SemaDecl.cpp revision 2def48394f6d48bde0dec2b514193c2b533265b5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
32                               const CXXScopeSpec *SS) {
33  DeclContext *DC = 0;
34  if (SS) {
35    if (SS->isInvalid())
36      return 0;
37    DC = static_cast<DeclContext*>(SS->getScopeRep());
38  }
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48DeclContext *Sema::getContainingDC(DeclContext *DC) {
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    // A C++ out-of-line method will return to the file declaration context.
51    if (MD->isOutOfLineDefinition())
52      return MD->getLexicalDeclContext();
53
54    // A C++ inline method is parsed *after* the topmost class it was declared in
55    // is fully parsed (it's "complete").
56    // The parsing of a C++ inline method happens at the declaration context of
57    // the topmost (non-nested) class it is declared in.
58    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
59    DC = MD->getParent();
60    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
61      DC = RD;
62
63    // Return the declaration context of the topmost class the inline method is
64    // declared in.
65    return DC;
66  }
67
68  if (isa<ObjCMethodDecl>(DC))
69    return Context.getTranslationUnitDecl();
70
71  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
72    return SD->getLexicalDeclContext();
73
74  return DC->getParent();
75}
76
77void Sema::PushDeclContext(DeclContext *DC) {
78  assert(getContainingDC(DC) == CurContext &&
79       "The next DeclContext should be lexically contained in the current one.");
80  CurContext = DC;
81}
82
83void Sema::PopDeclContext() {
84  assert(CurContext && "DeclContext imbalance!");
85  CurContext = getContainingDC(CurContext);
86}
87
88/// Add this decl to the scope shadowed decl chains.
89void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
90  S->AddDecl(D);
91
92  // C++ [basic.scope]p4:
93  //   -- exactly one declaration shall declare a class name or
94  //   enumeration name that is not a typedef name and the other
95  //   declarations shall all refer to the same object or
96  //   enumerator, or all refer to functions and function templates;
97  //   in this case the class name or enumeration name is hidden.
98  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
99    // We are pushing the name of a tag (enum or class).
100    IdentifierResolver::iterator
101        I = IdResolver.begin(TD->getIdentifier(),
102                             TD->getDeclContext(), false/*LookInParentCtx*/);
103    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
104      // There is already a declaration with the same name in the same
105      // scope. It must be found before we find the new declaration,
106      // so swap the order on the shadowed declaration chain.
107
108      IdResolver.AddShadowedDecl(TD, *I);
109      return;
110    }
111  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
112    FunctionDecl *FD = cast<FunctionDecl>(D);
113    // We are pushing the name of a function, which might be an
114    // overloaded name.
115    IdentifierResolver::iterator
116        I = IdResolver.begin(FD->getDeclName(),
117                             FD->getDeclContext(), false/*LookInParentCtx*/);
118    if (I != IdResolver.end() &&
119        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
120        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
121      // There is already a declaration with the same name in the same
122      // scope. It must be a function or an overloaded function.
123      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
124      if (!Ovl) {
125        // We haven't yet overloaded this function. Take the existing
126        // FunctionDecl and put it into an OverloadedFunctionDecl.
127        Ovl = OverloadedFunctionDecl::Create(Context,
128                                             FD->getDeclContext(),
129                                             FD->getDeclName());
130        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
131
132        // Remove the name binding to the existing FunctionDecl...
133        IdResolver.RemoveDecl(*I);
134
135        // ... and put the OverloadedFunctionDecl in its place.
136        IdResolver.AddDecl(Ovl);
137      }
138
139      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
140      // to its list of overloads.
141      Ovl->addOverload(FD);
142
143      return;
144    }
145  }
146
147  IdResolver.AddDecl(D);
148}
149
150void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
151  if (S->decl_empty()) return;
152  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
153
154  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
155       I != E; ++I) {
156    Decl *TmpD = static_cast<Decl*>(*I);
157    assert(TmpD && "This decl didn't get pushed??");
158
159    if (isa<CXXFieldDecl>(TmpD)) continue;
160
161    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
162    ScopedDecl *D = cast<ScopedDecl>(TmpD);
163
164    IdentifierInfo *II = D->getIdentifier();
165    if (!II) continue;
166
167    // We only want to remove the decls from the identifier decl chains for
168    // local scopes, when inside a function/method.
169    if (S->getFnParent() != 0)
170      IdResolver.RemoveDecl(D);
171
172    // Chain this decl to the containing DeclContext.
173    D->setNext(CurContext->getDeclChain());
174    CurContext->setDeclChain(D);
175  }
176}
177
178/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
179/// return 0 if one not found.
180ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
181  // The third "scope" argument is 0 since we aren't enabling lazy built-in
182  // creation from this context.
183  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
184
185  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
186}
187
188/// LookupDecl - Look up the inner-most declaration in the specified
189/// namespace.
190Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
191                       const DeclContext *LookupCtx,
192                       bool enableLazyBuiltinCreation) {
193  if (!Name) return 0;
194  unsigned NS = NSI;
195  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
196    NS |= Decl::IDNS_Tag;
197
198  IdentifierResolver::iterator
199    I = LookupCtx ? IdResolver.begin(Name, LookupCtx, false/*LookInParentCtx*/)
200                  : IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/);
201  // Scan up the scope chain looking for a decl that matches this identifier
202  // that is in the appropriate namespace.  This search should not take long, as
203  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
204  for (; I != IdResolver.end(); ++I)
205    if ((*I)->getIdentifierNamespace() & NS)
206      return *I;
207
208  // If we didn't find a use of this identifier, and if the identifier
209  // corresponds to a compiler builtin, create the decl object for the builtin
210  // now, injecting it into translation unit scope, and return it.
211  if (NS & Decl::IDNS_Ordinary) {
212    IdentifierInfo *II = Name.getAsIdentifierInfo();
213    if (enableLazyBuiltinCreation && II &&
214        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
215      // If this is a builtin on this (or all) targets, create the decl.
216      if (unsigned BuiltinID = II->getBuiltinID())
217        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
218    }
219    if (getLangOptions().ObjC1 && II) {
220      // @interface and @compatibility_alias introduce typedef-like names.
221      // Unlike typedef's, they can only be introduced at file-scope (and are
222      // therefore not scoped decls). They can, however, be shadowed by
223      // other names in IDNS_Ordinary.
224      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
225      if (IDI != ObjCInterfaceDecls.end())
226        return IDI->second;
227      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
228      if (I != ObjCAliasDecls.end())
229        return I->second->getClassInterface();
230    }
231  }
232  return 0;
233}
234
235void Sema::InitBuiltinVaListType() {
236  if (!Context.getBuiltinVaListType().isNull())
237    return;
238
239  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
240  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
241  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
242  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
243}
244
245/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
246/// lazily create a decl for it.
247ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
248                                      Scope *S) {
249  Builtin::ID BID = (Builtin::ID)bid;
250
251  if (Context.BuiltinInfo.hasVAListUse(BID))
252    InitBuiltinVaListType();
253
254  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
255  FunctionDecl *New = FunctionDecl::Create(Context,
256                                           Context.getTranslationUnitDecl(),
257                                           SourceLocation(), II, R,
258                                           FunctionDecl::Extern, false, 0);
259
260  // Create Decl objects for each parameter, adding them to the
261  // FunctionDecl.
262  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
263    llvm::SmallVector<ParmVarDecl*, 16> Params;
264    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
265      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
266                                           FT->getArgType(i), VarDecl::None, 0,
267                                           0));
268    New->setParams(&Params[0], Params.size());
269  }
270
271
272
273  // TUScope is the translation-unit scope to insert this function into.
274  PushOnScopeChains(New, TUScope);
275  return New;
276}
277
278/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
279/// everything from the standard library is defined.
280NamespaceDecl *Sema::GetStdNamespace() {
281  if (!StdNamespace) {
282    DeclContext *Global = Context.getTranslationUnitDecl();
283    Decl *Std = LookupDecl(Ident_StdNs, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
284                           0, Global, /*enableLazyBuiltinCreation=*/false);
285    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
286  }
287  return StdNamespace;
288}
289
290/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
291/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
292/// situation, merging decls or emitting diagnostics as appropriate.
293///
294TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
295  // Allow multiple definitions for ObjC built-in typedefs.
296  // FIXME: Verify the underlying types are equivalent!
297  if (getLangOptions().ObjC1) {
298    const IdentifierInfo *typeIdent = New->getIdentifier();
299    if (typeIdent == Ident_id) {
300      Context.setObjCIdType(New);
301      return New;
302    } else if (typeIdent == Ident_Class) {
303      Context.setObjCClassType(New);
304      return New;
305    } else if (typeIdent == Ident_SEL) {
306      Context.setObjCSelType(New);
307      return New;
308    } else if (typeIdent == Ident_Protocol) {
309      Context.setObjCProtoType(New->getUnderlyingType());
310      return New;
311    }
312    // Fall through - the typedef name was not a builtin type.
313  }
314  // Verify the old decl was also a typedef.
315  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
316  if (!Old) {
317    Diag(New->getLocation(), diag::err_redefinition_different_kind,
318         New->getName());
319    Diag(OldD->getLocation(), diag::err_previous_definition);
320    return New;
321  }
322
323  // If the typedef types are not identical, reject them in all languages and
324  // with any extensions enabled.
325  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
326      Context.getCanonicalType(Old->getUnderlyingType()) !=
327      Context.getCanonicalType(New->getUnderlyingType())) {
328    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
329         New->getUnderlyingType().getAsString(),
330         Old->getUnderlyingType().getAsString());
331    Diag(Old->getLocation(), diag::err_previous_definition);
332    return Old;
333  }
334
335  if (getLangOptions().Microsoft) return New;
336
337  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
338  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
339  // *either* declaration is in a system header. The code below implements
340  // this adhoc compatibility rule. FIXME: The following code will not
341  // work properly when compiling ".i" files (containing preprocessed output).
342  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
343    SourceManager &SrcMgr = Context.getSourceManager();
344    if (SrcMgr.isInSystemHeader(Old->getLocation()))
345      return New;
346    if (SrcMgr.isInSystemHeader(New->getLocation()))
347      return New;
348  }
349
350  Diag(New->getLocation(), diag::err_redefinition, New->getName());
351  Diag(Old->getLocation(), diag::err_previous_definition);
352  return New;
353}
354
355/// DeclhasAttr - returns true if decl Declaration already has the target
356/// attribute.
357static bool DeclHasAttr(const Decl *decl, const Attr *target) {
358  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
359    if (attr->getKind() == target->getKind())
360      return true;
361
362  return false;
363}
364
365/// MergeAttributes - append attributes from the Old decl to the New one.
366static void MergeAttributes(Decl *New, Decl *Old) {
367  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
368
369  while (attr) {
370     tmp = attr;
371     attr = attr->getNext();
372
373    if (!DeclHasAttr(New, tmp)) {
374       New->addAttr(tmp);
375    } else {
376       tmp->setNext(0);
377       delete(tmp);
378    }
379  }
380
381  Old->invalidateAttrs();
382}
383
384/// MergeFunctionDecl - We just parsed a function 'New' from
385/// declarator D which has the same name and scope as a previous
386/// declaration 'Old'.  Figure out how to resolve this situation,
387/// merging decls or emitting diagnostics as appropriate.
388/// Redeclaration will be set true if this New is a redeclaration OldD.
389///
390/// In C++, New and Old must be declarations that are not
391/// overloaded. Use IsOverload to determine whether New and Old are
392/// overloaded, and to select the Old declaration that New should be
393/// merged with.
394FunctionDecl *
395Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
396  assert(!isa<OverloadedFunctionDecl>(OldD) &&
397         "Cannot merge with an overloaded function declaration");
398
399  Redeclaration = false;
400  // Verify the old decl was also a function.
401  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
402  if (!Old) {
403    Diag(New->getLocation(), diag::err_redefinition_different_kind,
404         New->getName());
405    Diag(OldD->getLocation(), diag::err_previous_definition);
406    return New;
407  }
408
409  // Determine whether the previous declaration was a definition,
410  // implicit declaration, or a declaration.
411  diag::kind PrevDiag;
412  if (Old->isThisDeclarationADefinition())
413    PrevDiag = diag::err_previous_definition;
414  else if (Old->isImplicit())
415    PrevDiag = diag::err_previous_implicit_declaration;
416  else
417    PrevDiag = diag::err_previous_declaration;
418
419  QualType OldQType = Context.getCanonicalType(Old->getType());
420  QualType NewQType = Context.getCanonicalType(New->getType());
421
422  if (getLangOptions().CPlusPlus) {
423    // (C++98 13.1p2):
424    //   Certain function declarations cannot be overloaded:
425    //     -- Function declarations that differ only in the return type
426    //        cannot be overloaded.
427    QualType OldReturnType
428      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
429    QualType NewReturnType
430      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
431    if (OldReturnType != NewReturnType) {
432      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
433      Diag(Old->getLocation(), PrevDiag);
434      return New;
435    }
436
437    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
438    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
439    if (OldMethod && NewMethod) {
440      //    -- Member function declarations with the same name and the
441      //       same parameter types cannot be overloaded if any of them
442      //       is a static member function declaration.
443      if (OldMethod->isStatic() || NewMethod->isStatic()) {
444        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
445        Diag(Old->getLocation(), PrevDiag);
446        return New;
447      }
448    }
449
450    // (C++98 8.3.5p3):
451    //   All declarations for a function shall agree exactly in both the
452    //   return type and the parameter-type-list.
453    if (OldQType == NewQType) {
454      // We have a redeclaration.
455      MergeAttributes(New, Old);
456      Redeclaration = true;
457      return MergeCXXFunctionDecl(New, Old);
458    }
459
460    // Fall through for conflicting redeclarations and redefinitions.
461  }
462
463  // C: Function types need to be compatible, not identical. This handles
464  // duplicate function decls like "void f(int); void f(enum X);" properly.
465  if (!getLangOptions().CPlusPlus &&
466      Context.typesAreCompatible(OldQType, NewQType)) {
467    MergeAttributes(New, Old);
468    Redeclaration = true;
469    return New;
470  }
471
472  // A function that has already been declared has been redeclared or defined
473  // with a different type- show appropriate diagnostic
474
475  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
476  // TODO: This is totally simplistic.  It should handle merging functions
477  // together etc, merging extern int X; int X; ...
478  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
479  Diag(Old->getLocation(), PrevDiag);
480  return New;
481}
482
483/// Predicate for C "tentative" external object definitions (C99 6.9.2).
484static bool isTentativeDefinition(VarDecl *VD) {
485  if (VD->isFileVarDecl())
486    return (!VD->getInit() &&
487            (VD->getStorageClass() == VarDecl::None ||
488             VD->getStorageClass() == VarDecl::Static));
489  return false;
490}
491
492/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
493/// when dealing with C "tentative" external object definitions (C99 6.9.2).
494void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
495  bool VDIsTentative = isTentativeDefinition(VD);
496  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
497
498  for (IdentifierResolver::iterator
499       I = IdResolver.begin(VD->getIdentifier(),
500                            VD->getDeclContext(), false/*LookInParentCtx*/),
501       E = IdResolver.end(); I != E; ++I) {
502    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
503      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
504
505      // Handle the following case:
506      //   int a[10];
507      //   int a[];   - the code below makes sure we set the correct type.
508      //   int a[11]; - this is an error, size isn't 10.
509      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
510          OldDecl->getType()->isConstantArrayType())
511        VD->setType(OldDecl->getType());
512
513      // Check for "tentative" definitions. We can't accomplish this in
514      // MergeVarDecl since the initializer hasn't been attached.
515      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
516        continue;
517
518      // Handle __private_extern__ just like extern.
519      if (OldDecl->getStorageClass() != VarDecl::Extern &&
520          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
521          VD->getStorageClass() != VarDecl::Extern &&
522          VD->getStorageClass() != VarDecl::PrivateExtern) {
523        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
524        Diag(OldDecl->getLocation(), diag::err_previous_definition);
525      }
526    }
527  }
528}
529
530/// MergeVarDecl - We just parsed a variable 'New' which has the same name
531/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
532/// situation, merging decls or emitting diagnostics as appropriate.
533///
534/// Tentative definition rules (C99 6.9.2p2) are checked by
535/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
536/// definitions here, since the initializer hasn't been attached.
537///
538VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
539  // Verify the old decl was also a variable.
540  VarDecl *Old = dyn_cast<VarDecl>(OldD);
541  if (!Old) {
542    Diag(New->getLocation(), diag::err_redefinition_different_kind,
543         New->getName());
544    Diag(OldD->getLocation(), diag::err_previous_definition);
545    return New;
546  }
547
548  MergeAttributes(New, Old);
549
550  // Verify the types match.
551  QualType OldCType = Context.getCanonicalType(Old->getType());
552  QualType NewCType = Context.getCanonicalType(New->getType());
553  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
554    Diag(New->getLocation(), diag::err_redefinition, New->getName());
555    Diag(Old->getLocation(), diag::err_previous_definition);
556    return New;
557  }
558  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
559  if (New->getStorageClass() == VarDecl::Static &&
560      (Old->getStorageClass() == VarDecl::None ||
561       Old->getStorageClass() == VarDecl::Extern)) {
562    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
563    Diag(Old->getLocation(), diag::err_previous_definition);
564    return New;
565  }
566  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
567  if (New->getStorageClass() != VarDecl::Static &&
568      Old->getStorageClass() == VarDecl::Static) {
569    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
570    Diag(Old->getLocation(), diag::err_previous_definition);
571    return New;
572  }
573  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
574  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
575    Diag(New->getLocation(), diag::err_redefinition, New->getName());
576    Diag(Old->getLocation(), diag::err_previous_definition);
577  }
578  return New;
579}
580
581/// CheckParmsForFunctionDef - Check that the parameters of the given
582/// function are appropriate for the definition of a function. This
583/// takes care of any checks that cannot be performed on the
584/// declaration itself, e.g., that the types of each of the function
585/// parameters are complete.
586bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
587  bool HasInvalidParm = false;
588  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590
591    // C99 6.7.5.3p4: the parameters in a parameter type list in a
592    // function declarator that is part of a function definition of
593    // that function shall not have incomplete type.
594    if (Param->getType()->isIncompleteType() &&
595        !Param->isInvalidDecl()) {
596      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
597           Param->getType().getAsString());
598      Param->setInvalidDecl();
599      HasInvalidParm = true;
600    }
601  }
602
603  return HasInvalidParm;
604}
605
606/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
607/// no declarator (e.g. "struct foo;") is parsed.
608Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
609  // TODO: emit error on 'int;' or 'const enum foo;'.
610  // TODO: emit error on 'typedef int;'
611  // if (!DS.isMissingDeclaratorOk()) Diag(...);
612
613  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
614}
615
616bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
617  // Get the type before calling CheckSingleAssignmentConstraints(), since
618  // it can promote the expression.
619  QualType InitType = Init->getType();
620
621  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
622  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
623                                  InitType, Init, "initializing");
624}
625
626bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
627  const ArrayType *AT = Context.getAsArrayType(DeclT);
628
629  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
630    // C99 6.7.8p14. We have an array of character type with unknown size
631    // being initialized to a string literal.
632    llvm::APSInt ConstVal(32);
633    ConstVal = strLiteral->getByteLength() + 1;
634    // Return a new array type (C99 6.7.8p22).
635    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
636                                         ArrayType::Normal, 0);
637  } else {
638    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
639    // C99 6.7.8p14. We have an array of character type with known size.
640    // FIXME: Avoid truncation for 64-bit length strings.
641    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
642      Diag(strLiteral->getSourceRange().getBegin(),
643           diag::warn_initializer_string_for_char_array_too_long,
644           strLiteral->getSourceRange());
645  }
646  // Set type from "char *" to "constant array of char".
647  strLiteral->setType(DeclT);
648  // For now, we always return false (meaning success).
649  return false;
650}
651
652StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
653  const ArrayType *AT = Context.getAsArrayType(DeclType);
654  if (AT && AT->getElementType()->isCharType()) {
655    return dyn_cast<StringLiteral>(Init);
656  }
657  return 0;
658}
659
660bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
661                                 SourceLocation InitLoc,
662                                 std::string InitEntity) {
663  // C++ [dcl.init.ref]p1:
664  //   A variable declared to be a T&, that is “reference to type T”
665  //   (8.3.2), shall be initialized by an object, or function, of
666  //   type T or by an object that can be converted into a T.
667  if (DeclType->isReferenceType())
668    return CheckReferenceInit(Init, DeclType);
669
670  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
671  // of unknown size ("[]") or an object type that is not a variable array type.
672  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
673    return Diag(InitLoc,
674                diag::err_variable_object_no_init,
675                VAT->getSizeExpr()->getSourceRange());
676
677  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
678  if (!InitList) {
679    // FIXME: Handle wide strings
680    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
681      return CheckStringLiteralInit(strLiteral, DeclType);
682
683    // C++ [dcl.init]p14:
684    //   -- If the destination type is a (possibly cv-qualified) class
685    //      type:
686    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
687      QualType DeclTypeC = Context.getCanonicalType(DeclType);
688      QualType InitTypeC = Context.getCanonicalType(Init->getType());
689
690      //   -- If the initialization is direct-initialization, or if it is
691      //      copy-initialization where the cv-unqualified version of the
692      //      source type is the same class as, or a derived class of, the
693      //      class of the destination, constructors are considered.
694      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
695          IsDerivedFrom(InitTypeC, DeclTypeC)) {
696        CXXConstructorDecl *Constructor
697          = PerformInitializationByConstructor(DeclType, &Init, 1,
698                                               InitLoc, Init->getSourceRange(),
699                                               InitEntity, IK_Copy);
700        return Constructor == 0;
701      }
702
703      //   -- Otherwise (i.e., for the remaining copy-initialization
704      //      cases), user-defined conversion sequences that can
705      //      convert from the source type to the destination type or
706      //      (when a conversion function is used) to a derived class
707      //      thereof are enumerated as described in 13.3.1.4, and the
708      //      best one is chosen through overload resolution
709      //      (13.3). If the conversion cannot be done or is
710      //      ambiguous, the initialization is ill-formed. The
711      //      function selected is called with the initializer
712      //      expression as its argument; if the function is a
713      //      constructor, the call initializes a temporary of the
714      //      destination type.
715      // FIXME: We're pretending to do copy elision here; return to
716      // this when we have ASTs for such things.
717      if (PerformImplicitConversion(Init, DeclType))
718        return Diag(InitLoc,
719                    diag::err_typecheck_convert_incompatible,
720                    DeclType.getAsString(), InitEntity,
721                    "initializing",
722                    Init->getSourceRange());
723      else
724        return false;
725    }
726
727    // C99 6.7.8p16.
728    if (DeclType->isArrayType())
729      return Diag(Init->getLocStart(),
730                  diag::err_array_init_list_required,
731                  Init->getSourceRange());
732
733    return CheckSingleInitializer(Init, DeclType);
734  } else if (getLangOptions().CPlusPlus) {
735    // C++ [dcl.init]p14:
736    //   [...] If the class is an aggregate (8.5.1), and the initializer
737    //   is a brace-enclosed list, see 8.5.1.
738    //
739    // Note: 8.5.1 is handled below; here, we diagnose the case where
740    // we have an initializer list and a destination type that is not
741    // an aggregate.
742    // FIXME: In C++0x, this is yet another form of initialization.
743    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
744      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
745      if (!ClassDecl->isAggregate())
746        return Diag(InitLoc,
747                    diag::err_init_non_aggr_init_list,
748                    DeclType.getAsString(),
749                    Init->getSourceRange());
750    }
751  }
752
753  InitListChecker CheckInitList(this, InitList, DeclType);
754  return CheckInitList.HadError();
755}
756
757Sema::DeclTy *
758Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
759  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
760  IdentifierInfo *II = D.getIdentifier();
761
762  // All of these full declarators require an identifier.  If it doesn't have
763  // one, the ParsedFreeStandingDeclSpec action should be used.
764  if (II == 0) {
765    if (!D.getInvalidType())  // Reject this if we think it is valid.
766      Diag(D.getDeclSpec().getSourceRange().getBegin(),
767           diag::err_declarator_need_ident,
768           D.getDeclSpec().getSourceRange(), D.getSourceRange());
769    return 0;
770  }
771
772  // The scope passed in may not be a decl scope.  Zip up the scope tree until
773  // we find one that is.
774  while ((S->getFlags() & Scope::DeclScope) == 0)
775    S = S->getParent();
776
777  DeclContext *DC;
778  Decl *PrevDecl;
779  ScopedDecl *New;
780  bool InvalidDecl = false;
781
782  // See if this is a redefinition of a variable in the same scope.
783  if (!D.getCXXScopeSpec().isSet()) {
784    DC = CurContext;
785    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
786  } else { // Something like "int foo::x;"
787    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
788    PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S, DC);
789
790    // C++ 7.3.1.2p2:
791    // Members (including explicit specializations of templates) of a named
792    // namespace can also be defined outside that namespace by explicit
793    // qualification of the name being defined, provided that the entity being
794    // defined was already declared in the namespace and the definition appears
795    // after the point of declaration in a namespace that encloses the
796    // declarations namespace.
797    //
798    if (PrevDecl == 0) {
799      // No previous declaration in the qualifying scope.
800      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member,
801           II->getName(), D.getCXXScopeSpec().getRange());
802    } else if (!CurContext->Encloses(DC)) {
803      // The qualifying scope doesn't enclose the original declaration.
804      // Emit diagnostic based on current scope.
805      SourceLocation L = D.getIdentifierLoc();
806      SourceRange R = D.getCXXScopeSpec().getRange();
807      if (isa<FunctionDecl>(CurContext)) {
808        Diag(L, diag::err_invalid_declarator_in_function, II->getName(), R);
809      } else {
810      Diag(L, diag::err_invalid_declarator_scope, II->getName(),
811           cast<NamedDecl>(DC)->getName(), R);
812      }
813    }
814  }
815
816  // In C++, the previous declaration we find might be a tag type
817  // (class or enum). In this case, the new declaration will hide the
818  // tag type.
819  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
820    PrevDecl = 0;
821
822  QualType R = GetTypeForDeclarator(D, S);
823  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
824
825  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
826    // Check that there are no default arguments (C++ only).
827    if (getLangOptions().CPlusPlus)
828      CheckExtraCXXDefaultArguments(D);
829
830    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
831    if (!NewTD) return 0;
832
833    // Handle attributes prior to checking for duplicates in MergeVarDecl
834    ProcessDeclAttributes(NewTD, D);
835    // Merge the decl with the existing one if appropriate. If the decl is
836    // in an outer scope, it isn't the same thing.
837    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
838      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
839      if (NewTD == 0) return 0;
840    }
841    New = NewTD;
842    if (S->getFnParent() == 0) {
843      // C99 6.7.7p2: If a typedef name specifies a variably modified type
844      // then it shall have block scope.
845      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
846        // FIXME: Diagnostic needs to be fixed.
847        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
848        InvalidDecl = true;
849      }
850    }
851  } else if (R.getTypePtr()->isFunctionType()) {
852    FunctionDecl::StorageClass SC = FunctionDecl::None;
853    switch (D.getDeclSpec().getStorageClassSpec()) {
854      default: assert(0 && "Unknown storage class!");
855      case DeclSpec::SCS_auto:
856      case DeclSpec::SCS_register:
857      case DeclSpec::SCS_mutable:
858        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
859             R.getAsString());
860        InvalidDecl = true;
861        break;
862      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
863      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
864      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
865      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
866    }
867
868    bool isInline = D.getDeclSpec().isInlineSpecified();
869    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
870    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
871
872    FunctionDecl *NewFD;
873    if (D.getKind() == Declarator::DK_Constructor) {
874      // This is a C++ constructor declaration.
875      assert(DC->isCXXRecord() &&
876             "Constructors can only be declared in a member context");
877
878      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
879
880      // Create the new declaration
881      QualType ClassType = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
882      ClassType = Context.getCanonicalType(ClassType);
883      DeclarationName ConName
884        = Context.DeclarationNames.getCXXConstructorName(ClassType);
885      NewFD = CXXConstructorDecl::Create(Context,
886                                         cast<CXXRecordDecl>(DC),
887                                         D.getIdentifierLoc(), ConName, R,
888                                         isExplicit, isInline,
889                                         /*isImplicitlyDeclared=*/false);
890
891      if (isInvalidDecl)
892        NewFD->setInvalidDecl();
893    } else if (D.getKind() == Declarator::DK_Destructor) {
894      // This is a C++ destructor declaration.
895      if (DC->isCXXRecord()) {
896        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
897
898        QualType ClassType = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
899        ClassType = Context.getCanonicalType(ClassType);
900        DeclarationName DesName
901          = Context.DeclarationNames.getCXXDestructorName(ClassType);
902
903        NewFD = CXXDestructorDecl::Create(Context,
904                                          cast<CXXRecordDecl>(DC),
905                                          D.getIdentifierLoc(), DesName, R,
906                                          isInline,
907                                          /*isImplicitlyDeclared=*/false);
908
909        if (isInvalidDecl)
910          NewFD->setInvalidDecl();
911      } else {
912        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
913        // Create a FunctionDecl to satisfy the function definition parsing
914        // code path.
915        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
916                                     II, R, SC, isInline, LastDeclarator,
917                                     // FIXME: Move to DeclGroup...
918                                   D.getDeclSpec().getSourceRange().getBegin());
919        NewFD->setInvalidDecl();
920      }
921    } else if (D.getKind() == Declarator::DK_Conversion) {
922      if (!DC->isCXXRecord()) {
923        Diag(D.getIdentifierLoc(),
924             diag::err_conv_function_not_member);
925        return 0;
926      } else {
927        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
928
929        QualType ConvType = R->getAsFunctionType()->getResultType();
930        ConvType = Context.getCanonicalType(ConvType);
931        DeclarationName ConvName
932          = Context.DeclarationNames.getCXXConversionFunctionName(ConvType);
933
934        NewFD = CXXConversionDecl::Create(Context,
935                                          cast<CXXRecordDecl>(DC),
936                                          D.getIdentifierLoc(), ConvName, R,
937                                          isInline, isExplicit);
938
939        if (isInvalidDecl)
940          NewFD->setInvalidDecl();
941      }
942    } else if (DC->isCXXRecord()) {
943      // This is a C++ method declaration.
944      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
945                                    D.getIdentifierLoc(), II, R,
946                                    (SC == FunctionDecl::Static), isInline,
947                                    LastDeclarator);
948    } else {
949      NewFD = FunctionDecl::Create(Context, DC,
950                                   D.getIdentifierLoc(),
951                                   II, R, SC, isInline, LastDeclarator,
952                                   // FIXME: Move to DeclGroup...
953                                   D.getDeclSpec().getSourceRange().getBegin());
954    }
955    // Handle attributes.
956    ProcessDeclAttributes(NewFD, D);
957
958    // Handle GNU asm-label extension (encoded as an attribute).
959    if (Expr *E = (Expr*) D.getAsmLabel()) {
960      // The parser guarantees this is a string.
961      StringLiteral *SE = cast<StringLiteral>(E);
962      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
963                                                  SE->getByteLength())));
964    }
965
966    // Copy the parameter declarations from the declarator D to
967    // the function declaration NewFD, if they are available.
968    if (D.getNumTypeObjects() > 0) {
969      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
970
971      // Create Decl objects for each parameter, adding them to the
972      // FunctionDecl.
973      llvm::SmallVector<ParmVarDecl*, 16> Params;
974
975      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
976      // function that takes no arguments, not a function that takes a
977      // single void argument.
978      // We let through "const void" here because Sema::GetTypeForDeclarator
979      // already checks for that case.
980      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
981          FTI.ArgInfo[0].Param &&
982          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
983        // empty arg list, don't push any params.
984        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
985
986        // In C++, the empty parameter-type-list must be spelled "void"; a
987        // typedef of void is not permitted.
988        if (getLangOptions().CPlusPlus &&
989            Param->getType().getUnqualifiedType() != Context.VoidTy) {
990          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
991        }
992      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
993        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
994          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
995      }
996
997      NewFD->setParams(&Params[0], Params.size());
998    } else if (R->getAsTypedefType()) {
999      // When we're declaring a function with a typedef, as in the
1000      // following example, we'll need to synthesize (unnamed)
1001      // parameters for use in the declaration.
1002      //
1003      // @code
1004      // typedef void fn(int);
1005      // fn f;
1006      // @endcode
1007      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1008      if (!FT) {
1009        // This is a typedef of a function with no prototype, so we
1010        // don't need to do anything.
1011      } else if ((FT->getNumArgs() == 0) ||
1012          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1013           FT->getArgType(0)->isVoidType())) {
1014        // This is a zero-argument function. We don't need to do anything.
1015      } else {
1016        // Synthesize a parameter for each argument type.
1017        llvm::SmallVector<ParmVarDecl*, 16> Params;
1018        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1019             ArgType != FT->arg_type_end(); ++ArgType) {
1020          Params.push_back(ParmVarDecl::Create(Context, DC,
1021                                               SourceLocation(), 0,
1022                                               *ArgType, VarDecl::None,
1023                                               0, 0));
1024        }
1025
1026        NewFD->setParams(&Params[0], Params.size());
1027      }
1028    }
1029
1030    // C++ constructors and destructors are handled by separate
1031    // routines, since they don't require any declaration merging (C++
1032    // [class.mfct]p2) and they aren't ever pushed into scope, because
1033    // they can't be found by name lookup anyway (C++ [class.ctor]p2).
1034    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1035      return ActOnConstructorDeclarator(Constructor);
1036    else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
1037      return ActOnDestructorDeclarator(Destructor);
1038
1039    // Extra checking for conversion functions, including recording
1040    // the conversion function in its class.
1041    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1042      ActOnConversionDeclarator(Conversion);
1043
1044    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1045    if (NewFD->isOverloadedOperator() &&
1046        CheckOverloadedOperatorDeclaration(NewFD))
1047      NewFD->setInvalidDecl();
1048
1049    // Merge the decl with the existing one if appropriate. Since C functions
1050    // are in a flat namespace, make sure we consider decls in outer scopes.
1051    if (PrevDecl &&
1052        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1053      bool Redeclaration = false;
1054
1055      // If C++, determine whether NewFD is an overload of PrevDecl or
1056      // a declaration that requires merging. If it's an overload,
1057      // there's no more work to do here; we'll just add the new
1058      // function to the scope.
1059      OverloadedFunctionDecl::function_iterator MatchedDecl;
1060      if (!getLangOptions().CPlusPlus ||
1061          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1062        Decl *OldDecl = PrevDecl;
1063
1064        // If PrevDecl was an overloaded function, extract the
1065        // FunctionDecl that matched.
1066        if (isa<OverloadedFunctionDecl>(PrevDecl))
1067          OldDecl = *MatchedDecl;
1068
1069        // NewFD and PrevDecl represent declarations that need to be
1070        // merged.
1071        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1072
1073        if (NewFD == 0) return 0;
1074        if (Redeclaration) {
1075          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1076
1077          if (OldDecl == PrevDecl) {
1078            // Remove the name binding for the previous
1079            // declaration. We'll add the binding back later, but then
1080            // it will refer to the new declaration (which will
1081            // contain more information).
1082            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1083          } else {
1084            // We need to update the OverloadedFunctionDecl with the
1085            // latest declaration of this function, so that name
1086            // lookup will always refer to the latest declaration of
1087            // this function.
1088            *MatchedDecl = NewFD;
1089
1090            // Add the redeclaration to the current scope, since we'll
1091            // be skipping PushOnScopeChains.
1092            S->AddDecl(NewFD);
1093
1094            return NewFD;
1095          }
1096        }
1097      }
1098    }
1099    New = NewFD;
1100
1101    // In C++, check default arguments now that we have merged decls.
1102    if (getLangOptions().CPlusPlus)
1103      CheckCXXDefaultArguments(NewFD);
1104  } else {
1105    // Check that there are no default arguments (C++ only).
1106    if (getLangOptions().CPlusPlus)
1107      CheckExtraCXXDefaultArguments(D);
1108
1109    if (R.getTypePtr()->isObjCInterfaceType()) {
1110      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
1111           D.getIdentifier()->getName());
1112      InvalidDecl = true;
1113    }
1114
1115    VarDecl *NewVD;
1116    VarDecl::StorageClass SC;
1117    switch (D.getDeclSpec().getStorageClassSpec()) {
1118    default: assert(0 && "Unknown storage class!");
1119    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1120    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1121    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1122    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1123    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1124    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1125    case DeclSpec::SCS_mutable:
1126      // mutable can only appear on non-static class members, so it's always
1127      // an error here
1128      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1129      InvalidDecl = true;
1130    }
1131    if (DC->isCXXRecord()) {
1132      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1133      // This is a static data member for a C++ class.
1134      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1135                                      D.getIdentifierLoc(), II,
1136                                      R, LastDeclarator);
1137    } else {
1138      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1139      if (S->getFnParent() == 0) {
1140        // C99 6.9p2: The storage-class specifiers auto and register shall not
1141        // appear in the declaration specifiers in an external declaration.
1142        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1143          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1144               R.getAsString());
1145          InvalidDecl = true;
1146        }
1147      }
1148      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1149                              II, R, SC, LastDeclarator,
1150                              // FIXME: Move to DeclGroup...
1151                              D.getDeclSpec().getSourceRange().getBegin());
1152      NewVD->setThreadSpecified(ThreadSpecified);
1153    }
1154    // Handle attributes prior to checking for duplicates in MergeVarDecl
1155    ProcessDeclAttributes(NewVD, D);
1156
1157    // Handle GNU asm-label extension (encoded as an attribute).
1158    if (Expr *E = (Expr*) D.getAsmLabel()) {
1159      // The parser guarantees this is a string.
1160      StringLiteral *SE = cast<StringLiteral>(E);
1161      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1162                                                  SE->getByteLength())));
1163    }
1164
1165    // Emit an error if an address space was applied to decl with local storage.
1166    // This includes arrays of objects with address space qualifiers, but not
1167    // automatic variables that point to other address spaces.
1168    // ISO/IEC TR 18037 S5.1.2
1169    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1170      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1171      InvalidDecl = true;
1172    }
1173    // Merge the decl with the existing one if appropriate. If the decl is
1174    // in an outer scope, it isn't the same thing.
1175    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1176      NewVD = MergeVarDecl(NewVD, PrevDecl);
1177      if (NewVD == 0) return 0;
1178    }
1179    New = NewVD;
1180  }
1181
1182  // Set the lexical context. If the declarator has a C++ scope specifier, the
1183  // lexical context will be different from the semantic context.
1184  New->setLexicalDeclContext(CurContext);
1185
1186  // If this has an identifier, add it to the scope stack.
1187  if (II)
1188    PushOnScopeChains(New, S);
1189  // If any semantic error occurred, mark the decl as invalid.
1190  if (D.getInvalidType() || InvalidDecl)
1191    New->setInvalidDecl();
1192
1193  return New;
1194}
1195
1196void Sema::InitializerElementNotConstant(const Expr *Init) {
1197  Diag(Init->getExprLoc(),
1198       diag::err_init_element_not_constant, Init->getSourceRange());
1199}
1200
1201bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1202  switch (Init->getStmtClass()) {
1203  default:
1204    InitializerElementNotConstant(Init);
1205    return true;
1206  case Expr::ParenExprClass: {
1207    const ParenExpr* PE = cast<ParenExpr>(Init);
1208    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1209  }
1210  case Expr::CompoundLiteralExprClass:
1211    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1212  case Expr::DeclRefExprClass: {
1213    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1214    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1215      if (VD->hasGlobalStorage())
1216        return false;
1217      InitializerElementNotConstant(Init);
1218      return true;
1219    }
1220    if (isa<FunctionDecl>(D))
1221      return false;
1222    InitializerElementNotConstant(Init);
1223    return true;
1224  }
1225  case Expr::MemberExprClass: {
1226    const MemberExpr *M = cast<MemberExpr>(Init);
1227    if (M->isArrow())
1228      return CheckAddressConstantExpression(M->getBase());
1229    return CheckAddressConstantExpressionLValue(M->getBase());
1230  }
1231  case Expr::ArraySubscriptExprClass: {
1232    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1233    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1234    return CheckAddressConstantExpression(ASE->getBase()) ||
1235           CheckArithmeticConstantExpression(ASE->getIdx());
1236  }
1237  case Expr::StringLiteralClass:
1238  case Expr::PredefinedExprClass:
1239    return false;
1240  case Expr::UnaryOperatorClass: {
1241    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1242
1243    // C99 6.6p9
1244    if (Exp->getOpcode() == UnaryOperator::Deref)
1245      return CheckAddressConstantExpression(Exp->getSubExpr());
1246
1247    InitializerElementNotConstant(Init);
1248    return true;
1249  }
1250  }
1251}
1252
1253bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1254  switch (Init->getStmtClass()) {
1255  default:
1256    InitializerElementNotConstant(Init);
1257    return true;
1258  case Expr::ParenExprClass:
1259    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1260  case Expr::StringLiteralClass:
1261  case Expr::ObjCStringLiteralClass:
1262    return false;
1263  case Expr::CallExprClass:
1264  case Expr::CXXOperatorCallExprClass:
1265    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1266    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1267           Builtin::BI__builtin___CFStringMakeConstantString)
1268      return false;
1269
1270    InitializerElementNotConstant(Init);
1271    return true;
1272
1273  case Expr::UnaryOperatorClass: {
1274    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1275
1276    // C99 6.6p9
1277    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1278      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1279
1280    if (Exp->getOpcode() == UnaryOperator::Extension)
1281      return CheckAddressConstantExpression(Exp->getSubExpr());
1282
1283    InitializerElementNotConstant(Init);
1284    return true;
1285  }
1286  case Expr::BinaryOperatorClass: {
1287    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1288    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1289
1290    Expr *PExp = Exp->getLHS();
1291    Expr *IExp = Exp->getRHS();
1292    if (IExp->getType()->isPointerType())
1293      std::swap(PExp, IExp);
1294
1295    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1296    return CheckAddressConstantExpression(PExp) ||
1297           CheckArithmeticConstantExpression(IExp);
1298  }
1299  case Expr::ImplicitCastExprClass:
1300  case Expr::CStyleCastExprClass: {
1301    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1302    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1303      // Check for implicit promotion
1304      if (SubExpr->getType()->isFunctionType() ||
1305          SubExpr->getType()->isArrayType())
1306        return CheckAddressConstantExpressionLValue(SubExpr);
1307    }
1308
1309    // Check for pointer->pointer cast
1310    if (SubExpr->getType()->isPointerType())
1311      return CheckAddressConstantExpression(SubExpr);
1312
1313    if (SubExpr->getType()->isIntegralType()) {
1314      // Check for the special-case of a pointer->int->pointer cast;
1315      // this isn't standard, but some code requires it. See
1316      // PR2720 for an example.
1317      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1318        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1319          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1320          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1321          if (IntWidth >= PointerWidth) {
1322            return CheckAddressConstantExpression(SubCast->getSubExpr());
1323          }
1324        }
1325      }
1326    }
1327    if (SubExpr->getType()->isArithmeticType()) {
1328      return CheckArithmeticConstantExpression(SubExpr);
1329    }
1330
1331    InitializerElementNotConstant(Init);
1332    return true;
1333  }
1334  case Expr::ConditionalOperatorClass: {
1335    // FIXME: Should we pedwarn here?
1336    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1337    if (!Exp->getCond()->getType()->isArithmeticType()) {
1338      InitializerElementNotConstant(Init);
1339      return true;
1340    }
1341    if (CheckArithmeticConstantExpression(Exp->getCond()))
1342      return true;
1343    if (Exp->getLHS() &&
1344        CheckAddressConstantExpression(Exp->getLHS()))
1345      return true;
1346    return CheckAddressConstantExpression(Exp->getRHS());
1347  }
1348  case Expr::AddrLabelExprClass:
1349    return false;
1350  }
1351}
1352
1353static const Expr* FindExpressionBaseAddress(const Expr* E);
1354
1355static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1356  switch (E->getStmtClass()) {
1357  default:
1358    return E;
1359  case Expr::ParenExprClass: {
1360    const ParenExpr* PE = cast<ParenExpr>(E);
1361    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1362  }
1363  case Expr::MemberExprClass: {
1364    const MemberExpr *M = cast<MemberExpr>(E);
1365    if (M->isArrow())
1366      return FindExpressionBaseAddress(M->getBase());
1367    return FindExpressionBaseAddressLValue(M->getBase());
1368  }
1369  case Expr::ArraySubscriptExprClass: {
1370    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1371    return FindExpressionBaseAddress(ASE->getBase());
1372  }
1373  case Expr::UnaryOperatorClass: {
1374    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1375
1376    if (Exp->getOpcode() == UnaryOperator::Deref)
1377      return FindExpressionBaseAddress(Exp->getSubExpr());
1378
1379    return E;
1380  }
1381  }
1382}
1383
1384static const Expr* FindExpressionBaseAddress(const Expr* E) {
1385  switch (E->getStmtClass()) {
1386  default:
1387    return E;
1388  case Expr::ParenExprClass: {
1389    const ParenExpr* PE = cast<ParenExpr>(E);
1390    return FindExpressionBaseAddress(PE->getSubExpr());
1391  }
1392  case Expr::UnaryOperatorClass: {
1393    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1394
1395    // C99 6.6p9
1396    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1397      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1398
1399    if (Exp->getOpcode() == UnaryOperator::Extension)
1400      return FindExpressionBaseAddress(Exp->getSubExpr());
1401
1402    return E;
1403  }
1404  case Expr::BinaryOperatorClass: {
1405    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1406
1407    Expr *PExp = Exp->getLHS();
1408    Expr *IExp = Exp->getRHS();
1409    if (IExp->getType()->isPointerType())
1410      std::swap(PExp, IExp);
1411
1412    return FindExpressionBaseAddress(PExp);
1413  }
1414  case Expr::ImplicitCastExprClass: {
1415    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1416
1417    // Check for implicit promotion
1418    if (SubExpr->getType()->isFunctionType() ||
1419        SubExpr->getType()->isArrayType())
1420      return FindExpressionBaseAddressLValue(SubExpr);
1421
1422    // Check for pointer->pointer cast
1423    if (SubExpr->getType()->isPointerType())
1424      return FindExpressionBaseAddress(SubExpr);
1425
1426    // We assume that we have an arithmetic expression here;
1427    // if we don't, we'll figure it out later
1428    return 0;
1429  }
1430  case Expr::CStyleCastExprClass: {
1431    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1432
1433    // Check for pointer->pointer cast
1434    if (SubExpr->getType()->isPointerType())
1435      return FindExpressionBaseAddress(SubExpr);
1436
1437    // We assume that we have an arithmetic expression here;
1438    // if we don't, we'll figure it out later
1439    return 0;
1440  }
1441  }
1442}
1443
1444bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1445  switch (Init->getStmtClass()) {
1446  default:
1447    InitializerElementNotConstant(Init);
1448    return true;
1449  case Expr::ParenExprClass: {
1450    const ParenExpr* PE = cast<ParenExpr>(Init);
1451    return CheckArithmeticConstantExpression(PE->getSubExpr());
1452  }
1453  case Expr::FloatingLiteralClass:
1454  case Expr::IntegerLiteralClass:
1455  case Expr::CharacterLiteralClass:
1456  case Expr::ImaginaryLiteralClass:
1457  case Expr::TypesCompatibleExprClass:
1458  case Expr::CXXBoolLiteralExprClass:
1459    return false;
1460  case Expr::CallExprClass:
1461  case Expr::CXXOperatorCallExprClass: {
1462    const CallExpr *CE = cast<CallExpr>(Init);
1463
1464    // Allow any constant foldable calls to builtins.
1465    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1466      return false;
1467
1468    InitializerElementNotConstant(Init);
1469    return true;
1470  }
1471  case Expr::DeclRefExprClass: {
1472    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1473    if (isa<EnumConstantDecl>(D))
1474      return false;
1475    InitializerElementNotConstant(Init);
1476    return true;
1477  }
1478  case Expr::CompoundLiteralExprClass:
1479    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1480    // but vectors are allowed to be magic.
1481    if (Init->getType()->isVectorType())
1482      return false;
1483    InitializerElementNotConstant(Init);
1484    return true;
1485  case Expr::UnaryOperatorClass: {
1486    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1487
1488    switch (Exp->getOpcode()) {
1489    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1490    // See C99 6.6p3.
1491    default:
1492      InitializerElementNotConstant(Init);
1493      return true;
1494    case UnaryOperator::OffsetOf:
1495      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1496        return false;
1497      InitializerElementNotConstant(Init);
1498      return true;
1499    case UnaryOperator::Extension:
1500    case UnaryOperator::LNot:
1501    case UnaryOperator::Plus:
1502    case UnaryOperator::Minus:
1503    case UnaryOperator::Not:
1504      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1505    }
1506  }
1507  case Expr::SizeOfAlignOfExprClass: {
1508    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1509    // Special check for void types, which are allowed as an extension
1510    if (Exp->getTypeOfArgument()->isVoidType())
1511      return false;
1512    // alignof always evaluates to a constant.
1513    // FIXME: is sizeof(int[3.0]) a constant expression?
1514    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1515      InitializerElementNotConstant(Init);
1516      return true;
1517    }
1518    return false;
1519  }
1520  case Expr::BinaryOperatorClass: {
1521    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1522
1523    if (Exp->getLHS()->getType()->isArithmeticType() &&
1524        Exp->getRHS()->getType()->isArithmeticType()) {
1525      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1526             CheckArithmeticConstantExpression(Exp->getRHS());
1527    }
1528
1529    if (Exp->getLHS()->getType()->isPointerType() &&
1530        Exp->getRHS()->getType()->isPointerType()) {
1531      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1532      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1533
1534      // Only allow a null (constant integer) base; we could
1535      // allow some additional cases if necessary, but this
1536      // is sufficient to cover offsetof-like constructs.
1537      if (!LHSBase && !RHSBase) {
1538        return CheckAddressConstantExpression(Exp->getLHS()) ||
1539               CheckAddressConstantExpression(Exp->getRHS());
1540      }
1541    }
1542
1543    InitializerElementNotConstant(Init);
1544    return true;
1545  }
1546  case Expr::ImplicitCastExprClass:
1547  case Expr::CStyleCastExprClass: {
1548    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1549    if (SubExpr->getType()->isArithmeticType())
1550      return CheckArithmeticConstantExpression(SubExpr);
1551
1552    if (SubExpr->getType()->isPointerType()) {
1553      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1554      // If the pointer has a null base, this is an offsetof-like construct
1555      if (!Base)
1556        return CheckAddressConstantExpression(SubExpr);
1557    }
1558
1559    InitializerElementNotConstant(Init);
1560    return true;
1561  }
1562  case Expr::ConditionalOperatorClass: {
1563    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1564
1565    // If GNU extensions are disabled, we require all operands to be arithmetic
1566    // constant expressions.
1567    if (getLangOptions().NoExtensions) {
1568      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1569          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1570             CheckArithmeticConstantExpression(Exp->getRHS());
1571    }
1572
1573    // Otherwise, we have to emulate some of the behavior of fold here.
1574    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1575    // because it can constant fold things away.  To retain compatibility with
1576    // GCC code, we see if we can fold the condition to a constant (which we
1577    // should always be able to do in theory).  If so, we only require the
1578    // specified arm of the conditional to be a constant.  This is a horrible
1579    // hack, but is require by real world code that uses __builtin_constant_p.
1580    APValue Val;
1581    if (!Exp->getCond()->Evaluate(Val, Context)) {
1582      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1583      // won't be able to either.  Use it to emit the diagnostic though.
1584      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1585      assert(Res && "Evaluate couldn't evaluate this constant?");
1586      return Res;
1587    }
1588
1589    // Verify that the side following the condition is also a constant.
1590    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1591    if (Val.getInt() == 0)
1592      std::swap(TrueSide, FalseSide);
1593
1594    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1595      return true;
1596
1597    // Okay, the evaluated side evaluates to a constant, so we accept this.
1598    // Check to see if the other side is obviously not a constant.  If so,
1599    // emit a warning that this is a GNU extension.
1600    if (FalseSide && !FalseSide->isEvaluatable(Context))
1601      Diag(Init->getExprLoc(),
1602           diag::ext_typecheck_expression_not_constant_but_accepted,
1603           FalseSide->getSourceRange());
1604    return false;
1605  }
1606  }
1607}
1608
1609bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1610  Init = Init->IgnoreParens();
1611
1612  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1613  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1614    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1615
1616  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1617    return CheckForConstantInitializer(e->getInitializer(), DclT);
1618
1619  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1620    unsigned numInits = Exp->getNumInits();
1621    for (unsigned i = 0; i < numInits; i++) {
1622      // FIXME: Need to get the type of the declaration for C++,
1623      // because it could be a reference?
1624      if (CheckForConstantInitializer(Exp->getInit(i),
1625                                      Exp->getInit(i)->getType()))
1626        return true;
1627    }
1628    return false;
1629  }
1630
1631  if (Init->isNullPointerConstant(Context))
1632    return false;
1633  if (Init->getType()->isArithmeticType()) {
1634    QualType InitTy = Context.getCanonicalType(Init->getType())
1635                             .getUnqualifiedType();
1636    if (InitTy == Context.BoolTy) {
1637      // Special handling for pointers implicitly cast to bool;
1638      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1639      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1640        Expr* SubE = ICE->getSubExpr();
1641        if (SubE->getType()->isPointerType() ||
1642            SubE->getType()->isArrayType() ||
1643            SubE->getType()->isFunctionType()) {
1644          return CheckAddressConstantExpression(Init);
1645        }
1646      }
1647    } else if (InitTy->isIntegralType()) {
1648      Expr* SubE = 0;
1649      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1650        SubE = CE->getSubExpr();
1651      // Special check for pointer cast to int; we allow as an extension
1652      // an address constant cast to an integer if the integer
1653      // is of an appropriate width (this sort of code is apparently used
1654      // in some places).
1655      // FIXME: Add pedwarn?
1656      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1657      if (SubE && (SubE->getType()->isPointerType() ||
1658                   SubE->getType()->isArrayType() ||
1659                   SubE->getType()->isFunctionType())) {
1660        unsigned IntWidth = Context.getTypeSize(Init->getType());
1661        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1662        if (IntWidth >= PointerWidth)
1663          return CheckAddressConstantExpression(Init);
1664      }
1665    }
1666
1667    return CheckArithmeticConstantExpression(Init);
1668  }
1669
1670  if (Init->getType()->isPointerType())
1671    return CheckAddressConstantExpression(Init);
1672
1673  // An array type at the top level that isn't an init-list must
1674  // be a string literal
1675  if (Init->getType()->isArrayType())
1676    return false;
1677
1678  if (Init->getType()->isFunctionType())
1679    return false;
1680
1681  // Allow block exprs at top level.
1682  if (Init->getType()->isBlockPointerType())
1683    return false;
1684
1685  InitializerElementNotConstant(Init);
1686  return true;
1687}
1688
1689void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1690  Decl *RealDecl = static_cast<Decl *>(dcl);
1691  Expr *Init = static_cast<Expr *>(init);
1692  assert(Init && "missing initializer");
1693
1694  // If there is no declaration, there was an error parsing it.  Just ignore
1695  // the initializer.
1696  if (RealDecl == 0) {
1697    delete Init;
1698    return;
1699  }
1700
1701  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1702  if (!VDecl) {
1703    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1704         diag::err_illegal_initializer);
1705    RealDecl->setInvalidDecl();
1706    return;
1707  }
1708  // Get the decls type and save a reference for later, since
1709  // CheckInitializerTypes may change it.
1710  QualType DclT = VDecl->getType(), SavT = DclT;
1711  if (VDecl->isBlockVarDecl()) {
1712    VarDecl::StorageClass SC = VDecl->getStorageClass();
1713    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1714      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1715      VDecl->setInvalidDecl();
1716    } else if (!VDecl->isInvalidDecl()) {
1717      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1718                                VDecl->getName()))
1719        VDecl->setInvalidDecl();
1720
1721      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1722      if (!getLangOptions().CPlusPlus) {
1723        if (SC == VarDecl::Static) // C99 6.7.8p4.
1724          CheckForConstantInitializer(Init, DclT);
1725      }
1726    }
1727  } else if (VDecl->isFileVarDecl()) {
1728    if (VDecl->getStorageClass() == VarDecl::Extern)
1729      Diag(VDecl->getLocation(), diag::warn_extern_init);
1730    if (!VDecl->isInvalidDecl())
1731      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1732                                VDecl->getName()))
1733        VDecl->setInvalidDecl();
1734
1735    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1736    if (!getLangOptions().CPlusPlus) {
1737      // C99 6.7.8p4. All file scoped initializers need to be constant.
1738      CheckForConstantInitializer(Init, DclT);
1739    }
1740  }
1741  // If the type changed, it means we had an incomplete type that was
1742  // completed by the initializer. For example:
1743  //   int ary[] = { 1, 3, 5 };
1744  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1745  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1746    VDecl->setType(DclT);
1747    Init->setType(DclT);
1748  }
1749
1750  // Attach the initializer to the decl.
1751  VDecl->setInit(Init);
1752  return;
1753}
1754
1755void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1756  Decl *RealDecl = static_cast<Decl *>(dcl);
1757
1758  // If there is no declaration, there was an error parsing it. Just ignore it.
1759  if (RealDecl == 0)
1760    return;
1761
1762  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1763    QualType Type = Var->getType();
1764    // C++ [dcl.init.ref]p3:
1765    //   The initializer can be omitted for a reference only in a
1766    //   parameter declaration (8.3.5), in the declaration of a
1767    //   function return type, in the declaration of a class member
1768    //   within its class declaration (9.2), and where the extern
1769    //   specifier is explicitly used.
1770    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1771      Diag(Var->getLocation(),
1772           diag::err_reference_var_requires_init,
1773           Var->getName(),
1774           SourceRange(Var->getLocation(), Var->getLocation()));
1775      Var->setInvalidDecl();
1776      return;
1777    }
1778
1779    // C++ [dcl.init]p9:
1780    //
1781    //   If no initializer is specified for an object, and the object
1782    //   is of (possibly cv-qualified) non-POD class type (or array
1783    //   thereof), the object shall be default-initialized; if the
1784    //   object is of const-qualified type, the underlying class type
1785    //   shall have a user-declared default constructor.
1786    if (getLangOptions().CPlusPlus) {
1787      QualType InitType = Type;
1788      if (const ArrayType *Array = Context.getAsArrayType(Type))
1789        InitType = Array->getElementType();
1790      if (InitType->isRecordType()) {
1791        const CXXConstructorDecl *Constructor
1792          = PerformInitializationByConstructor(InitType, 0, 0,
1793                                               Var->getLocation(),
1794                                               SourceRange(Var->getLocation(),
1795                                                           Var->getLocation()),
1796                                               Var->getName(),
1797                                               IK_Default);
1798        if (!Constructor)
1799          Var->setInvalidDecl();
1800      }
1801    }
1802
1803#if 0
1804    // FIXME: Temporarily disabled because we are not properly parsing
1805    // linkage specifications on declarations, e.g.,
1806    //
1807    //   extern "C" const CGPoint CGPointerZero;
1808    //
1809    // C++ [dcl.init]p9:
1810    //
1811    //     If no initializer is specified for an object, and the
1812    //     object is of (possibly cv-qualified) non-POD class type (or
1813    //     array thereof), the object shall be default-initialized; if
1814    //     the object is of const-qualified type, the underlying class
1815    //     type shall have a user-declared default
1816    //     constructor. Otherwise, if no initializer is specified for
1817    //     an object, the object and its subobjects, if any, have an
1818    //     indeterminate initial value; if the object or any of its
1819    //     subobjects are of const-qualified type, the program is
1820    //     ill-formed.
1821    //
1822    // This isn't technically an error in C, so we don't diagnose it.
1823    //
1824    // FIXME: Actually perform the POD/user-defined default
1825    // constructor check.
1826    if (getLangOptions().CPlusPlus &&
1827        Context.getCanonicalType(Type).isConstQualified() &&
1828        Var->getStorageClass() != VarDecl::Extern)
1829      Diag(Var->getLocation(),
1830           diag::err_const_var_requires_init,
1831           Var->getName(),
1832           SourceRange(Var->getLocation(), Var->getLocation()));
1833#endif
1834  }
1835}
1836
1837/// The declarators are chained together backwards, reverse the list.
1838Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1839  // Often we have single declarators, handle them quickly.
1840  Decl *GroupDecl = static_cast<Decl*>(group);
1841  if (GroupDecl == 0)
1842    return 0;
1843
1844  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1845  ScopedDecl *NewGroup = 0;
1846  if (Group->getNextDeclarator() == 0)
1847    NewGroup = Group;
1848  else { // reverse the list.
1849    while (Group) {
1850      ScopedDecl *Next = Group->getNextDeclarator();
1851      Group->setNextDeclarator(NewGroup);
1852      NewGroup = Group;
1853      Group = Next;
1854    }
1855  }
1856  // Perform semantic analysis that depends on having fully processed both
1857  // the declarator and initializer.
1858  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1859    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1860    if (!IDecl)
1861      continue;
1862    QualType T = IDecl->getType();
1863
1864    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1865    // static storage duration, it shall not have a variable length array.
1866    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1867        IDecl->getStorageClass() == VarDecl::Static) {
1868      if (T->isVariableArrayType()) {
1869        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1870        IDecl->setInvalidDecl();
1871      }
1872    }
1873    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1874    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1875    if (IDecl->isBlockVarDecl() &&
1876        IDecl->getStorageClass() != VarDecl::Extern) {
1877      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1878        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1879             T.getAsString());
1880        IDecl->setInvalidDecl();
1881      }
1882    }
1883    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1884    // object that has file scope without an initializer, and without a
1885    // storage-class specifier or with the storage-class specifier "static",
1886    // constitutes a tentative definition. Note: A tentative definition with
1887    // external linkage is valid (C99 6.2.2p5).
1888    if (isTentativeDefinition(IDecl)) {
1889      if (T->isIncompleteArrayType()) {
1890        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1891        // array to be completed. Don't issue a diagnostic.
1892      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1893        // C99 6.9.2p3: If the declaration of an identifier for an object is
1894        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1895        // declared type shall not be an incomplete type.
1896        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1897             T.getAsString());
1898        IDecl->setInvalidDecl();
1899      }
1900    }
1901    if (IDecl->isFileVarDecl())
1902      CheckForFileScopedRedefinitions(S, IDecl);
1903  }
1904  return NewGroup;
1905}
1906
1907/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1908/// to introduce parameters into function prototype scope.
1909Sema::DeclTy *
1910Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1911  // FIXME: disallow CXXScopeSpec for param declarators.
1912  const DeclSpec &DS = D.getDeclSpec();
1913
1914  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1915  VarDecl::StorageClass StorageClass = VarDecl::None;
1916  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1917    StorageClass = VarDecl::Register;
1918  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1919    Diag(DS.getStorageClassSpecLoc(),
1920         diag::err_invalid_storage_class_in_func_decl);
1921    D.getMutableDeclSpec().ClearStorageClassSpecs();
1922  }
1923  if (DS.isThreadSpecified()) {
1924    Diag(DS.getThreadSpecLoc(),
1925         diag::err_invalid_storage_class_in_func_decl);
1926    D.getMutableDeclSpec().ClearStorageClassSpecs();
1927  }
1928
1929  // Check that there are no default arguments inside the type of this
1930  // parameter (C++ only).
1931  if (getLangOptions().CPlusPlus)
1932    CheckExtraCXXDefaultArguments(D);
1933
1934  // In this context, we *do not* check D.getInvalidType(). If the declarator
1935  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1936  // though it will not reflect the user specified type.
1937  QualType parmDeclType = GetTypeForDeclarator(D, S);
1938
1939  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1940
1941  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1942  // Can this happen for params?  We already checked that they don't conflict
1943  // among each other.  Here they can only shadow globals, which is ok.
1944  IdentifierInfo *II = D.getIdentifier();
1945  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1946    if (S->isDeclScope(PrevDecl)) {
1947      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1948           dyn_cast<NamedDecl>(PrevDecl)->getName());
1949
1950      // Recover by removing the name
1951      II = 0;
1952      D.SetIdentifier(0, D.getIdentifierLoc());
1953    }
1954  }
1955
1956  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1957  // Doing the promotion here has a win and a loss. The win is the type for
1958  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1959  // code generator). The loss is the orginal type isn't preserved. For example:
1960  //
1961  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1962  //    int blockvardecl[5];
1963  //    sizeof(parmvardecl);  // size == 4
1964  //    sizeof(blockvardecl); // size == 20
1965  // }
1966  //
1967  // For expressions, all implicit conversions are captured using the
1968  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1969  //
1970  // FIXME: If a source translation tool needs to see the original type, then
1971  // we need to consider storing both types (in ParmVarDecl)...
1972  //
1973  if (parmDeclType->isArrayType()) {
1974    // int x[restrict 4] ->  int *restrict
1975    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1976  } else if (parmDeclType->isFunctionType())
1977    parmDeclType = Context.getPointerType(parmDeclType);
1978
1979  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1980                                         D.getIdentifierLoc(), II,
1981                                         parmDeclType, StorageClass,
1982                                         0, 0);
1983
1984  if (D.getInvalidType())
1985    New->setInvalidDecl();
1986
1987  if (II)
1988    PushOnScopeChains(New, S);
1989
1990  ProcessDeclAttributes(New, D);
1991  return New;
1992
1993}
1994
1995Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1996  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1997  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1998         "Not a function declarator!");
1999  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2000
2001  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2002  // for a K&R function.
2003  if (!FTI.hasPrototype) {
2004    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2005      if (FTI.ArgInfo[i].Param == 0) {
2006        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
2007             FTI.ArgInfo[i].Ident->getName());
2008        // Implicitly declare the argument as type 'int' for lack of a better
2009        // type.
2010        DeclSpec DS;
2011        const char* PrevSpec; // unused
2012        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2013                           PrevSpec);
2014        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2015        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2016        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2017      }
2018    }
2019  } else {
2020    // FIXME: Diagnose arguments without names in C.
2021  }
2022
2023  Scope *GlobalScope = FnBodyScope->getParent();
2024
2025  return ActOnStartOfFunctionDef(FnBodyScope,
2026                                 ActOnDeclarator(GlobalScope, D, 0));
2027}
2028
2029Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2030  Decl *decl = static_cast<Decl*>(D);
2031  FunctionDecl *FD = cast<FunctionDecl>(decl);
2032
2033  // See if this is a redefinition.
2034  const FunctionDecl *Definition;
2035  if (FD->getBody(Definition)) {
2036    Diag(FD->getLocation(), diag::err_redefinition,
2037         FD->getName());
2038    Diag(Definition->getLocation(), diag::err_previous_definition);
2039  }
2040
2041  PushDeclContext(FD);
2042
2043  // Check the validity of our function parameters
2044  CheckParmsForFunctionDef(FD);
2045
2046  // Introduce our parameters into the function scope
2047  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2048    ParmVarDecl *Param = FD->getParamDecl(p);
2049    // If this has an identifier, add it to the scope stack.
2050    if (Param->getIdentifier())
2051      PushOnScopeChains(Param, FnBodyScope);
2052  }
2053
2054  return FD;
2055}
2056
2057Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
2058  Decl *dcl = static_cast<Decl *>(D);
2059  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2060    FD->setBody((Stmt*)Body);
2061    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2062  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2063    MD->setBody((Stmt*)Body);
2064  } else
2065    return 0;
2066  PopDeclContext();
2067  // Verify and clean out per-function state.
2068
2069  // Check goto/label use.
2070  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2071       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2072    // Verify that we have no forward references left.  If so, there was a goto
2073    // or address of a label taken, but no definition of it.  Label fwd
2074    // definitions are indicated with a null substmt.
2075    if (I->second->getSubStmt() == 0) {
2076      LabelStmt *L = I->second;
2077      // Emit error.
2078      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
2079
2080      // At this point, we have gotos that use the bogus label.  Stitch it into
2081      // the function body so that they aren't leaked and that the AST is well
2082      // formed.
2083      if (Body) {
2084        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2085        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
2086      } else {
2087        // The whole function wasn't parsed correctly, just delete this.
2088        delete L;
2089      }
2090    }
2091  }
2092  LabelMap.clear();
2093
2094  return D;
2095}
2096
2097/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2098/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2099ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2100                                           IdentifierInfo &II, Scope *S) {
2101  // Extension in C99.  Legal in C90, but warn about it.
2102  if (getLangOptions().C99)
2103    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
2104  else
2105    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
2106
2107  // FIXME: handle stuff like:
2108  // void foo() { extern float X(); }
2109  // void bar() { X(); }  <-- implicit decl for X in another scope.
2110
2111  // Set a Declarator for the implicit definition: int foo();
2112  const char *Dummy;
2113  DeclSpec DS;
2114  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2115  Error = Error; // Silence warning.
2116  assert(!Error && "Error setting up implicit decl!");
2117  Declarator D(DS, Declarator::BlockContext);
2118  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2119  D.SetIdentifier(&II, Loc);
2120
2121  // Insert this function into translation-unit scope.
2122
2123  DeclContext *PrevDC = CurContext;
2124  CurContext = Context.getTranslationUnitDecl();
2125
2126  FunctionDecl *FD =
2127    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2128  FD->setImplicit();
2129
2130  CurContext = PrevDC;
2131
2132  return FD;
2133}
2134
2135
2136TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2137                                    ScopedDecl *LastDeclarator) {
2138  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2139  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2140
2141  // Scope manipulation handled by caller.
2142  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2143                                           D.getIdentifierLoc(),
2144                                           D.getIdentifier(),
2145                                           T, LastDeclarator);
2146  if (D.getInvalidType())
2147    NewTD->setInvalidDecl();
2148  return NewTD;
2149}
2150
2151/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2152/// former case, Name will be non-null.  In the later case, Name will be null.
2153/// TagType indicates what kind of tag this is. TK indicates whether this is a
2154/// reference/declaration/definition of a tag.
2155Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2156                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2157                             IdentifierInfo *Name, SourceLocation NameLoc,
2158                             AttributeList *Attr) {
2159  // If this is a use of an existing tag, it must have a name.
2160  assert((Name != 0 || TK == TK_Definition) &&
2161         "Nameless record must be a definition!");
2162
2163  TagDecl::TagKind Kind;
2164  switch (TagType) {
2165  default: assert(0 && "Unknown tag type!");
2166  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2167  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2168  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2169  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2170  }
2171
2172  // Two code paths: a new one for structs/unions/classes where we create
2173  //   separate decls for forward declarations, and an old (eventually to
2174  //   be removed) code path for enums.
2175  if (Kind != TagDecl::TK_enum)
2176    return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
2177
2178  DeclContext *DC = CurContext;
2179  ScopedDecl *PrevDecl = 0;
2180
2181  if (Name && SS.isNotEmpty()) {
2182    // We have a nested-name tag ('struct foo::bar').
2183
2184    // Check for invalid 'foo::'.
2185    if (SS.isInvalid()) {
2186      Name = 0;
2187      goto CreateNewDecl;
2188    }
2189
2190    DC = static_cast<DeclContext*>(SS.getScopeRep());
2191    // Look-up name inside 'foo::'.
2192    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2193
2194    // A tag 'foo::bar' must already exist.
2195    if (PrevDecl == 0) {
2196      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2197           SS.getRange());
2198      Name = 0;
2199      goto CreateNewDecl;
2200    }
2201  } else {
2202    // If this is a named struct, check to see if there was a previous forward
2203    // declaration or definition.
2204    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2205    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2206  }
2207
2208  if (PrevDecl) {
2209    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2210            "unexpected Decl type");
2211    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2212      // If this is a use of a previous tag, or if the tag is already declared
2213      // in the same scope (so that the definition/declaration completes or
2214      // rementions the tag), reuse the decl.
2215      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2216        // Make sure that this wasn't declared as an enum and now used as a
2217        // struct or something similar.
2218        if (PrevTagDecl->getTagKind() != Kind) {
2219          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2220          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2221          // Recover by making this an anonymous redefinition.
2222          Name = 0;
2223          PrevDecl = 0;
2224        } else {
2225          // If this is a use or a forward declaration, we're good.
2226          if (TK != TK_Definition)
2227            return PrevDecl;
2228
2229          // Diagnose attempts to redefine a tag.
2230          if (PrevTagDecl->isDefinition()) {
2231            Diag(NameLoc, diag::err_redefinition, Name->getName());
2232            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2233            // If this is a redefinition, recover by making this struct be
2234            // anonymous, which will make any later references get the previous
2235            // definition.
2236            Name = 0;
2237          } else {
2238            // Okay, this is definition of a previously declared or referenced
2239            // tag. Move the location of the decl to be the definition site.
2240            PrevDecl->setLocation(NameLoc);
2241            return PrevDecl;
2242          }
2243        }
2244      }
2245      // If we get here, this is a definition of a new struct type in a nested
2246      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2247      // type.
2248    } else {
2249      // PrevDecl is a namespace.
2250      if (isDeclInScope(PrevDecl, DC, S)) {
2251        // The tag name clashes with a namespace name, issue an error and
2252        // recover by making this tag be anonymous.
2253        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2254        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2255        Name = 0;
2256      }
2257    }
2258  }
2259
2260  CreateNewDecl:
2261
2262  // If there is an identifier, use the location of the identifier as the
2263  // location of the decl, otherwise use the location of the struct/union
2264  // keyword.
2265  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2266
2267  // Otherwise, if this is the first time we've seen this tag, create the decl.
2268  TagDecl *New;
2269  if (Kind == TagDecl::TK_enum) {
2270    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2271    // enum X { A, B, C } D;    D should chain to X.
2272    New = EnumDecl::Create(Context, DC, Loc, Name, 0);
2273    // If this is an undefined enum, warn.
2274    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2275  } else {
2276    // struct/union/class
2277
2278    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2279    // struct X { int A; } D;    D should chain to X.
2280    if (getLangOptions().CPlusPlus)
2281      // FIXME: Look for a way to use RecordDecl for simple structs.
2282      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
2283    else
2284      New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
2285  }
2286
2287  // If this has an identifier, add it to the scope stack.
2288  if (Name) {
2289    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2290    // we find one that is.
2291    while ((S->getFlags() & Scope::DeclScope) == 0)
2292      S = S->getParent();
2293
2294    // Add it to the decl chain.
2295    PushOnScopeChains(New, S);
2296  }
2297
2298  if (Attr)
2299    ProcessDeclAttributeList(New, Attr);
2300
2301  // Set the lexical context. If the tag has a C++ scope specifier, the
2302  // lexical context will be different from the semantic context.
2303  New->setLexicalDeclContext(CurContext);
2304
2305  return New;
2306}
2307
2308/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2309///  the logic for enums, we create separate decls for forward declarations.
2310///  This is called by ActOnTag, but eventually will replace its logic.
2311Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2312                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2313                             IdentifierInfo *Name, SourceLocation NameLoc,
2314                             AttributeList *Attr) {
2315  DeclContext *DC = CurContext;
2316  ScopedDecl *PrevDecl = 0;
2317
2318  if (Name && SS.isNotEmpty()) {
2319    // We have a nested-name tag ('struct foo::bar').
2320
2321    // Check for invalid 'foo::'.
2322    if (SS.isInvalid()) {
2323      Name = 0;
2324      goto CreateNewDecl;
2325    }
2326
2327    DC = static_cast<DeclContext*>(SS.getScopeRep());
2328    // Look-up name inside 'foo::'.
2329    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2330
2331    // A tag 'foo::bar' must already exist.
2332    if (PrevDecl == 0) {
2333      Diag(NameLoc, diag::err_not_tag_in_scope, Name->getName(),
2334           SS.getRange());
2335      Name = 0;
2336      goto CreateNewDecl;
2337    }
2338  } else {
2339    // If this is a named struct, check to see if there was a previous forward
2340    // declaration or definition.
2341    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2342    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2343  }
2344
2345  if (PrevDecl) {
2346    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2347           "unexpected Decl type");
2348
2349    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2350      // If this is a use of a previous tag, or if the tag is already declared
2351      // in the same scope (so that the definition/declaration completes or
2352      // rementions the tag), reuse the decl.
2353      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2354        // Make sure that this wasn't declared as an enum and now used as a
2355        // struct or something similar.
2356        if (PrevTagDecl->getTagKind() != Kind) {
2357          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2358          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2359          // Recover by making this an anonymous redefinition.
2360          Name = 0;
2361          PrevDecl = 0;
2362        } else {
2363          // If this is a use, return the original decl.
2364
2365          // FIXME: In the future, return a variant or some other clue
2366          //  for the consumer of this Decl to know it doesn't own it.
2367          //  For our current ASTs this shouldn't be a problem, but will
2368          //  need to be changed with DeclGroups.
2369          if (TK == TK_Reference)
2370            return PrevDecl;
2371
2372          // The new decl is a definition?
2373          if (TK == TK_Definition) {
2374            // Diagnose attempts to redefine a tag.
2375            if (RecordDecl* DefRecord =
2376                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2377              Diag(NameLoc, diag::err_redefinition, Name->getName());
2378              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2379              // If this is a redefinition, recover by making this struct be
2380              // anonymous, which will make any later references get the previous
2381              // definition.
2382              Name = 0;
2383              PrevDecl = 0;
2384            }
2385            // Okay, this is definition of a previously declared or referenced
2386            // tag.  We're going to create a new Decl.
2387          }
2388        }
2389        // If we get here we have (another) forward declaration.  Just create
2390        // a new decl.
2391      }
2392      else {
2393        // If we get here, this is a definition of a new struct type in a nested
2394        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2395        // new decl/type.  We set PrevDecl to NULL so that the Records
2396        // have distinct types.
2397        PrevDecl = 0;
2398      }
2399    } else {
2400      // PrevDecl is a namespace.
2401      if (isDeclInScope(PrevDecl, DC, S)) {
2402        // The tag name clashes with a namespace name, issue an error and
2403        // recover by making this tag be anonymous.
2404        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2405        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2406        Name = 0;
2407      }
2408    }
2409  }
2410
2411  CreateNewDecl:
2412
2413  // If there is an identifier, use the location of the identifier as the
2414  // location of the decl, otherwise use the location of the struct/union
2415  // keyword.
2416  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2417
2418  // Otherwise, if this is the first time we've seen this tag, create the decl.
2419  TagDecl *New;
2420
2421  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2422  // struct X { int A; } D;    D should chain to X.
2423  if (getLangOptions().CPlusPlus)
2424    // FIXME: Look for a way to use RecordDecl for simple structs.
2425    New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2426                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2427  else
2428    New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2429                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2430
2431  // If this has an identifier, add it to the scope stack.
2432  if ((TK == TK_Definition || !PrevDecl) && Name) {
2433    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2434    // we find one that is.
2435    while ((S->getFlags() & Scope::DeclScope) == 0)
2436      S = S->getParent();
2437
2438    // Add it to the decl chain.
2439    PushOnScopeChains(New, S);
2440  }
2441
2442  // Handle #pragma pack: if the #pragma pack stack has non-default
2443  // alignment, make up a packed attribute for this decl. These
2444  // attributes are checked when the ASTContext lays out the
2445  // structure.
2446  //
2447  // It is important for implementing the correct semantics that this
2448  // happen here (in act on tag decl). The #pragma pack stack is
2449  // maintained as a result of parser callbacks which can occur at
2450  // many points during the parsing of a struct declaration (because
2451  // the #pragma tokens are effectively skipped over during the
2452  // parsing of the struct).
2453  if (unsigned Alignment = PackContext.getAlignment())
2454    New->addAttr(new PackedAttr(Alignment * 8));
2455
2456  if (Attr)
2457    ProcessDeclAttributeList(New, Attr);
2458
2459  // Set the lexical context. If the tag has a C++ scope specifier, the
2460  // lexical context will be different from the semantic context.
2461  New->setLexicalDeclContext(CurContext);
2462
2463  return New;
2464}
2465
2466
2467/// Collect the instance variables declared in an Objective-C object.  Used in
2468/// the creation of structures from objects using the @defs directive.
2469static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2470                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2471  if (Class->getSuperClass())
2472    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2473
2474  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2475  for (ObjCInterfaceDecl::ivar_iterator
2476        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2477
2478    ObjCIvarDecl* ID = *I;
2479    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2480                                                ID->getIdentifier(),
2481                                                ID->getType(),
2482                                                ID->getBitWidth()));
2483  }
2484}
2485
2486/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2487/// instance variables of ClassName into Decls.
2488void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2489                     IdentifierInfo *ClassName,
2490                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2491  // Check that ClassName is a valid class
2492  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2493  if (!Class) {
2494    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2495    return;
2496  }
2497  // Collect the instance variables
2498  CollectIvars(Class, Context, Decls);
2499}
2500
2501/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2502/// types into constant array types in certain situations which would otherwise
2503/// be errors (for GCC compatibility).
2504static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2505                                                    ASTContext &Context) {
2506  // This method tries to turn a variable array into a constant
2507  // array even when the size isn't an ICE.  This is necessary
2508  // for compatibility with code that depends on gcc's buggy
2509  // constant expression folding, like struct {char x[(int)(char*)2];}
2510  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2511  if (!VLATy) return QualType();
2512
2513  APValue Result;
2514  if (!VLATy->getSizeExpr() ||
2515      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2516    return QualType();
2517
2518  assert(Result.isInt() && "Size expressions must be integers!");
2519  llvm::APSInt &Res = Result.getInt();
2520  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2521    return Context.getConstantArrayType(VLATy->getElementType(),
2522                                        Res, ArrayType::Normal, 0);
2523  return QualType();
2524}
2525
2526/// ActOnField - Each field of a struct/union/class is passed into this in order
2527/// to create a FieldDecl object for it.
2528Sema::DeclTy *Sema::ActOnField(Scope *S,
2529                               SourceLocation DeclStart,
2530                               Declarator &D, ExprTy *BitfieldWidth) {
2531  IdentifierInfo *II = D.getIdentifier();
2532  Expr *BitWidth = (Expr*)BitfieldWidth;
2533  SourceLocation Loc = DeclStart;
2534  if (II) Loc = D.getIdentifierLoc();
2535
2536  // FIXME: Unnamed fields can be handled in various different ways, for
2537  // example, unnamed unions inject all members into the struct namespace!
2538
2539  if (BitWidth) {
2540    // TODO: Validate.
2541    //printf("WARNING: BITFIELDS IGNORED!\n");
2542
2543    // 6.7.2.1p3
2544    // 6.7.2.1p4
2545
2546  } else {
2547    // Not a bitfield.
2548
2549    // validate II.
2550
2551  }
2552
2553  QualType T = GetTypeForDeclarator(D, S);
2554  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2555  bool InvalidDecl = false;
2556
2557  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2558  // than a variably modified type.
2559  if (T->isVariablyModifiedType()) {
2560    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2561    if (!FixedTy.isNull()) {
2562      Diag(Loc, diag::warn_illegal_constant_array_size);
2563      T = FixedTy;
2564    } else {
2565      Diag(Loc, diag::err_typecheck_field_variable_size);
2566      T = Context.IntTy;
2567      InvalidDecl = true;
2568    }
2569  }
2570  // FIXME: Chain fielddecls together.
2571  FieldDecl *NewFD;
2572
2573  if (getLangOptions().CPlusPlus) {
2574    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2575    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2576                                 Loc, II, T, BitWidth);
2577    if (II)
2578      PushOnScopeChains(NewFD, S);
2579  }
2580  else
2581    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2582
2583  ProcessDeclAttributes(NewFD, D);
2584
2585  if (D.getInvalidType() || InvalidDecl)
2586    NewFD->setInvalidDecl();
2587  return NewFD;
2588}
2589
2590/// TranslateIvarVisibility - Translate visibility from a token ID to an
2591///  AST enum value.
2592static ObjCIvarDecl::AccessControl
2593TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2594  switch (ivarVisibility) {
2595  default: assert(0 && "Unknown visitibility kind");
2596  case tok::objc_private: return ObjCIvarDecl::Private;
2597  case tok::objc_public: return ObjCIvarDecl::Public;
2598  case tok::objc_protected: return ObjCIvarDecl::Protected;
2599  case tok::objc_package: return ObjCIvarDecl::Package;
2600  }
2601}
2602
2603/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2604/// in order to create an IvarDecl object for it.
2605Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2606                              SourceLocation DeclStart,
2607                              Declarator &D, ExprTy *BitfieldWidth,
2608                              tok::ObjCKeywordKind Visibility) {
2609  IdentifierInfo *II = D.getIdentifier();
2610  Expr *BitWidth = (Expr*)BitfieldWidth;
2611  SourceLocation Loc = DeclStart;
2612  if (II) Loc = D.getIdentifierLoc();
2613
2614  // FIXME: Unnamed fields can be handled in various different ways, for
2615  // example, unnamed unions inject all members into the struct namespace!
2616
2617
2618  if (BitWidth) {
2619    // TODO: Validate.
2620    //printf("WARNING: BITFIELDS IGNORED!\n");
2621
2622    // 6.7.2.1p3
2623    // 6.7.2.1p4
2624
2625  } else {
2626    // Not a bitfield.
2627
2628    // validate II.
2629
2630  }
2631
2632  QualType T = GetTypeForDeclarator(D, S);
2633  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2634  bool InvalidDecl = false;
2635
2636  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2637  // than a variably modified type.
2638  if (T->isVariablyModifiedType()) {
2639    // FIXME: This diagnostic needs work
2640    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2641    InvalidDecl = true;
2642  }
2643
2644  // Get the visibility (access control) for this ivar.
2645  ObjCIvarDecl::AccessControl ac =
2646    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2647                                        : ObjCIvarDecl::None;
2648
2649  // Construct the decl.
2650  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2651                                             (Expr *)BitfieldWidth);
2652
2653  // Process attributes attached to the ivar.
2654  ProcessDeclAttributes(NewID, D);
2655
2656  if (D.getInvalidType() || InvalidDecl)
2657    NewID->setInvalidDecl();
2658
2659  return NewID;
2660}
2661
2662void Sema::ActOnFields(Scope* S,
2663                       SourceLocation RecLoc, DeclTy *RecDecl,
2664                       DeclTy **Fields, unsigned NumFields,
2665                       SourceLocation LBrac, SourceLocation RBrac,
2666                       AttributeList *Attr) {
2667  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2668  assert(EnclosingDecl && "missing record or interface decl");
2669  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2670
2671  if (Record)
2672    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2673      // Diagnose code like:
2674      //     struct S { struct S {} X; };
2675      // We discover this when we complete the outer S.  Reject and ignore the
2676      // outer S.
2677      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2678           DefRecord->getKindName());
2679      Diag(RecLoc, diag::err_previous_definition);
2680      Record->setInvalidDecl();
2681      return;
2682    }
2683
2684  // Verify that all the fields are okay.
2685  unsigned NumNamedMembers = 0;
2686  llvm::SmallVector<FieldDecl*, 32> RecFields;
2687  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2688
2689  for (unsigned i = 0; i != NumFields; ++i) {
2690
2691    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2692    assert(FD && "missing field decl");
2693
2694    // Remember all fields.
2695    RecFields.push_back(FD);
2696
2697    // Get the type for the field.
2698    Type *FDTy = FD->getType().getTypePtr();
2699
2700    // C99 6.7.2.1p2 - A field may not be a function type.
2701    if (FDTy->isFunctionType()) {
2702      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2703           FD->getName());
2704      FD->setInvalidDecl();
2705      EnclosingDecl->setInvalidDecl();
2706      continue;
2707    }
2708    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2709    if (FDTy->isIncompleteType()) {
2710      if (!Record) {  // Incomplete ivar type is always an error.
2711        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2712        FD->setInvalidDecl();
2713        EnclosingDecl->setInvalidDecl();
2714        continue;
2715      }
2716      if (i != NumFields-1 ||                   // ... that the last member ...
2717          !Record->isStruct() ||  // ... of a structure ...
2718          !FDTy->isArrayType()) {         //... may have incomplete array type.
2719        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2720        FD->setInvalidDecl();
2721        EnclosingDecl->setInvalidDecl();
2722        continue;
2723      }
2724      if (NumNamedMembers < 1) {  //... must have more than named member ...
2725        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2726             FD->getName());
2727        FD->setInvalidDecl();
2728        EnclosingDecl->setInvalidDecl();
2729        continue;
2730      }
2731      // Okay, we have a legal flexible array member at the end of the struct.
2732      if (Record)
2733        Record->setHasFlexibleArrayMember(true);
2734    }
2735    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2736    /// field of another structure or the element of an array.
2737    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2738      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2739        // If this is a member of a union, then entire union becomes "flexible".
2740        if (Record && Record->isUnion()) {
2741          Record->setHasFlexibleArrayMember(true);
2742        } else {
2743          // If this is a struct/class and this is not the last element, reject
2744          // it.  Note that GCC supports variable sized arrays in the middle of
2745          // structures.
2746          if (i != NumFields-1) {
2747            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2748                 FD->getName());
2749            FD->setInvalidDecl();
2750            EnclosingDecl->setInvalidDecl();
2751            continue;
2752          }
2753          // We support flexible arrays at the end of structs in other structs
2754          // as an extension.
2755          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2756               FD->getName());
2757          if (Record)
2758            Record->setHasFlexibleArrayMember(true);
2759        }
2760      }
2761    }
2762    /// A field cannot be an Objective-c object
2763    if (FDTy->isObjCInterfaceType()) {
2764      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2765           FD->getName());
2766      FD->setInvalidDecl();
2767      EnclosingDecl->setInvalidDecl();
2768      continue;
2769    }
2770    // Keep track of the number of named members.
2771    if (IdentifierInfo *II = FD->getIdentifier()) {
2772      // Detect duplicate member names.
2773      if (!FieldIDs.insert(II)) {
2774        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2775        // Find the previous decl.
2776        SourceLocation PrevLoc;
2777        for (unsigned i = 0; ; ++i) {
2778          assert(i != RecFields.size() && "Didn't find previous def!");
2779          if (RecFields[i]->getIdentifier() == II) {
2780            PrevLoc = RecFields[i]->getLocation();
2781            break;
2782          }
2783        }
2784        Diag(PrevLoc, diag::err_previous_definition);
2785        FD->setInvalidDecl();
2786        EnclosingDecl->setInvalidDecl();
2787        continue;
2788      }
2789      ++NumNamedMembers;
2790    }
2791  }
2792
2793  // Okay, we successfully defined 'Record'.
2794  if (Record) {
2795    Record->defineBody(Context, &RecFields[0], RecFields.size());
2796    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2797    // Sema::ActOnFinishCXXClassDef.
2798    if (!isa<CXXRecordDecl>(Record))
2799      Consumer.HandleTagDeclDefinition(Record);
2800  } else {
2801    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2802    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2803      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2804    else if (ObjCImplementationDecl *IMPDecl =
2805               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2806      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2807      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2808      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2809    }
2810  }
2811
2812  if (Attr)
2813    ProcessDeclAttributeList(Record, Attr);
2814}
2815
2816Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2817                                      DeclTy *lastEnumConst,
2818                                      SourceLocation IdLoc, IdentifierInfo *Id,
2819                                      SourceLocation EqualLoc, ExprTy *val) {
2820  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2821  EnumConstantDecl *LastEnumConst =
2822    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2823  Expr *Val = static_cast<Expr*>(val);
2824
2825  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2826  // we find one that is.
2827  while ((S->getFlags() & Scope::DeclScope) == 0)
2828    S = S->getParent();
2829
2830  // Verify that there isn't already something declared with this name in this
2831  // scope.
2832  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2833    // When in C++, we may get a TagDecl with the same name; in this case the
2834    // enum constant will 'hide' the tag.
2835    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2836           "Received TagDecl when not in C++!");
2837    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2838      if (isa<EnumConstantDecl>(PrevDecl))
2839        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2840      else
2841        Diag(IdLoc, diag::err_redefinition, Id->getName());
2842      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2843      delete Val;
2844      return 0;
2845    }
2846  }
2847
2848  llvm::APSInt EnumVal(32);
2849  QualType EltTy;
2850  if (Val) {
2851    // Make sure to promote the operand type to int.
2852    UsualUnaryConversions(Val);
2853
2854    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2855    SourceLocation ExpLoc;
2856    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2857      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2858           Id->getName());
2859      delete Val;
2860      Val = 0;  // Just forget about it.
2861    } else {
2862      EltTy = Val->getType();
2863    }
2864  }
2865
2866  if (!Val) {
2867    if (LastEnumConst) {
2868      // Assign the last value + 1.
2869      EnumVal = LastEnumConst->getInitVal();
2870      ++EnumVal;
2871
2872      // Check for overflow on increment.
2873      if (EnumVal < LastEnumConst->getInitVal())
2874        Diag(IdLoc, diag::warn_enum_value_overflow);
2875
2876      EltTy = LastEnumConst->getType();
2877    } else {
2878      // First value, set to zero.
2879      EltTy = Context.IntTy;
2880      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2881    }
2882  }
2883
2884  EnumConstantDecl *New =
2885    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2886                             Val, EnumVal,
2887                             LastEnumConst);
2888
2889  // Register this decl in the current scope stack.
2890  PushOnScopeChains(New, S);
2891  return New;
2892}
2893
2894// FIXME: For consistency with ActOnFields(), we should have the parser
2895// pass in the source location for the left/right braces.
2896void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2897                         DeclTy **Elements, unsigned NumElements) {
2898  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2899
2900  if (Enum && Enum->isDefinition()) {
2901    // Diagnose code like:
2902    //   enum e0 {
2903    //     E0 = sizeof(enum e0 { E1 })
2904    //   };
2905    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2906         Enum->getName());
2907    Diag(EnumLoc, diag::err_previous_definition);
2908    Enum->setInvalidDecl();
2909    return;
2910  }
2911  // TODO: If the result value doesn't fit in an int, it must be a long or long
2912  // long value.  ISO C does not support this, but GCC does as an extension,
2913  // emit a warning.
2914  unsigned IntWidth = Context.Target.getIntWidth();
2915
2916  // Verify that all the values are okay, compute the size of the values, and
2917  // reverse the list.
2918  unsigned NumNegativeBits = 0;
2919  unsigned NumPositiveBits = 0;
2920
2921  // Keep track of whether all elements have type int.
2922  bool AllElementsInt = true;
2923
2924  EnumConstantDecl *EltList = 0;
2925  for (unsigned i = 0; i != NumElements; ++i) {
2926    EnumConstantDecl *ECD =
2927      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2928    if (!ECD) continue;  // Already issued a diagnostic.
2929
2930    // If the enum value doesn't fit in an int, emit an extension warning.
2931    const llvm::APSInt &InitVal = ECD->getInitVal();
2932    assert(InitVal.getBitWidth() >= IntWidth &&
2933           "Should have promoted value to int");
2934    if (InitVal.getBitWidth() > IntWidth) {
2935      llvm::APSInt V(InitVal);
2936      V.trunc(IntWidth);
2937      V.extend(InitVal.getBitWidth());
2938      if (V != InitVal)
2939        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2940             InitVal.toString(10));
2941    }
2942
2943    // Keep track of the size of positive and negative values.
2944    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2945      NumPositiveBits = std::max(NumPositiveBits,
2946                                 (unsigned)InitVal.getActiveBits());
2947    else
2948      NumNegativeBits = std::max(NumNegativeBits,
2949                                 (unsigned)InitVal.getMinSignedBits());
2950
2951    // Keep track of whether every enum element has type int (very commmon).
2952    if (AllElementsInt)
2953      AllElementsInt = ECD->getType() == Context.IntTy;
2954
2955    ECD->setNextDeclarator(EltList);
2956    EltList = ECD;
2957  }
2958
2959  // Figure out the type that should be used for this enum.
2960  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2961  QualType BestType;
2962  unsigned BestWidth;
2963
2964  if (NumNegativeBits) {
2965    // If there is a negative value, figure out the smallest integer type (of
2966    // int/long/longlong) that fits.
2967    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2968      BestType = Context.IntTy;
2969      BestWidth = IntWidth;
2970    } else {
2971      BestWidth = Context.Target.getLongWidth();
2972
2973      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2974        BestType = Context.LongTy;
2975      else {
2976        BestWidth = Context.Target.getLongLongWidth();
2977
2978        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2979          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2980        BestType = Context.LongLongTy;
2981      }
2982    }
2983  } else {
2984    // If there is no negative value, figure out which of uint, ulong, ulonglong
2985    // fits.
2986    if (NumPositiveBits <= IntWidth) {
2987      BestType = Context.UnsignedIntTy;
2988      BestWidth = IntWidth;
2989    } else if (NumPositiveBits <=
2990               (BestWidth = Context.Target.getLongWidth())) {
2991      BestType = Context.UnsignedLongTy;
2992    } else {
2993      BestWidth = Context.Target.getLongLongWidth();
2994      assert(NumPositiveBits <= BestWidth &&
2995             "How could an initializer get larger than ULL?");
2996      BestType = Context.UnsignedLongLongTy;
2997    }
2998  }
2999
3000  // Loop over all of the enumerator constants, changing their types to match
3001  // the type of the enum if needed.
3002  for (unsigned i = 0; i != NumElements; ++i) {
3003    EnumConstantDecl *ECD =
3004      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3005    if (!ECD) continue;  // Already issued a diagnostic.
3006
3007    // Standard C says the enumerators have int type, but we allow, as an
3008    // extension, the enumerators to be larger than int size.  If each
3009    // enumerator value fits in an int, type it as an int, otherwise type it the
3010    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3011    // that X has type 'int', not 'unsigned'.
3012    if (ECD->getType() == Context.IntTy) {
3013      // Make sure the init value is signed.
3014      llvm::APSInt IV = ECD->getInitVal();
3015      IV.setIsSigned(true);
3016      ECD->setInitVal(IV);
3017      continue;  // Already int type.
3018    }
3019
3020    // Determine whether the value fits into an int.
3021    llvm::APSInt InitVal = ECD->getInitVal();
3022    bool FitsInInt;
3023    if (InitVal.isUnsigned() || !InitVal.isNegative())
3024      FitsInInt = InitVal.getActiveBits() < IntWidth;
3025    else
3026      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3027
3028    // If it fits into an integer type, force it.  Otherwise force it to match
3029    // the enum decl type.
3030    QualType NewTy;
3031    unsigned NewWidth;
3032    bool NewSign;
3033    if (FitsInInt) {
3034      NewTy = Context.IntTy;
3035      NewWidth = IntWidth;
3036      NewSign = true;
3037    } else if (ECD->getType() == BestType) {
3038      // Already the right type!
3039      continue;
3040    } else {
3041      NewTy = BestType;
3042      NewWidth = BestWidth;
3043      NewSign = BestType->isSignedIntegerType();
3044    }
3045
3046    // Adjust the APSInt value.
3047    InitVal.extOrTrunc(NewWidth);
3048    InitVal.setIsSigned(NewSign);
3049    ECD->setInitVal(InitVal);
3050
3051    // Adjust the Expr initializer and type.
3052    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3053                                          /*isLvalue=*/false));
3054    ECD->setType(NewTy);
3055  }
3056
3057  Enum->defineElements(EltList, BestType);
3058  Consumer.HandleTagDeclDefinition(Enum);
3059}
3060
3061Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3062                                          ExprTy *expr) {
3063  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
3064
3065  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3066}
3067
3068Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3069                                     SourceLocation LBrace,
3070                                     SourceLocation RBrace,
3071                                     const char *Lang,
3072                                     unsigned StrSize,
3073                                     DeclTy *D) {
3074  LinkageSpecDecl::LanguageIDs Language;
3075  Decl *dcl = static_cast<Decl *>(D);
3076  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3077    Language = LinkageSpecDecl::lang_c;
3078  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3079    Language = LinkageSpecDecl::lang_cxx;
3080  else {
3081    Diag(Loc, diag::err_bad_language);
3082    return 0;
3083  }
3084
3085  // FIXME: Add all the various semantics of linkage specifications
3086  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3087}
3088
3089void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3090                           ExprTy *alignment, SourceLocation PragmaLoc,
3091                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3092  Expr *Alignment = static_cast<Expr *>(alignment);
3093
3094  // If specified then alignment must be a "small" power of two.
3095  unsigned AlignmentVal = 0;
3096  if (Alignment) {
3097    llvm::APSInt Val;
3098    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3099        !Val.isPowerOf2() ||
3100        Val.getZExtValue() > 16) {
3101      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3102      delete Alignment;
3103      return; // Ignore
3104    }
3105
3106    AlignmentVal = (unsigned) Val.getZExtValue();
3107  }
3108
3109  switch (Kind) {
3110  case Action::PPK_Default: // pack([n])
3111    PackContext.setAlignment(AlignmentVal);
3112    break;
3113
3114  case Action::PPK_Show: // pack(show)
3115    // Show the current alignment, making sure to show the right value
3116    // for the default.
3117    AlignmentVal = PackContext.getAlignment();
3118    // FIXME: This should come from the target.
3119    if (AlignmentVal == 0)
3120      AlignmentVal = 8;
3121    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
3122    break;
3123
3124  case Action::PPK_Push: // pack(push [, id] [, [n])
3125    PackContext.push(Name);
3126    // Set the new alignment if specified.
3127    if (Alignment)
3128      PackContext.setAlignment(AlignmentVal);
3129    break;
3130
3131  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3132    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3133    // "#pragma pack(pop, identifier, n) is undefined"
3134    if (Alignment && Name)
3135      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3136
3137    // Do the pop.
3138    if (!PackContext.pop(Name)) {
3139      // If a name was specified then failure indicates the name
3140      // wasn't found. Otherwise failure indicates the stack was
3141      // empty.
3142      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
3143           Name ? "no record matching name" : "stack empty");
3144
3145      // FIXME: Warn about popping named records as MSVC does.
3146    } else {
3147      // Pop succeeded, set the new alignment if specified.
3148      if (Alignment)
3149        PackContext.setAlignment(AlignmentVal);
3150    }
3151    break;
3152
3153  default:
3154    assert(0 && "Invalid #pragma pack kind.");
3155  }
3156}
3157
3158bool PragmaPackStack::pop(IdentifierInfo *Name) {
3159  if (Stack.empty())
3160    return false;
3161
3162  // If name is empty just pop top.
3163  if (!Name) {
3164    Alignment = Stack.back().first;
3165    Stack.pop_back();
3166    return true;
3167  }
3168
3169  // Otherwise, find the named record.
3170  for (unsigned i = Stack.size(); i != 0; ) {
3171    --i;
3172    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
3173      // Found it, pop up to and including this record.
3174      Alignment = Stack[i].first;
3175      Stack.erase(Stack.begin() + i, Stack.end());
3176      return true;
3177    }
3178  }
3179
3180  return false;
3181}
3182