SemaDecl.cpp revision 30262b7316bb8d0d17b083bebfc3da6c0ba551cb
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      if (FD->getStorageClass() == SC_Static &&
1223          FD->isInlineSpecified())
1224        return false;
1225    }
1226
1227    if (FD->doesThisDeclarationHaveABody() &&
1228        Context.DeclMustBeEmitted(FD))
1229      return false;
1230  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1231    // Don't warn on variables of const-qualified or reference type, since their
1232    // values can be used even if though they're not odr-used, and because const
1233    // qualified variables can appear in headers in contexts where they're not
1234    // intended to be used.
1235    // FIXME: Use more principled rules for these exemptions.
1236    if (!VD->isFileVarDecl() ||
1237        VD->getType().isConstQualified() ||
1238        VD->getType()->isReferenceType() ||
1239        Context.DeclMustBeEmitted(VD))
1240      return false;
1241
1242    if (VD->isStaticDataMember() &&
1243        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1244      return false;
1245
1246  } else {
1247    return false;
1248  }
1249
1250  // Only warn for unused decls internal to the translation unit.
1251  return mightHaveNonExternalLinkage(D);
1252}
1253
1254void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1255  if (!D)
1256    return;
1257
1258  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1259    const FunctionDecl *First = FD->getFirstDeclaration();
1260    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1261      return; // First should already be in the vector.
1262  }
1263
1264  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1265    const VarDecl *First = VD->getFirstDeclaration();
1266    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1267      return; // First should already be in the vector.
1268  }
1269
1270  if (ShouldWarnIfUnusedFileScopedDecl(D))
1271    UnusedFileScopedDecls.push_back(D);
1272}
1273
1274static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1275  if (D->isInvalidDecl())
1276    return false;
1277
1278  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1279    return false;
1280
1281  if (isa<LabelDecl>(D))
1282    return true;
1283
1284  // White-list anything that isn't a local variable.
1285  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1286      !D->getDeclContext()->isFunctionOrMethod())
1287    return false;
1288
1289  // Types of valid local variables should be complete, so this should succeed.
1290  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291
1292    // White-list anything with an __attribute__((unused)) type.
1293    QualType Ty = VD->getType();
1294
1295    // Only look at the outermost level of typedef.
1296    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1297      if (TT->getDecl()->hasAttr<UnusedAttr>())
1298        return false;
1299    }
1300
1301    // If we failed to complete the type for some reason, or if the type is
1302    // dependent, don't diagnose the variable.
1303    if (Ty->isIncompleteType() || Ty->isDependentType())
1304      return false;
1305
1306    if (const TagType *TT = Ty->getAs<TagType>()) {
1307      const TagDecl *Tag = TT->getDecl();
1308      if (Tag->hasAttr<UnusedAttr>())
1309        return false;
1310
1311      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1312        if (!RD->hasTrivialDestructor())
1313          return false;
1314
1315        if (const Expr *Init = VD->getInit()) {
1316          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1317            Init = Cleanups->getSubExpr();
1318          const CXXConstructExpr *Construct =
1319            dyn_cast<CXXConstructExpr>(Init);
1320          if (Construct && !Construct->isElidable()) {
1321            CXXConstructorDecl *CD = Construct->getConstructor();
1322            if (!CD->isTrivial())
1323              return false;
1324          }
1325        }
1326      }
1327    }
1328
1329    // TODO: __attribute__((unused)) templates?
1330  }
1331
1332  return true;
1333}
1334
1335static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1336                                     FixItHint &Hint) {
1337  if (isa<LabelDecl>(D)) {
1338    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1339                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1340    if (AfterColon.isInvalid())
1341      return;
1342    Hint = FixItHint::CreateRemoval(CharSourceRange::
1343                                    getCharRange(D->getLocStart(), AfterColon));
1344  }
1345  return;
1346}
1347
1348/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1349/// unless they are marked attr(unused).
1350void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1351  FixItHint Hint;
1352  if (!ShouldDiagnoseUnusedDecl(D))
1353    return;
1354
1355  GenerateFixForUnusedDecl(D, Context, Hint);
1356
1357  unsigned DiagID;
1358  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1359    DiagID = diag::warn_unused_exception_param;
1360  else if (isa<LabelDecl>(D))
1361    DiagID = diag::warn_unused_label;
1362  else
1363    DiagID = diag::warn_unused_variable;
1364
1365  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1366}
1367
1368static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1369  // Verify that we have no forward references left.  If so, there was a goto
1370  // or address of a label taken, but no definition of it.  Label fwd
1371  // definitions are indicated with a null substmt.
1372  if (L->getStmt() == 0)
1373    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1374}
1375
1376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1377  if (S->decl_empty()) return;
1378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1379         "Scope shouldn't contain decls!");
1380
1381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1382       I != E; ++I) {
1383    Decl *TmpD = (*I);
1384    assert(TmpD && "This decl didn't get pushed??");
1385
1386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1387    NamedDecl *D = cast<NamedDecl>(TmpD);
1388
1389    if (!D->getDeclName()) continue;
1390
1391    // Diagnose unused variables in this scope.
1392    if (!S->hasErrorOccurred())
1393      DiagnoseUnusedDecl(D);
1394
1395    // If this was a forward reference to a label, verify it was defined.
1396    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1397      CheckPoppedLabel(LD, *this);
1398
1399    // Remove this name from our lexical scope.
1400    IdResolver.RemoveDecl(D);
1401  }
1402}
1403
1404void Sema::ActOnStartFunctionDeclarator() {
1405  ++InFunctionDeclarator;
1406}
1407
1408void Sema::ActOnEndFunctionDeclarator() {
1409  assert(InFunctionDeclarator);
1410  --InFunctionDeclarator;
1411}
1412
1413/// \brief Look for an Objective-C class in the translation unit.
1414///
1415/// \param Id The name of the Objective-C class we're looking for. If
1416/// typo-correction fixes this name, the Id will be updated
1417/// to the fixed name.
1418///
1419/// \param IdLoc The location of the name in the translation unit.
1420///
1421/// \param DoTypoCorrection If true, this routine will attempt typo correction
1422/// if there is no class with the given name.
1423///
1424/// \returns The declaration of the named Objective-C class, or NULL if the
1425/// class could not be found.
1426ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1427                                              SourceLocation IdLoc,
1428                                              bool DoTypoCorrection) {
1429  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1430  // creation from this context.
1431  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1432
1433  if (!IDecl && DoTypoCorrection) {
1434    // Perform typo correction at the given location, but only if we
1435    // find an Objective-C class name.
1436    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1437    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1438                                       LookupOrdinaryName, TUScope, NULL,
1439                                       Validator)) {
1440      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1441      Diag(IdLoc, diag::err_undef_interface_suggest)
1442        << Id << IDecl->getDeclName()
1443        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1444      Diag(IDecl->getLocation(), diag::note_previous_decl)
1445        << IDecl->getDeclName();
1446
1447      Id = IDecl->getIdentifier();
1448    }
1449  }
1450  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1451  // This routine must always return a class definition, if any.
1452  if (Def && Def->getDefinition())
1453      Def = Def->getDefinition();
1454  return Def;
1455}
1456
1457/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1458/// from S, where a non-field would be declared. This routine copes
1459/// with the difference between C and C++ scoping rules in structs and
1460/// unions. For example, the following code is well-formed in C but
1461/// ill-formed in C++:
1462/// @code
1463/// struct S6 {
1464///   enum { BAR } e;
1465/// };
1466///
1467/// void test_S6() {
1468///   struct S6 a;
1469///   a.e = BAR;
1470/// }
1471/// @endcode
1472/// For the declaration of BAR, this routine will return a different
1473/// scope. The scope S will be the scope of the unnamed enumeration
1474/// within S6. In C++, this routine will return the scope associated
1475/// with S6, because the enumeration's scope is a transparent
1476/// context but structures can contain non-field names. In C, this
1477/// routine will return the translation unit scope, since the
1478/// enumeration's scope is a transparent context and structures cannot
1479/// contain non-field names.
1480Scope *Sema::getNonFieldDeclScope(Scope *S) {
1481  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1482         (S->getEntity() &&
1483          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1484         (S->isClassScope() && !getLangOpts().CPlusPlus))
1485    S = S->getParent();
1486  return S;
1487}
1488
1489/// \brief Looks up the declaration of "struct objc_super" and
1490/// saves it for later use in building builtin declaration of
1491/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1492/// pre-existing declaration exists no action takes place.
1493static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1494                                        IdentifierInfo *II) {
1495  if (!II->isStr("objc_msgSendSuper"))
1496    return;
1497  ASTContext &Context = ThisSema.Context;
1498
1499  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1500                      SourceLocation(), Sema::LookupTagName);
1501  ThisSema.LookupName(Result, S);
1502  if (Result.getResultKind() == LookupResult::Found)
1503    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1504      Context.setObjCSuperType(Context.getTagDeclType(TD));
1505}
1506
1507/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1508/// file scope.  lazily create a decl for it. ForRedeclaration is true
1509/// if we're creating this built-in in anticipation of redeclaring the
1510/// built-in.
1511NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1512                                     Scope *S, bool ForRedeclaration,
1513                                     SourceLocation Loc) {
1514  LookupPredefedObjCSuperType(*this, S, II);
1515
1516  Builtin::ID BID = (Builtin::ID)bid;
1517
1518  ASTContext::GetBuiltinTypeError Error;
1519  QualType R = Context.GetBuiltinType(BID, Error);
1520  switch (Error) {
1521  case ASTContext::GE_None:
1522    // Okay
1523    break;
1524
1525  case ASTContext::GE_Missing_stdio:
1526    if (ForRedeclaration)
1527      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1528        << Context.BuiltinInfo.GetName(BID);
1529    return 0;
1530
1531  case ASTContext::GE_Missing_setjmp:
1532    if (ForRedeclaration)
1533      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1534        << Context.BuiltinInfo.GetName(BID);
1535    return 0;
1536
1537  case ASTContext::GE_Missing_ucontext:
1538    if (ForRedeclaration)
1539      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1540        << Context.BuiltinInfo.GetName(BID);
1541    return 0;
1542  }
1543
1544  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1545    Diag(Loc, diag::ext_implicit_lib_function_decl)
1546      << Context.BuiltinInfo.GetName(BID)
1547      << R;
1548    if (Context.BuiltinInfo.getHeaderName(BID) &&
1549        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1550          != DiagnosticsEngine::Ignored)
1551      Diag(Loc, diag::note_please_include_header)
1552        << Context.BuiltinInfo.getHeaderName(BID)
1553        << Context.BuiltinInfo.GetName(BID);
1554  }
1555
1556  FunctionDecl *New = FunctionDecl::Create(Context,
1557                                           Context.getTranslationUnitDecl(),
1558                                           Loc, Loc, II, R, /*TInfo=*/0,
1559                                           SC_Extern,
1560                                           SC_None, false,
1561                                           /*hasPrototype=*/true);
1562  New->setImplicit();
1563
1564  // Create Decl objects for each parameter, adding them to the
1565  // FunctionDecl.
1566  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567    SmallVector<ParmVarDecl*, 16> Params;
1568    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569      ParmVarDecl *parm =
1570        ParmVarDecl::Create(Context, New, SourceLocation(),
1571                            SourceLocation(), 0,
1572                            FT->getArgType(i), /*TInfo=*/0,
1573                            SC_None, SC_None, 0);
1574      parm->setScopeInfo(0, i);
1575      Params.push_back(parm);
1576    }
1577    New->setParams(Params);
1578  }
1579
1580  AddKnownFunctionAttributes(New);
1581
1582  // TUScope is the translation-unit scope to insert this function into.
1583  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1584  // relate Scopes to DeclContexts, and probably eliminate CurContext
1585  // entirely, but we're not there yet.
1586  DeclContext *SavedContext = CurContext;
1587  CurContext = Context.getTranslationUnitDecl();
1588  PushOnScopeChains(New, TUScope);
1589  CurContext = SavedContext;
1590  return New;
1591}
1592
1593/// \brief Filter out any previous declarations that the given declaration
1594/// should not consider because they are not permitted to conflict, e.g.,
1595/// because they come from hidden sub-modules and do not refer to the same
1596/// entity.
1597static void filterNonConflictingPreviousDecls(ASTContext &context,
1598                                              NamedDecl *decl,
1599                                              LookupResult &previous){
1600  // This is only interesting when modules are enabled.
1601  if (!context.getLangOpts().Modules)
1602    return;
1603
1604  // Empty sets are uninteresting.
1605  if (previous.empty())
1606    return;
1607
1608  // If this declaration has external
1609  bool hasExternalLinkage = decl->hasExternalLinkage();
1610
1611  LookupResult::Filter filter = previous.makeFilter();
1612  while (filter.hasNext()) {
1613    NamedDecl *old = filter.next();
1614
1615    // Non-hidden declarations are never ignored.
1616    if (!old->isHidden())
1617      continue;
1618
1619    // If either has no-external linkage, ignore the old declaration.
1620    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1621      filter.erase();
1622  }
1623
1624  filter.done();
1625}
1626
1627bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1628  QualType OldType;
1629  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1630    OldType = OldTypedef->getUnderlyingType();
1631  else
1632    OldType = Context.getTypeDeclType(Old);
1633  QualType NewType = New->getUnderlyingType();
1634
1635  if (NewType->isVariablyModifiedType()) {
1636    // Must not redefine a typedef with a variably-modified type.
1637    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1638    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1639      << Kind << NewType;
1640    if (Old->getLocation().isValid())
1641      Diag(Old->getLocation(), diag::note_previous_definition);
1642    New->setInvalidDecl();
1643    return true;
1644  }
1645
1646  if (OldType != NewType &&
1647      !OldType->isDependentType() &&
1648      !NewType->isDependentType() &&
1649      !Context.hasSameType(OldType, NewType)) {
1650    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1651    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1652      << Kind << NewType << OldType;
1653    if (Old->getLocation().isValid())
1654      Diag(Old->getLocation(), diag::note_previous_definition);
1655    New->setInvalidDecl();
1656    return true;
1657  }
1658  return false;
1659}
1660
1661/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1662/// same name and scope as a previous declaration 'Old'.  Figure out
1663/// how to resolve this situation, merging decls or emitting
1664/// diagnostics as appropriate. If there was an error, set New to be invalid.
1665///
1666void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1667  // If the new decl is known invalid already, don't bother doing any
1668  // merging checks.
1669  if (New->isInvalidDecl()) return;
1670
1671  // Allow multiple definitions for ObjC built-in typedefs.
1672  // FIXME: Verify the underlying types are equivalent!
1673  if (getLangOpts().ObjC1) {
1674    const IdentifierInfo *TypeID = New->getIdentifier();
1675    switch (TypeID->getLength()) {
1676    default: break;
1677    case 2:
1678      {
1679        if (!TypeID->isStr("id"))
1680          break;
1681        QualType T = New->getUnderlyingType();
1682        if (!T->isPointerType())
1683          break;
1684        if (!T->isVoidPointerType()) {
1685          QualType PT = T->getAs<PointerType>()->getPointeeType();
1686          if (!PT->isStructureType())
1687            break;
1688        }
1689        Context.setObjCIdRedefinitionType(T);
1690        // Install the built-in type for 'id', ignoring the current definition.
1691        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1692        return;
1693      }
1694    case 5:
1695      if (!TypeID->isStr("Class"))
1696        break;
1697      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1698      // Install the built-in type for 'Class', ignoring the current definition.
1699      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1700      return;
1701    case 3:
1702      if (!TypeID->isStr("SEL"))
1703        break;
1704      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1705      // Install the built-in type for 'SEL', ignoring the current definition.
1706      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1707      return;
1708    }
1709    // Fall through - the typedef name was not a builtin type.
1710  }
1711
1712  // Verify the old decl was also a type.
1713  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1714  if (!Old) {
1715    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1716      << New->getDeclName();
1717
1718    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1719    if (OldD->getLocation().isValid())
1720      Diag(OldD->getLocation(), diag::note_previous_definition);
1721
1722    return New->setInvalidDecl();
1723  }
1724
1725  // If the old declaration is invalid, just give up here.
1726  if (Old->isInvalidDecl())
1727    return New->setInvalidDecl();
1728
1729  // If the typedef types are not identical, reject them in all languages and
1730  // with any extensions enabled.
1731  if (isIncompatibleTypedef(Old, New))
1732    return;
1733
1734  // The types match.  Link up the redeclaration chain if the old
1735  // declaration was a typedef.
1736  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1737    New->setPreviousDeclaration(Typedef);
1738
1739  if (getLangOpts().MicrosoftExt)
1740    return;
1741
1742  if (getLangOpts().CPlusPlus) {
1743    // C++ [dcl.typedef]p2:
1744    //   In a given non-class scope, a typedef specifier can be used to
1745    //   redefine the name of any type declared in that scope to refer
1746    //   to the type to which it already refers.
1747    if (!isa<CXXRecordDecl>(CurContext))
1748      return;
1749
1750    // C++0x [dcl.typedef]p4:
1751    //   In a given class scope, a typedef specifier can be used to redefine
1752    //   any class-name declared in that scope that is not also a typedef-name
1753    //   to refer to the type to which it already refers.
1754    //
1755    // This wording came in via DR424, which was a correction to the
1756    // wording in DR56, which accidentally banned code like:
1757    //
1758    //   struct S {
1759    //     typedef struct A { } A;
1760    //   };
1761    //
1762    // in the C++03 standard. We implement the C++0x semantics, which
1763    // allow the above but disallow
1764    //
1765    //   struct S {
1766    //     typedef int I;
1767    //     typedef int I;
1768    //   };
1769    //
1770    // since that was the intent of DR56.
1771    if (!isa<TypedefNameDecl>(Old))
1772      return;
1773
1774    Diag(New->getLocation(), diag::err_redefinition)
1775      << New->getDeclName();
1776    Diag(Old->getLocation(), diag::note_previous_definition);
1777    return New->setInvalidDecl();
1778  }
1779
1780  // Modules always permit redefinition of typedefs, as does C11.
1781  if (getLangOpts().Modules || getLangOpts().C11)
1782    return;
1783
1784  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1785  // is normally mapped to an error, but can be controlled with
1786  // -Wtypedef-redefinition.  If either the original or the redefinition is
1787  // in a system header, don't emit this for compatibility with GCC.
1788  if (getDiagnostics().getSuppressSystemWarnings() &&
1789      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1790       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1791    return;
1792
1793  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1794    << New->getDeclName();
1795  Diag(Old->getLocation(), diag::note_previous_definition);
1796  return;
1797}
1798
1799/// DeclhasAttr - returns true if decl Declaration already has the target
1800/// attribute.
1801static bool
1802DeclHasAttr(const Decl *D, const Attr *A) {
1803  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1804  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1805  // responsible for making sure they are consistent.
1806  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1807  if (AA)
1808    return false;
1809
1810  // The following thread safety attributes can also be duplicated.
1811  switch (A->getKind()) {
1812    case attr::ExclusiveLocksRequired:
1813    case attr::SharedLocksRequired:
1814    case attr::LocksExcluded:
1815    case attr::ExclusiveLockFunction:
1816    case attr::SharedLockFunction:
1817    case attr::UnlockFunction:
1818    case attr::ExclusiveTrylockFunction:
1819    case attr::SharedTrylockFunction:
1820    case attr::GuardedBy:
1821    case attr::PtGuardedBy:
1822    case attr::AcquiredBefore:
1823    case attr::AcquiredAfter:
1824      return false;
1825    default:
1826      ;
1827  }
1828
1829  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1830  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1831  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1832    if ((*i)->getKind() == A->getKind()) {
1833      if (Ann) {
1834        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1835          return true;
1836        continue;
1837      }
1838      // FIXME: Don't hardcode this check
1839      if (OA && isa<OwnershipAttr>(*i))
1840        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1841      return true;
1842    }
1843
1844  return false;
1845}
1846
1847static bool isAttributeTargetADefinition(Decl *D) {
1848  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1849    return VD->isThisDeclarationADefinition();
1850  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1851    return TD->isCompleteDefinition() || TD->isBeingDefined();
1852  return true;
1853}
1854
1855/// Merge alignment attributes from \p Old to \p New, taking into account the
1856/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1857///
1858/// \return \c true if any attributes were added to \p New.
1859static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1860  // Look for alignas attributes on Old, and pick out whichever attribute
1861  // specifies the strictest alignment requirement.
1862  AlignedAttr *OldAlignasAttr = 0;
1863  AlignedAttr *OldStrictestAlignAttr = 0;
1864  unsigned OldAlign = 0;
1865  for (specific_attr_iterator<AlignedAttr>
1866         I = Old->specific_attr_begin<AlignedAttr>(),
1867         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1868    // FIXME: We have no way of representing inherited dependent alignments
1869    // in a case like:
1870    //   template<int A, int B> struct alignas(A) X;
1871    //   template<int A, int B> struct alignas(B) X {};
1872    // For now, we just ignore any alignas attributes which are not on the
1873    // definition in such a case.
1874    if (I->isAlignmentDependent())
1875      return false;
1876
1877    if (I->isAlignas())
1878      OldAlignasAttr = *I;
1879
1880    unsigned Align = I->getAlignment(S.Context);
1881    if (Align > OldAlign) {
1882      OldAlign = Align;
1883      OldStrictestAlignAttr = *I;
1884    }
1885  }
1886
1887  // Look for alignas attributes on New.
1888  AlignedAttr *NewAlignasAttr = 0;
1889  unsigned NewAlign = 0;
1890  for (specific_attr_iterator<AlignedAttr>
1891         I = New->specific_attr_begin<AlignedAttr>(),
1892         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1893    if (I->isAlignmentDependent())
1894      return false;
1895
1896    if (I->isAlignas())
1897      NewAlignasAttr = *I;
1898
1899    unsigned Align = I->getAlignment(S.Context);
1900    if (Align > NewAlign)
1901      NewAlign = Align;
1902  }
1903
1904  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1905    // Both declarations have 'alignas' attributes. We require them to match.
1906    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1907    // fall short. (If two declarations both have alignas, they must both match
1908    // every definition, and so must match each other if there is a definition.)
1909
1910    // If either declaration only contains 'alignas(0)' specifiers, then it
1911    // specifies the natural alignment for the type.
1912    if (OldAlign == 0 || NewAlign == 0) {
1913      QualType Ty;
1914      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1915        Ty = VD->getType();
1916      else
1917        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1918
1919      if (OldAlign == 0)
1920        OldAlign = S.Context.getTypeAlign(Ty);
1921      if (NewAlign == 0)
1922        NewAlign = S.Context.getTypeAlign(Ty);
1923    }
1924
1925    if (OldAlign != NewAlign) {
1926      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1927        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1928        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1929      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1930    }
1931  }
1932
1933  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1934    // C++11 [dcl.align]p6:
1935    //   if any declaration of an entity has an alignment-specifier,
1936    //   every defining declaration of that entity shall specify an
1937    //   equivalent alignment.
1938    // C11 6.7.5/7:
1939    //   If the definition of an object does not have an alignment
1940    //   specifier, any other declaration of that object shall also
1941    //   have no alignment specifier.
1942    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1943      << OldAlignasAttr->isC11();
1944    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1945      << OldAlignasAttr->isC11();
1946  }
1947
1948  bool AnyAdded = false;
1949
1950  // Ensure we have an attribute representing the strictest alignment.
1951  if (OldAlign > NewAlign) {
1952    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1953    Clone->setInherited(true);
1954    New->addAttr(Clone);
1955    AnyAdded = true;
1956  }
1957
1958  // Ensure we have an alignas attribute if the old declaration had one.
1959  if (OldAlignasAttr && !NewAlignasAttr &&
1960      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1961    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1962    Clone->setInherited(true);
1963    New->addAttr(Clone);
1964    AnyAdded = true;
1965  }
1966
1967  return AnyAdded;
1968}
1969
1970static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1971                               bool Override) {
1972  InheritableAttr *NewAttr = NULL;
1973  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1974  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1975    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1976                                      AA->getIntroduced(), AA->getDeprecated(),
1977                                      AA->getObsoleted(), AA->getUnavailable(),
1978                                      AA->getMessage(), Override,
1979                                      AttrSpellingListIndex);
1980  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1981    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                    AttrSpellingListIndex);
1983  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1984    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1985                                        AttrSpellingListIndex);
1986  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1987    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1988                                   AttrSpellingListIndex);
1989  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1990    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1991                                   AttrSpellingListIndex);
1992  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1993    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1994                                FA->getFormatIdx(), FA->getFirstArg(),
1995                                AttrSpellingListIndex);
1996  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1997    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1998                                 AttrSpellingListIndex);
1999  else if (isa<AlignedAttr>(Attr))
2000    // AlignedAttrs are handled separately, because we need to handle all
2001    // such attributes on a declaration at the same time.
2002    NewAttr = 0;
2003  else if (!DeclHasAttr(D, Attr))
2004    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2005
2006  if (NewAttr) {
2007    NewAttr->setInherited(true);
2008    D->addAttr(NewAttr);
2009    return true;
2010  }
2011
2012  return false;
2013}
2014
2015static const Decl *getDefinition(const Decl *D) {
2016  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2017    return TD->getDefinition();
2018  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2019    return VD->getDefinition();
2020  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2021    const FunctionDecl* Def;
2022    if (FD->hasBody(Def))
2023      return Def;
2024  }
2025  return NULL;
2026}
2027
2028static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2029  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2030       I != E; ++I) {
2031    Attr *Attribute = *I;
2032    if (Attribute->getKind() == Kind)
2033      return true;
2034  }
2035  return false;
2036}
2037
2038/// checkNewAttributesAfterDef - If we already have a definition, check that
2039/// there are no new attributes in this declaration.
2040static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2041  if (!New->hasAttrs())
2042    return;
2043
2044  const Decl *Def = getDefinition(Old);
2045  if (!Def || Def == New)
2046    return;
2047
2048  AttrVec &NewAttributes = New->getAttrs();
2049  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2050    const Attr *NewAttribute = NewAttributes[I];
2051    if (hasAttribute(Def, NewAttribute->getKind())) {
2052      ++I;
2053      continue; // regular attr merging will take care of validating this.
2054    }
2055
2056    if (isa<C11NoReturnAttr>(NewAttribute)) {
2057      // C's _Noreturn is allowed to be added to a function after it is defined.
2058      ++I;
2059      continue;
2060    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2061      if (AA->isAlignas()) {
2062        // C++11 [dcl.align]p6:
2063        //   if any declaration of an entity has an alignment-specifier,
2064        //   every defining declaration of that entity shall specify an
2065        //   equivalent alignment.
2066        // C11 6.7.5/7:
2067        //   If the definition of an object does not have an alignment
2068        //   specifier, any other declaration of that object shall also
2069        //   have no alignment specifier.
2070        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2071          << AA->isC11();
2072        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2073          << AA->isC11();
2074        NewAttributes.erase(NewAttributes.begin() + I);
2075        --E;
2076        continue;
2077      }
2078    }
2079
2080    S.Diag(NewAttribute->getLocation(),
2081           diag::warn_attribute_precede_definition);
2082    S.Diag(Def->getLocation(), diag::note_previous_definition);
2083    NewAttributes.erase(NewAttributes.begin() + I);
2084    --E;
2085  }
2086}
2087
2088/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2089void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2090                               AvailabilityMergeKind AMK) {
2091  if (!Old->hasAttrs() && !New->hasAttrs())
2092    return;
2093
2094  // attributes declared post-definition are currently ignored
2095  checkNewAttributesAfterDef(*this, New, Old);
2096
2097  if (!Old->hasAttrs())
2098    return;
2099
2100  bool foundAny = New->hasAttrs();
2101
2102  // Ensure that any moving of objects within the allocated map is done before
2103  // we process them.
2104  if (!foundAny) New->setAttrs(AttrVec());
2105
2106  for (specific_attr_iterator<InheritableAttr>
2107         i = Old->specific_attr_begin<InheritableAttr>(),
2108         e = Old->specific_attr_end<InheritableAttr>();
2109       i != e; ++i) {
2110    bool Override = false;
2111    // Ignore deprecated/unavailable/availability attributes if requested.
2112    if (isa<DeprecatedAttr>(*i) ||
2113        isa<UnavailableAttr>(*i) ||
2114        isa<AvailabilityAttr>(*i)) {
2115      switch (AMK) {
2116      case AMK_None:
2117        continue;
2118
2119      case AMK_Redeclaration:
2120        break;
2121
2122      case AMK_Override:
2123        Override = true;
2124        break;
2125      }
2126    }
2127
2128    if (mergeDeclAttribute(*this, New, *i, Override))
2129      foundAny = true;
2130  }
2131
2132  if (mergeAlignedAttrs(*this, New, Old))
2133    foundAny = true;
2134
2135  if (!foundAny) New->dropAttrs();
2136}
2137
2138/// mergeParamDeclAttributes - Copy attributes from the old parameter
2139/// to the new one.
2140static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2141                                     const ParmVarDecl *oldDecl,
2142                                     Sema &S) {
2143  // C++11 [dcl.attr.depend]p2:
2144  //   The first declaration of a function shall specify the
2145  //   carries_dependency attribute for its declarator-id if any declaration
2146  //   of the function specifies the carries_dependency attribute.
2147  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2148      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2149    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2150           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2151    // Find the first declaration of the parameter.
2152    // FIXME: Should we build redeclaration chains for function parameters?
2153    const FunctionDecl *FirstFD =
2154      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2155    const ParmVarDecl *FirstVD =
2156      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2157    S.Diag(FirstVD->getLocation(),
2158           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2159  }
2160
2161  if (!oldDecl->hasAttrs())
2162    return;
2163
2164  bool foundAny = newDecl->hasAttrs();
2165
2166  // Ensure that any moving of objects within the allocated map is
2167  // done before we process them.
2168  if (!foundAny) newDecl->setAttrs(AttrVec());
2169
2170  for (specific_attr_iterator<InheritableParamAttr>
2171       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2172       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2173    if (!DeclHasAttr(newDecl, *i)) {
2174      InheritableAttr *newAttr =
2175        cast<InheritableParamAttr>((*i)->clone(S.Context));
2176      newAttr->setInherited(true);
2177      newDecl->addAttr(newAttr);
2178      foundAny = true;
2179    }
2180  }
2181
2182  if (!foundAny) newDecl->dropAttrs();
2183}
2184
2185namespace {
2186
2187/// Used in MergeFunctionDecl to keep track of function parameters in
2188/// C.
2189struct GNUCompatibleParamWarning {
2190  ParmVarDecl *OldParm;
2191  ParmVarDecl *NewParm;
2192  QualType PromotedType;
2193};
2194
2195}
2196
2197/// getSpecialMember - get the special member enum for a method.
2198Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2199  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2200    if (Ctor->isDefaultConstructor())
2201      return Sema::CXXDefaultConstructor;
2202
2203    if (Ctor->isCopyConstructor())
2204      return Sema::CXXCopyConstructor;
2205
2206    if (Ctor->isMoveConstructor())
2207      return Sema::CXXMoveConstructor;
2208  } else if (isa<CXXDestructorDecl>(MD)) {
2209    return Sema::CXXDestructor;
2210  } else if (MD->isCopyAssignmentOperator()) {
2211    return Sema::CXXCopyAssignment;
2212  } else if (MD->isMoveAssignmentOperator()) {
2213    return Sema::CXXMoveAssignment;
2214  }
2215
2216  return Sema::CXXInvalid;
2217}
2218
2219/// canRedefineFunction - checks if a function can be redefined. Currently,
2220/// only extern inline functions can be redefined, and even then only in
2221/// GNU89 mode.
2222static bool canRedefineFunction(const FunctionDecl *FD,
2223                                const LangOptions& LangOpts) {
2224  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2225          !LangOpts.CPlusPlus &&
2226          FD->isInlineSpecified() &&
2227          FD->getStorageClass() == SC_Extern);
2228}
2229
2230/// Is the given calling convention the ABI default for the given
2231/// declaration?
2232static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2233  CallingConv ABIDefaultCC;
2234  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2235    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2236  } else {
2237    // Free C function or a static method.
2238    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2239  }
2240  return ABIDefaultCC == CC;
2241}
2242
2243template <typename T>
2244static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2245  const DeclContext *DC = Old->getDeclContext();
2246  if (DC->isRecord())
2247    return false;
2248
2249  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2250  if (OldLinkage == CXXLanguageLinkage &&
2251      New->getDeclContext()->isExternCContext())
2252    return true;
2253  if (OldLinkage == CLanguageLinkage &&
2254      New->getDeclContext()->isExternCXXContext())
2255    return true;
2256  return false;
2257}
2258
2259/// MergeFunctionDecl - We just parsed a function 'New' from
2260/// declarator D which has the same name and scope as a previous
2261/// declaration 'Old'.  Figure out how to resolve this situation,
2262/// merging decls or emitting diagnostics as appropriate.
2263///
2264/// In C++, New and Old must be declarations that are not
2265/// overloaded. Use IsOverload to determine whether New and Old are
2266/// overloaded, and to select the Old declaration that New should be
2267/// merged with.
2268///
2269/// Returns true if there was an error, false otherwise.
2270bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2271  // Verify the old decl was also a function.
2272  FunctionDecl *Old = 0;
2273  if (FunctionTemplateDecl *OldFunctionTemplate
2274        = dyn_cast<FunctionTemplateDecl>(OldD))
2275    Old = OldFunctionTemplate->getTemplatedDecl();
2276  else
2277    Old = dyn_cast<FunctionDecl>(OldD);
2278  if (!Old) {
2279    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2280      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2281      Diag(Shadow->getTargetDecl()->getLocation(),
2282           diag::note_using_decl_target);
2283      Diag(Shadow->getUsingDecl()->getLocation(),
2284           diag::note_using_decl) << 0;
2285      return true;
2286    }
2287
2288    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2289      << New->getDeclName();
2290    Diag(OldD->getLocation(), diag::note_previous_definition);
2291    return true;
2292  }
2293
2294  // Determine whether the previous declaration was a definition,
2295  // implicit declaration, or a declaration.
2296  diag::kind PrevDiag;
2297  if (Old->isThisDeclarationADefinition())
2298    PrevDiag = diag::note_previous_definition;
2299  else if (Old->isImplicit())
2300    PrevDiag = diag::note_previous_implicit_declaration;
2301  else
2302    PrevDiag = diag::note_previous_declaration;
2303
2304  QualType OldQType = Context.getCanonicalType(Old->getType());
2305  QualType NewQType = Context.getCanonicalType(New->getType());
2306
2307  // Don't complain about this if we're in GNU89 mode and the old function
2308  // is an extern inline function.
2309  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2310      New->getStorageClass() == SC_Static &&
2311      Old->getStorageClass() != SC_Static &&
2312      !canRedefineFunction(Old, getLangOpts())) {
2313    if (getLangOpts().MicrosoftExt) {
2314      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2315      Diag(Old->getLocation(), PrevDiag);
2316    } else {
2317      Diag(New->getLocation(), diag::err_static_non_static) << New;
2318      Diag(Old->getLocation(), PrevDiag);
2319      return true;
2320    }
2321  }
2322
2323  // If a function is first declared with a calling convention, but is
2324  // later declared or defined without one, the second decl assumes the
2325  // calling convention of the first.
2326  //
2327  // It's OK if a function is first declared without a calling convention,
2328  // but is later declared or defined with the default calling convention.
2329  //
2330  // For the new decl, we have to look at the NON-canonical type to tell the
2331  // difference between a function that really doesn't have a calling
2332  // convention and one that is declared cdecl. That's because in
2333  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2334  // because it is the default calling convention.
2335  //
2336  // Note also that we DO NOT return at this point, because we still have
2337  // other tests to run.
2338  const FunctionType *OldType = cast<FunctionType>(OldQType);
2339  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2340  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2341  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2342  bool RequiresAdjustment = false;
2343  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2344    // Fast path: nothing to do.
2345
2346  // Inherit the CC from the previous declaration if it was specified
2347  // there but not here.
2348  } else if (NewTypeInfo.getCC() == CC_Default) {
2349    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2350    RequiresAdjustment = true;
2351
2352  // Don't complain about mismatches when the default CC is
2353  // effectively the same as the explict one. Only Old decl contains correct
2354  // information about storage class of CXXMethod.
2355  } else if (OldTypeInfo.getCC() == CC_Default &&
2356             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2357    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2358    RequiresAdjustment = true;
2359
2360  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2361                                     NewTypeInfo.getCC())) {
2362    // Calling conventions really aren't compatible, so complain.
2363    Diag(New->getLocation(), diag::err_cconv_change)
2364      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2365      << (OldTypeInfo.getCC() == CC_Default)
2366      << (OldTypeInfo.getCC() == CC_Default ? "" :
2367          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2368    Diag(Old->getLocation(), diag::note_previous_declaration);
2369    return true;
2370  }
2371
2372  // FIXME: diagnose the other way around?
2373  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2374    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2375    RequiresAdjustment = true;
2376  }
2377
2378  // Merge regparm attribute.
2379  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2380      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2381    if (NewTypeInfo.getHasRegParm()) {
2382      Diag(New->getLocation(), diag::err_regparm_mismatch)
2383        << NewType->getRegParmType()
2384        << OldType->getRegParmType();
2385      Diag(Old->getLocation(), diag::note_previous_declaration);
2386      return true;
2387    }
2388
2389    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2390    RequiresAdjustment = true;
2391  }
2392
2393  // Merge ns_returns_retained attribute.
2394  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2395    if (NewTypeInfo.getProducesResult()) {
2396      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2397      Diag(Old->getLocation(), diag::note_previous_declaration);
2398      return true;
2399    }
2400
2401    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2402    RequiresAdjustment = true;
2403  }
2404
2405  if (RequiresAdjustment) {
2406    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2407    New->setType(QualType(NewType, 0));
2408    NewQType = Context.getCanonicalType(New->getType());
2409  }
2410
2411  // If this redeclaration makes the function inline, we may need to add it to
2412  // UndefinedButUsed.
2413  if (!Old->isInlined() && New->isInlined() &&
2414      !New->hasAttr<GNUInlineAttr>() &&
2415      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2416      Old->isUsed(false) &&
2417      !Old->isDefined() && !New->isThisDeclarationADefinition())
2418    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2419                                           SourceLocation()));
2420
2421  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2422  // about it.
2423  if (New->hasAttr<GNUInlineAttr>() &&
2424      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2425    UndefinedButUsed.erase(Old->getCanonicalDecl());
2426  }
2427
2428  if (getLangOpts().CPlusPlus) {
2429    // (C++98 13.1p2):
2430    //   Certain function declarations cannot be overloaded:
2431    //     -- Function declarations that differ only in the return type
2432    //        cannot be overloaded.
2433    QualType OldReturnType = OldType->getResultType();
2434    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2435    QualType ResQT;
2436    if (OldReturnType != NewReturnType) {
2437      if (NewReturnType->isObjCObjectPointerType()
2438          && OldReturnType->isObjCObjectPointerType())
2439        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2440      if (ResQT.isNull()) {
2441        if (New->isCXXClassMember() && New->isOutOfLine())
2442          Diag(New->getLocation(),
2443               diag::err_member_def_does_not_match_ret_type) << New;
2444        else
2445          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2446        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2447        return true;
2448      }
2449      else
2450        NewQType = ResQT;
2451    }
2452
2453    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2454    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2455    if (OldMethod && NewMethod) {
2456      // Preserve triviality.
2457      NewMethod->setTrivial(OldMethod->isTrivial());
2458
2459      // MSVC allows explicit template specialization at class scope:
2460      // 2 CXMethodDecls referring to the same function will be injected.
2461      // We don't want a redeclartion error.
2462      bool IsClassScopeExplicitSpecialization =
2463                              OldMethod->isFunctionTemplateSpecialization() &&
2464                              NewMethod->isFunctionTemplateSpecialization();
2465      bool isFriend = NewMethod->getFriendObjectKind();
2466
2467      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2468          !IsClassScopeExplicitSpecialization) {
2469        //    -- Member function declarations with the same name and the
2470        //       same parameter types cannot be overloaded if any of them
2471        //       is a static member function declaration.
2472        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2473          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2474          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2475          return true;
2476        }
2477
2478        // C++ [class.mem]p1:
2479        //   [...] A member shall not be declared twice in the
2480        //   member-specification, except that a nested class or member
2481        //   class template can be declared and then later defined.
2482        if (ActiveTemplateInstantiations.empty()) {
2483          unsigned NewDiag;
2484          if (isa<CXXConstructorDecl>(OldMethod))
2485            NewDiag = diag::err_constructor_redeclared;
2486          else if (isa<CXXDestructorDecl>(NewMethod))
2487            NewDiag = diag::err_destructor_redeclared;
2488          else if (isa<CXXConversionDecl>(NewMethod))
2489            NewDiag = diag::err_conv_function_redeclared;
2490          else
2491            NewDiag = diag::err_member_redeclared;
2492
2493          Diag(New->getLocation(), NewDiag);
2494        } else {
2495          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2496            << New << New->getType();
2497        }
2498        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2499
2500      // Complain if this is an explicit declaration of a special
2501      // member that was initially declared implicitly.
2502      //
2503      // As an exception, it's okay to befriend such methods in order
2504      // to permit the implicit constructor/destructor/operator calls.
2505      } else if (OldMethod->isImplicit()) {
2506        if (isFriend) {
2507          NewMethod->setImplicit();
2508        } else {
2509          Diag(NewMethod->getLocation(),
2510               diag::err_definition_of_implicitly_declared_member)
2511            << New << getSpecialMember(OldMethod);
2512          return true;
2513        }
2514      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2515        Diag(NewMethod->getLocation(),
2516             diag::err_definition_of_explicitly_defaulted_member)
2517          << getSpecialMember(OldMethod);
2518        return true;
2519      }
2520    }
2521
2522    // C++11 [dcl.attr.noreturn]p1:
2523    //   The first declaration of a function shall specify the noreturn
2524    //   attribute if any declaration of that function specifies the noreturn
2525    //   attribute.
2526    if (New->hasAttr<CXX11NoReturnAttr>() &&
2527        !Old->hasAttr<CXX11NoReturnAttr>()) {
2528      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2529           diag::err_noreturn_missing_on_first_decl);
2530      Diag(Old->getFirstDeclaration()->getLocation(),
2531           diag::note_noreturn_missing_first_decl);
2532    }
2533
2534    // C++11 [dcl.attr.depend]p2:
2535    //   The first declaration of a function shall specify the
2536    //   carries_dependency attribute for its declarator-id if any declaration
2537    //   of the function specifies the carries_dependency attribute.
2538    if (New->hasAttr<CarriesDependencyAttr>() &&
2539        !Old->hasAttr<CarriesDependencyAttr>()) {
2540      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2541           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2542      Diag(Old->getFirstDeclaration()->getLocation(),
2543           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2544    }
2545
2546    // (C++98 8.3.5p3):
2547    //   All declarations for a function shall agree exactly in both the
2548    //   return type and the parameter-type-list.
2549    // We also want to respect all the extended bits except noreturn.
2550
2551    // noreturn should now match unless the old type info didn't have it.
2552    QualType OldQTypeForComparison = OldQType;
2553    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2554      assert(OldQType == QualType(OldType, 0));
2555      const FunctionType *OldTypeForComparison
2556        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2557      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2558      assert(OldQTypeForComparison.isCanonical());
2559    }
2560
2561    if (haveIncompatibleLanguageLinkages(Old, New)) {
2562      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2563      Diag(Old->getLocation(), PrevDiag);
2564      return true;
2565    }
2566
2567    if (OldQTypeForComparison == NewQType)
2568      return MergeCompatibleFunctionDecls(New, Old, S);
2569
2570    // Fall through for conflicting redeclarations and redefinitions.
2571  }
2572
2573  // C: Function types need to be compatible, not identical. This handles
2574  // duplicate function decls like "void f(int); void f(enum X);" properly.
2575  if (!getLangOpts().CPlusPlus &&
2576      Context.typesAreCompatible(OldQType, NewQType)) {
2577    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2578    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2579    const FunctionProtoType *OldProto = 0;
2580    if (isa<FunctionNoProtoType>(NewFuncType) &&
2581        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2582      // The old declaration provided a function prototype, but the
2583      // new declaration does not. Merge in the prototype.
2584      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2585      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2586                                                 OldProto->arg_type_end());
2587      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2588                                         ParamTypes,
2589                                         OldProto->getExtProtoInfo());
2590      New->setType(NewQType);
2591      New->setHasInheritedPrototype();
2592
2593      // Synthesize a parameter for each argument type.
2594      SmallVector<ParmVarDecl*, 16> Params;
2595      for (FunctionProtoType::arg_type_iterator
2596             ParamType = OldProto->arg_type_begin(),
2597             ParamEnd = OldProto->arg_type_end();
2598           ParamType != ParamEnd; ++ParamType) {
2599        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2600                                                 SourceLocation(),
2601                                                 SourceLocation(), 0,
2602                                                 *ParamType, /*TInfo=*/0,
2603                                                 SC_None, SC_None,
2604                                                 0);
2605        Param->setScopeInfo(0, Params.size());
2606        Param->setImplicit();
2607        Params.push_back(Param);
2608      }
2609
2610      New->setParams(Params);
2611    }
2612
2613    return MergeCompatibleFunctionDecls(New, Old, S);
2614  }
2615
2616  // GNU C permits a K&R definition to follow a prototype declaration
2617  // if the declared types of the parameters in the K&R definition
2618  // match the types in the prototype declaration, even when the
2619  // promoted types of the parameters from the K&R definition differ
2620  // from the types in the prototype. GCC then keeps the types from
2621  // the prototype.
2622  //
2623  // If a variadic prototype is followed by a non-variadic K&R definition,
2624  // the K&R definition becomes variadic.  This is sort of an edge case, but
2625  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2626  // C99 6.9.1p8.
2627  if (!getLangOpts().CPlusPlus &&
2628      Old->hasPrototype() && !New->hasPrototype() &&
2629      New->getType()->getAs<FunctionProtoType>() &&
2630      Old->getNumParams() == New->getNumParams()) {
2631    SmallVector<QualType, 16> ArgTypes;
2632    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2633    const FunctionProtoType *OldProto
2634      = Old->getType()->getAs<FunctionProtoType>();
2635    const FunctionProtoType *NewProto
2636      = New->getType()->getAs<FunctionProtoType>();
2637
2638    // Determine whether this is the GNU C extension.
2639    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2640                                               NewProto->getResultType());
2641    bool LooseCompatible = !MergedReturn.isNull();
2642    for (unsigned Idx = 0, End = Old->getNumParams();
2643         LooseCompatible && Idx != End; ++Idx) {
2644      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2645      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2646      if (Context.typesAreCompatible(OldParm->getType(),
2647                                     NewProto->getArgType(Idx))) {
2648        ArgTypes.push_back(NewParm->getType());
2649      } else if (Context.typesAreCompatible(OldParm->getType(),
2650                                            NewParm->getType(),
2651                                            /*CompareUnqualified=*/true)) {
2652        GNUCompatibleParamWarning Warn
2653          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2654        Warnings.push_back(Warn);
2655        ArgTypes.push_back(NewParm->getType());
2656      } else
2657        LooseCompatible = false;
2658    }
2659
2660    if (LooseCompatible) {
2661      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2662        Diag(Warnings[Warn].NewParm->getLocation(),
2663             diag::ext_param_promoted_not_compatible_with_prototype)
2664          << Warnings[Warn].PromotedType
2665          << Warnings[Warn].OldParm->getType();
2666        if (Warnings[Warn].OldParm->getLocation().isValid())
2667          Diag(Warnings[Warn].OldParm->getLocation(),
2668               diag::note_previous_declaration);
2669      }
2670
2671      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2672                                           OldProto->getExtProtoInfo()));
2673      return MergeCompatibleFunctionDecls(New, Old, S);
2674    }
2675
2676    // Fall through to diagnose conflicting types.
2677  }
2678
2679  // A function that has already been declared has been redeclared or defined
2680  // with a different type- show appropriate diagnostic
2681  if (unsigned BuiltinID = Old->getBuiltinID()) {
2682    // The user has declared a builtin function with an incompatible
2683    // signature.
2684    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2685      // The function the user is redeclaring is a library-defined
2686      // function like 'malloc' or 'printf'. Warn about the
2687      // redeclaration, then pretend that we don't know about this
2688      // library built-in.
2689      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2690      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2691        << Old << Old->getType();
2692      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2693      Old->setInvalidDecl();
2694      return false;
2695    }
2696
2697    PrevDiag = diag::note_previous_builtin_declaration;
2698  }
2699
2700  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2701  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2702  return true;
2703}
2704
2705/// \brief Completes the merge of two function declarations that are
2706/// known to be compatible.
2707///
2708/// This routine handles the merging of attributes and other
2709/// properties of function declarations form the old declaration to
2710/// the new declaration, once we know that New is in fact a
2711/// redeclaration of Old.
2712///
2713/// \returns false
2714bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2715                                        Scope *S) {
2716  // Merge the attributes
2717  mergeDeclAttributes(New, Old);
2718
2719  // Merge the storage class.
2720  if (Old->getStorageClass() != SC_Extern &&
2721      Old->getStorageClass() != SC_None)
2722    New->setStorageClass(Old->getStorageClass());
2723
2724  // Merge "pure" flag.
2725  if (Old->isPure())
2726    New->setPure();
2727
2728  // Merge "used" flag.
2729  if (Old->isUsed(false))
2730    New->setUsed();
2731
2732  // Merge attributes from the parameters.  These can mismatch with K&R
2733  // declarations.
2734  if (New->getNumParams() == Old->getNumParams())
2735    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2736      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2737                               *this);
2738
2739  if (getLangOpts().CPlusPlus)
2740    return MergeCXXFunctionDecl(New, Old, S);
2741
2742  // Merge the function types so the we get the composite types for the return
2743  // and argument types.
2744  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2745  if (!Merged.isNull())
2746    New->setType(Merged);
2747
2748  return false;
2749}
2750
2751
2752void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2753                                ObjCMethodDecl *oldMethod) {
2754
2755  // Merge the attributes, including deprecated/unavailable
2756  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2757
2758  // Merge attributes from the parameters.
2759  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2760                                       oe = oldMethod->param_end();
2761  for (ObjCMethodDecl::param_iterator
2762         ni = newMethod->param_begin(), ne = newMethod->param_end();
2763       ni != ne && oi != oe; ++ni, ++oi)
2764    mergeParamDeclAttributes(*ni, *oi, *this);
2765
2766  CheckObjCMethodOverride(newMethod, oldMethod);
2767}
2768
2769/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2770/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2771/// emitting diagnostics as appropriate.
2772///
2773/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2774/// to here in AddInitializerToDecl. We can't check them before the initializer
2775/// is attached.
2776void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2777  if (New->isInvalidDecl() || Old->isInvalidDecl())
2778    return;
2779
2780  QualType MergedT;
2781  if (getLangOpts().CPlusPlus) {
2782    AutoType *AT = New->getType()->getContainedAutoType();
2783    if (AT && !AT->isDeduced()) {
2784      // We don't know what the new type is until the initializer is attached.
2785      return;
2786    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2787      // These could still be something that needs exception specs checked.
2788      return MergeVarDeclExceptionSpecs(New, Old);
2789    }
2790    // C++ [basic.link]p10:
2791    //   [...] the types specified by all declarations referring to a given
2792    //   object or function shall be identical, except that declarations for an
2793    //   array object can specify array types that differ by the presence or
2794    //   absence of a major array bound (8.3.4).
2795    else if (Old->getType()->isIncompleteArrayType() &&
2796             New->getType()->isArrayType()) {
2797      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2798      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2799      if (Context.hasSameType(OldArray->getElementType(),
2800                              NewArray->getElementType()))
2801        MergedT = New->getType();
2802    } else if (Old->getType()->isArrayType() &&
2803             New->getType()->isIncompleteArrayType()) {
2804      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2805      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2806      if (Context.hasSameType(OldArray->getElementType(),
2807                              NewArray->getElementType()))
2808        MergedT = Old->getType();
2809    } else if (New->getType()->isObjCObjectPointerType()
2810               && Old->getType()->isObjCObjectPointerType()) {
2811        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2812                                                        Old->getType());
2813    }
2814  } else {
2815    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2816  }
2817  if (MergedT.isNull()) {
2818    Diag(New->getLocation(), diag::err_redefinition_different_type)
2819      << New->getDeclName() << New->getType() << Old->getType();
2820    Diag(Old->getLocation(), diag::note_previous_definition);
2821    return New->setInvalidDecl();
2822  }
2823  New->setType(MergedT);
2824}
2825
2826/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2827/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2828/// situation, merging decls or emitting diagnostics as appropriate.
2829///
2830/// Tentative definition rules (C99 6.9.2p2) are checked by
2831/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2832/// definitions here, since the initializer hasn't been attached.
2833///
2834void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2835  // If the new decl is already invalid, don't do any other checking.
2836  if (New->isInvalidDecl())
2837    return;
2838
2839  // Verify the old decl was also a variable.
2840  VarDecl *Old = 0;
2841  if (!Previous.isSingleResult() ||
2842      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2843    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2844      << New->getDeclName();
2845    Diag(Previous.getRepresentativeDecl()->getLocation(),
2846         diag::note_previous_definition);
2847    return New->setInvalidDecl();
2848  }
2849
2850  // C++ [class.mem]p1:
2851  //   A member shall not be declared twice in the member-specification [...]
2852  //
2853  // Here, we need only consider static data members.
2854  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2855    Diag(New->getLocation(), diag::err_duplicate_member)
2856      << New->getIdentifier();
2857    Diag(Old->getLocation(), diag::note_previous_declaration);
2858    New->setInvalidDecl();
2859  }
2860
2861  mergeDeclAttributes(New, Old);
2862  // Warn if an already-declared variable is made a weak_import in a subsequent
2863  // declaration
2864  if (New->getAttr<WeakImportAttr>() &&
2865      Old->getStorageClass() == SC_None &&
2866      !Old->getAttr<WeakImportAttr>()) {
2867    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2868    Diag(Old->getLocation(), diag::note_previous_definition);
2869    // Remove weak_import attribute on new declaration.
2870    New->dropAttr<WeakImportAttr>();
2871  }
2872
2873  // Merge the types.
2874  MergeVarDeclTypes(New, Old);
2875  if (New->isInvalidDecl())
2876    return;
2877
2878  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2879  if (New->getStorageClass() == SC_Static &&
2880      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2881    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2882    Diag(Old->getLocation(), diag::note_previous_definition);
2883    return New->setInvalidDecl();
2884  }
2885  // C99 6.2.2p4:
2886  //   For an identifier declared with the storage-class specifier
2887  //   extern in a scope in which a prior declaration of that
2888  //   identifier is visible,23) if the prior declaration specifies
2889  //   internal or external linkage, the linkage of the identifier at
2890  //   the later declaration is the same as the linkage specified at
2891  //   the prior declaration. If no prior declaration is visible, or
2892  //   if the prior declaration specifies no linkage, then the
2893  //   identifier has external linkage.
2894  if (New->hasExternalStorage() && Old->hasLinkage())
2895    /* Okay */;
2896  else if (New->getStorageClass() != SC_Static &&
2897           Old->getStorageClass() == SC_Static) {
2898    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2899    Diag(Old->getLocation(), diag::note_previous_definition);
2900    return New->setInvalidDecl();
2901  }
2902
2903  // Check if extern is followed by non-extern and vice-versa.
2904  if (New->hasExternalStorage() &&
2905      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2906    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2907    Diag(Old->getLocation(), diag::note_previous_definition);
2908    return New->setInvalidDecl();
2909  }
2910  if (Old->hasExternalStorage() &&
2911      New->isLocalVarDecl() && !New->hasLinkage()) {
2912    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914    return New->setInvalidDecl();
2915  }
2916
2917  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2918
2919  // FIXME: The test for external storage here seems wrong? We still
2920  // need to check for mismatches.
2921  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2922      // Don't complain about out-of-line definitions of static members.
2923      !(Old->getLexicalDeclContext()->isRecord() &&
2924        !New->getLexicalDeclContext()->isRecord())) {
2925    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2926    Diag(Old->getLocation(), diag::note_previous_definition);
2927    return New->setInvalidDecl();
2928  }
2929
2930  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2931    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2932    Diag(Old->getLocation(), diag::note_previous_definition);
2933  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2934    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2935    Diag(Old->getLocation(), diag::note_previous_definition);
2936  }
2937
2938  // C++ doesn't have tentative definitions, so go right ahead and check here.
2939  const VarDecl *Def;
2940  if (getLangOpts().CPlusPlus &&
2941      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2942      (Def = Old->getDefinition())) {
2943    Diag(New->getLocation(), diag::err_redefinition)
2944      << New->getDeclName();
2945    Diag(Def->getLocation(), diag::note_previous_definition);
2946    New->setInvalidDecl();
2947    return;
2948  }
2949
2950  if (haveIncompatibleLanguageLinkages(Old, New)) {
2951    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2952    Diag(Old->getLocation(), diag::note_previous_definition);
2953    New->setInvalidDecl();
2954    return;
2955  }
2956
2957  // c99 6.2.2 P4.
2958  // For an identifier declared with the storage-class specifier extern in a
2959  // scope in which a prior declaration of that identifier is visible, if
2960  // the prior declaration specifies internal or external linkage, the linkage
2961  // of the identifier at the later declaration is the same as the linkage
2962  // specified at the prior declaration.
2963  // FIXME. revisit this code.
2964  if (New->hasExternalStorage() &&
2965      Old->getLinkage() == InternalLinkage)
2966    New->setStorageClass(Old->getStorageClass());
2967
2968  // Merge "used" flag.
2969  if (Old->isUsed(false))
2970    New->setUsed();
2971
2972  // Keep a chain of previous declarations.
2973  New->setPreviousDeclaration(Old);
2974
2975  // Inherit access appropriately.
2976  New->setAccess(Old->getAccess());
2977}
2978
2979/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2980/// no declarator (e.g. "struct foo;") is parsed.
2981Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2982                                       DeclSpec &DS) {
2983  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2984}
2985
2986/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2987/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
2988/// parameters to cope with template friend declarations.
2989Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2990                                       DeclSpec &DS,
2991                                       MultiTemplateParamsArg TemplateParams,
2992                                       bool IsExplicitInstantiation) {
2993  Decl *TagD = 0;
2994  TagDecl *Tag = 0;
2995  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2996      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2997      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2998      DS.getTypeSpecType() == DeclSpec::TST_union ||
2999      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3000    TagD = DS.getRepAsDecl();
3001
3002    if (!TagD) // We probably had an error
3003      return 0;
3004
3005    // Note that the above type specs guarantee that the
3006    // type rep is a Decl, whereas in many of the others
3007    // it's a Type.
3008    if (isa<TagDecl>(TagD))
3009      Tag = cast<TagDecl>(TagD);
3010    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3011      Tag = CTD->getTemplatedDecl();
3012  }
3013
3014  if (Tag) {
3015    getASTContext().addUnnamedTag(Tag);
3016    Tag->setFreeStanding();
3017    if (Tag->isInvalidDecl())
3018      return Tag;
3019  }
3020
3021  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3022    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3023    // or incomplete types shall not be restrict-qualified."
3024    if (TypeQuals & DeclSpec::TQ_restrict)
3025      Diag(DS.getRestrictSpecLoc(),
3026           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3027           << DS.getSourceRange();
3028  }
3029
3030  if (DS.isConstexprSpecified()) {
3031    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3032    // and definitions of functions and variables.
3033    if (Tag)
3034      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3035        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3036            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3037            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3038            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3039    else
3040      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3041    // Don't emit warnings after this error.
3042    return TagD;
3043  }
3044
3045  DiagnoseFunctionSpecifiers(DS);
3046
3047  if (DS.isFriendSpecified()) {
3048    // If we're dealing with a decl but not a TagDecl, assume that
3049    // whatever routines created it handled the friendship aspect.
3050    if (TagD && !Tag)
3051      return 0;
3052    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3053  }
3054
3055  CXXScopeSpec &SS = DS.getTypeSpecScope();
3056  bool IsExplicitSpecialization =
3057    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3058  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3059      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3060    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3061    // nested-name-specifier unless it is an explicit instantiation
3062    // or an explicit specialization.
3063    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3064    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3065      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3066          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3067          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3068          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3069      << SS.getRange();
3070    return 0;
3071  }
3072
3073  // Track whether this decl-specifier declares anything.
3074  bool DeclaresAnything = true;
3075
3076  // Handle anonymous struct definitions.
3077  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3078    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3079        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3080      if (getLangOpts().CPlusPlus ||
3081          Record->getDeclContext()->isRecord())
3082        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3083
3084      DeclaresAnything = false;
3085    }
3086  }
3087
3088  // Check for Microsoft C extension: anonymous struct member.
3089  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3090      CurContext->isRecord() &&
3091      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3092    // Handle 2 kinds of anonymous struct:
3093    //   struct STRUCT;
3094    // and
3095    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3096    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3097    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3098        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3099         DS.getRepAsType().get()->isStructureType())) {
3100      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3101        << DS.getSourceRange();
3102      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3103    }
3104  }
3105
3106  // Skip all the checks below if we have a type error.
3107  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3108      (TagD && TagD->isInvalidDecl()))
3109    return TagD;
3110
3111  if (getLangOpts().CPlusPlus &&
3112      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3113    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3114      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3115          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3116        DeclaresAnything = false;
3117
3118  if (!DS.isMissingDeclaratorOk()) {
3119    // Customize diagnostic for a typedef missing a name.
3120    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3121      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3122        << DS.getSourceRange();
3123    else
3124      DeclaresAnything = false;
3125  }
3126
3127  if (DS.isModulePrivateSpecified() &&
3128      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3129    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3130      << Tag->getTagKind()
3131      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3132
3133  ActOnDocumentableDecl(TagD);
3134
3135  // C 6.7/2:
3136  //   A declaration [...] shall declare at least a declarator [...], a tag,
3137  //   or the members of an enumeration.
3138  // C++ [dcl.dcl]p3:
3139  //   [If there are no declarators], and except for the declaration of an
3140  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3141  //   names into the program, or shall redeclare a name introduced by a
3142  //   previous declaration.
3143  if (!DeclaresAnything) {
3144    // In C, we allow this as a (popular) extension / bug. Don't bother
3145    // producing further diagnostics for redundant qualifiers after this.
3146    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3147    return TagD;
3148  }
3149
3150  // C++ [dcl.stc]p1:
3151  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3152  //   init-declarator-list of the declaration shall not be empty.
3153  // C++ [dcl.fct.spec]p1:
3154  //   If a cv-qualifier appears in a decl-specifier-seq, the
3155  //   init-declarator-list of the declaration shall not be empty.
3156  //
3157  // Spurious qualifiers here appear to be valid in C.
3158  unsigned DiagID = diag::warn_standalone_specifier;
3159  if (getLangOpts().CPlusPlus)
3160    DiagID = diag::ext_standalone_specifier;
3161
3162  // Note that a linkage-specification sets a storage class, but
3163  // 'extern "C" struct foo;' is actually valid and not theoretically
3164  // useless.
3165  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3166    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3167      Diag(DS.getStorageClassSpecLoc(), DiagID)
3168        << DeclSpec::getSpecifierName(SCS);
3169
3170  if (DS.isThreadSpecified())
3171    Diag(DS.getThreadSpecLoc(), DiagID) << "__thread";
3172  if (DS.getTypeQualifiers()) {
3173    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3174      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3175    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3176      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3177    // Restrict is covered above.
3178  }
3179
3180  // Warn about ignored type attributes, for example:
3181  // __attribute__((aligned)) struct A;
3182  // Attributes should be placed after tag to apply to type declaration.
3183  if (!DS.getAttributes().empty()) {
3184    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3185    if (TypeSpecType == DeclSpec::TST_class ||
3186        TypeSpecType == DeclSpec::TST_struct ||
3187        TypeSpecType == DeclSpec::TST_interface ||
3188        TypeSpecType == DeclSpec::TST_union ||
3189        TypeSpecType == DeclSpec::TST_enum) {
3190      AttributeList* attrs = DS.getAttributes().getList();
3191      while (attrs) {
3192        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3193        << attrs->getName()
3194        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3195            TypeSpecType == DeclSpec::TST_struct ? 1 :
3196            TypeSpecType == DeclSpec::TST_union ? 2 :
3197            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3198        attrs = attrs->getNext();
3199      }
3200    }
3201  }
3202
3203  return TagD;
3204}
3205
3206/// We are trying to inject an anonymous member into the given scope;
3207/// check if there's an existing declaration that can't be overloaded.
3208///
3209/// \return true if this is a forbidden redeclaration
3210static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3211                                         Scope *S,
3212                                         DeclContext *Owner,
3213                                         DeclarationName Name,
3214                                         SourceLocation NameLoc,
3215                                         unsigned diagnostic) {
3216  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3217                 Sema::ForRedeclaration);
3218  if (!SemaRef.LookupName(R, S)) return false;
3219
3220  if (R.getAsSingle<TagDecl>())
3221    return false;
3222
3223  // Pick a representative declaration.
3224  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3225  assert(PrevDecl && "Expected a non-null Decl");
3226
3227  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3228    return false;
3229
3230  SemaRef.Diag(NameLoc, diagnostic) << Name;
3231  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3232
3233  return true;
3234}
3235
3236/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3237/// anonymous struct or union AnonRecord into the owning context Owner
3238/// and scope S. This routine will be invoked just after we realize
3239/// that an unnamed union or struct is actually an anonymous union or
3240/// struct, e.g.,
3241///
3242/// @code
3243/// union {
3244///   int i;
3245///   float f;
3246/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3247///    // f into the surrounding scope.x
3248/// @endcode
3249///
3250/// This routine is recursive, injecting the names of nested anonymous
3251/// structs/unions into the owning context and scope as well.
3252static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3253                                                DeclContext *Owner,
3254                                                RecordDecl *AnonRecord,
3255                                                AccessSpecifier AS,
3256                              SmallVector<NamedDecl*, 2> &Chaining,
3257                                                      bool MSAnonStruct) {
3258  unsigned diagKind
3259    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3260                            : diag::err_anonymous_struct_member_redecl;
3261
3262  bool Invalid = false;
3263
3264  // Look every FieldDecl and IndirectFieldDecl with a name.
3265  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3266                               DEnd = AnonRecord->decls_end();
3267       D != DEnd; ++D) {
3268    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3269        cast<NamedDecl>(*D)->getDeclName()) {
3270      ValueDecl *VD = cast<ValueDecl>(*D);
3271      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3272                                       VD->getLocation(), diagKind)) {
3273        // C++ [class.union]p2:
3274        //   The names of the members of an anonymous union shall be
3275        //   distinct from the names of any other entity in the
3276        //   scope in which the anonymous union is declared.
3277        Invalid = true;
3278      } else {
3279        // C++ [class.union]p2:
3280        //   For the purpose of name lookup, after the anonymous union
3281        //   definition, the members of the anonymous union are
3282        //   considered to have been defined in the scope in which the
3283        //   anonymous union is declared.
3284        unsigned OldChainingSize = Chaining.size();
3285        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3286          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3287               PE = IF->chain_end(); PI != PE; ++PI)
3288            Chaining.push_back(*PI);
3289        else
3290          Chaining.push_back(VD);
3291
3292        assert(Chaining.size() >= 2);
3293        NamedDecl **NamedChain =
3294          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3295        for (unsigned i = 0; i < Chaining.size(); i++)
3296          NamedChain[i] = Chaining[i];
3297
3298        IndirectFieldDecl* IndirectField =
3299          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3300                                    VD->getIdentifier(), VD->getType(),
3301                                    NamedChain, Chaining.size());
3302
3303        IndirectField->setAccess(AS);
3304        IndirectField->setImplicit();
3305        SemaRef.PushOnScopeChains(IndirectField, S);
3306
3307        // That includes picking up the appropriate access specifier.
3308        if (AS != AS_none) IndirectField->setAccess(AS);
3309
3310        Chaining.resize(OldChainingSize);
3311      }
3312    }
3313  }
3314
3315  return Invalid;
3316}
3317
3318/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3319/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3320/// illegal input values are mapped to SC_None.
3321static StorageClass
3322StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3323  switch (StorageClassSpec) {
3324  case DeclSpec::SCS_unspecified:    return SC_None;
3325  case DeclSpec::SCS_extern:         return SC_Extern;
3326  case DeclSpec::SCS_static:         return SC_Static;
3327  case DeclSpec::SCS_auto:           return SC_Auto;
3328  case DeclSpec::SCS_register:       return SC_Register;
3329  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3330    // Illegal SCSs map to None: error reporting is up to the caller.
3331  case DeclSpec::SCS_mutable:        // Fall through.
3332  case DeclSpec::SCS_typedef:        return SC_None;
3333  }
3334  llvm_unreachable("unknown storage class specifier");
3335}
3336
3337/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3338/// a StorageClass. Any error reporting is up to the caller:
3339/// illegal input values are mapped to SC_None.
3340static StorageClass
3341StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3342  switch (StorageClassSpec) {
3343  case DeclSpec::SCS_unspecified:    return SC_None;
3344  case DeclSpec::SCS_extern:         return SC_Extern;
3345  case DeclSpec::SCS_static:         return SC_Static;
3346  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3347    // Illegal SCSs map to None: error reporting is up to the caller.
3348  case DeclSpec::SCS_auto:           // Fall through.
3349  case DeclSpec::SCS_mutable:        // Fall through.
3350  case DeclSpec::SCS_register:       // Fall through.
3351  case DeclSpec::SCS_typedef:        return SC_None;
3352  }
3353  llvm_unreachable("unknown storage class specifier");
3354}
3355
3356/// BuildAnonymousStructOrUnion - Handle the declaration of an
3357/// anonymous structure or union. Anonymous unions are a C++ feature
3358/// (C++ [class.union]) and a C11 feature; anonymous structures
3359/// are a C11 feature and GNU C++ extension.
3360Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3361                                             AccessSpecifier AS,
3362                                             RecordDecl *Record) {
3363  DeclContext *Owner = Record->getDeclContext();
3364
3365  // Diagnose whether this anonymous struct/union is an extension.
3366  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3367    Diag(Record->getLocation(), diag::ext_anonymous_union);
3368  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3369    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3370  else if (!Record->isUnion() && !getLangOpts().C11)
3371    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3372
3373  // C and C++ require different kinds of checks for anonymous
3374  // structs/unions.
3375  bool Invalid = false;
3376  if (getLangOpts().CPlusPlus) {
3377    const char* PrevSpec = 0;
3378    unsigned DiagID;
3379    if (Record->isUnion()) {
3380      // C++ [class.union]p6:
3381      //   Anonymous unions declared in a named namespace or in the
3382      //   global namespace shall be declared static.
3383      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3384          (isa<TranslationUnitDecl>(Owner) ||
3385           (isa<NamespaceDecl>(Owner) &&
3386            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3387        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3388          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3389
3390        // Recover by adding 'static'.
3391        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3392                               PrevSpec, DiagID);
3393      }
3394      // C++ [class.union]p6:
3395      //   A storage class is not allowed in a declaration of an
3396      //   anonymous union in a class scope.
3397      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3398               isa<RecordDecl>(Owner)) {
3399        Diag(DS.getStorageClassSpecLoc(),
3400             diag::err_anonymous_union_with_storage_spec)
3401          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3402
3403        // Recover by removing the storage specifier.
3404        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3405                               SourceLocation(),
3406                               PrevSpec, DiagID);
3407      }
3408    }
3409
3410    // Ignore const/volatile/restrict qualifiers.
3411    if (DS.getTypeQualifiers()) {
3412      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3413        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3414          << Record->isUnion() << 0
3415          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3416      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3417        Diag(DS.getVolatileSpecLoc(),
3418             diag::ext_anonymous_struct_union_qualified)
3419          << Record->isUnion() << 1
3420          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3421      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3422        Diag(DS.getRestrictSpecLoc(),
3423             diag::ext_anonymous_struct_union_qualified)
3424          << Record->isUnion() << 2
3425          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3426
3427      DS.ClearTypeQualifiers();
3428    }
3429
3430    // C++ [class.union]p2:
3431    //   The member-specification of an anonymous union shall only
3432    //   define non-static data members. [Note: nested types and
3433    //   functions cannot be declared within an anonymous union. ]
3434    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3435                                 MemEnd = Record->decls_end();
3436         Mem != MemEnd; ++Mem) {
3437      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3438        // C++ [class.union]p3:
3439        //   An anonymous union shall not have private or protected
3440        //   members (clause 11).
3441        assert(FD->getAccess() != AS_none);
3442        if (FD->getAccess() != AS_public) {
3443          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3444            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3445          Invalid = true;
3446        }
3447
3448        // C++ [class.union]p1
3449        //   An object of a class with a non-trivial constructor, a non-trivial
3450        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3451        //   assignment operator cannot be a member of a union, nor can an
3452        //   array of such objects.
3453        if (CheckNontrivialField(FD))
3454          Invalid = true;
3455      } else if ((*Mem)->isImplicit()) {
3456        // Any implicit members are fine.
3457      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3458        // This is a type that showed up in an
3459        // elaborated-type-specifier inside the anonymous struct or
3460        // union, but which actually declares a type outside of the
3461        // anonymous struct or union. It's okay.
3462      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3463        if (!MemRecord->isAnonymousStructOrUnion() &&
3464            MemRecord->getDeclName()) {
3465          // Visual C++ allows type definition in anonymous struct or union.
3466          if (getLangOpts().MicrosoftExt)
3467            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3468              << (int)Record->isUnion();
3469          else {
3470            // This is a nested type declaration.
3471            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3472              << (int)Record->isUnion();
3473            Invalid = true;
3474          }
3475        } else {
3476          // This is an anonymous type definition within another anonymous type.
3477          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3478          // not part of standard C++.
3479          Diag(MemRecord->getLocation(),
3480               diag::ext_anonymous_record_with_anonymous_type)
3481            << (int)Record->isUnion();
3482        }
3483      } else if (isa<AccessSpecDecl>(*Mem)) {
3484        // Any access specifier is fine.
3485      } else {
3486        // We have something that isn't a non-static data
3487        // member. Complain about it.
3488        unsigned DK = diag::err_anonymous_record_bad_member;
3489        if (isa<TypeDecl>(*Mem))
3490          DK = diag::err_anonymous_record_with_type;
3491        else if (isa<FunctionDecl>(*Mem))
3492          DK = diag::err_anonymous_record_with_function;
3493        else if (isa<VarDecl>(*Mem))
3494          DK = diag::err_anonymous_record_with_static;
3495
3496        // Visual C++ allows type definition in anonymous struct or union.
3497        if (getLangOpts().MicrosoftExt &&
3498            DK == diag::err_anonymous_record_with_type)
3499          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3500            << (int)Record->isUnion();
3501        else {
3502          Diag((*Mem)->getLocation(), DK)
3503              << (int)Record->isUnion();
3504          Invalid = true;
3505        }
3506      }
3507    }
3508  }
3509
3510  if (!Record->isUnion() && !Owner->isRecord()) {
3511    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3512      << (int)getLangOpts().CPlusPlus;
3513    Invalid = true;
3514  }
3515
3516  // Mock up a declarator.
3517  Declarator Dc(DS, Declarator::MemberContext);
3518  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3519  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3520
3521  // Create a declaration for this anonymous struct/union.
3522  NamedDecl *Anon = 0;
3523  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3524    Anon = FieldDecl::Create(Context, OwningClass,
3525                             DS.getLocStart(),
3526                             Record->getLocation(),
3527                             /*IdentifierInfo=*/0,
3528                             Context.getTypeDeclType(Record),
3529                             TInfo,
3530                             /*BitWidth=*/0, /*Mutable=*/false,
3531                             /*InitStyle=*/ICIS_NoInit);
3532    Anon->setAccess(AS);
3533    if (getLangOpts().CPlusPlus)
3534      FieldCollector->Add(cast<FieldDecl>(Anon));
3535  } else {
3536    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3537    assert(SCSpec != DeclSpec::SCS_typedef &&
3538           "Parser allowed 'typedef' as storage class VarDecl.");
3539    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3540    if (SCSpec == DeclSpec::SCS_mutable) {
3541      // mutable can only appear on non-static class members, so it's always
3542      // an error here
3543      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3544      Invalid = true;
3545      SC = SC_None;
3546    }
3547    SCSpec = DS.getStorageClassSpecAsWritten();
3548    VarDecl::StorageClass SCAsWritten
3549      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3550
3551    Anon = VarDecl::Create(Context, Owner,
3552                           DS.getLocStart(),
3553                           Record->getLocation(), /*IdentifierInfo=*/0,
3554                           Context.getTypeDeclType(Record),
3555                           TInfo, SC, SCAsWritten);
3556
3557    // Default-initialize the implicit variable. This initialization will be
3558    // trivial in almost all cases, except if a union member has an in-class
3559    // initializer:
3560    //   union { int n = 0; };
3561    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3562  }
3563  Anon->setImplicit();
3564
3565  // Add the anonymous struct/union object to the current
3566  // context. We'll be referencing this object when we refer to one of
3567  // its members.
3568  Owner->addDecl(Anon);
3569
3570  // Inject the members of the anonymous struct/union into the owning
3571  // context and into the identifier resolver chain for name lookup
3572  // purposes.
3573  SmallVector<NamedDecl*, 2> Chain;
3574  Chain.push_back(Anon);
3575
3576  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3577                                          Chain, false))
3578    Invalid = true;
3579
3580  // Mark this as an anonymous struct/union type. Note that we do not
3581  // do this until after we have already checked and injected the
3582  // members of this anonymous struct/union type, because otherwise
3583  // the members could be injected twice: once by DeclContext when it
3584  // builds its lookup table, and once by
3585  // InjectAnonymousStructOrUnionMembers.
3586  Record->setAnonymousStructOrUnion(true);
3587
3588  if (Invalid)
3589    Anon->setInvalidDecl();
3590
3591  return Anon;
3592}
3593
3594/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3595/// Microsoft C anonymous structure.
3596/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3597/// Example:
3598///
3599/// struct A { int a; };
3600/// struct B { struct A; int b; };
3601///
3602/// void foo() {
3603///   B var;
3604///   var.a = 3;
3605/// }
3606///
3607Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3608                                           RecordDecl *Record) {
3609
3610  // If there is no Record, get the record via the typedef.
3611  if (!Record)
3612    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3613
3614  // Mock up a declarator.
3615  Declarator Dc(DS, Declarator::TypeNameContext);
3616  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3617  assert(TInfo && "couldn't build declarator info for anonymous struct");
3618
3619  // Create a declaration for this anonymous struct.
3620  NamedDecl* Anon = FieldDecl::Create(Context,
3621                             cast<RecordDecl>(CurContext),
3622                             DS.getLocStart(),
3623                             DS.getLocStart(),
3624                             /*IdentifierInfo=*/0,
3625                             Context.getTypeDeclType(Record),
3626                             TInfo,
3627                             /*BitWidth=*/0, /*Mutable=*/false,
3628                             /*InitStyle=*/ICIS_NoInit);
3629  Anon->setImplicit();
3630
3631  // Add the anonymous struct object to the current context.
3632  CurContext->addDecl(Anon);
3633
3634  // Inject the members of the anonymous struct into the current
3635  // context and into the identifier resolver chain for name lookup
3636  // purposes.
3637  SmallVector<NamedDecl*, 2> Chain;
3638  Chain.push_back(Anon);
3639
3640  RecordDecl *RecordDef = Record->getDefinition();
3641  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3642                                                        RecordDef, AS_none,
3643                                                        Chain, true))
3644    Anon->setInvalidDecl();
3645
3646  return Anon;
3647}
3648
3649/// GetNameForDeclarator - Determine the full declaration name for the
3650/// given Declarator.
3651DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3652  return GetNameFromUnqualifiedId(D.getName());
3653}
3654
3655/// \brief Retrieves the declaration name from a parsed unqualified-id.
3656DeclarationNameInfo
3657Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3658  DeclarationNameInfo NameInfo;
3659  NameInfo.setLoc(Name.StartLocation);
3660
3661  switch (Name.getKind()) {
3662
3663  case UnqualifiedId::IK_ImplicitSelfParam:
3664  case UnqualifiedId::IK_Identifier:
3665    NameInfo.setName(Name.Identifier);
3666    NameInfo.setLoc(Name.StartLocation);
3667    return NameInfo;
3668
3669  case UnqualifiedId::IK_OperatorFunctionId:
3670    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3671                                           Name.OperatorFunctionId.Operator));
3672    NameInfo.setLoc(Name.StartLocation);
3673    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3674      = Name.OperatorFunctionId.SymbolLocations[0];
3675    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3676      = Name.EndLocation.getRawEncoding();
3677    return NameInfo;
3678
3679  case UnqualifiedId::IK_LiteralOperatorId:
3680    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3681                                                           Name.Identifier));
3682    NameInfo.setLoc(Name.StartLocation);
3683    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3684    return NameInfo;
3685
3686  case UnqualifiedId::IK_ConversionFunctionId: {
3687    TypeSourceInfo *TInfo;
3688    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3689    if (Ty.isNull())
3690      return DeclarationNameInfo();
3691    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3692                                               Context.getCanonicalType(Ty)));
3693    NameInfo.setLoc(Name.StartLocation);
3694    NameInfo.setNamedTypeInfo(TInfo);
3695    return NameInfo;
3696  }
3697
3698  case UnqualifiedId::IK_ConstructorName: {
3699    TypeSourceInfo *TInfo;
3700    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3701    if (Ty.isNull())
3702      return DeclarationNameInfo();
3703    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3704                                              Context.getCanonicalType(Ty)));
3705    NameInfo.setLoc(Name.StartLocation);
3706    NameInfo.setNamedTypeInfo(TInfo);
3707    return NameInfo;
3708  }
3709
3710  case UnqualifiedId::IK_ConstructorTemplateId: {
3711    // In well-formed code, we can only have a constructor
3712    // template-id that refers to the current context, so go there
3713    // to find the actual type being constructed.
3714    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3715    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3716      return DeclarationNameInfo();
3717
3718    // Determine the type of the class being constructed.
3719    QualType CurClassType = Context.getTypeDeclType(CurClass);
3720
3721    // FIXME: Check two things: that the template-id names the same type as
3722    // CurClassType, and that the template-id does not occur when the name
3723    // was qualified.
3724
3725    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3726                                    Context.getCanonicalType(CurClassType)));
3727    NameInfo.setLoc(Name.StartLocation);
3728    // FIXME: should we retrieve TypeSourceInfo?
3729    NameInfo.setNamedTypeInfo(0);
3730    return NameInfo;
3731  }
3732
3733  case UnqualifiedId::IK_DestructorName: {
3734    TypeSourceInfo *TInfo;
3735    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3736    if (Ty.isNull())
3737      return DeclarationNameInfo();
3738    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3739                                              Context.getCanonicalType(Ty)));
3740    NameInfo.setLoc(Name.StartLocation);
3741    NameInfo.setNamedTypeInfo(TInfo);
3742    return NameInfo;
3743  }
3744
3745  case UnqualifiedId::IK_TemplateId: {
3746    TemplateName TName = Name.TemplateId->Template.get();
3747    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3748    return Context.getNameForTemplate(TName, TNameLoc);
3749  }
3750
3751  } // switch (Name.getKind())
3752
3753  llvm_unreachable("Unknown name kind");
3754}
3755
3756static QualType getCoreType(QualType Ty) {
3757  do {
3758    if (Ty->isPointerType() || Ty->isReferenceType())
3759      Ty = Ty->getPointeeType();
3760    else if (Ty->isArrayType())
3761      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3762    else
3763      return Ty.withoutLocalFastQualifiers();
3764  } while (true);
3765}
3766
3767/// hasSimilarParameters - Determine whether the C++ functions Declaration
3768/// and Definition have "nearly" matching parameters. This heuristic is
3769/// used to improve diagnostics in the case where an out-of-line function
3770/// definition doesn't match any declaration within the class or namespace.
3771/// Also sets Params to the list of indices to the parameters that differ
3772/// between the declaration and the definition. If hasSimilarParameters
3773/// returns true and Params is empty, then all of the parameters match.
3774static bool hasSimilarParameters(ASTContext &Context,
3775                                     FunctionDecl *Declaration,
3776                                     FunctionDecl *Definition,
3777                                     SmallVectorImpl<unsigned> &Params) {
3778  Params.clear();
3779  if (Declaration->param_size() != Definition->param_size())
3780    return false;
3781  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3782    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3783    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3784
3785    // The parameter types are identical
3786    if (Context.hasSameType(DefParamTy, DeclParamTy))
3787      continue;
3788
3789    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3790    QualType DefParamBaseTy = getCoreType(DefParamTy);
3791    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3792    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3793
3794    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3795        (DeclTyName && DeclTyName == DefTyName))
3796      Params.push_back(Idx);
3797    else  // The two parameters aren't even close
3798      return false;
3799  }
3800
3801  return true;
3802}
3803
3804/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3805/// declarator needs to be rebuilt in the current instantiation.
3806/// Any bits of declarator which appear before the name are valid for
3807/// consideration here.  That's specifically the type in the decl spec
3808/// and the base type in any member-pointer chunks.
3809static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3810                                                    DeclarationName Name) {
3811  // The types we specifically need to rebuild are:
3812  //   - typenames, typeofs, and decltypes
3813  //   - types which will become injected class names
3814  // Of course, we also need to rebuild any type referencing such a
3815  // type.  It's safest to just say "dependent", but we call out a
3816  // few cases here.
3817
3818  DeclSpec &DS = D.getMutableDeclSpec();
3819  switch (DS.getTypeSpecType()) {
3820  case DeclSpec::TST_typename:
3821  case DeclSpec::TST_typeofType:
3822  case DeclSpec::TST_underlyingType:
3823  case DeclSpec::TST_atomic: {
3824    // Grab the type from the parser.
3825    TypeSourceInfo *TSI = 0;
3826    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3827    if (T.isNull() || !T->isDependentType()) break;
3828
3829    // Make sure there's a type source info.  This isn't really much
3830    // of a waste; most dependent types should have type source info
3831    // attached already.
3832    if (!TSI)
3833      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3834
3835    // Rebuild the type in the current instantiation.
3836    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3837    if (!TSI) return true;
3838
3839    // Store the new type back in the decl spec.
3840    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3841    DS.UpdateTypeRep(LocType);
3842    break;
3843  }
3844
3845  case DeclSpec::TST_decltype:
3846  case DeclSpec::TST_typeofExpr: {
3847    Expr *E = DS.getRepAsExpr();
3848    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3849    if (Result.isInvalid()) return true;
3850    DS.UpdateExprRep(Result.get());
3851    break;
3852  }
3853
3854  default:
3855    // Nothing to do for these decl specs.
3856    break;
3857  }
3858
3859  // It doesn't matter what order we do this in.
3860  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3861    DeclaratorChunk &Chunk = D.getTypeObject(I);
3862
3863    // The only type information in the declarator which can come
3864    // before the declaration name is the base type of a member
3865    // pointer.
3866    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3867      continue;
3868
3869    // Rebuild the scope specifier in-place.
3870    CXXScopeSpec &SS = Chunk.Mem.Scope();
3871    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3872      return true;
3873  }
3874
3875  return false;
3876}
3877
3878Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3879  D.setFunctionDefinitionKind(FDK_Declaration);
3880  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3881
3882  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3883      Dcl && Dcl->getDeclContext()->isFileContext())
3884    Dcl->setTopLevelDeclInObjCContainer();
3885
3886  return Dcl;
3887}
3888
3889/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3890///   If T is the name of a class, then each of the following shall have a
3891///   name different from T:
3892///     - every static data member of class T;
3893///     - every member function of class T
3894///     - every member of class T that is itself a type;
3895/// \returns true if the declaration name violates these rules.
3896bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3897                                   DeclarationNameInfo NameInfo) {
3898  DeclarationName Name = NameInfo.getName();
3899
3900  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3901    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3902      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3903      return true;
3904    }
3905
3906  return false;
3907}
3908
3909/// \brief Diagnose a declaration whose declarator-id has the given
3910/// nested-name-specifier.
3911///
3912/// \param SS The nested-name-specifier of the declarator-id.
3913///
3914/// \param DC The declaration context to which the nested-name-specifier
3915/// resolves.
3916///
3917/// \param Name The name of the entity being declared.
3918///
3919/// \param Loc The location of the name of the entity being declared.
3920///
3921/// \returns true if we cannot safely recover from this error, false otherwise.
3922bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3923                                        DeclarationName Name,
3924                                      SourceLocation Loc) {
3925  DeclContext *Cur = CurContext;
3926  while (isa<LinkageSpecDecl>(Cur))
3927    Cur = Cur->getParent();
3928
3929  // C++ [dcl.meaning]p1:
3930  //   A declarator-id shall not be qualified except for the definition
3931  //   of a member function (9.3) or static data member (9.4) outside of
3932  //   its class, the definition or explicit instantiation of a function
3933  //   or variable member of a namespace outside of its namespace, or the
3934  //   definition of an explicit specialization outside of its namespace,
3935  //   or the declaration of a friend function that is a member of
3936  //   another class or namespace (11.3). [...]
3937
3938  // The user provided a superfluous scope specifier that refers back to the
3939  // class or namespaces in which the entity is already declared.
3940  //
3941  // class X {
3942  //   void X::f();
3943  // };
3944  if (Cur->Equals(DC)) {
3945    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3946                                   : diag::err_member_extra_qualification)
3947      << Name << FixItHint::CreateRemoval(SS.getRange());
3948    SS.clear();
3949    return false;
3950  }
3951
3952  // Check whether the qualifying scope encloses the scope of the original
3953  // declaration.
3954  if (!Cur->Encloses(DC)) {
3955    if (Cur->isRecord())
3956      Diag(Loc, diag::err_member_qualification)
3957        << Name << SS.getRange();
3958    else if (isa<TranslationUnitDecl>(DC))
3959      Diag(Loc, diag::err_invalid_declarator_global_scope)
3960        << Name << SS.getRange();
3961    else if (isa<FunctionDecl>(Cur))
3962      Diag(Loc, diag::err_invalid_declarator_in_function)
3963        << Name << SS.getRange();
3964    else
3965      Diag(Loc, diag::err_invalid_declarator_scope)
3966      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3967
3968    return true;
3969  }
3970
3971  if (Cur->isRecord()) {
3972    // Cannot qualify members within a class.
3973    Diag(Loc, diag::err_member_qualification)
3974      << Name << SS.getRange();
3975    SS.clear();
3976
3977    // C++ constructors and destructors with incorrect scopes can break
3978    // our AST invariants by having the wrong underlying types. If
3979    // that's the case, then drop this declaration entirely.
3980    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3981         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3982        !Context.hasSameType(Name.getCXXNameType(),
3983                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3984      return true;
3985
3986    return false;
3987  }
3988
3989  // C++11 [dcl.meaning]p1:
3990  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3991  //   not begin with a decltype-specifer"
3992  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3993  while (SpecLoc.getPrefix())
3994    SpecLoc = SpecLoc.getPrefix();
3995  if (dyn_cast_or_null<DecltypeType>(
3996        SpecLoc.getNestedNameSpecifier()->getAsType()))
3997    Diag(Loc, diag::err_decltype_in_declarator)
3998      << SpecLoc.getTypeLoc().getSourceRange();
3999
4000  return false;
4001}
4002
4003NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4004                                  MultiTemplateParamsArg TemplateParamLists) {
4005  // TODO: consider using NameInfo for diagnostic.
4006  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4007  DeclarationName Name = NameInfo.getName();
4008
4009  // All of these full declarators require an identifier.  If it doesn't have
4010  // one, the ParsedFreeStandingDeclSpec action should be used.
4011  if (!Name) {
4012    if (!D.isInvalidType())  // Reject this if we think it is valid.
4013      Diag(D.getDeclSpec().getLocStart(),
4014           diag::err_declarator_need_ident)
4015        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4016    return 0;
4017  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4018    return 0;
4019
4020  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4021  // we find one that is.
4022  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4023         (S->getFlags() & Scope::TemplateParamScope) != 0)
4024    S = S->getParent();
4025
4026  DeclContext *DC = CurContext;
4027  if (D.getCXXScopeSpec().isInvalid())
4028    D.setInvalidType();
4029  else if (D.getCXXScopeSpec().isSet()) {
4030    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4031                                        UPPC_DeclarationQualifier))
4032      return 0;
4033
4034    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4035    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4036    if (!DC) {
4037      // If we could not compute the declaration context, it's because the
4038      // declaration context is dependent but does not refer to a class,
4039      // class template, or class template partial specialization. Complain
4040      // and return early, to avoid the coming semantic disaster.
4041      Diag(D.getIdentifierLoc(),
4042           diag::err_template_qualified_declarator_no_match)
4043        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4044        << D.getCXXScopeSpec().getRange();
4045      return 0;
4046    }
4047    bool IsDependentContext = DC->isDependentContext();
4048
4049    if (!IsDependentContext &&
4050        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4051      return 0;
4052
4053    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4054      Diag(D.getIdentifierLoc(),
4055           diag::err_member_def_undefined_record)
4056        << Name << DC << D.getCXXScopeSpec().getRange();
4057      D.setInvalidType();
4058    } else if (!D.getDeclSpec().isFriendSpecified()) {
4059      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4060                                      Name, D.getIdentifierLoc())) {
4061        if (DC->isRecord())
4062          return 0;
4063
4064        D.setInvalidType();
4065      }
4066    }
4067
4068    // Check whether we need to rebuild the type of the given
4069    // declaration in the current instantiation.
4070    if (EnteringContext && IsDependentContext &&
4071        TemplateParamLists.size() != 0) {
4072      ContextRAII SavedContext(*this, DC);
4073      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4074        D.setInvalidType();
4075    }
4076  }
4077
4078  if (DiagnoseClassNameShadow(DC, NameInfo))
4079    // If this is a typedef, we'll end up spewing multiple diagnostics.
4080    // Just return early; it's safer.
4081    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4082      return 0;
4083
4084  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4085  QualType R = TInfo->getType();
4086
4087  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4088                                      UPPC_DeclarationType))
4089    D.setInvalidType();
4090
4091  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4092                        ForRedeclaration);
4093
4094  // See if this is a redefinition of a variable in the same scope.
4095  if (!D.getCXXScopeSpec().isSet()) {
4096    bool IsLinkageLookup = false;
4097
4098    // If the declaration we're planning to build will be a function
4099    // or object with linkage, then look for another declaration with
4100    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4101    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4102      /* Do nothing*/;
4103    else if (R->isFunctionType()) {
4104      if (CurContext->isFunctionOrMethod() ||
4105          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4106        IsLinkageLookup = true;
4107    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4108      IsLinkageLookup = true;
4109    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4110             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4111      IsLinkageLookup = true;
4112
4113    if (IsLinkageLookup)
4114      Previous.clear(LookupRedeclarationWithLinkage);
4115
4116    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4117  } else { // Something like "int foo::x;"
4118    LookupQualifiedName(Previous, DC);
4119
4120    // C++ [dcl.meaning]p1:
4121    //   When the declarator-id is qualified, the declaration shall refer to a
4122    //  previously declared member of the class or namespace to which the
4123    //  qualifier refers (or, in the case of a namespace, of an element of the
4124    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4125    //  thereof; [...]
4126    //
4127    // Note that we already checked the context above, and that we do not have
4128    // enough information to make sure that Previous contains the declaration
4129    // we want to match. For example, given:
4130    //
4131    //   class X {
4132    //     void f();
4133    //     void f(float);
4134    //   };
4135    //
4136    //   void X::f(int) { } // ill-formed
4137    //
4138    // In this case, Previous will point to the overload set
4139    // containing the two f's declared in X, but neither of them
4140    // matches.
4141
4142    // C++ [dcl.meaning]p1:
4143    //   [...] the member shall not merely have been introduced by a
4144    //   using-declaration in the scope of the class or namespace nominated by
4145    //   the nested-name-specifier of the declarator-id.
4146    RemoveUsingDecls(Previous);
4147  }
4148
4149  if (Previous.isSingleResult() &&
4150      Previous.getFoundDecl()->isTemplateParameter()) {
4151    // Maybe we will complain about the shadowed template parameter.
4152    if (!D.isInvalidType())
4153      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4154                                      Previous.getFoundDecl());
4155
4156    // Just pretend that we didn't see the previous declaration.
4157    Previous.clear();
4158  }
4159
4160  // In C++, the previous declaration we find might be a tag type
4161  // (class or enum). In this case, the new declaration will hide the
4162  // tag type. Note that this does does not apply if we're declaring a
4163  // typedef (C++ [dcl.typedef]p4).
4164  if (Previous.isSingleTagDecl() &&
4165      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4166    Previous.clear();
4167
4168  // Check that there are no default arguments other than in the parameters
4169  // of a function declaration (C++ only).
4170  if (getLangOpts().CPlusPlus)
4171    CheckExtraCXXDefaultArguments(D);
4172
4173  NamedDecl *New;
4174
4175  bool AddToScope = true;
4176  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4177    if (TemplateParamLists.size()) {
4178      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4179      return 0;
4180    }
4181
4182    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4183  } else if (R->isFunctionType()) {
4184    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4185                                  TemplateParamLists,
4186                                  AddToScope);
4187  } else {
4188    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4189                                  TemplateParamLists);
4190  }
4191
4192  if (New == 0)
4193    return 0;
4194
4195  // If this has an identifier and is not an invalid redeclaration or
4196  // function template specialization, add it to the scope stack.
4197  if (New->getDeclName() && AddToScope &&
4198       !(D.isRedeclaration() && New->isInvalidDecl()))
4199    PushOnScopeChains(New, S);
4200
4201  return New;
4202}
4203
4204/// Helper method to turn variable array types into constant array
4205/// types in certain situations which would otherwise be errors (for
4206/// GCC compatibility).
4207static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4208                                                    ASTContext &Context,
4209                                                    bool &SizeIsNegative,
4210                                                    llvm::APSInt &Oversized) {
4211  // This method tries to turn a variable array into a constant
4212  // array even when the size isn't an ICE.  This is necessary
4213  // for compatibility with code that depends on gcc's buggy
4214  // constant expression folding, like struct {char x[(int)(char*)2];}
4215  SizeIsNegative = false;
4216  Oversized = 0;
4217
4218  if (T->isDependentType())
4219    return QualType();
4220
4221  QualifierCollector Qs;
4222  const Type *Ty = Qs.strip(T);
4223
4224  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4225    QualType Pointee = PTy->getPointeeType();
4226    QualType FixedType =
4227        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4228                                            Oversized);
4229    if (FixedType.isNull()) return FixedType;
4230    FixedType = Context.getPointerType(FixedType);
4231    return Qs.apply(Context, FixedType);
4232  }
4233  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4234    QualType Inner = PTy->getInnerType();
4235    QualType FixedType =
4236        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4237                                            Oversized);
4238    if (FixedType.isNull()) return FixedType;
4239    FixedType = Context.getParenType(FixedType);
4240    return Qs.apply(Context, FixedType);
4241  }
4242
4243  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4244  if (!VLATy)
4245    return QualType();
4246  // FIXME: We should probably handle this case
4247  if (VLATy->getElementType()->isVariablyModifiedType())
4248    return QualType();
4249
4250  llvm::APSInt Res;
4251  if (!VLATy->getSizeExpr() ||
4252      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4253    return QualType();
4254
4255  // Check whether the array size is negative.
4256  if (Res.isSigned() && Res.isNegative()) {
4257    SizeIsNegative = true;
4258    return QualType();
4259  }
4260
4261  // Check whether the array is too large to be addressed.
4262  unsigned ActiveSizeBits
4263    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4264                                              Res);
4265  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4266    Oversized = Res;
4267    return QualType();
4268  }
4269
4270  return Context.getConstantArrayType(VLATy->getElementType(),
4271                                      Res, ArrayType::Normal, 0);
4272}
4273
4274static void
4275FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4276  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4277    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4278    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4279                                      DstPTL.getPointeeLoc());
4280    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4281    return;
4282  }
4283  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4284    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4285    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4286                                      DstPTL.getInnerLoc());
4287    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4288    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4289    return;
4290  }
4291  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4292  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4293  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4294  TypeLoc DstElemTL = DstATL.getElementLoc();
4295  DstElemTL.initializeFullCopy(SrcElemTL);
4296  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4297  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4298  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4299}
4300
4301/// Helper method to turn variable array types into constant array
4302/// types in certain situations which would otherwise be errors (for
4303/// GCC compatibility).
4304static TypeSourceInfo*
4305TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4306                                              ASTContext &Context,
4307                                              bool &SizeIsNegative,
4308                                              llvm::APSInt &Oversized) {
4309  QualType FixedTy
4310    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4311                                          SizeIsNegative, Oversized);
4312  if (FixedTy.isNull())
4313    return 0;
4314  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4315  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4316                                    FixedTInfo->getTypeLoc());
4317  return FixedTInfo;
4318}
4319
4320/// \brief Register the given locally-scoped extern "C" declaration so
4321/// that it can be found later for redeclarations
4322void
4323Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4324                                       const LookupResult &Previous,
4325                                       Scope *S) {
4326  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4327         "Decl is not a locally-scoped decl!");
4328  // Note that we have a locally-scoped external with this name.
4329  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4330
4331  if (!Previous.isSingleResult())
4332    return;
4333
4334  NamedDecl *PrevDecl = Previous.getFoundDecl();
4335
4336  // If there was a previous declaration of this entity, it may be in
4337  // our identifier chain. Update the identifier chain with the new
4338  // declaration.
4339  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4340    // The previous declaration was found on the identifer resolver
4341    // chain, so remove it from its scope.
4342
4343    if (S->isDeclScope(PrevDecl)) {
4344      // Special case for redeclarations in the SAME scope.
4345      // Because this declaration is going to be added to the identifier chain
4346      // later, we should temporarily take it OFF the chain.
4347      IdResolver.RemoveDecl(ND);
4348
4349    } else {
4350      // Find the scope for the original declaration.
4351      while (S && !S->isDeclScope(PrevDecl))
4352        S = S->getParent();
4353    }
4354
4355    if (S)
4356      S->RemoveDecl(PrevDecl);
4357  }
4358}
4359
4360llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4361Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4362  if (ExternalSource) {
4363    // Load locally-scoped external decls from the external source.
4364    SmallVector<NamedDecl *, 4> Decls;
4365    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4366    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4367      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4368        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4369      if (Pos == LocallyScopedExternCDecls.end())
4370        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4371    }
4372  }
4373
4374  return LocallyScopedExternCDecls.find(Name);
4375}
4376
4377/// \brief Diagnose function specifiers on a declaration of an identifier that
4378/// does not identify a function.
4379void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4380  // FIXME: We should probably indicate the identifier in question to avoid
4381  // confusion for constructs like "inline int a(), b;"
4382  if (DS.isInlineSpecified())
4383    Diag(DS.getInlineSpecLoc(),
4384         diag::err_inline_non_function);
4385
4386  if (DS.isVirtualSpecified())
4387    Diag(DS.getVirtualSpecLoc(),
4388         diag::err_virtual_non_function);
4389
4390  if (DS.isExplicitSpecified())
4391    Diag(DS.getExplicitSpecLoc(),
4392         diag::err_explicit_non_function);
4393
4394  if (DS.isNoreturnSpecified())
4395    Diag(DS.getNoreturnSpecLoc(),
4396         diag::err_noreturn_non_function);
4397}
4398
4399NamedDecl*
4400Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4401                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4402  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4403  if (D.getCXXScopeSpec().isSet()) {
4404    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4405      << D.getCXXScopeSpec().getRange();
4406    D.setInvalidType();
4407    // Pretend we didn't see the scope specifier.
4408    DC = CurContext;
4409    Previous.clear();
4410  }
4411
4412  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4413
4414  if (D.getDeclSpec().isThreadSpecified())
4415    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4416  if (D.getDeclSpec().isConstexprSpecified())
4417    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4418      << 1;
4419
4420  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4421    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4422      << D.getName().getSourceRange();
4423    return 0;
4424  }
4425
4426  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4427  if (!NewTD) return 0;
4428
4429  // Handle attributes prior to checking for duplicates in MergeVarDecl
4430  ProcessDeclAttributes(S, NewTD, D);
4431
4432  CheckTypedefForVariablyModifiedType(S, NewTD);
4433
4434  bool Redeclaration = D.isRedeclaration();
4435  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4436  D.setRedeclaration(Redeclaration);
4437  return ND;
4438}
4439
4440void
4441Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4442  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4443  // then it shall have block scope.
4444  // Note that variably modified types must be fixed before merging the decl so
4445  // that redeclarations will match.
4446  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4447  QualType T = TInfo->getType();
4448  if (T->isVariablyModifiedType()) {
4449    getCurFunction()->setHasBranchProtectedScope();
4450
4451    if (S->getFnParent() == 0) {
4452      bool SizeIsNegative;
4453      llvm::APSInt Oversized;
4454      TypeSourceInfo *FixedTInfo =
4455        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4456                                                      SizeIsNegative,
4457                                                      Oversized);
4458      if (FixedTInfo) {
4459        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4460        NewTD->setTypeSourceInfo(FixedTInfo);
4461      } else {
4462        if (SizeIsNegative)
4463          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4464        else if (T->isVariableArrayType())
4465          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4466        else if (Oversized.getBoolValue())
4467          Diag(NewTD->getLocation(), diag::err_array_too_large)
4468            << Oversized.toString(10);
4469        else
4470          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4471        NewTD->setInvalidDecl();
4472      }
4473    }
4474  }
4475}
4476
4477
4478/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4479/// declares a typedef-name, either using the 'typedef' type specifier or via
4480/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4481NamedDecl*
4482Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4483                           LookupResult &Previous, bool &Redeclaration) {
4484  // Merge the decl with the existing one if appropriate. If the decl is
4485  // in an outer scope, it isn't the same thing.
4486  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4487                       /*ExplicitInstantiationOrSpecialization=*/false);
4488  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4489  if (!Previous.empty()) {
4490    Redeclaration = true;
4491    MergeTypedefNameDecl(NewTD, Previous);
4492  }
4493
4494  // If this is the C FILE type, notify the AST context.
4495  if (IdentifierInfo *II = NewTD->getIdentifier())
4496    if (!NewTD->isInvalidDecl() &&
4497        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4498      if (II->isStr("FILE"))
4499        Context.setFILEDecl(NewTD);
4500      else if (II->isStr("jmp_buf"))
4501        Context.setjmp_bufDecl(NewTD);
4502      else if (II->isStr("sigjmp_buf"))
4503        Context.setsigjmp_bufDecl(NewTD);
4504      else if (II->isStr("ucontext_t"))
4505        Context.setucontext_tDecl(NewTD);
4506    }
4507
4508  return NewTD;
4509}
4510
4511/// \brief Determines whether the given declaration is an out-of-scope
4512/// previous declaration.
4513///
4514/// This routine should be invoked when name lookup has found a
4515/// previous declaration (PrevDecl) that is not in the scope where a
4516/// new declaration by the same name is being introduced. If the new
4517/// declaration occurs in a local scope, previous declarations with
4518/// linkage may still be considered previous declarations (C99
4519/// 6.2.2p4-5, C++ [basic.link]p6).
4520///
4521/// \param PrevDecl the previous declaration found by name
4522/// lookup
4523///
4524/// \param DC the context in which the new declaration is being
4525/// declared.
4526///
4527/// \returns true if PrevDecl is an out-of-scope previous declaration
4528/// for a new delcaration with the same name.
4529static bool
4530isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4531                                ASTContext &Context) {
4532  if (!PrevDecl)
4533    return false;
4534
4535  if (!PrevDecl->hasLinkage())
4536    return false;
4537
4538  if (Context.getLangOpts().CPlusPlus) {
4539    // C++ [basic.link]p6:
4540    //   If there is a visible declaration of an entity with linkage
4541    //   having the same name and type, ignoring entities declared
4542    //   outside the innermost enclosing namespace scope, the block
4543    //   scope declaration declares that same entity and receives the
4544    //   linkage of the previous declaration.
4545    DeclContext *OuterContext = DC->getRedeclContext();
4546    if (!OuterContext->isFunctionOrMethod())
4547      // This rule only applies to block-scope declarations.
4548      return false;
4549
4550    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4551    if (PrevOuterContext->isRecord())
4552      // We found a member function: ignore it.
4553      return false;
4554
4555    // Find the innermost enclosing namespace for the new and
4556    // previous declarations.
4557    OuterContext = OuterContext->getEnclosingNamespaceContext();
4558    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4559
4560    // The previous declaration is in a different namespace, so it
4561    // isn't the same function.
4562    if (!OuterContext->Equals(PrevOuterContext))
4563      return false;
4564  }
4565
4566  return true;
4567}
4568
4569static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4570  CXXScopeSpec &SS = D.getCXXScopeSpec();
4571  if (!SS.isSet()) return;
4572  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4573}
4574
4575bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4576  QualType type = decl->getType();
4577  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4578  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4579    // Various kinds of declaration aren't allowed to be __autoreleasing.
4580    unsigned kind = -1U;
4581    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4582      if (var->hasAttr<BlocksAttr>())
4583        kind = 0; // __block
4584      else if (!var->hasLocalStorage())
4585        kind = 1; // global
4586    } else if (isa<ObjCIvarDecl>(decl)) {
4587      kind = 3; // ivar
4588    } else if (isa<FieldDecl>(decl)) {
4589      kind = 2; // field
4590    }
4591
4592    if (kind != -1U) {
4593      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4594        << kind;
4595    }
4596  } else if (lifetime == Qualifiers::OCL_None) {
4597    // Try to infer lifetime.
4598    if (!type->isObjCLifetimeType())
4599      return false;
4600
4601    lifetime = type->getObjCARCImplicitLifetime();
4602    type = Context.getLifetimeQualifiedType(type, lifetime);
4603    decl->setType(type);
4604  }
4605
4606  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4607    // Thread-local variables cannot have lifetime.
4608    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4609        var->isThreadSpecified()) {
4610      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4611        << var->getType();
4612      return true;
4613    }
4614  }
4615
4616  return false;
4617}
4618
4619static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4620  // 'weak' only applies to declarations with external linkage.
4621  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4622    if (ND.getLinkage() != ExternalLinkage) {
4623      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4624      ND.dropAttr<WeakAttr>();
4625    }
4626  }
4627  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4628    if (ND.hasExternalLinkage()) {
4629      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4630      ND.dropAttr<WeakRefAttr>();
4631    }
4632  }
4633}
4634
4635static bool shouldConsiderLinkage(const VarDecl *VD) {
4636  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4637  if (DC->isFunctionOrMethod())
4638    return VD->hasExternalStorageAsWritten();
4639  if (DC->isFileContext())
4640    return true;
4641  if (DC->isRecord())
4642    return false;
4643  llvm_unreachable("Unexpected context");
4644}
4645
4646static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4647  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4648  if (DC->isFileContext() || DC->isFunctionOrMethod())
4649    return true;
4650  if (DC->isRecord())
4651    return false;
4652  llvm_unreachable("Unexpected context");
4653}
4654
4655NamedDecl*
4656Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4657                              TypeSourceInfo *TInfo, LookupResult &Previous,
4658                              MultiTemplateParamsArg TemplateParamLists) {
4659  QualType R = TInfo->getType();
4660  DeclarationName Name = GetNameForDeclarator(D).getName();
4661
4662  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4663  assert(SCSpec != DeclSpec::SCS_typedef &&
4664         "Parser allowed 'typedef' as storage class VarDecl.");
4665  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4666
4667  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4668  {
4669    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4670    // half array type (unless the cl_khr_fp16 extension is enabled).
4671    if (Context.getBaseElementType(R)->isHalfType()) {
4672      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4673      D.setInvalidType();
4674    }
4675  }
4676
4677  if (SCSpec == DeclSpec::SCS_mutable) {
4678    // mutable can only appear on non-static class members, so it's always
4679    // an error here
4680    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4681    D.setInvalidType();
4682    SC = SC_None;
4683  }
4684  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4685  VarDecl::StorageClass SCAsWritten
4686    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4687
4688  IdentifierInfo *II = Name.getAsIdentifierInfo();
4689  if (!II) {
4690    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4691      << Name;
4692    return 0;
4693  }
4694
4695  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4696
4697  if (!DC->isRecord() && S->getFnParent() == 0) {
4698    // C99 6.9p2: The storage-class specifiers auto and register shall not
4699    // appear in the declaration specifiers in an external declaration.
4700    if (SC == SC_Auto || SC == SC_Register) {
4701
4702      // If this is a register variable with an asm label specified, then this
4703      // is a GNU extension.
4704      if (SC == SC_Register && D.getAsmLabel())
4705        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4706      else
4707        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4708      D.setInvalidType();
4709    }
4710  }
4711
4712  if (getLangOpts().OpenCL) {
4713    // Set up the special work-group-local storage class for variables in the
4714    // OpenCL __local address space.
4715    if (R.getAddressSpace() == LangAS::opencl_local) {
4716      SC = SC_OpenCLWorkGroupLocal;
4717      SCAsWritten = SC_OpenCLWorkGroupLocal;
4718    }
4719
4720    // OpenCL v1.2 s6.9.b p4:
4721    // The sampler type cannot be used with the __local and __global address
4722    // space qualifiers.
4723    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4724      R.getAddressSpace() == LangAS::opencl_global)) {
4725      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4726    }
4727
4728    // OpenCL 1.2 spec, p6.9 r:
4729    // The event type cannot be used to declare a program scope variable.
4730    // The event type cannot be used with the __local, __constant and __global
4731    // address space qualifiers.
4732    if (R->isEventT()) {
4733      if (S->getParent() == 0) {
4734        Diag(D.getLocStart(), diag::err_event_t_global_var);
4735        D.setInvalidType();
4736      }
4737
4738      if (R.getAddressSpace()) {
4739        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4740        D.setInvalidType();
4741      }
4742    }
4743  }
4744
4745  bool isExplicitSpecialization = false;
4746  VarDecl *NewVD;
4747  if (!getLangOpts().CPlusPlus) {
4748    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4749                            D.getIdentifierLoc(), II,
4750                            R, TInfo, SC, SCAsWritten);
4751
4752    if (D.isInvalidType())
4753      NewVD->setInvalidDecl();
4754  } else {
4755    if (DC->isRecord() && !CurContext->isRecord()) {
4756      // This is an out-of-line definition of a static data member.
4757      if (SC == SC_Static) {
4758        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4759             diag::err_static_out_of_line)
4760          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4761      } else if (SC == SC_None)
4762        SC = SC_Static;
4763    }
4764    if (SC == SC_Static && CurContext->isRecord()) {
4765      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4766        if (RD->isLocalClass())
4767          Diag(D.getIdentifierLoc(),
4768               diag::err_static_data_member_not_allowed_in_local_class)
4769            << Name << RD->getDeclName();
4770
4771        // C++98 [class.union]p1: If a union contains a static data member,
4772        // the program is ill-formed. C++11 drops this restriction.
4773        if (RD->isUnion())
4774          Diag(D.getIdentifierLoc(),
4775               getLangOpts().CPlusPlus11
4776                 ? diag::warn_cxx98_compat_static_data_member_in_union
4777                 : diag::ext_static_data_member_in_union) << Name;
4778        // We conservatively disallow static data members in anonymous structs.
4779        else if (!RD->getDeclName())
4780          Diag(D.getIdentifierLoc(),
4781               diag::err_static_data_member_not_allowed_in_anon_struct)
4782            << Name << RD->isUnion();
4783      }
4784    }
4785
4786    // Match up the template parameter lists with the scope specifier, then
4787    // determine whether we have a template or a template specialization.
4788    isExplicitSpecialization = false;
4789    bool Invalid = false;
4790    if (TemplateParameterList *TemplateParams
4791        = MatchTemplateParametersToScopeSpecifier(
4792                                  D.getDeclSpec().getLocStart(),
4793                                                  D.getIdentifierLoc(),
4794                                                  D.getCXXScopeSpec(),
4795                                                  TemplateParamLists.data(),
4796                                                  TemplateParamLists.size(),
4797                                                  /*never a friend*/ false,
4798                                                  isExplicitSpecialization,
4799                                                  Invalid)) {
4800      if (TemplateParams->size() > 0) {
4801        // There is no such thing as a variable template.
4802        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4803          << II
4804          << SourceRange(TemplateParams->getTemplateLoc(),
4805                         TemplateParams->getRAngleLoc());
4806        return 0;
4807      } else {
4808        // There is an extraneous 'template<>' for this variable. Complain
4809        // about it, but allow the declaration of the variable.
4810        Diag(TemplateParams->getTemplateLoc(),
4811             diag::err_template_variable_noparams)
4812          << II
4813          << SourceRange(TemplateParams->getTemplateLoc(),
4814                         TemplateParams->getRAngleLoc());
4815      }
4816    }
4817
4818    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4819                            D.getIdentifierLoc(), II,
4820                            R, TInfo, SC, SCAsWritten);
4821
4822    // If this decl has an auto type in need of deduction, make a note of the
4823    // Decl so we can diagnose uses of it in its own initializer.
4824    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4825        R->getContainedAutoType())
4826      ParsingInitForAutoVars.insert(NewVD);
4827
4828    if (D.isInvalidType() || Invalid)
4829      NewVD->setInvalidDecl();
4830
4831    SetNestedNameSpecifier(NewVD, D);
4832
4833    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4834      NewVD->setTemplateParameterListsInfo(Context,
4835                                           TemplateParamLists.size(),
4836                                           TemplateParamLists.data());
4837    }
4838
4839    if (D.getDeclSpec().isConstexprSpecified())
4840      NewVD->setConstexpr(true);
4841  }
4842
4843  // Set the lexical context. If the declarator has a C++ scope specifier, the
4844  // lexical context will be different from the semantic context.
4845  NewVD->setLexicalDeclContext(CurContext);
4846
4847  if (D.getDeclSpec().isThreadSpecified()) {
4848    if (NewVD->hasLocalStorage())
4849      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4850    else if (!Context.getTargetInfo().isTLSSupported())
4851      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4852    else
4853      NewVD->setThreadSpecified(true);
4854  }
4855
4856  if (D.getDeclSpec().isModulePrivateSpecified()) {
4857    if (isExplicitSpecialization)
4858      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4859        << 2
4860        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4861    else if (NewVD->hasLocalStorage())
4862      Diag(NewVD->getLocation(), diag::err_module_private_local)
4863        << 0 << NewVD->getDeclName()
4864        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4865        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4866    else
4867      NewVD->setModulePrivate();
4868  }
4869
4870  // Handle attributes prior to checking for duplicates in MergeVarDecl
4871  ProcessDeclAttributes(S, NewVD, D);
4872
4873  if (NewVD->hasAttrs())
4874    CheckAlignasUnderalignment(NewVD);
4875
4876  if (getLangOpts().CUDA) {
4877    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4878    // storage [duration]."
4879    if (SC == SC_None && S->getFnParent() != 0 &&
4880        (NewVD->hasAttr<CUDASharedAttr>() ||
4881         NewVD->hasAttr<CUDAConstantAttr>())) {
4882      NewVD->setStorageClass(SC_Static);
4883      NewVD->setStorageClassAsWritten(SC_Static);
4884    }
4885  }
4886
4887  // In auto-retain/release, infer strong retension for variables of
4888  // retainable type.
4889  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4890    NewVD->setInvalidDecl();
4891
4892  // Handle GNU asm-label extension (encoded as an attribute).
4893  if (Expr *E = (Expr*)D.getAsmLabel()) {
4894    // The parser guarantees this is a string.
4895    StringLiteral *SE = cast<StringLiteral>(E);
4896    StringRef Label = SE->getString();
4897    if (S->getFnParent() != 0) {
4898      switch (SC) {
4899      case SC_None:
4900      case SC_Auto:
4901        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4902        break;
4903      case SC_Register:
4904        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4905          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4906        break;
4907      case SC_Static:
4908      case SC_Extern:
4909      case SC_PrivateExtern:
4910      case SC_OpenCLWorkGroupLocal:
4911        break;
4912      }
4913    }
4914
4915    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4916                                                Context, Label));
4917  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4918    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4919      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4920    if (I != ExtnameUndeclaredIdentifiers.end()) {
4921      NewVD->addAttr(I->second);
4922      ExtnameUndeclaredIdentifiers.erase(I);
4923    }
4924  }
4925
4926  // Diagnose shadowed variables before filtering for scope.
4927  if (!D.getCXXScopeSpec().isSet())
4928    CheckShadow(S, NewVD, Previous);
4929
4930  // Don't consider existing declarations that are in a different
4931  // scope and are out-of-semantic-context declarations (if the new
4932  // declaration has linkage).
4933  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4934                       isExplicitSpecialization);
4935
4936  if (!getLangOpts().CPlusPlus) {
4937    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4938  } else {
4939    // Merge the decl with the existing one if appropriate.
4940    if (!Previous.empty()) {
4941      if (Previous.isSingleResult() &&
4942          isa<FieldDecl>(Previous.getFoundDecl()) &&
4943          D.getCXXScopeSpec().isSet()) {
4944        // The user tried to define a non-static data member
4945        // out-of-line (C++ [dcl.meaning]p1).
4946        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4947          << D.getCXXScopeSpec().getRange();
4948        Previous.clear();
4949        NewVD->setInvalidDecl();
4950      }
4951    } else if (D.getCXXScopeSpec().isSet()) {
4952      // No previous declaration in the qualifying scope.
4953      Diag(D.getIdentifierLoc(), diag::err_no_member)
4954        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4955        << D.getCXXScopeSpec().getRange();
4956      NewVD->setInvalidDecl();
4957    }
4958
4959    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4960
4961    // This is an explicit specialization of a static data member. Check it.
4962    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4963        CheckMemberSpecialization(NewVD, Previous))
4964      NewVD->setInvalidDecl();
4965  }
4966
4967  ProcessPragmaWeak(S, NewVD);
4968  checkAttributesAfterMerging(*this, *NewVD);
4969
4970  // If this is a locally-scoped extern C variable, update the map of
4971  // such variables.
4972  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4973      !NewVD->isInvalidDecl())
4974    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4975
4976  return NewVD;
4977}
4978
4979/// \brief Diagnose variable or built-in function shadowing.  Implements
4980/// -Wshadow.
4981///
4982/// This method is called whenever a VarDecl is added to a "useful"
4983/// scope.
4984///
4985/// \param S the scope in which the shadowing name is being declared
4986/// \param R the lookup of the name
4987///
4988void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4989  // Return if warning is ignored.
4990  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4991        DiagnosticsEngine::Ignored)
4992    return;
4993
4994  // Don't diagnose declarations at file scope.
4995  if (D->hasGlobalStorage())
4996    return;
4997
4998  DeclContext *NewDC = D->getDeclContext();
4999
5000  // Only diagnose if we're shadowing an unambiguous field or variable.
5001  if (R.getResultKind() != LookupResult::Found)
5002    return;
5003
5004  NamedDecl* ShadowedDecl = R.getFoundDecl();
5005  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5006    return;
5007
5008  // Fields are not shadowed by variables in C++ static methods.
5009  if (isa<FieldDecl>(ShadowedDecl))
5010    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5011      if (MD->isStatic())
5012        return;
5013
5014  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5015    if (shadowedVar->isExternC()) {
5016      // For shadowing external vars, make sure that we point to the global
5017      // declaration, not a locally scoped extern declaration.
5018      for (VarDecl::redecl_iterator
5019             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5020           I != E; ++I)
5021        if (I->isFileVarDecl()) {
5022          ShadowedDecl = *I;
5023          break;
5024        }
5025    }
5026
5027  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5028
5029  // Only warn about certain kinds of shadowing for class members.
5030  if (NewDC && NewDC->isRecord()) {
5031    // In particular, don't warn about shadowing non-class members.
5032    if (!OldDC->isRecord())
5033      return;
5034
5035    // TODO: should we warn about static data members shadowing
5036    // static data members from base classes?
5037
5038    // TODO: don't diagnose for inaccessible shadowed members.
5039    // This is hard to do perfectly because we might friend the
5040    // shadowing context, but that's just a false negative.
5041  }
5042
5043  // Determine what kind of declaration we're shadowing.
5044  unsigned Kind;
5045  if (isa<RecordDecl>(OldDC)) {
5046    if (isa<FieldDecl>(ShadowedDecl))
5047      Kind = 3; // field
5048    else
5049      Kind = 2; // static data member
5050  } else if (OldDC->isFileContext())
5051    Kind = 1; // global
5052  else
5053    Kind = 0; // local
5054
5055  DeclarationName Name = R.getLookupName();
5056
5057  // Emit warning and note.
5058  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5059  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5060}
5061
5062/// \brief Check -Wshadow without the advantage of a previous lookup.
5063void Sema::CheckShadow(Scope *S, VarDecl *D) {
5064  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5065        DiagnosticsEngine::Ignored)
5066    return;
5067
5068  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5069                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5070  LookupName(R, S);
5071  CheckShadow(S, D, R);
5072}
5073
5074template<typename T>
5075static bool mayConflictWithNonVisibleExternC(const T *ND) {
5076  const DeclContext *DC = ND->getDeclContext();
5077  if (DC->getRedeclContext()->isTranslationUnit())
5078    return true;
5079
5080  // We know that is the first decl we see, other than function local
5081  // extern C ones. If this is C++ and the decl is not in a extern C context
5082  // it cannot have C language linkage. Avoid calling isExternC in that case.
5083  // We need to this because of code like
5084  //
5085  // namespace { struct bar {}; }
5086  // auto foo = bar();
5087  //
5088  // This code runs before the init of foo is set, and therefore before
5089  // the type of foo is known. Not knowing the type we cannot know its linkage
5090  // unless it is in an extern C block.
5091  if (!DC->isExternCContext()) {
5092    const ASTContext &Context = ND->getASTContext();
5093    if (Context.getLangOpts().CPlusPlus)
5094      return false;
5095  }
5096
5097  return ND->isExternC();
5098}
5099
5100/// \brief Perform semantic checking on a newly-created variable
5101/// declaration.
5102///
5103/// This routine performs all of the type-checking required for a
5104/// variable declaration once it has been built. It is used both to
5105/// check variables after they have been parsed and their declarators
5106/// have been translated into a declaration, and to check variables
5107/// that have been instantiated from a template.
5108///
5109/// Sets NewVD->isInvalidDecl() if an error was encountered.
5110///
5111/// Returns true if the variable declaration is a redeclaration.
5112bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5113                                    LookupResult &Previous) {
5114  // If the decl is already known invalid, don't check it.
5115  if (NewVD->isInvalidDecl())
5116    return false;
5117
5118  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5119  QualType T = TInfo->getType();
5120
5121  if (T->isObjCObjectType()) {
5122    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5123      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5124    T = Context.getObjCObjectPointerType(T);
5125    NewVD->setType(T);
5126  }
5127
5128  // Emit an error if an address space was applied to decl with local storage.
5129  // This includes arrays of objects with address space qualifiers, but not
5130  // automatic variables that point to other address spaces.
5131  // ISO/IEC TR 18037 S5.1.2
5132  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5133    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5134    NewVD->setInvalidDecl();
5135    return false;
5136  }
5137
5138  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5139  // scope.
5140  if ((getLangOpts().OpenCLVersion >= 120)
5141      && NewVD->isStaticLocal()) {
5142    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5143    NewVD->setInvalidDecl();
5144    return false;
5145  }
5146
5147  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5148      && !NewVD->hasAttr<BlocksAttr>()) {
5149    if (getLangOpts().getGC() != LangOptions::NonGC)
5150      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5151    else {
5152      assert(!getLangOpts().ObjCAutoRefCount);
5153      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5154    }
5155  }
5156
5157  bool isVM = T->isVariablyModifiedType();
5158  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5159      NewVD->hasAttr<BlocksAttr>())
5160    getCurFunction()->setHasBranchProtectedScope();
5161
5162  if ((isVM && NewVD->hasLinkage()) ||
5163      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5164    bool SizeIsNegative;
5165    llvm::APSInt Oversized;
5166    TypeSourceInfo *FixedTInfo =
5167      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5168                                                    SizeIsNegative, Oversized);
5169    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5170      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5171      // FIXME: This won't give the correct result for
5172      // int a[10][n];
5173      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5174
5175      if (NewVD->isFileVarDecl())
5176        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5177        << SizeRange;
5178      else if (NewVD->getStorageClass() == SC_Static)
5179        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5180        << SizeRange;
5181      else
5182        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5183        << SizeRange;
5184      NewVD->setInvalidDecl();
5185      return false;
5186    }
5187
5188    if (FixedTInfo == 0) {
5189      if (NewVD->isFileVarDecl())
5190        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5191      else
5192        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5193      NewVD->setInvalidDecl();
5194      return false;
5195    }
5196
5197    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5198    NewVD->setType(FixedTInfo->getType());
5199    NewVD->setTypeSourceInfo(FixedTInfo);
5200  }
5201
5202  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5203    // Since we did not find anything by this name, look for a non-visible
5204    // extern "C" declaration with the same name.
5205    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5206      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5207    if (Pos != LocallyScopedExternCDecls.end())
5208      Previous.addDecl(Pos->second);
5209  }
5210
5211  // Filter out any non-conflicting previous declarations.
5212  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5213
5214  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5215    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5216      << T;
5217    NewVD->setInvalidDecl();
5218    return false;
5219  }
5220
5221  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5222    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5223    NewVD->setInvalidDecl();
5224    return false;
5225  }
5226
5227  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5228    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5229    NewVD->setInvalidDecl();
5230    return false;
5231  }
5232
5233  if (NewVD->isConstexpr() && !T->isDependentType() &&
5234      RequireLiteralType(NewVD->getLocation(), T,
5235                         diag::err_constexpr_var_non_literal)) {
5236    NewVD->setInvalidDecl();
5237    return false;
5238  }
5239
5240  if (!Previous.empty()) {
5241    MergeVarDecl(NewVD, Previous);
5242    return true;
5243  }
5244  return false;
5245}
5246
5247/// \brief Data used with FindOverriddenMethod
5248struct FindOverriddenMethodData {
5249  Sema *S;
5250  CXXMethodDecl *Method;
5251};
5252
5253/// \brief Member lookup function that determines whether a given C++
5254/// method overrides a method in a base class, to be used with
5255/// CXXRecordDecl::lookupInBases().
5256static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5257                                 CXXBasePath &Path,
5258                                 void *UserData) {
5259  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5260
5261  FindOverriddenMethodData *Data
5262    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5263
5264  DeclarationName Name = Data->Method->getDeclName();
5265
5266  // FIXME: Do we care about other names here too?
5267  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5268    // We really want to find the base class destructor here.
5269    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5270    CanQualType CT = Data->S->Context.getCanonicalType(T);
5271
5272    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5273  }
5274
5275  for (Path.Decls = BaseRecord->lookup(Name);
5276       !Path.Decls.empty();
5277       Path.Decls = Path.Decls.slice(1)) {
5278    NamedDecl *D = Path.Decls.front();
5279    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5280      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5281        return true;
5282    }
5283  }
5284
5285  return false;
5286}
5287
5288namespace {
5289  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5290}
5291/// \brief Report an error regarding overriding, along with any relevant
5292/// overriden methods.
5293///
5294/// \param DiagID the primary error to report.
5295/// \param MD the overriding method.
5296/// \param OEK which overrides to include as notes.
5297static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5298                            OverrideErrorKind OEK = OEK_All) {
5299  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5300  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5301                                      E = MD->end_overridden_methods();
5302       I != E; ++I) {
5303    // This check (& the OEK parameter) could be replaced by a predicate, but
5304    // without lambdas that would be overkill. This is still nicer than writing
5305    // out the diag loop 3 times.
5306    if ((OEK == OEK_All) ||
5307        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5308        (OEK == OEK_Deleted && (*I)->isDeleted()))
5309      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5310  }
5311}
5312
5313/// AddOverriddenMethods - See if a method overrides any in the base classes,
5314/// and if so, check that it's a valid override and remember it.
5315bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5316  // Look for virtual methods in base classes that this method might override.
5317  CXXBasePaths Paths;
5318  FindOverriddenMethodData Data;
5319  Data.Method = MD;
5320  Data.S = this;
5321  bool hasDeletedOverridenMethods = false;
5322  bool hasNonDeletedOverridenMethods = false;
5323  bool AddedAny = false;
5324  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5325    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5326         E = Paths.found_decls_end(); I != E; ++I) {
5327      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5328        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5329        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5330            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5331            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5332            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5333          hasDeletedOverridenMethods |= OldMD->isDeleted();
5334          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5335          AddedAny = true;
5336        }
5337      }
5338    }
5339  }
5340
5341  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5342    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5343  }
5344  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5345    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5346  }
5347
5348  return AddedAny;
5349}
5350
5351namespace {
5352  // Struct for holding all of the extra arguments needed by
5353  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5354  struct ActOnFDArgs {
5355    Scope *S;
5356    Declarator &D;
5357    MultiTemplateParamsArg TemplateParamLists;
5358    bool AddToScope;
5359  };
5360}
5361
5362namespace {
5363
5364// Callback to only accept typo corrections that have a non-zero edit distance.
5365// Also only accept corrections that have the same parent decl.
5366class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5367 public:
5368  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5369                            CXXRecordDecl *Parent)
5370      : Context(Context), OriginalFD(TypoFD),
5371        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5372
5373  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5374    if (candidate.getEditDistance() == 0)
5375      return false;
5376
5377    SmallVector<unsigned, 1> MismatchedParams;
5378    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5379                                          CDeclEnd = candidate.end();
5380         CDecl != CDeclEnd; ++CDecl) {
5381      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5382
5383      if (FD && !FD->hasBody() &&
5384          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5385        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5386          CXXRecordDecl *Parent = MD->getParent();
5387          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5388            return true;
5389        } else if (!ExpectedParent) {
5390          return true;
5391        }
5392      }
5393    }
5394
5395    return false;
5396  }
5397
5398 private:
5399  ASTContext &Context;
5400  FunctionDecl *OriginalFD;
5401  CXXRecordDecl *ExpectedParent;
5402};
5403
5404}
5405
5406/// \brief Generate diagnostics for an invalid function redeclaration.
5407///
5408/// This routine handles generating the diagnostic messages for an invalid
5409/// function redeclaration, including finding possible similar declarations
5410/// or performing typo correction if there are no previous declarations with
5411/// the same name.
5412///
5413/// Returns a NamedDecl iff typo correction was performed and substituting in
5414/// the new declaration name does not cause new errors.
5415static NamedDecl* DiagnoseInvalidRedeclaration(
5416    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5417    ActOnFDArgs &ExtraArgs) {
5418  NamedDecl *Result = NULL;
5419  DeclarationName Name = NewFD->getDeclName();
5420  DeclContext *NewDC = NewFD->getDeclContext();
5421  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5422                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5423  SmallVector<unsigned, 1> MismatchedParams;
5424  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5425  TypoCorrection Correction;
5426  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5427                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5428  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5429                                  : diag::err_member_def_does_not_match;
5430
5431  NewFD->setInvalidDecl();
5432  SemaRef.LookupQualifiedName(Prev, NewDC);
5433  assert(!Prev.isAmbiguous() &&
5434         "Cannot have an ambiguity in previous-declaration lookup");
5435  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5436  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5437                                      MD ? MD->getParent() : 0);
5438  if (!Prev.empty()) {
5439    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5440         Func != FuncEnd; ++Func) {
5441      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5442      if (FD &&
5443          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5444        // Add 1 to the index so that 0 can mean the mismatch didn't
5445        // involve a parameter
5446        unsigned ParamNum =
5447            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5448        NearMatches.push_back(std::make_pair(FD, ParamNum));
5449      }
5450    }
5451  // If the qualified name lookup yielded nothing, try typo correction
5452  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5453                                         Prev.getLookupKind(), 0, 0,
5454                                         Validator, NewDC))) {
5455    // Trap errors.
5456    Sema::SFINAETrap Trap(SemaRef);
5457
5458    // Set up everything for the call to ActOnFunctionDeclarator
5459    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5460                              ExtraArgs.D.getIdentifierLoc());
5461    Previous.clear();
5462    Previous.setLookupName(Correction.getCorrection());
5463    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5464                                    CDeclEnd = Correction.end();
5465         CDecl != CDeclEnd; ++CDecl) {
5466      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5467      if (FD && !FD->hasBody() &&
5468          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5469        Previous.addDecl(FD);
5470      }
5471    }
5472    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5473    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5474    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5475    // eliminate the need for the parameter pack ExtraArgs.
5476    Result = SemaRef.ActOnFunctionDeclarator(
5477        ExtraArgs.S, ExtraArgs.D,
5478        Correction.getCorrectionDecl()->getDeclContext(),
5479        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5480        ExtraArgs.AddToScope);
5481    if (Trap.hasErrorOccurred()) {
5482      // Pretend the typo correction never occurred
5483      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5484                                ExtraArgs.D.getIdentifierLoc());
5485      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5486      Previous.clear();
5487      Previous.setLookupName(Name);
5488      Result = NULL;
5489    } else {
5490      for (LookupResult::iterator Func = Previous.begin(),
5491                               FuncEnd = Previous.end();
5492           Func != FuncEnd; ++Func) {
5493        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5494          NearMatches.push_back(std::make_pair(FD, 0));
5495      }
5496    }
5497    if (NearMatches.empty()) {
5498      // Ignore the correction if it didn't yield any close FunctionDecl matches
5499      Correction = TypoCorrection();
5500    } else {
5501      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5502                             : diag::err_member_def_does_not_match_suggest;
5503    }
5504  }
5505
5506  if (Correction) {
5507    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5508    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5509    // turn causes the correction to fully qualify the name. If we fix
5510    // CorrectTypo to minimally qualify then this change should be good.
5511    SourceRange FixItLoc(NewFD->getLocation());
5512    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5513    if (Correction.getCorrectionSpecifier() && SS.isValid())
5514      FixItLoc.setBegin(SS.getBeginLoc());
5515    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5516        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5517        << FixItHint::CreateReplacement(
5518            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5519  } else {
5520    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5521        << Name << NewDC << NewFD->getLocation();
5522  }
5523
5524  bool NewFDisConst = false;
5525  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5526    NewFDisConst = NewMD->isConst();
5527
5528  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5529       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5530       NearMatch != NearMatchEnd; ++NearMatch) {
5531    FunctionDecl *FD = NearMatch->first;
5532    bool FDisConst = false;
5533    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5534      FDisConst = MD->isConst();
5535
5536    if (unsigned Idx = NearMatch->second) {
5537      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5538      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5539      if (Loc.isInvalid()) Loc = FD->getLocation();
5540      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5541          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5542    } else if (Correction) {
5543      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5544          << Correction.getQuoted(SemaRef.getLangOpts());
5545    } else if (FDisConst != NewFDisConst) {
5546      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5547          << NewFDisConst << FD->getSourceRange().getEnd();
5548    } else
5549      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5550  }
5551  return Result;
5552}
5553
5554static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5555                                                          Declarator &D) {
5556  switch (D.getDeclSpec().getStorageClassSpec()) {
5557  default: llvm_unreachable("Unknown storage class!");
5558  case DeclSpec::SCS_auto:
5559  case DeclSpec::SCS_register:
5560  case DeclSpec::SCS_mutable:
5561    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5562                 diag::err_typecheck_sclass_func);
5563    D.setInvalidType();
5564    break;
5565  case DeclSpec::SCS_unspecified: break;
5566  case DeclSpec::SCS_extern: return SC_Extern;
5567  case DeclSpec::SCS_static: {
5568    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5569      // C99 6.7.1p5:
5570      //   The declaration of an identifier for a function that has
5571      //   block scope shall have no explicit storage-class specifier
5572      //   other than extern
5573      // See also (C++ [dcl.stc]p4).
5574      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5575                   diag::err_static_block_func);
5576      break;
5577    } else
5578      return SC_Static;
5579  }
5580  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5581  }
5582
5583  // No explicit storage class has already been returned
5584  return SC_None;
5585}
5586
5587static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5588                                           DeclContext *DC, QualType &R,
5589                                           TypeSourceInfo *TInfo,
5590                                           FunctionDecl::StorageClass SC,
5591                                           bool &IsVirtualOkay) {
5592  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5593  DeclarationName Name = NameInfo.getName();
5594
5595  FunctionDecl *NewFD = 0;
5596  bool isInline = D.getDeclSpec().isInlineSpecified();
5597  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5598  FunctionDecl::StorageClass SCAsWritten
5599    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5600
5601  if (!SemaRef.getLangOpts().CPlusPlus) {
5602    // Determine whether the function was written with a
5603    // prototype. This true when:
5604    //   - there is a prototype in the declarator, or
5605    //   - the type R of the function is some kind of typedef or other reference
5606    //     to a type name (which eventually refers to a function type).
5607    bool HasPrototype =
5608      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5609      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5610
5611    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5612                                 D.getLocStart(), NameInfo, R,
5613                                 TInfo, SC, SCAsWritten, isInline,
5614                                 HasPrototype);
5615    if (D.isInvalidType())
5616      NewFD->setInvalidDecl();
5617
5618    // Set the lexical context.
5619    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5620
5621    return NewFD;
5622  }
5623
5624  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5625  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5626
5627  // Check that the return type is not an abstract class type.
5628  // For record types, this is done by the AbstractClassUsageDiagnoser once
5629  // the class has been completely parsed.
5630  if (!DC->isRecord() &&
5631      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5632                                     R->getAs<FunctionType>()->getResultType(),
5633                                     diag::err_abstract_type_in_decl,
5634                                     SemaRef.AbstractReturnType))
5635    D.setInvalidType();
5636
5637  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5638    // This is a C++ constructor declaration.
5639    assert(DC->isRecord() &&
5640           "Constructors can only be declared in a member context");
5641
5642    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5643    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5644                                      D.getLocStart(), NameInfo,
5645                                      R, TInfo, isExplicit, isInline,
5646                                      /*isImplicitlyDeclared=*/false,
5647                                      isConstexpr);
5648
5649  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5650    // This is a C++ destructor declaration.
5651    if (DC->isRecord()) {
5652      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5653      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5654      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5655                                        SemaRef.Context, Record,
5656                                        D.getLocStart(),
5657                                        NameInfo, R, TInfo, isInline,
5658                                        /*isImplicitlyDeclared=*/false);
5659
5660      // If the class is complete, then we now create the implicit exception
5661      // specification. If the class is incomplete or dependent, we can't do
5662      // it yet.
5663      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5664          Record->getDefinition() && !Record->isBeingDefined() &&
5665          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5666        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5667      }
5668
5669      IsVirtualOkay = true;
5670      return NewDD;
5671
5672    } else {
5673      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5674      D.setInvalidType();
5675
5676      // Create a FunctionDecl to satisfy the function definition parsing
5677      // code path.
5678      return FunctionDecl::Create(SemaRef.Context, DC,
5679                                  D.getLocStart(),
5680                                  D.getIdentifierLoc(), Name, R, TInfo,
5681                                  SC, SCAsWritten, isInline,
5682                                  /*hasPrototype=*/true, isConstexpr);
5683    }
5684
5685  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5686    if (!DC->isRecord()) {
5687      SemaRef.Diag(D.getIdentifierLoc(),
5688           diag::err_conv_function_not_member);
5689      return 0;
5690    }
5691
5692    SemaRef.CheckConversionDeclarator(D, R, SC);
5693    IsVirtualOkay = true;
5694    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5695                                     D.getLocStart(), NameInfo,
5696                                     R, TInfo, isInline, isExplicit,
5697                                     isConstexpr, SourceLocation());
5698
5699  } else if (DC->isRecord()) {
5700    // If the name of the function is the same as the name of the record,
5701    // then this must be an invalid constructor that has a return type.
5702    // (The parser checks for a return type and makes the declarator a
5703    // constructor if it has no return type).
5704    if (Name.getAsIdentifierInfo() &&
5705        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5706      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5707        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5708        << SourceRange(D.getIdentifierLoc());
5709      return 0;
5710    }
5711
5712    bool isStatic = SC == SC_Static;
5713
5714    // [class.free]p1:
5715    // Any allocation function for a class T is a static member
5716    // (even if not explicitly declared static).
5717    if (Name.getCXXOverloadedOperator() == OO_New ||
5718        Name.getCXXOverloadedOperator() == OO_Array_New)
5719      isStatic = true;
5720
5721    // [class.free]p6 Any deallocation function for a class X is a static member
5722    // (even if not explicitly declared static).
5723    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5724        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5725      isStatic = true;
5726
5727    IsVirtualOkay = !isStatic;
5728
5729    // This is a C++ method declaration.
5730    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5731                                 D.getLocStart(), NameInfo, R,
5732                                 TInfo, isStatic, SCAsWritten, isInline,
5733                                 isConstexpr, SourceLocation());
5734
5735  } else {
5736    // Determine whether the function was written with a
5737    // prototype. This true when:
5738    //   - we're in C++ (where every function has a prototype),
5739    return FunctionDecl::Create(SemaRef.Context, DC,
5740                                D.getLocStart(),
5741                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5742                                true/*HasPrototype*/, isConstexpr);
5743  }
5744}
5745
5746void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5747  // In C++, the empty parameter-type-list must be spelled "void"; a
5748  // typedef of void is not permitted.
5749  if (getLangOpts().CPlusPlus &&
5750      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5751    bool IsTypeAlias = false;
5752    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5753      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5754    else if (const TemplateSpecializationType *TST =
5755               Param->getType()->getAs<TemplateSpecializationType>())
5756      IsTypeAlias = TST->isTypeAlias();
5757    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5758      << IsTypeAlias;
5759  }
5760}
5761
5762NamedDecl*
5763Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5764                              TypeSourceInfo *TInfo, LookupResult &Previous,
5765                              MultiTemplateParamsArg TemplateParamLists,
5766                              bool &AddToScope) {
5767  QualType R = TInfo->getType();
5768
5769  assert(R.getTypePtr()->isFunctionType());
5770
5771  // TODO: consider using NameInfo for diagnostic.
5772  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5773  DeclarationName Name = NameInfo.getName();
5774  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5775
5776  if (D.getDeclSpec().isThreadSpecified())
5777    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5778
5779  // Do not allow returning a objc interface by-value.
5780  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5781    Diag(D.getIdentifierLoc(),
5782         diag::err_object_cannot_be_passed_returned_by_value) << 0
5783    << R->getAs<FunctionType>()->getResultType()
5784    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5785
5786    QualType T = R->getAs<FunctionType>()->getResultType();
5787    T = Context.getObjCObjectPointerType(T);
5788    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5789      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5790      R = Context.getFunctionType(T,
5791                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5792                                                     FPT->getNumArgs()),
5793                                  EPI);
5794    }
5795    else if (isa<FunctionNoProtoType>(R))
5796      R = Context.getFunctionNoProtoType(T);
5797  }
5798
5799  bool isFriend = false;
5800  FunctionTemplateDecl *FunctionTemplate = 0;
5801  bool isExplicitSpecialization = false;
5802  bool isFunctionTemplateSpecialization = false;
5803
5804  bool isDependentClassScopeExplicitSpecialization = false;
5805  bool HasExplicitTemplateArgs = false;
5806  TemplateArgumentListInfo TemplateArgs;
5807
5808  bool isVirtualOkay = false;
5809
5810  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5811                                              isVirtualOkay);
5812  if (!NewFD) return 0;
5813
5814  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5815    NewFD->setTopLevelDeclInObjCContainer();
5816
5817  if (getLangOpts().CPlusPlus) {
5818    bool isInline = D.getDeclSpec().isInlineSpecified();
5819    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5820    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5821    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5822    isFriend = D.getDeclSpec().isFriendSpecified();
5823    if (isFriend && !isInline && D.isFunctionDefinition()) {
5824      // C++ [class.friend]p5
5825      //   A function can be defined in a friend declaration of a
5826      //   class . . . . Such a function is implicitly inline.
5827      NewFD->setImplicitlyInline();
5828    }
5829
5830    // If this is a method defined in an __interface, and is not a constructor
5831    // or an overloaded operator, then set the pure flag (isVirtual will already
5832    // return true).
5833    if (const CXXRecordDecl *Parent =
5834          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5835      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5836        NewFD->setPure(true);
5837    }
5838
5839    SetNestedNameSpecifier(NewFD, D);
5840    isExplicitSpecialization = false;
5841    isFunctionTemplateSpecialization = false;
5842    if (D.isInvalidType())
5843      NewFD->setInvalidDecl();
5844
5845    // Set the lexical context. If the declarator has a C++
5846    // scope specifier, or is the object of a friend declaration, the
5847    // lexical context will be different from the semantic context.
5848    NewFD->setLexicalDeclContext(CurContext);
5849
5850    // Match up the template parameter lists with the scope specifier, then
5851    // determine whether we have a template or a template specialization.
5852    bool Invalid = false;
5853    if (TemplateParameterList *TemplateParams
5854          = MatchTemplateParametersToScopeSpecifier(
5855                                  D.getDeclSpec().getLocStart(),
5856                                  D.getIdentifierLoc(),
5857                                  D.getCXXScopeSpec(),
5858                                  TemplateParamLists.data(),
5859                                  TemplateParamLists.size(),
5860                                  isFriend,
5861                                  isExplicitSpecialization,
5862                                  Invalid)) {
5863      if (TemplateParams->size() > 0) {
5864        // This is a function template
5865
5866        // Check that we can declare a template here.
5867        if (CheckTemplateDeclScope(S, TemplateParams))
5868          return 0;
5869
5870        // A destructor cannot be a template.
5871        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5872          Diag(NewFD->getLocation(), diag::err_destructor_template);
5873          return 0;
5874        }
5875
5876        // If we're adding a template to a dependent context, we may need to
5877        // rebuilding some of the types used within the template parameter list,
5878        // now that we know what the current instantiation is.
5879        if (DC->isDependentContext()) {
5880          ContextRAII SavedContext(*this, DC);
5881          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5882            Invalid = true;
5883        }
5884
5885
5886        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5887                                                        NewFD->getLocation(),
5888                                                        Name, TemplateParams,
5889                                                        NewFD);
5890        FunctionTemplate->setLexicalDeclContext(CurContext);
5891        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5892
5893        // For source fidelity, store the other template param lists.
5894        if (TemplateParamLists.size() > 1) {
5895          NewFD->setTemplateParameterListsInfo(Context,
5896                                               TemplateParamLists.size() - 1,
5897                                               TemplateParamLists.data());
5898        }
5899      } else {
5900        // This is a function template specialization.
5901        isFunctionTemplateSpecialization = true;
5902        // For source fidelity, store all the template param lists.
5903        NewFD->setTemplateParameterListsInfo(Context,
5904                                             TemplateParamLists.size(),
5905                                             TemplateParamLists.data());
5906
5907        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5908        if (isFriend) {
5909          // We want to remove the "template<>", found here.
5910          SourceRange RemoveRange = TemplateParams->getSourceRange();
5911
5912          // If we remove the template<> and the name is not a
5913          // template-id, we're actually silently creating a problem:
5914          // the friend declaration will refer to an untemplated decl,
5915          // and clearly the user wants a template specialization.  So
5916          // we need to insert '<>' after the name.
5917          SourceLocation InsertLoc;
5918          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5919            InsertLoc = D.getName().getSourceRange().getEnd();
5920            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5921          }
5922
5923          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5924            << Name << RemoveRange
5925            << FixItHint::CreateRemoval(RemoveRange)
5926            << FixItHint::CreateInsertion(InsertLoc, "<>");
5927        }
5928      }
5929    }
5930    else {
5931      // All template param lists were matched against the scope specifier:
5932      // this is NOT (an explicit specialization of) a template.
5933      if (TemplateParamLists.size() > 0)
5934        // For source fidelity, store all the template param lists.
5935        NewFD->setTemplateParameterListsInfo(Context,
5936                                             TemplateParamLists.size(),
5937                                             TemplateParamLists.data());
5938    }
5939
5940    if (Invalid) {
5941      NewFD->setInvalidDecl();
5942      if (FunctionTemplate)
5943        FunctionTemplate->setInvalidDecl();
5944    }
5945
5946    // C++ [dcl.fct.spec]p5:
5947    //   The virtual specifier shall only be used in declarations of
5948    //   nonstatic class member functions that appear within a
5949    //   member-specification of a class declaration; see 10.3.
5950    //
5951    if (isVirtual && !NewFD->isInvalidDecl()) {
5952      if (!isVirtualOkay) {
5953        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5954             diag::err_virtual_non_function);
5955      } else if (!CurContext->isRecord()) {
5956        // 'virtual' was specified outside of the class.
5957        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5958             diag::err_virtual_out_of_class)
5959          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5960      } else if (NewFD->getDescribedFunctionTemplate()) {
5961        // C++ [temp.mem]p3:
5962        //  A member function template shall not be virtual.
5963        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5964             diag::err_virtual_member_function_template)
5965          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5966      } else {
5967        // Okay: Add virtual to the method.
5968        NewFD->setVirtualAsWritten(true);
5969      }
5970    }
5971
5972    // C++ [dcl.fct.spec]p3:
5973    //  The inline specifier shall not appear on a block scope function
5974    //  declaration.
5975    if (isInline && !NewFD->isInvalidDecl()) {
5976      if (CurContext->isFunctionOrMethod()) {
5977        // 'inline' is not allowed on block scope function declaration.
5978        Diag(D.getDeclSpec().getInlineSpecLoc(),
5979             diag::err_inline_declaration_block_scope) << Name
5980          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5981      }
5982    }
5983
5984    // C++ [dcl.fct.spec]p6:
5985    //  The explicit specifier shall be used only in the declaration of a
5986    //  constructor or conversion function within its class definition;
5987    //  see 12.3.1 and 12.3.2.
5988    if (isExplicit && !NewFD->isInvalidDecl()) {
5989      if (!CurContext->isRecord()) {
5990        // 'explicit' was specified outside of the class.
5991        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5992             diag::err_explicit_out_of_class)
5993          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5994      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5995                 !isa<CXXConversionDecl>(NewFD)) {
5996        // 'explicit' was specified on a function that wasn't a constructor
5997        // or conversion function.
5998        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5999             diag::err_explicit_non_ctor_or_conv_function)
6000          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6001      }
6002    }
6003
6004    if (isConstexpr) {
6005      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6006      // are implicitly inline.
6007      NewFD->setImplicitlyInline();
6008
6009      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6010      // be either constructors or to return a literal type. Therefore,
6011      // destructors cannot be declared constexpr.
6012      if (isa<CXXDestructorDecl>(NewFD))
6013        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6014    }
6015
6016    // If __module_private__ was specified, mark the function accordingly.
6017    if (D.getDeclSpec().isModulePrivateSpecified()) {
6018      if (isFunctionTemplateSpecialization) {
6019        SourceLocation ModulePrivateLoc
6020          = D.getDeclSpec().getModulePrivateSpecLoc();
6021        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6022          << 0
6023          << FixItHint::CreateRemoval(ModulePrivateLoc);
6024      } else {
6025        NewFD->setModulePrivate();
6026        if (FunctionTemplate)
6027          FunctionTemplate->setModulePrivate();
6028      }
6029    }
6030
6031    if (isFriend) {
6032      // For now, claim that the objects have no previous declaration.
6033      if (FunctionTemplate) {
6034        FunctionTemplate->setObjectOfFriendDecl(false);
6035        FunctionTemplate->setAccess(AS_public);
6036      }
6037      NewFD->setObjectOfFriendDecl(false);
6038      NewFD->setAccess(AS_public);
6039    }
6040
6041    // If a function is defined as defaulted or deleted, mark it as such now.
6042    switch (D.getFunctionDefinitionKind()) {
6043      case FDK_Declaration:
6044      case FDK_Definition:
6045        break;
6046
6047      case FDK_Defaulted:
6048        NewFD->setDefaulted();
6049        break;
6050
6051      case FDK_Deleted:
6052        NewFD->setDeletedAsWritten();
6053        break;
6054    }
6055
6056    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6057        D.isFunctionDefinition()) {
6058      // C++ [class.mfct]p2:
6059      //   A member function may be defined (8.4) in its class definition, in
6060      //   which case it is an inline member function (7.1.2)
6061      NewFD->setImplicitlyInline();
6062    }
6063
6064    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6065        !CurContext->isRecord()) {
6066      // C++ [class.static]p1:
6067      //   A data or function member of a class may be declared static
6068      //   in a class definition, in which case it is a static member of
6069      //   the class.
6070
6071      // Complain about the 'static' specifier if it's on an out-of-line
6072      // member function definition.
6073      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6074           diag::err_static_out_of_line)
6075        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6076    }
6077
6078    // C++11 [except.spec]p15:
6079    //   A deallocation function with no exception-specification is treated
6080    //   as if it were specified with noexcept(true).
6081    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6082    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6083         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6084        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6085      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6086      EPI.ExceptionSpecType = EST_BasicNoexcept;
6087      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6088                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6089                                                         FPT->getNumArgs()),
6090                                             EPI));
6091    }
6092  }
6093
6094  // Filter out previous declarations that don't match the scope.
6095  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6096                       isExplicitSpecialization ||
6097                       isFunctionTemplateSpecialization);
6098
6099  // Handle GNU asm-label extension (encoded as an attribute).
6100  if (Expr *E = (Expr*) D.getAsmLabel()) {
6101    // The parser guarantees this is a string.
6102    StringLiteral *SE = cast<StringLiteral>(E);
6103    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6104                                                SE->getString()));
6105  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6106    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6107      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6108    if (I != ExtnameUndeclaredIdentifiers.end()) {
6109      NewFD->addAttr(I->second);
6110      ExtnameUndeclaredIdentifiers.erase(I);
6111    }
6112  }
6113
6114  // Copy the parameter declarations from the declarator D to the function
6115  // declaration NewFD, if they are available.  First scavenge them into Params.
6116  SmallVector<ParmVarDecl*, 16> Params;
6117  if (D.isFunctionDeclarator()) {
6118    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6119
6120    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6121    // function that takes no arguments, not a function that takes a
6122    // single void argument.
6123    // We let through "const void" here because Sema::GetTypeForDeclarator
6124    // already checks for that case.
6125    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6126        FTI.ArgInfo[0].Param &&
6127        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6128      // Empty arg list, don't push any params.
6129      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6130    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6131      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6132        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6133        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6134        Param->setDeclContext(NewFD);
6135        Params.push_back(Param);
6136
6137        if (Param->isInvalidDecl())
6138          NewFD->setInvalidDecl();
6139      }
6140    }
6141
6142  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6143    // When we're declaring a function with a typedef, typeof, etc as in the
6144    // following example, we'll need to synthesize (unnamed)
6145    // parameters for use in the declaration.
6146    //
6147    // @code
6148    // typedef void fn(int);
6149    // fn f;
6150    // @endcode
6151
6152    // Synthesize a parameter for each argument type.
6153    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6154         AE = FT->arg_type_end(); AI != AE; ++AI) {
6155      ParmVarDecl *Param =
6156        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6157      Param->setScopeInfo(0, Params.size());
6158      Params.push_back(Param);
6159    }
6160  } else {
6161    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6162           "Should not need args for typedef of non-prototype fn");
6163  }
6164
6165  // Finally, we know we have the right number of parameters, install them.
6166  NewFD->setParams(Params);
6167
6168  // Find all anonymous symbols defined during the declaration of this function
6169  // and add to NewFD. This lets us track decls such 'enum Y' in:
6170  //
6171  //   void f(enum Y {AA} x) {}
6172  //
6173  // which would otherwise incorrectly end up in the translation unit scope.
6174  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6175  DeclsInPrototypeScope.clear();
6176
6177  if (D.getDeclSpec().isNoreturnSpecified())
6178    NewFD->addAttr(
6179        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6180                                       Context));
6181
6182  // Process the non-inheritable attributes on this declaration.
6183  ProcessDeclAttributes(S, NewFD, D,
6184                        /*NonInheritable=*/true, /*Inheritable=*/false);
6185
6186  // Functions returning a variably modified type violate C99 6.7.5.2p2
6187  // because all functions have linkage.
6188  if (!NewFD->isInvalidDecl() &&
6189      NewFD->getResultType()->isVariablyModifiedType()) {
6190    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6191    NewFD->setInvalidDecl();
6192  }
6193
6194  // Handle attributes.
6195  ProcessDeclAttributes(S, NewFD, D,
6196                        /*NonInheritable=*/false, /*Inheritable=*/true);
6197
6198  QualType RetType = NewFD->getResultType();
6199  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6200      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6201  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6202      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6203    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6204    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6205      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6206                                                        Context));
6207    }
6208  }
6209
6210  if (!getLangOpts().CPlusPlus) {
6211    // Perform semantic checking on the function declaration.
6212    bool isExplicitSpecialization=false;
6213    if (!NewFD->isInvalidDecl()) {
6214      if (NewFD->isMain())
6215        CheckMain(NewFD, D.getDeclSpec());
6216      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6217                                                  isExplicitSpecialization));
6218    }
6219    // Make graceful recovery from an invalid redeclaration.
6220    else if (!Previous.empty())
6221           D.setRedeclaration(true);
6222    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6223            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6224           "previous declaration set still overloaded");
6225  } else {
6226    // If the declarator is a template-id, translate the parser's template
6227    // argument list into our AST format.
6228    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6229      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6230      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6231      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6232      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6233                                         TemplateId->NumArgs);
6234      translateTemplateArguments(TemplateArgsPtr,
6235                                 TemplateArgs);
6236
6237      HasExplicitTemplateArgs = true;
6238
6239      if (NewFD->isInvalidDecl()) {
6240        HasExplicitTemplateArgs = false;
6241      } else if (FunctionTemplate) {
6242        // Function template with explicit template arguments.
6243        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6244          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6245
6246        HasExplicitTemplateArgs = false;
6247      } else if (!isFunctionTemplateSpecialization &&
6248                 !D.getDeclSpec().isFriendSpecified()) {
6249        // We have encountered something that the user meant to be a
6250        // specialization (because it has explicitly-specified template
6251        // arguments) but that was not introduced with a "template<>" (or had
6252        // too few of them).
6253        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6254          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6255          << FixItHint::CreateInsertion(
6256                                    D.getDeclSpec().getLocStart(),
6257                                        "template<> ");
6258        isFunctionTemplateSpecialization = true;
6259      } else {
6260        // "friend void foo<>(int);" is an implicit specialization decl.
6261        isFunctionTemplateSpecialization = true;
6262      }
6263    } else if (isFriend && isFunctionTemplateSpecialization) {
6264      // This combination is only possible in a recovery case;  the user
6265      // wrote something like:
6266      //   template <> friend void foo(int);
6267      // which we're recovering from as if the user had written:
6268      //   friend void foo<>(int);
6269      // Go ahead and fake up a template id.
6270      HasExplicitTemplateArgs = true;
6271        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6272      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6273    }
6274
6275    // If it's a friend (and only if it's a friend), it's possible
6276    // that either the specialized function type or the specialized
6277    // template is dependent, and therefore matching will fail.  In
6278    // this case, don't check the specialization yet.
6279    bool InstantiationDependent = false;
6280    if (isFunctionTemplateSpecialization && isFriend &&
6281        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6282         TemplateSpecializationType::anyDependentTemplateArguments(
6283            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6284            InstantiationDependent))) {
6285      assert(HasExplicitTemplateArgs &&
6286             "friend function specialization without template args");
6287      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6288                                                       Previous))
6289        NewFD->setInvalidDecl();
6290    } else if (isFunctionTemplateSpecialization) {
6291      if (CurContext->isDependentContext() && CurContext->isRecord()
6292          && !isFriend) {
6293        isDependentClassScopeExplicitSpecialization = true;
6294        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6295          diag::ext_function_specialization_in_class :
6296          diag::err_function_specialization_in_class)
6297          << NewFD->getDeclName();
6298      } else if (CheckFunctionTemplateSpecialization(NewFD,
6299                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6300                                                     Previous))
6301        NewFD->setInvalidDecl();
6302
6303      // C++ [dcl.stc]p1:
6304      //   A storage-class-specifier shall not be specified in an explicit
6305      //   specialization (14.7.3)
6306      if (SC != SC_None) {
6307        if (SC != NewFD->getStorageClass())
6308          Diag(NewFD->getLocation(),
6309               diag::err_explicit_specialization_inconsistent_storage_class)
6310            << SC
6311            << FixItHint::CreateRemoval(
6312                                      D.getDeclSpec().getStorageClassSpecLoc());
6313
6314        else
6315          Diag(NewFD->getLocation(),
6316               diag::ext_explicit_specialization_storage_class)
6317            << FixItHint::CreateRemoval(
6318                                      D.getDeclSpec().getStorageClassSpecLoc());
6319      }
6320
6321    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6322      if (CheckMemberSpecialization(NewFD, Previous))
6323          NewFD->setInvalidDecl();
6324    }
6325
6326    // Perform semantic checking on the function declaration.
6327    if (!isDependentClassScopeExplicitSpecialization) {
6328      if (NewFD->isInvalidDecl()) {
6329        // If this is a class member, mark the class invalid immediately.
6330        // This avoids some consistency errors later.
6331        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6332          methodDecl->getParent()->setInvalidDecl();
6333      } else {
6334        if (NewFD->isMain())
6335          CheckMain(NewFD, D.getDeclSpec());
6336        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6337                                                    isExplicitSpecialization));
6338      }
6339    }
6340
6341    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6342            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6343           "previous declaration set still overloaded");
6344
6345    NamedDecl *PrincipalDecl = (FunctionTemplate
6346                                ? cast<NamedDecl>(FunctionTemplate)
6347                                : NewFD);
6348
6349    if (isFriend && D.isRedeclaration()) {
6350      AccessSpecifier Access = AS_public;
6351      if (!NewFD->isInvalidDecl())
6352        Access = NewFD->getPreviousDecl()->getAccess();
6353
6354      NewFD->setAccess(Access);
6355      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6356
6357      PrincipalDecl->setObjectOfFriendDecl(true);
6358    }
6359
6360    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6361        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6362      PrincipalDecl->setNonMemberOperator();
6363
6364    // If we have a function template, check the template parameter
6365    // list. This will check and merge default template arguments.
6366    if (FunctionTemplate) {
6367      FunctionTemplateDecl *PrevTemplate =
6368                                     FunctionTemplate->getPreviousDecl();
6369      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6370                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6371                            D.getDeclSpec().isFriendSpecified()
6372                              ? (D.isFunctionDefinition()
6373                                   ? TPC_FriendFunctionTemplateDefinition
6374                                   : TPC_FriendFunctionTemplate)
6375                              : (D.getCXXScopeSpec().isSet() &&
6376                                 DC && DC->isRecord() &&
6377                                 DC->isDependentContext())
6378                                  ? TPC_ClassTemplateMember
6379                                  : TPC_FunctionTemplate);
6380    }
6381
6382    if (NewFD->isInvalidDecl()) {
6383      // Ignore all the rest of this.
6384    } else if (!D.isRedeclaration()) {
6385      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6386                                       AddToScope };
6387      // Fake up an access specifier if it's supposed to be a class member.
6388      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6389        NewFD->setAccess(AS_public);
6390
6391      // Qualified decls generally require a previous declaration.
6392      if (D.getCXXScopeSpec().isSet()) {
6393        // ...with the major exception of templated-scope or
6394        // dependent-scope friend declarations.
6395
6396        // TODO: we currently also suppress this check in dependent
6397        // contexts because (1) the parameter depth will be off when
6398        // matching friend templates and (2) we might actually be
6399        // selecting a friend based on a dependent factor.  But there
6400        // are situations where these conditions don't apply and we
6401        // can actually do this check immediately.
6402        if (isFriend &&
6403            (TemplateParamLists.size() ||
6404             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6405             CurContext->isDependentContext())) {
6406          // ignore these
6407        } else {
6408          // The user tried to provide an out-of-line definition for a
6409          // function that is a member of a class or namespace, but there
6410          // was no such member function declared (C++ [class.mfct]p2,
6411          // C++ [namespace.memdef]p2). For example:
6412          //
6413          // class X {
6414          //   void f() const;
6415          // };
6416          //
6417          // void X::f() { } // ill-formed
6418          //
6419          // Complain about this problem, and attempt to suggest close
6420          // matches (e.g., those that differ only in cv-qualifiers and
6421          // whether the parameter types are references).
6422
6423          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6424                                                               NewFD,
6425                                                               ExtraArgs)) {
6426            AddToScope = ExtraArgs.AddToScope;
6427            return Result;
6428          }
6429        }
6430
6431        // Unqualified local friend declarations are required to resolve
6432        // to something.
6433      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6434        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6435                                                             NewFD,
6436                                                             ExtraArgs)) {
6437          AddToScope = ExtraArgs.AddToScope;
6438          return Result;
6439        }
6440      }
6441
6442    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6443               !isFriend && !isFunctionTemplateSpecialization &&
6444               !isExplicitSpecialization) {
6445      // An out-of-line member function declaration must also be a
6446      // definition (C++ [dcl.meaning]p1).
6447      // Note that this is not the case for explicit specializations of
6448      // function templates or member functions of class templates, per
6449      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6450      // extension for compatibility with old SWIG code which likes to
6451      // generate them.
6452      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6453        << D.getCXXScopeSpec().getRange();
6454    }
6455  }
6456
6457  ProcessPragmaWeak(S, NewFD);
6458  checkAttributesAfterMerging(*this, *NewFD);
6459
6460  AddKnownFunctionAttributes(NewFD);
6461
6462  if (NewFD->hasAttr<OverloadableAttr>() &&
6463      !NewFD->getType()->getAs<FunctionProtoType>()) {
6464    Diag(NewFD->getLocation(),
6465         diag::err_attribute_overloadable_no_prototype)
6466      << NewFD;
6467
6468    // Turn this into a variadic function with no parameters.
6469    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6470    FunctionProtoType::ExtProtoInfo EPI;
6471    EPI.Variadic = true;
6472    EPI.ExtInfo = FT->getExtInfo();
6473
6474    QualType R = Context.getFunctionType(FT->getResultType(),
6475                                         ArrayRef<QualType>(),
6476                                         EPI);
6477    NewFD->setType(R);
6478  }
6479
6480  // If there's a #pragma GCC visibility in scope, and this isn't a class
6481  // member, set the visibility of this function.
6482  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6483    AddPushedVisibilityAttribute(NewFD);
6484
6485  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6486  // marking the function.
6487  AddCFAuditedAttribute(NewFD);
6488
6489  // If this is a locally-scoped extern C function, update the
6490  // map of such names.
6491  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6492      && !NewFD->isInvalidDecl())
6493    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6494
6495  // Set this FunctionDecl's range up to the right paren.
6496  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6497
6498  if (getLangOpts().CPlusPlus) {
6499    if (FunctionTemplate) {
6500      if (NewFD->isInvalidDecl())
6501        FunctionTemplate->setInvalidDecl();
6502      return FunctionTemplate;
6503    }
6504  }
6505
6506  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6507    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6508    if ((getLangOpts().OpenCLVersion >= 120)
6509        && (SC == SC_Static)) {
6510      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6511      D.setInvalidType();
6512    }
6513
6514    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6515    if (!NewFD->getResultType()->isVoidType()) {
6516      Diag(D.getIdentifierLoc(),
6517           diag::err_expected_kernel_void_return_type);
6518      D.setInvalidType();
6519    }
6520
6521    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6522         PE = NewFD->param_end(); PI != PE; ++PI) {
6523      ParmVarDecl *Param = *PI;
6524      QualType PT = Param->getType();
6525
6526      // OpenCL v1.2 s6.9.a:
6527      // A kernel function argument cannot be declared as a
6528      // pointer to a pointer type.
6529      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6530        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6531        D.setInvalidType();
6532      }
6533
6534      // OpenCL v1.2 s6.8 n:
6535      // A kernel function argument cannot be declared
6536      // of event_t type.
6537      if (PT->isEventT()) {
6538        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6539        D.setInvalidType();
6540      }
6541    }
6542  }
6543
6544  MarkUnusedFileScopedDecl(NewFD);
6545
6546  if (getLangOpts().CUDA)
6547    if (IdentifierInfo *II = NewFD->getIdentifier())
6548      if (!NewFD->isInvalidDecl() &&
6549          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6550        if (II->isStr("cudaConfigureCall")) {
6551          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6552            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6553
6554          Context.setcudaConfigureCallDecl(NewFD);
6555        }
6556      }
6557
6558  // Here we have an function template explicit specialization at class scope.
6559  // The actually specialization will be postponed to template instatiation
6560  // time via the ClassScopeFunctionSpecializationDecl node.
6561  if (isDependentClassScopeExplicitSpecialization) {
6562    ClassScopeFunctionSpecializationDecl *NewSpec =
6563                         ClassScopeFunctionSpecializationDecl::Create(
6564                                Context, CurContext, SourceLocation(),
6565                                cast<CXXMethodDecl>(NewFD),
6566                                HasExplicitTemplateArgs, TemplateArgs);
6567    CurContext->addDecl(NewSpec);
6568    AddToScope = false;
6569  }
6570
6571  return NewFD;
6572}
6573
6574/// \brief Perform semantic checking of a new function declaration.
6575///
6576/// Performs semantic analysis of the new function declaration
6577/// NewFD. This routine performs all semantic checking that does not
6578/// require the actual declarator involved in the declaration, and is
6579/// used both for the declaration of functions as they are parsed
6580/// (called via ActOnDeclarator) and for the declaration of functions
6581/// that have been instantiated via C++ template instantiation (called
6582/// via InstantiateDecl).
6583///
6584/// \param IsExplicitSpecialization whether this new function declaration is
6585/// an explicit specialization of the previous declaration.
6586///
6587/// This sets NewFD->isInvalidDecl() to true if there was an error.
6588///
6589/// \returns true if the function declaration is a redeclaration.
6590bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6591                                    LookupResult &Previous,
6592                                    bool IsExplicitSpecialization) {
6593  assert(!NewFD->getResultType()->isVariablyModifiedType()
6594         && "Variably modified return types are not handled here");
6595
6596  // Check for a previous declaration of this name.
6597  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6598    // Since we did not find anything by this name, look for a non-visible
6599    // extern "C" declaration with the same name.
6600    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6601      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6602    if (Pos != LocallyScopedExternCDecls.end())
6603      Previous.addDecl(Pos->second);
6604  }
6605
6606  // Filter out any non-conflicting previous declarations.
6607  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6608
6609  bool Redeclaration = false;
6610  NamedDecl *OldDecl = 0;
6611
6612  // Merge or overload the declaration with an existing declaration of
6613  // the same name, if appropriate.
6614  if (!Previous.empty()) {
6615    // Determine whether NewFD is an overload of PrevDecl or
6616    // a declaration that requires merging. If it's an overload,
6617    // there's no more work to do here; we'll just add the new
6618    // function to the scope.
6619    if (!AllowOverloadingOfFunction(Previous, Context)) {
6620      Redeclaration = true;
6621      OldDecl = Previous.getFoundDecl();
6622    } else {
6623      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6624                            /*NewIsUsingDecl*/ false)) {
6625      case Ovl_Match:
6626        Redeclaration = true;
6627        break;
6628
6629      case Ovl_NonFunction:
6630        Redeclaration = true;
6631        break;
6632
6633      case Ovl_Overload:
6634        Redeclaration = false;
6635        break;
6636      }
6637
6638      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6639        // If a function name is overloadable in C, then every function
6640        // with that name must be marked "overloadable".
6641        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6642          << Redeclaration << NewFD;
6643        NamedDecl *OverloadedDecl = 0;
6644        if (Redeclaration)
6645          OverloadedDecl = OldDecl;
6646        else if (!Previous.empty())
6647          OverloadedDecl = Previous.getRepresentativeDecl();
6648        if (OverloadedDecl)
6649          Diag(OverloadedDecl->getLocation(),
6650               diag::note_attribute_overloadable_prev_overload);
6651        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6652                                                        Context));
6653      }
6654    }
6655  }
6656
6657  // C++11 [dcl.constexpr]p8:
6658  //   A constexpr specifier for a non-static member function that is not
6659  //   a constructor declares that member function to be const.
6660  //
6661  // This needs to be delayed until we know whether this is an out-of-line
6662  // definition of a static member function.
6663  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6664  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6665      !isa<CXXConstructorDecl>(MD) &&
6666      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6667    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6668    if (FunctionTemplateDecl *OldTD =
6669          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6670      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6671    if (!OldMD || !OldMD->isStatic()) {
6672      const FunctionProtoType *FPT =
6673        MD->getType()->castAs<FunctionProtoType>();
6674      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6675      EPI.TypeQuals |= Qualifiers::Const;
6676      MD->setType(Context.getFunctionType(FPT->getResultType(),
6677                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6678                                                         FPT->getNumArgs()),
6679                                          EPI));
6680    }
6681  }
6682
6683  if (Redeclaration) {
6684    // NewFD and OldDecl represent declarations that need to be
6685    // merged.
6686    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6687      NewFD->setInvalidDecl();
6688      return Redeclaration;
6689    }
6690
6691    Previous.clear();
6692    Previous.addDecl(OldDecl);
6693
6694    if (FunctionTemplateDecl *OldTemplateDecl
6695                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6696      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6697      FunctionTemplateDecl *NewTemplateDecl
6698        = NewFD->getDescribedFunctionTemplate();
6699      assert(NewTemplateDecl && "Template/non-template mismatch");
6700      if (CXXMethodDecl *Method
6701            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6702        Method->setAccess(OldTemplateDecl->getAccess());
6703        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6704      }
6705
6706      // If this is an explicit specialization of a member that is a function
6707      // template, mark it as a member specialization.
6708      if (IsExplicitSpecialization &&
6709          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6710        NewTemplateDecl->setMemberSpecialization();
6711        assert(OldTemplateDecl->isMemberSpecialization());
6712      }
6713
6714    } else {
6715      // This needs to happen first so that 'inline' propagates.
6716      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6717
6718      if (isa<CXXMethodDecl>(NewFD)) {
6719        // A valid redeclaration of a C++ method must be out-of-line,
6720        // but (unfortunately) it's not necessarily a definition
6721        // because of templates, which means that the previous
6722        // declaration is not necessarily from the class definition.
6723
6724        // For just setting the access, that doesn't matter.
6725        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6726        NewFD->setAccess(oldMethod->getAccess());
6727
6728        // Update the key-function state if necessary for this ABI.
6729        if (NewFD->isInlined() &&
6730            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6731          // setNonKeyFunction needs to work with the original
6732          // declaration from the class definition, and isVirtual() is
6733          // just faster in that case, so map back to that now.
6734          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6735          if (oldMethod->isVirtual()) {
6736            Context.setNonKeyFunction(oldMethod);
6737          }
6738        }
6739      }
6740    }
6741  }
6742
6743  // Semantic checking for this function declaration (in isolation).
6744  if (getLangOpts().CPlusPlus) {
6745    // C++-specific checks.
6746    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6747      CheckConstructor(Constructor);
6748    } else if (CXXDestructorDecl *Destructor =
6749                dyn_cast<CXXDestructorDecl>(NewFD)) {
6750      CXXRecordDecl *Record = Destructor->getParent();
6751      QualType ClassType = Context.getTypeDeclType(Record);
6752
6753      // FIXME: Shouldn't we be able to perform this check even when the class
6754      // type is dependent? Both gcc and edg can handle that.
6755      if (!ClassType->isDependentType()) {
6756        DeclarationName Name
6757          = Context.DeclarationNames.getCXXDestructorName(
6758                                        Context.getCanonicalType(ClassType));
6759        if (NewFD->getDeclName() != Name) {
6760          Diag(NewFD->getLocation(), diag::err_destructor_name);
6761          NewFD->setInvalidDecl();
6762          return Redeclaration;
6763        }
6764      }
6765    } else if (CXXConversionDecl *Conversion
6766               = dyn_cast<CXXConversionDecl>(NewFD)) {
6767      ActOnConversionDeclarator(Conversion);
6768    }
6769
6770    // Find any virtual functions that this function overrides.
6771    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6772      if (!Method->isFunctionTemplateSpecialization() &&
6773          !Method->getDescribedFunctionTemplate() &&
6774          Method->isCanonicalDecl()) {
6775        if (AddOverriddenMethods(Method->getParent(), Method)) {
6776          // If the function was marked as "static", we have a problem.
6777          if (NewFD->getStorageClass() == SC_Static) {
6778            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6779          }
6780        }
6781      }
6782
6783      if (Method->isStatic())
6784        checkThisInStaticMemberFunctionType(Method);
6785    }
6786
6787    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6788    if (NewFD->isOverloadedOperator() &&
6789        CheckOverloadedOperatorDeclaration(NewFD)) {
6790      NewFD->setInvalidDecl();
6791      return Redeclaration;
6792    }
6793
6794    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6795    if (NewFD->getLiteralIdentifier() &&
6796        CheckLiteralOperatorDeclaration(NewFD)) {
6797      NewFD->setInvalidDecl();
6798      return Redeclaration;
6799    }
6800
6801    // In C++, check default arguments now that we have merged decls. Unless
6802    // the lexical context is the class, because in this case this is done
6803    // during delayed parsing anyway.
6804    if (!CurContext->isRecord())
6805      CheckCXXDefaultArguments(NewFD);
6806
6807    // If this function declares a builtin function, check the type of this
6808    // declaration against the expected type for the builtin.
6809    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6810      ASTContext::GetBuiltinTypeError Error;
6811      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6812      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6813      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6814        // The type of this function differs from the type of the builtin,
6815        // so forget about the builtin entirely.
6816        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6817      }
6818    }
6819
6820    // If this function is declared as being extern "C", then check to see if
6821    // the function returns a UDT (class, struct, or union type) that is not C
6822    // compatible, and if it does, warn the user.
6823    // But, issue any diagnostic on the first declaration only.
6824    if (NewFD->isExternC() && Previous.empty()) {
6825      QualType R = NewFD->getResultType();
6826      if (R->isIncompleteType() && !R->isVoidType())
6827        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6828            << NewFD << R;
6829      else if (!R.isPODType(Context) && !R->isVoidType() &&
6830               !R->isObjCObjectPointerType())
6831        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6832    }
6833  }
6834  return Redeclaration;
6835}
6836
6837static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6838  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6839  if (!TSI)
6840    return SourceRange();
6841
6842  TypeLoc TL = TSI->getTypeLoc();
6843  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6844  if (!FunctionTL)
6845    return SourceRange();
6846
6847  TypeLoc ResultTL = FunctionTL.getResultLoc();
6848  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6849    return ResultTL.getSourceRange();
6850
6851  return SourceRange();
6852}
6853
6854void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6855  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6856  //   static or constexpr is ill-formed.
6857  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6858  //   appear in a declaration of main.
6859  // static main is not an error under C99, but we should warn about it.
6860  // We accept _Noreturn main as an extension.
6861  if (FD->getStorageClass() == SC_Static)
6862    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6863         ? diag::err_static_main : diag::warn_static_main)
6864      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6865  if (FD->isInlineSpecified())
6866    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6867      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6868  if (DS.isNoreturnSpecified()) {
6869    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6870    SourceRange NoreturnRange(NoreturnLoc,
6871                              PP.getLocForEndOfToken(NoreturnLoc));
6872    Diag(NoreturnLoc, diag::ext_noreturn_main);
6873    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6874      << FixItHint::CreateRemoval(NoreturnRange);
6875  }
6876  if (FD->isConstexpr()) {
6877    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6878      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6879    FD->setConstexpr(false);
6880  }
6881
6882  QualType T = FD->getType();
6883  assert(T->isFunctionType() && "function decl is not of function type");
6884  const FunctionType* FT = T->castAs<FunctionType>();
6885
6886  // All the standards say that main() should should return 'int'.
6887  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6888    // In C and C++, main magically returns 0 if you fall off the end;
6889    // set the flag which tells us that.
6890    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6891    FD->setHasImplicitReturnZero(true);
6892
6893  // In C with GNU extensions we allow main() to have non-integer return
6894  // type, but we should warn about the extension, and we disable the
6895  // implicit-return-zero rule.
6896  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6897    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6898
6899    SourceRange ResultRange = getResultSourceRange(FD);
6900    if (ResultRange.isValid())
6901      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6902          << FixItHint::CreateReplacement(ResultRange, "int");
6903
6904  // Otherwise, this is just a flat-out error.
6905  } else {
6906    SourceRange ResultRange = getResultSourceRange(FD);
6907    if (ResultRange.isValid())
6908      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6909          << FixItHint::CreateReplacement(ResultRange, "int");
6910    else
6911      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6912
6913    FD->setInvalidDecl(true);
6914  }
6915
6916  // Treat protoless main() as nullary.
6917  if (isa<FunctionNoProtoType>(FT)) return;
6918
6919  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6920  unsigned nparams = FTP->getNumArgs();
6921  assert(FD->getNumParams() == nparams);
6922
6923  bool HasExtraParameters = (nparams > 3);
6924
6925  // Darwin passes an undocumented fourth argument of type char**.  If
6926  // other platforms start sprouting these, the logic below will start
6927  // getting shifty.
6928  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6929    HasExtraParameters = false;
6930
6931  if (HasExtraParameters) {
6932    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6933    FD->setInvalidDecl(true);
6934    nparams = 3;
6935  }
6936
6937  // FIXME: a lot of the following diagnostics would be improved
6938  // if we had some location information about types.
6939
6940  QualType CharPP =
6941    Context.getPointerType(Context.getPointerType(Context.CharTy));
6942  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6943
6944  for (unsigned i = 0; i < nparams; ++i) {
6945    QualType AT = FTP->getArgType(i);
6946
6947    bool mismatch = true;
6948
6949    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6950      mismatch = false;
6951    else if (Expected[i] == CharPP) {
6952      // As an extension, the following forms are okay:
6953      //   char const **
6954      //   char const * const *
6955      //   char * const *
6956
6957      QualifierCollector qs;
6958      const PointerType* PT;
6959      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6960          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6961          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6962                              Context.CharTy)) {
6963        qs.removeConst();
6964        mismatch = !qs.empty();
6965      }
6966    }
6967
6968    if (mismatch) {
6969      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6970      // TODO: suggest replacing given type with expected type
6971      FD->setInvalidDecl(true);
6972    }
6973  }
6974
6975  if (nparams == 1 && !FD->isInvalidDecl()) {
6976    Diag(FD->getLocation(), diag::warn_main_one_arg);
6977  }
6978
6979  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6980    Diag(FD->getLocation(), diag::err_main_template_decl);
6981    FD->setInvalidDecl();
6982  }
6983}
6984
6985bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6986  // FIXME: Need strict checking.  In C89, we need to check for
6987  // any assignment, increment, decrement, function-calls, or
6988  // commas outside of a sizeof.  In C99, it's the same list,
6989  // except that the aforementioned are allowed in unevaluated
6990  // expressions.  Everything else falls under the
6991  // "may accept other forms of constant expressions" exception.
6992  // (We never end up here for C++, so the constant expression
6993  // rules there don't matter.)
6994  if (Init->isConstantInitializer(Context, false))
6995    return false;
6996  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6997    << Init->getSourceRange();
6998  return true;
6999}
7000
7001namespace {
7002  // Visits an initialization expression to see if OrigDecl is evaluated in
7003  // its own initialization and throws a warning if it does.
7004  class SelfReferenceChecker
7005      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7006    Sema &S;
7007    Decl *OrigDecl;
7008    bool isRecordType;
7009    bool isPODType;
7010    bool isReferenceType;
7011
7012  public:
7013    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7014
7015    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7016                                                    S(S), OrigDecl(OrigDecl) {
7017      isPODType = false;
7018      isRecordType = false;
7019      isReferenceType = false;
7020      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7021        isPODType = VD->getType().isPODType(S.Context);
7022        isRecordType = VD->getType()->isRecordType();
7023        isReferenceType = VD->getType()->isReferenceType();
7024      }
7025    }
7026
7027    // For most expressions, the cast is directly above the DeclRefExpr.
7028    // For conditional operators, the cast can be outside the conditional
7029    // operator if both expressions are DeclRefExpr's.
7030    void HandleValue(Expr *E) {
7031      if (isReferenceType)
7032        return;
7033      E = E->IgnoreParenImpCasts();
7034      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7035        HandleDeclRefExpr(DRE);
7036        return;
7037      }
7038
7039      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7040        HandleValue(CO->getTrueExpr());
7041        HandleValue(CO->getFalseExpr());
7042        return;
7043      }
7044
7045      if (isa<MemberExpr>(E)) {
7046        Expr *Base = E->IgnoreParenImpCasts();
7047        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7048          // Check for static member variables and don't warn on them.
7049          if (!isa<FieldDecl>(ME->getMemberDecl()))
7050            return;
7051          Base = ME->getBase()->IgnoreParenImpCasts();
7052        }
7053        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7054          HandleDeclRefExpr(DRE);
7055        return;
7056      }
7057    }
7058
7059    // Reference types are handled here since all uses of references are
7060    // bad, not just r-value uses.
7061    void VisitDeclRefExpr(DeclRefExpr *E) {
7062      if (isReferenceType)
7063        HandleDeclRefExpr(E);
7064    }
7065
7066    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7067      if (E->getCastKind() == CK_LValueToRValue ||
7068          (isRecordType && E->getCastKind() == CK_NoOp))
7069        HandleValue(E->getSubExpr());
7070
7071      Inherited::VisitImplicitCastExpr(E);
7072    }
7073
7074    void VisitMemberExpr(MemberExpr *E) {
7075      // Don't warn on arrays since they can be treated as pointers.
7076      if (E->getType()->canDecayToPointerType()) return;
7077
7078      // Warn when a non-static method call is followed by non-static member
7079      // field accesses, which is followed by a DeclRefExpr.
7080      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7081      bool Warn = (MD && !MD->isStatic());
7082      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7083      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7084        if (!isa<FieldDecl>(ME->getMemberDecl()))
7085          Warn = false;
7086        Base = ME->getBase()->IgnoreParenImpCasts();
7087      }
7088
7089      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7090        if (Warn)
7091          HandleDeclRefExpr(DRE);
7092        return;
7093      }
7094
7095      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7096      // Visit that expression.
7097      Visit(Base);
7098    }
7099
7100    void VisitUnaryOperator(UnaryOperator *E) {
7101      // For POD record types, addresses of its own members are well-defined.
7102      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7103          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7104        if (!isPODType)
7105          HandleValue(E->getSubExpr());
7106        return;
7107      }
7108      Inherited::VisitUnaryOperator(E);
7109    }
7110
7111    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7112
7113    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7114      Decl* ReferenceDecl = DRE->getDecl();
7115      if (OrigDecl != ReferenceDecl) return;
7116      unsigned diag;
7117      if (isReferenceType) {
7118        diag = diag::warn_uninit_self_reference_in_reference_init;
7119      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7120        diag = diag::warn_static_self_reference_in_init;
7121      } else {
7122        diag = diag::warn_uninit_self_reference_in_init;
7123      }
7124
7125      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7126                            S.PDiag(diag)
7127                              << DRE->getNameInfo().getName()
7128                              << OrigDecl->getLocation()
7129                              << DRE->getSourceRange());
7130    }
7131  };
7132
7133  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7134  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7135                                 bool DirectInit) {
7136    // Parameters arguments are occassionially constructed with itself,
7137    // for instance, in recursive functions.  Skip them.
7138    if (isa<ParmVarDecl>(OrigDecl))
7139      return;
7140
7141    E = E->IgnoreParens();
7142
7143    // Skip checking T a = a where T is not a record or reference type.
7144    // Doing so is a way to silence uninitialized warnings.
7145    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7146      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7147        if (ICE->getCastKind() == CK_LValueToRValue)
7148          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7149            if (DRE->getDecl() == OrigDecl)
7150              return;
7151
7152    SelfReferenceChecker(S, OrigDecl).Visit(E);
7153  }
7154}
7155
7156/// AddInitializerToDecl - Adds the initializer Init to the
7157/// declaration dcl. If DirectInit is true, this is C++ direct
7158/// initialization rather than copy initialization.
7159void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7160                                bool DirectInit, bool TypeMayContainAuto) {
7161  // If there is no declaration, there was an error parsing it.  Just ignore
7162  // the initializer.
7163  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7164    return;
7165
7166  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7167    // With declarators parsed the way they are, the parser cannot
7168    // distinguish between a normal initializer and a pure-specifier.
7169    // Thus this grotesque test.
7170    IntegerLiteral *IL;
7171    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7172        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7173      CheckPureMethod(Method, Init->getSourceRange());
7174    else {
7175      Diag(Method->getLocation(), diag::err_member_function_initialization)
7176        << Method->getDeclName() << Init->getSourceRange();
7177      Method->setInvalidDecl();
7178    }
7179    return;
7180  }
7181
7182  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7183  if (!VDecl) {
7184    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7185    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7186    RealDecl->setInvalidDecl();
7187    return;
7188  }
7189
7190  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7191
7192  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7193  AutoType *Auto = 0;
7194  if (TypeMayContainAuto &&
7195      (Auto = VDecl->getType()->getContainedAutoType()) &&
7196      !Auto->isDeduced()) {
7197    Expr *DeduceInit = Init;
7198    // Initializer could be a C++ direct-initializer. Deduction only works if it
7199    // contains exactly one expression.
7200    if (CXXDirectInit) {
7201      if (CXXDirectInit->getNumExprs() == 0) {
7202        // It isn't possible to write this directly, but it is possible to
7203        // end up in this situation with "auto x(some_pack...);"
7204        Diag(CXXDirectInit->getLocStart(),
7205             diag::err_auto_var_init_no_expression)
7206          << VDecl->getDeclName() << VDecl->getType()
7207          << VDecl->getSourceRange();
7208        RealDecl->setInvalidDecl();
7209        return;
7210      } else if (CXXDirectInit->getNumExprs() > 1) {
7211        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7212             diag::err_auto_var_init_multiple_expressions)
7213          << VDecl->getDeclName() << VDecl->getType()
7214          << VDecl->getSourceRange();
7215        RealDecl->setInvalidDecl();
7216        return;
7217      } else {
7218        DeduceInit = CXXDirectInit->getExpr(0);
7219      }
7220    }
7221
7222    // Expressions default to 'id' when we're in a debugger.
7223    bool DefaultedToAuto = false;
7224    if (getLangOpts().DebuggerCastResultToId &&
7225        Init->getType() == Context.UnknownAnyTy) {
7226      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7227      if (Result.isInvalid()) {
7228        VDecl->setInvalidDecl();
7229        return;
7230      }
7231      Init = Result.take();
7232      DefaultedToAuto = true;
7233    }
7234
7235    TypeSourceInfo *DeducedType = 0;
7236    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7237            DAR_Failed)
7238      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7239    if (!DeducedType) {
7240      RealDecl->setInvalidDecl();
7241      return;
7242    }
7243    VDecl->setTypeSourceInfo(DeducedType);
7244    VDecl->setType(DeducedType->getType());
7245    assert(VDecl->isLinkageValid());
7246
7247    // In ARC, infer lifetime.
7248    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7249      VDecl->setInvalidDecl();
7250
7251    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7252    // 'id' instead of a specific object type prevents most of our usual checks.
7253    // We only want to warn outside of template instantiations, though:
7254    // inside a template, the 'id' could have come from a parameter.
7255    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7256        DeducedType->getType()->isObjCIdType()) {
7257      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7258      Diag(Loc, diag::warn_auto_var_is_id)
7259        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7260    }
7261
7262    // If this is a redeclaration, check that the type we just deduced matches
7263    // the previously declared type.
7264    if (VarDecl *Old = VDecl->getPreviousDecl())
7265      MergeVarDeclTypes(VDecl, Old);
7266  }
7267
7268  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7269    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7270    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7271    VDecl->setInvalidDecl();
7272    return;
7273  }
7274
7275  if (!VDecl->getType()->isDependentType()) {
7276    // A definition must end up with a complete type, which means it must be
7277    // complete with the restriction that an array type might be completed by
7278    // the initializer; note that later code assumes this restriction.
7279    QualType BaseDeclType = VDecl->getType();
7280    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7281      BaseDeclType = Array->getElementType();
7282    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7283                            diag::err_typecheck_decl_incomplete_type)) {
7284      RealDecl->setInvalidDecl();
7285      return;
7286    }
7287
7288    // The variable can not have an abstract class type.
7289    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7290                               diag::err_abstract_type_in_decl,
7291                               AbstractVariableType))
7292      VDecl->setInvalidDecl();
7293  }
7294
7295  const VarDecl *Def;
7296  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7297    Diag(VDecl->getLocation(), diag::err_redefinition)
7298      << VDecl->getDeclName();
7299    Diag(Def->getLocation(), diag::note_previous_definition);
7300    VDecl->setInvalidDecl();
7301    return;
7302  }
7303
7304  const VarDecl* PrevInit = 0;
7305  if (getLangOpts().CPlusPlus) {
7306    // C++ [class.static.data]p4
7307    //   If a static data member is of const integral or const
7308    //   enumeration type, its declaration in the class definition can
7309    //   specify a constant-initializer which shall be an integral
7310    //   constant expression (5.19). In that case, the member can appear
7311    //   in integral constant expressions. The member shall still be
7312    //   defined in a namespace scope if it is used in the program and the
7313    //   namespace scope definition shall not contain an initializer.
7314    //
7315    // We already performed a redefinition check above, but for static
7316    // data members we also need to check whether there was an in-class
7317    // declaration with an initializer.
7318    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7319      Diag(VDecl->getLocation(), diag::err_redefinition)
7320        << VDecl->getDeclName();
7321      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7322      return;
7323    }
7324
7325    if (VDecl->hasLocalStorage())
7326      getCurFunction()->setHasBranchProtectedScope();
7327
7328    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7329      VDecl->setInvalidDecl();
7330      return;
7331    }
7332  }
7333
7334  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7335  // a kernel function cannot be initialized."
7336  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7337    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7338    VDecl->setInvalidDecl();
7339    return;
7340  }
7341
7342  // Get the decls type and save a reference for later, since
7343  // CheckInitializerTypes may change it.
7344  QualType DclT = VDecl->getType(), SavT = DclT;
7345
7346  // Expressions default to 'id' when we're in a debugger
7347  // and we are assigning it to a variable of Objective-C pointer type.
7348  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7349      Init->getType() == Context.UnknownAnyTy) {
7350    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7351    if (Result.isInvalid()) {
7352      VDecl->setInvalidDecl();
7353      return;
7354    }
7355    Init = Result.take();
7356  }
7357
7358  // Perform the initialization.
7359  if (!VDecl->isInvalidDecl()) {
7360    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7361    InitializationKind Kind
7362      = DirectInit ?
7363          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7364                                                           Init->getLocStart(),
7365                                                           Init->getLocEnd())
7366                        : InitializationKind::CreateDirectList(
7367                                                          VDecl->getLocation())
7368                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7369                                                    Init->getLocStart());
7370
7371    Expr **Args = &Init;
7372    unsigned NumArgs = 1;
7373    if (CXXDirectInit) {
7374      Args = CXXDirectInit->getExprs();
7375      NumArgs = CXXDirectInit->getNumExprs();
7376    }
7377    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7378    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7379                                        MultiExprArg(Args, NumArgs), &DclT);
7380    if (Result.isInvalid()) {
7381      VDecl->setInvalidDecl();
7382      return;
7383    }
7384
7385    Init = Result.takeAs<Expr>();
7386  }
7387
7388  // Check for self-references within variable initializers.
7389  // Variables declared within a function/method body (except for references)
7390  // are handled by a dataflow analysis.
7391  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7392      VDecl->getType()->isReferenceType()) {
7393    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7394  }
7395
7396  // If the type changed, it means we had an incomplete type that was
7397  // completed by the initializer. For example:
7398  //   int ary[] = { 1, 3, 5 };
7399  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7400  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7401    VDecl->setType(DclT);
7402
7403  if (!VDecl->isInvalidDecl()) {
7404    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7405
7406    if (VDecl->hasAttr<BlocksAttr>())
7407      checkRetainCycles(VDecl, Init);
7408
7409    // It is safe to assign a weak reference into a strong variable.
7410    // Although this code can still have problems:
7411    //   id x = self.weakProp;
7412    //   id y = self.weakProp;
7413    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7414    // paths through the function. This should be revisited if
7415    // -Wrepeated-use-of-weak is made flow-sensitive.
7416    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7417      DiagnosticsEngine::Level Level =
7418        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7419                                 Init->getLocStart());
7420      if (Level != DiagnosticsEngine::Ignored)
7421        getCurFunction()->markSafeWeakUse(Init);
7422    }
7423  }
7424
7425  // The initialization is usually a full-expression.
7426  //
7427  // FIXME: If this is a braced initialization of an aggregate, it is not
7428  // an expression, and each individual field initializer is a separate
7429  // full-expression. For instance, in:
7430  //
7431  //   struct Temp { ~Temp(); };
7432  //   struct S { S(Temp); };
7433  //   struct T { S a, b; } t = { Temp(), Temp() }
7434  //
7435  // we should destroy the first Temp before constructing the second.
7436  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7437                                          false,
7438                                          VDecl->isConstexpr());
7439  if (Result.isInvalid()) {
7440    VDecl->setInvalidDecl();
7441    return;
7442  }
7443  Init = Result.take();
7444
7445  // Attach the initializer to the decl.
7446  VDecl->setInit(Init);
7447
7448  if (VDecl->isLocalVarDecl()) {
7449    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7450    // static storage duration shall be constant expressions or string literals.
7451    // C++ does not have this restriction.
7452    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7453        VDecl->getStorageClass() == SC_Static)
7454      CheckForConstantInitializer(Init, DclT);
7455  } else if (VDecl->isStaticDataMember() &&
7456             VDecl->getLexicalDeclContext()->isRecord()) {
7457    // This is an in-class initialization for a static data member, e.g.,
7458    //
7459    // struct S {
7460    //   static const int value = 17;
7461    // };
7462
7463    // C++ [class.mem]p4:
7464    //   A member-declarator can contain a constant-initializer only
7465    //   if it declares a static member (9.4) of const integral or
7466    //   const enumeration type, see 9.4.2.
7467    //
7468    // C++11 [class.static.data]p3:
7469    //   If a non-volatile const static data member is of integral or
7470    //   enumeration type, its declaration in the class definition can
7471    //   specify a brace-or-equal-initializer in which every initalizer-clause
7472    //   that is an assignment-expression is a constant expression. A static
7473    //   data member of literal type can be declared in the class definition
7474    //   with the constexpr specifier; if so, its declaration shall specify a
7475    //   brace-or-equal-initializer in which every initializer-clause that is
7476    //   an assignment-expression is a constant expression.
7477
7478    // Do nothing on dependent types.
7479    if (DclT->isDependentType()) {
7480
7481    // Allow any 'static constexpr' members, whether or not they are of literal
7482    // type. We separately check that every constexpr variable is of literal
7483    // type.
7484    } else if (VDecl->isConstexpr()) {
7485
7486    // Require constness.
7487    } else if (!DclT.isConstQualified()) {
7488      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7489        << Init->getSourceRange();
7490      VDecl->setInvalidDecl();
7491
7492    // We allow integer constant expressions in all cases.
7493    } else if (DclT->isIntegralOrEnumerationType()) {
7494      // Check whether the expression is a constant expression.
7495      SourceLocation Loc;
7496      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7497        // In C++11, a non-constexpr const static data member with an
7498        // in-class initializer cannot be volatile.
7499        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7500      else if (Init->isValueDependent())
7501        ; // Nothing to check.
7502      else if (Init->isIntegerConstantExpr(Context, &Loc))
7503        ; // Ok, it's an ICE!
7504      else if (Init->isEvaluatable(Context)) {
7505        // If we can constant fold the initializer through heroics, accept it,
7506        // but report this as a use of an extension for -pedantic.
7507        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7508          << Init->getSourceRange();
7509      } else {
7510        // Otherwise, this is some crazy unknown case.  Report the issue at the
7511        // location provided by the isIntegerConstantExpr failed check.
7512        Diag(Loc, diag::err_in_class_initializer_non_constant)
7513          << Init->getSourceRange();
7514        VDecl->setInvalidDecl();
7515      }
7516
7517    // We allow foldable floating-point constants as an extension.
7518    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7519      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7520      // it anyway and provide a fixit to add the 'constexpr'.
7521      if (getLangOpts().CPlusPlus11) {
7522        Diag(VDecl->getLocation(),
7523             diag::ext_in_class_initializer_float_type_cxx11)
7524            << DclT << Init->getSourceRange();
7525        Diag(VDecl->getLocStart(),
7526             diag::note_in_class_initializer_float_type_cxx11)
7527            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7528      } else {
7529        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7530          << DclT << Init->getSourceRange();
7531
7532        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7533          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7534            << Init->getSourceRange();
7535          VDecl->setInvalidDecl();
7536        }
7537      }
7538
7539    // Suggest adding 'constexpr' in C++11 for literal types.
7540    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7541      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7542        << DclT << Init->getSourceRange()
7543        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7544      VDecl->setConstexpr(true);
7545
7546    } else {
7547      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7548        << DclT << Init->getSourceRange();
7549      VDecl->setInvalidDecl();
7550    }
7551  } else if (VDecl->isFileVarDecl()) {
7552    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7553        (!getLangOpts().CPlusPlus ||
7554         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7555      Diag(VDecl->getLocation(), diag::warn_extern_init);
7556
7557    // C99 6.7.8p4. All file scoped initializers need to be constant.
7558    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7559      CheckForConstantInitializer(Init, DclT);
7560  }
7561
7562  // We will represent direct-initialization similarly to copy-initialization:
7563  //    int x(1);  -as-> int x = 1;
7564  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7565  //
7566  // Clients that want to distinguish between the two forms, can check for
7567  // direct initializer using VarDecl::getInitStyle().
7568  // A major benefit is that clients that don't particularly care about which
7569  // exactly form was it (like the CodeGen) can handle both cases without
7570  // special case code.
7571
7572  // C++ 8.5p11:
7573  // The form of initialization (using parentheses or '=') is generally
7574  // insignificant, but does matter when the entity being initialized has a
7575  // class type.
7576  if (CXXDirectInit) {
7577    assert(DirectInit && "Call-style initializer must be direct init.");
7578    VDecl->setInitStyle(VarDecl::CallInit);
7579  } else if (DirectInit) {
7580    // This must be list-initialization. No other way is direct-initialization.
7581    VDecl->setInitStyle(VarDecl::ListInit);
7582  }
7583
7584  CheckCompleteVariableDeclaration(VDecl);
7585}
7586
7587/// ActOnInitializerError - Given that there was an error parsing an
7588/// initializer for the given declaration, try to return to some form
7589/// of sanity.
7590void Sema::ActOnInitializerError(Decl *D) {
7591  // Our main concern here is re-establishing invariants like "a
7592  // variable's type is either dependent or complete".
7593  if (!D || D->isInvalidDecl()) return;
7594
7595  VarDecl *VD = dyn_cast<VarDecl>(D);
7596  if (!VD) return;
7597
7598  // Auto types are meaningless if we can't make sense of the initializer.
7599  if (ParsingInitForAutoVars.count(D)) {
7600    D->setInvalidDecl();
7601    return;
7602  }
7603
7604  QualType Ty = VD->getType();
7605  if (Ty->isDependentType()) return;
7606
7607  // Require a complete type.
7608  if (RequireCompleteType(VD->getLocation(),
7609                          Context.getBaseElementType(Ty),
7610                          diag::err_typecheck_decl_incomplete_type)) {
7611    VD->setInvalidDecl();
7612    return;
7613  }
7614
7615  // Require an abstract type.
7616  if (RequireNonAbstractType(VD->getLocation(), Ty,
7617                             diag::err_abstract_type_in_decl,
7618                             AbstractVariableType)) {
7619    VD->setInvalidDecl();
7620    return;
7621  }
7622
7623  // Don't bother complaining about constructors or destructors,
7624  // though.
7625}
7626
7627void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7628                                  bool TypeMayContainAuto) {
7629  // If there is no declaration, there was an error parsing it. Just ignore it.
7630  if (RealDecl == 0)
7631    return;
7632
7633  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7634    QualType Type = Var->getType();
7635
7636    // C++11 [dcl.spec.auto]p3
7637    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7638      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7639        << Var->getDeclName() << Type;
7640      Var->setInvalidDecl();
7641      return;
7642    }
7643
7644    // C++11 [class.static.data]p3: A static data member can be declared with
7645    // the constexpr specifier; if so, its declaration shall specify
7646    // a brace-or-equal-initializer.
7647    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7648    // the definition of a variable [...] or the declaration of a static data
7649    // member.
7650    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7651      if (Var->isStaticDataMember())
7652        Diag(Var->getLocation(),
7653             diag::err_constexpr_static_mem_var_requires_init)
7654          << Var->getDeclName();
7655      else
7656        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7657      Var->setInvalidDecl();
7658      return;
7659    }
7660
7661    switch (Var->isThisDeclarationADefinition()) {
7662    case VarDecl::Definition:
7663      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7664        break;
7665
7666      // We have an out-of-line definition of a static data member
7667      // that has an in-class initializer, so we type-check this like
7668      // a declaration.
7669      //
7670      // Fall through
7671
7672    case VarDecl::DeclarationOnly:
7673      // It's only a declaration.
7674
7675      // Block scope. C99 6.7p7: If an identifier for an object is
7676      // declared with no linkage (C99 6.2.2p6), the type for the
7677      // object shall be complete.
7678      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7679          !Var->getLinkage() && !Var->isInvalidDecl() &&
7680          RequireCompleteType(Var->getLocation(), Type,
7681                              diag::err_typecheck_decl_incomplete_type))
7682        Var->setInvalidDecl();
7683
7684      // Make sure that the type is not abstract.
7685      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7686          RequireNonAbstractType(Var->getLocation(), Type,
7687                                 diag::err_abstract_type_in_decl,
7688                                 AbstractVariableType))
7689        Var->setInvalidDecl();
7690      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7691          Var->getStorageClass() == SC_PrivateExtern) {
7692        Diag(Var->getLocation(), diag::warn_private_extern);
7693        Diag(Var->getLocation(), diag::note_private_extern);
7694      }
7695
7696      return;
7697
7698    case VarDecl::TentativeDefinition:
7699      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7700      // object that has file scope without an initializer, and without a
7701      // storage-class specifier or with the storage-class specifier "static",
7702      // constitutes a tentative definition. Note: A tentative definition with
7703      // external linkage is valid (C99 6.2.2p5).
7704      if (!Var->isInvalidDecl()) {
7705        if (const IncompleteArrayType *ArrayT
7706                                    = Context.getAsIncompleteArrayType(Type)) {
7707          if (RequireCompleteType(Var->getLocation(),
7708                                  ArrayT->getElementType(),
7709                                  diag::err_illegal_decl_array_incomplete_type))
7710            Var->setInvalidDecl();
7711        } else if (Var->getStorageClass() == SC_Static) {
7712          // C99 6.9.2p3: If the declaration of an identifier for an object is
7713          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7714          // declared type shall not be an incomplete type.
7715          // NOTE: code such as the following
7716          //     static struct s;
7717          //     struct s { int a; };
7718          // is accepted by gcc. Hence here we issue a warning instead of
7719          // an error and we do not invalidate the static declaration.
7720          // NOTE: to avoid multiple warnings, only check the first declaration.
7721          if (Var->getPreviousDecl() == 0)
7722            RequireCompleteType(Var->getLocation(), Type,
7723                                diag::ext_typecheck_decl_incomplete_type);
7724        }
7725      }
7726
7727      // Record the tentative definition; we're done.
7728      if (!Var->isInvalidDecl())
7729        TentativeDefinitions.push_back(Var);
7730      return;
7731    }
7732
7733    // Provide a specific diagnostic for uninitialized variable
7734    // definitions with incomplete array type.
7735    if (Type->isIncompleteArrayType()) {
7736      Diag(Var->getLocation(),
7737           diag::err_typecheck_incomplete_array_needs_initializer);
7738      Var->setInvalidDecl();
7739      return;
7740    }
7741
7742    // Provide a specific diagnostic for uninitialized variable
7743    // definitions with reference type.
7744    if (Type->isReferenceType()) {
7745      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7746        << Var->getDeclName()
7747        << SourceRange(Var->getLocation(), Var->getLocation());
7748      Var->setInvalidDecl();
7749      return;
7750    }
7751
7752    // Do not attempt to type-check the default initializer for a
7753    // variable with dependent type.
7754    if (Type->isDependentType())
7755      return;
7756
7757    if (Var->isInvalidDecl())
7758      return;
7759
7760    if (RequireCompleteType(Var->getLocation(),
7761                            Context.getBaseElementType(Type),
7762                            diag::err_typecheck_decl_incomplete_type)) {
7763      Var->setInvalidDecl();
7764      return;
7765    }
7766
7767    // The variable can not have an abstract class type.
7768    if (RequireNonAbstractType(Var->getLocation(), Type,
7769                               diag::err_abstract_type_in_decl,
7770                               AbstractVariableType)) {
7771      Var->setInvalidDecl();
7772      return;
7773    }
7774
7775    // Check for jumps past the implicit initializer.  C++0x
7776    // clarifies that this applies to a "variable with automatic
7777    // storage duration", not a "local variable".
7778    // C++11 [stmt.dcl]p3
7779    //   A program that jumps from a point where a variable with automatic
7780    //   storage duration is not in scope to a point where it is in scope is
7781    //   ill-formed unless the variable has scalar type, class type with a
7782    //   trivial default constructor and a trivial destructor, a cv-qualified
7783    //   version of one of these types, or an array of one of the preceding
7784    //   types and is declared without an initializer.
7785    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7786      if (const RecordType *Record
7787            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7788        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7789        // Mark the function for further checking even if the looser rules of
7790        // C++11 do not require such checks, so that we can diagnose
7791        // incompatibilities with C++98.
7792        if (!CXXRecord->isPOD())
7793          getCurFunction()->setHasBranchProtectedScope();
7794      }
7795    }
7796
7797    // C++03 [dcl.init]p9:
7798    //   If no initializer is specified for an object, and the
7799    //   object is of (possibly cv-qualified) non-POD class type (or
7800    //   array thereof), the object shall be default-initialized; if
7801    //   the object is of const-qualified type, the underlying class
7802    //   type shall have a user-declared default
7803    //   constructor. Otherwise, if no initializer is specified for
7804    //   a non- static object, the object and its subobjects, if
7805    //   any, have an indeterminate initial value); if the object
7806    //   or any of its subobjects are of const-qualified type, the
7807    //   program is ill-formed.
7808    // C++0x [dcl.init]p11:
7809    //   If no initializer is specified for an object, the object is
7810    //   default-initialized; [...].
7811    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7812    InitializationKind Kind
7813      = InitializationKind::CreateDefault(Var->getLocation());
7814
7815    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7816    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7817    if (Init.isInvalid())
7818      Var->setInvalidDecl();
7819    else if (Init.get()) {
7820      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7821      // This is important for template substitution.
7822      Var->setInitStyle(VarDecl::CallInit);
7823    }
7824
7825    CheckCompleteVariableDeclaration(Var);
7826  }
7827}
7828
7829void Sema::ActOnCXXForRangeDecl(Decl *D) {
7830  VarDecl *VD = dyn_cast<VarDecl>(D);
7831  if (!VD) {
7832    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7833    D->setInvalidDecl();
7834    return;
7835  }
7836
7837  VD->setCXXForRangeDecl(true);
7838
7839  // for-range-declaration cannot be given a storage class specifier.
7840  int Error = -1;
7841  switch (VD->getStorageClassAsWritten()) {
7842  case SC_None:
7843    break;
7844  case SC_Extern:
7845    Error = 0;
7846    break;
7847  case SC_Static:
7848    Error = 1;
7849    break;
7850  case SC_PrivateExtern:
7851    Error = 2;
7852    break;
7853  case SC_Auto:
7854    Error = 3;
7855    break;
7856  case SC_Register:
7857    Error = 4;
7858    break;
7859  case SC_OpenCLWorkGroupLocal:
7860    llvm_unreachable("Unexpected storage class");
7861  }
7862  if (VD->isConstexpr())
7863    Error = 5;
7864  if (Error != -1) {
7865    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7866      << VD->getDeclName() << Error;
7867    D->setInvalidDecl();
7868  }
7869}
7870
7871void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7872  if (var->isInvalidDecl()) return;
7873
7874  // In ARC, don't allow jumps past the implicit initialization of a
7875  // local retaining variable.
7876  if (getLangOpts().ObjCAutoRefCount &&
7877      var->hasLocalStorage()) {
7878    switch (var->getType().getObjCLifetime()) {
7879    case Qualifiers::OCL_None:
7880    case Qualifiers::OCL_ExplicitNone:
7881    case Qualifiers::OCL_Autoreleasing:
7882      break;
7883
7884    case Qualifiers::OCL_Weak:
7885    case Qualifiers::OCL_Strong:
7886      getCurFunction()->setHasBranchProtectedScope();
7887      break;
7888    }
7889  }
7890
7891  if (var->isThisDeclarationADefinition() &&
7892      var->hasExternalLinkage() &&
7893      getDiagnostics().getDiagnosticLevel(
7894                       diag::warn_missing_variable_declarations,
7895                       var->getLocation())) {
7896    // Find a previous declaration that's not a definition.
7897    VarDecl *prev = var->getPreviousDecl();
7898    while (prev && prev->isThisDeclarationADefinition())
7899      prev = prev->getPreviousDecl();
7900
7901    if (!prev)
7902      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7903  }
7904
7905  // All the following checks are C++ only.
7906  if (!getLangOpts().CPlusPlus) return;
7907
7908  QualType type = var->getType();
7909  if (type->isDependentType()) return;
7910
7911  // __block variables might require us to capture a copy-initializer.
7912  if (var->hasAttr<BlocksAttr>()) {
7913    // It's currently invalid to ever have a __block variable with an
7914    // array type; should we diagnose that here?
7915
7916    // Regardless, we don't want to ignore array nesting when
7917    // constructing this copy.
7918    if (type->isStructureOrClassType()) {
7919      SourceLocation poi = var->getLocation();
7920      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7921      ExprResult result
7922        = PerformMoveOrCopyInitialization(
7923            InitializedEntity::InitializeBlock(poi, type, false),
7924            var, var->getType(), varRef, /*AllowNRVO=*/true);
7925      if (!result.isInvalid()) {
7926        result = MaybeCreateExprWithCleanups(result);
7927        Expr *init = result.takeAs<Expr>();
7928        Context.setBlockVarCopyInits(var, init);
7929      }
7930    }
7931  }
7932
7933  Expr *Init = var->getInit();
7934  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7935  QualType baseType = Context.getBaseElementType(type);
7936
7937  if (!var->getDeclContext()->isDependentContext() &&
7938      Init && !Init->isValueDependent()) {
7939    if (IsGlobal && !var->isConstexpr() &&
7940        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7941                                            var->getLocation())
7942          != DiagnosticsEngine::Ignored &&
7943        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7944      Diag(var->getLocation(), diag::warn_global_constructor)
7945        << Init->getSourceRange();
7946
7947    if (var->isConstexpr()) {
7948      SmallVector<PartialDiagnosticAt, 8> Notes;
7949      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7950        SourceLocation DiagLoc = var->getLocation();
7951        // If the note doesn't add any useful information other than a source
7952        // location, fold it into the primary diagnostic.
7953        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7954              diag::note_invalid_subexpr_in_const_expr) {
7955          DiagLoc = Notes[0].first;
7956          Notes.clear();
7957        }
7958        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7959          << var << Init->getSourceRange();
7960        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7961          Diag(Notes[I].first, Notes[I].second);
7962      }
7963    } else if (var->isUsableInConstantExpressions(Context)) {
7964      // Check whether the initializer of a const variable of integral or
7965      // enumeration type is an ICE now, since we can't tell whether it was
7966      // initialized by a constant expression if we check later.
7967      var->checkInitIsICE();
7968    }
7969  }
7970
7971  // Require the destructor.
7972  if (const RecordType *recordType = baseType->getAs<RecordType>())
7973    FinalizeVarWithDestructor(var, recordType);
7974}
7975
7976/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7977/// any semantic actions necessary after any initializer has been attached.
7978void
7979Sema::FinalizeDeclaration(Decl *ThisDecl) {
7980  // Note that we are no longer parsing the initializer for this declaration.
7981  ParsingInitForAutoVars.erase(ThisDecl);
7982
7983  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7984  if (!VD)
7985    return;
7986
7987  const DeclContext *DC = VD->getDeclContext();
7988  // If there's a #pragma GCC visibility in scope, and this isn't a class
7989  // member, set the visibility of this variable.
7990  if (!DC->isRecord() && VD->hasExternalLinkage())
7991    AddPushedVisibilityAttribute(VD);
7992
7993  if (VD->isFileVarDecl())
7994    MarkUnusedFileScopedDecl(VD);
7995
7996  // Now we have parsed the initializer and can update the table of magic
7997  // tag values.
7998  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7999      !VD->getType()->isIntegralOrEnumerationType())
8000    return;
8001
8002  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8003         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8004         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8005       I != E; ++I) {
8006    const Expr *MagicValueExpr = VD->getInit();
8007    if (!MagicValueExpr) {
8008      continue;
8009    }
8010    llvm::APSInt MagicValueInt;
8011    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8012      Diag(I->getRange().getBegin(),
8013           diag::err_type_tag_for_datatype_not_ice)
8014        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8015      continue;
8016    }
8017    if (MagicValueInt.getActiveBits() > 64) {
8018      Diag(I->getRange().getBegin(),
8019           diag::err_type_tag_for_datatype_too_large)
8020        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8021      continue;
8022    }
8023    uint64_t MagicValue = MagicValueInt.getZExtValue();
8024    RegisterTypeTagForDatatype(I->getArgumentKind(),
8025                               MagicValue,
8026                               I->getMatchingCType(),
8027                               I->getLayoutCompatible(),
8028                               I->getMustBeNull());
8029  }
8030}
8031
8032Sema::DeclGroupPtrTy
8033Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8034                              Decl **Group, unsigned NumDecls) {
8035  SmallVector<Decl*, 8> Decls;
8036
8037  if (DS.isTypeSpecOwned())
8038    Decls.push_back(DS.getRepAsDecl());
8039
8040  for (unsigned i = 0; i != NumDecls; ++i)
8041    if (Decl *D = Group[i])
8042      Decls.push_back(D);
8043
8044  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8045    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8046      getASTContext().addUnnamedTag(Tag);
8047
8048  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8049                              DS.getTypeSpecType() == DeclSpec::TST_auto);
8050}
8051
8052/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8053/// group, performing any necessary semantic checking.
8054Sema::DeclGroupPtrTy
8055Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8056                           bool TypeMayContainAuto) {
8057  // C++0x [dcl.spec.auto]p7:
8058  //   If the type deduced for the template parameter U is not the same in each
8059  //   deduction, the program is ill-formed.
8060  // FIXME: When initializer-list support is added, a distinction is needed
8061  // between the deduced type U and the deduced type which 'auto' stands for.
8062  //   auto a = 0, b = { 1, 2, 3 };
8063  // is legal because the deduced type U is 'int' in both cases.
8064  if (TypeMayContainAuto && NumDecls > 1) {
8065    QualType Deduced;
8066    CanQualType DeducedCanon;
8067    VarDecl *DeducedDecl = 0;
8068    for (unsigned i = 0; i != NumDecls; ++i) {
8069      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8070        AutoType *AT = D->getType()->getContainedAutoType();
8071        // Don't reissue diagnostics when instantiating a template.
8072        if (AT && D->isInvalidDecl())
8073          break;
8074        if (AT && AT->isDeduced()) {
8075          QualType U = AT->getDeducedType();
8076          CanQualType UCanon = Context.getCanonicalType(U);
8077          if (Deduced.isNull()) {
8078            Deduced = U;
8079            DeducedCanon = UCanon;
8080            DeducedDecl = D;
8081          } else if (DeducedCanon != UCanon) {
8082            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8083                 diag::err_auto_different_deductions)
8084              << Deduced << DeducedDecl->getDeclName()
8085              << U << D->getDeclName()
8086              << DeducedDecl->getInit()->getSourceRange()
8087              << D->getInit()->getSourceRange();
8088            D->setInvalidDecl();
8089            break;
8090          }
8091        }
8092      }
8093    }
8094  }
8095
8096  ActOnDocumentableDecls(Group, NumDecls);
8097
8098  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8099}
8100
8101void Sema::ActOnDocumentableDecl(Decl *D) {
8102  ActOnDocumentableDecls(&D, 1);
8103}
8104
8105void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8106  // Don't parse the comment if Doxygen diagnostics are ignored.
8107  if (NumDecls == 0 || !Group[0])
8108   return;
8109
8110  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8111                               Group[0]->getLocation())
8112        == DiagnosticsEngine::Ignored)
8113    return;
8114
8115  if (NumDecls >= 2) {
8116    // This is a decl group.  Normally it will contain only declarations
8117    // procuded from declarator list.  But in case we have any definitions or
8118    // additional declaration references:
8119    //   'typedef struct S {} S;'
8120    //   'typedef struct S *S;'
8121    //   'struct S *pS;'
8122    // FinalizeDeclaratorGroup adds these as separate declarations.
8123    Decl *MaybeTagDecl = Group[0];
8124    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8125      Group++;
8126      NumDecls--;
8127    }
8128  }
8129
8130  // See if there are any new comments that are not attached to a decl.
8131  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8132  if (!Comments.empty() &&
8133      !Comments.back()->isAttached()) {
8134    // There is at least one comment that not attached to a decl.
8135    // Maybe it should be attached to one of these decls?
8136    //
8137    // Note that this way we pick up not only comments that precede the
8138    // declaration, but also comments that *follow* the declaration -- thanks to
8139    // the lookahead in the lexer: we've consumed the semicolon and looked
8140    // ahead through comments.
8141    for (unsigned i = 0; i != NumDecls; ++i)
8142      Context.getCommentForDecl(Group[i], &PP);
8143  }
8144}
8145
8146/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8147/// to introduce parameters into function prototype scope.
8148Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8149  const DeclSpec &DS = D.getDeclSpec();
8150
8151  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8152  // C++03 [dcl.stc]p2 also permits 'auto'.
8153  VarDecl::StorageClass StorageClass = SC_None;
8154  VarDecl::StorageClass StorageClassAsWritten = SC_None;
8155  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8156    StorageClass = SC_Register;
8157    StorageClassAsWritten = SC_Register;
8158  } else if (getLangOpts().CPlusPlus &&
8159             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8160    StorageClass = SC_Auto;
8161    StorageClassAsWritten = SC_Auto;
8162  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8163    Diag(DS.getStorageClassSpecLoc(),
8164         diag::err_invalid_storage_class_in_func_decl);
8165    D.getMutableDeclSpec().ClearStorageClassSpecs();
8166  }
8167
8168  if (D.getDeclSpec().isThreadSpecified())
8169    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8170  if (D.getDeclSpec().isConstexprSpecified())
8171    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8172      << 0;
8173
8174  DiagnoseFunctionSpecifiers(D.getDeclSpec());
8175
8176  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8177  QualType parmDeclType = TInfo->getType();
8178
8179  if (getLangOpts().CPlusPlus) {
8180    // Check that there are no default arguments inside the type of this
8181    // parameter.
8182    CheckExtraCXXDefaultArguments(D);
8183
8184    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8185    if (D.getCXXScopeSpec().isSet()) {
8186      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8187        << D.getCXXScopeSpec().getRange();
8188      D.getCXXScopeSpec().clear();
8189    }
8190  }
8191
8192  // Ensure we have a valid name
8193  IdentifierInfo *II = 0;
8194  if (D.hasName()) {
8195    II = D.getIdentifier();
8196    if (!II) {
8197      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8198        << GetNameForDeclarator(D).getName().getAsString();
8199      D.setInvalidType(true);
8200    }
8201  }
8202
8203  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8204  if (II) {
8205    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8206                   ForRedeclaration);
8207    LookupName(R, S);
8208    if (R.isSingleResult()) {
8209      NamedDecl *PrevDecl = R.getFoundDecl();
8210      if (PrevDecl->isTemplateParameter()) {
8211        // Maybe we will complain about the shadowed template parameter.
8212        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8213        // Just pretend that we didn't see the previous declaration.
8214        PrevDecl = 0;
8215      } else if (S->isDeclScope(PrevDecl)) {
8216        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8217        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8218
8219        // Recover by removing the name
8220        II = 0;
8221        D.SetIdentifier(0, D.getIdentifierLoc());
8222        D.setInvalidType(true);
8223      }
8224    }
8225  }
8226
8227  // Temporarily put parameter variables in the translation unit, not
8228  // the enclosing context.  This prevents them from accidentally
8229  // looking like class members in C++.
8230  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8231                                    D.getLocStart(),
8232                                    D.getIdentifierLoc(), II,
8233                                    parmDeclType, TInfo,
8234                                    StorageClass, StorageClassAsWritten);
8235
8236  if (D.isInvalidType())
8237    New->setInvalidDecl();
8238
8239  assert(S->isFunctionPrototypeScope());
8240  assert(S->getFunctionPrototypeDepth() >= 1);
8241  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8242                    S->getNextFunctionPrototypeIndex());
8243
8244  // Add the parameter declaration into this scope.
8245  S->AddDecl(New);
8246  if (II)
8247    IdResolver.AddDecl(New);
8248
8249  ProcessDeclAttributes(S, New, D);
8250
8251  if (D.getDeclSpec().isModulePrivateSpecified())
8252    Diag(New->getLocation(), diag::err_module_private_local)
8253      << 1 << New->getDeclName()
8254      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8255      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8256
8257  if (New->hasAttr<BlocksAttr>()) {
8258    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8259  }
8260  return New;
8261}
8262
8263/// \brief Synthesizes a variable for a parameter arising from a
8264/// typedef.
8265ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8266                                              SourceLocation Loc,
8267                                              QualType T) {
8268  /* FIXME: setting StartLoc == Loc.
8269     Would it be worth to modify callers so as to provide proper source
8270     location for the unnamed parameters, embedding the parameter's type? */
8271  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8272                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8273                                           SC_None, SC_None, 0);
8274  Param->setImplicit();
8275  return Param;
8276}
8277
8278void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8279                                    ParmVarDecl * const *ParamEnd) {
8280  // Don't diagnose unused-parameter errors in template instantiations; we
8281  // will already have done so in the template itself.
8282  if (!ActiveTemplateInstantiations.empty())
8283    return;
8284
8285  for (; Param != ParamEnd; ++Param) {
8286    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8287        !(*Param)->hasAttr<UnusedAttr>()) {
8288      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8289        << (*Param)->getDeclName();
8290    }
8291  }
8292}
8293
8294void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8295                                                  ParmVarDecl * const *ParamEnd,
8296                                                  QualType ReturnTy,
8297                                                  NamedDecl *D) {
8298  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8299    return;
8300
8301  // Warn if the return value is pass-by-value and larger than the specified
8302  // threshold.
8303  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8304    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8305    if (Size > LangOpts.NumLargeByValueCopy)
8306      Diag(D->getLocation(), diag::warn_return_value_size)
8307          << D->getDeclName() << Size;
8308  }
8309
8310  // Warn if any parameter is pass-by-value and larger than the specified
8311  // threshold.
8312  for (; Param != ParamEnd; ++Param) {
8313    QualType T = (*Param)->getType();
8314    if (T->isDependentType() || !T.isPODType(Context))
8315      continue;
8316    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8317    if (Size > LangOpts.NumLargeByValueCopy)
8318      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8319          << (*Param)->getDeclName() << Size;
8320  }
8321}
8322
8323ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8324                                  SourceLocation NameLoc, IdentifierInfo *Name,
8325                                  QualType T, TypeSourceInfo *TSInfo,
8326                                  VarDecl::StorageClass StorageClass,
8327                                  VarDecl::StorageClass StorageClassAsWritten) {
8328  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8329  if (getLangOpts().ObjCAutoRefCount &&
8330      T.getObjCLifetime() == Qualifiers::OCL_None &&
8331      T->isObjCLifetimeType()) {
8332
8333    Qualifiers::ObjCLifetime lifetime;
8334
8335    // Special cases for arrays:
8336    //   - if it's const, use __unsafe_unretained
8337    //   - otherwise, it's an error
8338    if (T->isArrayType()) {
8339      if (!T.isConstQualified()) {
8340        DelayedDiagnostics.add(
8341            sema::DelayedDiagnostic::makeForbiddenType(
8342            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8343      }
8344      lifetime = Qualifiers::OCL_ExplicitNone;
8345    } else {
8346      lifetime = T->getObjCARCImplicitLifetime();
8347    }
8348    T = Context.getLifetimeQualifiedType(T, lifetime);
8349  }
8350
8351  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8352                                         Context.getAdjustedParameterType(T),
8353                                         TSInfo,
8354                                         StorageClass, StorageClassAsWritten,
8355                                         0);
8356
8357  // Parameters can not be abstract class types.
8358  // For record types, this is done by the AbstractClassUsageDiagnoser once
8359  // the class has been completely parsed.
8360  if (!CurContext->isRecord() &&
8361      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8362                             AbstractParamType))
8363    New->setInvalidDecl();
8364
8365  // Parameter declarators cannot be interface types. All ObjC objects are
8366  // passed by reference.
8367  if (T->isObjCObjectType()) {
8368    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8369    Diag(NameLoc,
8370         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8371      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8372    T = Context.getObjCObjectPointerType(T);
8373    New->setType(T);
8374  }
8375
8376  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8377  // duration shall not be qualified by an address-space qualifier."
8378  // Since all parameters have automatic store duration, they can not have
8379  // an address space.
8380  if (T.getAddressSpace() != 0) {
8381    Diag(NameLoc, diag::err_arg_with_address_space);
8382    New->setInvalidDecl();
8383  }
8384
8385  return New;
8386}
8387
8388void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8389                                           SourceLocation LocAfterDecls) {
8390  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8391
8392  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8393  // for a K&R function.
8394  if (!FTI.hasPrototype) {
8395    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8396      --i;
8397      if (FTI.ArgInfo[i].Param == 0) {
8398        SmallString<256> Code;
8399        llvm::raw_svector_ostream(Code) << "  int "
8400                                        << FTI.ArgInfo[i].Ident->getName()
8401                                        << ";\n";
8402        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8403          << FTI.ArgInfo[i].Ident
8404          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8405
8406        // Implicitly declare the argument as type 'int' for lack of a better
8407        // type.
8408        AttributeFactory attrs;
8409        DeclSpec DS(attrs);
8410        const char* PrevSpec; // unused
8411        unsigned DiagID; // unused
8412        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8413                           PrevSpec, DiagID);
8414        // Use the identifier location for the type source range.
8415        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8416        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8417        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8418        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8419        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8420      }
8421    }
8422  }
8423}
8424
8425Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8426  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8427  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8428  Scope *ParentScope = FnBodyScope->getParent();
8429
8430  D.setFunctionDefinitionKind(FDK_Definition);
8431  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8432  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8433}
8434
8435static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8436                             const FunctionDecl*& PossibleZeroParamPrototype) {
8437  // Don't warn about invalid declarations.
8438  if (FD->isInvalidDecl())
8439    return false;
8440
8441  // Or declarations that aren't global.
8442  if (!FD->isGlobal())
8443    return false;
8444
8445  // Don't warn about C++ member functions.
8446  if (isa<CXXMethodDecl>(FD))
8447    return false;
8448
8449  // Don't warn about 'main'.
8450  if (FD->isMain())
8451    return false;
8452
8453  // Don't warn about inline functions.
8454  if (FD->isInlined())
8455    return false;
8456
8457  // Don't warn about function templates.
8458  if (FD->getDescribedFunctionTemplate())
8459    return false;
8460
8461  // Don't warn about function template specializations.
8462  if (FD->isFunctionTemplateSpecialization())
8463    return false;
8464
8465  // Don't warn for OpenCL kernels.
8466  if (FD->hasAttr<OpenCLKernelAttr>())
8467    return false;
8468
8469  bool MissingPrototype = true;
8470  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8471       Prev; Prev = Prev->getPreviousDecl()) {
8472    // Ignore any declarations that occur in function or method
8473    // scope, because they aren't visible from the header.
8474    if (Prev->getDeclContext()->isFunctionOrMethod())
8475      continue;
8476
8477    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8478    if (FD->getNumParams() == 0)
8479      PossibleZeroParamPrototype = Prev;
8480    break;
8481  }
8482
8483  return MissingPrototype;
8484}
8485
8486void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8487  // Don't complain if we're in GNU89 mode and the previous definition
8488  // was an extern inline function.
8489  const FunctionDecl *Definition;
8490  if (FD->isDefined(Definition) &&
8491      !canRedefineFunction(Definition, getLangOpts())) {
8492    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8493        Definition->getStorageClass() == SC_Extern)
8494      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8495        << FD->getDeclName() << getLangOpts().CPlusPlus;
8496    else
8497      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8498    Diag(Definition->getLocation(), diag::note_previous_definition);
8499    FD->setInvalidDecl();
8500  }
8501}
8502
8503Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8504  // Clear the last template instantiation error context.
8505  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8506
8507  if (!D)
8508    return D;
8509  FunctionDecl *FD = 0;
8510
8511  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8512    FD = FunTmpl->getTemplatedDecl();
8513  else
8514    FD = cast<FunctionDecl>(D);
8515
8516  // Enter a new function scope
8517  PushFunctionScope();
8518
8519  // See if this is a redefinition.
8520  if (!FD->isLateTemplateParsed())
8521    CheckForFunctionRedefinition(FD);
8522
8523  // Builtin functions cannot be defined.
8524  if (unsigned BuiltinID = FD->getBuiltinID()) {
8525    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8526      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8527      FD->setInvalidDecl();
8528    }
8529  }
8530
8531  // The return type of a function definition must be complete
8532  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8533  QualType ResultType = FD->getResultType();
8534  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8535      !FD->isInvalidDecl() &&
8536      RequireCompleteType(FD->getLocation(), ResultType,
8537                          diag::err_func_def_incomplete_result))
8538    FD->setInvalidDecl();
8539
8540  // GNU warning -Wmissing-prototypes:
8541  //   Warn if a global function is defined without a previous
8542  //   prototype declaration. This warning is issued even if the
8543  //   definition itself provides a prototype. The aim is to detect
8544  //   global functions that fail to be declared in header files.
8545  const FunctionDecl *PossibleZeroParamPrototype = 0;
8546  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8547    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8548
8549    if (PossibleZeroParamPrototype) {
8550      // We found a declaration that is not a prototype,
8551      // but that could be a zero-parameter prototype
8552      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8553      TypeLoc TL = TI->getTypeLoc();
8554      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8555        Diag(PossibleZeroParamPrototype->getLocation(),
8556             diag::note_declaration_not_a_prototype)
8557          << PossibleZeroParamPrototype
8558          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8559    }
8560  }
8561
8562  if (FnBodyScope)
8563    PushDeclContext(FnBodyScope, FD);
8564
8565  // Check the validity of our function parameters
8566  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8567                           /*CheckParameterNames=*/true);
8568
8569  // Introduce our parameters into the function scope
8570  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8571    ParmVarDecl *Param = FD->getParamDecl(p);
8572    Param->setOwningFunction(FD);
8573
8574    // If this has an identifier, add it to the scope stack.
8575    if (Param->getIdentifier() && FnBodyScope) {
8576      CheckShadow(FnBodyScope, Param);
8577
8578      PushOnScopeChains(Param, FnBodyScope);
8579    }
8580  }
8581
8582  // If we had any tags defined in the function prototype,
8583  // introduce them into the function scope.
8584  if (FnBodyScope) {
8585    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8586           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8587      NamedDecl *D = *I;
8588
8589      // Some of these decls (like enums) may have been pinned to the translation unit
8590      // for lack of a real context earlier. If so, remove from the translation unit
8591      // and reattach to the current context.
8592      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8593        // Is the decl actually in the context?
8594        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8595               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8596          if (*DI == D) {
8597            Context.getTranslationUnitDecl()->removeDecl(D);
8598            break;
8599          }
8600        }
8601        // Either way, reassign the lexical decl context to our FunctionDecl.
8602        D->setLexicalDeclContext(CurContext);
8603      }
8604
8605      // If the decl has a non-null name, make accessible in the current scope.
8606      if (!D->getName().empty())
8607        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8608
8609      // Similarly, dive into enums and fish their constants out, making them
8610      // accessible in this scope.
8611      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8612        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8613               EE = ED->enumerator_end(); EI != EE; ++EI)
8614          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8615      }
8616    }
8617  }
8618
8619  // Ensure that the function's exception specification is instantiated.
8620  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8621    ResolveExceptionSpec(D->getLocation(), FPT);
8622
8623  // Checking attributes of current function definition
8624  // dllimport attribute.
8625  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8626  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8627    // dllimport attribute cannot be directly applied to definition.
8628    // Microsoft accepts dllimport for functions defined within class scope.
8629    if (!DA->isInherited() &&
8630        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8631      Diag(FD->getLocation(),
8632           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8633        << "dllimport";
8634      FD->setInvalidDecl();
8635      return D;
8636    }
8637
8638    // Visual C++ appears to not think this is an issue, so only issue
8639    // a warning when Microsoft extensions are disabled.
8640    if (!LangOpts.MicrosoftExt) {
8641      // If a symbol previously declared dllimport is later defined, the
8642      // attribute is ignored in subsequent references, and a warning is
8643      // emitted.
8644      Diag(FD->getLocation(),
8645           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8646        << FD->getName() << "dllimport";
8647    }
8648  }
8649  // We want to attach documentation to original Decl (which might be
8650  // a function template).
8651  ActOnDocumentableDecl(D);
8652  return D;
8653}
8654
8655/// \brief Given the set of return statements within a function body,
8656/// compute the variables that are subject to the named return value
8657/// optimization.
8658///
8659/// Each of the variables that is subject to the named return value
8660/// optimization will be marked as NRVO variables in the AST, and any
8661/// return statement that has a marked NRVO variable as its NRVO candidate can
8662/// use the named return value optimization.
8663///
8664/// This function applies a very simplistic algorithm for NRVO: if every return
8665/// statement in the function has the same NRVO candidate, that candidate is
8666/// the NRVO variable.
8667///
8668/// FIXME: Employ a smarter algorithm that accounts for multiple return
8669/// statements and the lifetimes of the NRVO candidates. We should be able to
8670/// find a maximal set of NRVO variables.
8671void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8672  ReturnStmt **Returns = Scope->Returns.data();
8673
8674  const VarDecl *NRVOCandidate = 0;
8675  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8676    if (!Returns[I]->getNRVOCandidate())
8677      return;
8678
8679    if (!NRVOCandidate)
8680      NRVOCandidate = Returns[I]->getNRVOCandidate();
8681    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8682      return;
8683  }
8684
8685  if (NRVOCandidate)
8686    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8687}
8688
8689bool Sema::canSkipFunctionBody(Decl *D) {
8690  if (!Consumer.shouldSkipFunctionBody(D))
8691    return false;
8692
8693  if (isa<ObjCMethodDecl>(D))
8694    return true;
8695
8696  FunctionDecl *FD = 0;
8697  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8698    FD = FTD->getTemplatedDecl();
8699  else
8700    FD = cast<FunctionDecl>(D);
8701
8702  // We cannot skip the body of a function (or function template) which is
8703  // constexpr, since we may need to evaluate its body in order to parse the
8704  // rest of the file.
8705  return !FD->isConstexpr();
8706}
8707
8708Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8709  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8710    FD->setHasSkippedBody();
8711  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8712    MD->setHasSkippedBody();
8713  return ActOnFinishFunctionBody(Decl, 0);
8714}
8715
8716Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8717  return ActOnFinishFunctionBody(D, BodyArg, false);
8718}
8719
8720Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8721                                    bool IsInstantiation) {
8722  FunctionDecl *FD = 0;
8723  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8724  if (FunTmpl)
8725    FD = FunTmpl->getTemplatedDecl();
8726  else
8727    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8728
8729  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8730  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8731
8732  if (FD) {
8733    FD->setBody(Body);
8734
8735    // The only way to be included in UndefinedButUsed is if there is an
8736    // ODR use before the definition. Avoid the expensive map lookup if this
8737    // is the first declaration.
8738    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8739      if (FD->getLinkage() != ExternalLinkage)
8740        UndefinedButUsed.erase(FD);
8741      else if (FD->isInlined() &&
8742               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8743               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8744        UndefinedButUsed.erase(FD);
8745    }
8746
8747    // If the function implicitly returns zero (like 'main') or is naked,
8748    // don't complain about missing return statements.
8749    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8750      WP.disableCheckFallThrough();
8751
8752    // MSVC permits the use of pure specifier (=0) on function definition,
8753    // defined at class scope, warn about this non standard construct.
8754    if (getLangOpts().MicrosoftExt && FD->isPure())
8755      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8756
8757    if (!FD->isInvalidDecl()) {
8758      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8759      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8760                                             FD->getResultType(), FD);
8761
8762      // If this is a constructor, we need a vtable.
8763      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8764        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8765
8766      // Try to apply the named return value optimization. We have to check
8767      // if we can do this here because lambdas keep return statements around
8768      // to deduce an implicit return type.
8769      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8770          !FD->isDependentContext())
8771        computeNRVO(Body, getCurFunction());
8772    }
8773
8774    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8775           "Function parsing confused");
8776  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8777    assert(MD == getCurMethodDecl() && "Method parsing confused");
8778    MD->setBody(Body);
8779    if (!MD->isInvalidDecl()) {
8780      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8781      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8782                                             MD->getResultType(), MD);
8783
8784      if (Body)
8785        computeNRVO(Body, getCurFunction());
8786    }
8787    if (getCurFunction()->ObjCShouldCallSuper) {
8788      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8789        << MD->getSelector().getAsString();
8790      getCurFunction()->ObjCShouldCallSuper = false;
8791    }
8792  } else {
8793    return 0;
8794  }
8795
8796  assert(!getCurFunction()->ObjCShouldCallSuper &&
8797         "This should only be set for ObjC methods, which should have been "
8798         "handled in the block above.");
8799
8800  // Verify and clean out per-function state.
8801  if (Body) {
8802    // C++ constructors that have function-try-blocks can't have return
8803    // statements in the handlers of that block. (C++ [except.handle]p14)
8804    // Verify this.
8805    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8806      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8807
8808    // Verify that gotos and switch cases don't jump into scopes illegally.
8809    if (getCurFunction()->NeedsScopeChecking() &&
8810        !dcl->isInvalidDecl() &&
8811        !hasAnyUnrecoverableErrorsInThisFunction() &&
8812        !PP.isCodeCompletionEnabled())
8813      DiagnoseInvalidJumps(Body);
8814
8815    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8816      if (!Destructor->getParent()->isDependentType())
8817        CheckDestructor(Destructor);
8818
8819      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8820                                             Destructor->getParent());
8821    }
8822
8823    // If any errors have occurred, clear out any temporaries that may have
8824    // been leftover. This ensures that these temporaries won't be picked up for
8825    // deletion in some later function.
8826    if (PP.getDiagnostics().hasErrorOccurred() ||
8827        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8828      DiscardCleanupsInEvaluationContext();
8829    }
8830    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8831        !isa<FunctionTemplateDecl>(dcl)) {
8832      // Since the body is valid, issue any analysis-based warnings that are
8833      // enabled.
8834      ActivePolicy = &WP;
8835    }
8836
8837    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8838        (!CheckConstexprFunctionDecl(FD) ||
8839         !CheckConstexprFunctionBody(FD, Body)))
8840      FD->setInvalidDecl();
8841
8842    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8843    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8844    assert(MaybeODRUseExprs.empty() &&
8845           "Leftover expressions for odr-use checking");
8846  }
8847
8848  if (!IsInstantiation)
8849    PopDeclContext();
8850
8851  PopFunctionScopeInfo(ActivePolicy, dcl);
8852
8853  // If any errors have occurred, clear out any temporaries that may have
8854  // been leftover. This ensures that these temporaries won't be picked up for
8855  // deletion in some later function.
8856  if (getDiagnostics().hasErrorOccurred()) {
8857    DiscardCleanupsInEvaluationContext();
8858  }
8859
8860  return dcl;
8861}
8862
8863
8864/// When we finish delayed parsing of an attribute, we must attach it to the
8865/// relevant Decl.
8866void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8867                                       ParsedAttributes &Attrs) {
8868  // Always attach attributes to the underlying decl.
8869  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8870    D = TD->getTemplatedDecl();
8871  ProcessDeclAttributeList(S, D, Attrs.getList());
8872
8873  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8874    if (Method->isStatic())
8875      checkThisInStaticMemberFunctionAttributes(Method);
8876}
8877
8878
8879/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8880/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8881NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8882                                          IdentifierInfo &II, Scope *S) {
8883  // Before we produce a declaration for an implicitly defined
8884  // function, see whether there was a locally-scoped declaration of
8885  // this name as a function or variable. If so, use that
8886  // (non-visible) declaration, and complain about it.
8887  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8888    = findLocallyScopedExternCDecl(&II);
8889  if (Pos != LocallyScopedExternCDecls.end()) {
8890    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8891    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8892    return Pos->second;
8893  }
8894
8895  // Extension in C99.  Legal in C90, but warn about it.
8896  unsigned diag_id;
8897  if (II.getName().startswith("__builtin_"))
8898    diag_id = diag::warn_builtin_unknown;
8899  else if (getLangOpts().C99)
8900    diag_id = diag::ext_implicit_function_decl;
8901  else
8902    diag_id = diag::warn_implicit_function_decl;
8903  Diag(Loc, diag_id) << &II;
8904
8905  // Because typo correction is expensive, only do it if the implicit
8906  // function declaration is going to be treated as an error.
8907  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8908    TypoCorrection Corrected;
8909    DeclFilterCCC<FunctionDecl> Validator;
8910    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8911                                      LookupOrdinaryName, S, 0, Validator))) {
8912      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8913      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8914      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8915
8916      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8917          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8918
8919      if (Func->getLocation().isValid()
8920          && !II.getName().startswith("__builtin_"))
8921        Diag(Func->getLocation(), diag::note_previous_decl)
8922            << CorrectedQuotedStr;
8923    }
8924  }
8925
8926  // Set a Declarator for the implicit definition: int foo();
8927  const char *Dummy;
8928  AttributeFactory attrFactory;
8929  DeclSpec DS(attrFactory);
8930  unsigned DiagID;
8931  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8932  (void)Error; // Silence warning.
8933  assert(!Error && "Error setting up implicit decl!");
8934  SourceLocation NoLoc;
8935  Declarator D(DS, Declarator::BlockContext);
8936  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8937                                             /*IsAmbiguous=*/false,
8938                                             /*RParenLoc=*/NoLoc,
8939                                             /*ArgInfo=*/0,
8940                                             /*NumArgs=*/0,
8941                                             /*EllipsisLoc=*/NoLoc,
8942                                             /*RParenLoc=*/NoLoc,
8943                                             /*TypeQuals=*/0,
8944                                             /*RefQualifierIsLvalueRef=*/true,
8945                                             /*RefQualifierLoc=*/NoLoc,
8946                                             /*ConstQualifierLoc=*/NoLoc,
8947                                             /*VolatileQualifierLoc=*/NoLoc,
8948                                             /*MutableLoc=*/NoLoc,
8949                                             EST_None,
8950                                             /*ESpecLoc=*/NoLoc,
8951                                             /*Exceptions=*/0,
8952                                             /*ExceptionRanges=*/0,
8953                                             /*NumExceptions=*/0,
8954                                             /*NoexceptExpr=*/0,
8955                                             Loc, Loc, D),
8956                DS.getAttributes(),
8957                SourceLocation());
8958  D.SetIdentifier(&II, Loc);
8959
8960  // Insert this function into translation-unit scope.
8961
8962  DeclContext *PrevDC = CurContext;
8963  CurContext = Context.getTranslationUnitDecl();
8964
8965  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8966  FD->setImplicit();
8967
8968  CurContext = PrevDC;
8969
8970  AddKnownFunctionAttributes(FD);
8971
8972  return FD;
8973}
8974
8975/// \brief Adds any function attributes that we know a priori based on
8976/// the declaration of this function.
8977///
8978/// These attributes can apply both to implicitly-declared builtins
8979/// (like __builtin___printf_chk) or to library-declared functions
8980/// like NSLog or printf.
8981///
8982/// We need to check for duplicate attributes both here and where user-written
8983/// attributes are applied to declarations.
8984void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8985  if (FD->isInvalidDecl())
8986    return;
8987
8988  // If this is a built-in function, map its builtin attributes to
8989  // actual attributes.
8990  if (unsigned BuiltinID = FD->getBuiltinID()) {
8991    // Handle printf-formatting attributes.
8992    unsigned FormatIdx;
8993    bool HasVAListArg;
8994    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8995      if (!FD->getAttr<FormatAttr>()) {
8996        const char *fmt = "printf";
8997        unsigned int NumParams = FD->getNumParams();
8998        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8999            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9000          fmt = "NSString";
9001        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9002                                               fmt, FormatIdx+1,
9003                                               HasVAListArg ? 0 : FormatIdx+2));
9004      }
9005    }
9006    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9007                                             HasVAListArg)) {
9008     if (!FD->getAttr<FormatAttr>())
9009       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9010                                              "scanf", FormatIdx+1,
9011                                              HasVAListArg ? 0 : FormatIdx+2));
9012    }
9013
9014    // Mark const if we don't care about errno and that is the only
9015    // thing preventing the function from being const. This allows
9016    // IRgen to use LLVM intrinsics for such functions.
9017    if (!getLangOpts().MathErrno &&
9018        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9019      if (!FD->getAttr<ConstAttr>())
9020        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9021    }
9022
9023    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9024        !FD->getAttr<ReturnsTwiceAttr>())
9025      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9026    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9027      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9028    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9029      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9030  }
9031
9032  IdentifierInfo *Name = FD->getIdentifier();
9033  if (!Name)
9034    return;
9035  if ((!getLangOpts().CPlusPlus &&
9036       FD->getDeclContext()->isTranslationUnit()) ||
9037      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9038       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9039       LinkageSpecDecl::lang_c)) {
9040    // Okay: this could be a libc/libm/Objective-C function we know
9041    // about.
9042  } else
9043    return;
9044
9045  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9046    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9047    // target-specific builtins, perhaps?
9048    if (!FD->getAttr<FormatAttr>())
9049      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9050                                             "printf", 2,
9051                                             Name->isStr("vasprintf") ? 0 : 3));
9052  }
9053
9054  if (Name->isStr("__CFStringMakeConstantString")) {
9055    // We already have a __builtin___CFStringMakeConstantString,
9056    // but builds that use -fno-constant-cfstrings don't go through that.
9057    if (!FD->getAttr<FormatArgAttr>())
9058      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9059  }
9060}
9061
9062TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9063                                    TypeSourceInfo *TInfo) {
9064  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9065  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9066
9067  if (!TInfo) {
9068    assert(D.isInvalidType() && "no declarator info for valid type");
9069    TInfo = Context.getTrivialTypeSourceInfo(T);
9070  }
9071
9072  // Scope manipulation handled by caller.
9073  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9074                                           D.getLocStart(),
9075                                           D.getIdentifierLoc(),
9076                                           D.getIdentifier(),
9077                                           TInfo);
9078
9079  // Bail out immediately if we have an invalid declaration.
9080  if (D.isInvalidType()) {
9081    NewTD->setInvalidDecl();
9082    return NewTD;
9083  }
9084
9085  if (D.getDeclSpec().isModulePrivateSpecified()) {
9086    if (CurContext->isFunctionOrMethod())
9087      Diag(NewTD->getLocation(), diag::err_module_private_local)
9088        << 2 << NewTD->getDeclName()
9089        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9090        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9091    else
9092      NewTD->setModulePrivate();
9093  }
9094
9095  // C++ [dcl.typedef]p8:
9096  //   If the typedef declaration defines an unnamed class (or
9097  //   enum), the first typedef-name declared by the declaration
9098  //   to be that class type (or enum type) is used to denote the
9099  //   class type (or enum type) for linkage purposes only.
9100  // We need to check whether the type was declared in the declaration.
9101  switch (D.getDeclSpec().getTypeSpecType()) {
9102  case TST_enum:
9103  case TST_struct:
9104  case TST_interface:
9105  case TST_union:
9106  case TST_class: {
9107    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9108
9109    // Do nothing if the tag is not anonymous or already has an
9110    // associated typedef (from an earlier typedef in this decl group).
9111    if (tagFromDeclSpec->getIdentifier()) break;
9112    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9113
9114    // A well-formed anonymous tag must always be a TUK_Definition.
9115    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9116
9117    // The type must match the tag exactly;  no qualifiers allowed.
9118    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9119      break;
9120
9121    // Otherwise, set this is the anon-decl typedef for the tag.
9122    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9123    break;
9124  }
9125
9126  default:
9127    break;
9128  }
9129
9130  return NewTD;
9131}
9132
9133
9134/// \brief Check that this is a valid underlying type for an enum declaration.
9135bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9136  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9137  QualType T = TI->getType();
9138
9139  if (T->isDependentType())
9140    return false;
9141
9142  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9143    if (BT->isInteger())
9144      return false;
9145
9146  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9147  return true;
9148}
9149
9150/// Check whether this is a valid redeclaration of a previous enumeration.
9151/// \return true if the redeclaration was invalid.
9152bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9153                                  QualType EnumUnderlyingTy,
9154                                  const EnumDecl *Prev) {
9155  bool IsFixed = !EnumUnderlyingTy.isNull();
9156
9157  if (IsScoped != Prev->isScoped()) {
9158    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9159      << Prev->isScoped();
9160    Diag(Prev->getLocation(), diag::note_previous_use);
9161    return true;
9162  }
9163
9164  if (IsFixed && Prev->isFixed()) {
9165    if (!EnumUnderlyingTy->isDependentType() &&
9166        !Prev->getIntegerType()->isDependentType() &&
9167        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9168                                        Prev->getIntegerType())) {
9169      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9170        << EnumUnderlyingTy << Prev->getIntegerType();
9171      Diag(Prev->getLocation(), diag::note_previous_use);
9172      return true;
9173    }
9174  } else if (IsFixed != Prev->isFixed()) {
9175    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9176      << Prev->isFixed();
9177    Diag(Prev->getLocation(), diag::note_previous_use);
9178    return true;
9179  }
9180
9181  return false;
9182}
9183
9184/// \brief Get diagnostic %select index for tag kind for
9185/// redeclaration diagnostic message.
9186/// WARNING: Indexes apply to particular diagnostics only!
9187///
9188/// \returns diagnostic %select index.
9189static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9190  switch (Tag) {
9191  case TTK_Struct: return 0;
9192  case TTK_Interface: return 1;
9193  case TTK_Class:  return 2;
9194  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9195  }
9196}
9197
9198/// \brief Determine if tag kind is a class-key compatible with
9199/// class for redeclaration (class, struct, or __interface).
9200///
9201/// \returns true iff the tag kind is compatible.
9202static bool isClassCompatTagKind(TagTypeKind Tag)
9203{
9204  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9205}
9206
9207/// \brief Determine whether a tag with a given kind is acceptable
9208/// as a redeclaration of the given tag declaration.
9209///
9210/// \returns true if the new tag kind is acceptable, false otherwise.
9211bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9212                                        TagTypeKind NewTag, bool isDefinition,
9213                                        SourceLocation NewTagLoc,
9214                                        const IdentifierInfo &Name) {
9215  // C++ [dcl.type.elab]p3:
9216  //   The class-key or enum keyword present in the
9217  //   elaborated-type-specifier shall agree in kind with the
9218  //   declaration to which the name in the elaborated-type-specifier
9219  //   refers. This rule also applies to the form of
9220  //   elaborated-type-specifier that declares a class-name or
9221  //   friend class since it can be construed as referring to the
9222  //   definition of the class. Thus, in any
9223  //   elaborated-type-specifier, the enum keyword shall be used to
9224  //   refer to an enumeration (7.2), the union class-key shall be
9225  //   used to refer to a union (clause 9), and either the class or
9226  //   struct class-key shall be used to refer to a class (clause 9)
9227  //   declared using the class or struct class-key.
9228  TagTypeKind OldTag = Previous->getTagKind();
9229  if (!isDefinition || !isClassCompatTagKind(NewTag))
9230    if (OldTag == NewTag)
9231      return true;
9232
9233  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9234    // Warn about the struct/class tag mismatch.
9235    bool isTemplate = false;
9236    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9237      isTemplate = Record->getDescribedClassTemplate();
9238
9239    if (!ActiveTemplateInstantiations.empty()) {
9240      // In a template instantiation, do not offer fix-its for tag mismatches
9241      // since they usually mess up the template instead of fixing the problem.
9242      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9243        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9244        << getRedeclDiagFromTagKind(OldTag);
9245      return true;
9246    }
9247
9248    if (isDefinition) {
9249      // On definitions, check previous tags and issue a fix-it for each
9250      // one that doesn't match the current tag.
9251      if (Previous->getDefinition()) {
9252        // Don't suggest fix-its for redefinitions.
9253        return true;
9254      }
9255
9256      bool previousMismatch = false;
9257      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9258           E(Previous->redecls_end()); I != E; ++I) {
9259        if (I->getTagKind() != NewTag) {
9260          if (!previousMismatch) {
9261            previousMismatch = true;
9262            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9263              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9264              << getRedeclDiagFromTagKind(I->getTagKind());
9265          }
9266          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9267            << getRedeclDiagFromTagKind(NewTag)
9268            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9269                 TypeWithKeyword::getTagTypeKindName(NewTag));
9270        }
9271      }
9272      return true;
9273    }
9274
9275    // Check for a previous definition.  If current tag and definition
9276    // are same type, do nothing.  If no definition, but disagree with
9277    // with previous tag type, give a warning, but no fix-it.
9278    const TagDecl *Redecl = Previous->getDefinition() ?
9279                            Previous->getDefinition() : Previous;
9280    if (Redecl->getTagKind() == NewTag) {
9281      return true;
9282    }
9283
9284    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9285      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9286      << getRedeclDiagFromTagKind(OldTag);
9287    Diag(Redecl->getLocation(), diag::note_previous_use);
9288
9289    // If there is a previous defintion, suggest a fix-it.
9290    if (Previous->getDefinition()) {
9291        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9292          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9293          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9294               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9295    }
9296
9297    return true;
9298  }
9299  return false;
9300}
9301
9302/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9303/// former case, Name will be non-null.  In the later case, Name will be null.
9304/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9305/// reference/declaration/definition of a tag.
9306Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9307                     SourceLocation KWLoc, CXXScopeSpec &SS,
9308                     IdentifierInfo *Name, SourceLocation NameLoc,
9309                     AttributeList *Attr, AccessSpecifier AS,
9310                     SourceLocation ModulePrivateLoc,
9311                     MultiTemplateParamsArg TemplateParameterLists,
9312                     bool &OwnedDecl, bool &IsDependent,
9313                     SourceLocation ScopedEnumKWLoc,
9314                     bool ScopedEnumUsesClassTag,
9315                     TypeResult UnderlyingType) {
9316  // If this is not a definition, it must have a name.
9317  IdentifierInfo *OrigName = Name;
9318  assert((Name != 0 || TUK == TUK_Definition) &&
9319         "Nameless record must be a definition!");
9320  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9321
9322  OwnedDecl = false;
9323  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9324  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9325
9326  // FIXME: Check explicit specializations more carefully.
9327  bool isExplicitSpecialization = false;
9328  bool Invalid = false;
9329
9330  // We only need to do this matching if we have template parameters
9331  // or a scope specifier, which also conveniently avoids this work
9332  // for non-C++ cases.
9333  if (TemplateParameterLists.size() > 0 ||
9334      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9335    if (TemplateParameterList *TemplateParams
9336          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9337                                                TemplateParameterLists.data(),
9338                                                TemplateParameterLists.size(),
9339                                                    TUK == TUK_Friend,
9340                                                    isExplicitSpecialization,
9341                                                    Invalid)) {
9342      if (TemplateParams->size() > 0) {
9343        // This is a declaration or definition of a class template (which may
9344        // be a member of another template).
9345
9346        if (Invalid)
9347          return 0;
9348
9349        OwnedDecl = false;
9350        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9351                                               SS, Name, NameLoc, Attr,
9352                                               TemplateParams, AS,
9353                                               ModulePrivateLoc,
9354                                               TemplateParameterLists.size()-1,
9355                                               TemplateParameterLists.data());
9356        return Result.get();
9357      } else {
9358        // The "template<>" header is extraneous.
9359        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9360          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9361        isExplicitSpecialization = true;
9362      }
9363    }
9364  }
9365
9366  // Figure out the underlying type if this a enum declaration. We need to do
9367  // this early, because it's needed to detect if this is an incompatible
9368  // redeclaration.
9369  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9370
9371  if (Kind == TTK_Enum) {
9372    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9373      // No underlying type explicitly specified, or we failed to parse the
9374      // type, default to int.
9375      EnumUnderlying = Context.IntTy.getTypePtr();
9376    else if (UnderlyingType.get()) {
9377      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9378      // integral type; any cv-qualification is ignored.
9379      TypeSourceInfo *TI = 0;
9380      GetTypeFromParser(UnderlyingType.get(), &TI);
9381      EnumUnderlying = TI;
9382
9383      if (CheckEnumUnderlyingType(TI))
9384        // Recover by falling back to int.
9385        EnumUnderlying = Context.IntTy.getTypePtr();
9386
9387      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9388                                          UPPC_FixedUnderlyingType))
9389        EnumUnderlying = Context.IntTy.getTypePtr();
9390
9391    } else if (getLangOpts().MicrosoftMode)
9392      // Microsoft enums are always of int type.
9393      EnumUnderlying = Context.IntTy.getTypePtr();
9394  }
9395
9396  DeclContext *SearchDC = CurContext;
9397  DeclContext *DC = CurContext;
9398  bool isStdBadAlloc = false;
9399
9400  RedeclarationKind Redecl = ForRedeclaration;
9401  if (TUK == TUK_Friend || TUK == TUK_Reference)
9402    Redecl = NotForRedeclaration;
9403
9404  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9405
9406  if (Name && SS.isNotEmpty()) {
9407    // We have a nested-name tag ('struct foo::bar').
9408
9409    // Check for invalid 'foo::'.
9410    if (SS.isInvalid()) {
9411      Name = 0;
9412      goto CreateNewDecl;
9413    }
9414
9415    // If this is a friend or a reference to a class in a dependent
9416    // context, don't try to make a decl for it.
9417    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9418      DC = computeDeclContext(SS, false);
9419      if (!DC) {
9420        IsDependent = true;
9421        return 0;
9422      }
9423    } else {
9424      DC = computeDeclContext(SS, true);
9425      if (!DC) {
9426        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9427          << SS.getRange();
9428        return 0;
9429      }
9430    }
9431
9432    if (RequireCompleteDeclContext(SS, DC))
9433      return 0;
9434
9435    SearchDC = DC;
9436    // Look-up name inside 'foo::'.
9437    LookupQualifiedName(Previous, DC);
9438
9439    if (Previous.isAmbiguous())
9440      return 0;
9441
9442    if (Previous.empty()) {
9443      // Name lookup did not find anything. However, if the
9444      // nested-name-specifier refers to the current instantiation,
9445      // and that current instantiation has any dependent base
9446      // classes, we might find something at instantiation time: treat
9447      // this as a dependent elaborated-type-specifier.
9448      // But this only makes any sense for reference-like lookups.
9449      if (Previous.wasNotFoundInCurrentInstantiation() &&
9450          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9451        IsDependent = true;
9452        return 0;
9453      }
9454
9455      // A tag 'foo::bar' must already exist.
9456      Diag(NameLoc, diag::err_not_tag_in_scope)
9457        << Kind << Name << DC << SS.getRange();
9458      Name = 0;
9459      Invalid = true;
9460      goto CreateNewDecl;
9461    }
9462  } else if (Name) {
9463    // If this is a named struct, check to see if there was a previous forward
9464    // declaration or definition.
9465    // FIXME: We're looking into outer scopes here, even when we
9466    // shouldn't be. Doing so can result in ambiguities that we
9467    // shouldn't be diagnosing.
9468    LookupName(Previous, S);
9469
9470    // When declaring or defining a tag, ignore ambiguities introduced
9471    // by types using'ed into this scope.
9472    if (Previous.isAmbiguous() &&
9473        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9474      LookupResult::Filter F = Previous.makeFilter();
9475      while (F.hasNext()) {
9476        NamedDecl *ND = F.next();
9477        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9478          F.erase();
9479      }
9480      F.done();
9481    }
9482
9483    // C++11 [namespace.memdef]p3:
9484    //   If the name in a friend declaration is neither qualified nor
9485    //   a template-id and the declaration is a function or an
9486    //   elaborated-type-specifier, the lookup to determine whether
9487    //   the entity has been previously declared shall not consider
9488    //   any scopes outside the innermost enclosing namespace.
9489    //
9490    // Does it matter that this should be by scope instead of by
9491    // semantic context?
9492    if (!Previous.empty() && TUK == TUK_Friend) {
9493      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9494      LookupResult::Filter F = Previous.makeFilter();
9495      while (F.hasNext()) {
9496        NamedDecl *ND = F.next();
9497        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9498        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9499          F.erase();
9500      }
9501      F.done();
9502    }
9503
9504    // Note:  there used to be some attempt at recovery here.
9505    if (Previous.isAmbiguous())
9506      return 0;
9507
9508    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9509      // FIXME: This makes sure that we ignore the contexts associated
9510      // with C structs, unions, and enums when looking for a matching
9511      // tag declaration or definition. See the similar lookup tweak
9512      // in Sema::LookupName; is there a better way to deal with this?
9513      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9514        SearchDC = SearchDC->getParent();
9515    }
9516  } else if (S->isFunctionPrototypeScope()) {
9517    // If this is an enum declaration in function prototype scope, set its
9518    // initial context to the translation unit.
9519    // FIXME: [citation needed]
9520    SearchDC = Context.getTranslationUnitDecl();
9521  }
9522
9523  if (Previous.isSingleResult() &&
9524      Previous.getFoundDecl()->isTemplateParameter()) {
9525    // Maybe we will complain about the shadowed template parameter.
9526    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9527    // Just pretend that we didn't see the previous declaration.
9528    Previous.clear();
9529  }
9530
9531  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9532      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9533    // This is a declaration of or a reference to "std::bad_alloc".
9534    isStdBadAlloc = true;
9535
9536    if (Previous.empty() && StdBadAlloc) {
9537      // std::bad_alloc has been implicitly declared (but made invisible to
9538      // name lookup). Fill in this implicit declaration as the previous
9539      // declaration, so that the declarations get chained appropriately.
9540      Previous.addDecl(getStdBadAlloc());
9541    }
9542  }
9543
9544  // If we didn't find a previous declaration, and this is a reference
9545  // (or friend reference), move to the correct scope.  In C++, we
9546  // also need to do a redeclaration lookup there, just in case
9547  // there's a shadow friend decl.
9548  if (Name && Previous.empty() &&
9549      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9550    if (Invalid) goto CreateNewDecl;
9551    assert(SS.isEmpty());
9552
9553    if (TUK == TUK_Reference) {
9554      // C++ [basic.scope.pdecl]p5:
9555      //   -- for an elaborated-type-specifier of the form
9556      //
9557      //          class-key identifier
9558      //
9559      //      if the elaborated-type-specifier is used in the
9560      //      decl-specifier-seq or parameter-declaration-clause of a
9561      //      function defined in namespace scope, the identifier is
9562      //      declared as a class-name in the namespace that contains
9563      //      the declaration; otherwise, except as a friend
9564      //      declaration, the identifier is declared in the smallest
9565      //      non-class, non-function-prototype scope that contains the
9566      //      declaration.
9567      //
9568      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9569      // C structs and unions.
9570      //
9571      // It is an error in C++ to declare (rather than define) an enum
9572      // type, including via an elaborated type specifier.  We'll
9573      // diagnose that later; for now, declare the enum in the same
9574      // scope as we would have picked for any other tag type.
9575      //
9576      // GNU C also supports this behavior as part of its incomplete
9577      // enum types extension, while GNU C++ does not.
9578      //
9579      // Find the context where we'll be declaring the tag.
9580      // FIXME: We would like to maintain the current DeclContext as the
9581      // lexical context,
9582      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9583        SearchDC = SearchDC->getParent();
9584
9585      // Find the scope where we'll be declaring the tag.
9586      while (S->isClassScope() ||
9587             (getLangOpts().CPlusPlus &&
9588              S->isFunctionPrototypeScope()) ||
9589             ((S->getFlags() & Scope::DeclScope) == 0) ||
9590             (S->getEntity() &&
9591              ((DeclContext *)S->getEntity())->isTransparentContext()))
9592        S = S->getParent();
9593    } else {
9594      assert(TUK == TUK_Friend);
9595      // C++ [namespace.memdef]p3:
9596      //   If a friend declaration in a non-local class first declares a
9597      //   class or function, the friend class or function is a member of
9598      //   the innermost enclosing namespace.
9599      SearchDC = SearchDC->getEnclosingNamespaceContext();
9600    }
9601
9602    // In C++, we need to do a redeclaration lookup to properly
9603    // diagnose some problems.
9604    if (getLangOpts().CPlusPlus) {
9605      Previous.setRedeclarationKind(ForRedeclaration);
9606      LookupQualifiedName(Previous, SearchDC);
9607    }
9608  }
9609
9610  if (!Previous.empty()) {
9611    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9612
9613    // It's okay to have a tag decl in the same scope as a typedef
9614    // which hides a tag decl in the same scope.  Finding this
9615    // insanity with a redeclaration lookup can only actually happen
9616    // in C++.
9617    //
9618    // This is also okay for elaborated-type-specifiers, which is
9619    // technically forbidden by the current standard but which is
9620    // okay according to the likely resolution of an open issue;
9621    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9622    if (getLangOpts().CPlusPlus) {
9623      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9624        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9625          TagDecl *Tag = TT->getDecl();
9626          if (Tag->getDeclName() == Name &&
9627              Tag->getDeclContext()->getRedeclContext()
9628                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9629            PrevDecl = Tag;
9630            Previous.clear();
9631            Previous.addDecl(Tag);
9632            Previous.resolveKind();
9633          }
9634        }
9635      }
9636    }
9637
9638    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9639      // If this is a use of a previous tag, or if the tag is already declared
9640      // in the same scope (so that the definition/declaration completes or
9641      // rementions the tag), reuse the decl.
9642      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9643          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9644        // Make sure that this wasn't declared as an enum and now used as a
9645        // struct or something similar.
9646        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9647                                          TUK == TUK_Definition, KWLoc,
9648                                          *Name)) {
9649          bool SafeToContinue
9650            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9651               Kind != TTK_Enum);
9652          if (SafeToContinue)
9653            Diag(KWLoc, diag::err_use_with_wrong_tag)
9654              << Name
9655              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9656                                              PrevTagDecl->getKindName());
9657          else
9658            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9659          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9660
9661          if (SafeToContinue)
9662            Kind = PrevTagDecl->getTagKind();
9663          else {
9664            // Recover by making this an anonymous redefinition.
9665            Name = 0;
9666            Previous.clear();
9667            Invalid = true;
9668          }
9669        }
9670
9671        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9672          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9673
9674          // If this is an elaborated-type-specifier for a scoped enumeration,
9675          // the 'class' keyword is not necessary and not permitted.
9676          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9677            if (ScopedEnum)
9678              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9679                << PrevEnum->isScoped()
9680                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9681            return PrevTagDecl;
9682          }
9683
9684          QualType EnumUnderlyingTy;
9685          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9686            EnumUnderlyingTy = TI->getType();
9687          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9688            EnumUnderlyingTy = QualType(T, 0);
9689
9690          // All conflicts with previous declarations are recovered by
9691          // returning the previous declaration, unless this is a definition,
9692          // in which case we want the caller to bail out.
9693          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9694                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9695            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9696        }
9697
9698        if (!Invalid) {
9699          // If this is a use, just return the declaration we found.
9700
9701          // FIXME: In the future, return a variant or some other clue
9702          // for the consumer of this Decl to know it doesn't own it.
9703          // For our current ASTs this shouldn't be a problem, but will
9704          // need to be changed with DeclGroups.
9705          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9706               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9707            return PrevTagDecl;
9708
9709          // Diagnose attempts to redefine a tag.
9710          if (TUK == TUK_Definition) {
9711            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9712              // If we're defining a specialization and the previous definition
9713              // is from an implicit instantiation, don't emit an error
9714              // here; we'll catch this in the general case below.
9715              bool IsExplicitSpecializationAfterInstantiation = false;
9716              if (isExplicitSpecialization) {
9717                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9718                  IsExplicitSpecializationAfterInstantiation =
9719                    RD->getTemplateSpecializationKind() !=
9720                    TSK_ExplicitSpecialization;
9721                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9722                  IsExplicitSpecializationAfterInstantiation =
9723                    ED->getTemplateSpecializationKind() !=
9724                    TSK_ExplicitSpecialization;
9725              }
9726
9727              if (!IsExplicitSpecializationAfterInstantiation) {
9728                // A redeclaration in function prototype scope in C isn't
9729                // visible elsewhere, so merely issue a warning.
9730                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9731                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9732                else
9733                  Diag(NameLoc, diag::err_redefinition) << Name;
9734                Diag(Def->getLocation(), diag::note_previous_definition);
9735                // If this is a redefinition, recover by making this
9736                // struct be anonymous, which will make any later
9737                // references get the previous definition.
9738                Name = 0;
9739                Previous.clear();
9740                Invalid = true;
9741              }
9742            } else {
9743              // If the type is currently being defined, complain
9744              // about a nested redefinition.
9745              const TagType *Tag
9746                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9747              if (Tag->isBeingDefined()) {
9748                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9749                Diag(PrevTagDecl->getLocation(),
9750                     diag::note_previous_definition);
9751                Name = 0;
9752                Previous.clear();
9753                Invalid = true;
9754              }
9755            }
9756
9757            // Okay, this is definition of a previously declared or referenced
9758            // tag PrevDecl. We're going to create a new Decl for it.
9759          }
9760        }
9761        // If we get here we have (another) forward declaration or we
9762        // have a definition.  Just create a new decl.
9763
9764      } else {
9765        // If we get here, this is a definition of a new tag type in a nested
9766        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9767        // new decl/type.  We set PrevDecl to NULL so that the entities
9768        // have distinct types.
9769        Previous.clear();
9770      }
9771      // If we get here, we're going to create a new Decl. If PrevDecl
9772      // is non-NULL, it's a definition of the tag declared by
9773      // PrevDecl. If it's NULL, we have a new definition.
9774
9775
9776    // Otherwise, PrevDecl is not a tag, but was found with tag
9777    // lookup.  This is only actually possible in C++, where a few
9778    // things like templates still live in the tag namespace.
9779    } else {
9780      // Use a better diagnostic if an elaborated-type-specifier
9781      // found the wrong kind of type on the first
9782      // (non-redeclaration) lookup.
9783      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9784          !Previous.isForRedeclaration()) {
9785        unsigned Kind = 0;
9786        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9787        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9788        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9789        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9790        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9791        Invalid = true;
9792
9793      // Otherwise, only diagnose if the declaration is in scope.
9794      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9795                                isExplicitSpecialization)) {
9796        // do nothing
9797
9798      // Diagnose implicit declarations introduced by elaborated types.
9799      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9800        unsigned Kind = 0;
9801        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9802        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9803        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9804        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9805        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9806        Invalid = true;
9807
9808      // Otherwise it's a declaration.  Call out a particularly common
9809      // case here.
9810      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9811        unsigned Kind = 0;
9812        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9813        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9814          << Name << Kind << TND->getUnderlyingType();
9815        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9816        Invalid = true;
9817
9818      // Otherwise, diagnose.
9819      } else {
9820        // The tag name clashes with something else in the target scope,
9821        // issue an error and recover by making this tag be anonymous.
9822        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9823        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9824        Name = 0;
9825        Invalid = true;
9826      }
9827
9828      // The existing declaration isn't relevant to us; we're in a
9829      // new scope, so clear out the previous declaration.
9830      Previous.clear();
9831    }
9832  }
9833
9834CreateNewDecl:
9835
9836  TagDecl *PrevDecl = 0;
9837  if (Previous.isSingleResult())
9838    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9839
9840  // If there is an identifier, use the location of the identifier as the
9841  // location of the decl, otherwise use the location of the struct/union
9842  // keyword.
9843  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9844
9845  // Otherwise, create a new declaration. If there is a previous
9846  // declaration of the same entity, the two will be linked via
9847  // PrevDecl.
9848  TagDecl *New;
9849
9850  bool IsForwardReference = false;
9851  if (Kind == TTK_Enum) {
9852    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9853    // enum X { A, B, C } D;    D should chain to X.
9854    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9855                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9856                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9857    // If this is an undefined enum, warn.
9858    if (TUK != TUK_Definition && !Invalid) {
9859      TagDecl *Def;
9860      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9861        // C++0x: 7.2p2: opaque-enum-declaration.
9862        // Conflicts are diagnosed above. Do nothing.
9863      }
9864      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9865        Diag(Loc, diag::ext_forward_ref_enum_def)
9866          << New;
9867        Diag(Def->getLocation(), diag::note_previous_definition);
9868      } else {
9869        unsigned DiagID = diag::ext_forward_ref_enum;
9870        if (getLangOpts().MicrosoftMode)
9871          DiagID = diag::ext_ms_forward_ref_enum;
9872        else if (getLangOpts().CPlusPlus)
9873          DiagID = diag::err_forward_ref_enum;
9874        Diag(Loc, DiagID);
9875
9876        // If this is a forward-declared reference to an enumeration, make a
9877        // note of it; we won't actually be introducing the declaration into
9878        // the declaration context.
9879        if (TUK == TUK_Reference)
9880          IsForwardReference = true;
9881      }
9882    }
9883
9884    if (EnumUnderlying) {
9885      EnumDecl *ED = cast<EnumDecl>(New);
9886      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9887        ED->setIntegerTypeSourceInfo(TI);
9888      else
9889        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9890      ED->setPromotionType(ED->getIntegerType());
9891    }
9892
9893  } else {
9894    // struct/union/class
9895
9896    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9897    // struct X { int A; } D;    D should chain to X.
9898    if (getLangOpts().CPlusPlus) {
9899      // FIXME: Look for a way to use RecordDecl for simple structs.
9900      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9901                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9902
9903      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9904        StdBadAlloc = cast<CXXRecordDecl>(New);
9905    } else
9906      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9907                               cast_or_null<RecordDecl>(PrevDecl));
9908  }
9909
9910  // Maybe add qualifier info.
9911  if (SS.isNotEmpty()) {
9912    if (SS.isSet()) {
9913      // If this is either a declaration or a definition, check the
9914      // nested-name-specifier against the current context. We don't do this
9915      // for explicit specializations, because they have similar checking
9916      // (with more specific diagnostics) in the call to
9917      // CheckMemberSpecialization, below.
9918      if (!isExplicitSpecialization &&
9919          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9920          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9921        Invalid = true;
9922
9923      New->setQualifierInfo(SS.getWithLocInContext(Context));
9924      if (TemplateParameterLists.size() > 0) {
9925        New->setTemplateParameterListsInfo(Context,
9926                                           TemplateParameterLists.size(),
9927                                           TemplateParameterLists.data());
9928      }
9929    }
9930    else
9931      Invalid = true;
9932  }
9933
9934  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9935    // Add alignment attributes if necessary; these attributes are checked when
9936    // the ASTContext lays out the structure.
9937    //
9938    // It is important for implementing the correct semantics that this
9939    // happen here (in act on tag decl). The #pragma pack stack is
9940    // maintained as a result of parser callbacks which can occur at
9941    // many points during the parsing of a struct declaration (because
9942    // the #pragma tokens are effectively skipped over during the
9943    // parsing of the struct).
9944    if (TUK == TUK_Definition) {
9945      AddAlignmentAttributesForRecord(RD);
9946      AddMsStructLayoutForRecord(RD);
9947    }
9948  }
9949
9950  if (ModulePrivateLoc.isValid()) {
9951    if (isExplicitSpecialization)
9952      Diag(New->getLocation(), diag::err_module_private_specialization)
9953        << 2
9954        << FixItHint::CreateRemoval(ModulePrivateLoc);
9955    // __module_private__ does not apply to local classes. However, we only
9956    // diagnose this as an error when the declaration specifiers are
9957    // freestanding. Here, we just ignore the __module_private__.
9958    else if (!SearchDC->isFunctionOrMethod())
9959      New->setModulePrivate();
9960  }
9961
9962  // If this is a specialization of a member class (of a class template),
9963  // check the specialization.
9964  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9965    Invalid = true;
9966
9967  if (Invalid)
9968    New->setInvalidDecl();
9969
9970  if (Attr)
9971    ProcessDeclAttributeList(S, New, Attr);
9972
9973  // If we're declaring or defining a tag in function prototype scope
9974  // in C, note that this type can only be used within the function.
9975  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9976    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9977
9978  // Set the lexical context. If the tag has a C++ scope specifier, the
9979  // lexical context will be different from the semantic context.
9980  New->setLexicalDeclContext(CurContext);
9981
9982  // Mark this as a friend decl if applicable.
9983  // In Microsoft mode, a friend declaration also acts as a forward
9984  // declaration so we always pass true to setObjectOfFriendDecl to make
9985  // the tag name visible.
9986  if (TUK == TUK_Friend)
9987    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9988                               getLangOpts().MicrosoftExt);
9989
9990  // Set the access specifier.
9991  if (!Invalid && SearchDC->isRecord())
9992    SetMemberAccessSpecifier(New, PrevDecl, AS);
9993
9994  if (TUK == TUK_Definition)
9995    New->startDefinition();
9996
9997  // If this has an identifier, add it to the scope stack.
9998  if (TUK == TUK_Friend) {
9999    // We might be replacing an existing declaration in the lookup tables;
10000    // if so, borrow its access specifier.
10001    if (PrevDecl)
10002      New->setAccess(PrevDecl->getAccess());
10003
10004    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10005    DC->makeDeclVisibleInContext(New);
10006    if (Name) // can be null along some error paths
10007      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10008        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10009  } else if (Name) {
10010    S = getNonFieldDeclScope(S);
10011    PushOnScopeChains(New, S, !IsForwardReference);
10012    if (IsForwardReference)
10013      SearchDC->makeDeclVisibleInContext(New);
10014
10015  } else {
10016    CurContext->addDecl(New);
10017  }
10018
10019  // If this is the C FILE type, notify the AST context.
10020  if (IdentifierInfo *II = New->getIdentifier())
10021    if (!New->isInvalidDecl() &&
10022        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10023        II->isStr("FILE"))
10024      Context.setFILEDecl(New);
10025
10026  // If we were in function prototype scope (and not in C++ mode), add this
10027  // tag to the list of decls to inject into the function definition scope.
10028  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10029      InFunctionDeclarator && Name)
10030    DeclsInPrototypeScope.push_back(New);
10031
10032  if (PrevDecl)
10033    mergeDeclAttributes(New, PrevDecl);
10034
10035  // If there's a #pragma GCC visibility in scope, set the visibility of this
10036  // record.
10037  AddPushedVisibilityAttribute(New);
10038
10039  OwnedDecl = true;
10040  // In C++, don't return an invalid declaration. We can't recover well from
10041  // the cases where we make the type anonymous.
10042  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10043}
10044
10045void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10046  AdjustDeclIfTemplate(TagD);
10047  TagDecl *Tag = cast<TagDecl>(TagD);
10048
10049  // Enter the tag context.
10050  PushDeclContext(S, Tag);
10051
10052  ActOnDocumentableDecl(TagD);
10053
10054  // If there's a #pragma GCC visibility in scope, set the visibility of this
10055  // record.
10056  AddPushedVisibilityAttribute(Tag);
10057}
10058
10059Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10060  assert(isa<ObjCContainerDecl>(IDecl) &&
10061         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10062  DeclContext *OCD = cast<DeclContext>(IDecl);
10063  assert(getContainingDC(OCD) == CurContext &&
10064      "The next DeclContext should be lexically contained in the current one.");
10065  CurContext = OCD;
10066  return IDecl;
10067}
10068
10069void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10070                                           SourceLocation FinalLoc,
10071                                           SourceLocation LBraceLoc) {
10072  AdjustDeclIfTemplate(TagD);
10073  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10074
10075  FieldCollector->StartClass();
10076
10077  if (!Record->getIdentifier())
10078    return;
10079
10080  if (FinalLoc.isValid())
10081    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10082
10083  // C++ [class]p2:
10084  //   [...] The class-name is also inserted into the scope of the
10085  //   class itself; this is known as the injected-class-name. For
10086  //   purposes of access checking, the injected-class-name is treated
10087  //   as if it were a public member name.
10088  CXXRecordDecl *InjectedClassName
10089    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10090                            Record->getLocStart(), Record->getLocation(),
10091                            Record->getIdentifier(),
10092                            /*PrevDecl=*/0,
10093                            /*DelayTypeCreation=*/true);
10094  Context.getTypeDeclType(InjectedClassName, Record);
10095  InjectedClassName->setImplicit();
10096  InjectedClassName->setAccess(AS_public);
10097  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10098      InjectedClassName->setDescribedClassTemplate(Template);
10099  PushOnScopeChains(InjectedClassName, S);
10100  assert(InjectedClassName->isInjectedClassName() &&
10101         "Broken injected-class-name");
10102}
10103
10104void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10105                                    SourceLocation RBraceLoc) {
10106  AdjustDeclIfTemplate(TagD);
10107  TagDecl *Tag = cast<TagDecl>(TagD);
10108  Tag->setRBraceLoc(RBraceLoc);
10109
10110  // Make sure we "complete" the definition even it is invalid.
10111  if (Tag->isBeingDefined()) {
10112    assert(Tag->isInvalidDecl() && "We should already have completed it");
10113    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10114      RD->completeDefinition();
10115  }
10116
10117  if (isa<CXXRecordDecl>(Tag))
10118    FieldCollector->FinishClass();
10119
10120  // Exit this scope of this tag's definition.
10121  PopDeclContext();
10122
10123  if (getCurLexicalContext()->isObjCContainer() &&
10124      Tag->getDeclContext()->isFileContext())
10125    Tag->setTopLevelDeclInObjCContainer();
10126
10127  // Notify the consumer that we've defined a tag.
10128  Consumer.HandleTagDeclDefinition(Tag);
10129}
10130
10131void Sema::ActOnObjCContainerFinishDefinition() {
10132  // Exit this scope of this interface definition.
10133  PopDeclContext();
10134}
10135
10136void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10137  assert(DC == CurContext && "Mismatch of container contexts");
10138  OriginalLexicalContext = DC;
10139  ActOnObjCContainerFinishDefinition();
10140}
10141
10142void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10143  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10144  OriginalLexicalContext = 0;
10145}
10146
10147void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10148  AdjustDeclIfTemplate(TagD);
10149  TagDecl *Tag = cast<TagDecl>(TagD);
10150  Tag->setInvalidDecl();
10151
10152  // Make sure we "complete" the definition even it is invalid.
10153  if (Tag->isBeingDefined()) {
10154    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10155      RD->completeDefinition();
10156  }
10157
10158  // We're undoing ActOnTagStartDefinition here, not
10159  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10160  // the FieldCollector.
10161
10162  PopDeclContext();
10163}
10164
10165// Note that FieldName may be null for anonymous bitfields.
10166ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10167                                IdentifierInfo *FieldName,
10168                                QualType FieldTy, Expr *BitWidth,
10169                                bool *ZeroWidth) {
10170  // Default to true; that shouldn't confuse checks for emptiness
10171  if (ZeroWidth)
10172    *ZeroWidth = true;
10173
10174  // C99 6.7.2.1p4 - verify the field type.
10175  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10176  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10177    // Handle incomplete types with specific error.
10178    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10179      return ExprError();
10180    if (FieldName)
10181      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10182        << FieldName << FieldTy << BitWidth->getSourceRange();
10183    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10184      << FieldTy << BitWidth->getSourceRange();
10185  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10186                                             UPPC_BitFieldWidth))
10187    return ExprError();
10188
10189  // If the bit-width is type- or value-dependent, don't try to check
10190  // it now.
10191  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10192    return Owned(BitWidth);
10193
10194  llvm::APSInt Value;
10195  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10196  if (ICE.isInvalid())
10197    return ICE;
10198  BitWidth = ICE.take();
10199
10200  if (Value != 0 && ZeroWidth)
10201    *ZeroWidth = false;
10202
10203  // Zero-width bitfield is ok for anonymous field.
10204  if (Value == 0 && FieldName)
10205    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10206
10207  if (Value.isSigned() && Value.isNegative()) {
10208    if (FieldName)
10209      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10210               << FieldName << Value.toString(10);
10211    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10212      << Value.toString(10);
10213  }
10214
10215  if (!FieldTy->isDependentType()) {
10216    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10217    if (Value.getZExtValue() > TypeSize) {
10218      if (!getLangOpts().CPlusPlus) {
10219        if (FieldName)
10220          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10221            << FieldName << (unsigned)Value.getZExtValue()
10222            << (unsigned)TypeSize;
10223
10224        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10225          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10226      }
10227
10228      if (FieldName)
10229        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10230          << FieldName << (unsigned)Value.getZExtValue()
10231          << (unsigned)TypeSize;
10232      else
10233        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10234          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10235    }
10236  }
10237
10238  return Owned(BitWidth);
10239}
10240
10241/// ActOnField - Each field of a C struct/union is passed into this in order
10242/// to create a FieldDecl object for it.
10243Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10244                       Declarator &D, Expr *BitfieldWidth) {
10245  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10246                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10247                               /*InitStyle=*/ICIS_NoInit, AS_public);
10248  return Res;
10249}
10250
10251/// HandleField - Analyze a field of a C struct or a C++ data member.
10252///
10253FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10254                             SourceLocation DeclStart,
10255                             Declarator &D, Expr *BitWidth,
10256                             InClassInitStyle InitStyle,
10257                             AccessSpecifier AS) {
10258  IdentifierInfo *II = D.getIdentifier();
10259  SourceLocation Loc = DeclStart;
10260  if (II) Loc = D.getIdentifierLoc();
10261
10262  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10263  QualType T = TInfo->getType();
10264  if (getLangOpts().CPlusPlus) {
10265    CheckExtraCXXDefaultArguments(D);
10266
10267    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10268                                        UPPC_DataMemberType)) {
10269      D.setInvalidType();
10270      T = Context.IntTy;
10271      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10272    }
10273  }
10274
10275  // TR 18037 does not allow fields to be declared with address spaces.
10276  if (T.getQualifiers().hasAddressSpace()) {
10277    Diag(Loc, diag::err_field_with_address_space);
10278    D.setInvalidType();
10279  }
10280
10281  // OpenCL 1.2 spec, s6.9 r:
10282  // The event type cannot be used to declare a structure or union field.
10283  if (LangOpts.OpenCL && T->isEventT()) {
10284    Diag(Loc, diag::err_event_t_struct_field);
10285    D.setInvalidType();
10286  }
10287
10288  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10289
10290  if (D.getDeclSpec().isThreadSpecified())
10291    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10292
10293  // Check to see if this name was declared as a member previously
10294  NamedDecl *PrevDecl = 0;
10295  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10296  LookupName(Previous, S);
10297  switch (Previous.getResultKind()) {
10298    case LookupResult::Found:
10299    case LookupResult::FoundUnresolvedValue:
10300      PrevDecl = Previous.getAsSingle<NamedDecl>();
10301      break;
10302
10303    case LookupResult::FoundOverloaded:
10304      PrevDecl = Previous.getRepresentativeDecl();
10305      break;
10306
10307    case LookupResult::NotFound:
10308    case LookupResult::NotFoundInCurrentInstantiation:
10309    case LookupResult::Ambiguous:
10310      break;
10311  }
10312  Previous.suppressDiagnostics();
10313
10314  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10315    // Maybe we will complain about the shadowed template parameter.
10316    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10317    // Just pretend that we didn't see the previous declaration.
10318    PrevDecl = 0;
10319  }
10320
10321  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10322    PrevDecl = 0;
10323
10324  bool Mutable
10325    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10326  SourceLocation TSSL = D.getLocStart();
10327  FieldDecl *NewFD
10328    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10329                     TSSL, AS, PrevDecl, &D);
10330
10331  if (NewFD->isInvalidDecl())
10332    Record->setInvalidDecl();
10333
10334  if (D.getDeclSpec().isModulePrivateSpecified())
10335    NewFD->setModulePrivate();
10336
10337  if (NewFD->isInvalidDecl() && PrevDecl) {
10338    // Don't introduce NewFD into scope; there's already something
10339    // with the same name in the same scope.
10340  } else if (II) {
10341    PushOnScopeChains(NewFD, S);
10342  } else
10343    Record->addDecl(NewFD);
10344
10345  return NewFD;
10346}
10347
10348/// \brief Build a new FieldDecl and check its well-formedness.
10349///
10350/// This routine builds a new FieldDecl given the fields name, type,
10351/// record, etc. \p PrevDecl should refer to any previous declaration
10352/// with the same name and in the same scope as the field to be
10353/// created.
10354///
10355/// \returns a new FieldDecl.
10356///
10357/// \todo The Declarator argument is a hack. It will be removed once
10358FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10359                                TypeSourceInfo *TInfo,
10360                                RecordDecl *Record, SourceLocation Loc,
10361                                bool Mutable, Expr *BitWidth,
10362                                InClassInitStyle InitStyle,
10363                                SourceLocation TSSL,
10364                                AccessSpecifier AS, NamedDecl *PrevDecl,
10365                                Declarator *D) {
10366  IdentifierInfo *II = Name.getAsIdentifierInfo();
10367  bool InvalidDecl = false;
10368  if (D) InvalidDecl = D->isInvalidType();
10369
10370  // If we receive a broken type, recover by assuming 'int' and
10371  // marking this declaration as invalid.
10372  if (T.isNull()) {
10373    InvalidDecl = true;
10374    T = Context.IntTy;
10375  }
10376
10377  QualType EltTy = Context.getBaseElementType(T);
10378  if (!EltTy->isDependentType()) {
10379    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10380      // Fields of incomplete type force their record to be invalid.
10381      Record->setInvalidDecl();
10382      InvalidDecl = true;
10383    } else {
10384      NamedDecl *Def;
10385      EltTy->isIncompleteType(&Def);
10386      if (Def && Def->isInvalidDecl()) {
10387        Record->setInvalidDecl();
10388        InvalidDecl = true;
10389      }
10390    }
10391  }
10392
10393  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10394  if (BitWidth && getLangOpts().OpenCL) {
10395    Diag(Loc, diag::err_opencl_bitfields);
10396    InvalidDecl = true;
10397  }
10398
10399  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10400  // than a variably modified type.
10401  if (!InvalidDecl && T->isVariablyModifiedType()) {
10402    bool SizeIsNegative;
10403    llvm::APSInt Oversized;
10404
10405    TypeSourceInfo *FixedTInfo =
10406      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10407                                                    SizeIsNegative,
10408                                                    Oversized);
10409    if (FixedTInfo) {
10410      Diag(Loc, diag::warn_illegal_constant_array_size);
10411      TInfo = FixedTInfo;
10412      T = FixedTInfo->getType();
10413    } else {
10414      if (SizeIsNegative)
10415        Diag(Loc, diag::err_typecheck_negative_array_size);
10416      else if (Oversized.getBoolValue())
10417        Diag(Loc, diag::err_array_too_large)
10418          << Oversized.toString(10);
10419      else
10420        Diag(Loc, diag::err_typecheck_field_variable_size);
10421      InvalidDecl = true;
10422    }
10423  }
10424
10425  // Fields can not have abstract class types
10426  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10427                                             diag::err_abstract_type_in_decl,
10428                                             AbstractFieldType))
10429    InvalidDecl = true;
10430
10431  bool ZeroWidth = false;
10432  // If this is declared as a bit-field, check the bit-field.
10433  if (!InvalidDecl && BitWidth) {
10434    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10435    if (!BitWidth) {
10436      InvalidDecl = true;
10437      BitWidth = 0;
10438      ZeroWidth = false;
10439    }
10440  }
10441
10442  // Check that 'mutable' is consistent with the type of the declaration.
10443  if (!InvalidDecl && Mutable) {
10444    unsigned DiagID = 0;
10445    if (T->isReferenceType())
10446      DiagID = diag::err_mutable_reference;
10447    else if (T.isConstQualified())
10448      DiagID = diag::err_mutable_const;
10449
10450    if (DiagID) {
10451      SourceLocation ErrLoc = Loc;
10452      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10453        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10454      Diag(ErrLoc, DiagID);
10455      Mutable = false;
10456      InvalidDecl = true;
10457    }
10458  }
10459
10460  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10461                                       BitWidth, Mutable, InitStyle);
10462  if (InvalidDecl)
10463    NewFD->setInvalidDecl();
10464
10465  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10466    Diag(Loc, diag::err_duplicate_member) << II;
10467    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10468    NewFD->setInvalidDecl();
10469  }
10470
10471  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10472    if (Record->isUnion()) {
10473      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10474        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10475        if (RDecl->getDefinition()) {
10476          // C++ [class.union]p1: An object of a class with a non-trivial
10477          // constructor, a non-trivial copy constructor, a non-trivial
10478          // destructor, or a non-trivial copy assignment operator
10479          // cannot be a member of a union, nor can an array of such
10480          // objects.
10481          if (CheckNontrivialField(NewFD))
10482            NewFD->setInvalidDecl();
10483        }
10484      }
10485
10486      // C++ [class.union]p1: If a union contains a member of reference type,
10487      // the program is ill-formed.
10488      if (EltTy->isReferenceType()) {
10489        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10490          << NewFD->getDeclName() << EltTy;
10491        NewFD->setInvalidDecl();
10492      }
10493    }
10494  }
10495
10496  // FIXME: We need to pass in the attributes given an AST
10497  // representation, not a parser representation.
10498  if (D) {
10499    // FIXME: What to pass instead of TUScope?
10500    ProcessDeclAttributes(TUScope, NewFD, *D);
10501
10502    if (NewFD->hasAttrs())
10503      CheckAlignasUnderalignment(NewFD);
10504  }
10505
10506  // In auto-retain/release, infer strong retension for fields of
10507  // retainable type.
10508  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10509    NewFD->setInvalidDecl();
10510
10511  if (T.isObjCGCWeak())
10512    Diag(Loc, diag::warn_attribute_weak_on_field);
10513
10514  NewFD->setAccess(AS);
10515  return NewFD;
10516}
10517
10518bool Sema::CheckNontrivialField(FieldDecl *FD) {
10519  assert(FD);
10520  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10521
10522  if (FD->isInvalidDecl())
10523    return true;
10524
10525  QualType EltTy = Context.getBaseElementType(FD->getType());
10526  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10527    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10528    if (RDecl->getDefinition()) {
10529      // We check for copy constructors before constructors
10530      // because otherwise we'll never get complaints about
10531      // copy constructors.
10532
10533      CXXSpecialMember member = CXXInvalid;
10534      // We're required to check for any non-trivial constructors. Since the
10535      // implicit default constructor is suppressed if there are any
10536      // user-declared constructors, we just need to check that there is a
10537      // trivial default constructor and a trivial copy constructor. (We don't
10538      // worry about move constructors here, since this is a C++98 check.)
10539      if (RDecl->hasNonTrivialCopyConstructor())
10540        member = CXXCopyConstructor;
10541      else if (!RDecl->hasTrivialDefaultConstructor())
10542        member = CXXDefaultConstructor;
10543      else if (RDecl->hasNonTrivialCopyAssignment())
10544        member = CXXCopyAssignment;
10545      else if (RDecl->hasNonTrivialDestructor())
10546        member = CXXDestructor;
10547
10548      if (member != CXXInvalid) {
10549        if (!getLangOpts().CPlusPlus11 &&
10550            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10551          // Objective-C++ ARC: it is an error to have a non-trivial field of
10552          // a union. However, system headers in Objective-C programs
10553          // occasionally have Objective-C lifetime objects within unions,
10554          // and rather than cause the program to fail, we make those
10555          // members unavailable.
10556          SourceLocation Loc = FD->getLocation();
10557          if (getSourceManager().isInSystemHeader(Loc)) {
10558            if (!FD->hasAttr<UnavailableAttr>())
10559              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10560                                  "this system field has retaining ownership"));
10561            return false;
10562          }
10563        }
10564
10565        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10566               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10567               diag::err_illegal_union_or_anon_struct_member)
10568          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10569        DiagnoseNontrivial(RDecl, member);
10570        return !getLangOpts().CPlusPlus11;
10571      }
10572    }
10573  }
10574
10575  return false;
10576}
10577
10578/// TranslateIvarVisibility - Translate visibility from a token ID to an
10579///  AST enum value.
10580static ObjCIvarDecl::AccessControl
10581TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10582  switch (ivarVisibility) {
10583  default: llvm_unreachable("Unknown visitibility kind");
10584  case tok::objc_private: return ObjCIvarDecl::Private;
10585  case tok::objc_public: return ObjCIvarDecl::Public;
10586  case tok::objc_protected: return ObjCIvarDecl::Protected;
10587  case tok::objc_package: return ObjCIvarDecl::Package;
10588  }
10589}
10590
10591/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10592/// in order to create an IvarDecl object for it.
10593Decl *Sema::ActOnIvar(Scope *S,
10594                                SourceLocation DeclStart,
10595                                Declarator &D, Expr *BitfieldWidth,
10596                                tok::ObjCKeywordKind Visibility) {
10597
10598  IdentifierInfo *II = D.getIdentifier();
10599  Expr *BitWidth = (Expr*)BitfieldWidth;
10600  SourceLocation Loc = DeclStart;
10601  if (II) Loc = D.getIdentifierLoc();
10602
10603  // FIXME: Unnamed fields can be handled in various different ways, for
10604  // example, unnamed unions inject all members into the struct namespace!
10605
10606  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10607  QualType T = TInfo->getType();
10608
10609  if (BitWidth) {
10610    // 6.7.2.1p3, 6.7.2.1p4
10611    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10612    if (!BitWidth)
10613      D.setInvalidType();
10614  } else {
10615    // Not a bitfield.
10616
10617    // validate II.
10618
10619  }
10620  if (T->isReferenceType()) {
10621    Diag(Loc, diag::err_ivar_reference_type);
10622    D.setInvalidType();
10623  }
10624  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10625  // than a variably modified type.
10626  else if (T->isVariablyModifiedType()) {
10627    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10628    D.setInvalidType();
10629  }
10630
10631  // Get the visibility (access control) for this ivar.
10632  ObjCIvarDecl::AccessControl ac =
10633    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10634                                        : ObjCIvarDecl::None;
10635  // Must set ivar's DeclContext to its enclosing interface.
10636  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10637  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10638    return 0;
10639  ObjCContainerDecl *EnclosingContext;
10640  if (ObjCImplementationDecl *IMPDecl =
10641      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10642    if (LangOpts.ObjCRuntime.isFragile()) {
10643    // Case of ivar declared in an implementation. Context is that of its class.
10644      EnclosingContext = IMPDecl->getClassInterface();
10645      assert(EnclosingContext && "Implementation has no class interface!");
10646    }
10647    else
10648      EnclosingContext = EnclosingDecl;
10649  } else {
10650    if (ObjCCategoryDecl *CDecl =
10651        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10652      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10653        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10654        return 0;
10655      }
10656    }
10657    EnclosingContext = EnclosingDecl;
10658  }
10659
10660  // Construct the decl.
10661  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10662                                             DeclStart, Loc, II, T,
10663                                             TInfo, ac, (Expr *)BitfieldWidth);
10664
10665  if (II) {
10666    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10667                                           ForRedeclaration);
10668    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10669        && !isa<TagDecl>(PrevDecl)) {
10670      Diag(Loc, diag::err_duplicate_member) << II;
10671      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10672      NewID->setInvalidDecl();
10673    }
10674  }
10675
10676  // Process attributes attached to the ivar.
10677  ProcessDeclAttributes(S, NewID, D);
10678
10679  if (D.isInvalidType())
10680    NewID->setInvalidDecl();
10681
10682  // In ARC, infer 'retaining' for ivars of retainable type.
10683  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10684    NewID->setInvalidDecl();
10685
10686  if (D.getDeclSpec().isModulePrivateSpecified())
10687    NewID->setModulePrivate();
10688
10689  if (II) {
10690    // FIXME: When interfaces are DeclContexts, we'll need to add
10691    // these to the interface.
10692    S->AddDecl(NewID);
10693    IdResolver.AddDecl(NewID);
10694  }
10695
10696  if (LangOpts.ObjCRuntime.isNonFragile() &&
10697      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10698    Diag(Loc, diag::warn_ivars_in_interface);
10699
10700  return NewID;
10701}
10702
10703/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10704/// class and class extensions. For every class @interface and class
10705/// extension @interface, if the last ivar is a bitfield of any type,
10706/// then add an implicit `char :0` ivar to the end of that interface.
10707void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10708                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10709  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10710    return;
10711
10712  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10713  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10714
10715  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10716    return;
10717  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10718  if (!ID) {
10719    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10720      if (!CD->IsClassExtension())
10721        return;
10722    }
10723    // No need to add this to end of @implementation.
10724    else
10725      return;
10726  }
10727  // All conditions are met. Add a new bitfield to the tail end of ivars.
10728  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10729  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10730
10731  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10732                              DeclLoc, DeclLoc, 0,
10733                              Context.CharTy,
10734                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10735                                                               DeclLoc),
10736                              ObjCIvarDecl::Private, BW,
10737                              true);
10738  AllIvarDecls.push_back(Ivar);
10739}
10740
10741void Sema::ActOnFields(Scope* S,
10742                       SourceLocation RecLoc, Decl *EnclosingDecl,
10743                       llvm::ArrayRef<Decl *> Fields,
10744                       SourceLocation LBrac, SourceLocation RBrac,
10745                       AttributeList *Attr) {
10746  assert(EnclosingDecl && "missing record or interface decl");
10747
10748  // If this is an Objective-C @implementation or category and we have
10749  // new fields here we should reset the layout of the interface since
10750  // it will now change.
10751  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10752    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10753    switch (DC->getKind()) {
10754    default: break;
10755    case Decl::ObjCCategory:
10756      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10757      break;
10758    case Decl::ObjCImplementation:
10759      Context.
10760        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10761      break;
10762    }
10763  }
10764
10765  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10766
10767  // Start counting up the number of named members; make sure to include
10768  // members of anonymous structs and unions in the total.
10769  unsigned NumNamedMembers = 0;
10770  if (Record) {
10771    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10772                                   e = Record->decls_end(); i != e; i++) {
10773      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10774        if (IFD->getDeclName())
10775          ++NumNamedMembers;
10776    }
10777  }
10778
10779  // Verify that all the fields are okay.
10780  SmallVector<FieldDecl*, 32> RecFields;
10781
10782  bool ARCErrReported = false;
10783  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10784       i != end; ++i) {
10785    FieldDecl *FD = cast<FieldDecl>(*i);
10786
10787    // Get the type for the field.
10788    const Type *FDTy = FD->getType().getTypePtr();
10789
10790    if (!FD->isAnonymousStructOrUnion()) {
10791      // Remember all fields written by the user.
10792      RecFields.push_back(FD);
10793    }
10794
10795    // If the field is already invalid for some reason, don't emit more
10796    // diagnostics about it.
10797    if (FD->isInvalidDecl()) {
10798      EnclosingDecl->setInvalidDecl();
10799      continue;
10800    }
10801
10802    // C99 6.7.2.1p2:
10803    //   A structure or union shall not contain a member with
10804    //   incomplete or function type (hence, a structure shall not
10805    //   contain an instance of itself, but may contain a pointer to
10806    //   an instance of itself), except that the last member of a
10807    //   structure with more than one named member may have incomplete
10808    //   array type; such a structure (and any union containing,
10809    //   possibly recursively, a member that is such a structure)
10810    //   shall not be a member of a structure or an element of an
10811    //   array.
10812    if (FDTy->isFunctionType()) {
10813      // Field declared as a function.
10814      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10815        << FD->getDeclName();
10816      FD->setInvalidDecl();
10817      EnclosingDecl->setInvalidDecl();
10818      continue;
10819    } else if (FDTy->isIncompleteArrayType() && Record &&
10820               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10821                ((getLangOpts().MicrosoftExt ||
10822                  getLangOpts().CPlusPlus) &&
10823                 (i + 1 == Fields.end() || Record->isUnion())))) {
10824      // Flexible array member.
10825      // Microsoft and g++ is more permissive regarding flexible array.
10826      // It will accept flexible array in union and also
10827      // as the sole element of a struct/class.
10828      if (getLangOpts().MicrosoftExt) {
10829        if (Record->isUnion())
10830          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10831            << FD->getDeclName();
10832        else if (Fields.size() == 1)
10833          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10834            << FD->getDeclName() << Record->getTagKind();
10835      } else if (getLangOpts().CPlusPlus) {
10836        if (Record->isUnion())
10837          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10838            << FD->getDeclName();
10839        else if (Fields.size() == 1)
10840          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10841            << FD->getDeclName() << Record->getTagKind();
10842      } else if (!getLangOpts().C99) {
10843      if (Record->isUnion())
10844        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10845          << FD->getDeclName();
10846      else
10847        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10848          << FD->getDeclName() << Record->getTagKind();
10849      } else if (NumNamedMembers < 1) {
10850        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10851          << FD->getDeclName();
10852        FD->setInvalidDecl();
10853        EnclosingDecl->setInvalidDecl();
10854        continue;
10855      }
10856      if (!FD->getType()->isDependentType() &&
10857          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10858        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10859          << FD->getDeclName() << FD->getType();
10860        FD->setInvalidDecl();
10861        EnclosingDecl->setInvalidDecl();
10862        continue;
10863      }
10864      // Okay, we have a legal flexible array member at the end of the struct.
10865      if (Record)
10866        Record->setHasFlexibleArrayMember(true);
10867    } else if (!FDTy->isDependentType() &&
10868               RequireCompleteType(FD->getLocation(), FD->getType(),
10869                                   diag::err_field_incomplete)) {
10870      // Incomplete type
10871      FD->setInvalidDecl();
10872      EnclosingDecl->setInvalidDecl();
10873      continue;
10874    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10875      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10876        // If this is a member of a union, then entire union becomes "flexible".
10877        if (Record && Record->isUnion()) {
10878          Record->setHasFlexibleArrayMember(true);
10879        } else {
10880          // If this is a struct/class and this is not the last element, reject
10881          // it.  Note that GCC supports variable sized arrays in the middle of
10882          // structures.
10883          if (i + 1 != Fields.end())
10884            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10885              << FD->getDeclName() << FD->getType();
10886          else {
10887            // We support flexible arrays at the end of structs in
10888            // other structs as an extension.
10889            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10890              << FD->getDeclName();
10891            if (Record)
10892              Record->setHasFlexibleArrayMember(true);
10893          }
10894        }
10895      }
10896      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10897          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10898                                 diag::err_abstract_type_in_decl,
10899                                 AbstractIvarType)) {
10900        // Ivars can not have abstract class types
10901        FD->setInvalidDecl();
10902      }
10903      if (Record && FDTTy->getDecl()->hasObjectMember())
10904        Record->setHasObjectMember(true);
10905      if (Record && FDTTy->getDecl()->hasVolatileMember())
10906        Record->setHasVolatileMember(true);
10907    } else if (FDTy->isObjCObjectType()) {
10908      /// A field cannot be an Objective-c object
10909      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10910        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10911      QualType T = Context.getObjCObjectPointerType(FD->getType());
10912      FD->setType(T);
10913    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10914               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10915      // It's an error in ARC if a field has lifetime.
10916      // We don't want to report this in a system header, though,
10917      // so we just make the field unavailable.
10918      // FIXME: that's really not sufficient; we need to make the type
10919      // itself invalid to, say, initialize or copy.
10920      QualType T = FD->getType();
10921      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10922      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10923        SourceLocation loc = FD->getLocation();
10924        if (getSourceManager().isInSystemHeader(loc)) {
10925          if (!FD->hasAttr<UnavailableAttr>()) {
10926            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10927                              "this system field has retaining ownership"));
10928          }
10929        } else {
10930          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10931            << T->isBlockPointerType() << Record->getTagKind();
10932        }
10933        ARCErrReported = true;
10934      }
10935    } else if (getLangOpts().ObjC1 &&
10936               getLangOpts().getGC() != LangOptions::NonGC &&
10937               Record && !Record->hasObjectMember()) {
10938      if (FD->getType()->isObjCObjectPointerType() ||
10939          FD->getType().isObjCGCStrong())
10940        Record->setHasObjectMember(true);
10941      else if (Context.getAsArrayType(FD->getType())) {
10942        QualType BaseType = Context.getBaseElementType(FD->getType());
10943        if (BaseType->isRecordType() &&
10944            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10945          Record->setHasObjectMember(true);
10946        else if (BaseType->isObjCObjectPointerType() ||
10947                 BaseType.isObjCGCStrong())
10948               Record->setHasObjectMember(true);
10949      }
10950    }
10951    if (Record && FD->getType().isVolatileQualified())
10952      Record->setHasVolatileMember(true);
10953    // Keep track of the number of named members.
10954    if (FD->getIdentifier())
10955      ++NumNamedMembers;
10956  }
10957
10958  // Okay, we successfully defined 'Record'.
10959  if (Record) {
10960    bool Completed = false;
10961    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10962      if (!CXXRecord->isInvalidDecl()) {
10963        // Set access bits correctly on the directly-declared conversions.
10964        for (CXXRecordDecl::conversion_iterator
10965               I = CXXRecord->conversion_begin(),
10966               E = CXXRecord->conversion_end(); I != E; ++I)
10967          I.setAccess((*I)->getAccess());
10968
10969        if (!CXXRecord->isDependentType()) {
10970          // Adjust user-defined destructor exception spec.
10971          if (getLangOpts().CPlusPlus11 &&
10972              CXXRecord->hasUserDeclaredDestructor())
10973            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10974
10975          // Add any implicitly-declared members to this class.
10976          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10977
10978          // If we have virtual base classes, we may end up finding multiple
10979          // final overriders for a given virtual function. Check for this
10980          // problem now.
10981          if (CXXRecord->getNumVBases()) {
10982            CXXFinalOverriderMap FinalOverriders;
10983            CXXRecord->getFinalOverriders(FinalOverriders);
10984
10985            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10986                                             MEnd = FinalOverriders.end();
10987                 M != MEnd; ++M) {
10988              for (OverridingMethods::iterator SO = M->second.begin(),
10989                                            SOEnd = M->second.end();
10990                   SO != SOEnd; ++SO) {
10991                assert(SO->second.size() > 0 &&
10992                       "Virtual function without overridding functions?");
10993                if (SO->second.size() == 1)
10994                  continue;
10995
10996                // C++ [class.virtual]p2:
10997                //   In a derived class, if a virtual member function of a base
10998                //   class subobject has more than one final overrider the
10999                //   program is ill-formed.
11000                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11001                  << (const NamedDecl *)M->first << Record;
11002                Diag(M->first->getLocation(),
11003                     diag::note_overridden_virtual_function);
11004                for (OverridingMethods::overriding_iterator
11005                          OM = SO->second.begin(),
11006                       OMEnd = SO->second.end();
11007                     OM != OMEnd; ++OM)
11008                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11009                    << (const NamedDecl *)M->first << OM->Method->getParent();
11010
11011                Record->setInvalidDecl();
11012              }
11013            }
11014            CXXRecord->completeDefinition(&FinalOverriders);
11015            Completed = true;
11016          }
11017        }
11018      }
11019    }
11020
11021    if (!Completed)
11022      Record->completeDefinition();
11023
11024    if (Record->hasAttrs())
11025      CheckAlignasUnderalignment(Record);
11026  } else {
11027    ObjCIvarDecl **ClsFields =
11028      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11029    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11030      ID->setEndOfDefinitionLoc(RBrac);
11031      // Add ivar's to class's DeclContext.
11032      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11033        ClsFields[i]->setLexicalDeclContext(ID);
11034        ID->addDecl(ClsFields[i]);
11035      }
11036      // Must enforce the rule that ivars in the base classes may not be
11037      // duplicates.
11038      if (ID->getSuperClass())
11039        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11040    } else if (ObjCImplementationDecl *IMPDecl =
11041                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11042      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11043      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11044        // Ivar declared in @implementation never belongs to the implementation.
11045        // Only it is in implementation's lexical context.
11046        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11047      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11048      IMPDecl->setIvarLBraceLoc(LBrac);
11049      IMPDecl->setIvarRBraceLoc(RBrac);
11050    } else if (ObjCCategoryDecl *CDecl =
11051                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11052      // case of ivars in class extension; all other cases have been
11053      // reported as errors elsewhere.
11054      // FIXME. Class extension does not have a LocEnd field.
11055      // CDecl->setLocEnd(RBrac);
11056      // Add ivar's to class extension's DeclContext.
11057      // Diagnose redeclaration of private ivars.
11058      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11059      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11060        if (IDecl) {
11061          if (const ObjCIvarDecl *ClsIvar =
11062              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11063            Diag(ClsFields[i]->getLocation(),
11064                 diag::err_duplicate_ivar_declaration);
11065            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11066            continue;
11067          }
11068          for (ObjCInterfaceDecl::known_extensions_iterator
11069                 Ext = IDecl->known_extensions_begin(),
11070                 ExtEnd = IDecl->known_extensions_end();
11071               Ext != ExtEnd; ++Ext) {
11072            if (const ObjCIvarDecl *ClsExtIvar
11073                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11074              Diag(ClsFields[i]->getLocation(),
11075                   diag::err_duplicate_ivar_declaration);
11076              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11077              continue;
11078            }
11079          }
11080        }
11081        ClsFields[i]->setLexicalDeclContext(CDecl);
11082        CDecl->addDecl(ClsFields[i]);
11083      }
11084      CDecl->setIvarLBraceLoc(LBrac);
11085      CDecl->setIvarRBraceLoc(RBrac);
11086    }
11087  }
11088
11089  if (Attr)
11090    ProcessDeclAttributeList(S, Record, Attr);
11091}
11092
11093/// \brief Determine whether the given integral value is representable within
11094/// the given type T.
11095static bool isRepresentableIntegerValue(ASTContext &Context,
11096                                        llvm::APSInt &Value,
11097                                        QualType T) {
11098  assert(T->isIntegralType(Context) && "Integral type required!");
11099  unsigned BitWidth = Context.getIntWidth(T);
11100
11101  if (Value.isUnsigned() || Value.isNonNegative()) {
11102    if (T->isSignedIntegerOrEnumerationType())
11103      --BitWidth;
11104    return Value.getActiveBits() <= BitWidth;
11105  }
11106  return Value.getMinSignedBits() <= BitWidth;
11107}
11108
11109// \brief Given an integral type, return the next larger integral type
11110// (or a NULL type of no such type exists).
11111static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11112  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11113  // enum checking below.
11114  assert(T->isIntegralType(Context) && "Integral type required!");
11115  const unsigned NumTypes = 4;
11116  QualType SignedIntegralTypes[NumTypes] = {
11117    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11118  };
11119  QualType UnsignedIntegralTypes[NumTypes] = {
11120    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11121    Context.UnsignedLongLongTy
11122  };
11123
11124  unsigned BitWidth = Context.getTypeSize(T);
11125  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11126                                                        : UnsignedIntegralTypes;
11127  for (unsigned I = 0; I != NumTypes; ++I)
11128    if (Context.getTypeSize(Types[I]) > BitWidth)
11129      return Types[I];
11130
11131  return QualType();
11132}
11133
11134EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11135                                          EnumConstantDecl *LastEnumConst,
11136                                          SourceLocation IdLoc,
11137                                          IdentifierInfo *Id,
11138                                          Expr *Val) {
11139  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11140  llvm::APSInt EnumVal(IntWidth);
11141  QualType EltTy;
11142
11143  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11144    Val = 0;
11145
11146  if (Val)
11147    Val = DefaultLvalueConversion(Val).take();
11148
11149  if (Val) {
11150    if (Enum->isDependentType() || Val->isTypeDependent())
11151      EltTy = Context.DependentTy;
11152    else {
11153      SourceLocation ExpLoc;
11154      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11155          !getLangOpts().MicrosoftMode) {
11156        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11157        // constant-expression in the enumerator-definition shall be a converted
11158        // constant expression of the underlying type.
11159        EltTy = Enum->getIntegerType();
11160        ExprResult Converted =
11161          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11162                                           CCEK_Enumerator);
11163        if (Converted.isInvalid())
11164          Val = 0;
11165        else
11166          Val = Converted.take();
11167      } else if (!Val->isValueDependent() &&
11168                 !(Val = VerifyIntegerConstantExpression(Val,
11169                                                         &EnumVal).take())) {
11170        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11171      } else {
11172        if (Enum->isFixed()) {
11173          EltTy = Enum->getIntegerType();
11174
11175          // In Obj-C and Microsoft mode, require the enumeration value to be
11176          // representable in the underlying type of the enumeration. In C++11,
11177          // we perform a non-narrowing conversion as part of converted constant
11178          // expression checking.
11179          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11180            if (getLangOpts().MicrosoftMode) {
11181              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11182              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11183            } else
11184              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11185          } else
11186            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11187        } else if (getLangOpts().CPlusPlus) {
11188          // C++11 [dcl.enum]p5:
11189          //   If the underlying type is not fixed, the type of each enumerator
11190          //   is the type of its initializing value:
11191          //     - If an initializer is specified for an enumerator, the
11192          //       initializing value has the same type as the expression.
11193          EltTy = Val->getType();
11194        } else {
11195          // C99 6.7.2.2p2:
11196          //   The expression that defines the value of an enumeration constant
11197          //   shall be an integer constant expression that has a value
11198          //   representable as an int.
11199
11200          // Complain if the value is not representable in an int.
11201          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11202            Diag(IdLoc, diag::ext_enum_value_not_int)
11203              << EnumVal.toString(10) << Val->getSourceRange()
11204              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11205          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11206            // Force the type of the expression to 'int'.
11207            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11208          }
11209          EltTy = Val->getType();
11210        }
11211      }
11212    }
11213  }
11214
11215  if (!Val) {
11216    if (Enum->isDependentType())
11217      EltTy = Context.DependentTy;
11218    else if (!LastEnumConst) {
11219      // C++0x [dcl.enum]p5:
11220      //   If the underlying type is not fixed, the type of each enumerator
11221      //   is the type of its initializing value:
11222      //     - If no initializer is specified for the first enumerator, the
11223      //       initializing value has an unspecified integral type.
11224      //
11225      // GCC uses 'int' for its unspecified integral type, as does
11226      // C99 6.7.2.2p3.
11227      if (Enum->isFixed()) {
11228        EltTy = Enum->getIntegerType();
11229      }
11230      else {
11231        EltTy = Context.IntTy;
11232      }
11233    } else {
11234      // Assign the last value + 1.
11235      EnumVal = LastEnumConst->getInitVal();
11236      ++EnumVal;
11237      EltTy = LastEnumConst->getType();
11238
11239      // Check for overflow on increment.
11240      if (EnumVal < LastEnumConst->getInitVal()) {
11241        // C++0x [dcl.enum]p5:
11242        //   If the underlying type is not fixed, the type of each enumerator
11243        //   is the type of its initializing value:
11244        //
11245        //     - Otherwise the type of the initializing value is the same as
11246        //       the type of the initializing value of the preceding enumerator
11247        //       unless the incremented value is not representable in that type,
11248        //       in which case the type is an unspecified integral type
11249        //       sufficient to contain the incremented value. If no such type
11250        //       exists, the program is ill-formed.
11251        QualType T = getNextLargerIntegralType(Context, EltTy);
11252        if (T.isNull() || Enum->isFixed()) {
11253          // There is no integral type larger enough to represent this
11254          // value. Complain, then allow the value to wrap around.
11255          EnumVal = LastEnumConst->getInitVal();
11256          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11257          ++EnumVal;
11258          if (Enum->isFixed())
11259            // When the underlying type is fixed, this is ill-formed.
11260            Diag(IdLoc, diag::err_enumerator_wrapped)
11261              << EnumVal.toString(10)
11262              << EltTy;
11263          else
11264            Diag(IdLoc, diag::warn_enumerator_too_large)
11265              << EnumVal.toString(10);
11266        } else {
11267          EltTy = T;
11268        }
11269
11270        // Retrieve the last enumerator's value, extent that type to the
11271        // type that is supposed to be large enough to represent the incremented
11272        // value, then increment.
11273        EnumVal = LastEnumConst->getInitVal();
11274        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11275        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11276        ++EnumVal;
11277
11278        // If we're not in C++, diagnose the overflow of enumerator values,
11279        // which in C99 means that the enumerator value is not representable in
11280        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11281        // permits enumerator values that are representable in some larger
11282        // integral type.
11283        if (!getLangOpts().CPlusPlus && !T.isNull())
11284          Diag(IdLoc, diag::warn_enum_value_overflow);
11285      } else if (!getLangOpts().CPlusPlus &&
11286                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11287        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11288        Diag(IdLoc, diag::ext_enum_value_not_int)
11289          << EnumVal.toString(10) << 1;
11290      }
11291    }
11292  }
11293
11294  if (!EltTy->isDependentType()) {
11295    // Make the enumerator value match the signedness and size of the
11296    // enumerator's type.
11297    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11298    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11299  }
11300
11301  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11302                                  Val, EnumVal);
11303}
11304
11305
11306Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11307                              SourceLocation IdLoc, IdentifierInfo *Id,
11308                              AttributeList *Attr,
11309                              SourceLocation EqualLoc, Expr *Val) {
11310  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11311  EnumConstantDecl *LastEnumConst =
11312    cast_or_null<EnumConstantDecl>(lastEnumConst);
11313
11314  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11315  // we find one that is.
11316  S = getNonFieldDeclScope(S);
11317
11318  // Verify that there isn't already something declared with this name in this
11319  // scope.
11320  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11321                                         ForRedeclaration);
11322  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11323    // Maybe we will complain about the shadowed template parameter.
11324    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11325    // Just pretend that we didn't see the previous declaration.
11326    PrevDecl = 0;
11327  }
11328
11329  if (PrevDecl) {
11330    // When in C++, we may get a TagDecl with the same name; in this case the
11331    // enum constant will 'hide' the tag.
11332    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11333           "Received TagDecl when not in C++!");
11334    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11335      if (isa<EnumConstantDecl>(PrevDecl))
11336        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11337      else
11338        Diag(IdLoc, diag::err_redefinition) << Id;
11339      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11340      return 0;
11341    }
11342  }
11343
11344  // C++ [class.mem]p15:
11345  // If T is the name of a class, then each of the following shall have a name
11346  // different from T:
11347  // - every enumerator of every member of class T that is an unscoped
11348  // enumerated type
11349  if (CXXRecordDecl *Record
11350                      = dyn_cast<CXXRecordDecl>(
11351                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11352    if (!TheEnumDecl->isScoped() &&
11353        Record->getIdentifier() && Record->getIdentifier() == Id)
11354      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11355
11356  EnumConstantDecl *New =
11357    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11358
11359  if (New) {
11360    // Process attributes.
11361    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11362
11363    // Register this decl in the current scope stack.
11364    New->setAccess(TheEnumDecl->getAccess());
11365    PushOnScopeChains(New, S);
11366  }
11367
11368  ActOnDocumentableDecl(New);
11369
11370  return New;
11371}
11372
11373// Returns true when the enum initial expression does not trigger the
11374// duplicate enum warning.  A few common cases are exempted as follows:
11375// Element2 = Element1
11376// Element2 = Element1 + 1
11377// Element2 = Element1 - 1
11378// Where Element2 and Element1 are from the same enum.
11379static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11380  Expr *InitExpr = ECD->getInitExpr();
11381  if (!InitExpr)
11382    return true;
11383  InitExpr = InitExpr->IgnoreImpCasts();
11384
11385  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11386    if (!BO->isAdditiveOp())
11387      return true;
11388    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11389    if (!IL)
11390      return true;
11391    if (IL->getValue() != 1)
11392      return true;
11393
11394    InitExpr = BO->getLHS();
11395  }
11396
11397  // This checks if the elements are from the same enum.
11398  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11399  if (!DRE)
11400    return true;
11401
11402  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11403  if (!EnumConstant)
11404    return true;
11405
11406  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11407      Enum)
11408    return true;
11409
11410  return false;
11411}
11412
11413struct DupKey {
11414  int64_t val;
11415  bool isTombstoneOrEmptyKey;
11416  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11417    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11418};
11419
11420static DupKey GetDupKey(const llvm::APSInt& Val) {
11421  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11422                false);
11423}
11424
11425struct DenseMapInfoDupKey {
11426  static DupKey getEmptyKey() { return DupKey(0, true); }
11427  static DupKey getTombstoneKey() { return DupKey(1, true); }
11428  static unsigned getHashValue(const DupKey Key) {
11429    return (unsigned)(Key.val * 37);
11430  }
11431  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11432    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11433           LHS.val == RHS.val;
11434  }
11435};
11436
11437// Emits a warning when an element is implicitly set a value that
11438// a previous element has already been set to.
11439static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11440                                        unsigned NumElements, EnumDecl *Enum,
11441                                        QualType EnumType) {
11442  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11443                                 Enum->getLocation()) ==
11444      DiagnosticsEngine::Ignored)
11445    return;
11446  // Avoid anonymous enums
11447  if (!Enum->getIdentifier())
11448    return;
11449
11450  // Only check for small enums.
11451  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11452    return;
11453
11454  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11455  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11456
11457  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11458  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11459          ValueToVectorMap;
11460
11461  DuplicatesVector DupVector;
11462  ValueToVectorMap EnumMap;
11463
11464  // Populate the EnumMap with all values represented by enum constants without
11465  // an initialier.
11466  for (unsigned i = 0; i < NumElements; ++i) {
11467    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11468
11469    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11470    // this constant.  Skip this enum since it may be ill-formed.
11471    if (!ECD) {
11472      return;
11473    }
11474
11475    if (ECD->getInitExpr())
11476      continue;
11477
11478    DupKey Key = GetDupKey(ECD->getInitVal());
11479    DeclOrVector &Entry = EnumMap[Key];
11480
11481    // First time encountering this value.
11482    if (Entry.isNull())
11483      Entry = ECD;
11484  }
11485
11486  // Create vectors for any values that has duplicates.
11487  for (unsigned i = 0; i < NumElements; ++i) {
11488    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11489    if (!ValidDuplicateEnum(ECD, Enum))
11490      continue;
11491
11492    DupKey Key = GetDupKey(ECD->getInitVal());
11493
11494    DeclOrVector& Entry = EnumMap[Key];
11495    if (Entry.isNull())
11496      continue;
11497
11498    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11499      // Ensure constants are different.
11500      if (D == ECD)
11501        continue;
11502
11503      // Create new vector and push values onto it.
11504      ECDVector *Vec = new ECDVector();
11505      Vec->push_back(D);
11506      Vec->push_back(ECD);
11507
11508      // Update entry to point to the duplicates vector.
11509      Entry = Vec;
11510
11511      // Store the vector somewhere we can consult later for quick emission of
11512      // diagnostics.
11513      DupVector.push_back(Vec);
11514      continue;
11515    }
11516
11517    ECDVector *Vec = Entry.get<ECDVector*>();
11518    // Make sure constants are not added more than once.
11519    if (*Vec->begin() == ECD)
11520      continue;
11521
11522    Vec->push_back(ECD);
11523  }
11524
11525  // Emit diagnostics.
11526  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11527                                  DupVectorEnd = DupVector.end();
11528       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11529    ECDVector *Vec = *DupVectorIter;
11530    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11531
11532    // Emit warning for one enum constant.
11533    ECDVector::iterator I = Vec->begin();
11534    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11535      << (*I)->getName() << (*I)->getInitVal().toString(10)
11536      << (*I)->getSourceRange();
11537    ++I;
11538
11539    // Emit one note for each of the remaining enum constants with
11540    // the same value.
11541    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11542      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11543        << (*I)->getName() << (*I)->getInitVal().toString(10)
11544        << (*I)->getSourceRange();
11545    delete Vec;
11546  }
11547}
11548
11549void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11550                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11551                         Decl **Elements, unsigned NumElements,
11552                         Scope *S, AttributeList *Attr) {
11553  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11554  QualType EnumType = Context.getTypeDeclType(Enum);
11555
11556  if (Attr)
11557    ProcessDeclAttributeList(S, Enum, Attr);
11558
11559  if (Enum->isDependentType()) {
11560    for (unsigned i = 0; i != NumElements; ++i) {
11561      EnumConstantDecl *ECD =
11562        cast_or_null<EnumConstantDecl>(Elements[i]);
11563      if (!ECD) continue;
11564
11565      ECD->setType(EnumType);
11566    }
11567
11568    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11569    return;
11570  }
11571
11572  // TODO: If the result value doesn't fit in an int, it must be a long or long
11573  // long value.  ISO C does not support this, but GCC does as an extension,
11574  // emit a warning.
11575  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11576  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11577  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11578
11579  // Verify that all the values are okay, compute the size of the values, and
11580  // reverse the list.
11581  unsigned NumNegativeBits = 0;
11582  unsigned NumPositiveBits = 0;
11583
11584  // Keep track of whether all elements have type int.
11585  bool AllElementsInt = true;
11586
11587  for (unsigned i = 0; i != NumElements; ++i) {
11588    EnumConstantDecl *ECD =
11589      cast_or_null<EnumConstantDecl>(Elements[i]);
11590    if (!ECD) continue;  // Already issued a diagnostic.
11591
11592    const llvm::APSInt &InitVal = ECD->getInitVal();
11593
11594    // Keep track of the size of positive and negative values.
11595    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11596      NumPositiveBits = std::max(NumPositiveBits,
11597                                 (unsigned)InitVal.getActiveBits());
11598    else
11599      NumNegativeBits = std::max(NumNegativeBits,
11600                                 (unsigned)InitVal.getMinSignedBits());
11601
11602    // Keep track of whether every enum element has type int (very commmon).
11603    if (AllElementsInt)
11604      AllElementsInt = ECD->getType() == Context.IntTy;
11605  }
11606
11607  // Figure out the type that should be used for this enum.
11608  QualType BestType;
11609  unsigned BestWidth;
11610
11611  // C++0x N3000 [conv.prom]p3:
11612  //   An rvalue of an unscoped enumeration type whose underlying
11613  //   type is not fixed can be converted to an rvalue of the first
11614  //   of the following types that can represent all the values of
11615  //   the enumeration: int, unsigned int, long int, unsigned long
11616  //   int, long long int, or unsigned long long int.
11617  // C99 6.4.4.3p2:
11618  //   An identifier declared as an enumeration constant has type int.
11619  // The C99 rule is modified by a gcc extension
11620  QualType BestPromotionType;
11621
11622  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11623  // -fshort-enums is the equivalent to specifying the packed attribute on all
11624  // enum definitions.
11625  if (LangOpts.ShortEnums)
11626    Packed = true;
11627
11628  if (Enum->isFixed()) {
11629    BestType = Enum->getIntegerType();
11630    if (BestType->isPromotableIntegerType())
11631      BestPromotionType = Context.getPromotedIntegerType(BestType);
11632    else
11633      BestPromotionType = BestType;
11634    // We don't need to set BestWidth, because BestType is going to be the type
11635    // of the enumerators, but we do anyway because otherwise some compilers
11636    // warn that it might be used uninitialized.
11637    BestWidth = CharWidth;
11638  }
11639  else if (NumNegativeBits) {
11640    // If there is a negative value, figure out the smallest integer type (of
11641    // int/long/longlong) that fits.
11642    // If it's packed, check also if it fits a char or a short.
11643    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11644      BestType = Context.SignedCharTy;
11645      BestWidth = CharWidth;
11646    } else if (Packed && NumNegativeBits <= ShortWidth &&
11647               NumPositiveBits < ShortWidth) {
11648      BestType = Context.ShortTy;
11649      BestWidth = ShortWidth;
11650    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11651      BestType = Context.IntTy;
11652      BestWidth = IntWidth;
11653    } else {
11654      BestWidth = Context.getTargetInfo().getLongWidth();
11655
11656      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11657        BestType = Context.LongTy;
11658      } else {
11659        BestWidth = Context.getTargetInfo().getLongLongWidth();
11660
11661        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11662          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11663        BestType = Context.LongLongTy;
11664      }
11665    }
11666    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11667  } else {
11668    // If there is no negative value, figure out the smallest type that fits
11669    // all of the enumerator values.
11670    // If it's packed, check also if it fits a char or a short.
11671    if (Packed && NumPositiveBits <= CharWidth) {
11672      BestType = Context.UnsignedCharTy;
11673      BestPromotionType = Context.IntTy;
11674      BestWidth = CharWidth;
11675    } else if (Packed && NumPositiveBits <= ShortWidth) {
11676      BestType = Context.UnsignedShortTy;
11677      BestPromotionType = Context.IntTy;
11678      BestWidth = ShortWidth;
11679    } else if (NumPositiveBits <= IntWidth) {
11680      BestType = Context.UnsignedIntTy;
11681      BestWidth = IntWidth;
11682      BestPromotionType
11683        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11684                           ? Context.UnsignedIntTy : Context.IntTy;
11685    } else if (NumPositiveBits <=
11686               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11687      BestType = Context.UnsignedLongTy;
11688      BestPromotionType
11689        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11690                           ? Context.UnsignedLongTy : Context.LongTy;
11691    } else {
11692      BestWidth = Context.getTargetInfo().getLongLongWidth();
11693      assert(NumPositiveBits <= BestWidth &&
11694             "How could an initializer get larger than ULL?");
11695      BestType = Context.UnsignedLongLongTy;
11696      BestPromotionType
11697        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11698                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11699    }
11700  }
11701
11702  // Loop over all of the enumerator constants, changing their types to match
11703  // the type of the enum if needed.
11704  for (unsigned i = 0; i != NumElements; ++i) {
11705    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11706    if (!ECD) continue;  // Already issued a diagnostic.
11707
11708    // Standard C says the enumerators have int type, but we allow, as an
11709    // extension, the enumerators to be larger than int size.  If each
11710    // enumerator value fits in an int, type it as an int, otherwise type it the
11711    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11712    // that X has type 'int', not 'unsigned'.
11713
11714    // Determine whether the value fits into an int.
11715    llvm::APSInt InitVal = ECD->getInitVal();
11716
11717    // If it fits into an integer type, force it.  Otherwise force it to match
11718    // the enum decl type.
11719    QualType NewTy;
11720    unsigned NewWidth;
11721    bool NewSign;
11722    if (!getLangOpts().CPlusPlus &&
11723        !Enum->isFixed() &&
11724        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11725      NewTy = Context.IntTy;
11726      NewWidth = IntWidth;
11727      NewSign = true;
11728    } else if (ECD->getType() == BestType) {
11729      // Already the right type!
11730      if (getLangOpts().CPlusPlus)
11731        // C++ [dcl.enum]p4: Following the closing brace of an
11732        // enum-specifier, each enumerator has the type of its
11733        // enumeration.
11734        ECD->setType(EnumType);
11735      continue;
11736    } else {
11737      NewTy = BestType;
11738      NewWidth = BestWidth;
11739      NewSign = BestType->isSignedIntegerOrEnumerationType();
11740    }
11741
11742    // Adjust the APSInt value.
11743    InitVal = InitVal.extOrTrunc(NewWidth);
11744    InitVal.setIsSigned(NewSign);
11745    ECD->setInitVal(InitVal);
11746
11747    // Adjust the Expr initializer and type.
11748    if (ECD->getInitExpr() &&
11749        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11750      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11751                                                CK_IntegralCast,
11752                                                ECD->getInitExpr(),
11753                                                /*base paths*/ 0,
11754                                                VK_RValue));
11755    if (getLangOpts().CPlusPlus)
11756      // C++ [dcl.enum]p4: Following the closing brace of an
11757      // enum-specifier, each enumerator has the type of its
11758      // enumeration.
11759      ECD->setType(EnumType);
11760    else
11761      ECD->setType(NewTy);
11762  }
11763
11764  Enum->completeDefinition(BestType, BestPromotionType,
11765                           NumPositiveBits, NumNegativeBits);
11766
11767  // If we're declaring a function, ensure this decl isn't forgotten about -
11768  // it needs to go into the function scope.
11769  if (InFunctionDeclarator)
11770    DeclsInPrototypeScope.push_back(Enum);
11771
11772  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11773
11774  // Now that the enum type is defined, ensure it's not been underaligned.
11775  if (Enum->hasAttrs())
11776    CheckAlignasUnderalignment(Enum);
11777}
11778
11779Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11780                                  SourceLocation StartLoc,
11781                                  SourceLocation EndLoc) {
11782  StringLiteral *AsmString = cast<StringLiteral>(expr);
11783
11784  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11785                                                   AsmString, StartLoc,
11786                                                   EndLoc);
11787  CurContext->addDecl(New);
11788  return New;
11789}
11790
11791DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11792                                   SourceLocation ImportLoc,
11793                                   ModuleIdPath Path) {
11794  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11795                                                Module::AllVisible,
11796                                                /*IsIncludeDirective=*/false);
11797  if (!Mod)
11798    return true;
11799
11800  SmallVector<SourceLocation, 2> IdentifierLocs;
11801  Module *ModCheck = Mod;
11802  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11803    // If we've run out of module parents, just drop the remaining identifiers.
11804    // We need the length to be consistent.
11805    if (!ModCheck)
11806      break;
11807    ModCheck = ModCheck->Parent;
11808
11809    IdentifierLocs.push_back(Path[I].second);
11810  }
11811
11812  ImportDecl *Import = ImportDecl::Create(Context,
11813                                          Context.getTranslationUnitDecl(),
11814                                          AtLoc.isValid()? AtLoc : ImportLoc,
11815                                          Mod, IdentifierLocs);
11816  Context.getTranslationUnitDecl()->addDecl(Import);
11817  return Import;
11818}
11819
11820void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11821  // Create the implicit import declaration.
11822  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11823  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11824                                                   Loc, Mod, Loc);
11825  TU->addDecl(ImportD);
11826  Consumer.HandleImplicitImportDecl(ImportD);
11827
11828  // Make the module visible.
11829  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
11830                                         /*Complain=*/false);
11831}
11832
11833void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11834                                      IdentifierInfo* AliasName,
11835                                      SourceLocation PragmaLoc,
11836                                      SourceLocation NameLoc,
11837                                      SourceLocation AliasNameLoc) {
11838  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11839                                    LookupOrdinaryName);
11840  AsmLabelAttr *Attr =
11841     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11842
11843  if (PrevDecl)
11844    PrevDecl->addAttr(Attr);
11845  else
11846    (void)ExtnameUndeclaredIdentifiers.insert(
11847      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11848}
11849
11850void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11851                             SourceLocation PragmaLoc,
11852                             SourceLocation NameLoc) {
11853  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11854
11855  if (PrevDecl) {
11856    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11857  } else {
11858    (void)WeakUndeclaredIdentifiers.insert(
11859      std::pair<IdentifierInfo*,WeakInfo>
11860        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11861  }
11862}
11863
11864void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11865                                IdentifierInfo* AliasName,
11866                                SourceLocation PragmaLoc,
11867                                SourceLocation NameLoc,
11868                                SourceLocation AliasNameLoc) {
11869  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11870                                    LookupOrdinaryName);
11871  WeakInfo W = WeakInfo(Name, NameLoc);
11872
11873  if (PrevDecl) {
11874    if (!PrevDecl->hasAttr<AliasAttr>())
11875      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11876        DeclApplyPragmaWeak(TUScope, ND, W);
11877  } else {
11878    (void)WeakUndeclaredIdentifiers.insert(
11879      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11880  }
11881}
11882
11883Decl *Sema::getObjCDeclContext() const {
11884  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11885}
11886
11887AvailabilityResult Sema::getCurContextAvailability() const {
11888  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11889  return D->getAvailability();
11890}
11891