.
409///
410bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
411  bool objc_types = false;
412  // Allow multiple definitions for ObjC built-in typedefs.
413  // FIXME: Verify the underlying types are equivalent!
414  if (getLangOptions().ObjC1) {
415    const IdentifierInfo *TypeID = New->getIdentifier();
416    switch (TypeID->getLength()) {
417    default: break;
418    case 2:
419      if (!TypeID->isStr("id"))
420        break;
421      Context.setObjCIdType(New);
422      objc_types = true;
423      break;
424    case 5:
425      if (!TypeID->isStr("Class"))
426        break;
427      Context.setObjCClassType(New);
428      objc_types = true;
429      return false;
430    case 3:
431      if (!TypeID->isStr("SEL"))
432        break;
433      Context.setObjCSelType(New);
434      objc_types = true;
435      return false;
436    case 8:
437      if (!TypeID->isStr("Protocol"))
438        break;
439      Context.setObjCProtoType(New->getUnderlyingType());
440      objc_types = true;
441      return false;
442    }
443    // Fall through - the typedef name was not a builtin type.
444  }
445  // Verify the old decl was also a type.
446  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
447  if (!Old) {
448    Diag(New->getLocation(), diag::err_redefinition_different_kind)
449      << New->getDeclName();
450    if (!objc_types)
451      Diag(OldD->getLocation(), diag::note_previous_definition);
452    return true;
453  }
454
455  // Determine the "old" type we'll use for checking and diagnostics.
456  QualType OldType;
457  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
458    OldType = OldTypedef->getUnderlyingType();
459  else
460    OldType = Context.getTypeDeclType(Old);
461
462  // If the typedef types are not identical, reject them in all languages and
463  // with any extensions enabled.
464
465  if (OldType != New->getUnderlyingType() &&
466      Context.getCanonicalType(OldType) !=
467      Context.getCanonicalType(New->getUnderlyingType())) {
468    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
469      << New->getUnderlyingType() << OldType;
470    if (!objc_types)
471      Diag(Old->getLocation(), diag::note_previous_definition);
472    return true;
473  }
474  if (objc_types) return false;
475  if (getLangOptions().Microsoft) return false;
476
477  // C++ [dcl.typedef]p2:
478  //   In a given non-class scope, a typedef specifier can be used to
479  //   redefine the name of any type declared in that scope to refer
480  //   to the type to which it already refers.
481  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
482    return false;
483
484  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
485  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
486  // *either* declaration is in a system header. The code below implements
487  // this adhoc compatibility rule. FIXME: The following code will not
488  // work properly when compiling ".i" files (containing preprocessed output).
489  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
490    SourceManager &SrcMgr = Context.getSourceManager();
491    if (SrcMgr.isInSystemHeader(Old->getLocation()))
492      return false;
493    if (SrcMgr.isInSystemHeader(New->getLocation()))
494      return false;
495  }
496
497  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
498  Diag(Old->getLocation(), diag::note_previous_definition);
499  return true;
500}
501
502/// DeclhasAttr - returns true if decl Declaration already has the target
503/// attribute.
504static bool DeclHasAttr(const Decl *decl, const Attr *target) {
505  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
506    if (attr->getKind() == target->getKind())
507      return true;
508
509  return false;
510}
511
512/// MergeAttributes - append attributes from the Old decl to the New one.
513static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
514  Attr *attr = const_cast<Attr*>(Old->getAttrs());
515
516  while (attr) {
517    Attr *tmp = attr;
518    attr = attr->getNext();
519
520    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
521      tmp->setInherited(true);
522      New->addAttr(tmp);
523    } else {
524      tmp->setNext(0);
525      tmp->Destroy(C);
526    }
527  }
528
529  Old->invalidateAttrs();
530}
531
532/// Used in MergeFunctionDecl to keep track of function parameters in
533/// C.
534struct GNUCompatibleParamWarning {
535  ParmVarDecl *OldParm;
536  ParmVarDecl *NewParm;
537  QualType PromotedType;
538};
539
540/// MergeFunctionDecl - We just parsed a function 'New' from
541/// declarator D which has the same name and scope as a previous
542/// declaration 'Old'.  Figure out how to resolve this situation,
543/// merging decls or emitting diagnostics as appropriate.
544///
545/// In C++, New and Old must be declarations that are not
546/// overloaded. Use IsOverload to determine whether New and Old are
547/// overloaded, and to select the Old declaration that New should be
548/// merged with.
549///
550/// Returns true if there was an error, false otherwise.
551bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
552  assert(!isa<OverloadedFunctionDecl>(OldD) &&
553         "Cannot merge with an overloaded function declaration");
554
555  // Verify the old decl was also a function.
556  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
557  if (!Old) {
558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
559      << New->getDeclName();
560    Diag(OldD->getLocation(), diag::note_previous_definition);
561    return true;
562  }
563
564  // Determine whether the previous declaration was a definition,
565  // implicit declaration, or a declaration.
566  diag::kind PrevDiag;
567  if (Old->isThisDeclarationADefinition())
568    PrevDiag = diag::note_previous_definition;
569  else if (Old->isImplicit())
570    PrevDiag = diag::note_previous_implicit_declaration;
571  else
572    PrevDiag = diag::note_previous_declaration;
573
574  QualType OldQType = Context.getCanonicalType(Old->getType());
575  QualType NewQType = Context.getCanonicalType(New->getType());
576
577  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
578      New->getStorageClass() == FunctionDecl::Static &&
579      Old->getStorageClass() != FunctionDecl::Static) {
580    Diag(New->getLocation(), diag::err_static_non_static)
581      << New;
582    Diag(Old->getLocation(), PrevDiag);
583    return true;
584  }
585
586  if (getLangOptions().CPlusPlus) {
587    // (C++98 13.1p2):
588    //   Certain function declarations cannot be overloaded:
589    //     -- Function declarations that differ only in the return type
590    //        cannot be overloaded.
591    QualType OldReturnType
592      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
593    QualType NewReturnType
594      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
595    if (OldReturnType != NewReturnType) {
596      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
597      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
598      return true;
599    }
600
601    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
602    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
603    if (OldMethod && NewMethod &&
604        OldMethod->getLexicalDeclContext() ==
605          NewMethod->getLexicalDeclContext()) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612        return true;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      unsigned NewDiag;
620      if (isa<CXXConstructorDecl>(OldMethod))
621        NewDiag = diag::err_constructor_redeclared;
622      else if (isa<CXXDestructorDecl>(NewMethod))
623        NewDiag = diag::err_destructor_redeclared;
624      else if (isa<CXXConversionDecl>(NewMethod))
625        NewDiag = diag::err_conv_function_redeclared;
626      else
627        NewDiag = diag::err_member_redeclared;
628
629      Diag(New->getLocation(), NewDiag);
630      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
631    }
632
633    // (C++98 8.3.5p3):
634    //   All declarations for a function shall agree exactly in both the
635    //   return type and the parameter-type-list.
636    if (OldQType == NewQType)
637      return MergeCompatibleFunctionDecls(New, Old);
638
639    // Fall through for conflicting redeclarations and redefinitions.
640  }
641
642  // C: Function types need to be compatible, not identical. This handles
643  // duplicate function decls like "void f(int); void f(enum X);" properly.
644  if (!getLangOptions().CPlusPlus &&
645      Context.typesAreCompatible(OldQType, NewQType)) {
646    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
647    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
648    const FunctionProtoType *OldProto = 0;
649    if (isa<FunctionNoProtoType>(NewFuncType) &&
650        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
651      // The old declaration provided a function prototype, but the
652      // new declaration does not. Merge in the prototype.
653      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
654                                                 OldProto->arg_type_end());
655      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
656                                         &ParamTypes[0], ParamTypes.size(),
657                                         OldProto->isVariadic(),
658                                         OldProto->getTypeQuals());
659      New->setType(NewQType);
660      New->setInheritedPrototype();
661
662      // Synthesize a parameter for each argument type.
663      llvm::SmallVector<ParmVarDecl*, 16> Params;
664      for (FunctionProtoType::arg_type_iterator
665             ParamType = OldProto->arg_type_begin(),
666             ParamEnd = OldProto->arg_type_end();
667           ParamType != ParamEnd; ++ParamType) {
668        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
669                                                 SourceLocation(), 0,
670                                                 *ParamType, VarDecl::None,
671                                                 0);
672        Param->setImplicit();
673        Params.push_back(Param);
674      }
675
676      New->setParams(Context, &Params[0], Params.size());
677    }
678
679    return MergeCompatibleFunctionDecls(New, Old);
680  }
681
682  // GNU C permits a K&R definition to follow a prototype declaration
683  // if the declared types of the parameters in the K&R definition
684  // match the types in the prototype declaration, even when the
685  // promoted types of the parameters from the K&R definition differ
686  // from the types in the prototype. GCC then keeps the types from
687  // the prototype.
688  if (!getLangOptions().CPlusPlus &&
689      !getLangOptions().NoExtensions &&
690      Old->hasPrototype() && !New->hasPrototype() &&
691      New->getType()->getAsFunctionProtoType() &&
692      Old->getNumParams() == New->getNumParams()) {
693    llvm::SmallVector<QualType, 16> ArgTypes;
694    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
695    const FunctionProtoType *OldProto
696      = Old->getType()->getAsFunctionProtoType();
697    const FunctionProtoType *NewProto
698      = New->getType()->getAsFunctionProtoType();
699
700    // Determine whether this is the GNU C extension.
701    bool GNUCompatible =
702      Context.typesAreCompatible(OldProto->getResultType(),
703                                 NewProto->getResultType()) &&
704      (OldProto->isVariadic() == NewProto->isVariadic());
705    for (unsigned Idx = 0, End = Old->getNumParams();
706         GNUCompatible && Idx != End; ++Idx) {
707      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
708      ParmVarDecl *NewParm = New->getParamDecl(Idx);
709      if (Context.typesAreCompatible(OldParm->getType(),
710                                     NewProto->getArgType(Idx))) {
711        ArgTypes.push_back(NewParm->getType());
712      } else if (Context.typesAreCompatible(OldParm->getType(),
713                                            NewParm->getType())) {
714        GNUCompatibleParamWarning Warn
715          = { OldParm, NewParm, NewProto->getArgType(Idx) };
716        Warnings.push_back(Warn);
717        ArgTypes.push_back(NewParm->getType());
718      } else
719        GNUCompatible = false;
720    }
721
722    if (GNUCompatible) {
723      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
724        Diag(Warnings[Warn].NewParm->getLocation(),
725             diag::ext_param_promoted_not_compatible_with_prototype)
726          << Warnings[Warn].PromotedType
727          << Warnings[Warn].OldParm->getType();
728        Diag(Warnings[Warn].OldParm->getLocation(),
729             diag::note_previous_declaration);
730      }
731
732      New->setType(Context.getFunctionType(NewProto->getResultType(),
733                                           &ArgTypes[0], ArgTypes.size(),
734                                           NewProto->isVariadic(),
735                                           NewProto->getTypeQuals()));
736      return MergeCompatibleFunctionDecls(New, Old);
737    }
738
739    // Fall through to diagnose conflicting types.
740  }
741
742  // A function that has already been declared has been redeclared or defined
743  // with a different type- show appropriate diagnostic
744  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
745    // The user has declared a builtin function with an incompatible
746    // signature.
747    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
748      // The function the user is redeclaring is a library-defined
749      // function like 'malloc' or 'printf'. Warn about the
750      // redeclaration, then pretend that we don't know about this
751      // library built-in.
752      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
753      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
754        << Old << Old->getType();
755      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
756      Old->setInvalidDecl();
757      return false;
758    }
759
760    PrevDiag = diag::note_previous_builtin_declaration;
761  }
762
763  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
764  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
765  return true;
766}
767
768/// \brief Completes the merge of two function declarations that are
769/// known to be compatible.
770///
771/// This routine handles the merging of attributes and other
772/// properties of function declarations form the old declaration to
773/// the new declaration, once we know that New is in fact a
774/// redeclaration of Old.
775///
776/// \returns false
777bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
778  // Merge the attributes
779  MergeAttributes(New, Old, Context);
780
781  // Merge the storage class.
782  New->setStorageClass(Old->getStorageClass());
783
784  // FIXME: need to implement inline semantics
785
786  // Merge "pure" flag.
787  if (Old->isPure())
788    New->setPure();
789
790  // Merge the "deleted" flag.
791  if (Old->isDeleted())
792    New->setDeleted();
793
794  if (getLangOptions().CPlusPlus)
795    return MergeCXXFunctionDecl(New, Old);
796
797  return false;
798}
799
800/// MergeVarDecl - We just parsed a variable 'New' which has the same name
801/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
802/// situation, merging decls or emitting diagnostics as appropriate.
803///
804/// Tentative definition rules (C99 6.9.2p2) are checked by
805/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
806/// definitions here, since the initializer hasn't been attached.
807///
808bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
809  // Verify the old decl was also a variable.
810  VarDecl *Old = dyn_cast<VarDecl>(OldD);
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814    Diag(OldD->getLocation(), diag::note_previous_definition);
815    return true;
816  }
817
818  MergeAttributes(New, Old, Context);
819
820  // Merge the types
821  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
822  if (MergedT.isNull()) {
823    Diag(New->getLocation(), diag::err_redefinition_different_type)
824      << New->getDeclName();
825    Diag(Old->getLocation(), diag::note_previous_definition);
826    return true;
827  }
828  New->setType(MergedT);
829
830  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
831  if (New->getStorageClass() == VarDecl::Static &&
832      (Old->getStorageClass() == VarDecl::None ||
833       Old->getStorageClass() == VarDecl::Extern)) {
834    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
835    Diag(Old->getLocation(), diag::note_previous_definition);
836    return true;
837  }
838  // C99 6.2.2p4:
839  //   For an identifier declared with the storage-class specifier
840  //   extern in a scope in which a prior declaration of that
841  //   identifier is visible,23) if the prior declaration specifies
842  //   internal or external linkage, the linkage of the identifier at
843  //   the later declaration is the same as the linkage specified at
844  //   the prior declaration. If no prior declaration is visible, or
845  //   if the prior declaration specifies no linkage, then the
846  //   identifier has external linkage.
847  if (New->hasExternalStorage() && Old->hasLinkage())
848    /* Okay */;
849  else if (New->getStorageClass() != VarDecl::Static &&
850           Old->getStorageClass() == VarDecl::Static) {
851    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
852    Diag(Old->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
856  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
857      // Don't complain about out-of-line definitions of static members.
858      !(Old->getLexicalDeclContext()->isRecord() &&
859        !New->getLexicalDeclContext()->isRecord())) {
860    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
861    Diag(Old->getLocation(), diag::note_previous_definition);
862    return true;
863  }
864
865  // Keep a chain of previous declarations.
866  New->setPreviousDeclaration(Old);
867
868  return false;
869}
870
871/// CheckParmsForFunctionDef - Check that the parameters of the given
872/// function are appropriate for the definition of a function. This
873/// takes care of any checks that cannot be performed on the
874/// declaration itself, e.g., that the types of each of the function
875/// parameters are complete.
876bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
877  bool HasInvalidParm = false;
878  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
879    ParmVarDecl *Param = FD->getParamDecl(p);
880
881    // C99 6.7.5.3p4: the parameters in a parameter type list in a
882    // function declarator that is part of a function definition of
883    // that function shall not have incomplete type.
884    if (!Param->isInvalidDecl() &&
885        RequireCompleteType(Param->getLocation(), Param->getType(),
886                               diag::err_typecheck_decl_incomplete_type)) {
887      Param->setInvalidDecl();
888      HasInvalidParm = true;
889    }
890
891    // C99 6.9.1p5: If the declarator includes a parameter type list, the
892    // declaration of each parameter shall include an identifier.
893    if (Param->getIdentifier() == 0 &&
894        !Param->isImplicit() &&
895        !getLangOptions().CPlusPlus)
896      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
897  }
898
899  return HasInvalidParm;
900}
901
902/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
903/// no declarator (e.g. "struct foo;") is parsed.
904Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
905  TagDecl *Tag = 0;
906  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
907      DS.getTypeSpecType() == DeclSpec::TST_struct ||
908      DS.getTypeSpecType() == DeclSpec::TST_union ||
909      DS.getTypeSpecType() == DeclSpec::TST_enum)
910    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
911
912  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
913    if (!Record->getDeclName() && Record->isDefinition() &&
914        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
915      if (getLangOptions().CPlusPlus ||
916          Record->getDeclContext()->isRecord())
917        return BuildAnonymousStructOrUnion(S, DS, Record);
918
919      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
920        << DS.getSourceRange();
921    }
922
923    // Microsoft allows unnamed struct/union fields. Don't complain
924    // about them.
925    // FIXME: Should we support Microsoft's extensions in this area?
926    if (Record->getDeclName() && getLangOptions().Microsoft)
927      return Tag;
928  }
929
930  if (!DS.isMissingDeclaratorOk() &&
931      DS.getTypeSpecType() != DeclSpec::TST_error) {
932    // Warn about typedefs of enums without names, since this is an
933    // extension in both Microsoft an GNU.
934    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
935        Tag && isa<EnumDecl>(Tag)) {
936      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
937        << DS.getSourceRange();
938      return Tag;
939    }
940
941    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
942      << DS.getSourceRange();
943    return 0;
944  }
945
946  return Tag;
947}
948
949/// InjectAnonymousStructOrUnionMembers - Inject the members of the
950/// anonymous struct or union AnonRecord into the owning context Owner
951/// and scope S. This routine will be invoked just after we realize
952/// that an unnamed union or struct is actually an anonymous union or
953/// struct, e.g.,
954///
955/// @code
956/// union {
957///   int i;
958///   float f;
959/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
960///    // f into the surrounding scope.x
961/// @endcode
962///
963/// This routine is recursive, injecting the names of nested anonymous
964/// structs/unions into the owning context and scope as well.
965bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
966                                               RecordDecl *AnonRecord) {
967  bool Invalid = false;
968  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
969                               FEnd = AnonRecord->field_end();
970       F != FEnd; ++F) {
971    if ((*F)->getDeclName()) {
972      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
973                                                LookupOrdinaryName, true);
974      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
975        // C++ [class.union]p2:
976        //   The names of the members of an anonymous union shall be
977        //   distinct from the names of any other entity in the
978        //   scope in which the anonymous union is declared.
979        unsigned diagKind
980          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
981                                 : diag::err_anonymous_struct_member_redecl;
982        Diag((*F)->getLocation(), diagKind)
983          << (*F)->getDeclName();
984        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
985        Invalid = true;
986      } else {
987        // C++ [class.union]p2:
988        //   For the purpose of name lookup, after the anonymous union
989        //   definition, the members of the anonymous union are
990        //   considered to have been defined in the scope in which the
991        //   anonymous union is declared.
992        Owner->makeDeclVisibleInContext(*F);
993        S->AddDecl(*F);
994        IdResolver.AddDecl(*F);
995      }
996    } else if (const RecordType *InnerRecordType
997                 = (*F)->getType()->getAsRecordType()) {
998      RecordDecl *InnerRecord = InnerRecordType->getDecl();
999      if (InnerRecord->isAnonymousStructOrUnion())
1000        Invalid = Invalid ||
1001          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1002    }
1003  }
1004
1005  return Invalid;
1006}
1007
1008/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1009/// anonymous structure or union. Anonymous unions are a C++ feature
1010/// (C++ [class.union]) and a GNU C extension; anonymous structures
1011/// are a GNU C and GNU C++ extension.
1012Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1013                                                RecordDecl *Record) {
1014  DeclContext *Owner = Record->getDeclContext();
1015
1016  // Diagnose whether this anonymous struct/union is an extension.
1017  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1018    Diag(Record->getLocation(), diag::ext_anonymous_union);
1019  else if (!Record->isUnion())
1020    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1021
1022  // C and C++ require different kinds of checks for anonymous
1023  // structs/unions.
1024  bool Invalid = false;
1025  if (getLangOptions().CPlusPlus) {
1026    const char* PrevSpec = 0;
1027    // C++ [class.union]p3:
1028    //   Anonymous unions declared in a named namespace or in the
1029    //   global namespace shall be declared static.
1030    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1031        (isa<TranslationUnitDecl>(Owner) ||
1032         (isa<NamespaceDecl>(Owner) &&
1033          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1034      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1035      Invalid = true;
1036
1037      // Recover by adding 'static'.
1038      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1039    }
1040    // C++ [class.union]p3:
1041    //   A storage class is not allowed in a declaration of an
1042    //   anonymous union in a class scope.
1043    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1044             isa<RecordDecl>(Owner)) {
1045      Diag(DS.getStorageClassSpecLoc(),
1046           diag::err_anonymous_union_with_storage_spec);
1047      Invalid = true;
1048
1049      // Recover by removing the storage specifier.
1050      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1051                             PrevSpec);
1052    }
1053
1054    // C++ [class.union]p2:
1055    //   The member-specification of an anonymous union shall only
1056    //   define non-static data members. [Note: nested types and
1057    //   functions cannot be declared within an anonymous union. ]
1058    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1059                                 MemEnd = Record->decls_end();
1060         Mem != MemEnd; ++Mem) {
1061      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1062        // C++ [class.union]p3:
1063        //   An anonymous union shall not have private or protected
1064        //   members (clause 11).
1065        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1066          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1067            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1068          Invalid = true;
1069        }
1070      } else if ((*Mem)->isImplicit()) {
1071        // Any implicit members are fine.
1072      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1073        // This is a type that showed up in an
1074        // elaborated-type-specifier inside the anonymous struct or
1075        // union, but which actually declares a type outside of the
1076        // anonymous struct or union. It's okay.
1077      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1078        if (!MemRecord->isAnonymousStructOrUnion() &&
1079            MemRecord->getDeclName()) {
1080          // This is a nested type declaration.
1081          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1082            << (int)Record->isUnion();
1083          Invalid = true;
1084        }
1085      } else {
1086        // We have something that isn't a non-static data
1087        // member. Complain about it.
1088        unsigned DK = diag::err_anonymous_record_bad_member;
1089        if (isa<TypeDecl>(*Mem))
1090          DK = diag::err_anonymous_record_with_type;
1091        else if (isa<FunctionDecl>(*Mem))
1092          DK = diag::err_anonymous_record_with_function;
1093        else if (isa<VarDecl>(*Mem))
1094          DK = diag::err_anonymous_record_with_static;
1095        Diag((*Mem)->getLocation(), DK)
1096            << (int)Record->isUnion();
1097          Invalid = true;
1098      }
1099    }
1100  }
1101
1102  if (!Record->isUnion() && !Owner->isRecord()) {
1103    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1104      << (int)getLangOptions().CPlusPlus;
1105    Invalid = true;
1106  }
1107
1108  // Create a declaration for this anonymous struct/union.
1109  NamedDecl *Anon = 0;
1110  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1111    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1112                             /*IdentifierInfo=*/0,
1113                             Context.getTypeDeclType(Record),
1114                             /*BitWidth=*/0, /*Mutable=*/false);
1115    Anon->setAccess(AS_public);
1116    if (getLangOptions().CPlusPlus)
1117      FieldCollector->Add(cast<FieldDecl>(Anon));
1118  } else {
1119    VarDecl::StorageClass SC;
1120    switch (DS.getStorageClassSpec()) {
1121    default: assert(0 && "Unknown storage class!");
1122    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1123    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1124    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1125    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1126    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1127    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1128    case DeclSpec::SCS_mutable:
1129      // mutable can only appear on non-static class members, so it's always
1130      // an error here
1131      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1132      Invalid = true;
1133      SC = VarDecl::None;
1134      break;
1135    }
1136
1137    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1138                           /*IdentifierInfo=*/0,
1139                           Context.getTypeDeclType(Record),
1140                           SC, DS.getSourceRange().getBegin());
1141  }
1142  Anon->setImplicit();
1143
1144  // Add the anonymous struct/union object to the current
1145  // context. We'll be referencing this object when we refer to one of
1146  // its members.
1147  Owner->addDecl(Anon);
1148
1149  // Inject the members of the anonymous struct/union into the owning
1150  // context and into the identifier resolver chain for name lookup
1151  // purposes.
1152  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1153    Invalid = true;
1154
1155  // Mark this as an anonymous struct/union type. Note that we do not
1156  // do this until after we have already checked and injected the
1157  // members of this anonymous struct/union type, because otherwise
1158  // the members could be injected twice: once by DeclContext when it
1159  // builds its lookup table, and once by
1160  // InjectAnonymousStructOrUnionMembers.
1161  Record->setAnonymousStructOrUnion(true);
1162
1163  if (Invalid)
1164    Anon->setInvalidDecl();
1165
1166  return Anon;
1167}
1168
1169
1170/// GetNameForDeclarator - Determine the full declaration name for the
1171/// given Declarator.
1172DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1173  switch (D.getKind()) {
1174  case Declarator::DK_Abstract:
1175    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1176    return DeclarationName();
1177
1178  case Declarator::DK_Normal:
1179    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1180    return DeclarationName(D.getIdentifier());
1181
1182  case Declarator::DK_Constructor: {
1183    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1184    Ty = Context.getCanonicalType(Ty);
1185    return Context.DeclarationNames.getCXXConstructorName(Ty);
1186  }
1187
1188  case Declarator::DK_Destructor: {
1189    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1190    Ty = Context.getCanonicalType(Ty);
1191    return Context.DeclarationNames.getCXXDestructorName(Ty);
1192  }
1193
1194  case Declarator::DK_Conversion: {
1195    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1196    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1197    Ty = Context.getCanonicalType(Ty);
1198    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1199  }
1200
1201  case Declarator::DK_Operator:
1202    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1203    return Context.DeclarationNames.getCXXOperatorName(
1204                                                D.getOverloadedOperator());
1205  }
1206
1207  assert(false && "Unknown name kind");
1208  return DeclarationName();
1209}
1210
1211/// isNearlyMatchingFunction - Determine whether the C++ functions
1212/// Declaration and Definition are "nearly" matching. This heuristic
1213/// is used to improve diagnostics in the case where an out-of-line
1214/// function definition doesn't match any declaration within
1215/// the class or namespace.
1216static bool isNearlyMatchingFunction(ASTContext &Context,
1217                                     FunctionDecl *Declaration,
1218                                     FunctionDecl *Definition) {
1219  if (Declaration->param_size() != Definition->param_size())
1220    return false;
1221  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1222    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1223    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1224
1225    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1226    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1227    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1228      return false;
1229  }
1230
1231  return true;
1232}
1233
1234Sema::DeclTy *
1235Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1236                      bool IsFunctionDefinition) {
1237  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1238  DeclarationName Name = GetNameForDeclarator(D);
1239
1240  // All of these full declarators require an identifier.  If it doesn't have
1241  // one, the ParsedFreeStandingDeclSpec action should be used.
1242  if (!Name) {
1243    if (!D.getInvalidType())  // Reject this if we think it is valid.
1244      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1245           diag::err_declarator_need_ident)
1246        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1247    return 0;
1248  }
1249
1250  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1251  // we find one that is.
1252  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1253         (S->getFlags() & Scope::TemplateParamScope) != 0)
1254    S = S->getParent();
1255
1256  DeclContext *DC;
1257  NamedDecl *PrevDecl;
1258  NamedDecl *New;
1259  bool InvalidDecl = false;
1260
1261  QualType R = GetTypeForDeclarator(D, S);
1262  if (R.isNull()) {
1263    InvalidDecl = true;
1264    R = Context.IntTy;
1265  }
1266
1267  // See if this is a redefinition of a variable in the same scope.
1268  if (D.getCXXScopeSpec().isInvalid()) {
1269    DC = CurContext;
1270    PrevDecl = 0;
1271    InvalidDecl = true;
1272  } else if (!D.getCXXScopeSpec().isSet()) {
1273    LookupNameKind NameKind = LookupOrdinaryName;
1274
1275    // If the declaration we're planning to build will be a function
1276    // or object with linkage, then look for another declaration with
1277    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1278    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1279      /* Do nothing*/;
1280    else if (R->isFunctionType()) {
1281      if (CurContext->isFunctionOrMethod())
1282        NameKind = LookupRedeclarationWithLinkage;
1283    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1284      NameKind = LookupRedeclarationWithLinkage;
1285
1286    DC = CurContext;
1287    PrevDecl = LookupName(S, Name, NameKind, true,
1288                          D.getDeclSpec().getStorageClassSpec() !=
1289                            DeclSpec::SCS_static,
1290                          D.getIdentifierLoc());
1291  } else { // Something like "int foo::x;"
1292    DC = computeDeclContext(D.getCXXScopeSpec());
1293    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1294    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1295
1296    // C++ 7.3.1.2p2:
1297    // Members (including explicit specializations of templates) of a named
1298    // namespace can also be defined outside that namespace by explicit
1299    // qualification of the name being defined, provided that the entity being
1300    // defined was already declared in the namespace and the definition appears
1301    // after the point of declaration in a namespace that encloses the
1302    // declarations namespace.
1303    //
1304    // Note that we only check the context at this point. We don't yet
1305    // have enough information to make sure that PrevDecl is actually
1306    // the declaration we want to match. For example, given:
1307    //
1308    //   class X {
1309    //     void f();
1310    //     void f(float);
1311    //   };
1312    //
1313    //   void X::f(int) { } // ill-formed
1314    //
1315    // In this case, PrevDecl will point to the overload set
1316    // containing the two f's declared in X, but neither of them
1317    // matches.
1318
1319    // First check whether we named the global scope.
1320    if (isa<TranslationUnitDecl>(DC)) {
1321      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1322        << Name << D.getCXXScopeSpec().getRange();
1323    } else if (!CurContext->Encloses(DC)) {
1324      // The qualifying scope doesn't enclose the original declaration.
1325      // Emit diagnostic based on current scope.
1326      SourceLocation L = D.getIdentifierLoc();
1327      SourceRange R = D.getCXXScopeSpec().getRange();
1328      if (isa<FunctionDecl>(CurContext))
1329        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1330      else
1331        Diag(L, diag::err_invalid_declarator_scope)
1332          << Name << cast<NamedDecl>(DC) << R;
1333      InvalidDecl = true;
1334    }
1335  }
1336
1337  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1338    // Maybe we will complain about the shadowed template parameter.
1339    InvalidDecl = InvalidDecl
1340      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1341    // Just pretend that we didn't see the previous declaration.
1342    PrevDecl = 0;
1343  }
1344
1345  // In C++, the previous declaration we find might be a tag type
1346  // (class or enum). In this case, the new declaration will hide the
1347  // tag type. Note that this does does not apply if we're declaring a
1348  // typedef (C++ [dcl.typedef]p4).
1349  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1350      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1351    PrevDecl = 0;
1352
1353  bool Redeclaration = false;
1354  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1355    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1356                                 InvalidDecl, Redeclaration);
1357  } else if (R->isFunctionType()) {
1358    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1359                                  IsFunctionDefinition, InvalidDecl,
1360                                  Redeclaration);
1361  } else {
1362    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1363                                  InvalidDecl, Redeclaration);
1364  }
1365
1366  if (New == 0)
1367    return 0;
1368
1369  // If this has an identifier and is not an invalid redeclaration,
1370  // add it to the scope stack.
1371  if (Name && !(Redeclaration && InvalidDecl))
1372    PushOnScopeChains(New, S);
1373  // If any semantic error occurred, mark the decl as invalid.
1374  if (D.getInvalidType() || InvalidDecl)
1375    New->setInvalidDecl();
1376
1377  return New;
1378}
1379
1380/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1381/// types into constant array types in certain situations which would otherwise
1382/// be errors (for GCC compatibility).
1383static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1384                                                    ASTContext &Context,
1385                                                    bool &SizeIsNegative) {
1386  // This method tries to turn a variable array into a constant
1387  // array even when the size isn't an ICE.  This is necessary
1388  // for compatibility with code that depends on gcc's buggy
1389  // constant expression folding, like struct {char x[(int)(char*)2];}
1390  SizeIsNegative = false;
1391
1392  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1393    QualType Pointee = PTy->getPointeeType();
1394    QualType FixedType =
1395        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1396    if (FixedType.isNull()) return FixedType;
1397    FixedType = Context.getPointerType(FixedType);
1398    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1399    return FixedType;
1400  }
1401
1402  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1403  if (!VLATy)
1404    return QualType();
1405  // FIXME: We should probably handle this case
1406  if (VLATy->getElementType()->isVariablyModifiedType())
1407    return QualType();
1408
1409  Expr::EvalResult EvalResult;
1410  if (!VLATy->getSizeExpr() ||
1411      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1412      !EvalResult.Val.isInt())
1413    return QualType();
1414
1415  llvm::APSInt &Res = EvalResult.Val.getInt();
1416  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1417    return Context.getConstantArrayType(VLATy->getElementType(),
1418                                        Res, ArrayType::Normal, 0);
1419
1420  SizeIsNegative = true;
1421  return QualType();
1422}
1423
1424/// \brief Register the given locally-scoped external C declaration so
1425/// that it can be found later for redeclarations
1426void
1427Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1428                                       Scope *S) {
1429  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1430         "Decl is not a locally-scoped decl!");
1431  // Note that we have a locally-scoped external with this name.
1432  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1433
1434  if (!PrevDecl)
1435    return;
1436
1437  // If there was a previous declaration of this variable, it may be
1438  // in our identifier chain. Update the identifier chain with the new
1439  // declaration.
1440  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1441    // The previous declaration was found on the identifer resolver
1442    // chain, so remove it from its scope.
1443    while (S && !S->isDeclScope(PrevDecl))
1444      S = S->getParent();
1445
1446    if (S)
1447      S->RemoveDecl(PrevDecl);
1448  }
1449}
1450
1451NamedDecl*
1452Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1453                             QualType R, Decl* LastDeclarator,
1454                             Decl* PrevDecl, bool& InvalidDecl,
1455                             bool &Redeclaration) {
1456  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1457  if (D.getCXXScopeSpec().isSet()) {
1458    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1459      << D.getCXXScopeSpec().getRange();
1460    InvalidDecl = true;
1461    // Pretend we didn't see the scope specifier.
1462    DC = 0;
1463  }
1464
1465  if (getLangOptions().CPlusPlus) {
1466    // Check that there are no default arguments (C++ only).
1467    CheckExtraCXXDefaultArguments(D);
1468
1469    if (D.getDeclSpec().isVirtualSpecified())
1470      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1471           diag::err_virtual_non_function);
1472  }
1473
1474  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1475  if (!NewTD) return 0;
1476
1477  // Handle attributes prior to checking for duplicates in MergeVarDecl
1478  ProcessDeclAttributes(NewTD, D);
1479  // Merge the decl with the existing one if appropriate. If the decl is
1480  // in an outer scope, it isn't the same thing.
1481  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1482    Redeclaration = true;
1483    if (MergeTypeDefDecl(NewTD, PrevDecl))
1484      InvalidDecl = true;
1485  }
1486
1487  if (S->getFnParent() == 0) {
1488    QualType T = NewTD->getUnderlyingType();
1489    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1490    // then it shall have block scope.
1491    if (T->isVariablyModifiedType()) {
1492      bool SizeIsNegative;
1493      QualType FixedTy =
1494          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1495      if (!FixedTy.isNull()) {
1496        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1497        NewTD->setUnderlyingType(FixedTy);
1498      } else {
1499        if (SizeIsNegative)
1500          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1501        else if (T->isVariableArrayType())
1502          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1503        else
1504          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1505        InvalidDecl = true;
1506      }
1507    }
1508  }
1509  return NewTD;
1510}
1511
1512/// \brief Determines whether the given declaration is an out-of-scope
1513/// previous declaration.
1514///
1515/// This routine should be invoked when name lookup has found a
1516/// previous declaration (PrevDecl) that is not in the scope where a
1517/// new declaration by the same name is being introduced. If the new
1518/// declaration occurs in a local scope, previous declarations with
1519/// linkage may still be considered previous declarations (C99
1520/// 6.2.2p4-5, C++ [basic.link]p6).
1521///
1522/// \param PrevDecl the previous declaration found by name
1523/// lookup
1524///
1525/// \param DC the context in which the new declaration is being
1526/// declared.
1527///
1528/// \returns true if PrevDecl is an out-of-scope previous declaration
1529/// for a new delcaration with the same name.
1530static bool
1531isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1532                                ASTContext &Context) {
1533  if (!PrevDecl)
1534    return 0;
1535
1536  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1537  // case we need to check each of the overloaded functions.
1538  if (!PrevDecl->hasLinkage())
1539    return false;
1540
1541  if (Context.getLangOptions().CPlusPlus) {
1542    // C++ [basic.link]p6:
1543    //   If there is a visible declaration of an entity with linkage
1544    //   having the same name and type, ignoring entities declared
1545    //   outside the innermost enclosing namespace scope, the block
1546    //   scope declaration declares that same entity and receives the
1547    //   linkage of the previous declaration.
1548    DeclContext *OuterContext = DC->getLookupContext();
1549    if (!OuterContext->isFunctionOrMethod())
1550      // This rule only applies to block-scope declarations.
1551      return false;
1552    else {
1553      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1554      if (PrevOuterContext->isRecord())
1555        // We found a member function: ignore it.
1556        return false;
1557      else {
1558        // Find the innermost enclosing namespace for the new and
1559        // previous declarations.
1560        while (!OuterContext->isFileContext())
1561          OuterContext = OuterContext->getParent();
1562        while (!PrevOuterContext->isFileContext())
1563          PrevOuterContext = PrevOuterContext->getParent();
1564
1565        // The previous declaration is in a different namespace, so it
1566        // isn't the same function.
1567        if (OuterContext->getPrimaryContext() !=
1568            PrevOuterContext->getPrimaryContext())
1569          return false;
1570      }
1571    }
1572  }
1573
1574  return true;
1575}
1576
1577NamedDecl*
1578Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1579                              QualType R, Decl* LastDeclarator,
1580                              NamedDecl* PrevDecl, bool& InvalidDecl,
1581                              bool &Redeclaration) {
1582  DeclarationName Name = GetNameForDeclarator(D);
1583
1584  // Check that there are no default arguments (C++ only).
1585  if (getLangOptions().CPlusPlus)
1586    CheckExtraCXXDefaultArguments(D);
1587
1588  if (R.getTypePtr()->isObjCInterfaceType()) {
1589    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1590    InvalidDecl = true;
1591  }
1592
1593  VarDecl *NewVD;
1594  VarDecl::StorageClass SC;
1595  switch (D.getDeclSpec().getStorageClassSpec()) {
1596  default: assert(0 && "Unknown storage class!");
1597  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1598  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1599  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1600  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1601  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1602  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1603  case DeclSpec::SCS_mutable:
1604    // mutable can only appear on non-static class members, so it's always
1605    // an error here
1606    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1607    InvalidDecl = true;
1608    SC = VarDecl::None;
1609    break;
1610  }
1611
1612  IdentifierInfo *II = Name.getAsIdentifierInfo();
1613  if (!II) {
1614    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1615      << Name.getAsString();
1616    return 0;
1617  }
1618
1619  if (D.getDeclSpec().isVirtualSpecified())
1620    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1621         diag::err_virtual_non_function);
1622
1623  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1624  if (!DC->isRecord() && S->getFnParent() == 0) {
1625    // C99 6.9p2: The storage-class specifiers auto and register shall not
1626    // appear in the declaration specifiers in an external declaration.
1627    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1628      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1629      InvalidDecl = true;
1630    }
1631  }
1632  if (DC->isRecord() && !CurContext->isRecord()) {
1633    // This is an out-of-line definition of a static data member.
1634    if (SC == VarDecl::Static) {
1635      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1636           diag::err_static_out_of_line)
1637        << CodeModificationHint::CreateRemoval(
1638                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1639    } else if (SC == VarDecl::None)
1640      SC = VarDecl::Static;
1641  }
1642
1643  // The variable can not have an abstract class type.
1644  if (RequireNonAbstractType(D.getIdentifierLoc(), R,
1645                             diag::err_abstract_type_in_decl,
1646                             2 /* variable type */))
1647    InvalidDecl = true;
1648
1649  // The variable can not
1650  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1651                          II, R, SC,
1652                          // FIXME: Move to DeclGroup...
1653                          D.getDeclSpec().getSourceRange().getBegin());
1654  NewVD->setThreadSpecified(ThreadSpecified);
1655  NewVD->setNextDeclarator(LastDeclarator);
1656
1657  // Set the lexical context. If the declarator has a C++ scope specifier, the
1658  // lexical context will be different from the semantic context.
1659  NewVD->setLexicalDeclContext(CurContext);
1660
1661  // Handle attributes prior to checking for duplicates in MergeVarDecl
1662  ProcessDeclAttributes(NewVD, D);
1663
1664  // Handle GNU asm-label extension (encoded as an attribute).
1665  if (Expr *E = (Expr*) D.getAsmLabel()) {
1666    // The parser guarantees this is a string.
1667    StringLiteral *SE = cast<StringLiteral>(E);
1668    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1669                                                        SE->getByteLength())));
1670  }
1671
1672  // Emit an error if an address space was applied to decl with local storage.
1673  // This includes arrays of objects with address space qualifiers, but not
1674  // automatic variables that point to other address spaces.
1675  // ISO/IEC TR 18037 S5.1.2
1676  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1677    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1678    InvalidDecl = true;
1679  }
1680
1681  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1682    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1683  }
1684
1685  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1686  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1687  if (isIllegalVLA || isIllegalVM) {
1688    bool SizeIsNegative;
1689    QualType FixedTy =
1690        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1691    if (!FixedTy.isNull()) {
1692      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1693      NewVD->setType(FixedTy);
1694    } else if (R->isVariableArrayType()) {
1695      NewVD->setInvalidDecl();
1696
1697      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1698      // FIXME: This won't give the correct result for
1699      // int a[10][n];
1700      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1701
1702      if (NewVD->isFileVarDecl())
1703        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1704          << SizeRange;
1705      else if (NewVD->getStorageClass() == VarDecl::Static)
1706        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1707          << SizeRange;
1708      else
1709        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1710            << SizeRange;
1711    } else {
1712      InvalidDecl = true;
1713
1714      if (NewVD->isFileVarDecl())
1715        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1716      else
1717        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1718    }
1719  }
1720
1721  // If name lookup finds a previous declaration that is not in the
1722  // same scope as the new declaration, this may still be an
1723  // acceptable redeclaration.
1724  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1725      !(NewVD->hasLinkage() &&
1726        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1727    PrevDecl = 0;
1728
1729  if (!PrevDecl && NewVD->isExternC(Context)) {
1730    // Since we did not find anything by this name and we're declaring
1731    // an extern "C" variable, look for a non-visible extern "C"
1732    // declaration with the same name.
1733    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1734      = LocallyScopedExternalDecls.find(Name);
1735    if (Pos != LocallyScopedExternalDecls.end())
1736      PrevDecl = Pos->second;
1737  }
1738
1739  // Merge the decl with the existing one if appropriate.
1740  if (PrevDecl) {
1741    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1742      // The user tried to define a non-static data member
1743      // out-of-line (C++ [dcl.meaning]p1).
1744      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1745        << D.getCXXScopeSpec().getRange();
1746      NewVD->Destroy(Context);
1747      return 0;
1748    }
1749
1750    Redeclaration = true;
1751    if (MergeVarDecl(NewVD, PrevDecl))
1752      InvalidDecl = true;
1753  } else if (D.getCXXScopeSpec().isSet()) {
1754    // No previous declaration in the qualifying scope.
1755    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1756      << Name << D.getCXXScopeSpec().getRange();
1757    InvalidDecl = true;
1758  }
1759
1760  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1761    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1762      << R;
1763    InvalidDecl = true;
1764  }
1765
1766
1767  // If this is a locally-scoped extern C variable, update the map of
1768  // such variables.
1769  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1770      !InvalidDecl)
1771    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1772
1773  return NewVD;
1774}
1775
1776NamedDecl*
1777Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1778                              QualType R, Decl *LastDeclarator,
1779                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1780                              bool& InvalidDecl, bool &Redeclaration) {
1781  assert(R.getTypePtr()->isFunctionType());
1782
1783  DeclarationName Name = GetNameForDeclarator(D);
1784  FunctionDecl::StorageClass SC = FunctionDecl::None;
1785  switch (D.getDeclSpec().getStorageClassSpec()) {
1786  default: assert(0 && "Unknown storage class!");
1787  case DeclSpec::SCS_auto:
1788  case DeclSpec::SCS_register:
1789  case DeclSpec::SCS_mutable:
1790    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1791         diag::err_typecheck_sclass_func);
1792    InvalidDecl = true;
1793    break;
1794  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1795  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1796  case DeclSpec::SCS_static: {
1797    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1798      // C99 6.7.1p5:
1799      //   The declaration of an identifier for a function that has
1800      //   block scope shall have no explicit storage-class specifier
1801      //   other than extern
1802      // See also (C++ [dcl.stc]p4).
1803      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1804           diag::err_static_block_func);
1805      SC = FunctionDecl::None;
1806    } else
1807      SC = FunctionDecl::Static;
1808    break;
1809  }
1810  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1811  }
1812
1813  bool isInline = D.getDeclSpec().isInlineSpecified();
1814  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1815  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1816
1817  // Check that the return type is not an abstract class type.
1818  if (RequireNonAbstractType(D.getIdentifierLoc(),
1819                             R->getAsFunctionType()->getResultType(),
1820                             diag::err_abstract_type_in_decl,
1821                             0 /* return type */))
1822    InvalidDecl = true;
1823
1824  bool isVirtualOkay = false;
1825  FunctionDecl *NewFD;
1826  if (D.getKind() == Declarator::DK_Constructor) {
1827    // This is a C++ constructor declaration.
1828    assert(DC->isRecord() &&
1829           "Constructors can only be declared in a member context");
1830
1831    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1832
1833    // Create the new declaration
1834    NewFD = CXXConstructorDecl::Create(Context,
1835                                       cast<CXXRecordDecl>(DC),
1836                                       D.getIdentifierLoc(), Name, R,
1837                                       isExplicit, isInline,
1838                                       /*isImplicitlyDeclared=*/false);
1839
1840    if (InvalidDecl)
1841      NewFD->setInvalidDecl();
1842  } else if (D.getKind() == Declarator::DK_Destructor) {
1843    // This is a C++ destructor declaration.
1844    if (DC->isRecord()) {
1845      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1846
1847      NewFD = CXXDestructorDecl::Create(Context,
1848                                        cast<CXXRecordDecl>(DC),
1849                                        D.getIdentifierLoc(), Name, R,
1850                                        isInline,
1851                                        /*isImplicitlyDeclared=*/false);
1852
1853      if (InvalidDecl)
1854        NewFD->setInvalidDecl();
1855
1856      isVirtualOkay = true;
1857    } else {
1858      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1859
1860      // Create a FunctionDecl to satisfy the function definition parsing
1861      // code path.
1862      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1863                                   Name, R, SC, isInline,
1864                                   /*hasPrototype=*/true,
1865                                   // FIXME: Move to DeclGroup...
1866                                   D.getDeclSpec().getSourceRange().getBegin());
1867      InvalidDecl = true;
1868      NewFD->setInvalidDecl();
1869    }
1870  } else if (D.getKind() == Declarator::DK_Conversion) {
1871    if (!DC->isRecord()) {
1872      Diag(D.getIdentifierLoc(),
1873           diag::err_conv_function_not_member);
1874      return 0;
1875    } else {
1876      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1877
1878      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1879                                        D.getIdentifierLoc(), Name, R,
1880                                        isInline, isExplicit);
1881
1882      if (InvalidDecl)
1883        NewFD->setInvalidDecl();
1884
1885      isVirtualOkay = true;
1886    }
1887  } else if (DC->isRecord()) {
1888    // This is a C++ method declaration.
1889    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1890                                  D.getIdentifierLoc(), Name, R,
1891                                  (SC == FunctionDecl::Static), isInline);
1892
1893    isVirtualOkay = (SC != FunctionDecl::Static);
1894  } else {
1895    // Determine whether the function was written with a
1896    // prototype. This true when:
1897    //   - we're in C++ (where every function has a prototype),
1898    //   - there is a prototype in the declarator, or
1899    //   - the type R of the function is some kind of typedef or other reference
1900    //     to a type name (which eventually refers to a function type).
1901    bool HasPrototype =
1902       getLangOptions().CPlusPlus ||
1903       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1904       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1905
1906    NewFD = FunctionDecl::Create(Context, DC,
1907                                 D.getIdentifierLoc(),
1908                                 Name, R, SC, isInline, HasPrototype,
1909                                 // FIXME: Move to DeclGroup...
1910                                 D.getDeclSpec().getSourceRange().getBegin());
1911  }
1912  NewFD->setNextDeclarator(LastDeclarator);
1913
1914  // Set the lexical context. If the declarator has a C++
1915  // scope specifier, the lexical context will be different
1916  // from the semantic context.
1917  NewFD->setLexicalDeclContext(CurContext);
1918
1919  // C++ [dcl.fct.spec]p5:
1920  //   The virtual specifier shall only be used in declarations of
1921  //   nonstatic class member functions that appear within a
1922  //   member-specification of a class declaration; see 10.3.
1923  //
1924  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1925  // function is also virtual if it overrides an already virtual
1926  // function. This is important to do here because it's part of the
1927  // declaration.
1928  if (isVirtual && !InvalidDecl) {
1929    if (!isVirtualOkay) {
1930       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1931           diag::err_virtual_non_function);
1932    } else if (!CurContext->isRecord()) {
1933      // 'virtual' was specified outside of the class.
1934      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1935        << CodeModificationHint::CreateRemoval(
1936                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1937    } else {
1938      // Okay: Add virtual to the method.
1939      cast<CXXMethodDecl>(NewFD)->setVirtual();
1940      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1941      CurClass->setAggregate(false);
1942      CurClass->setPOD(false);
1943      CurClass->setPolymorphic(true);
1944    }
1945  }
1946
1947  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1948      !CurContext->isRecord()) {
1949    // C++ [class.static]p1:
1950    //   A data or function member of a class may be declared static
1951    //   in a class definition, in which case it is a static member of
1952    //   the class.
1953
1954    // Complain about the 'static' specifier if it's on an out-of-line
1955    // member function definition.
1956    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1957         diag::err_static_out_of_line)
1958      << CodeModificationHint::CreateRemoval(
1959                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1960  }
1961
1962  // Handle GNU asm-label extension (encoded as an attribute).
1963  if (Expr *E = (Expr*) D.getAsmLabel()) {
1964    // The parser guarantees this is a string.
1965    StringLiteral *SE = cast<StringLiteral>(E);
1966    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1967                                                        SE->getByteLength())));
1968  }
1969
1970  // Copy the parameter declarations from the declarator D to
1971  // the function declaration NewFD, if they are available.
1972  if (D.getNumTypeObjects() > 0) {
1973    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1974
1975    // Create Decl objects for each parameter, adding them to the
1976    // FunctionDecl.
1977    llvm::SmallVector<ParmVarDecl*, 16> Params;
1978
1979    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1980    // function that takes no arguments, not a function that takes a
1981    // single void argument.
1982    // We let through "const void" here because Sema::GetTypeForDeclarator
1983    // already checks for that case.
1984    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1985        FTI.ArgInfo[0].Param &&
1986        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1987      // empty arg list, don't push any params.
1988      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1989
1990      // In C++, the empty parameter-type-list must be spelled "void"; a
1991      // typedef of void is not permitted.
1992      if (getLangOptions().CPlusPlus &&
1993          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1994        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1995      }
1996    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1997      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1998        ParmVarDecl *PVD = (ParmVarDecl *)FTI.ArgInfo[i].Param;
1999        Params.push_back(PVD);
2000      }
2001    }
2002
2003    NewFD->setParams(Context, &Params[0], Params.size());
2004  } else if (R->getAsTypedefType()) {
2005    // When we're declaring a function with a typedef, as in the
2006    // following example, we'll need to synthesize (unnamed)
2007    // parameters for use in the declaration.
2008    //
2009    // @code
2010    // typedef void fn(int);
2011    // fn f;
2012    // @endcode
2013    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2014    if (!FT) {
2015      // This is a typedef of a function with no prototype, so we
2016      // don't need to do anything.
2017    } else if ((FT->getNumArgs() == 0) ||
2018               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2019                FT->getArgType(0)->isVoidType())) {
2020      // This is a zero-argument function. We don't need to do anything.
2021    } else {
2022      // Synthesize a parameter for each argument type.
2023      llvm::SmallVector<ParmVarDecl*, 16> Params;
2024      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2025           ArgType != FT->arg_type_end(); ++ArgType) {
2026        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2027                                                 SourceLocation(), 0,
2028                                                 *ArgType, VarDecl::None,
2029                                                 0);
2030        Param->setImplicit();
2031        Params.push_back(Param);
2032      }
2033
2034      NewFD->setParams(Context, &Params[0], Params.size());
2035    }
2036  }
2037
2038  // If name lookup finds a previous declaration that is not in the
2039  // same scope as the new declaration, this may still be an
2040  // acceptable redeclaration.
2041  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2042      !(NewFD->hasLinkage() &&
2043        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2044    PrevDecl = 0;
2045
2046  // Perform semantic checking on the function declaration.
2047  bool OverloadableAttrRequired = false; // FIXME: HACK!
2048  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2049                               /*FIXME:*/OverloadableAttrRequired))
2050    InvalidDecl = true;
2051
2052  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2053    // An out-of-line member function declaration must also be a
2054    // definition (C++ [dcl.meaning]p1).
2055    if (!IsFunctionDefinition) {
2056      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2057        << D.getCXXScopeSpec().getRange();
2058      InvalidDecl = true;
2059    } else if (!Redeclaration) {
2060      // The user tried to provide an out-of-line definition for a
2061      // function that is a member of a class or namespace, but there
2062      // was no such member function declared (C++ [class.mfct]p2,
2063      // C++ [namespace.memdef]p2). For example:
2064      //
2065      // class X {
2066      //   void f() const;
2067      // };
2068      //
2069      // void X::f() { } // ill-formed
2070      //
2071      // Complain about this problem, and attempt to suggest close
2072      // matches (e.g., those that differ only in cv-qualifiers and
2073      // whether the parameter types are references).
2074      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2075        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2076      InvalidDecl = true;
2077
2078      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2079                                              true);
2080      assert(!Prev.isAmbiguous() &&
2081             "Cannot have an ambiguity in previous-declaration lookup");
2082      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2083           Func != FuncEnd; ++Func) {
2084        if (isa<FunctionDecl>(*Func) &&
2085            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2086          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2087      }
2088
2089      PrevDecl = 0;
2090    }
2091  }
2092
2093  // Handle attributes. We need to have merged decls when handling attributes
2094  // (for example to check for conflicts, etc).
2095  // FIXME: This needs to happen before we merge declarations. Then,
2096  // let attribute merging cope with attribute conflicts.
2097  ProcessDeclAttributes(NewFD, D);
2098  AddKnownFunctionAttributes(NewFD);
2099
2100  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2101    // If a function name is overloadable in C, then every function
2102    // with that name must be marked "overloadable".
2103    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2104      << Redeclaration << NewFD;
2105    if (PrevDecl)
2106      Diag(PrevDecl->getLocation(),
2107           diag::note_attribute_overloadable_prev_overload);
2108    NewFD->addAttr(::new (Context) OverloadableAttr());
2109  }
2110
2111  // If this is a locally-scoped extern C function, update the
2112  // map of such names.
2113  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2114      && !InvalidDecl)
2115    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2116
2117  return NewFD;
2118}
2119
2120/// \brief Perform semantic checking of a new function declaration.
2121///
2122/// Performs semantic analysis of the new function declaration
2123/// NewFD. This routine performs all semantic checking that does not
2124/// require the actual declarator involved in the declaration, and is
2125/// used both for the declaration of functions as they are parsed
2126/// (called via ActOnDeclarator) and for the declaration of functions
2127/// that have been instantiated via C++ template instantiation (called
2128/// via InstantiateDecl).
2129///
2130/// \returns true if there was an error, false otherwise.
2131bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2132                                    bool &Redeclaration,
2133                                    bool &OverloadableAttrRequired) {
2134  bool InvalidDecl = false;
2135
2136  // Semantic checking for this function declaration (in isolation).
2137  if (getLangOptions().CPlusPlus) {
2138    // C++-specific checks.
2139    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2140      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2141    else if (isa<CXXDestructorDecl>(NewFD)) {
2142      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2143      Record->setUserDeclaredDestructor(true);
2144      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2145      // user-defined destructor.
2146      Record->setPOD(false);
2147    } else if (CXXConversionDecl *Conversion
2148               = dyn_cast<CXXConversionDecl>(NewFD))
2149      ActOnConversionDeclarator(Conversion);
2150
2151    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2152    if (NewFD->isOverloadedOperator() &&
2153        CheckOverloadedOperatorDeclaration(NewFD))
2154      InvalidDecl = true;
2155  }
2156
2157  // Check for a previous declaration of this name.
2158  if (!PrevDecl && NewFD->isExternC(Context)) {
2159    // Since we did not find anything by this name and we're declaring
2160    // an extern "C" function, look for a non-visible extern "C"
2161    // declaration with the same name.
2162    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2163      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2164    if (Pos != LocallyScopedExternalDecls.end())
2165      PrevDecl = Pos->second;
2166  }
2167
2168  // Merge or overload the declaration with an existing declaration of
2169  // the same name, if appropriate.
2170  if (PrevDecl) {
2171    // Determine whether NewFD is an overload of PrevDecl or
2172    // a declaration that requires merging. If it's an overload,
2173    // there's no more work to do here; we'll just add the new
2174    // function to the scope.
2175    OverloadedFunctionDecl::function_iterator MatchedDecl;
2176
2177    if (!getLangOptions().CPlusPlus &&
2178        AllowOverloadingOfFunction(PrevDecl, Context)) {
2179      OverloadableAttrRequired = true;
2180
2181      // Functions marked "overloadable" must have a prototype (that
2182      // we can't get through declaration merging).
2183      if (!NewFD->getType()->getAsFunctionProtoType()) {
2184        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2185          << NewFD;
2186        InvalidDecl = true;
2187        Redeclaration = true;
2188
2189        // Turn this into a variadic function with no parameters.
2190        QualType R = Context.getFunctionType(
2191                       NewFD->getType()->getAsFunctionType()->getResultType(),
2192                       0, 0, true, 0);
2193        NewFD->setType(R);
2194      }
2195    }
2196
2197    if (PrevDecl &&
2198        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2199         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2200      Redeclaration = true;
2201      Decl *OldDecl = PrevDecl;
2202
2203      // If PrevDecl was an overloaded function, extract the
2204      // FunctionDecl that matched.
2205      if (isa<OverloadedFunctionDecl>(PrevDecl))
2206        OldDecl = *MatchedDecl;
2207
2208      // NewFD and OldDecl represent declarations that need to be
2209      // merged.
2210      if (MergeFunctionDecl(NewFD, OldDecl))
2211        InvalidDecl = true;
2212
2213      if (!InvalidDecl)
2214        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2215    }
2216  }
2217
2218  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2219    // In C++, check default arguments now that we have merged decls. Unless
2220    // the lexical context is the class, because in this case this is done
2221    // during delayed parsing anyway.
2222    CheckCXXDefaultArguments(NewFD);
2223  }
2224
2225  return InvalidDecl || NewFD->isInvalidDecl();
2226}
2227
2228bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2229  // FIXME: Need strict checking.  In C89, we need to check for
2230  // any assignment, increment, decrement, function-calls, or
2231  // commas outside of a sizeof.  In C99, it's the same list,
2232  // except that the aforementioned are allowed in unevaluated
2233  // expressions.  Everything else falls under the
2234  // "may accept other forms of constant expressions" exception.
2235  // (We never end up here for C++, so the constant expression
2236  // rules there don't matter.)
2237  if (Init->isConstantInitializer(Context))
2238    return false;
2239  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2240    << Init->getSourceRange();
2241  return true;
2242}
2243
2244void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2245  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2246}
2247
2248/// AddInitializerToDecl - Adds the initializer Init to the
2249/// declaration dcl. If DirectInit is true, this is C++ direct
2250/// initialization rather than copy initialization.
2251void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2252  Decl *RealDecl = static_cast<Decl *>(dcl);
2253  // If there is no declaration, there was an error parsing it.  Just ignore
2254  // the initializer.
2255  if (RealDecl == 0)
2256    return;
2257
2258  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2259    // With declarators parsed the way they are, the parser cannot
2260    // distinguish between a normal initializer and a pure-specifier.
2261    // Thus this grotesque test.
2262    IntegerLiteral *IL;
2263    Expr *Init = static_cast<Expr *>(init.get());
2264    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2265        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2266      if (Method->isVirtual()) {
2267        Method->setPure();
2268
2269        // A class is abstract if at least one function is pure virtual.
2270        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2271      } else {
2272        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2273          << Method->getDeclName() << Init->getSourceRange();
2274        Method->setInvalidDecl();
2275      }
2276    } else {
2277      Diag(Method->getLocation(), diag::err_member_function_initialization)
2278        << Method->getDeclName() << Init->getSourceRange();
2279      Method->setInvalidDecl();
2280    }
2281    return;
2282  }
2283
2284  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2285  if (!VDecl) {
2286    if (getLangOptions().CPlusPlus &&
2287        RealDecl->getLexicalDeclContext()->isRecord() &&
2288        isa<NamedDecl>(RealDecl))
2289      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2290        << cast<NamedDecl>(RealDecl)->getDeclName();
2291    else
2292      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2293    RealDecl->setInvalidDecl();
2294    return;
2295  }
2296
2297  const VarDecl *Def = 0;
2298  if (VDecl->getDefinition(Def)) {
2299    Diag(VDecl->getLocation(), diag::err_redefinition)
2300      << VDecl->getDeclName();
2301    Diag(Def->getLocation(), diag::note_previous_definition);
2302    VDecl->setInvalidDecl();
2303    return;
2304  }
2305
2306  // Take ownership of the expression, now that we're sure we have somewhere
2307  // to put it.
2308  Expr *Init = static_cast<Expr *>(init.release());
2309  assert(Init && "missing initializer");
2310
2311  // Get the decls type and save a reference for later, since
2312  // CheckInitializerTypes may change it.
2313  QualType DclT = VDecl->getType(), SavT = DclT;
2314  if (VDecl->isBlockVarDecl()) {
2315    VarDecl::StorageClass SC = VDecl->getStorageClass();
2316    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2317      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2318      VDecl->setInvalidDecl();
2319    } else if (!VDecl->isInvalidDecl()) {
2320      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2321                                VDecl->getDeclName(), DirectInit))
2322        VDecl->setInvalidDecl();
2323
2324      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2325      // Don't check invalid declarations to avoid emitting useless diagnostics.
2326      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2327        if (SC == VarDecl::Static) // C99 6.7.8p4.
2328          CheckForConstantInitializer(Init, DclT);
2329      }
2330    }
2331  } else if (VDecl->isStaticDataMember() &&
2332             VDecl->getLexicalDeclContext()->isRecord()) {
2333    // This is an in-class initialization for a static data member, e.g.,
2334    //
2335    // struct S {
2336    //   static const int value = 17;
2337    // };
2338
2339    // Attach the initializer
2340    VDecl->setInit(Init);
2341
2342    // C++ [class.mem]p4:
2343    //   A member-declarator can contain a constant-initializer only
2344    //   if it declares a static member (9.4) of const integral or
2345    //   const enumeration type, see 9.4.2.
2346    QualType T = VDecl->getType();
2347    if (!T->isDependentType() &&
2348        (!Context.getCanonicalType(T).isConstQualified() ||
2349         !T->isIntegralType())) {
2350      Diag(VDecl->getLocation(), diag::err_member_initialization)
2351        << VDecl->getDeclName() << Init->getSourceRange();
2352      VDecl->setInvalidDecl();
2353    } else {
2354      // C++ [class.static.data]p4:
2355      //   If a static data member is of const integral or const
2356      //   enumeration type, its declaration in the class definition
2357      //   can specify a constant-initializer which shall be an
2358      //   integral constant expression (5.19).
2359      if (!Init->isTypeDependent() &&
2360          !Init->getType()->isIntegralType()) {
2361        // We have a non-dependent, non-integral or enumeration type.
2362        Diag(Init->getSourceRange().getBegin(),
2363             diag::err_in_class_initializer_non_integral_type)
2364          << Init->getType() << Init->getSourceRange();
2365        VDecl->setInvalidDecl();
2366      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2367        // Check whether the expression is a constant expression.
2368        llvm::APSInt Value;
2369        SourceLocation Loc;
2370        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2371          Diag(Loc, diag::err_in_class_initializer_non_constant)
2372            << Init->getSourceRange();
2373          VDecl->setInvalidDecl();
2374        }
2375      }
2376    }
2377  } else if (VDecl->isFileVarDecl()) {
2378    if (VDecl->getStorageClass() == VarDecl::Extern)
2379      Diag(VDecl->getLocation(), diag::warn_extern_init);
2380    if (!VDecl->isInvalidDecl())
2381      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2382                                VDecl->getDeclName(), DirectInit))
2383        VDecl->setInvalidDecl();
2384
2385    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2386    // Don't check invalid declarations to avoid emitting useless diagnostics.
2387    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2388      // C99 6.7.8p4. All file scoped initializers need to be constant.
2389      CheckForConstantInitializer(Init, DclT);
2390    }
2391  }
2392  // If the type changed, it means we had an incomplete type that was
2393  // completed by the initializer. For example:
2394  //   int ary[] = { 1, 3, 5 };
2395  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2396  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2397    VDecl->setType(DclT);
2398    Init->setType(DclT);
2399  }
2400
2401  // Attach the initializer to the decl.
2402  VDecl->setInit(Init);
2403  return;
2404}
2405
2406void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2407  Decl *RealDecl = static_cast<Decl *>(dcl);
2408
2409  // If there is no declaration, there was an error parsing it. Just ignore it.
2410  if (RealDecl == 0)
2411    return;
2412
2413  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2414    QualType Type = Var->getType();
2415    // C++ [dcl.init.ref]p3:
2416    //   The initializer can be omitted for a reference only in a
2417    //   parameter declaration (8.3.5), in the declaration of a
2418    //   function return type, in the declaration of a class member
2419    //   within its class declaration (9.2), and where the extern
2420    //   specifier is explicitly used.
2421    if (Type->isReferenceType() &&
2422        Var->getStorageClass() != VarDecl::Extern &&
2423        Var->getStorageClass() != VarDecl::PrivateExtern) {
2424      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2425        << Var->getDeclName()
2426        << SourceRange(Var->getLocation(), Var->getLocation());
2427      Var->setInvalidDecl();
2428      return;
2429    }
2430
2431    // C++ [dcl.init]p9:
2432    //
2433    //   If no initializer is specified for an object, and the object
2434    //   is of (possibly cv-qualified) non-POD class type (or array
2435    //   thereof), the object shall be default-initialized; if the
2436    //   object is of const-qualified type, the underlying class type
2437    //   shall have a user-declared default constructor.
2438    if (getLangOptions().CPlusPlus) {
2439      QualType InitType = Type;
2440      if (const ArrayType *Array = Context.getAsArrayType(Type))
2441        InitType = Array->getElementType();
2442      if (Var->getStorageClass() != VarDecl::Extern &&
2443          Var->getStorageClass() != VarDecl::PrivateExtern &&
2444          InitType->isRecordType()) {
2445        const CXXConstructorDecl *Constructor = 0;
2446        if (!RequireCompleteType(Var->getLocation(), InitType,
2447                                    diag::err_invalid_incomplete_type_use))
2448          Constructor
2449            = PerformInitializationByConstructor(InitType, 0, 0,
2450                                                 Var->getLocation(),
2451                                               SourceRange(Var->getLocation(),
2452                                                           Var->getLocation()),
2453                                                 Var->getDeclName(),
2454                                                 IK_Default);
2455        if (!Constructor)
2456          Var->setInvalidDecl();
2457      }
2458    }
2459
2460#if 0
2461    // FIXME: Temporarily disabled because we are not properly parsing
2462    // linkage specifications on declarations, e.g.,
2463    //
2464    //   extern "C" const CGPoint CGPointerZero;
2465    //
2466    // C++ [dcl.init]p9:
2467    //
2468    //     If no initializer is specified for an object, and the
2469    //     object is of (possibly cv-qualified) non-POD class type (or
2470    //     array thereof), the object shall be default-initialized; if
2471    //     the object is of const-qualified type, the underlying class
2472    //     type shall have a user-declared default
2473    //     constructor. Otherwise, if no initializer is specified for
2474    //     an object, the object and its subobjects, if any, have an
2475    //     indeterminate initial value; if the object or any of its
2476    //     subobjects are of const-qualified type, the program is
2477    //     ill-formed.
2478    //
2479    // This isn't technically an error in C, so we don't diagnose it.
2480    //
2481    // FIXME: Actually perform the POD/user-defined default
2482    // constructor check.
2483    if (getLangOptions().CPlusPlus &&
2484        Context.getCanonicalType(Type).isConstQualified() &&
2485        Var->getStorageClass() != VarDecl::Extern)
2486      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2487        << Var->getName()
2488        << SourceRange(Var->getLocation(), Var->getLocation());
2489#endif
2490  }
2491}
2492
2493/// The declarators are chained together backwards, reverse the list.
2494Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2495  // Often we have single declarators, handle them quickly.
2496  Decl *Group = static_cast<Decl*>(group);
2497  if (Group == 0)
2498    return 0;
2499
2500  Decl *NewGroup = 0;
2501  if (Group->getNextDeclarator() == 0)
2502    NewGroup = Group;
2503  else { // reverse the list.
2504    while (Group) {
2505      Decl *Next = Group->getNextDeclarator();
2506      Group->setNextDeclarator(NewGroup);
2507      NewGroup = Group;
2508      Group = Next;
2509    }
2510  }
2511  // Perform semantic analysis that depends on having fully processed both
2512  // the declarator and initializer.
2513  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2514    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2515    if (!IDecl)
2516      continue;
2517    QualType T = IDecl->getType();
2518
2519    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2520    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2521    if (IDecl->isBlockVarDecl() &&
2522        IDecl->getStorageClass() != VarDecl::Extern) {
2523      if (!IDecl->isInvalidDecl() &&
2524          RequireCompleteType(IDecl->getLocation(), T,
2525                                 diag::err_typecheck_decl_incomplete_type))
2526        IDecl->setInvalidDecl();
2527    }
2528    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2529    // object that has file scope without an initializer, and without a
2530    // storage-class specifier or with the storage-class specifier "static",
2531    // constitutes a tentative definition. Note: A tentative definition with
2532    // external linkage is valid (C99 6.2.2p5).
2533    if (IDecl->isTentativeDefinition(Context)) {
2534      QualType CheckType = T;
2535      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2536
2537      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2538      if (ArrayT) {
2539        CheckType = ArrayT->getElementType();
2540        DiagID = diag::err_illegal_decl_array_incomplete_type;
2541      }
2542
2543      if (IDecl->isInvalidDecl()) {
2544        // Do nothing with invalid declarations
2545      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2546                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2547        // C99 6.9.2p3: If the declaration of an identifier for an object is
2548        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2549        // declared type shall not be an incomplete type.
2550        IDecl->setInvalidDecl();
2551      }
2552    }
2553  }
2554  return NewGroup;
2555}
2556
2557/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2558/// to introduce parameters into function prototype scope.
2559Sema::DeclTy *
2560Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2561  const DeclSpec &DS = D.getDeclSpec();
2562
2563  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2564  VarDecl::StorageClass StorageClass = VarDecl::None;
2565  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2566    StorageClass = VarDecl::Register;
2567  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2568    Diag(DS.getStorageClassSpecLoc(),
2569         diag::err_invalid_storage_class_in_func_decl);
2570    D.getMutableDeclSpec().ClearStorageClassSpecs();
2571  }
2572  if (DS.isThreadSpecified()) {
2573    Diag(DS.getThreadSpecLoc(),
2574         diag::err_invalid_storage_class_in_func_decl);
2575    D.getMutableDeclSpec().ClearStorageClassSpecs();
2576  }
2577
2578  // Check that there are no default arguments inside the type of this
2579  // parameter (C++ only).
2580  if (getLangOptions().CPlusPlus)
2581    CheckExtraCXXDefaultArguments(D);
2582
2583  // In this context, we *do not* check D.getInvalidType(). If the declarator
2584  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2585  // though it will not reflect the user specified type.
2586  QualType parmDeclType = GetTypeForDeclarator(D, S);
2587
2588  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2589
2590  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2591  // Can this happen for params?  We already checked that they don't conflict
2592  // among each other.  Here they can only shadow globals, which is ok.
2593  IdentifierInfo *II = D.getIdentifier();
2594  if (II) {
2595    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2596      if (PrevDecl->isTemplateParameter()) {
2597        // Maybe we will complain about the shadowed template parameter.
2598        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2599        // Just pretend that we didn't see the previous declaration.
2600        PrevDecl = 0;
2601      } else if (S->isDeclScope(PrevDecl)) {
2602        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2603
2604        // Recover by removing the name
2605        II = 0;
2606        D.SetIdentifier(0, D.getIdentifierLoc());
2607      }
2608    }
2609  }
2610
2611  // Parameters can not be abstract class types.
2612  if (RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2613                             diag::err_abstract_type_in_decl,
2614                             1 /* parameter type */))
2615    D.setInvalidType(true);
2616
2617  QualType T = adjustParameterType(parmDeclType);
2618
2619  ParmVarDecl *New;
2620  if (T == parmDeclType) // parameter type did not need adjustment
2621    New = ParmVarDecl::Create(Context, CurContext,
2622                              D.getIdentifierLoc(), II,
2623                              parmDeclType, StorageClass,
2624                              0);
2625  else // keep track of both the adjusted and unadjusted types
2626    New = OriginalParmVarDecl::Create(Context, CurContext,
2627                                      D.getIdentifierLoc(), II, T,
2628                                      parmDeclType, StorageClass, 0);
2629
2630  if (D.getInvalidType())
2631    New->setInvalidDecl();
2632
2633  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2634  if (D.getCXXScopeSpec().isSet()) {
2635    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2636      << D.getCXXScopeSpec().getRange();
2637    New->setInvalidDecl();
2638  }
2639  // Parameter declarators cannot be interface types. All ObjC objects are
2640  // passed by reference.
2641  if (T->isObjCInterfaceType()) {
2642    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2643         << "passed";
2644    New->setInvalidDecl();
2645  }
2646
2647  // Add the parameter declaration into this scope.
2648  S->AddDecl(New);
2649  if (II)
2650    IdResolver.AddDecl(New);
2651
2652  ProcessDeclAttributes(New, D);
2653  return New;
2654
2655}
2656
2657void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2658  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2659         "Not a function declarator!");
2660  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2661
2662  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2663  // for a K&R function.
2664  if (!FTI.hasPrototype) {
2665    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2666      if (FTI.ArgInfo[i].Param == 0) {
2667        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2668          << FTI.ArgInfo[i].Ident;
2669        // Implicitly declare the argument as type 'int' for lack of a better
2670        // type.
2671        DeclSpec DS;
2672        const char* PrevSpec; // unused
2673        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2674                           PrevSpec);
2675        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2676        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2677        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2678      }
2679    }
2680  }
2681}
2682
2683Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2684  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2685  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2686         "Not a function declarator!");
2687  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2688
2689  if (FTI.hasPrototype) {
2690    // FIXME: Diagnose arguments without names in C.
2691  }
2692
2693  Scope *ParentScope = FnBodyScope->getParent();
2694
2695  return ActOnStartOfFunctionDef(FnBodyScope,
2696                                 ActOnDeclarator(ParentScope, D, 0,
2697                                                 /*IsFunctionDefinition=*/true));
2698}
2699
2700Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2701  Decl *decl = static_cast<Decl*>(D);
2702  FunctionDecl *FD = cast<FunctionDecl>(decl);
2703
2704  // See if this is a redefinition.
2705  const FunctionDecl *Definition;
2706  if (FD->getBody(Definition)) {
2707    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2708    Diag(Definition->getLocation(), diag::note_previous_definition);
2709  }
2710
2711  // Builtin functions cannot be defined.
2712  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2713    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2714      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2715      FD->setInvalidDecl();
2716    }
2717  }
2718
2719  // The return type of a function definition must be complete
2720  // (C99 6.9.1p3)
2721  if (FD->getResultType()->isIncompleteType() &&
2722      !FD->getResultType()->isVoidType()) {
2723    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2724    FD->setInvalidDecl();
2725  }
2726
2727  PushDeclContext(FnBodyScope, FD);
2728
2729  // Check the validity of our function parameters
2730  CheckParmsForFunctionDef(FD);
2731
2732  // Introduce our parameters into the function scope
2733  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2734    ParmVarDecl *Param = FD->getParamDecl(p);
2735    Param->setOwningFunction(FD);
2736
2737    // If this has an identifier, add it to the scope stack.
2738    if (Param->getIdentifier())
2739      PushOnScopeChains(Param, FnBodyScope);
2740  }
2741
2742  // Checking attributes of current function definition
2743  // dllimport attribute.
2744  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2745    // dllimport attribute cannot be applied to definition.
2746    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2747      Diag(FD->getLocation(),
2748           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2749        << "dllimport";
2750      FD->setInvalidDecl();
2751      return FD;
2752    } else {
2753      // If a symbol previously declared dllimport is later defined, the
2754      // attribute is ignored in subsequent references, and a warning is
2755      // emitted.
2756      Diag(FD->getLocation(),
2757           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2758        << FD->getNameAsCString() << "dllimport";
2759    }
2760  }
2761  return FD;
2762}
2763
2764static bool StatementCreatesScope(Stmt* S) {
2765  bool result = false;
2766  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2767    for (DeclStmt::decl_iterator i = DS->decl_begin();
2768         i != DS->decl_end(); ++i) {
2769      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2770        result |= D->getType()->isVariablyModifiedType();
2771        result |= !!D->getAttr<CleanupAttr>();
2772      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2773        result |= D->getUnderlyingType()->isVariablyModifiedType();
2774      }
2775    }
2776  }
2777
2778  return result;
2779}
2780
2781void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2782                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2783                                    std::vector<void*>& ScopeStack,
2784                                    Stmt* CurStmt,
2785                                    Stmt* ParentCompoundStmt) {
2786  for (Stmt::child_iterator i = CurStmt->child_begin();
2787       i != CurStmt->child_end(); ++i) {
2788    if (!*i) continue;
2789    if (StatementCreatesScope(*i))  {
2790      ScopeStack.push_back(*i);
2791      PopScopeMap[*i] = ParentCompoundStmt;
2792    } else if (isa<LabelStmt>(CurStmt)) {
2793      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2794    }
2795    if (isa<DeclStmt>(*i)) continue;
2796    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2797    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2798                             *i, CurCompound);
2799  }
2800
2801  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2802    ScopeStack.pop_back();
2803  }
2804}
2805
2806void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2807                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2808                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2809                                   std::vector<void*>& ScopeStack,
2810                                   Stmt* CurStmt) {
2811  for (Stmt::child_iterator i = CurStmt->child_begin();
2812       i != CurStmt->child_end(); ++i) {
2813    if (!*i) continue;
2814    if (StatementCreatesScope(*i))  {
2815      ScopeStack.push_back(*i);
2816    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2817      void* LScope = LabelScopeMap[GS->getLabel()];
2818      if (LScope) {
2819        bool foundScopeInStack = false;
2820        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2821          if (LScope == ScopeStack[i-1]) {
2822            foundScopeInStack = true;
2823            break;
2824          }
2825        }
2826        if (!foundScopeInStack) {
2827          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2828        }
2829      }
2830    }
2831    if (isa<DeclStmt>(*i)) continue;
2832    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2833                            ScopeStack, *i);
2834  }
2835
2836  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2837    ScopeStack.pop_back();
2838  }
2839}
2840
2841Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2842  Decl *dcl = static_cast<Decl *>(D);
2843  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2844  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2845    FD->setBody(cast<CompoundStmt>(Body));
2846    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2847  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2848    assert(MD == getCurMethodDecl() && "Method parsing confused");
2849    MD->setBody(cast<CompoundStmt>(Body));
2850  } else {
2851    Body->Destroy(Context);
2852    return 0;
2853  }
2854  PopDeclContext();
2855  // Verify and clean out per-function state.
2856
2857  bool HaveLabels = !LabelMap.empty();
2858  // Check goto/label use.
2859  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2860       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2861    // Verify that we have no forward references left.  If so, there was a goto
2862    // or address of a label taken, but no definition of it.  Label fwd
2863    // definitions are indicated with a null substmt.
2864    if (I->second->getSubStmt() == 0) {
2865      LabelStmt *L = I->second;
2866      // Emit error.
2867      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2868
2869      // At this point, we have gotos that use the bogus label.  Stitch it into
2870      // the function body so that they aren't leaked and that the AST is well
2871      // formed.
2872      if (Body) {
2873#if 0
2874        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2875        // and the AST is malformed anyway.  We should just blow away 'L'.
2876        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2877        cast<CompoundStmt>(Body)->push_back(L);
2878#else
2879        L->Destroy(Context);
2880#endif
2881      } else {
2882        // The whole function wasn't parsed correctly, just delete this.
2883        L->Destroy(Context);
2884      }
2885    }
2886  }
2887  LabelMap.clear();
2888
2889  if (!Body) return D;
2890
2891  if (HaveLabels) {
2892    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2893    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2894    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2895    std::vector<void*> ScopeStack;
2896    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2897    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2898  }
2899
2900  return D;
2901}
2902
2903/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2904/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2905NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2906                                          IdentifierInfo &II, Scope *S) {
2907  // Before we produce a declaration for an implicitly defined
2908  // function, see whether there was a locally-scoped declaration of
2909  // this name as a function or variable. If so, use that
2910  // (non-visible) declaration, and complain about it.
2911  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2912    = LocallyScopedExternalDecls.find(&II);
2913  if (Pos != LocallyScopedExternalDecls.end()) {
2914    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2915    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2916    return Pos->second;
2917  }
2918
2919  // Extension in C99.  Legal in C90, but warn about it.
2920  if (getLangOptions().C99)
2921    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2922  else
2923    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2924
2925  // FIXME: handle stuff like:
2926  // void foo() { extern float X(); }
2927  // void bar() { X(); }  <-- implicit decl for X in another scope.
2928
2929  // Set a Declarator for the implicit definition: int foo();
2930  const char *Dummy;
2931  DeclSpec DS;
2932  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2933  Error = Error; // Silence warning.
2934  assert(!Error && "Error setting up implicit decl!");
2935  Declarator D(DS, Declarator::BlockContext);
2936  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2937                                             0, 0, 0, Loc, D),
2938                SourceLocation());
2939  D.SetIdentifier(&II, Loc);
2940
2941  // Insert this function into translation-unit scope.
2942
2943  DeclContext *PrevDC = CurContext;
2944  CurContext = Context.getTranslationUnitDecl();
2945
2946  FunctionDecl *FD =
2947    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2948  FD->setImplicit();
2949
2950  CurContext = PrevDC;
2951
2952  AddKnownFunctionAttributes(FD);
2953
2954  return FD;
2955}
2956
2957/// \brief Adds any function attributes that we know a priori based on
2958/// the declaration of this function.
2959///
2960/// These attributes can apply both to implicitly-declared builtins
2961/// (like __builtin___printf_chk) or to library-declared functions
2962/// like NSLog or printf.
2963void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2964  if (FD->isInvalidDecl())
2965    return;
2966
2967  // If this is a built-in function, map its builtin attributes to
2968  // actual attributes.
2969  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2970    // Handle printf-formatting attributes.
2971    unsigned FormatIdx;
2972    bool HasVAListArg;
2973    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2974      if (!FD->getAttr<FormatAttr>())
2975        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2976                                               FormatIdx + 2));
2977    }
2978
2979    // Mark const if we don't care about errno and that is the only
2980    // thing preventing the function from being const. This allows
2981    // IRgen to use LLVM intrinsics for such functions.
2982    if (!getLangOptions().MathErrno &&
2983        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2984      if (!FD->getAttr<ConstAttr>())
2985        FD->addAttr(::new (Context) ConstAttr());
2986    }
2987  }
2988
2989  IdentifierInfo *Name = FD->getIdentifier();
2990  if (!Name)
2991    return;
2992  if ((!getLangOptions().CPlusPlus &&
2993       FD->getDeclContext()->isTranslationUnit()) ||
2994      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2995       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2996       LinkageSpecDecl::lang_c)) {
2997    // Okay: this could be a libc/libm/Objective-C function we know
2998    // about.
2999  } else
3000    return;
3001
3002  unsigned KnownID;
3003  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3004    if (KnownFunctionIDs[KnownID] == Name)
3005      break;
3006
3007  switch (KnownID) {
3008  case id_NSLog:
3009  case id_NSLogv:
3010    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3011      // FIXME: We known better than our headers.
3012      const_cast<FormatAttr *>(Format)->setType("printf");
3013    } else
3014      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3015    break;
3016
3017  case id_asprintf:
3018  case id_vasprintf:
3019    if (!FD->getAttr<FormatAttr>())
3020      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3021    break;
3022
3023  default:
3024    // Unknown function or known function without any attributes to
3025    // add. Do nothing.
3026    break;
3027  }
3028}
3029
3030TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3031                                    Decl *LastDeclarator) {
3032  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3033  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3034
3035  // Scope manipulation handled by caller.
3036  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3037                                           D.getIdentifierLoc(),
3038                                           D.getIdentifier(),
3039                                           T);
3040
3041  if (TagType *TT = dyn_cast<TagType>(T)) {
3042    TagDecl *TD = TT->getDecl();
3043
3044    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3045    // keep track of the TypedefDecl.
3046    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3047      TD->setTypedefForAnonDecl(NewTD);
3048  }
3049
3050  NewTD->setNextDeclarator(LastDeclarator);
3051  if (D.getInvalidType())
3052    NewTD->setInvalidDecl();
3053  return NewTD;
3054}
3055
3056/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3057/// former case, Name will be non-null.  In the later case, Name will be null.
3058/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3059/// reference/declaration/definition of a tag.
3060Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3061                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3062                             IdentifierInfo *Name, SourceLocation NameLoc,
3063                             AttributeList *Attr) {
3064  // If this is not a definition, it must have a name.
3065  assert((Name != 0 || TK == TK_Definition) &&
3066         "Nameless record must be a definition!");
3067
3068  TagDecl::TagKind Kind;
3069  switch (TagSpec) {
3070  default: assert(0 && "Unknown tag type!");
3071  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3072  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3073  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3074  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3075  }
3076
3077  DeclContext *SearchDC = CurContext;
3078  DeclContext *DC = CurContext;
3079  NamedDecl *PrevDecl = 0;
3080
3081  bool Invalid = false;
3082
3083  if (Name && SS.isNotEmpty()) {
3084    // We have a nested-name tag ('struct foo::bar').
3085
3086    // Check for invalid 'foo::'.
3087    if (SS.isInvalid()) {
3088      Name = 0;
3089      goto CreateNewDecl;
3090    }
3091
3092    // FIXME: RequireCompleteDeclContext(SS)?
3093    DC = computeDeclContext(SS);
3094    SearchDC = DC;
3095    // Look-up name inside 'foo::'.
3096    PrevDecl = dyn_cast_or_null<TagDecl>(
3097                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3098
3099    // A tag 'foo::bar' must already exist.
3100    if (PrevDecl == 0) {
3101      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3102      Name = 0;
3103      goto CreateNewDecl;
3104    }
3105  } else if (Name) {
3106    // If this is a named struct, check to see if there was a previous forward
3107    // declaration or definition.
3108    // FIXME: We're looking into outer scopes here, even when we
3109    // shouldn't be. Doing so can result in ambiguities that we
3110    // shouldn't be diagnosing.
3111    LookupResult R = LookupName(S, Name, LookupTagName,
3112                                /*RedeclarationOnly=*/(TK != TK_Reference));
3113    if (R.isAmbiguous()) {
3114      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3115      // FIXME: This is not best way to recover from case like:
3116      //
3117      // struct S s;
3118      //
3119      // causes needless err_ovl_no_viable_function_in_init latter.
3120      Name = 0;
3121      PrevDecl = 0;
3122      Invalid = true;
3123    }
3124    else
3125      PrevDecl = R;
3126
3127    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3128      // FIXME: This makes sure that we ignore the contexts associated
3129      // with C structs, unions, and enums when looking for a matching
3130      // tag declaration or definition. See the similar lookup tweak
3131      // in Sema::LookupName; is there a better way to deal with this?
3132      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3133        SearchDC = SearchDC->getParent();
3134    }
3135  }
3136
3137  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3138    // Maybe we will complain about the shadowed template parameter.
3139    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3140    // Just pretend that we didn't see the previous declaration.
3141    PrevDecl = 0;
3142  }
3143
3144  if (PrevDecl) {
3145    // Check whether the previous declaration is usable.
3146    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3147
3148    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3149      // If this is a use of a previous tag, or if the tag is already declared
3150      // in the same scope (so that the definition/declaration completes or
3151      // rementions the tag), reuse the decl.
3152      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3153        // Make sure that this wasn't declared as an enum and now used as a
3154        // struct or something similar.
3155        if (PrevTagDecl->getTagKind() != Kind) {
3156          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3157          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3158          // Recover by making this an anonymous redefinition.
3159          Name = 0;
3160          PrevDecl = 0;
3161          Invalid = true;
3162        } else {
3163          // If this is a use, just return the declaration we found.
3164
3165          // FIXME: In the future, return a variant or some other clue
3166          // for the consumer of this Decl to know it doesn't own it.
3167          // For our current ASTs this shouldn't be a problem, but will
3168          // need to be changed with DeclGroups.
3169          if (TK == TK_Reference)
3170            return PrevDecl;
3171
3172          // Diagnose attempts to redefine a tag.
3173          if (TK == TK_Definition) {
3174            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3175              Diag(NameLoc, diag::err_redefinition) << Name;
3176              Diag(Def->getLocation(), diag::note_previous_definition);
3177              // If this is a redefinition, recover by making this
3178              // struct be anonymous, which will make any later
3179              // references get the previous definition.
3180              Name = 0;
3181              PrevDecl = 0;
3182              Invalid = true;
3183            } else {
3184              // If the type is currently being defined, complain
3185              // about a nested redefinition.
3186              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3187              if (Tag->isBeingDefined()) {
3188                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3189                Diag(PrevTagDecl->getLocation(),
3190                     diag::note_previous_definition);
3191                Name = 0;
3192                PrevDecl = 0;
3193                Invalid = true;
3194              }
3195            }
3196
3197            // Okay, this is definition of a previously declared or referenced
3198            // tag PrevDecl. We're going to create a new Decl for it.
3199          }
3200        }
3201        // If we get here we have (another) forward declaration or we
3202        // have a definition.  Just create a new decl.
3203      } else {
3204        // If we get here, this is a definition of a new tag type in a nested
3205        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3206        // new decl/type.  We set PrevDecl to NULL so that the entities
3207        // have distinct types.
3208        PrevDecl = 0;
3209      }
3210      // If we get here, we're going to create a new Decl. If PrevDecl
3211      // is non-NULL, it's a definition of the tag declared by
3212      // PrevDecl. If it's NULL, we have a new definition.
3213    } else {
3214      // PrevDecl is a namespace, template, or anything else
3215      // that lives in the IDNS_Tag identifier namespace.
3216      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3217        // The tag name clashes with a namespace name, issue an error and
3218        // recover by making this tag be anonymous.
3219        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3220        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3221        Name = 0;
3222        PrevDecl = 0;
3223        Invalid = true;
3224      } else {
3225        // The existing declaration isn't relevant to us; we're in a
3226        // new scope, so clear out the previous declaration.
3227        PrevDecl = 0;
3228      }
3229    }
3230  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3231             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3232    // C.scope.pdecl]p5:
3233    //   -- for an elaborated-type-specifier of the form
3234    //
3235    //          class-key identifier
3236    //
3237    //      if the elaborated-type-specifier is used in the
3238    //      decl-specifier-seq or parameter-declaration-clause of a
3239    //      function defined in namespace scope, the identifier is
3240    //      declared as a class-name in the namespace that contains
3241    //      the declaration; otherwise, except as a friend
3242    //      declaration, the identifier is declared in the smallest
3243    //      non-class, non-function-prototype scope that contains the
3244    //      declaration.
3245    //
3246    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3247    // C structs and unions.
3248    //
3249    // GNU C also supports this behavior as part of its incomplete
3250    // enum types extension, while GNU C++ does not.
3251    //
3252    // Find the context where we'll be declaring the tag.
3253    // FIXME: We would like to maintain the current DeclContext as the
3254    // lexical context,
3255    while (SearchDC->isRecord())
3256      SearchDC = SearchDC->getParent();
3257
3258    // Find the scope where we'll be declaring the tag.
3259    while (S->isClassScope() ||
3260           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3261           ((S->getFlags() & Scope::DeclScope) == 0) ||
3262           (S->getEntity() &&
3263            ((DeclContext *)S->getEntity())->isTransparentContext()))
3264      S = S->getParent();
3265  }
3266
3267CreateNewDecl:
3268
3269  // If there is an identifier, use the location of the identifier as the
3270  // location of the decl, otherwise use the location of the struct/union
3271  // keyword.
3272  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3273
3274  // Otherwise, create a new declaration. If there is a previous
3275  // declaration of the same entity, the two will be linked via
3276  // PrevDecl.
3277  TagDecl *New;
3278
3279  if (Kind == TagDecl::TK_enum) {
3280    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3281    // enum X { A, B, C } D;    D should chain to X.
3282    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3283                           cast_or_null<EnumDecl>(PrevDecl));
3284    // If this is an undefined enum, warn.
3285    if (TK != TK_Definition && !Invalid)  {
3286      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3287                                              : diag::ext_forward_ref_enum;
3288      Diag(Loc, DK);
3289    }
3290  } else {
3291    // struct/union/class
3292
3293    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3294    // struct X { int A; } D;    D should chain to X.
3295    if (getLangOptions().CPlusPlus)
3296      // FIXME: Look for a way to use RecordDecl for simple structs.
3297      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3298                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3299    else
3300      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3301                               cast_or_null<RecordDecl>(PrevDecl));
3302  }
3303
3304  if (Kind != TagDecl::TK_enum) {
3305    // Handle #pragma pack: if the #pragma pack stack has non-default
3306    // alignment, make up a packed attribute for this decl. These
3307    // attributes are checked when the ASTContext lays out the
3308    // structure.
3309    //
3310    // It is important for implementing the correct semantics that this
3311    // happen here (in act on tag decl). The #pragma pack stack is
3312    // maintained as a result of parser callbacks which can occur at
3313    // many points during the parsing of a struct declaration (because
3314    // the #pragma tokens are effectively skipped over during the
3315    // parsing of the struct).
3316    if (unsigned Alignment = getPragmaPackAlignment())
3317      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3318  }
3319
3320  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3321    // C++ [dcl.typedef]p3:
3322    //   [...] Similarly, in a given scope, a class or enumeration
3323    //   shall not be declared with the same name as a typedef-name
3324    //   that is declared in that scope and refers to a type other
3325    //   than the class or enumeration itself.
3326    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3327    TypedefDecl *PrevTypedef = 0;
3328    if (Lookup.getKind() == LookupResult::Found)
3329      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3330
3331    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3332        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3333          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3334      Diag(Loc, diag::err_tag_definition_of_typedef)
3335        << Context.getTypeDeclType(New)
3336        << PrevTypedef->getUnderlyingType();
3337      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3338      Invalid = true;
3339    }
3340  }
3341
3342  if (Invalid)
3343    New->setInvalidDecl();
3344
3345  if (Attr)
3346    ProcessDeclAttributeList(New, Attr);
3347
3348  // If we're declaring or defining a tag in function prototype scope
3349  // in C, note that this type can only be used within the function.
3350  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3351    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3352
3353  // Set the lexical context. If the tag has a C++ scope specifier, the
3354  // lexical context will be different from the semantic context.
3355  New->setLexicalDeclContext(CurContext);
3356
3357  if (TK == TK_Definition)
3358    New->startDefinition();
3359
3360  // If this has an identifier, add it to the scope stack.
3361  if (Name) {
3362    S = getNonFieldDeclScope(S);
3363    PushOnScopeChains(New, S);
3364  } else {
3365    CurContext->addDecl(New);
3366  }
3367
3368  return New;
3369}
3370
3371void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3372  AdjustDeclIfTemplate(TagD);
3373  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3374
3375  // Enter the tag context.
3376  PushDeclContext(S, Tag);
3377
3378  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3379    FieldCollector->StartClass();
3380
3381    if (Record->getIdentifier()) {
3382      // C++ [class]p2:
3383      //   [...] The class-name is also inserted into the scope of the
3384      //   class itself; this is known as the injected-class-name. For
3385      //   purposes of access checking, the injected-class-name is treated
3386      //   as if it were a public member name.
3387      RecordDecl *InjectedClassName
3388        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3389                                CurContext, Record->getLocation(),
3390                                Record->getIdentifier(), Record);
3391      InjectedClassName->setImplicit();
3392      PushOnScopeChains(InjectedClassName, S);
3393    }
3394  }
3395}
3396
3397void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3398  AdjustDeclIfTemplate(TagD);
3399  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3400
3401  if (isa<CXXRecordDecl>(Tag))
3402    FieldCollector->FinishClass();
3403
3404  // Exit this scope of this tag's definition.
3405  PopDeclContext();
3406
3407  // Notify the consumer that we've defined a tag.
3408  Consumer.HandleTagDeclDefinition(Tag);
3409}
3410
3411bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3412                          QualType FieldTy, const Expr *BitWidth) {
3413  // C99 6.7.2.1p4 - verify the field type.
3414  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3415  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3416    // Handle incomplete types with specific error.
3417    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3418      return true;
3419    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3420      << FieldName << FieldTy << BitWidth->getSourceRange();
3421  }
3422
3423  // If the bit-width is type- or value-dependent, don't try to check
3424  // it now.
3425  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3426    return false;
3427
3428  llvm::APSInt Value;
3429  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3430    return true;
3431
3432  // Zero-width bitfield is ok for anonymous field.
3433  if (Value == 0 && FieldName)
3434    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3435
3436  if (Value.isSigned() && Value.isNegative())
3437    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3438             << FieldName << Value.toString(10);
3439
3440  if (!FieldTy->isDependentType()) {
3441    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3442    // FIXME: We won't need the 0 size once we check that the field type is valid.
3443    if (TypeSize && Value.getZExtValue() > TypeSize)
3444      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3445        << FieldName << (unsigned)TypeSize;
3446  }
3447
3448  return false;
3449}
3450
3451/// ActOnField - Each field of a struct/union/class is passed into this in order
3452/// to create a FieldDecl object for it.
3453Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3454                               SourceLocation DeclStart,
3455                               Declarator &D, ExprTy *BitfieldWidth) {
3456
3457  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3458                     static_cast<Expr*>(BitfieldWidth),
3459                     AS_public);
3460}
3461
3462/// HandleField - Analyze a field of a C struct or a C++ data member.
3463///
3464FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3465                             SourceLocation DeclStart,
3466                             Declarator &D, Expr *BitWidth,
3467                             AccessSpecifier AS) {
3468  IdentifierInfo *II = D.getIdentifier();
3469  SourceLocation Loc = DeclStart;
3470  if (II) Loc = D.getIdentifierLoc();
3471
3472  QualType T = GetTypeForDeclarator(D, S);
3473
3474  if (getLangOptions().CPlusPlus) {
3475    CheckExtraCXXDefaultArguments(D);
3476
3477    if (D.getDeclSpec().isVirtualSpecified())
3478      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3479           diag::err_virtual_non_function);
3480  }
3481
3482  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3483  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3484    PrevDecl = 0;
3485
3486  FieldDecl *NewFD
3487    = CheckFieldDecl(II, T, Record, Loc,
3488               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3489                     BitWidth, AS, PrevDecl, &D);
3490  if (NewFD->isInvalidDecl() && PrevDecl) {
3491    // Don't introduce NewFD into scope; there's already something
3492    // with the same name in the same scope.
3493  } else if (II) {
3494    PushOnScopeChains(NewFD, S);
3495  } else
3496    Record->addDecl(NewFD);
3497
3498  return NewFD;
3499}
3500
3501/// \brief Build a new FieldDecl and check its well-formedness.
3502///
3503/// This routine builds a new FieldDecl given the fields name, type,
3504/// record, etc. \p PrevDecl should refer to any previous declaration
3505/// with the same name and in the same scope as the field to be
3506/// created.
3507///
3508/// \returns a new FieldDecl.
3509///
3510/// \todo The Declarator argument is a hack. It will be removed once
3511FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3512                                RecordDecl *Record, SourceLocation Loc,
3513                                bool Mutable, Expr *BitWidth,
3514                                AccessSpecifier AS, NamedDecl *PrevDecl,
3515                                Declarator *D) {
3516  IdentifierInfo *II = Name.getAsIdentifierInfo();
3517  bool InvalidDecl = false;
3518
3519  // If we receive a broken type, recover by assuming 'int' and
3520  // marking this declaration as invalid.
3521  if (T.isNull()) {
3522    InvalidDecl = true;
3523    T = Context.IntTy;
3524  }
3525
3526  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3527  // than a variably modified type.
3528  if (T->isVariablyModifiedType()) {
3529    bool SizeIsNegative;
3530    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3531                                                           SizeIsNegative);
3532    if (!FixedTy.isNull()) {
3533      Diag(Loc, diag::warn_illegal_constant_array_size);
3534      T = FixedTy;
3535    } else {
3536      if (SizeIsNegative)
3537        Diag(Loc, diag::err_typecheck_negative_array_size);
3538      else
3539        Diag(Loc, diag::err_typecheck_field_variable_size);
3540      T = Context.IntTy;
3541      InvalidDecl = true;
3542    }
3543  }
3544
3545  // Fields can not have abstract class types
3546  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3547                             3 /* field type */))
3548    InvalidDecl = true;
3549
3550  // If this is declared as a bit-field, check the bit-field.
3551  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3552    InvalidDecl = true;
3553    DeleteExpr(BitWidth);
3554    BitWidth = 0;
3555  }
3556
3557  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3558                                       Mutable);
3559
3560  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3561    Diag(Loc, diag::err_duplicate_member) << II;
3562    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3563    NewFD->setInvalidDecl();
3564    Record->setInvalidDecl();
3565  }
3566
3567  if (getLangOptions().CPlusPlus && !T->isPODType())
3568    cast<CXXRecordDecl>(Record)->setPOD(false);
3569
3570  // FIXME: We need to pass in the attributes given an AST
3571  // representation, not a parser representation.
3572  if (D)
3573    ProcessDeclAttributes(NewFD, *D);
3574
3575  if (T.isObjCGCWeak())
3576    Diag(Loc, diag::warn_attribute_weak_on_field);
3577
3578  if (InvalidDecl)
3579    NewFD->setInvalidDecl();
3580
3581  NewFD->setAccess(AS);
3582
3583  // C++ [dcl.init.aggr]p1:
3584  //   An aggregate is an array or a class (clause 9) with [...] no
3585  //   private or protected non-static data members (clause 11).
3586  // A POD must be an aggregate.
3587  if (getLangOptions().CPlusPlus &&
3588      (AS == AS_private || AS == AS_protected)) {
3589    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3590    CXXRecord->setAggregate(false);
3591    CXXRecord->setPOD(false);
3592  }
3593
3594  return NewFD;
3595}
3596
3597/// TranslateIvarVisibility - Translate visibility from a token ID to an
3598///  AST enum value.
3599static ObjCIvarDecl::AccessControl
3600TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3601  switch (ivarVisibility) {
3602  default: assert(0 && "Unknown visitibility kind");
3603  case tok::objc_private: return ObjCIvarDecl::Private;
3604  case tok::objc_public: return ObjCIvarDecl::Public;
3605  case tok::objc_protected: return ObjCIvarDecl::Protected;
3606  case tok::objc_package: return ObjCIvarDecl::Package;
3607  }
3608}
3609
3610/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3611/// in order to create an IvarDecl object for it.
3612Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3613                              SourceLocation DeclStart,
3614                              Declarator &D, ExprTy *BitfieldWidth,
3615                              tok::ObjCKeywordKind Visibility) {
3616
3617  IdentifierInfo *II = D.getIdentifier();
3618  Expr *BitWidth = (Expr*)BitfieldWidth;
3619  SourceLocation Loc = DeclStart;
3620  if (II) Loc = D.getIdentifierLoc();
3621
3622  // FIXME: Unnamed fields can be handled in various different ways, for
3623  // example, unnamed unions inject all members into the struct namespace!
3624
3625  QualType T = GetTypeForDeclarator(D, S);
3626  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3627  bool InvalidDecl = false;
3628
3629  if (BitWidth) {
3630    // 6.7.2.1p3, 6.7.2.1p4
3631    if (VerifyBitField(Loc, II, T, BitWidth)) {
3632      InvalidDecl = true;
3633      DeleteExpr(BitWidth);
3634      BitWidth = 0;
3635    }
3636  } else {
3637    // Not a bitfield.
3638
3639    // validate II.
3640
3641  }
3642
3643  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3644  // than a variably modified type.
3645  if (T->isVariablyModifiedType()) {
3646    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3647    InvalidDecl = true;
3648  }
3649
3650  // Get the visibility (access control) for this ivar.
3651  ObjCIvarDecl::AccessControl ac =
3652    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3653                                        : ObjCIvarDecl::None;
3654
3655  // Construct the decl.
3656  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3657                                             (Expr *)BitfieldWidth);
3658
3659  if (II) {
3660    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3661    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3662        && !isa<TagDecl>(PrevDecl)) {
3663      Diag(Loc, diag::err_duplicate_member) << II;
3664      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3665      NewID->setInvalidDecl();
3666    }
3667  }
3668
3669  // Process attributes attached to the ivar.
3670  ProcessDeclAttributes(NewID, D);
3671
3672  if (D.getInvalidType() || InvalidDecl)
3673    NewID->setInvalidDecl();
3674
3675  if (II) {
3676    // FIXME: When interfaces are DeclContexts, we'll need to add
3677    // these to the interface.
3678    S->AddDecl(NewID);
3679    IdResolver.AddDecl(NewID);
3680  }
3681
3682  return NewID;
3683}
3684
3685void Sema::ActOnFields(Scope* S,
3686                       SourceLocation RecLoc, DeclTy *RecDecl,
3687                       DeclTy **Fields, unsigned NumFields,
3688                       SourceLocation LBrac, SourceLocation RBrac,
3689                       AttributeList *Attr) {
3690  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3691  assert(EnclosingDecl && "missing record or interface decl");
3692
3693  // If the decl this is being inserted into is invalid, then it may be a
3694  // redeclaration or some other bogus case.  Don't try to add fields to it.
3695  if (EnclosingDecl->isInvalidDecl()) {
3696    // FIXME: Deallocate fields?
3697    return;
3698  }
3699
3700
3701  // Verify that all the fields are okay.
3702  unsigned NumNamedMembers = 0;
3703  llvm::SmallVector<FieldDecl*, 32> RecFields;
3704
3705  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3706  for (unsigned i = 0; i != NumFields; ++i) {
3707    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3708    assert(FD && "missing field decl");
3709
3710    // Get the type for the field.
3711    Type *FDTy = FD->getType().getTypePtr();
3712
3713    if (!FD->isAnonymousStructOrUnion()) {
3714      // Remember all fields written by the user.
3715      RecFields.push_back(FD);
3716    }
3717
3718    // If the field is already invalid for some reason, don't emit more
3719    // diagnostics about it.
3720    if (FD->isInvalidDecl())
3721      continue;
3722
3723    // C99 6.7.2.1p2 - A field may not be a function type.
3724    if (FDTy->isFunctionType()) {
3725      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3726        << FD->getDeclName();
3727      FD->setInvalidDecl();
3728      EnclosingDecl->setInvalidDecl();
3729      continue;
3730    }
3731    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3732    if (FDTy->isIncompleteType()) {
3733      if (!Record) {  // Incomplete ivar type is always an error.
3734        RequireCompleteType(FD->getLocation(), FD->getType(),
3735                               diag::err_field_incomplete);
3736        FD->setInvalidDecl();
3737        EnclosingDecl->setInvalidDecl();
3738        continue;
3739      }
3740      if (i != NumFields-1 ||                   // ... that the last member ...
3741          !Record->isStruct() ||  // ... of a structure ...
3742          !FDTy->isArrayType()) {         //... may have incomplete array type.
3743        RequireCompleteType(FD->getLocation(), FD->getType(),
3744                               diag::err_field_incomplete);
3745        FD->setInvalidDecl();
3746        EnclosingDecl->setInvalidDecl();
3747        continue;
3748      }
3749      if (NumNamedMembers < 1) {  //... must have more than named member ...
3750        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3751          << FD->getDeclName();
3752        FD->setInvalidDecl();
3753        EnclosingDecl->setInvalidDecl();
3754        continue;
3755      }
3756      // Okay, we have a legal flexible array member at the end of the struct.
3757      if (Record)
3758        Record->setHasFlexibleArrayMember(true);
3759    }
3760    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3761    /// field of another structure or the element of an array.
3762    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3763      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3764        // If this is a member of a union, then entire union becomes "flexible".
3765        if (Record && Record->isUnion()) {
3766          Record->setHasFlexibleArrayMember(true);
3767        } else {
3768          // If this is a struct/class and this is not the last element, reject
3769          // it.  Note that GCC supports variable sized arrays in the middle of
3770          // structures.
3771          if (i != NumFields-1)
3772            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3773              << FD->getDeclName();
3774          else {
3775            // We support flexible arrays at the end of structs in
3776            // other structs as an extension.
3777            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3778              << FD->getDeclName();
3779            if (Record)
3780              Record->setHasFlexibleArrayMember(true);
3781          }
3782        }
3783      }
3784    }
3785    /// A field cannot be an Objective-c object
3786    if (FDTy->isObjCInterfaceType()) {
3787      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3788      FD->setInvalidDecl();
3789      EnclosingDecl->setInvalidDecl();
3790      continue;
3791    }
3792    // Keep track of the number of named members.
3793    if (FD->getIdentifier())
3794      ++NumNamedMembers;
3795  }
3796
3797  // Okay, we successfully defined 'Record'.
3798  if (Record) {
3799    Record->completeDefinition(Context);
3800  } else {
3801    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3802    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3803      ID->setIVarList(ClsFields, RecFields.size(), Context);
3804      ID->setLocEnd(RBrac);
3805
3806      // Must enforce the rule that ivars in the base classes may not be
3807      // duplicates.
3808      if (ID->getSuperClass()) {
3809        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3810             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3811          ObjCIvarDecl* Ivar = (*IVI);
3812          IdentifierInfo *II = Ivar->getIdentifier();
3813          ObjCIvarDecl* prevIvar =
3814            ID->getSuperClass()->lookupInstanceVariable(II);
3815          if (prevIvar) {
3816            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3817            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3818          }
3819        }
3820      }
3821    } else if (ObjCImplementationDecl *IMPDecl =
3822                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3823      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3824      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3825      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3826    }
3827  }
3828
3829  if (Attr)
3830    ProcessDeclAttributeList(Record, Attr);
3831}
3832
3833EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3834                                          EnumConstantDecl *LastEnumConst,
3835                                          SourceLocation IdLoc,
3836                                          IdentifierInfo *Id,
3837                                          ExprArg val) {
3838  Expr *Val = (Expr *)val.get();
3839
3840  llvm::APSInt EnumVal(32);
3841  QualType EltTy;
3842  if (Val && !Val->isTypeDependent()) {
3843    // Make sure to promote the operand type to int.
3844    UsualUnaryConversions(Val);
3845    if (Val != val.get()) {
3846      val.release();
3847      val = Val;
3848    }
3849
3850    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3851    SourceLocation ExpLoc;
3852    if (!Val->isValueDependent() &&
3853        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3854      Val = 0;
3855    } else {
3856      EltTy = Val->getType();
3857    }
3858  }
3859
3860  if (!Val) {
3861    if (LastEnumConst) {
3862      // Assign the last value + 1.
3863      EnumVal = LastEnumConst->getInitVal();
3864      ++EnumVal;
3865
3866      // Check for overflow on increment.
3867      if (EnumVal < LastEnumConst->getInitVal())
3868        Diag(IdLoc, diag::warn_enum_value_overflow);
3869
3870      EltTy = LastEnumConst->getType();
3871    } else {
3872      // First value, set to zero.
3873      EltTy = Context.IntTy;
3874      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3875    }
3876  }
3877
3878  val.release();
3879  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3880                                  Val, EnumVal);
3881}
3882
3883
3884Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3885                                      DeclTy *lastEnumConst,
3886                                      SourceLocation IdLoc, IdentifierInfo *Id,
3887                                      SourceLocation EqualLoc, ExprTy *val) {
3888  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3889  EnumConstantDecl *LastEnumConst =
3890    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3891  Expr *Val = static_cast<Expr*>(val);
3892
3893  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3894  // we find one that is.
3895  S = getNonFieldDeclScope(S);
3896
3897  // Verify that there isn't already something declared with this name in this
3898  // scope.
3899  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3900  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3901    // Maybe we will complain about the shadowed template parameter.
3902    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3903    // Just pretend that we didn't see the previous declaration.
3904    PrevDecl = 0;
3905  }
3906
3907  if (PrevDecl) {
3908    // When in C++, we may get a TagDecl with the same name; in this case the
3909    // enum constant will 'hide' the tag.
3910    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3911           "Received TagDecl when not in C++!");
3912    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3913      if (isa<EnumConstantDecl>(PrevDecl))
3914        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3915      else
3916        Diag(IdLoc, diag::err_redefinition) << Id;
3917      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3918      if (Val) Val->Destroy(Context);
3919      return 0;
3920    }
3921  }
3922
3923  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
3924                                            IdLoc, Id, Owned(Val));
3925
3926  // Register this decl in the current scope stack.
3927  if (New)
3928    PushOnScopeChains(New, S);
3929
3930  return New;
3931}
3932
3933// FIXME: For consistency with ActOnFields(), we should have the parser
3934// pass in the source location for the left/right braces.
3935void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3936                         DeclTy **Elements, unsigned NumElements) {
3937  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3938  QualType EnumType = Context.getTypeDeclType(Enum);
3939
3940  // TODO: If the result value doesn't fit in an int, it must be a long or long
3941  // long value.  ISO C does not support this, but GCC does as an extension,
3942  // emit a warning.
3943  unsigned IntWidth = Context.Target.getIntWidth();
3944
3945  // Verify that all the values are okay, compute the size of the values, and
3946  // reverse the list.
3947  unsigned NumNegativeBits = 0;
3948  unsigned NumPositiveBits = 0;
3949
3950  // Keep track of whether all elements have type int.
3951  bool AllElementsInt = true;
3952
3953  for (unsigned i = 0; i != NumElements; ++i) {
3954    EnumConstantDecl *ECD =
3955      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3956    if (!ECD) continue;  // Already issued a diagnostic.
3957
3958    // If the enum value doesn't fit in an int, emit an extension warning.
3959    const llvm::APSInt &InitVal = ECD->getInitVal();
3960    assert(InitVal.getBitWidth() >= IntWidth &&
3961           "Should have promoted value to int");
3962    if (InitVal.getBitWidth() > IntWidth) {
3963      llvm::APSInt V(InitVal);
3964      V.trunc(IntWidth);
3965      V.extend(InitVal.getBitWidth());
3966      if (V != InitVal)
3967        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3968          << InitVal.toString(10);
3969    }
3970
3971    // Keep track of the size of positive and negative values.
3972    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3973      NumPositiveBits = std::max(NumPositiveBits,
3974                                 (unsigned)InitVal.getActiveBits());
3975    else
3976      NumNegativeBits = std::max(NumNegativeBits,
3977                                 (unsigned)InitVal.getMinSignedBits());
3978
3979    // Keep track of whether every enum element has type int (very commmon).
3980    if (AllElementsInt)
3981      AllElementsInt = ECD->getType() == Context.IntTy;
3982  }
3983
3984  // Figure out the type that should be used for this enum.
3985  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3986  QualType BestType;
3987  unsigned BestWidth;
3988
3989  if (NumNegativeBits) {
3990    // If there is a negative value, figure out the smallest integer type (of
3991    // int/long/longlong) that fits.
3992    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3993      BestType = Context.IntTy;
3994      BestWidth = IntWidth;
3995    } else {
3996      BestWidth = Context.Target.getLongWidth();
3997
3998      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3999        BestType = Context.LongTy;
4000      else {
4001        BestWidth = Context.Target.getLongLongWidth();
4002
4003        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4004          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4005        BestType = Context.LongLongTy;
4006      }
4007    }
4008  } else {
4009    // If there is no negative value, figure out which of uint, ulong, ulonglong
4010    // fits.
4011    if (NumPositiveBits <= IntWidth) {
4012      BestType = Context.UnsignedIntTy;
4013      BestWidth = IntWidth;
4014    } else if (NumPositiveBits <=
4015               (BestWidth = Context.Target.getLongWidth())) {
4016      BestType = Context.UnsignedLongTy;
4017    } else {
4018      BestWidth = Context.Target.getLongLongWidth();
4019      assert(NumPositiveBits <= BestWidth &&
4020             "How could an initializer get larger than ULL?");
4021      BestType = Context.UnsignedLongLongTy;
4022    }
4023  }
4024
4025  // Loop over all of the enumerator constants, changing their types to match
4026  // the type of the enum if needed.
4027  for (unsigned i = 0; i != NumElements; ++i) {
4028    EnumConstantDecl *ECD =
4029      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4030    if (!ECD) continue;  // Already issued a diagnostic.
4031
4032    // Standard C says the enumerators have int type, but we allow, as an
4033    // extension, the enumerators to be larger than int size.  If each
4034    // enumerator value fits in an int, type it as an int, otherwise type it the
4035    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4036    // that X has type 'int', not 'unsigned'.
4037    if (ECD->getType() == Context.IntTy) {
4038      // Make sure the init value is signed.
4039      llvm::APSInt IV = ECD->getInitVal();
4040      IV.setIsSigned(true);
4041      ECD->setInitVal(IV);
4042
4043      if (getLangOptions().CPlusPlus)
4044        // C++ [dcl.enum]p4: Following the closing brace of an
4045        // enum-specifier, each enumerator has the type of its
4046        // enumeration.
4047        ECD->setType(EnumType);
4048      continue;  // Already int type.
4049    }
4050
4051    // Determine whether the value fits into an int.
4052    llvm::APSInt InitVal = ECD->getInitVal();
4053    bool FitsInInt;
4054    if (InitVal.isUnsigned() || !InitVal.isNegative())
4055      FitsInInt = InitVal.getActiveBits() < IntWidth;
4056    else
4057      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4058
4059    // If it fits into an integer type, force it.  Otherwise force it to match
4060    // the enum decl type.
4061    QualType NewTy;
4062    unsigned NewWidth;
4063    bool NewSign;
4064    if (FitsInInt) {
4065      NewTy = Context.IntTy;
4066      NewWidth = IntWidth;
4067      NewSign = true;
4068    } else if (ECD->getType() == BestType) {
4069      // Already the right type!
4070      if (getLangOptions().CPlusPlus)
4071        // C++ [dcl.enum]p4: Following the closing brace of an
4072        // enum-specifier, each enumerator has the type of its
4073        // enumeration.
4074        ECD->setType(EnumType);
4075      continue;
4076    } else {
4077      NewTy = BestType;
4078      NewWidth = BestWidth;
4079      NewSign = BestType->isSignedIntegerType();
4080    }
4081
4082    // Adjust the APSInt value.
4083    InitVal.extOrTrunc(NewWidth);
4084    InitVal.setIsSigned(NewSign);
4085    ECD->setInitVal(InitVal);
4086
4087    // Adjust the Expr initializer and type.
4088    if (ECD->getInitExpr())
4089      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4090                                                      /*isLvalue=*/false));
4091    if (getLangOptions().CPlusPlus)
4092      // C++ [dcl.enum]p4: Following the closing brace of an
4093      // enum-specifier, each enumerator has the type of its
4094      // enumeration.
4095      ECD->setType(EnumType);
4096    else
4097      ECD->setType(NewTy);
4098  }
4099
4100  Enum->completeDefinition(Context, BestType);
4101}
4102
4103Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4104                                          ExprArg expr) {
4105  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4106
4107  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4108}
4109
4110