SemaDecl.cpp revision 309160771eaf06afd1159cc299a2d462924bd040
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// Used in MergeFunctionDecl to keep track of function parameters in
514/// C.
515struct GNUCompatibleParamWarning {
516  ParmVarDecl *OldParm;
517  ParmVarDecl *NewParm;
518  QualType PromotedType;
519};
520
521/// MergeFunctionDecl - We just parsed a function 'New' from
522/// declarator D which has the same name and scope as a previous
523/// declaration 'Old'.  Figure out how to resolve this situation,
524/// merging decls or emitting diagnostics as appropriate.
525///
526/// In C++, New and Old must be declarations that are not
527/// overloaded. Use IsOverload to determine whether New and Old are
528/// overloaded, and to select the Old declaration that New should be
529/// merged with.
530///
531/// Returns true if there was an error, false otherwise.
532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
533  assert(!isa<OverloadedFunctionDecl>(OldD) &&
534         "Cannot merge with an overloaded function declaration");
535
536  // Verify the old decl was also a function.
537  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
538  if (!Old) {
539    Diag(New->getLocation(), diag::err_redefinition_different_kind)
540      << New->getDeclName();
541    Diag(OldD->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // Determine whether the previous declaration was a definition,
546  // implicit declaration, or a declaration.
547  diag::kind PrevDiag;
548  if (Old->isThisDeclarationADefinition())
549    PrevDiag = diag::note_previous_definition;
550  else if (Old->isImplicit())
551    PrevDiag = diag::note_previous_implicit_declaration;
552  else
553    PrevDiag = diag::note_previous_declaration;
554
555  QualType OldQType = Context.getCanonicalType(Old->getType());
556  QualType NewQType = Context.getCanonicalType(New->getType());
557
558  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
559      New->getStorageClass() == FunctionDecl::Static &&
560      Old->getStorageClass() != FunctionDecl::Static) {
561    Diag(New->getLocation(), diag::err_static_non_static)
562      << New;
563    Diag(Old->getLocation(), PrevDiag);
564    return true;
565  }
566
567  if (getLangOptions().CPlusPlus) {
568    // (C++98 13.1p2):
569    //   Certain function declarations cannot be overloaded:
570    //     -- Function declarations that differ only in the return type
571    //        cannot be overloaded.
572    QualType OldReturnType
573      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
574    QualType NewReturnType
575      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
576    if (OldReturnType != NewReturnType) {
577      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
578      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
579      return true;
580    }
581
582    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
583    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
584    if (OldMethod && NewMethod &&
585        OldMethod->getLexicalDeclContext() ==
586          NewMethod->getLexicalDeclContext()) {
587      //    -- Member function declarations with the same name and the
588      //       same parameter types cannot be overloaded if any of them
589      //       is a static member function declaration.
590      if (OldMethod->isStatic() || NewMethod->isStatic()) {
591        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
592        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
593        return true;
594      }
595
596      // C++ [class.mem]p1:
597      //   [...] A member shall not be declared twice in the
598      //   member-specification, except that a nested class or member
599      //   class template can be declared and then later defined.
600      unsigned NewDiag;
601      if (isa<CXXConstructorDecl>(OldMethod))
602        NewDiag = diag::err_constructor_redeclared;
603      else if (isa<CXXDestructorDecl>(NewMethod))
604        NewDiag = diag::err_destructor_redeclared;
605      else if (isa<CXXConversionDecl>(NewMethod))
606        NewDiag = diag::err_conv_function_redeclared;
607      else
608        NewDiag = diag::err_member_redeclared;
609
610      Diag(New->getLocation(), NewDiag);
611      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612    }
613
614    // (C++98 8.3.5p3):
615    //   All declarations for a function shall agree exactly in both the
616    //   return type and the parameter-type-list.
617    if (OldQType == NewQType)
618      return MergeCompatibleFunctionDecls(New, Old);
619
620    // Fall through for conflicting redeclarations and redefinitions.
621  }
622
623  // C: Function types need to be compatible, not identical. This handles
624  // duplicate function decls like "void f(int); void f(enum X);" properly.
625  if (!getLangOptions().CPlusPlus &&
626      Context.typesAreCompatible(OldQType, NewQType)) {
627    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
628    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
629    const FunctionProtoType *OldProto = 0;
630    if (isa<FunctionNoProtoType>(NewFuncType) &&
631        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
632      // The old declaration provided a function prototype, but the
633      // new declaration does not. Merge in the prototype.
634      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
635                                                 OldProto->arg_type_end());
636      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
637                                         &ParamTypes[0], ParamTypes.size(),
638                                         OldProto->isVariadic(),
639                                         OldProto->getTypeQuals());
640      New->setType(NewQType);
641      New->setInheritedPrototype();
642
643      // Synthesize a parameter for each argument type.
644      llvm::SmallVector<ParmVarDecl*, 16> Params;
645      for (FunctionProtoType::arg_type_iterator
646             ParamType = OldProto->arg_type_begin(),
647             ParamEnd = OldProto->arg_type_end();
648           ParamType != ParamEnd; ++ParamType) {
649        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
650                                                 SourceLocation(), 0,
651                                                 *ParamType, VarDecl::None,
652                                                 0);
653        Param->setImplicit();
654        Params.push_back(Param);
655      }
656
657      New->setParams(Context, &Params[0], Params.size());
658    }
659
660    return MergeCompatibleFunctionDecls(New, Old);
661  }
662
663  // GNU C permits a K&R definition to follow a prototype declaration
664  // if the declared types of the parameters in the K&R definition
665  // match the types in the prototype declaration, even when the
666  // promoted types of the parameters from the K&R definition differ
667  // from the types in the prototype. GCC then keeps the types from
668  // the prototype.
669  if (!getLangOptions().CPlusPlus &&
670      !getLangOptions().NoExtensions &&
671      Old->hasPrototype() && !New->hasPrototype() &&
672      New->getType()->getAsFunctionProtoType() &&
673      Old->getNumParams() == New->getNumParams()) {
674    llvm::SmallVector<QualType, 16> ArgTypes;
675    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
676    const FunctionProtoType *OldProto
677      = Old->getType()->getAsFunctionProtoType();
678    const FunctionProtoType *NewProto
679      = New->getType()->getAsFunctionProtoType();
680
681    // Determine whether this is the GNU C extension.
682    bool GNUCompatible =
683      Context.typesAreCompatible(OldProto->getResultType(),
684                                 NewProto->getResultType()) &&
685      (OldProto->isVariadic() == NewProto->isVariadic());
686    for (unsigned Idx = 0, End = Old->getNumParams();
687         GNUCompatible && Idx != End; ++Idx) {
688      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
689      ParmVarDecl *NewParm = New->getParamDecl(Idx);
690      if (Context.typesAreCompatible(OldParm->getType(),
691                                     NewProto->getArgType(Idx))) {
692        ArgTypes.push_back(NewParm->getType());
693      } else if (Context.typesAreCompatible(OldParm->getType(),
694                                            NewParm->getType())) {
695        GNUCompatibleParamWarning Warn
696          = { OldParm, NewParm, NewProto->getArgType(Idx) };
697        Warnings.push_back(Warn);
698        ArgTypes.push_back(NewParm->getType());
699      } else
700        GNUCompatible = false;
701    }
702
703    if (GNUCompatible) {
704      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
705        Diag(Warnings[Warn].NewParm->getLocation(),
706             diag::ext_param_promoted_not_compatible_with_prototype)
707          << Warnings[Warn].PromotedType
708          << Warnings[Warn].OldParm->getType();
709        Diag(Warnings[Warn].OldParm->getLocation(),
710             diag::note_previous_declaration);
711      }
712
713      New->setType(Context.getFunctionType(NewProto->getResultType(),
714                                           &ArgTypes[0], ArgTypes.size(),
715                                           NewProto->isVariadic(),
716                                           NewProto->getTypeQuals()));
717      return MergeCompatibleFunctionDecls(New, Old);
718    }
719
720    // Fall through to diagnose conflicting types.
721  }
722
723  // A function that has already been declared has been redeclared or defined
724  // with a different type- show appropriate diagnostic
725  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
726    // The user has declared a builtin function with an incompatible
727    // signature.
728    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
729      // The function the user is redeclaring is a library-defined
730      // function like 'malloc' or 'printf'. Warn about the
731      // redeclaration, then ignore it.
732      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
733      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
734        << Old << Old->getType();
735      return true;
736    }
737
738    PrevDiag = diag::note_previous_builtin_declaration;
739  }
740
741  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
742  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
743  return true;
744}
745
746/// \brief Completes the merge of two function declarations that are
747/// known to be compatible.
748///
749/// This routine handles the merging of attributes and other
750/// properties of function declarations form the old declaration to
751/// the new declaration, once we know that New is in fact a
752/// redeclaration of Old.
753///
754/// \returns false
755bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
756  // Merge the attributes
757  MergeAttributes(New, Old, Context);
758
759  // Merge the storage class.
760  New->setStorageClass(Old->getStorageClass());
761
762  // FIXME: need to implement inline semantics
763
764  // Merge "pure" flag.
765  if (Old->isPure())
766    New->setPure();
767
768  // Merge the "deleted" flag.
769  if (Old->isDeleted())
770    New->setDeleted();
771
772  if (getLangOptions().CPlusPlus)
773    return MergeCXXFunctionDecl(New, Old);
774
775  return false;
776}
777
778/// MergeVarDecl - We just parsed a variable 'New' which has the same name
779/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
780/// situation, merging decls or emitting diagnostics as appropriate.
781///
782/// Tentative definition rules (C99 6.9.2p2) are checked by
783/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
784/// definitions here, since the initializer hasn't been attached.
785///
786bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
787  // Verify the old decl was also a variable.
788  VarDecl *Old = dyn_cast<VarDecl>(OldD);
789  if (!Old) {
790    Diag(New->getLocation(), diag::err_redefinition_different_kind)
791      << New->getDeclName();
792    Diag(OldD->getLocation(), diag::note_previous_definition);
793    return true;
794  }
795
796  MergeAttributes(New, Old, Context);
797
798  // Merge the types
799  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
800  if (MergedT.isNull()) {
801    Diag(New->getLocation(), diag::err_redefinition_different_type)
802      << New->getDeclName();
803    Diag(Old->getLocation(), diag::note_previous_definition);
804    return true;
805  }
806  New->setType(MergedT);
807
808  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
809  if (New->getStorageClass() == VarDecl::Static &&
810      (Old->getStorageClass() == VarDecl::None ||
811       Old->getStorageClass() == VarDecl::Extern)) {
812    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
813    Diag(Old->getLocation(), diag::note_previous_definition);
814    return true;
815  }
816  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
817  if (New->getStorageClass() != VarDecl::Static &&
818      Old->getStorageClass() == VarDecl::Static) {
819    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
820    Diag(Old->getLocation(), diag::note_previous_definition);
821    return true;
822  }
823  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
824  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
825      // Don't complain about out-of-line definitions of static members.
826      !(Old->getLexicalDeclContext()->isRecord() &&
827        !New->getLexicalDeclContext()->isRecord())) {
828    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
829    Diag(Old->getLocation(), diag::note_previous_definition);
830    return true;
831  }
832
833  // Keep a chain of previous declarations.
834  New->setPreviousDeclaration(Old);
835
836  return false;
837}
838
839/// CheckParmsForFunctionDef - Check that the parameters of the given
840/// function are appropriate for the definition of a function. This
841/// takes care of any checks that cannot be performed on the
842/// declaration itself, e.g., that the types of each of the function
843/// parameters are complete.
844bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
845  bool HasInvalidParm = false;
846  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
847    ParmVarDecl *Param = FD->getParamDecl(p);
848
849    // C99 6.7.5.3p4: the parameters in a parameter type list in a
850    // function declarator that is part of a function definition of
851    // that function shall not have incomplete type.
852    if (!Param->isInvalidDecl() &&
853        RequireCompleteType(Param->getLocation(), Param->getType(),
854                               diag::err_typecheck_decl_incomplete_type)) {
855      Param->setInvalidDecl();
856      HasInvalidParm = true;
857    }
858
859    // C99 6.9.1p5: If the declarator includes a parameter type list, the
860    // declaration of each parameter shall include an identifier.
861    if (Param->getIdentifier() == 0 &&
862        !Param->isImplicit() &&
863        !getLangOptions().CPlusPlus)
864      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
865  }
866
867  return HasInvalidParm;
868}
869
870/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
871/// no declarator (e.g. "struct foo;") is parsed.
872Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
873  TagDecl *Tag = 0;
874  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
875      DS.getTypeSpecType() == DeclSpec::TST_struct ||
876      DS.getTypeSpecType() == DeclSpec::TST_union ||
877      DS.getTypeSpecType() == DeclSpec::TST_enum)
878    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
879
880  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
881    if (!Record->getDeclName() && Record->isDefinition() &&
882        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
883      if (getLangOptions().CPlusPlus ||
884          Record->getDeclContext()->isRecord())
885        return BuildAnonymousStructOrUnion(S, DS, Record);
886
887      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
888        << DS.getSourceRange();
889    }
890
891    // Microsoft allows unnamed struct/union fields. Don't complain
892    // about them.
893    // FIXME: Should we support Microsoft's extensions in this area?
894    if (Record->getDeclName() && getLangOptions().Microsoft)
895      return Tag;
896  }
897
898  if (!DS.isMissingDeclaratorOk() &&
899      DS.getTypeSpecType() != DeclSpec::TST_error) {
900    // Warn about typedefs of enums without names, since this is an
901    // extension in both Microsoft an GNU.
902    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
903        Tag && isa<EnumDecl>(Tag)) {
904      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
905        << DS.getSourceRange();
906      return Tag;
907    }
908
909    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
910      << DS.getSourceRange();
911    return 0;
912  }
913
914  return Tag;
915}
916
917/// InjectAnonymousStructOrUnionMembers - Inject the members of the
918/// anonymous struct or union AnonRecord into the owning context Owner
919/// and scope S. This routine will be invoked just after we realize
920/// that an unnamed union or struct is actually an anonymous union or
921/// struct, e.g.,
922///
923/// @code
924/// union {
925///   int i;
926///   float f;
927/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
928///    // f into the surrounding scope.x
929/// @endcode
930///
931/// This routine is recursive, injecting the names of nested anonymous
932/// structs/unions into the owning context and scope as well.
933bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
934                                               RecordDecl *AnonRecord) {
935  bool Invalid = false;
936  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
937                               FEnd = AnonRecord->field_end();
938       F != FEnd; ++F) {
939    if ((*F)->getDeclName()) {
940      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
941                                                LookupOrdinaryName, true);
942      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
943        // C++ [class.union]p2:
944        //   The names of the members of an anonymous union shall be
945        //   distinct from the names of any other entity in the
946        //   scope in which the anonymous union is declared.
947        unsigned diagKind
948          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
949                                 : diag::err_anonymous_struct_member_redecl;
950        Diag((*F)->getLocation(), diagKind)
951          << (*F)->getDeclName();
952        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
953        Invalid = true;
954      } else {
955        // C++ [class.union]p2:
956        //   For the purpose of name lookup, after the anonymous union
957        //   definition, the members of the anonymous union are
958        //   considered to have been defined in the scope in which the
959        //   anonymous union is declared.
960        Owner->makeDeclVisibleInContext(*F);
961        S->AddDecl(*F);
962        IdResolver.AddDecl(*F);
963      }
964    } else if (const RecordType *InnerRecordType
965                 = (*F)->getType()->getAsRecordType()) {
966      RecordDecl *InnerRecord = InnerRecordType->getDecl();
967      if (InnerRecord->isAnonymousStructOrUnion())
968        Invalid = Invalid ||
969          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
970    }
971  }
972
973  return Invalid;
974}
975
976/// ActOnAnonymousStructOrUnion - Handle the declaration of an
977/// anonymous structure or union. Anonymous unions are a C++ feature
978/// (C++ [class.union]) and a GNU C extension; anonymous structures
979/// are a GNU C and GNU C++ extension.
980Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
981                                                RecordDecl *Record) {
982  DeclContext *Owner = Record->getDeclContext();
983
984  // Diagnose whether this anonymous struct/union is an extension.
985  if (Record->isUnion() && !getLangOptions().CPlusPlus)
986    Diag(Record->getLocation(), diag::ext_anonymous_union);
987  else if (!Record->isUnion())
988    Diag(Record->getLocation(), diag::ext_anonymous_struct);
989
990  // C and C++ require different kinds of checks for anonymous
991  // structs/unions.
992  bool Invalid = false;
993  if (getLangOptions().CPlusPlus) {
994    const char* PrevSpec = 0;
995    // C++ [class.union]p3:
996    //   Anonymous unions declared in a named namespace or in the
997    //   global namespace shall be declared static.
998    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
999        (isa<TranslationUnitDecl>(Owner) ||
1000         (isa<NamespaceDecl>(Owner) &&
1001          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1002      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1003      Invalid = true;
1004
1005      // Recover by adding 'static'.
1006      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1007    }
1008    // C++ [class.union]p3:
1009    //   A storage class is not allowed in a declaration of an
1010    //   anonymous union in a class scope.
1011    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1012             isa<RecordDecl>(Owner)) {
1013      Diag(DS.getStorageClassSpecLoc(),
1014           diag::err_anonymous_union_with_storage_spec);
1015      Invalid = true;
1016
1017      // Recover by removing the storage specifier.
1018      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1019                             PrevSpec);
1020    }
1021
1022    // C++ [class.union]p2:
1023    //   The member-specification of an anonymous union shall only
1024    //   define non-static data members. [Note: nested types and
1025    //   functions cannot be declared within an anonymous union. ]
1026    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1027                                 MemEnd = Record->decls_end();
1028         Mem != MemEnd; ++Mem) {
1029      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1030        // C++ [class.union]p3:
1031        //   An anonymous union shall not have private or protected
1032        //   members (clause 11).
1033        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1034          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1035            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1036          Invalid = true;
1037        }
1038      } else if ((*Mem)->isImplicit()) {
1039        // Any implicit members are fine.
1040      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1041        // This is a type that showed up in an
1042        // elaborated-type-specifier inside the anonymous struct or
1043        // union, but which actually declares a type outside of the
1044        // anonymous struct or union. It's okay.
1045      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1046        if (!MemRecord->isAnonymousStructOrUnion() &&
1047            MemRecord->getDeclName()) {
1048          // This is a nested type declaration.
1049          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1050            << (int)Record->isUnion();
1051          Invalid = true;
1052        }
1053      } else {
1054        // We have something that isn't a non-static data
1055        // member. Complain about it.
1056        unsigned DK = diag::err_anonymous_record_bad_member;
1057        if (isa<TypeDecl>(*Mem))
1058          DK = diag::err_anonymous_record_with_type;
1059        else if (isa<FunctionDecl>(*Mem))
1060          DK = diag::err_anonymous_record_with_function;
1061        else if (isa<VarDecl>(*Mem))
1062          DK = diag::err_anonymous_record_with_static;
1063        Diag((*Mem)->getLocation(), DK)
1064            << (int)Record->isUnion();
1065          Invalid = true;
1066      }
1067    }
1068  }
1069
1070  if (!Record->isUnion() && !Owner->isRecord()) {
1071    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1072      << (int)getLangOptions().CPlusPlus;
1073    Invalid = true;
1074  }
1075
1076  // Create a declaration for this anonymous struct/union.
1077  NamedDecl *Anon = 0;
1078  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1079    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1080                             /*IdentifierInfo=*/0,
1081                             Context.getTypeDeclType(Record),
1082                             /*BitWidth=*/0, /*Mutable=*/false);
1083    Anon->setAccess(AS_public);
1084    if (getLangOptions().CPlusPlus)
1085      FieldCollector->Add(cast<FieldDecl>(Anon));
1086  } else {
1087    VarDecl::StorageClass SC;
1088    switch (DS.getStorageClassSpec()) {
1089    default: assert(0 && "Unknown storage class!");
1090    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1091    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1092    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1093    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1094    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1095    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1096    case DeclSpec::SCS_mutable:
1097      // mutable can only appear on non-static class members, so it's always
1098      // an error here
1099      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1100      Invalid = true;
1101      SC = VarDecl::None;
1102      break;
1103    }
1104
1105    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1106                           /*IdentifierInfo=*/0,
1107                           Context.getTypeDeclType(Record),
1108                           SC, DS.getSourceRange().getBegin());
1109  }
1110  Anon->setImplicit();
1111
1112  // Add the anonymous struct/union object to the current
1113  // context. We'll be referencing this object when we refer to one of
1114  // its members.
1115  Owner->addDecl(Anon);
1116
1117  // Inject the members of the anonymous struct/union into the owning
1118  // context and into the identifier resolver chain for name lookup
1119  // purposes.
1120  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1121    Invalid = true;
1122
1123  // Mark this as an anonymous struct/union type. Note that we do not
1124  // do this until after we have already checked and injected the
1125  // members of this anonymous struct/union type, because otherwise
1126  // the members could be injected twice: once by DeclContext when it
1127  // builds its lookup table, and once by
1128  // InjectAnonymousStructOrUnionMembers.
1129  Record->setAnonymousStructOrUnion(true);
1130
1131  if (Invalid)
1132    Anon->setInvalidDecl();
1133
1134  return Anon;
1135}
1136
1137
1138/// GetNameForDeclarator - Determine the full declaration name for the
1139/// given Declarator.
1140DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1141  switch (D.getKind()) {
1142  case Declarator::DK_Abstract:
1143    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1144    return DeclarationName();
1145
1146  case Declarator::DK_Normal:
1147    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1148    return DeclarationName(D.getIdentifier());
1149
1150  case Declarator::DK_Constructor: {
1151    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1152    Ty = Context.getCanonicalType(Ty);
1153    return Context.DeclarationNames.getCXXConstructorName(Ty);
1154  }
1155
1156  case Declarator::DK_Destructor: {
1157    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1158    Ty = Context.getCanonicalType(Ty);
1159    return Context.DeclarationNames.getCXXDestructorName(Ty);
1160  }
1161
1162  case Declarator::DK_Conversion: {
1163    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1164    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1165    Ty = Context.getCanonicalType(Ty);
1166    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1167  }
1168
1169  case Declarator::DK_Operator:
1170    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1171    return Context.DeclarationNames.getCXXOperatorName(
1172                                                D.getOverloadedOperator());
1173  }
1174
1175  assert(false && "Unknown name kind");
1176  return DeclarationName();
1177}
1178
1179/// isNearlyMatchingFunction - Determine whether the C++ functions
1180/// Declaration and Definition are "nearly" matching. This heuristic
1181/// is used to improve diagnostics in the case where an out-of-line
1182/// function definition doesn't match any declaration within
1183/// the class or namespace.
1184static bool isNearlyMatchingFunction(ASTContext &Context,
1185                                     FunctionDecl *Declaration,
1186                                     FunctionDecl *Definition) {
1187  if (Declaration->param_size() != Definition->param_size())
1188    return false;
1189  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1190    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1191    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1192
1193    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1194    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1195    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1196      return false;
1197  }
1198
1199  return true;
1200}
1201
1202Sema::DeclTy *
1203Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1204                      bool IsFunctionDefinition) {
1205  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1206  DeclarationName Name = GetNameForDeclarator(D);
1207
1208  // All of these full declarators require an identifier.  If it doesn't have
1209  // one, the ParsedFreeStandingDeclSpec action should be used.
1210  if (!Name) {
1211    if (!D.getInvalidType())  // Reject this if we think it is valid.
1212      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1213           diag::err_declarator_need_ident)
1214        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1215    return 0;
1216  }
1217
1218  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1219  // we find one that is.
1220  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1221         (S->getFlags() & Scope::TemplateParamScope) != 0)
1222    S = S->getParent();
1223
1224  DeclContext *DC;
1225  NamedDecl *PrevDecl;
1226  NamedDecl *New;
1227  bool InvalidDecl = false;
1228
1229  QualType R = GetTypeForDeclarator(D, S);
1230  if (R.isNull()) {
1231    InvalidDecl = true;
1232    R = Context.IntTy;
1233  }
1234
1235  // See if this is a redefinition of a variable in the same scope.
1236  if (D.getCXXScopeSpec().isInvalid()) {
1237    DC = CurContext;
1238    PrevDecl = 0;
1239    InvalidDecl = true;
1240  } else if (!D.getCXXScopeSpec().isSet()) {
1241    LookupNameKind NameKind = LookupOrdinaryName;
1242
1243    // If the declaration we're planning to build will be a function
1244    // or object with linkage, then look for another declaration with
1245    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1246    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1247      /* Do nothing*/;
1248    else if (R->isFunctionType()) {
1249      if (CurContext->isFunctionOrMethod())
1250        NameKind = LookupRedeclarationWithLinkage;
1251    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1252      NameKind = LookupRedeclarationWithLinkage;
1253
1254    DC = CurContext;
1255    PrevDecl = LookupName(S, Name, NameKind, true,
1256                          D.getDeclSpec().getStorageClassSpec() !=
1257                            DeclSpec::SCS_static,
1258                          D.getIdentifierLoc());
1259  } else { // Something like "int foo::x;"
1260    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1261    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1262    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1263
1264    // C++ 7.3.1.2p2:
1265    // Members (including explicit specializations of templates) of a named
1266    // namespace can also be defined outside that namespace by explicit
1267    // qualification of the name being defined, provided that the entity being
1268    // defined was already declared in the namespace and the definition appears
1269    // after the point of declaration in a namespace that encloses the
1270    // declarations namespace.
1271    //
1272    // Note that we only check the context at this point. We don't yet
1273    // have enough information to make sure that PrevDecl is actually
1274    // the declaration we want to match. For example, given:
1275    //
1276    //   class X {
1277    //     void f();
1278    //     void f(float);
1279    //   };
1280    //
1281    //   void X::f(int) { } // ill-formed
1282    //
1283    // In this case, PrevDecl will point to the overload set
1284    // containing the two f's declared in X, but neither of them
1285    // matches.
1286
1287    // First check whether we named the global scope.
1288    if (isa<TranslationUnitDecl>(DC)) {
1289      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1290        << Name << D.getCXXScopeSpec().getRange();
1291    } else if (!CurContext->Encloses(DC)) {
1292      // The qualifying scope doesn't enclose the original declaration.
1293      // Emit diagnostic based on current scope.
1294      SourceLocation L = D.getIdentifierLoc();
1295      SourceRange R = D.getCXXScopeSpec().getRange();
1296      if (isa<FunctionDecl>(CurContext))
1297        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1298      else
1299        Diag(L, diag::err_invalid_declarator_scope)
1300          << Name << cast<NamedDecl>(DC) << R;
1301      InvalidDecl = true;
1302    }
1303  }
1304
1305  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1306    // Maybe we will complain about the shadowed template parameter.
1307    InvalidDecl = InvalidDecl
1308      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1309    // Just pretend that we didn't see the previous declaration.
1310    PrevDecl = 0;
1311  }
1312
1313  // In C++, the previous declaration we find might be a tag type
1314  // (class or enum). In this case, the new declaration will hide the
1315  // tag type. Note that this does does not apply if we're declaring a
1316  // typedef (C++ [dcl.typedef]p4).
1317  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1318      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1319    PrevDecl = 0;
1320
1321  bool Redeclaration = false;
1322  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1323    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1324                                 InvalidDecl, Redeclaration);
1325  } else if (R->isFunctionType()) {
1326    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1327                                  IsFunctionDefinition, InvalidDecl,
1328                                  Redeclaration);
1329  } else {
1330    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1331                                  InvalidDecl, Redeclaration);
1332  }
1333
1334  if (New == 0)
1335    return 0;
1336
1337  // If this has an identifier and is not an invalid redeclaration,
1338  // add it to the scope stack.
1339  if (Name && !(Redeclaration && InvalidDecl))
1340    PushOnScopeChains(New, S);
1341  // If any semantic error occurred, mark the decl as invalid.
1342  if (D.getInvalidType() || InvalidDecl)
1343    New->setInvalidDecl();
1344
1345  return New;
1346}
1347
1348/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1349/// types into constant array types in certain situations which would otherwise
1350/// be errors (for GCC compatibility).
1351static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1352                                                    ASTContext &Context,
1353                                                    bool &SizeIsNegative) {
1354  // This method tries to turn a variable array into a constant
1355  // array even when the size isn't an ICE.  This is necessary
1356  // for compatibility with code that depends on gcc's buggy
1357  // constant expression folding, like struct {char x[(int)(char*)2];}
1358  SizeIsNegative = false;
1359
1360  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1361    QualType Pointee = PTy->getPointeeType();
1362    QualType FixedType =
1363        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1364    if (FixedType.isNull()) return FixedType;
1365    FixedType = Context.getPointerType(FixedType);
1366    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1367    return FixedType;
1368  }
1369
1370  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1371  if (!VLATy)
1372    return QualType();
1373  // FIXME: We should probably handle this case
1374  if (VLATy->getElementType()->isVariablyModifiedType())
1375    return QualType();
1376
1377  Expr::EvalResult EvalResult;
1378  if (!VLATy->getSizeExpr() ||
1379      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1380      !EvalResult.Val.isInt())
1381    return QualType();
1382
1383  llvm::APSInt &Res = EvalResult.Val.getInt();
1384  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1385    return Context.getConstantArrayType(VLATy->getElementType(),
1386                                        Res, ArrayType::Normal, 0);
1387
1388  SizeIsNegative = true;
1389  return QualType();
1390}
1391
1392/// \brief Register the given locally-scoped external C declaration so
1393/// that it can be found later for redeclarations
1394void
1395Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1396                                       Scope *S) {
1397  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1398         "Decl is not a locally-scoped decl!");
1399  // Note that we have a locally-scoped external with this name.
1400  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1401
1402  if (!PrevDecl)
1403    return;
1404
1405  // If there was a previous declaration of this variable, it may be
1406  // in our identifier chain. Update the identifier chain with the new
1407  // declaration.
1408  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1409    // The previous declaration was found on the identifer resolver
1410    // chain, so remove it from its scope.
1411    while (S && !S->isDeclScope(PrevDecl))
1412      S = S->getParent();
1413
1414    if (S)
1415      S->RemoveDecl(PrevDecl);
1416  }
1417}
1418
1419NamedDecl*
1420Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1421                             QualType R, Decl* LastDeclarator,
1422                             Decl* PrevDecl, bool& InvalidDecl,
1423                             bool &Redeclaration) {
1424  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1425  if (D.getCXXScopeSpec().isSet()) {
1426    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1427      << D.getCXXScopeSpec().getRange();
1428    InvalidDecl = true;
1429    // Pretend we didn't see the scope specifier.
1430    DC = 0;
1431  }
1432
1433  if (getLangOptions().CPlusPlus) {
1434    // Check that there are no default arguments (C++ only).
1435    CheckExtraCXXDefaultArguments(D);
1436
1437    if (D.getDeclSpec().isVirtualSpecified())
1438      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1439           diag::err_virtual_non_function);
1440  }
1441
1442  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1443  if (!NewTD) return 0;
1444
1445  // Handle attributes prior to checking for duplicates in MergeVarDecl
1446  ProcessDeclAttributes(NewTD, D);
1447  // Merge the decl with the existing one if appropriate. If the decl is
1448  // in an outer scope, it isn't the same thing.
1449  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1450    Redeclaration = true;
1451    if (MergeTypeDefDecl(NewTD, PrevDecl))
1452      InvalidDecl = true;
1453  }
1454
1455  if (S->getFnParent() == 0) {
1456    QualType T = NewTD->getUnderlyingType();
1457    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1458    // then it shall have block scope.
1459    if (T->isVariablyModifiedType()) {
1460      bool SizeIsNegative;
1461      QualType FixedTy =
1462          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1463      if (!FixedTy.isNull()) {
1464        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1465        NewTD->setUnderlyingType(FixedTy);
1466      } else {
1467        if (SizeIsNegative)
1468          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1469        else if (T->isVariableArrayType())
1470          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1471        else
1472          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1473        InvalidDecl = true;
1474      }
1475    }
1476  }
1477  return NewTD;
1478}
1479
1480/// \brief Determines whether the given declaration is an out-of-scope
1481/// previous declaration.
1482///
1483/// This routine should be invoked when name lookup has found a
1484/// previous declaration (PrevDecl) that is not in the scope where a
1485/// new declaration by the same name is being introduced. If the new
1486/// declaration occurs in a local scope, previous declarations with
1487/// linkage may still be considered previous declarations (C99
1488/// 6.2.2p4-5, C++ [basic.link]p6).
1489///
1490/// \param PrevDecl the previous declaration found by name
1491/// lookup
1492///
1493/// \param DC the context in which the new declaration is being
1494/// declared.
1495///
1496/// \returns true if PrevDecl is an out-of-scope previous declaration
1497/// for a new delcaration with the same name.
1498static bool
1499isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1500                                ASTContext &Context) {
1501  if (!PrevDecl)
1502    return 0;
1503
1504  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1505  // case we need to check each of the overloaded functions.
1506  if (!PrevDecl->hasLinkage())
1507    return false;
1508
1509  if (Context.getLangOptions().CPlusPlus) {
1510    // C++ [basic.link]p6:
1511    //   If there is a visible declaration of an entity with linkage
1512    //   having the same name and type, ignoring entities declared
1513    //   outside the innermost enclosing namespace scope, the block
1514    //   scope declaration declares that same entity and receives the
1515    //   linkage of the previous declaration.
1516    DeclContext *OuterContext = DC->getLookupContext();
1517    if (!OuterContext->isFunctionOrMethod())
1518      // This rule only applies to block-scope declarations.
1519      return false;
1520    else {
1521      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1522      if (PrevOuterContext->isRecord())
1523        // We found a member function: ignore it.
1524        return false;
1525      else {
1526        // Find the innermost enclosing namespace for the new and
1527        // previous declarations.
1528        while (!OuterContext->isFileContext())
1529          OuterContext = OuterContext->getParent();
1530        while (!PrevOuterContext->isFileContext())
1531          PrevOuterContext = PrevOuterContext->getParent();
1532
1533        // The previous declaration is in a different namespace, so it
1534        // isn't the same function.
1535        if (OuterContext->getPrimaryContext() !=
1536            PrevOuterContext->getPrimaryContext())
1537          return false;
1538      }
1539    }
1540  }
1541
1542  return true;
1543}
1544
1545NamedDecl*
1546Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1547                              QualType R, Decl* LastDeclarator,
1548                              NamedDecl* PrevDecl, bool& InvalidDecl,
1549                              bool &Redeclaration) {
1550  DeclarationName Name = GetNameForDeclarator(D);
1551
1552  // Check that there are no default arguments (C++ only).
1553  if (getLangOptions().CPlusPlus)
1554    CheckExtraCXXDefaultArguments(D);
1555
1556  if (R.getTypePtr()->isObjCInterfaceType()) {
1557    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1558    InvalidDecl = true;
1559  }
1560
1561  VarDecl *NewVD;
1562  VarDecl::StorageClass SC;
1563  switch (D.getDeclSpec().getStorageClassSpec()) {
1564  default: assert(0 && "Unknown storage class!");
1565  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1566  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1567  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1568  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1569  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1570  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1571  case DeclSpec::SCS_mutable:
1572    // mutable can only appear on non-static class members, so it's always
1573    // an error here
1574    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1575    InvalidDecl = true;
1576    SC = VarDecl::None;
1577    break;
1578  }
1579
1580  IdentifierInfo *II = Name.getAsIdentifierInfo();
1581  if (!II) {
1582    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1583      << Name.getAsString();
1584    return 0;
1585  }
1586
1587  if (D.getDeclSpec().isVirtualSpecified())
1588    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1589         diag::err_virtual_non_function);
1590
1591  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1592  if (!DC->isRecord() && S->getFnParent() == 0) {
1593    // C99 6.9p2: The storage-class specifiers auto and register shall not
1594    // appear in the declaration specifiers in an external declaration.
1595    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1596      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1597      InvalidDecl = true;
1598    }
1599  }
1600  if (DC->isRecord() && !CurContext->isRecord()) {
1601    // This is an out-of-line definition of a static data member.
1602    if (SC == VarDecl::Static) {
1603      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1604           diag::err_static_out_of_line)
1605        << CodeModificationHint::CreateRemoval(
1606                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1607    } else if (SC == VarDecl::None)
1608      SC = VarDecl::Static;
1609  }
1610  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1611                          II, R, SC,
1612                          // FIXME: Move to DeclGroup...
1613                          D.getDeclSpec().getSourceRange().getBegin());
1614  NewVD->setThreadSpecified(ThreadSpecified);
1615  NewVD->setNextDeclarator(LastDeclarator);
1616
1617  // Set the lexical context. If the declarator has a C++ scope specifier, the
1618  // lexical context will be different from the semantic context.
1619  NewVD->setLexicalDeclContext(CurContext);
1620
1621  // Handle attributes prior to checking for duplicates in MergeVarDecl
1622  ProcessDeclAttributes(NewVD, D);
1623
1624  // Handle GNU asm-label extension (encoded as an attribute).
1625  if (Expr *E = (Expr*) D.getAsmLabel()) {
1626    // The parser guarantees this is a string.
1627    StringLiteral *SE = cast<StringLiteral>(E);
1628    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1629                                                        SE->getByteLength())));
1630  }
1631
1632  // Emit an error if an address space was applied to decl with local storage.
1633  // This includes arrays of objects with address space qualifiers, but not
1634  // automatic variables that point to other address spaces.
1635  // ISO/IEC TR 18037 S5.1.2
1636  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1637    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1638    InvalidDecl = true;
1639  }
1640
1641  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1642    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1643  }
1644
1645  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1646  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1647  if (isIllegalVLA || isIllegalVM) {
1648    bool SizeIsNegative;
1649    QualType FixedTy =
1650        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1651    if (!FixedTy.isNull()) {
1652      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1653      NewVD->setType(FixedTy);
1654    } else if (R->isVariableArrayType()) {
1655      NewVD->setInvalidDecl();
1656
1657      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1658      // FIXME: This won't give the correct result for
1659      // int a[10][n];
1660      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1661
1662      if (NewVD->isFileVarDecl())
1663        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1664          << SizeRange;
1665      else if (NewVD->getStorageClass() == VarDecl::Static)
1666        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1667          << SizeRange;
1668      else
1669        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1670            << SizeRange;
1671    } else {
1672      InvalidDecl = true;
1673
1674      if (NewVD->isFileVarDecl())
1675        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1676      else
1677        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1678    }
1679  }
1680
1681  // If name lookup finds a previous declaration that is not in the
1682  // same scope as the new declaration, this may still be an
1683  // acceptable redeclaration.
1684  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1685      !(NewVD->hasLinkage() &&
1686        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1687    PrevDecl = 0;
1688
1689  if (!PrevDecl && NewVD->isExternC(Context)) {
1690    // Since we did not find anything by this name and we're declaring
1691    // an extern "C" variable, look for a non-visible extern "C"
1692    // declaration with the same name.
1693    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1694      = LocallyScopedExternalDecls.find(Name);
1695    if (Pos != LocallyScopedExternalDecls.end())
1696      PrevDecl = Pos->second;
1697  }
1698
1699  // Merge the decl with the existing one if appropriate.
1700  if (PrevDecl) {
1701    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1702      // The user tried to define a non-static data member
1703      // out-of-line (C++ [dcl.meaning]p1).
1704      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1705        << D.getCXXScopeSpec().getRange();
1706      NewVD->Destroy(Context);
1707      return 0;
1708    }
1709
1710    Redeclaration = true;
1711    if (MergeVarDecl(NewVD, PrevDecl))
1712      InvalidDecl = true;
1713  } else if (D.getCXXScopeSpec().isSet()) {
1714    // No previous declaration in the qualifying scope.
1715    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1716      << Name << D.getCXXScopeSpec().getRange();
1717    InvalidDecl = true;
1718  }
1719
1720  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1721    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1722      << R;
1723    InvalidDecl = true;
1724  }
1725
1726
1727  // If this is a locally-scoped extern C variable, update the map of
1728  // such variables.
1729  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1730      !InvalidDecl)
1731    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1732
1733  return NewVD;
1734}
1735
1736NamedDecl*
1737Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1738                              QualType R, Decl *LastDeclarator,
1739                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1740                              bool& InvalidDecl, bool &Redeclaration) {
1741  assert(R.getTypePtr()->isFunctionType());
1742
1743  DeclarationName Name = GetNameForDeclarator(D);
1744  FunctionDecl::StorageClass SC = FunctionDecl::None;
1745  switch (D.getDeclSpec().getStorageClassSpec()) {
1746  default: assert(0 && "Unknown storage class!");
1747  case DeclSpec::SCS_auto:
1748  case DeclSpec::SCS_register:
1749  case DeclSpec::SCS_mutable:
1750    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1751         diag::err_typecheck_sclass_func);
1752    InvalidDecl = true;
1753    break;
1754  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1755  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1756  case DeclSpec::SCS_static: {
1757    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1758      // C99 6.7.1p5:
1759      //   The declaration of an identifier for a function that has
1760      //   block scope shall have no explicit storage-class specifier
1761      //   other than extern
1762      // See also (C++ [dcl.stc]p4).
1763      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1764           diag::err_static_block_func);
1765      SC = FunctionDecl::None;
1766    } else
1767      SC = FunctionDecl::Static;
1768    break;
1769  }
1770  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1771  }
1772
1773  bool isInline = D.getDeclSpec().isInlineSpecified();
1774  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1775  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1776
1777  bool isVirtualOkay = false;
1778  FunctionDecl *NewFD;
1779  if (D.getKind() == Declarator::DK_Constructor) {
1780    // This is a C++ constructor declaration.
1781    assert(DC->isRecord() &&
1782           "Constructors can only be declared in a member context");
1783
1784    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1785
1786    // Create the new declaration
1787    NewFD = CXXConstructorDecl::Create(Context,
1788                                       cast<CXXRecordDecl>(DC),
1789                                       D.getIdentifierLoc(), Name, R,
1790                                       isExplicit, isInline,
1791                                       /*isImplicitlyDeclared=*/false);
1792
1793    if (InvalidDecl)
1794      NewFD->setInvalidDecl();
1795  } else if (D.getKind() == Declarator::DK_Destructor) {
1796    // This is a C++ destructor declaration.
1797    if (DC->isRecord()) {
1798      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1799
1800      NewFD = CXXDestructorDecl::Create(Context,
1801                                        cast<CXXRecordDecl>(DC),
1802                                        D.getIdentifierLoc(), Name, R,
1803                                        isInline,
1804                                        /*isImplicitlyDeclared=*/false);
1805
1806      if (InvalidDecl)
1807        NewFD->setInvalidDecl();
1808
1809      isVirtualOkay = true;
1810    } else {
1811      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1812
1813      // Create a FunctionDecl to satisfy the function definition parsing
1814      // code path.
1815      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1816                                   Name, R, SC, isInline,
1817                                   /*hasPrototype=*/true,
1818                                   // FIXME: Move to DeclGroup...
1819                                   D.getDeclSpec().getSourceRange().getBegin());
1820      InvalidDecl = true;
1821      NewFD->setInvalidDecl();
1822    }
1823  } else if (D.getKind() == Declarator::DK_Conversion) {
1824    if (!DC->isRecord()) {
1825      Diag(D.getIdentifierLoc(),
1826           diag::err_conv_function_not_member);
1827      return 0;
1828    } else {
1829      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1830
1831      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1832                                        D.getIdentifierLoc(), Name, R,
1833                                        isInline, isExplicit);
1834
1835      if (InvalidDecl)
1836        NewFD->setInvalidDecl();
1837
1838      isVirtualOkay = true;
1839    }
1840  } else if (DC->isRecord()) {
1841    // This is a C++ method declaration.
1842    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1843                                  D.getIdentifierLoc(), Name, R,
1844                                  (SC == FunctionDecl::Static), isInline);
1845
1846    isVirtualOkay = (SC != FunctionDecl::Static);
1847  } else {
1848    NewFD = FunctionDecl::Create(Context, DC,
1849                                 D.getIdentifierLoc(),
1850                                 Name, R, SC, isInline,
1851                                 /*hasPrototype=*/
1852                                   (getLangOptions().CPlusPlus ||
1853                                    (D.getNumTypeObjects() &&
1854                                     D.getTypeObject(0).Fun.hasPrototype)),
1855                                 // FIXME: Move to DeclGroup...
1856                                 D.getDeclSpec().getSourceRange().getBegin());
1857  }
1858  NewFD->setNextDeclarator(LastDeclarator);
1859
1860  // Set the lexical context. If the declarator has a C++
1861  // scope specifier, the lexical context will be different
1862  // from the semantic context.
1863  NewFD->setLexicalDeclContext(CurContext);
1864
1865  // C++ [dcl.fct.spec]p5:
1866  //   The virtual specifier shall only be used in declarations of
1867  //   nonstatic class member functions that appear within a
1868  //   member-specification of a class declaration; see 10.3.
1869  //
1870  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1871  // function is also virtual if it overrides an already virtual
1872  // function. This is important to do here because it's part of the
1873  // declaration.
1874  if (isVirtual && !InvalidDecl) {
1875    if (!isVirtualOkay) {
1876       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1877           diag::err_virtual_non_function);
1878    } else if (!CurContext->isRecord()) {
1879      // 'virtual' was specified outside of the class.
1880      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1881        << CodeModificationHint::CreateRemoval(
1882                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1883    } else {
1884      // Okay: Add virtual to the method.
1885      cast<CXXMethodDecl>(NewFD)->setVirtual();
1886      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1887      CurClass->setAggregate(false);
1888      CurClass->setPOD(false);
1889      CurClass->setPolymorphic(true);
1890    }
1891  }
1892
1893  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1894      !CurContext->isRecord()) {
1895    // C++ [class.static]p1:
1896    //   A data or function member of a class may be declared static
1897    //   in a class definition, in which case it is a static member of
1898    //   the class.
1899
1900    // Complain about the 'static' specifier if it's on an out-of-line
1901    // member function definition.
1902    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1903         diag::err_static_out_of_line)
1904      << CodeModificationHint::CreateRemoval(
1905                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1906  }
1907
1908  // Handle GNU asm-label extension (encoded as an attribute).
1909  if (Expr *E = (Expr*) D.getAsmLabel()) {
1910    // The parser guarantees this is a string.
1911    StringLiteral *SE = cast<StringLiteral>(E);
1912    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1913                                                        SE->getByteLength())));
1914  }
1915
1916  // Copy the parameter declarations from the declarator D to
1917  // the function declaration NewFD, if they are available.
1918  if (D.getNumTypeObjects() > 0) {
1919    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1920
1921    // Create Decl objects for each parameter, adding them to the
1922    // FunctionDecl.
1923    llvm::SmallVector<ParmVarDecl*, 16> Params;
1924
1925    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1926    // function that takes no arguments, not a function that takes a
1927    // single void argument.
1928    // We let through "const void" here because Sema::GetTypeForDeclarator
1929    // already checks for that case.
1930    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1931        FTI.ArgInfo[0].Param &&
1932        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1933      // empty arg list, don't push any params.
1934      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1935
1936      // In C++, the empty parameter-type-list must be spelled "void"; a
1937      // typedef of void is not permitted.
1938      if (getLangOptions().CPlusPlus &&
1939          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1940        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1941      }
1942    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1943      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1944        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1945    }
1946
1947    NewFD->setParams(Context, &Params[0], Params.size());
1948  } else if (R->getAsTypedefType()) {
1949    // When we're declaring a function with a typedef, as in the
1950    // following example, we'll need to synthesize (unnamed)
1951    // parameters for use in the declaration.
1952    //
1953    // @code
1954    // typedef void fn(int);
1955    // fn f;
1956    // @endcode
1957    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1958    if (!FT) {
1959      // This is a typedef of a function with no prototype, so we
1960      // don't need to do anything.
1961    } else if ((FT->getNumArgs() == 0) ||
1962               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1963                FT->getArgType(0)->isVoidType())) {
1964      // This is a zero-argument function. We don't need to do anything.
1965    } else {
1966      // Synthesize a parameter for each argument type.
1967      llvm::SmallVector<ParmVarDecl*, 16> Params;
1968      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1969           ArgType != FT->arg_type_end(); ++ArgType) {
1970        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1971                                                 SourceLocation(), 0,
1972                                                 *ArgType, VarDecl::None,
1973                                                 0);
1974        Param->setImplicit();
1975        Params.push_back(Param);
1976      }
1977
1978      NewFD->setParams(Context, &Params[0], Params.size());
1979    }
1980  }
1981
1982  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1983    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1984  else if (isa<CXXDestructorDecl>(NewFD)) {
1985    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1986    Record->setUserDeclaredDestructor(true);
1987    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1988    // user-defined destructor.
1989    Record->setPOD(false);
1990  } else if (CXXConversionDecl *Conversion =
1991             dyn_cast<CXXConversionDecl>(NewFD))
1992    ActOnConversionDeclarator(Conversion);
1993
1994  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1995  if (NewFD->isOverloadedOperator() &&
1996      CheckOverloadedOperatorDeclaration(NewFD))
1997    NewFD->setInvalidDecl();
1998
1999  // If name lookup finds a previous declaration that is not in the
2000  // same scope as the new declaration, this may still be an
2001  // acceptable redeclaration.
2002  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2003      !(NewFD->hasLinkage() &&
2004        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2005    PrevDecl = 0;
2006
2007  if (!PrevDecl && NewFD->isExternC(Context)) {
2008    // Since we did not find anything by this name and we're declaring
2009    // an extern "C" function, look for a non-visible extern "C"
2010    // declaration with the same name.
2011    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2012      = LocallyScopedExternalDecls.find(Name);
2013    if (Pos != LocallyScopedExternalDecls.end())
2014      PrevDecl = Pos->second;
2015  }
2016
2017  // Merge or overload the declaration with an existing declaration of
2018  // the same name, if appropriate.
2019  bool OverloadableAttrRequired = false;
2020  if (PrevDecl) {
2021    // Determine whether NewFD is an overload of PrevDecl or
2022    // a declaration that requires merging. If it's an overload,
2023    // there's no more work to do here; we'll just add the new
2024    // function to the scope.
2025    OverloadedFunctionDecl::function_iterator MatchedDecl;
2026
2027    if (!getLangOptions().CPlusPlus &&
2028        AllowOverloadingOfFunction(PrevDecl, Context)) {
2029      OverloadableAttrRequired = true;
2030
2031      // Functions marked "overloadable" must have a prototype (that
2032      // we can't get through declaration merging).
2033      if (!R->getAsFunctionProtoType()) {
2034        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2035          << NewFD;
2036        InvalidDecl = true;
2037        Redeclaration = true;
2038
2039        // Turn this into a variadic function with no parameters.
2040        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
2041                                    0, 0, true, 0);
2042        NewFD->setType(R);
2043      }
2044    }
2045
2046    if (PrevDecl &&
2047        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2048         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2049      Redeclaration = true;
2050      Decl *OldDecl = PrevDecl;
2051
2052      // If PrevDecl was an overloaded function, extract the
2053      // FunctionDecl that matched.
2054      if (isa<OverloadedFunctionDecl>(PrevDecl))
2055        OldDecl = *MatchedDecl;
2056
2057      // NewFD and PrevDecl represent declarations that need to be
2058      // merged.
2059      if (MergeFunctionDecl(NewFD, OldDecl))
2060        InvalidDecl = true;
2061
2062      if (!InvalidDecl) {
2063        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2064
2065        // An out-of-line member function declaration must also be a
2066        // definition (C++ [dcl.meaning]p1).
2067        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2068            !InvalidDecl) {
2069          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2070            << D.getCXXScopeSpec().getRange();
2071          NewFD->setInvalidDecl();
2072        }
2073      }
2074    }
2075  }
2076
2077  if (D.getCXXScopeSpec().isSet() &&
2078      (!PrevDecl || !Redeclaration)) {
2079    // The user tried to provide an out-of-line definition for a
2080    // function that is a member of a class or namespace, but there
2081    // was no such member function declared (C++ [class.mfct]p2,
2082    // C++ [namespace.memdef]p2). For example:
2083    //
2084    // class X {
2085    //   void f() const;
2086    // };
2087    //
2088    // void X::f() { } // ill-formed
2089    //
2090    // Complain about this problem, and attempt to suggest close
2091    // matches (e.g., those that differ only in cv-qualifiers and
2092    // whether the parameter types are references).
2093    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2094      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2095    InvalidDecl = true;
2096
2097    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2098                                            true);
2099    assert(!Prev.isAmbiguous() &&
2100           "Cannot have an ambiguity in previous-declaration lookup");
2101    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2102         Func != FuncEnd; ++Func) {
2103      if (isa<FunctionDecl>(*Func) &&
2104          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2105        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2106    }
2107
2108    PrevDecl = 0;
2109  }
2110
2111  // Handle attributes. We need to have merged decls when handling attributes
2112  // (for example to check for conflicts, etc).
2113  ProcessDeclAttributes(NewFD, D);
2114  AddKnownFunctionAttributes(NewFD);
2115
2116  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2117    // If a function name is overloadable in C, then every function
2118    // with that name must be marked "overloadable".
2119    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2120      << Redeclaration << NewFD;
2121    if (PrevDecl)
2122      Diag(PrevDecl->getLocation(),
2123           diag::note_attribute_overloadable_prev_overload);
2124    NewFD->addAttr(::new (Context) OverloadableAttr());
2125  }
2126
2127  if (getLangOptions().CPlusPlus) {
2128    // In C++, check default arguments now that we have merged decls. Unless
2129    // the lexical context is the class, because in this case this is done
2130    // during delayed parsing anyway.
2131    if (!CurContext->isRecord())
2132      CheckCXXDefaultArguments(NewFD);
2133
2134    // An out-of-line member function declaration must also be a
2135    // definition (C++ [dcl.meaning]p1).
2136    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2137      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2138        << D.getCXXScopeSpec().getRange();
2139      InvalidDecl = true;
2140    }
2141  }
2142
2143  // If this is a locally-scoped extern C function, update the
2144  // map of such names.
2145  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2146      && !InvalidDecl)
2147    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2148
2149  return NewFD;
2150}
2151
2152bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2153  // FIXME: Need strict checking.  In C89, we need to check for
2154  // any assignment, increment, decrement, function-calls, or
2155  // commas outside of a sizeof.  In C99, it's the same list,
2156  // except that the aforementioned are allowed in unevaluated
2157  // expressions.  Everything else falls under the
2158  // "may accept other forms of constant expressions" exception.
2159  // (We never end up here for C++, so the constant expression
2160  // rules there don't matter.)
2161  if (Init->isConstantInitializer(Context))
2162    return false;
2163  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2164    << Init->getSourceRange();
2165  return true;
2166}
2167
2168void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2169  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2170}
2171
2172/// AddInitializerToDecl - Adds the initializer Init to the
2173/// declaration dcl. If DirectInit is true, this is C++ direct
2174/// initialization rather than copy initialization.
2175void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2176  Decl *RealDecl = static_cast<Decl *>(dcl);
2177  // If there is no declaration, there was an error parsing it.  Just ignore
2178  // the initializer.
2179  if (RealDecl == 0)
2180    return;
2181
2182  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2183    // With declarators parsed the way they are, the parser cannot
2184    // distinguish between a normal initializer and a pure-specifier.
2185    // Thus this grotesque test.
2186    IntegerLiteral *IL;
2187    Expr *Init = static_cast<Expr *>(init.get());
2188    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2189        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2190      if (Method->isVirtual())
2191        Method->setPure();
2192      else {
2193        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2194          << Method->getDeclName() << Init->getSourceRange();
2195        Method->setInvalidDecl();
2196      }
2197    } else {
2198      Diag(Method->getLocation(), diag::err_member_function_initialization)
2199        << Method->getDeclName() << Init->getSourceRange();
2200      Method->setInvalidDecl();
2201    }
2202    return;
2203  }
2204
2205  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2206  if (!VDecl) {
2207    if (getLangOptions().CPlusPlus &&
2208        RealDecl->getLexicalDeclContext()->isRecord() &&
2209        isa<NamedDecl>(RealDecl))
2210      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2211        << cast<NamedDecl>(RealDecl)->getDeclName();
2212    else
2213      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2214    RealDecl->setInvalidDecl();
2215    return;
2216  }
2217
2218  const VarDecl *Def = 0;
2219  if (VDecl->getDefinition(Def)) {
2220    Diag(VDecl->getLocation(), diag::err_redefinition)
2221      << VDecl->getDeclName();
2222    Diag(Def->getLocation(), diag::note_previous_definition);
2223    VDecl->setInvalidDecl();
2224    return;
2225  }
2226
2227  // Take ownership of the expression, now that we're sure we have somewhere
2228  // to put it.
2229  Expr *Init = static_cast<Expr *>(init.release());
2230  assert(Init && "missing initializer");
2231
2232  // Get the decls type and save a reference for later, since
2233  // CheckInitializerTypes may change it.
2234  QualType DclT = VDecl->getType(), SavT = DclT;
2235  if (VDecl->isBlockVarDecl()) {
2236    VarDecl::StorageClass SC = VDecl->getStorageClass();
2237    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2238      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2239      VDecl->setInvalidDecl();
2240    } else if (!VDecl->isInvalidDecl()) {
2241      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2242                                VDecl->getDeclName(), DirectInit))
2243        VDecl->setInvalidDecl();
2244
2245      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2246      // Don't check invalid declarations to avoid emitting useless diagnostics.
2247      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2248        if (SC == VarDecl::Static) // C99 6.7.8p4.
2249          CheckForConstantInitializer(Init, DclT);
2250      }
2251    }
2252  } else if (VDecl->isStaticDataMember() &&
2253             VDecl->getLexicalDeclContext()->isRecord()) {
2254    // This is an in-class initialization for a static data member, e.g.,
2255    //
2256    // struct S {
2257    //   static const int value = 17;
2258    // };
2259
2260    // Attach the initializer
2261    VDecl->setInit(Init);
2262
2263    // C++ [class.mem]p4:
2264    //   A member-declarator can contain a constant-initializer only
2265    //   if it declares a static member (9.4) of const integral or
2266    //   const enumeration type, see 9.4.2.
2267    QualType T = VDecl->getType();
2268    if (!T->isDependentType() &&
2269        (!Context.getCanonicalType(T).isConstQualified() ||
2270         !T->isIntegralType())) {
2271      Diag(VDecl->getLocation(), diag::err_member_initialization)
2272        << VDecl->getDeclName() << Init->getSourceRange();
2273      VDecl->setInvalidDecl();
2274    } else {
2275      // C++ [class.static.data]p4:
2276      //   If a static data member is of const integral or const
2277      //   enumeration type, its declaration in the class definition
2278      //   can specify a constant-initializer which shall be an
2279      //   integral constant expression (5.19).
2280      if (!Init->isTypeDependent() &&
2281          !Init->getType()->isIntegralType()) {
2282        // We have a non-dependent, non-integral or enumeration type.
2283        Diag(Init->getSourceRange().getBegin(),
2284             diag::err_in_class_initializer_non_integral_type)
2285          << Init->getType() << Init->getSourceRange();
2286        VDecl->setInvalidDecl();
2287      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2288        // Check whether the expression is a constant expression.
2289        llvm::APSInt Value;
2290        SourceLocation Loc;
2291        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2292          Diag(Loc, diag::err_in_class_initializer_non_constant)
2293            << Init->getSourceRange();
2294          VDecl->setInvalidDecl();
2295        }
2296      }
2297    }
2298  } else if (VDecl->isFileVarDecl()) {
2299    if (VDecl->getStorageClass() == VarDecl::Extern)
2300      Diag(VDecl->getLocation(), diag::warn_extern_init);
2301    if (!VDecl->isInvalidDecl())
2302      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2303                                VDecl->getDeclName(), DirectInit))
2304        VDecl->setInvalidDecl();
2305
2306    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2307    // Don't check invalid declarations to avoid emitting useless diagnostics.
2308    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2309      // C99 6.7.8p4. All file scoped initializers need to be constant.
2310      CheckForConstantInitializer(Init, DclT);
2311    }
2312  }
2313  // If the type changed, it means we had an incomplete type that was
2314  // completed by the initializer. For example:
2315  //   int ary[] = { 1, 3, 5 };
2316  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2317  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2318    VDecl->setType(DclT);
2319    Init->setType(DclT);
2320  }
2321
2322  // Attach the initializer to the decl.
2323  VDecl->setInit(Init);
2324  return;
2325}
2326
2327void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2328  Decl *RealDecl = static_cast<Decl *>(dcl);
2329
2330  // If there is no declaration, there was an error parsing it. Just ignore it.
2331  if (RealDecl == 0)
2332    return;
2333
2334  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2335    QualType Type = Var->getType();
2336    // C++ [dcl.init.ref]p3:
2337    //   The initializer can be omitted for a reference only in a
2338    //   parameter declaration (8.3.5), in the declaration of a
2339    //   function return type, in the declaration of a class member
2340    //   within its class declaration (9.2), and where the extern
2341    //   specifier is explicitly used.
2342    if (Type->isReferenceType() &&
2343        Var->getStorageClass() != VarDecl::Extern &&
2344        Var->getStorageClass() != VarDecl::PrivateExtern) {
2345      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2346        << Var->getDeclName()
2347        << SourceRange(Var->getLocation(), Var->getLocation());
2348      Var->setInvalidDecl();
2349      return;
2350    }
2351
2352    // C++ [dcl.init]p9:
2353    //
2354    //   If no initializer is specified for an object, and the object
2355    //   is of (possibly cv-qualified) non-POD class type (or array
2356    //   thereof), the object shall be default-initialized; if the
2357    //   object is of const-qualified type, the underlying class type
2358    //   shall have a user-declared default constructor.
2359    if (getLangOptions().CPlusPlus) {
2360      QualType InitType = Type;
2361      if (const ArrayType *Array = Context.getAsArrayType(Type))
2362        InitType = Array->getElementType();
2363      if (Var->getStorageClass() != VarDecl::Extern &&
2364          Var->getStorageClass() != VarDecl::PrivateExtern &&
2365          InitType->isRecordType()) {
2366        const CXXConstructorDecl *Constructor = 0;
2367        if (!RequireCompleteType(Var->getLocation(), InitType,
2368                                    diag::err_invalid_incomplete_type_use))
2369          Constructor
2370            = PerformInitializationByConstructor(InitType, 0, 0,
2371                                                 Var->getLocation(),
2372                                               SourceRange(Var->getLocation(),
2373                                                           Var->getLocation()),
2374                                                 Var->getDeclName(),
2375                                                 IK_Default);
2376        if (!Constructor)
2377          Var->setInvalidDecl();
2378      }
2379    }
2380
2381#if 0
2382    // FIXME: Temporarily disabled because we are not properly parsing
2383    // linkage specifications on declarations, e.g.,
2384    //
2385    //   extern "C" const CGPoint CGPointerZero;
2386    //
2387    // C++ [dcl.init]p9:
2388    //
2389    //     If no initializer is specified for an object, and the
2390    //     object is of (possibly cv-qualified) non-POD class type (or
2391    //     array thereof), the object shall be default-initialized; if
2392    //     the object is of const-qualified type, the underlying class
2393    //     type shall have a user-declared default
2394    //     constructor. Otherwise, if no initializer is specified for
2395    //     an object, the object and its subobjects, if any, have an
2396    //     indeterminate initial value; if the object or any of its
2397    //     subobjects are of const-qualified type, the program is
2398    //     ill-formed.
2399    //
2400    // This isn't technically an error in C, so we don't diagnose it.
2401    //
2402    // FIXME: Actually perform the POD/user-defined default
2403    // constructor check.
2404    if (getLangOptions().CPlusPlus &&
2405        Context.getCanonicalType(Type).isConstQualified() &&
2406        Var->getStorageClass() != VarDecl::Extern)
2407      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2408        << Var->getName()
2409        << SourceRange(Var->getLocation(), Var->getLocation());
2410#endif
2411  }
2412}
2413
2414/// The declarators are chained together backwards, reverse the list.
2415Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2416  // Often we have single declarators, handle them quickly.
2417  Decl *Group = static_cast<Decl*>(group);
2418  if (Group == 0)
2419    return 0;
2420
2421  Decl *NewGroup = 0;
2422  if (Group->getNextDeclarator() == 0)
2423    NewGroup = Group;
2424  else { // reverse the list.
2425    while (Group) {
2426      Decl *Next = Group->getNextDeclarator();
2427      Group->setNextDeclarator(NewGroup);
2428      NewGroup = Group;
2429      Group = Next;
2430    }
2431  }
2432  // Perform semantic analysis that depends on having fully processed both
2433  // the declarator and initializer.
2434  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2435    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2436    if (!IDecl)
2437      continue;
2438    QualType T = IDecl->getType();
2439
2440    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2441    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2442    if (IDecl->isBlockVarDecl() &&
2443        IDecl->getStorageClass() != VarDecl::Extern) {
2444      if (!IDecl->isInvalidDecl() &&
2445          RequireCompleteType(IDecl->getLocation(), T,
2446                                 diag::err_typecheck_decl_incomplete_type))
2447        IDecl->setInvalidDecl();
2448    }
2449    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2450    // object that has file scope without an initializer, and without a
2451    // storage-class specifier or with the storage-class specifier "static",
2452    // constitutes a tentative definition. Note: A tentative definition with
2453    // external linkage is valid (C99 6.2.2p5).
2454    if (IDecl->isTentativeDefinition(Context)) {
2455      QualType CheckType = T;
2456      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2457
2458      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2459      if (ArrayT) {
2460        CheckType = ArrayT->getElementType();
2461        DiagID = diag::err_illegal_decl_array_incomplete_type;
2462      }
2463
2464      if (IDecl->isInvalidDecl()) {
2465        // Do nothing with invalid declarations
2466      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2467                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2468        // C99 6.9.2p3: If the declaration of an identifier for an object is
2469        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2470        // declared type shall not be an incomplete type.
2471        IDecl->setInvalidDecl();
2472      }
2473    }
2474  }
2475  return NewGroup;
2476}
2477
2478/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2479/// to introduce parameters into function prototype scope.
2480Sema::DeclTy *
2481Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2482  const DeclSpec &DS = D.getDeclSpec();
2483
2484  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2485  VarDecl::StorageClass StorageClass = VarDecl::None;
2486  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2487    StorageClass = VarDecl::Register;
2488  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2489    Diag(DS.getStorageClassSpecLoc(),
2490         diag::err_invalid_storage_class_in_func_decl);
2491    D.getMutableDeclSpec().ClearStorageClassSpecs();
2492  }
2493  if (DS.isThreadSpecified()) {
2494    Diag(DS.getThreadSpecLoc(),
2495         diag::err_invalid_storage_class_in_func_decl);
2496    D.getMutableDeclSpec().ClearStorageClassSpecs();
2497  }
2498
2499  // Check that there are no default arguments inside the type of this
2500  // parameter (C++ only).
2501  if (getLangOptions().CPlusPlus)
2502    CheckExtraCXXDefaultArguments(D);
2503
2504  // In this context, we *do not* check D.getInvalidType(). If the declarator
2505  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2506  // though it will not reflect the user specified type.
2507  QualType parmDeclType = GetTypeForDeclarator(D, S);
2508
2509  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2510
2511  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2512  // Can this happen for params?  We already checked that they don't conflict
2513  // among each other.  Here they can only shadow globals, which is ok.
2514  IdentifierInfo *II = D.getIdentifier();
2515  if (II) {
2516    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2517      if (PrevDecl->isTemplateParameter()) {
2518        // Maybe we will complain about the shadowed template parameter.
2519        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2520        // Just pretend that we didn't see the previous declaration.
2521        PrevDecl = 0;
2522      } else if (S->isDeclScope(PrevDecl)) {
2523        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2524
2525        // Recover by removing the name
2526        II = 0;
2527        D.SetIdentifier(0, D.getIdentifierLoc());
2528      }
2529    }
2530  }
2531
2532  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2533  // Doing the promotion here has a win and a loss. The win is the type for
2534  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2535  // code generator). The loss is the orginal type isn't preserved. For example:
2536  //
2537  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2538  //    int blockvardecl[5];
2539  //    sizeof(parmvardecl);  // size == 4
2540  //    sizeof(blockvardecl); // size == 20
2541  // }
2542  //
2543  // For expressions, all implicit conversions are captured using the
2544  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2545  //
2546  // FIXME: If a source translation tool needs to see the original type, then
2547  // we need to consider storing both types (in ParmVarDecl)...
2548  //
2549  if (parmDeclType->isArrayType()) {
2550    // int x[restrict 4] ->  int *restrict
2551    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2552  } else if (parmDeclType->isFunctionType())
2553    parmDeclType = Context.getPointerType(parmDeclType);
2554
2555  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2556                                         D.getIdentifierLoc(), II,
2557                                         parmDeclType, StorageClass,
2558                                         0);
2559
2560  if (D.getInvalidType())
2561    New->setInvalidDecl();
2562
2563  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2564  if (D.getCXXScopeSpec().isSet()) {
2565    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2566      << D.getCXXScopeSpec().getRange();
2567    New->setInvalidDecl();
2568  }
2569  // Parameter declarators cannot be interface types. All ObjC objects are
2570  // passed by reference.
2571  if (parmDeclType->isObjCInterfaceType()) {
2572    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2573         << "passed";
2574    New->setInvalidDecl();
2575  }
2576
2577  // Add the parameter declaration into this scope.
2578  S->AddDecl(New);
2579  if (II)
2580    IdResolver.AddDecl(New);
2581
2582  ProcessDeclAttributes(New, D);
2583  return New;
2584
2585}
2586
2587void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2588  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2589         "Not a function declarator!");
2590  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2591
2592  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2593  // for a K&R function.
2594  if (!FTI.hasPrototype) {
2595    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2596      if (FTI.ArgInfo[i].Param == 0) {
2597        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2598          << FTI.ArgInfo[i].Ident;
2599        // Implicitly declare the argument as type 'int' for lack of a better
2600        // type.
2601        DeclSpec DS;
2602        const char* PrevSpec; // unused
2603        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2604                           PrevSpec);
2605        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2606        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2607        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2608      }
2609    }
2610  }
2611}
2612
2613Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2614  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2615  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2616         "Not a function declarator!");
2617  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2618
2619  if (FTI.hasPrototype) {
2620    // FIXME: Diagnose arguments without names in C.
2621  }
2622
2623  Scope *ParentScope = FnBodyScope->getParent();
2624
2625  return ActOnStartOfFunctionDef(FnBodyScope,
2626                                 ActOnDeclarator(ParentScope, D, 0,
2627                                                 /*IsFunctionDefinition=*/true));
2628}
2629
2630Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2631  Decl *decl = static_cast<Decl*>(D);
2632  FunctionDecl *FD = cast<FunctionDecl>(decl);
2633
2634  ActiveScope = FnBodyScope;
2635
2636  // See if this is a redefinition.
2637  const FunctionDecl *Definition;
2638  if (FD->getBody(Definition)) {
2639    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2640    Diag(Definition->getLocation(), diag::note_previous_definition);
2641  }
2642
2643  // Builtin functions cannot be defined.
2644  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2645    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2646      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2647      FD->setInvalidDecl();
2648    }
2649  }
2650
2651  // The return type of a function definition must be complete
2652  // (C99 6.9.1p3)
2653  if (FD->getResultType()->isIncompleteType() &&
2654      !FD->getResultType()->isVoidType()) {
2655    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2656    FD->setInvalidDecl();
2657  }
2658
2659  PushDeclContext(FnBodyScope, FD);
2660
2661  // Check the validity of our function parameters
2662  CheckParmsForFunctionDef(FD);
2663
2664  // Introduce our parameters into the function scope
2665  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2666    ParmVarDecl *Param = FD->getParamDecl(p);
2667    Param->setOwningFunction(FD);
2668
2669    // If this has an identifier, add it to the scope stack.
2670    if (Param->getIdentifier())
2671      PushOnScopeChains(Param, FnBodyScope);
2672  }
2673
2674  // Checking attributes of current function definition
2675  // dllimport attribute.
2676  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2677    // dllimport attribute cannot be applied to definition.
2678    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2679      Diag(FD->getLocation(),
2680           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2681        << "dllimport";
2682      FD->setInvalidDecl();
2683      return FD;
2684    } else {
2685      // If a symbol previously declared dllimport is later defined, the
2686      // attribute is ignored in subsequent references, and a warning is
2687      // emitted.
2688      Diag(FD->getLocation(),
2689           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2690        << FD->getNameAsCString() << "dllimport";
2691    }
2692  }
2693  return FD;
2694}
2695
2696static bool StatementCreatesScope(Stmt* S) {
2697  bool result = false;
2698  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2699    for (DeclStmt::decl_iterator i = DS->decl_begin();
2700         i != DS->decl_end(); ++i) {
2701      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2702        result |= D->getType()->isVariablyModifiedType();
2703        result |= !!D->getAttr<CleanupAttr>();
2704      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2705        result |= D->getUnderlyingType()->isVariablyModifiedType();
2706      }
2707    }
2708  }
2709
2710  return result;
2711}
2712
2713void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2714                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2715                                    std::vector<void*>& ScopeStack,
2716                                    Stmt* CurStmt,
2717                                    Stmt* ParentCompoundStmt) {
2718  for (Stmt::child_iterator i = CurStmt->child_begin();
2719       i != CurStmt->child_end(); ++i) {
2720    if (!*i) continue;
2721    if (StatementCreatesScope(*i))  {
2722      ScopeStack.push_back(*i);
2723      PopScopeMap[*i] = ParentCompoundStmt;
2724    } else if (isa<LabelStmt>(CurStmt)) {
2725      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2726    }
2727    if (isa<DeclStmt>(*i)) continue;
2728    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2729    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2730                             *i, CurCompound);
2731  }
2732
2733  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2734    ScopeStack.pop_back();
2735  }
2736}
2737
2738void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2739                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2740                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2741                                   std::vector<void*>& ScopeStack,
2742                                   Stmt* CurStmt) {
2743  for (Stmt::child_iterator i = CurStmt->child_begin();
2744       i != CurStmt->child_end(); ++i) {
2745    if (!*i) continue;
2746    if (StatementCreatesScope(*i))  {
2747      ScopeStack.push_back(*i);
2748    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2749      void* LScope = LabelScopeMap[GS->getLabel()];
2750      if (LScope) {
2751        bool foundScopeInStack = false;
2752        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2753          if (LScope == ScopeStack[i-1]) {
2754            foundScopeInStack = true;
2755            break;
2756          }
2757        }
2758        if (!foundScopeInStack) {
2759          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2760        }
2761      }
2762    }
2763    if (isa<DeclStmt>(*i)) continue;
2764    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2765                            ScopeStack, *i);
2766  }
2767
2768  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2769    ScopeStack.pop_back();
2770  }
2771}
2772
2773Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2774  Decl *dcl = static_cast<Decl *>(D);
2775  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2776  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2777    FD->setBody(cast<CompoundStmt>(Body));
2778    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2779  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2780    assert(MD == getCurMethodDecl() && "Method parsing confused");
2781    MD->setBody(cast<CompoundStmt>(Body));
2782  } else {
2783    Body->Destroy(Context);
2784    return 0;
2785  }
2786  PopDeclContext();
2787
2788  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2789  // class C2 {
2790  //   void f() {
2791  //     class LC1 {
2792  //       int m() { return 1; }
2793  //     };
2794  //   }
2795  // };
2796  if (ActiveScope == 0)
2797    return D;
2798
2799  // Verify and clean out per-function state.
2800
2801  bool HaveLabels = !ActiveScope->LabelMap.empty();
2802  // Check goto/label use.
2803  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2804       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2805    // Verify that we have no forward references left.  If so, there was a goto
2806    // or address of a label taken, but no definition of it.  Label fwd
2807    // definitions are indicated with a null substmt.
2808    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2809    if (L->getSubStmt() == 0) {
2810      // Emit error.
2811      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2812
2813      // At this point, we have gotos that use the bogus label.  Stitch it into
2814      // the function body so that they aren't leaked and that the AST is well
2815      // formed.
2816      if (Body) {
2817#if 0
2818        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2819        // and the AST is malformed anyway.  We should just blow away 'L'.
2820        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2821        cast<CompoundStmt>(Body)->push_back(L);
2822#else
2823        L->Destroy(Context);
2824#endif
2825      } else {
2826        // The whole function wasn't parsed correctly, just delete this.
2827        L->Destroy(Context);
2828      }
2829    }
2830  }
2831  // This reset is for both functions and methods.
2832  ActiveScope = 0;
2833
2834  if (!Body) return D;
2835
2836  if (HaveLabels) {
2837    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2838    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2839    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2840    std::vector<void*> ScopeStack;
2841    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2842    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2843  }
2844
2845  return D;
2846}
2847
2848/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2849/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2850NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2851                                          IdentifierInfo &II, Scope *S) {
2852  // Before we produce a declaration for an implicitly defined
2853  // function, see whether there was a locally-scoped declaration of
2854  // this name as a function or variable. If so, use that
2855  // (non-visible) declaration, and complain about it.
2856  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2857    = LocallyScopedExternalDecls.find(&II);
2858  if (Pos != LocallyScopedExternalDecls.end()) {
2859    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2860    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2861    return Pos->second;
2862  }
2863
2864  // Extension in C99.  Legal in C90, but warn about it.
2865  if (getLangOptions().C99)
2866    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2867  else
2868    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2869
2870  // FIXME: handle stuff like:
2871  // void foo() { extern float X(); }
2872  // void bar() { X(); }  <-- implicit decl for X in another scope.
2873
2874  // Set a Declarator for the implicit definition: int foo();
2875  const char *Dummy;
2876  DeclSpec DS;
2877  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2878  Error = Error; // Silence warning.
2879  assert(!Error && "Error setting up implicit decl!");
2880  Declarator D(DS, Declarator::BlockContext);
2881  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2882                                             0, 0, 0, Loc, D),
2883                SourceLocation());
2884  D.SetIdentifier(&II, Loc);
2885
2886  // Insert this function into translation-unit scope.
2887
2888  DeclContext *PrevDC = CurContext;
2889  CurContext = Context.getTranslationUnitDecl();
2890
2891  FunctionDecl *FD =
2892    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2893  FD->setImplicit();
2894
2895  CurContext = PrevDC;
2896
2897  AddKnownFunctionAttributes(FD);
2898
2899  return FD;
2900}
2901
2902/// \brief Adds any function attributes that we know a priori based on
2903/// the declaration of this function.
2904///
2905/// These attributes can apply both to implicitly-declared builtins
2906/// (like __builtin___printf_chk) or to library-declared functions
2907/// like NSLog or printf.
2908void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2909  if (FD->isInvalidDecl())
2910    return;
2911
2912  // If this is a built-in function, map its builtin attributes to
2913  // actual attributes.
2914  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2915    // Handle printf-formatting attributes.
2916    unsigned FormatIdx;
2917    bool HasVAListArg;
2918    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2919      if (!FD->getAttr<FormatAttr>())
2920        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2921                                               FormatIdx + 2));
2922    }
2923
2924    // Mark const if we don't care about errno and that is the only
2925    // thing preventing the function from being const. This allows
2926    // IRgen to use LLVM intrinsics for such functions.
2927    if (!getLangOptions().MathErrno &&
2928        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2929      if (!FD->getAttr<ConstAttr>())
2930        FD->addAttr(::new (Context) ConstAttr());
2931    }
2932  }
2933
2934  IdentifierInfo *Name = FD->getIdentifier();
2935  if (!Name)
2936    return;
2937  if ((!getLangOptions().CPlusPlus &&
2938       FD->getDeclContext()->isTranslationUnit()) ||
2939      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2940       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2941       LinkageSpecDecl::lang_c)) {
2942    // Okay: this could be a libc/libm/Objective-C function we know
2943    // about.
2944  } else
2945    return;
2946
2947  unsigned KnownID;
2948  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2949    if (KnownFunctionIDs[KnownID] == Name)
2950      break;
2951
2952  switch (KnownID) {
2953  case id_NSLog:
2954  case id_NSLogv:
2955    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2956      // FIXME: We known better than our headers.
2957      const_cast<FormatAttr *>(Format)->setType("printf");
2958    } else
2959      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2960    break;
2961
2962  case id_asprintf:
2963  case id_vasprintf:
2964    if (!FD->getAttr<FormatAttr>())
2965      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2966    break;
2967
2968  default:
2969    // Unknown function or known function without any attributes to
2970    // add. Do nothing.
2971    break;
2972  }
2973}
2974
2975TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2976                                    Decl *LastDeclarator) {
2977  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2978  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2979
2980  // Scope manipulation handled by caller.
2981  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2982                                           D.getIdentifierLoc(),
2983                                           D.getIdentifier(),
2984                                           T);
2985
2986  if (TagType *TT = dyn_cast<TagType>(T)) {
2987    TagDecl *TD = TT->getDecl();
2988
2989    // If the TagDecl that the TypedefDecl points to is an anonymous decl
2990    // keep track of the TypedefDecl.
2991    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
2992      TD->setTypedefForAnonDecl(NewTD);
2993  }
2994
2995  NewTD->setNextDeclarator(LastDeclarator);
2996  if (D.getInvalidType())
2997    NewTD->setInvalidDecl();
2998  return NewTD;
2999}
3000
3001/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3002/// former case, Name will be non-null.  In the later case, Name will be null.
3003/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3004/// reference/declaration/definition of a tag.
3005Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3006                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3007                             IdentifierInfo *Name, SourceLocation NameLoc,
3008                             AttributeList *Attr) {
3009  // If this is not a definition, it must have a name.
3010  assert((Name != 0 || TK == TK_Definition) &&
3011         "Nameless record must be a definition!");
3012
3013  TagDecl::TagKind Kind;
3014  switch (TagSpec) {
3015  default: assert(0 && "Unknown tag type!");
3016  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3017  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3018  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3019  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3020  }
3021
3022  DeclContext *SearchDC = CurContext;
3023  DeclContext *DC = CurContext;
3024  NamedDecl *PrevDecl = 0;
3025
3026  bool Invalid = false;
3027
3028  if (Name && SS.isNotEmpty()) {
3029    // We have a nested-name tag ('struct foo::bar').
3030
3031    // Check for invalid 'foo::'.
3032    if (SS.isInvalid()) {
3033      Name = 0;
3034      goto CreateNewDecl;
3035    }
3036
3037    // FIXME: RequireCompleteDeclContext(SS)?
3038    DC = static_cast<DeclContext*>(SS.getScopeRep());
3039    SearchDC = DC;
3040    // Look-up name inside 'foo::'.
3041    PrevDecl = dyn_cast_or_null<TagDecl>(
3042                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3043
3044    // A tag 'foo::bar' must already exist.
3045    if (PrevDecl == 0) {
3046      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3047      Name = 0;
3048      goto CreateNewDecl;
3049    }
3050  } else if (Name) {
3051    // If this is a named struct, check to see if there was a previous forward
3052    // declaration or definition.
3053    // FIXME: We're looking into outer scopes here, even when we
3054    // shouldn't be. Doing so can result in ambiguities that we
3055    // shouldn't be diagnosing.
3056    LookupResult R = LookupName(S, Name, LookupTagName,
3057                                /*RedeclarationOnly=*/(TK != TK_Reference));
3058    if (R.isAmbiguous()) {
3059      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3060      // FIXME: This is not best way to recover from case like:
3061      //
3062      // struct S s;
3063      //
3064      // causes needless err_ovl_no_viable_function_in_init latter.
3065      Name = 0;
3066      PrevDecl = 0;
3067      Invalid = true;
3068    }
3069    else
3070      PrevDecl = R;
3071
3072    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3073      // FIXME: This makes sure that we ignore the contexts associated
3074      // with C structs, unions, and enums when looking for a matching
3075      // tag declaration or definition. See the similar lookup tweak
3076      // in Sema::LookupName; is there a better way to deal with this?
3077      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3078        SearchDC = SearchDC->getParent();
3079    }
3080  }
3081
3082  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3083    // Maybe we will complain about the shadowed template parameter.
3084    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3085    // Just pretend that we didn't see the previous declaration.
3086    PrevDecl = 0;
3087  }
3088
3089  if (PrevDecl) {
3090    // Check whether the previous declaration is usable.
3091    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3092
3093    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3094      // If this is a use of a previous tag, or if the tag is already declared
3095      // in the same scope (so that the definition/declaration completes or
3096      // rementions the tag), reuse the decl.
3097      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3098        // Make sure that this wasn't declared as an enum and now used as a
3099        // struct or something similar.
3100        if (PrevTagDecl->getTagKind() != Kind) {
3101          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3102          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3103          // Recover by making this an anonymous redefinition.
3104          Name = 0;
3105          PrevDecl = 0;
3106          Invalid = true;
3107        } else {
3108          // If this is a use, just return the declaration we found.
3109
3110          // FIXME: In the future, return a variant or some other clue
3111          // for the consumer of this Decl to know it doesn't own it.
3112          // For our current ASTs this shouldn't be a problem, but will
3113          // need to be changed with DeclGroups.
3114          if (TK == TK_Reference)
3115            return PrevDecl;
3116
3117          // Diagnose attempts to redefine a tag.
3118          if (TK == TK_Definition) {
3119            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3120              Diag(NameLoc, diag::err_redefinition) << Name;
3121              Diag(Def->getLocation(), diag::note_previous_definition);
3122              // If this is a redefinition, recover by making this
3123              // struct be anonymous, which will make any later
3124              // references get the previous definition.
3125              Name = 0;
3126              PrevDecl = 0;
3127              Invalid = true;
3128            } else {
3129              // If the type is currently being defined, complain
3130              // about a nested redefinition.
3131              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3132              if (Tag->isBeingDefined()) {
3133                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3134                Diag(PrevTagDecl->getLocation(),
3135                     diag::note_previous_definition);
3136                Name = 0;
3137                PrevDecl = 0;
3138                Invalid = true;
3139              }
3140            }
3141
3142            // Okay, this is definition of a previously declared or referenced
3143            // tag PrevDecl. We're going to create a new Decl for it.
3144          }
3145        }
3146        // If we get here we have (another) forward declaration or we
3147        // have a definition.  Just create a new decl.
3148      } else {
3149        // If we get here, this is a definition of a new tag type in a nested
3150        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3151        // new decl/type.  We set PrevDecl to NULL so that the entities
3152        // have distinct types.
3153        PrevDecl = 0;
3154      }
3155      // If we get here, we're going to create a new Decl. If PrevDecl
3156      // is non-NULL, it's a definition of the tag declared by
3157      // PrevDecl. If it's NULL, we have a new definition.
3158    } else {
3159      // PrevDecl is a namespace, template, or anything else
3160      // that lives in the IDNS_Tag identifier namespace.
3161      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3162        // The tag name clashes with a namespace name, issue an error and
3163        // recover by making this tag be anonymous.
3164        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3165        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3166        Name = 0;
3167        PrevDecl = 0;
3168        Invalid = true;
3169      } else {
3170        // The existing declaration isn't relevant to us; we're in a
3171        // new scope, so clear out the previous declaration.
3172        PrevDecl = 0;
3173      }
3174    }
3175  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3176             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3177    // C.scope.pdecl]p5:
3178    //   -- for an elaborated-type-specifier of the form
3179    //
3180    //          class-key identifier
3181    //
3182    //      if the elaborated-type-specifier is used in the
3183    //      decl-specifier-seq or parameter-declaration-clause of a
3184    //      function defined in namespace scope, the identifier is
3185    //      declared as a class-name in the namespace that contains
3186    //      the declaration; otherwise, except as a friend
3187    //      declaration, the identifier is declared in the smallest
3188    //      non-class, non-function-prototype scope that contains the
3189    //      declaration.
3190    //
3191    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3192    // C structs and unions.
3193    //
3194    // GNU C also supports this behavior as part of its incomplete
3195    // enum types extension, while GNU C++ does not.
3196    //
3197    // Find the context where we'll be declaring the tag.
3198    // FIXME: We would like to maintain the current DeclContext as the
3199    // lexical context,
3200    while (SearchDC->isRecord())
3201      SearchDC = SearchDC->getParent();
3202
3203    // Find the scope where we'll be declaring the tag.
3204    while (S->isClassScope() ||
3205           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3206           ((S->getFlags() & Scope::DeclScope) == 0) ||
3207           (S->getEntity() &&
3208            ((DeclContext *)S->getEntity())->isTransparentContext()))
3209      S = S->getParent();
3210  }
3211
3212CreateNewDecl:
3213
3214  // If there is an identifier, use the location of the identifier as the
3215  // location of the decl, otherwise use the location of the struct/union
3216  // keyword.
3217  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3218
3219  // Otherwise, create a new declaration. If there is a previous
3220  // declaration of the same entity, the two will be linked via
3221  // PrevDecl.
3222  TagDecl *New;
3223
3224  if (Kind == TagDecl::TK_enum) {
3225    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3226    // enum X { A, B, C } D;    D should chain to X.
3227    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3228                           cast_or_null<EnumDecl>(PrevDecl));
3229    // If this is an undefined enum, warn.
3230    if (TK != TK_Definition && !Invalid)  {
3231      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3232                                              : diag::ext_forward_ref_enum;
3233      Diag(Loc, DK);
3234    }
3235  } else {
3236    // struct/union/class
3237
3238    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3239    // struct X { int A; } D;    D should chain to X.
3240    if (getLangOptions().CPlusPlus)
3241      // FIXME: Look for a way to use RecordDecl for simple structs.
3242      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3243                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3244    else
3245      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3246                               cast_or_null<RecordDecl>(PrevDecl));
3247  }
3248
3249  if (Kind != TagDecl::TK_enum) {
3250    // Handle #pragma pack: if the #pragma pack stack has non-default
3251    // alignment, make up a packed attribute for this decl. These
3252    // attributes are checked when the ASTContext lays out the
3253    // structure.
3254    //
3255    // It is important for implementing the correct semantics that this
3256    // happen here (in act on tag decl). The #pragma pack stack is
3257    // maintained as a result of parser callbacks which can occur at
3258    // many points during the parsing of a struct declaration (because
3259    // the #pragma tokens are effectively skipped over during the
3260    // parsing of the struct).
3261    if (unsigned Alignment = getPragmaPackAlignment())
3262      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3263  }
3264
3265  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3266    // C++ [dcl.typedef]p3:
3267    //   [...] Similarly, in a given scope, a class or enumeration
3268    //   shall not be declared with the same name as a typedef-name
3269    //   that is declared in that scope and refers to a type other
3270    //   than the class or enumeration itself.
3271    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3272    TypedefDecl *PrevTypedef = 0;
3273    if (Lookup.getKind() == LookupResult::Found)
3274      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3275
3276    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3277        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3278          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3279      Diag(Loc, diag::err_tag_definition_of_typedef)
3280        << Context.getTypeDeclType(New)
3281        << PrevTypedef->getUnderlyingType();
3282      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3283      Invalid = true;
3284    }
3285  }
3286
3287  if (Invalid)
3288    New->setInvalidDecl();
3289
3290  if (Attr)
3291    ProcessDeclAttributeList(New, Attr);
3292
3293  // If we're declaring or defining a tag in function prototype scope
3294  // in C, note that this type can only be used within the function.
3295  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3296    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3297
3298  // Set the lexical context. If the tag has a C++ scope specifier, the
3299  // lexical context will be different from the semantic context.
3300  New->setLexicalDeclContext(CurContext);
3301
3302  if (TK == TK_Definition)
3303    New->startDefinition();
3304
3305  // If this has an identifier, add it to the scope stack.
3306  if (Name) {
3307    S = getNonFieldDeclScope(S);
3308    PushOnScopeChains(New, S);
3309  } else {
3310    CurContext->addDecl(New);
3311  }
3312
3313  return New;
3314}
3315
3316void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3317  AdjustDeclIfTemplate(TagD);
3318  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3319
3320  // Enter the tag context.
3321  PushDeclContext(S, Tag);
3322
3323  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3324    FieldCollector->StartClass();
3325
3326    if (Record->getIdentifier()) {
3327      // C++ [class]p2:
3328      //   [...] The class-name is also inserted into the scope of the
3329      //   class itself; this is known as the injected-class-name. For
3330      //   purposes of access checking, the injected-class-name is treated
3331      //   as if it were a public member name.
3332      RecordDecl *InjectedClassName
3333        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3334                                CurContext, Record->getLocation(),
3335                                Record->getIdentifier(), Record);
3336      InjectedClassName->setImplicit();
3337      PushOnScopeChains(InjectedClassName, S);
3338    }
3339  }
3340}
3341
3342void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3343  AdjustDeclIfTemplate(TagD);
3344  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3345
3346  if (isa<CXXRecordDecl>(Tag))
3347    FieldCollector->FinishClass();
3348
3349  // Exit this scope of this tag's definition.
3350  PopDeclContext();
3351
3352  // Notify the consumer that we've defined a tag.
3353  Consumer.HandleTagDeclDefinition(Tag);
3354}
3355
3356bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3357                          QualType FieldTy, const Expr *BitWidth) {
3358  // C99 6.7.2.1p4 - verify the field type.
3359  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3360  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3361    // Handle incomplete types with specific error.
3362    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3363      return true;
3364    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3365      << FieldName << FieldTy << BitWidth->getSourceRange();
3366  }
3367
3368  // If the bit-width is type- or value-dependent, don't try to check
3369  // it now.
3370  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3371    return false;
3372
3373  llvm::APSInt Value;
3374  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3375    return true;
3376
3377  // Zero-width bitfield is ok for anonymous field.
3378  if (Value == 0 && FieldName)
3379    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3380
3381  if (Value.isNegative())
3382    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3383
3384  if (!FieldTy->isDependentType()) {
3385    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3386    // FIXME: We won't need the 0 size once we check that the field type is valid.
3387    if (TypeSize && Value.getZExtValue() > TypeSize)
3388      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3389        << FieldName << (unsigned)TypeSize;
3390  }
3391
3392  return false;
3393}
3394
3395/// ActOnField - Each field of a struct/union/class is passed into this in order
3396/// to create a FieldDecl object for it.
3397Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3398                               SourceLocation DeclStart,
3399                               Declarator &D, ExprTy *BitfieldWidth) {
3400
3401  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3402                     static_cast<Expr*>(BitfieldWidth),
3403                     AS_public);
3404}
3405
3406/// HandleField - Analyze a field of a C struct or a C++ data member.
3407///
3408FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3409                             SourceLocation DeclStart,
3410                             Declarator &D, Expr *BitWidth,
3411                             AccessSpecifier AS) {
3412  IdentifierInfo *II = D.getIdentifier();
3413  SourceLocation Loc = DeclStart;
3414  if (II) Loc = D.getIdentifierLoc();
3415
3416  QualType T = GetTypeForDeclarator(D, S);
3417
3418  if (getLangOptions().CPlusPlus) {
3419    CheckExtraCXXDefaultArguments(D);
3420
3421    if (D.getDeclSpec().isVirtualSpecified())
3422      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3423           diag::err_virtual_non_function);
3424  }
3425
3426  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3427  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3428    PrevDecl = 0;
3429
3430  FieldDecl *NewFD
3431    = CheckFieldDecl(II, T, Record, Loc,
3432               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3433                     BitWidth, AS, PrevDecl, &D);
3434  if (NewFD->isInvalidDecl() && PrevDecl) {
3435    // Don't introduce NewFD into scope; there's already something
3436    // with the same name in the same scope.
3437  } else if (II) {
3438    PushOnScopeChains(NewFD, S);
3439  } else
3440    Record->addDecl(NewFD);
3441
3442  return NewFD;
3443}
3444
3445/// \brief Build a new FieldDecl and check its well-formedness.
3446///
3447/// This routine builds a new FieldDecl given the fields name, type,
3448/// record, etc. \p PrevDecl should refer to any previous declaration
3449/// with the same name and in the same scope as the field to be
3450/// created.
3451///
3452/// \returns a new FieldDecl.
3453///
3454/// \todo The Declarator argument is a hack. It will be removed once
3455FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3456                                RecordDecl *Record, SourceLocation Loc,
3457                                bool Mutable, Expr *BitWidth,
3458                                AccessSpecifier AS, NamedDecl *PrevDecl,
3459                                Declarator *D) {
3460  IdentifierInfo *II = Name.getAsIdentifierInfo();
3461  bool InvalidDecl = false;
3462
3463  // If we receive a broken type, recover by assuming 'int' and
3464  // marking this declaration as invalid.
3465  if (T.isNull()) {
3466    InvalidDecl = true;
3467    T = Context.IntTy;
3468  }
3469
3470  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3471  // than a variably modified type.
3472  if (T->isVariablyModifiedType()) {
3473    bool SizeIsNegative;
3474    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3475                                                           SizeIsNegative);
3476    if (!FixedTy.isNull()) {
3477      Diag(Loc, diag::warn_illegal_constant_array_size);
3478      T = FixedTy;
3479    } else {
3480      if (SizeIsNegative)
3481        Diag(Loc, diag::err_typecheck_negative_array_size);
3482      else
3483        Diag(Loc, diag::err_typecheck_field_variable_size);
3484      T = Context.IntTy;
3485      InvalidDecl = true;
3486    }
3487  }
3488
3489  // If this is declared as a bit-field, check the bit-field.
3490  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3491    InvalidDecl = true;
3492    DeleteExpr(BitWidth);
3493    BitWidth = 0;
3494  }
3495
3496  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3497                                       Mutable);
3498
3499  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3500    Diag(Loc, diag::err_duplicate_member) << II;
3501    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3502    NewFD->setInvalidDecl();
3503    Record->setInvalidDecl();
3504  }
3505
3506  if (getLangOptions().CPlusPlus && !T->isPODType())
3507    cast<CXXRecordDecl>(Record)->setPOD(false);
3508
3509  // FIXME: We need to pass in the attributes given an AST
3510  // representation, not a parser representation.
3511  if (D)
3512    ProcessDeclAttributes(NewFD, *D);
3513
3514  if (T.isObjCGCWeak())
3515    Diag(Loc, diag::warn_attribute_weak_on_field);
3516
3517  if (InvalidDecl)
3518    NewFD->setInvalidDecl();
3519
3520  NewFD->setAccess(AS);
3521
3522  // C++ [dcl.init.aggr]p1:
3523  //   An aggregate is an array or a class (clause 9) with [...] no
3524  //   private or protected non-static data members (clause 11).
3525  // A POD must be an aggregate.
3526  if (getLangOptions().CPlusPlus &&
3527      (AS == AS_private || AS == AS_protected)) {
3528    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3529    CXXRecord->setAggregate(false);
3530    CXXRecord->setPOD(false);
3531  }
3532
3533  return NewFD;
3534}
3535
3536/// TranslateIvarVisibility - Translate visibility from a token ID to an
3537///  AST enum value.
3538static ObjCIvarDecl::AccessControl
3539TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3540  switch (ivarVisibility) {
3541  default: assert(0 && "Unknown visitibility kind");
3542  case tok::objc_private: return ObjCIvarDecl::Private;
3543  case tok::objc_public: return ObjCIvarDecl::Public;
3544  case tok::objc_protected: return ObjCIvarDecl::Protected;
3545  case tok::objc_package: return ObjCIvarDecl::Package;
3546  }
3547}
3548
3549/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3550/// in order to create an IvarDecl object for it.
3551Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3552                              SourceLocation DeclStart,
3553                              Declarator &D, ExprTy *BitfieldWidth,
3554                              tok::ObjCKeywordKind Visibility) {
3555
3556  IdentifierInfo *II = D.getIdentifier();
3557  Expr *BitWidth = (Expr*)BitfieldWidth;
3558  SourceLocation Loc = DeclStart;
3559  if (II) Loc = D.getIdentifierLoc();
3560
3561  // FIXME: Unnamed fields can be handled in various different ways, for
3562  // example, unnamed unions inject all members into the struct namespace!
3563
3564  QualType T = GetTypeForDeclarator(D, S);
3565  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3566  bool InvalidDecl = false;
3567
3568  if (BitWidth) {
3569    // 6.7.2.1p3, 6.7.2.1p4
3570    if (VerifyBitField(Loc, II, T, BitWidth)) {
3571      InvalidDecl = true;
3572      DeleteExpr(BitWidth);
3573      BitWidth = 0;
3574    }
3575  } else {
3576    // Not a bitfield.
3577
3578    // validate II.
3579
3580  }
3581
3582  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3583  // than a variably modified type.
3584  if (T->isVariablyModifiedType()) {
3585    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3586    InvalidDecl = true;
3587  }
3588
3589  // Get the visibility (access control) for this ivar.
3590  ObjCIvarDecl::AccessControl ac =
3591    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3592                                        : ObjCIvarDecl::None;
3593
3594  // Construct the decl.
3595  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3596                                             (Expr *)BitfieldWidth);
3597
3598  if (II) {
3599    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3600    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3601        && !isa<TagDecl>(PrevDecl)) {
3602      Diag(Loc, diag::err_duplicate_member) << II;
3603      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3604      NewID->setInvalidDecl();
3605    }
3606  }
3607
3608  // Process attributes attached to the ivar.
3609  ProcessDeclAttributes(NewID, D);
3610
3611  if (D.getInvalidType() || InvalidDecl)
3612    NewID->setInvalidDecl();
3613
3614  if (II) {
3615    // FIXME: When interfaces are DeclContexts, we'll need to add
3616    // these to the interface.
3617    S->AddDecl(NewID);
3618    IdResolver.AddDecl(NewID);
3619  }
3620
3621  return NewID;
3622}
3623
3624void Sema::ActOnFields(Scope* S,
3625                       SourceLocation RecLoc, DeclTy *RecDecl,
3626                       DeclTy **Fields, unsigned NumFields,
3627                       SourceLocation LBrac, SourceLocation RBrac,
3628                       AttributeList *Attr) {
3629  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3630  assert(EnclosingDecl && "missing record or interface decl");
3631
3632  // If the decl this is being inserted into is invalid, then it may be a
3633  // redeclaration or some other bogus case.  Don't try to add fields to it.
3634  if (EnclosingDecl->isInvalidDecl()) {
3635    // FIXME: Deallocate fields?
3636    return;
3637  }
3638
3639
3640  // Verify that all the fields are okay.
3641  unsigned NumNamedMembers = 0;
3642  llvm::SmallVector<FieldDecl*, 32> RecFields;
3643
3644  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3645  for (unsigned i = 0; i != NumFields; ++i) {
3646    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3647    assert(FD && "missing field decl");
3648
3649    // Get the type for the field.
3650    Type *FDTy = FD->getType().getTypePtr();
3651
3652    if (!FD->isAnonymousStructOrUnion()) {
3653      // Remember all fields written by the user.
3654      RecFields.push_back(FD);
3655    }
3656
3657    // If the field is already invalid for some reason, don't emit more
3658    // diagnostics about it.
3659    if (FD->isInvalidDecl())
3660      continue;
3661
3662    // C99 6.7.2.1p2 - A field may not be a function type.
3663    if (FDTy->isFunctionType()) {
3664      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3665        << FD->getDeclName();
3666      FD->setInvalidDecl();
3667      EnclosingDecl->setInvalidDecl();
3668      continue;
3669    }
3670    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3671    if (FDTy->isIncompleteType()) {
3672      if (!Record) {  // Incomplete ivar type is always an error.
3673        RequireCompleteType(FD->getLocation(), FD->getType(),
3674                               diag::err_field_incomplete);
3675        FD->setInvalidDecl();
3676        EnclosingDecl->setInvalidDecl();
3677        continue;
3678      }
3679      if (i != NumFields-1 ||                   // ... that the last member ...
3680          !Record->isStruct() ||  // ... of a structure ...
3681          !FDTy->isArrayType()) {         //... may have incomplete array type.
3682        RequireCompleteType(FD->getLocation(), FD->getType(),
3683                               diag::err_field_incomplete);
3684        FD->setInvalidDecl();
3685        EnclosingDecl->setInvalidDecl();
3686        continue;
3687      }
3688      if (NumNamedMembers < 1) {  //... must have more than named member ...
3689        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3690          << FD->getDeclName();
3691        FD->setInvalidDecl();
3692        EnclosingDecl->setInvalidDecl();
3693        continue;
3694      }
3695      // Okay, we have a legal flexible array member at the end of the struct.
3696      if (Record)
3697        Record->setHasFlexibleArrayMember(true);
3698    }
3699    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3700    /// field of another structure or the element of an array.
3701    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3702      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3703        // If this is a member of a union, then entire union becomes "flexible".
3704        if (Record && Record->isUnion()) {
3705          Record->setHasFlexibleArrayMember(true);
3706        } else {
3707          // If this is a struct/class and this is not the last element, reject
3708          // it.  Note that GCC supports variable sized arrays in the middle of
3709          // structures.
3710          if (i != NumFields-1)
3711            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3712              << FD->getDeclName();
3713          else {
3714            // We support flexible arrays at the end of structs in
3715            // other structs as an extension.
3716            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3717              << FD->getDeclName();
3718            if (Record)
3719              Record->setHasFlexibleArrayMember(true);
3720          }
3721        }
3722      }
3723    }
3724    /// A field cannot be an Objective-c object
3725    if (FDTy->isObjCInterfaceType()) {
3726      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3727      FD->setInvalidDecl();
3728      EnclosingDecl->setInvalidDecl();
3729      continue;
3730    }
3731    // Keep track of the number of named members.
3732    if (FD->getIdentifier())
3733      ++NumNamedMembers;
3734  }
3735
3736  // Okay, we successfully defined 'Record'.
3737  if (Record) {
3738    Record->completeDefinition(Context);
3739  } else {
3740    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3741    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3742      ID->setIVarList(ClsFields, RecFields.size(), Context);
3743      ID->setLocEnd(RBrac);
3744
3745      // Must enforce the rule that ivars in the base classes may not be
3746      // duplicates.
3747      if (ID->getSuperClass()) {
3748        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3749             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3750          ObjCIvarDecl* Ivar = (*IVI);
3751          IdentifierInfo *II = Ivar->getIdentifier();
3752          ObjCIvarDecl* prevIvar =
3753            ID->getSuperClass()->lookupInstanceVariable(II);
3754          if (prevIvar) {
3755            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3756            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3757          }
3758        }
3759      }
3760    } else if (ObjCImplementationDecl *IMPDecl =
3761                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3762      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3763      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3764      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3765    }
3766  }
3767
3768  if (Attr)
3769    ProcessDeclAttributeList(Record, Attr);
3770}
3771
3772Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3773                                      DeclTy *lastEnumConst,
3774                                      SourceLocation IdLoc, IdentifierInfo *Id,
3775                                      SourceLocation EqualLoc, ExprTy *val) {
3776  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3777  EnumConstantDecl *LastEnumConst =
3778    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3779  Expr *Val = static_cast<Expr*>(val);
3780
3781  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3782  // we find one that is.
3783  S = getNonFieldDeclScope(S);
3784
3785  // Verify that there isn't already something declared with this name in this
3786  // scope.
3787  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3788  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3789    // Maybe we will complain about the shadowed template parameter.
3790    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3791    // Just pretend that we didn't see the previous declaration.
3792    PrevDecl = 0;
3793  }
3794
3795  if (PrevDecl) {
3796    // When in C++, we may get a TagDecl with the same name; in this case the
3797    // enum constant will 'hide' the tag.
3798    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3799           "Received TagDecl when not in C++!");
3800    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3801      if (isa<EnumConstantDecl>(PrevDecl))
3802        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3803      else
3804        Diag(IdLoc, diag::err_redefinition) << Id;
3805      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3806      if (Val) Val->Destroy(Context);
3807      return 0;
3808    }
3809  }
3810
3811  llvm::APSInt EnumVal(32);
3812  QualType EltTy;
3813  if (Val) {
3814    // Make sure to promote the operand type to int.
3815    UsualUnaryConversions(Val);
3816
3817    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3818    SourceLocation ExpLoc;
3819    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3820      Val->Destroy(Context);
3821      Val = 0;  // Just forget about it.
3822    } else {
3823      EltTy = Val->getType();
3824    }
3825  }
3826
3827  if (!Val) {
3828    if (LastEnumConst) {
3829      // Assign the last value + 1.
3830      EnumVal = LastEnumConst->getInitVal();
3831      ++EnumVal;
3832
3833      // Check for overflow on increment.
3834      if (EnumVal < LastEnumConst->getInitVal())
3835        Diag(IdLoc, diag::warn_enum_value_overflow);
3836
3837      EltTy = LastEnumConst->getType();
3838    } else {
3839      // First value, set to zero.
3840      EltTy = Context.IntTy;
3841      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3842    }
3843  }
3844
3845  EnumConstantDecl *New =
3846    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3847                             Val, EnumVal);
3848
3849  // Register this decl in the current scope stack.
3850  PushOnScopeChains(New, S);
3851
3852  return New;
3853}
3854
3855// FIXME: For consistency with ActOnFields(), we should have the parser
3856// pass in the source location for the left/right braces.
3857void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3858                         DeclTy **Elements, unsigned NumElements) {
3859  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3860  QualType EnumType = Context.getTypeDeclType(Enum);
3861
3862  // TODO: If the result value doesn't fit in an int, it must be a long or long
3863  // long value.  ISO C does not support this, but GCC does as an extension,
3864  // emit a warning.
3865  unsigned IntWidth = Context.Target.getIntWidth();
3866
3867  // Verify that all the values are okay, compute the size of the values, and
3868  // reverse the list.
3869  unsigned NumNegativeBits = 0;
3870  unsigned NumPositiveBits = 0;
3871
3872  // Keep track of whether all elements have type int.
3873  bool AllElementsInt = true;
3874
3875  for (unsigned i = 0; i != NumElements; ++i) {
3876    EnumConstantDecl *ECD =
3877      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3878    if (!ECD) continue;  // Already issued a diagnostic.
3879
3880    // If the enum value doesn't fit in an int, emit an extension warning.
3881    const llvm::APSInt &InitVal = ECD->getInitVal();
3882    assert(InitVal.getBitWidth() >= IntWidth &&
3883           "Should have promoted value to int");
3884    if (InitVal.getBitWidth() > IntWidth) {
3885      llvm::APSInt V(InitVal);
3886      V.trunc(IntWidth);
3887      V.extend(InitVal.getBitWidth());
3888      if (V != InitVal)
3889        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3890          << InitVal.toString(10);
3891    }
3892
3893    // Keep track of the size of positive and negative values.
3894    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3895      NumPositiveBits = std::max(NumPositiveBits,
3896                                 (unsigned)InitVal.getActiveBits());
3897    else
3898      NumNegativeBits = std::max(NumNegativeBits,
3899                                 (unsigned)InitVal.getMinSignedBits());
3900
3901    // Keep track of whether every enum element has type int (very commmon).
3902    if (AllElementsInt)
3903      AllElementsInt = ECD->getType() == Context.IntTy;
3904  }
3905
3906  // Figure out the type that should be used for this enum.
3907  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3908  QualType BestType;
3909  unsigned BestWidth;
3910
3911  if (NumNegativeBits) {
3912    // If there is a negative value, figure out the smallest integer type (of
3913    // int/long/longlong) that fits.
3914    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3915      BestType = Context.IntTy;
3916      BestWidth = IntWidth;
3917    } else {
3918      BestWidth = Context.Target.getLongWidth();
3919
3920      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3921        BestType = Context.LongTy;
3922      else {
3923        BestWidth = Context.Target.getLongLongWidth();
3924
3925        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3926          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3927        BestType = Context.LongLongTy;
3928      }
3929    }
3930  } else {
3931    // If there is no negative value, figure out which of uint, ulong, ulonglong
3932    // fits.
3933    if (NumPositiveBits <= IntWidth) {
3934      BestType = Context.UnsignedIntTy;
3935      BestWidth = IntWidth;
3936    } else if (NumPositiveBits <=
3937               (BestWidth = Context.Target.getLongWidth())) {
3938      BestType = Context.UnsignedLongTy;
3939    } else {
3940      BestWidth = Context.Target.getLongLongWidth();
3941      assert(NumPositiveBits <= BestWidth &&
3942             "How could an initializer get larger than ULL?");
3943      BestType = Context.UnsignedLongLongTy;
3944    }
3945  }
3946
3947  // Loop over all of the enumerator constants, changing their types to match
3948  // the type of the enum if needed.
3949  for (unsigned i = 0; i != NumElements; ++i) {
3950    EnumConstantDecl *ECD =
3951      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3952    if (!ECD) continue;  // Already issued a diagnostic.
3953
3954    // Standard C says the enumerators have int type, but we allow, as an
3955    // extension, the enumerators to be larger than int size.  If each
3956    // enumerator value fits in an int, type it as an int, otherwise type it the
3957    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3958    // that X has type 'int', not 'unsigned'.
3959    if (ECD->getType() == Context.IntTy) {
3960      // Make sure the init value is signed.
3961      llvm::APSInt IV = ECD->getInitVal();
3962      IV.setIsSigned(true);
3963      ECD->setInitVal(IV);
3964
3965      if (getLangOptions().CPlusPlus)
3966        // C++ [dcl.enum]p4: Following the closing brace of an
3967        // enum-specifier, each enumerator has the type of its
3968        // enumeration.
3969        ECD->setType(EnumType);
3970      continue;  // Already int type.
3971    }
3972
3973    // Determine whether the value fits into an int.
3974    llvm::APSInt InitVal = ECD->getInitVal();
3975    bool FitsInInt;
3976    if (InitVal.isUnsigned() || !InitVal.isNegative())
3977      FitsInInt = InitVal.getActiveBits() < IntWidth;
3978    else
3979      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3980
3981    // If it fits into an integer type, force it.  Otherwise force it to match
3982    // the enum decl type.
3983    QualType NewTy;
3984    unsigned NewWidth;
3985    bool NewSign;
3986    if (FitsInInt) {
3987      NewTy = Context.IntTy;
3988      NewWidth = IntWidth;
3989      NewSign = true;
3990    } else if (ECD->getType() == BestType) {
3991      // Already the right type!
3992      if (getLangOptions().CPlusPlus)
3993        // C++ [dcl.enum]p4: Following the closing brace of an
3994        // enum-specifier, each enumerator has the type of its
3995        // enumeration.
3996        ECD->setType(EnumType);
3997      continue;
3998    } else {
3999      NewTy = BestType;
4000      NewWidth = BestWidth;
4001      NewSign = BestType->isSignedIntegerType();
4002    }
4003
4004    // Adjust the APSInt value.
4005    InitVal.extOrTrunc(NewWidth);
4006    InitVal.setIsSigned(NewSign);
4007    ECD->setInitVal(InitVal);
4008
4009    // Adjust the Expr initializer and type.
4010    if (ECD->getInitExpr())
4011      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4012                                                      /*isLvalue=*/false));
4013    if (getLangOptions().CPlusPlus)
4014      // C++ [dcl.enum]p4: Following the closing brace of an
4015      // enum-specifier, each enumerator has the type of its
4016      // enumeration.
4017      ECD->setType(EnumType);
4018    else
4019      ECD->setType(NewTy);
4020  }
4021
4022  Enum->completeDefinition(Context, BestType);
4023}
4024
4025Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4026                                          ExprArg expr) {
4027  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4028
4029  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4030}
4031
4032