SemaDecl.cpp revision 312eadb832cab4497a069409954500d8192b8f0d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414
415    if (E.isInvalid())
416      return NameClassification::Error();
417
418    if (E.get())
419      return E;
420
421    // Synthesize ivars lazily.
422    if (getLangOptions().ObjCDefaultSynthProperties &&
423        getLangOptions().ObjCNonFragileABI2) {
424      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
425        if (const ObjCPropertyDecl *Property =
426                                          canSynthesizeProvisionalIvar(Name)) {
427          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
428          Diag(Property->getLocation(), diag::note_property_declare);
429        }
430
431        // FIXME: This is strange. Shouldn't we just take the ivar returned
432        // from SynthesizeProvisionalIvar and continue with that?
433        E = LookupInObjCMethod(Result, S, Name, true);
434
435        if (E.isInvalid())
436          return NameClassification::Error();
437
438        if (E.get())
439          return E;
440      }
441    }
442  }
443
444  bool SecondTry = false;
445  bool IsFilteredTemplateName = false;
446
447Corrected:
448  switch (Result.getResultKind()) {
449  case LookupResult::NotFound:
450    // If an unqualified-id is followed by a '(', then we have a function
451    // call.
452    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
453      // In C++, this is an ADL-only call.
454      // FIXME: Reference?
455      if (getLangOptions().CPlusPlus)
456        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
457
458      // C90 6.3.2.2:
459      //   If the expression that precedes the parenthesized argument list in a
460      //   function call consists solely of an identifier, and if no
461      //   declaration is visible for this identifier, the identifier is
462      //   implicitly declared exactly as if, in the innermost block containing
463      //   the function call, the declaration
464      //
465      //     extern int identifier ();
466      //
467      //   appeared.
468      //
469      // We also allow this in C99 as an extension.
470      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
471        Result.addDecl(D);
472        Result.resolveKind();
473        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
474      }
475    }
476
477    // In C, we first see whether there is a tag type by the same name, in
478    // which case it's likely that the user just forget to write "enum",
479    // "struct", or "union".
480    if (!getLangOptions().CPlusPlus && !SecondTry) {
481      Result.clear(LookupTagName);
482      LookupParsedName(Result, S, &SS);
483      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
484        const char *TagName = 0;
485        const char *FixItTagName = 0;
486        switch (Tag->getTagKind()) {
487          case TTK_Class:
488            TagName = "class";
489            FixItTagName = "class ";
490            break;
491
492          case TTK_Enum:
493            TagName = "enum";
494            FixItTagName = "enum ";
495            break;
496
497          case TTK_Struct:
498            TagName = "struct";
499            FixItTagName = "struct ";
500            break;
501
502          case TTK_Union:
503            TagName = "union";
504            FixItTagName = "union ";
505            break;
506        }
507
508        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
509          << Name << TagName << getLangOptions().CPlusPlus
510          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
511        break;
512      }
513
514      Result.clear(LookupOrdinaryName);
515    }
516
517    // Perform typo correction to determine if there is another name that is
518    // close to this name.
519    if (!SecondTry) {
520      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
521        if (SS.isEmpty())
522          Diag(NameLoc, diag::err_undeclared_var_use_suggest)
523            << Name << Corrected
524            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
525        else
526          Diag(NameLoc, diag::err_no_member_suggest)
527            << Name << computeDeclContext(SS, false) << Corrected
528            << SS.getRange()
529            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
530
531        // Update the name, so that the caller has the new name.
532        Name = Corrected.getAsIdentifierInfo();
533
534        // Typo correction corrected to a keyword.
535        if (Result.empty())
536          return Corrected.getAsIdentifierInfo();
537
538        NamedDecl *FirstDecl = *Result.begin();
539        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
540          << FirstDecl->getDeclName();
541
542        // If we found an Objective-C instance variable, let
543        // LookupInObjCMethod build the appropriate expression to
544        // reference the ivar.
545        // FIXME: This is a gross hack.
546        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
547          Result.clear();
548          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
549          return move(E);
550        }
551
552        goto Corrected;
553      }
554    }
555
556    // We failed to correct; just fall through and let the parser deal with it.
557    Result.suppressDiagnostics();
558    return NameClassification::Unknown();
559
560  case LookupResult::NotFoundInCurrentInstantiation:
561    // We performed name lookup into the current instantiation, and there were
562    // dependent bases, so we treat this result the same way as any other
563    // dependent nested-name-specifier.
564
565    // C++ [temp.res]p2:
566    //   A name used in a template declaration or definition and that is
567    //   dependent on a template-parameter is assumed not to name a type
568    //   unless the applicable name lookup finds a type name or the name is
569    //   qualified by the keyword typename.
570    //
571    // FIXME: If the next token is '<', we might want to ask the parser to
572    // perform some heroics to see if we actually have a
573    // template-argument-list, which would indicate a missing 'template'
574    // keyword here.
575    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
576
577  case LookupResult::Found:
578  case LookupResult::FoundOverloaded:
579  case LookupResult::FoundUnresolvedValue:
580    break;
581
582  case LookupResult::Ambiguous:
583    if (getLangOptions().CPlusPlus && NextToken.is(tok::less)) {
584      // C++ [temp.local]p3:
585      //   A lookup that finds an injected-class-name (10.2) can result in an
586      //   ambiguity in certain cases (for example, if it is found in more than
587      //   one base class). If all of the injected-class-names that are found
588      //   refer to specializations of the same class template, and if the name
589      //   is followed by a template-argument-list, the reference refers to the
590      //   class template itself and not a specialization thereof, and is not
591      //   ambiguous.
592      //
593      // This filtering can make an ambiguous result into an unambiguous one,
594      // so try again after filtering out template names.
595      FilterAcceptableTemplateNames(Result);
596      if (!Result.isAmbiguous()) {
597        IsFilteredTemplateName = true;
598        break;
599      }
600    }
601
602    // Diagnose the ambiguity and return an error.
603    return NameClassification::Error();
604  }
605
606  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
607      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
608    // C++ [temp.names]p3:
609    //   After name lookup (3.4) finds that a name is a template-name or that
610    //   an operator-function-id or a literal- operator-id refers to a set of
611    //   overloaded functions any member of which is a function template if
612    //   this is followed by a <, the < is always taken as the delimiter of a
613    //   template-argument-list and never as the less-than operator.
614    if (!IsFilteredTemplateName)
615      FilterAcceptableTemplateNames(Result);
616
617    bool IsFunctionTemplate;
618    TemplateName Template;
619    if (Result.end() - Result.begin() > 1) {
620      IsFunctionTemplate = true;
621      Template = Context.getOverloadedTemplateName(Result.begin(),
622                                                   Result.end());
623    } else {
624      TemplateDecl *TD = cast<TemplateDecl>(Result.getFoundDecl());
625      IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
626
627      if (SS.isSet() && !SS.isInvalid())
628        Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
629                                                    /*TemplateKeyword=*/false,
630                                                    TD);
631      else
632        Template = TemplateName(TD);
633    }
634
635    if (IsFunctionTemplate) {
636      // Function templates always go through overload resolution, at which
637      // point we'll perform the various checks (e.g., accessibility) we need
638      // to based on which function we selected.
639      Result.suppressDiagnostics();
640
641      return NameClassification::FunctionTemplate(Template);
642    }
643
644    return NameClassification::TypeTemplate(Template);
645  }
646
647  NamedDecl *FirstDecl = *Result.begin();
648  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
649    DiagnoseUseOfDecl(Type, NameLoc);
650    QualType T = Context.getTypeDeclType(Type);
651    return ParsedType::make(T);
652  }
653
654  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
655  if (!Class) {
656    // FIXME: It's unfortunate that we don't have a Type node for handling this.
657    if (ObjCCompatibleAliasDecl *Alias
658                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
659      Class = Alias->getClassInterface();
660  }
661
662  if (Class) {
663    DiagnoseUseOfDecl(Class, NameLoc);
664
665    if (NextToken.is(tok::period)) {
666      // Interface. <something> is parsed as a property reference expression.
667      // Just return "unknown" as a fall-through for now.
668      Result.suppressDiagnostics();
669      return NameClassification::Unknown();
670    }
671
672    QualType T = Context.getObjCInterfaceType(Class);
673    return ParsedType::make(T);
674  }
675
676  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
677  return BuildDeclarationNameExpr(SS, Result, ADL);
678}
679
680// Determines the context to return to after temporarily entering a
681// context.  This depends in an unnecessarily complicated way on the
682// exact ordering of callbacks from the parser.
683DeclContext *Sema::getContainingDC(DeclContext *DC) {
684
685  // Functions defined inline within classes aren't parsed until we've
686  // finished parsing the top-level class, so the top-level class is
687  // the context we'll need to return to.
688  if (isa<FunctionDecl>(DC)) {
689    DC = DC->getLexicalParent();
690
691    // A function not defined within a class will always return to its
692    // lexical context.
693    if (!isa<CXXRecordDecl>(DC))
694      return DC;
695
696    // A C++ inline method/friend is parsed *after* the topmost class
697    // it was declared in is fully parsed ("complete");  the topmost
698    // class is the context we need to return to.
699    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
700      DC = RD;
701
702    // Return the declaration context of the topmost class the inline method is
703    // declared in.
704    return DC;
705  }
706
707  // ObjCMethodDecls are parsed (for some reason) outside the context
708  // of the class.
709  if (isa<ObjCMethodDecl>(DC))
710    return DC->getLexicalParent()->getLexicalParent();
711
712  return DC->getLexicalParent();
713}
714
715void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
716  assert(getContainingDC(DC) == CurContext &&
717      "The next DeclContext should be lexically contained in the current one.");
718  CurContext = DC;
719  S->setEntity(DC);
720}
721
722void Sema::PopDeclContext() {
723  assert(CurContext && "DeclContext imbalance!");
724
725  CurContext = getContainingDC(CurContext);
726  assert(CurContext && "Popped translation unit!");
727}
728
729/// EnterDeclaratorContext - Used when we must lookup names in the context
730/// of a declarator's nested name specifier.
731///
732void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
733  // C++0x [basic.lookup.unqual]p13:
734  //   A name used in the definition of a static data member of class
735  //   X (after the qualified-id of the static member) is looked up as
736  //   if the name was used in a member function of X.
737  // C++0x [basic.lookup.unqual]p14:
738  //   If a variable member of a namespace is defined outside of the
739  //   scope of its namespace then any name used in the definition of
740  //   the variable member (after the declarator-id) is looked up as
741  //   if the definition of the variable member occurred in its
742  //   namespace.
743  // Both of these imply that we should push a scope whose context
744  // is the semantic context of the declaration.  We can't use
745  // PushDeclContext here because that context is not necessarily
746  // lexically contained in the current context.  Fortunately,
747  // the containing scope should have the appropriate information.
748
749  assert(!S->getEntity() && "scope already has entity");
750
751#ifndef NDEBUG
752  Scope *Ancestor = S->getParent();
753  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
754  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
755#endif
756
757  CurContext = DC;
758  S->setEntity(DC);
759}
760
761void Sema::ExitDeclaratorContext(Scope *S) {
762  assert(S->getEntity() == CurContext && "Context imbalance!");
763
764  // Switch back to the lexical context.  The safety of this is
765  // enforced by an assert in EnterDeclaratorContext.
766  Scope *Ancestor = S->getParent();
767  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
768  CurContext = (DeclContext*) Ancestor->getEntity();
769
770  // We don't need to do anything with the scope, which is going to
771  // disappear.
772}
773
774/// \brief Determine whether we allow overloading of the function
775/// PrevDecl with another declaration.
776///
777/// This routine determines whether overloading is possible, not
778/// whether some new function is actually an overload. It will return
779/// true in C++ (where we can always provide overloads) or, as an
780/// extension, in C when the previous function is already an
781/// overloaded function declaration or has the "overloadable"
782/// attribute.
783static bool AllowOverloadingOfFunction(LookupResult &Previous,
784                                       ASTContext &Context) {
785  if (Context.getLangOptions().CPlusPlus)
786    return true;
787
788  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
789    return true;
790
791  return (Previous.getResultKind() == LookupResult::Found
792          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
793}
794
795/// Add this decl to the scope shadowed decl chains.
796void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
797  // Move up the scope chain until we find the nearest enclosing
798  // non-transparent context. The declaration will be introduced into this
799  // scope.
800  while (S->getEntity() &&
801         ((DeclContext *)S->getEntity())->isTransparentContext())
802    S = S->getParent();
803
804  // Add scoped declarations into their context, so that they can be
805  // found later. Declarations without a context won't be inserted
806  // into any context.
807  if (AddToContext)
808    CurContext->addDecl(D);
809
810  // Out-of-line definitions shouldn't be pushed into scope in C++.
811  // Out-of-line variable and function definitions shouldn't even in C.
812  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
813      D->isOutOfLine())
814    return;
815
816  // Template instantiations should also not be pushed into scope.
817  if (isa<FunctionDecl>(D) &&
818      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
819    return;
820
821  // If this replaces anything in the current scope,
822  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
823                               IEnd = IdResolver.end();
824  for (; I != IEnd; ++I) {
825    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
826      S->RemoveDecl(*I);
827      IdResolver.RemoveDecl(*I);
828
829      // Should only need to replace one decl.
830      break;
831    }
832  }
833
834  S->AddDecl(D);
835
836  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
837    // Implicitly-generated labels may end up getting generated in an order that
838    // isn't strictly lexical, which breaks name lookup. Be careful to insert
839    // the label at the appropriate place in the identifier chain.
840    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
841      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
842      if (IDC == CurContext) {
843        if (!S->isDeclScope(*I))
844          continue;
845      } else if (IDC->Encloses(CurContext))
846        break;
847    }
848
849    IdResolver.InsertDeclAfter(I, D);
850  } else {
851    IdResolver.AddDecl(D);
852  }
853}
854
855bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
856                         bool ExplicitInstantiationOrSpecialization) {
857  return IdResolver.isDeclInScope(D, Ctx, Context, S,
858                                  ExplicitInstantiationOrSpecialization);
859}
860
861Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
862  DeclContext *TargetDC = DC->getPrimaryContext();
863  do {
864    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
865      if (ScopeDC->getPrimaryContext() == TargetDC)
866        return S;
867  } while ((S = S->getParent()));
868
869  return 0;
870}
871
872static bool isOutOfScopePreviousDeclaration(NamedDecl *,
873                                            DeclContext*,
874                                            ASTContext&);
875
876/// Filters out lookup results that don't fall within the given scope
877/// as determined by isDeclInScope.
878static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
879                                 DeclContext *Ctx, Scope *S,
880                                 bool ConsiderLinkage,
881                                 bool ExplicitInstantiationOrSpecialization) {
882  LookupResult::Filter F = R.makeFilter();
883  while (F.hasNext()) {
884    NamedDecl *D = F.next();
885
886    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
887      continue;
888
889    if (ConsiderLinkage &&
890        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
891      continue;
892
893    F.erase();
894  }
895
896  F.done();
897}
898
899static bool isUsingDecl(NamedDecl *D) {
900  return isa<UsingShadowDecl>(D) ||
901         isa<UnresolvedUsingTypenameDecl>(D) ||
902         isa<UnresolvedUsingValueDecl>(D);
903}
904
905/// Removes using shadow declarations from the lookup results.
906static void RemoveUsingDecls(LookupResult &R) {
907  LookupResult::Filter F = R.makeFilter();
908  while (F.hasNext())
909    if (isUsingDecl(F.next()))
910      F.erase();
911
912  F.done();
913}
914
915/// \brief Check for this common pattern:
916/// @code
917/// class S {
918///   S(const S&); // DO NOT IMPLEMENT
919///   void operator=(const S&); // DO NOT IMPLEMENT
920/// };
921/// @endcode
922static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
923  // FIXME: Should check for private access too but access is set after we get
924  // the decl here.
925  if (D->isThisDeclarationADefinition())
926    return false;
927
928  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
929    return CD->isCopyConstructor();
930  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
931    return Method->isCopyAssignmentOperator();
932  return false;
933}
934
935bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
936  assert(D);
937
938  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
939    return false;
940
941  // Ignore class templates.
942  if (D->getDeclContext()->isDependentContext() ||
943      D->getLexicalDeclContext()->isDependentContext())
944    return false;
945
946  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
947    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
948      return false;
949
950    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
951      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
952        return false;
953    } else {
954      // 'static inline' functions are used in headers; don't warn.
955      if (FD->getStorageClass() == SC_Static &&
956          FD->isInlineSpecified())
957        return false;
958    }
959
960    if (FD->isThisDeclarationADefinition() &&
961        Context.DeclMustBeEmitted(FD))
962      return false;
963
964  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
965    if (!VD->isFileVarDecl() ||
966        VD->getType().isConstant(Context) ||
967        Context.DeclMustBeEmitted(VD))
968      return false;
969
970    if (VD->isStaticDataMember() &&
971        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
972      return false;
973
974  } else {
975    return false;
976  }
977
978  // Only warn for unused decls internal to the translation unit.
979  if (D->getLinkage() == ExternalLinkage)
980    return false;
981
982  return true;
983}
984
985void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
986  if (!D)
987    return;
988
989  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
990    const FunctionDecl *First = FD->getFirstDeclaration();
991    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
992      return; // First should already be in the vector.
993  }
994
995  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
996    const VarDecl *First = VD->getFirstDeclaration();
997    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
998      return; // First should already be in the vector.
999  }
1000
1001   if (ShouldWarnIfUnusedFileScopedDecl(D))
1002     UnusedFileScopedDecls.push_back(D);
1003 }
1004
1005static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1006  if (D->isInvalidDecl())
1007    return false;
1008
1009  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1010    return false;
1011
1012  if (isa<LabelDecl>(D))
1013    return true;
1014
1015  // White-list anything that isn't a local variable.
1016  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1017      !D->getDeclContext()->isFunctionOrMethod())
1018    return false;
1019
1020  // Types of valid local variables should be complete, so this should succeed.
1021  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1022
1023    // White-list anything with an __attribute__((unused)) type.
1024    QualType Ty = VD->getType();
1025
1026    // Only look at the outermost level of typedef.
1027    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1028      if (TT->getDecl()->hasAttr<UnusedAttr>())
1029        return false;
1030    }
1031
1032    // If we failed to complete the type for some reason, or if the type is
1033    // dependent, don't diagnose the variable.
1034    if (Ty->isIncompleteType() || Ty->isDependentType())
1035      return false;
1036
1037    if (const TagType *TT = Ty->getAs<TagType>()) {
1038      const TagDecl *Tag = TT->getDecl();
1039      if (Tag->hasAttr<UnusedAttr>())
1040        return false;
1041
1042      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1043        // FIXME: Checking for the presence of a user-declared constructor
1044        // isn't completely accurate; we'd prefer to check that the initializer
1045        // has no side effects.
1046        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1047          return false;
1048      }
1049    }
1050
1051    // TODO: __attribute__((unused)) templates?
1052  }
1053
1054  return true;
1055}
1056
1057/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1058/// unless they are marked attr(unused).
1059void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1060  if (!ShouldDiagnoseUnusedDecl(D))
1061    return;
1062
1063  unsigned DiagID;
1064  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1065    DiagID = diag::warn_unused_exception_param;
1066  else if (isa<LabelDecl>(D))
1067    DiagID = diag::warn_unused_label;
1068  else
1069    DiagID = diag::warn_unused_variable;
1070
1071  Diag(D->getLocation(), DiagID) << D->getDeclName();
1072}
1073
1074static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1075  // Verify that we have no forward references left.  If so, there was a goto
1076  // or address of a label taken, but no definition of it.  Label fwd
1077  // definitions are indicated with a null substmt.
1078  if (L->getStmt() == 0)
1079    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1080}
1081
1082void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1083  if (S->decl_empty()) return;
1084  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1085         "Scope shouldn't contain decls!");
1086
1087  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1088       I != E; ++I) {
1089    Decl *TmpD = (*I);
1090    assert(TmpD && "This decl didn't get pushed??");
1091
1092    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1093    NamedDecl *D = cast<NamedDecl>(TmpD);
1094
1095    if (!D->getDeclName()) continue;
1096
1097    // Diagnose unused variables in this scope.
1098    if (!S->hasErrorOccurred())
1099      DiagnoseUnusedDecl(D);
1100
1101    // If this was a forward reference to a label, verify it was defined.
1102    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1103      CheckPoppedLabel(LD, *this);
1104
1105    // Remove this name from our lexical scope.
1106    IdResolver.RemoveDecl(D);
1107  }
1108}
1109
1110/// \brief Look for an Objective-C class in the translation unit.
1111///
1112/// \param Id The name of the Objective-C class we're looking for. If
1113/// typo-correction fixes this name, the Id will be updated
1114/// to the fixed name.
1115///
1116/// \param IdLoc The location of the name in the translation unit.
1117///
1118/// \param TypoCorrection If true, this routine will attempt typo correction
1119/// if there is no class with the given name.
1120///
1121/// \returns The declaration of the named Objective-C class, or NULL if the
1122/// class could not be found.
1123ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1124                                              SourceLocation IdLoc,
1125                                              bool TypoCorrection) {
1126  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1127  // creation from this context.
1128  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1129
1130  if (!IDecl && TypoCorrection) {
1131    // Perform typo correction at the given location, but only if we
1132    // find an Objective-C class name.
1133    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1134    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1135        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1136      Diag(IdLoc, diag::err_undef_interface_suggest)
1137        << Id << IDecl->getDeclName()
1138        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1139      Diag(IDecl->getLocation(), diag::note_previous_decl)
1140        << IDecl->getDeclName();
1141
1142      Id = IDecl->getIdentifier();
1143    }
1144  }
1145
1146  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1147}
1148
1149/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1150/// from S, where a non-field would be declared. This routine copes
1151/// with the difference between C and C++ scoping rules in structs and
1152/// unions. For example, the following code is well-formed in C but
1153/// ill-formed in C++:
1154/// @code
1155/// struct S6 {
1156///   enum { BAR } e;
1157/// };
1158///
1159/// void test_S6() {
1160///   struct S6 a;
1161///   a.e = BAR;
1162/// }
1163/// @endcode
1164/// For the declaration of BAR, this routine will return a different
1165/// scope. The scope S will be the scope of the unnamed enumeration
1166/// within S6. In C++, this routine will return the scope associated
1167/// with S6, because the enumeration's scope is a transparent
1168/// context but structures can contain non-field names. In C, this
1169/// routine will return the translation unit scope, since the
1170/// enumeration's scope is a transparent context and structures cannot
1171/// contain non-field names.
1172Scope *Sema::getNonFieldDeclScope(Scope *S) {
1173  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1174         (S->getEntity() &&
1175          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1176         (S->isClassScope() && !getLangOptions().CPlusPlus))
1177    S = S->getParent();
1178  return S;
1179}
1180
1181/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1182/// file scope.  lazily create a decl for it. ForRedeclaration is true
1183/// if we're creating this built-in in anticipation of redeclaring the
1184/// built-in.
1185NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1186                                     Scope *S, bool ForRedeclaration,
1187                                     SourceLocation Loc) {
1188  Builtin::ID BID = (Builtin::ID)bid;
1189
1190  ASTContext::GetBuiltinTypeError Error;
1191  QualType R = Context.GetBuiltinType(BID, Error);
1192  switch (Error) {
1193  case ASTContext::GE_None:
1194    // Okay
1195    break;
1196
1197  case ASTContext::GE_Missing_stdio:
1198    if (ForRedeclaration)
1199      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1200        << Context.BuiltinInfo.GetName(BID);
1201    return 0;
1202
1203  case ASTContext::GE_Missing_setjmp:
1204    if (ForRedeclaration)
1205      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1206        << Context.BuiltinInfo.GetName(BID);
1207    return 0;
1208  }
1209
1210  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1211    Diag(Loc, diag::ext_implicit_lib_function_decl)
1212      << Context.BuiltinInfo.GetName(BID)
1213      << R;
1214    if (Context.BuiltinInfo.getHeaderName(BID) &&
1215        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1216          != Diagnostic::Ignored)
1217      Diag(Loc, diag::note_please_include_header)
1218        << Context.BuiltinInfo.getHeaderName(BID)
1219        << Context.BuiltinInfo.GetName(BID);
1220  }
1221
1222  FunctionDecl *New = FunctionDecl::Create(Context,
1223                                           Context.getTranslationUnitDecl(),
1224                                           Loc, Loc, II, R, /*TInfo=*/0,
1225                                           SC_Extern,
1226                                           SC_None, false,
1227                                           /*hasPrototype=*/true);
1228  New->setImplicit();
1229
1230  // Create Decl objects for each parameter, adding them to the
1231  // FunctionDecl.
1232  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1233    llvm::SmallVector<ParmVarDecl*, 16> Params;
1234    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
1235      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
1236                                           SourceLocation(), 0,
1237                                           FT->getArgType(i), /*TInfo=*/0,
1238                                           SC_None, SC_None, 0));
1239    New->setParams(Params.data(), Params.size());
1240  }
1241
1242  AddKnownFunctionAttributes(New);
1243
1244  // TUScope is the translation-unit scope to insert this function into.
1245  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1246  // relate Scopes to DeclContexts, and probably eliminate CurContext
1247  // entirely, but we're not there yet.
1248  DeclContext *SavedContext = CurContext;
1249  CurContext = Context.getTranslationUnitDecl();
1250  PushOnScopeChains(New, TUScope);
1251  CurContext = SavedContext;
1252  return New;
1253}
1254
1255/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1256/// same name and scope as a previous declaration 'Old'.  Figure out
1257/// how to resolve this situation, merging decls or emitting
1258/// diagnostics as appropriate. If there was an error, set New to be invalid.
1259///
1260void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1261  // If the new decl is known invalid already, don't bother doing any
1262  // merging checks.
1263  if (New->isInvalidDecl()) return;
1264
1265  // Allow multiple definitions for ObjC built-in typedefs.
1266  // FIXME: Verify the underlying types are equivalent!
1267  if (getLangOptions().ObjC1) {
1268    const IdentifierInfo *TypeID = New->getIdentifier();
1269    switch (TypeID->getLength()) {
1270    default: break;
1271    case 2:
1272      if (!TypeID->isStr("id"))
1273        break;
1274      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1275      // Install the built-in type for 'id', ignoring the current definition.
1276      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1277      return;
1278    case 5:
1279      if (!TypeID->isStr("Class"))
1280        break;
1281      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1282      // Install the built-in type for 'Class', ignoring the current definition.
1283      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1284      return;
1285    case 3:
1286      if (!TypeID->isStr("SEL"))
1287        break;
1288      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1289      // Install the built-in type for 'SEL', ignoring the current definition.
1290      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1291      return;
1292    case 8:
1293      if (!TypeID->isStr("Protocol"))
1294        break;
1295      Context.setObjCProtoType(New->getUnderlyingType());
1296      return;
1297    }
1298    // Fall through - the typedef name was not a builtin type.
1299  }
1300
1301  // Verify the old decl was also a type.
1302  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1303  if (!Old) {
1304    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1305      << New->getDeclName();
1306
1307    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1308    if (OldD->getLocation().isValid())
1309      Diag(OldD->getLocation(), diag::note_previous_definition);
1310
1311    return New->setInvalidDecl();
1312  }
1313
1314  // If the old declaration is invalid, just give up here.
1315  if (Old->isInvalidDecl())
1316    return New->setInvalidDecl();
1317
1318  // Determine the "old" type we'll use for checking and diagnostics.
1319  QualType OldType;
1320  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1321    OldType = OldTypedef->getUnderlyingType();
1322  else
1323    OldType = Context.getTypeDeclType(Old);
1324
1325  // If the typedef types are not identical, reject them in all languages and
1326  // with any extensions enabled.
1327
1328  if (OldType != New->getUnderlyingType() &&
1329      Context.getCanonicalType(OldType) !=
1330      Context.getCanonicalType(New->getUnderlyingType())) {
1331    int Kind = 0;
1332    if (isa<TypeAliasDecl>(Old))
1333      Kind = 1;
1334    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1335      << Kind << New->getUnderlyingType() << OldType;
1336    if (Old->getLocation().isValid())
1337      Diag(Old->getLocation(), diag::note_previous_definition);
1338    return New->setInvalidDecl();
1339  }
1340
1341  // The types match.  Link up the redeclaration chain if the old
1342  // declaration was a typedef.
1343  // FIXME: this is a potential source of wierdness if the type
1344  // spellings don't match exactly.
1345  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1346    New->setPreviousDeclaration(Typedef);
1347
1348  if (getLangOptions().Microsoft)
1349    return;
1350
1351  if (getLangOptions().CPlusPlus) {
1352    // C++ [dcl.typedef]p2:
1353    //   In a given non-class scope, a typedef specifier can be used to
1354    //   redefine the name of any type declared in that scope to refer
1355    //   to the type to which it already refers.
1356    if (!isa<CXXRecordDecl>(CurContext))
1357      return;
1358
1359    // C++0x [dcl.typedef]p4:
1360    //   In a given class scope, a typedef specifier can be used to redefine
1361    //   any class-name declared in that scope that is not also a typedef-name
1362    //   to refer to the type to which it already refers.
1363    //
1364    // This wording came in via DR424, which was a correction to the
1365    // wording in DR56, which accidentally banned code like:
1366    //
1367    //   struct S {
1368    //     typedef struct A { } A;
1369    //   };
1370    //
1371    // in the C++03 standard. We implement the C++0x semantics, which
1372    // allow the above but disallow
1373    //
1374    //   struct S {
1375    //     typedef int I;
1376    //     typedef int I;
1377    //   };
1378    //
1379    // since that was the intent of DR56.
1380    if (!isa<TypedefNameDecl>(Old))
1381      return;
1382
1383    Diag(New->getLocation(), diag::err_redefinition)
1384      << New->getDeclName();
1385    Diag(Old->getLocation(), diag::note_previous_definition);
1386    return New->setInvalidDecl();
1387  }
1388
1389  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1390  // is normally mapped to an error, but can be controlled with
1391  // -Wtypedef-redefinition.  If either the original or the redefinition is
1392  // in a system header, don't emit this for compatibility with GCC.
1393  if (getDiagnostics().getSuppressSystemWarnings() &&
1394      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1395       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1396    return;
1397
1398  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1399    << New->getDeclName();
1400  Diag(Old->getLocation(), diag::note_previous_definition);
1401  return;
1402}
1403
1404/// DeclhasAttr - returns true if decl Declaration already has the target
1405/// attribute.
1406static bool
1407DeclHasAttr(const Decl *D, const Attr *A) {
1408  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1409  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1410    if ((*i)->getKind() == A->getKind()) {
1411      // FIXME: Don't hardcode this check
1412      if (OA && isa<OwnershipAttr>(*i))
1413        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1414      return true;
1415    }
1416
1417  return false;
1418}
1419
1420/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1421static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1422                                ASTContext &C) {
1423  if (!oldDecl->hasAttrs())
1424    return;
1425
1426  bool foundAny = newDecl->hasAttrs();
1427
1428  // Ensure that any moving of objects within the allocated map is done before
1429  // we process them.
1430  if (!foundAny) newDecl->setAttrs(AttrVec());
1431
1432  for (specific_attr_iterator<InheritableAttr>
1433       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1434       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1435    if (!DeclHasAttr(newDecl, *i)) {
1436      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1437      newAttr->setInherited(true);
1438      newDecl->addAttr(newAttr);
1439      foundAny = true;
1440    }
1441  }
1442
1443  if (!foundAny) newDecl->dropAttrs();
1444}
1445
1446/// mergeParamDeclAttributes - Copy attributes from the old parameter
1447/// to the new one.
1448static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1449                                     const ParmVarDecl *oldDecl,
1450                                     ASTContext &C) {
1451  if (!oldDecl->hasAttrs())
1452    return;
1453
1454  bool foundAny = newDecl->hasAttrs();
1455
1456  // Ensure that any moving of objects within the allocated map is
1457  // done before we process them.
1458  if (!foundAny) newDecl->setAttrs(AttrVec());
1459
1460  for (specific_attr_iterator<InheritableParamAttr>
1461       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1462       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1463    if (!DeclHasAttr(newDecl, *i)) {
1464      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1465      newAttr->setInherited(true);
1466      newDecl->addAttr(newAttr);
1467      foundAny = true;
1468    }
1469  }
1470
1471  if (!foundAny) newDecl->dropAttrs();
1472}
1473
1474namespace {
1475
1476/// Used in MergeFunctionDecl to keep track of function parameters in
1477/// C.
1478struct GNUCompatibleParamWarning {
1479  ParmVarDecl *OldParm;
1480  ParmVarDecl *NewParm;
1481  QualType PromotedType;
1482};
1483
1484}
1485
1486/// getSpecialMember - get the special member enum for a method.
1487Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1488  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1489    if (Ctor->isCopyConstructor())
1490      return Sema::CXXCopyConstructor;
1491
1492    return Sema::CXXConstructor;
1493  }
1494
1495  if (isa<CXXDestructorDecl>(MD))
1496    return Sema::CXXDestructor;
1497
1498  assert(MD->isCopyAssignmentOperator() &&
1499         "Must have copy assignment operator");
1500  return Sema::CXXCopyAssignment;
1501}
1502
1503/// canRedefineFunction - checks if a function can be redefined. Currently,
1504/// only extern inline functions can be redefined, and even then only in
1505/// GNU89 mode.
1506static bool canRedefineFunction(const FunctionDecl *FD,
1507                                const LangOptions& LangOpts) {
1508  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1509          FD->isInlineSpecified() &&
1510          FD->getStorageClass() == SC_Extern);
1511}
1512
1513/// MergeFunctionDecl - We just parsed a function 'New' from
1514/// declarator D which has the same name and scope as a previous
1515/// declaration 'Old'.  Figure out how to resolve this situation,
1516/// merging decls or emitting diagnostics as appropriate.
1517///
1518/// In C++, New and Old must be declarations that are not
1519/// overloaded. Use IsOverload to determine whether New and Old are
1520/// overloaded, and to select the Old declaration that New should be
1521/// merged with.
1522///
1523/// Returns true if there was an error, false otherwise.
1524bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1525  // Verify the old decl was also a function.
1526  FunctionDecl *Old = 0;
1527  if (FunctionTemplateDecl *OldFunctionTemplate
1528        = dyn_cast<FunctionTemplateDecl>(OldD))
1529    Old = OldFunctionTemplate->getTemplatedDecl();
1530  else
1531    Old = dyn_cast<FunctionDecl>(OldD);
1532  if (!Old) {
1533    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1534      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1535      Diag(Shadow->getTargetDecl()->getLocation(),
1536           diag::note_using_decl_target);
1537      Diag(Shadow->getUsingDecl()->getLocation(),
1538           diag::note_using_decl) << 0;
1539      return true;
1540    }
1541
1542    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1543      << New->getDeclName();
1544    Diag(OldD->getLocation(), diag::note_previous_definition);
1545    return true;
1546  }
1547
1548  // Determine whether the previous declaration was a definition,
1549  // implicit declaration, or a declaration.
1550  diag::kind PrevDiag;
1551  if (Old->isThisDeclarationADefinition())
1552    PrevDiag = diag::note_previous_definition;
1553  else if (Old->isImplicit())
1554    PrevDiag = diag::note_previous_implicit_declaration;
1555  else
1556    PrevDiag = diag::note_previous_declaration;
1557
1558  QualType OldQType = Context.getCanonicalType(Old->getType());
1559  QualType NewQType = Context.getCanonicalType(New->getType());
1560
1561  // Don't complain about this if we're in GNU89 mode and the old function
1562  // is an extern inline function.
1563  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1564      New->getStorageClass() == SC_Static &&
1565      Old->getStorageClass() != SC_Static &&
1566      !canRedefineFunction(Old, getLangOptions())) {
1567    if (getLangOptions().Microsoft) {
1568      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1569      Diag(Old->getLocation(), PrevDiag);
1570    } else {
1571      Diag(New->getLocation(), diag::err_static_non_static) << New;
1572      Diag(Old->getLocation(), PrevDiag);
1573      return true;
1574    }
1575  }
1576
1577  // If a function is first declared with a calling convention, but is
1578  // later declared or defined without one, the second decl assumes the
1579  // calling convention of the first.
1580  //
1581  // For the new decl, we have to look at the NON-canonical type to tell the
1582  // difference between a function that really doesn't have a calling
1583  // convention and one that is declared cdecl. That's because in
1584  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1585  // because it is the default calling convention.
1586  //
1587  // Note also that we DO NOT return at this point, because we still have
1588  // other tests to run.
1589  const FunctionType *OldType = cast<FunctionType>(OldQType);
1590  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1591  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1592  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1593  bool RequiresAdjustment = false;
1594  if (OldTypeInfo.getCC() != CC_Default &&
1595      NewTypeInfo.getCC() == CC_Default) {
1596    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1597    RequiresAdjustment = true;
1598  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1599                                     NewTypeInfo.getCC())) {
1600    // Calling conventions really aren't compatible, so complain.
1601    Diag(New->getLocation(), diag::err_cconv_change)
1602      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1603      << (OldTypeInfo.getCC() == CC_Default)
1604      << (OldTypeInfo.getCC() == CC_Default ? "" :
1605          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1606    Diag(Old->getLocation(), diag::note_previous_declaration);
1607    return true;
1608  }
1609
1610  // FIXME: diagnose the other way around?
1611  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1612    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1613    RequiresAdjustment = true;
1614  }
1615
1616  // Merge regparm attribute.
1617  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1618      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1619    if (NewTypeInfo.getHasRegParm()) {
1620      Diag(New->getLocation(), diag::err_regparm_mismatch)
1621        << NewType->getRegParmType()
1622        << OldType->getRegParmType();
1623      Diag(Old->getLocation(), diag::note_previous_declaration);
1624      return true;
1625    }
1626
1627    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1628    RequiresAdjustment = true;
1629  }
1630
1631  if (RequiresAdjustment) {
1632    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1633    New->setType(QualType(NewType, 0));
1634    NewQType = Context.getCanonicalType(New->getType());
1635  }
1636
1637  if (getLangOptions().CPlusPlus) {
1638    // (C++98 13.1p2):
1639    //   Certain function declarations cannot be overloaded:
1640    //     -- Function declarations that differ only in the return type
1641    //        cannot be overloaded.
1642    QualType OldReturnType = OldType->getResultType();
1643    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1644    QualType ResQT;
1645    if (OldReturnType != NewReturnType) {
1646      if (NewReturnType->isObjCObjectPointerType()
1647          && OldReturnType->isObjCObjectPointerType())
1648        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1649      if (ResQT.isNull()) {
1650        if (New->isCXXClassMember() && New->isOutOfLine())
1651          Diag(New->getLocation(),
1652               diag::err_member_def_does_not_match_ret_type) << New;
1653        else
1654          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1655        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1656        return true;
1657      }
1658      else
1659        NewQType = ResQT;
1660    }
1661
1662    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1663    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1664    if (OldMethod && NewMethod) {
1665      // Preserve triviality.
1666      NewMethod->setTrivial(OldMethod->isTrivial());
1667
1668      bool isFriend = NewMethod->getFriendObjectKind();
1669
1670      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1671        //    -- Member function declarations with the same name and the
1672        //       same parameter types cannot be overloaded if any of them
1673        //       is a static member function declaration.
1674        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1675          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1676          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1677          return true;
1678        }
1679
1680        // C++ [class.mem]p1:
1681        //   [...] A member shall not be declared twice in the
1682        //   member-specification, except that a nested class or member
1683        //   class template can be declared and then later defined.
1684        unsigned NewDiag;
1685        if (isa<CXXConstructorDecl>(OldMethod))
1686          NewDiag = diag::err_constructor_redeclared;
1687        else if (isa<CXXDestructorDecl>(NewMethod))
1688          NewDiag = diag::err_destructor_redeclared;
1689        else if (isa<CXXConversionDecl>(NewMethod))
1690          NewDiag = diag::err_conv_function_redeclared;
1691        else
1692          NewDiag = diag::err_member_redeclared;
1693
1694        Diag(New->getLocation(), NewDiag);
1695        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1696
1697      // Complain if this is an explicit declaration of a special
1698      // member that was initially declared implicitly.
1699      //
1700      // As an exception, it's okay to befriend such methods in order
1701      // to permit the implicit constructor/destructor/operator calls.
1702      } else if (OldMethod->isImplicit()) {
1703        if (isFriend) {
1704          NewMethod->setImplicit();
1705        } else {
1706          Diag(NewMethod->getLocation(),
1707               diag::err_definition_of_implicitly_declared_member)
1708            << New << getSpecialMember(OldMethod);
1709          return true;
1710        }
1711      }
1712    }
1713
1714    // (C++98 8.3.5p3):
1715    //   All declarations for a function shall agree exactly in both the
1716    //   return type and the parameter-type-list.
1717    // We also want to respect all the extended bits except noreturn.
1718
1719    // noreturn should now match unless the old type info didn't have it.
1720    QualType OldQTypeForComparison = OldQType;
1721    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1722      assert(OldQType == QualType(OldType, 0));
1723      const FunctionType *OldTypeForComparison
1724        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1725      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1726      assert(OldQTypeForComparison.isCanonical());
1727    }
1728
1729    if (OldQTypeForComparison == NewQType)
1730      return MergeCompatibleFunctionDecls(New, Old);
1731
1732    // Fall through for conflicting redeclarations and redefinitions.
1733  }
1734
1735  // C: Function types need to be compatible, not identical. This handles
1736  // duplicate function decls like "void f(int); void f(enum X);" properly.
1737  if (!getLangOptions().CPlusPlus &&
1738      Context.typesAreCompatible(OldQType, NewQType)) {
1739    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1740    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1741    const FunctionProtoType *OldProto = 0;
1742    if (isa<FunctionNoProtoType>(NewFuncType) &&
1743        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1744      // The old declaration provided a function prototype, but the
1745      // new declaration does not. Merge in the prototype.
1746      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1747      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1748                                                 OldProto->arg_type_end());
1749      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1750                                         ParamTypes.data(), ParamTypes.size(),
1751                                         OldProto->getExtProtoInfo());
1752      New->setType(NewQType);
1753      New->setHasInheritedPrototype();
1754
1755      // Synthesize a parameter for each argument type.
1756      llvm::SmallVector<ParmVarDecl*, 16> Params;
1757      for (FunctionProtoType::arg_type_iterator
1758             ParamType = OldProto->arg_type_begin(),
1759             ParamEnd = OldProto->arg_type_end();
1760           ParamType != ParamEnd; ++ParamType) {
1761        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1762                                                 SourceLocation(),
1763                                                 SourceLocation(), 0,
1764                                                 *ParamType, /*TInfo=*/0,
1765                                                 SC_None, SC_None,
1766                                                 0);
1767        Param->setImplicit();
1768        Params.push_back(Param);
1769      }
1770
1771      New->setParams(Params.data(), Params.size());
1772    }
1773
1774    return MergeCompatibleFunctionDecls(New, Old);
1775  }
1776
1777  // GNU C permits a K&R definition to follow a prototype declaration
1778  // if the declared types of the parameters in the K&R definition
1779  // match the types in the prototype declaration, even when the
1780  // promoted types of the parameters from the K&R definition differ
1781  // from the types in the prototype. GCC then keeps the types from
1782  // the prototype.
1783  //
1784  // If a variadic prototype is followed by a non-variadic K&R definition,
1785  // the K&R definition becomes variadic.  This is sort of an edge case, but
1786  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1787  // C99 6.9.1p8.
1788  if (!getLangOptions().CPlusPlus &&
1789      Old->hasPrototype() && !New->hasPrototype() &&
1790      New->getType()->getAs<FunctionProtoType>() &&
1791      Old->getNumParams() == New->getNumParams()) {
1792    llvm::SmallVector<QualType, 16> ArgTypes;
1793    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1794    const FunctionProtoType *OldProto
1795      = Old->getType()->getAs<FunctionProtoType>();
1796    const FunctionProtoType *NewProto
1797      = New->getType()->getAs<FunctionProtoType>();
1798
1799    // Determine whether this is the GNU C extension.
1800    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1801                                               NewProto->getResultType());
1802    bool LooseCompatible = !MergedReturn.isNull();
1803    for (unsigned Idx = 0, End = Old->getNumParams();
1804         LooseCompatible && Idx != End; ++Idx) {
1805      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1806      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1807      if (Context.typesAreCompatible(OldParm->getType(),
1808                                     NewProto->getArgType(Idx))) {
1809        ArgTypes.push_back(NewParm->getType());
1810      } else if (Context.typesAreCompatible(OldParm->getType(),
1811                                            NewParm->getType(),
1812                                            /*CompareUnqualified=*/true)) {
1813        GNUCompatibleParamWarning Warn
1814          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1815        Warnings.push_back(Warn);
1816        ArgTypes.push_back(NewParm->getType());
1817      } else
1818        LooseCompatible = false;
1819    }
1820
1821    if (LooseCompatible) {
1822      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1823        Diag(Warnings[Warn].NewParm->getLocation(),
1824             diag::ext_param_promoted_not_compatible_with_prototype)
1825          << Warnings[Warn].PromotedType
1826          << Warnings[Warn].OldParm->getType();
1827        if (Warnings[Warn].OldParm->getLocation().isValid())
1828          Diag(Warnings[Warn].OldParm->getLocation(),
1829               diag::note_previous_declaration);
1830      }
1831
1832      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1833                                           ArgTypes.size(),
1834                                           OldProto->getExtProtoInfo()));
1835      return MergeCompatibleFunctionDecls(New, Old);
1836    }
1837
1838    // Fall through to diagnose conflicting types.
1839  }
1840
1841  // A function that has already been declared has been redeclared or defined
1842  // with a different type- show appropriate diagnostic
1843  if (unsigned BuiltinID = Old->getBuiltinID()) {
1844    // The user has declared a builtin function with an incompatible
1845    // signature.
1846    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1847      // The function the user is redeclaring is a library-defined
1848      // function like 'malloc' or 'printf'. Warn about the
1849      // redeclaration, then pretend that we don't know about this
1850      // library built-in.
1851      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1852      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1853        << Old << Old->getType();
1854      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1855      Old->setInvalidDecl();
1856      return false;
1857    }
1858
1859    PrevDiag = diag::note_previous_builtin_declaration;
1860  }
1861
1862  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1863  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1864  return true;
1865}
1866
1867/// \brief Completes the merge of two function declarations that are
1868/// known to be compatible.
1869///
1870/// This routine handles the merging of attributes and other
1871/// properties of function declarations form the old declaration to
1872/// the new declaration, once we know that New is in fact a
1873/// redeclaration of Old.
1874///
1875/// \returns false
1876bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1877  // Merge the attributes
1878  mergeDeclAttributes(New, Old, Context);
1879
1880  // Merge the storage class.
1881  if (Old->getStorageClass() != SC_Extern &&
1882      Old->getStorageClass() != SC_None)
1883    New->setStorageClass(Old->getStorageClass());
1884
1885  // Merge "pure" flag.
1886  if (Old->isPure())
1887    New->setPure();
1888
1889  // Merge the "deleted" flag.
1890  if (Old->isDeleted())
1891    New->setDeleted();
1892
1893  // Merge attributes from the parameters.  These can mismatch with K&R
1894  // declarations.
1895  if (New->getNumParams() == Old->getNumParams())
1896    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1897      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1898                               Context);
1899
1900  if (getLangOptions().CPlusPlus)
1901    return MergeCXXFunctionDecl(New, Old);
1902
1903  return false;
1904}
1905
1906void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1907                                const ObjCMethodDecl *oldMethod) {
1908  // Merge the attributes.
1909  mergeDeclAttributes(newMethod, oldMethod, Context);
1910
1911  // Merge attributes from the parameters.
1912  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1913         ni = newMethod->param_begin(), ne = newMethod->param_end();
1914       ni != ne; ++ni, ++oi)
1915    mergeParamDeclAttributes(*ni, *oi, Context);
1916}
1917
1918/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1919/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1920/// emitting diagnostics as appropriate.
1921///
1922/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1923/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1924/// check them before the initializer is attached.
1925///
1926void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1927  if (New->isInvalidDecl() || Old->isInvalidDecl())
1928    return;
1929
1930  QualType MergedT;
1931  if (getLangOptions().CPlusPlus) {
1932    AutoType *AT = New->getType()->getContainedAutoType();
1933    if (AT && !AT->isDeduced()) {
1934      // We don't know what the new type is until the initializer is attached.
1935      return;
1936    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1937      // These could still be something that needs exception specs checked.
1938      return MergeVarDeclExceptionSpecs(New, Old);
1939    }
1940    // C++ [basic.link]p10:
1941    //   [...] the types specified by all declarations referring to a given
1942    //   object or function shall be identical, except that declarations for an
1943    //   array object can specify array types that differ by the presence or
1944    //   absence of a major array bound (8.3.4).
1945    else if (Old->getType()->isIncompleteArrayType() &&
1946             New->getType()->isArrayType()) {
1947      CanQual<ArrayType> OldArray
1948        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1949      CanQual<ArrayType> NewArray
1950        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1951      if (OldArray->getElementType() == NewArray->getElementType())
1952        MergedT = New->getType();
1953    } else if (Old->getType()->isArrayType() &&
1954             New->getType()->isIncompleteArrayType()) {
1955      CanQual<ArrayType> OldArray
1956        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1957      CanQual<ArrayType> NewArray
1958        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1959      if (OldArray->getElementType() == NewArray->getElementType())
1960        MergedT = Old->getType();
1961    } else if (New->getType()->isObjCObjectPointerType()
1962               && Old->getType()->isObjCObjectPointerType()) {
1963        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1964                                                        Old->getType());
1965    }
1966  } else {
1967    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1968  }
1969  if (MergedT.isNull()) {
1970    Diag(New->getLocation(), diag::err_redefinition_different_type)
1971      << New->getDeclName();
1972    Diag(Old->getLocation(), diag::note_previous_definition);
1973    return New->setInvalidDecl();
1974  }
1975  New->setType(MergedT);
1976}
1977
1978/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1979/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1980/// situation, merging decls or emitting diagnostics as appropriate.
1981///
1982/// Tentative definition rules (C99 6.9.2p2) are checked by
1983/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1984/// definitions here, since the initializer hasn't been attached.
1985///
1986void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1987  // If the new decl is already invalid, don't do any other checking.
1988  if (New->isInvalidDecl())
1989    return;
1990
1991  // Verify the old decl was also a variable.
1992  VarDecl *Old = 0;
1993  if (!Previous.isSingleResult() ||
1994      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1995    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1996      << New->getDeclName();
1997    Diag(Previous.getRepresentativeDecl()->getLocation(),
1998         diag::note_previous_definition);
1999    return New->setInvalidDecl();
2000  }
2001
2002  // C++ [class.mem]p1:
2003  //   A member shall not be declared twice in the member-specification [...]
2004  //
2005  // Here, we need only consider static data members.
2006  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2007    Diag(New->getLocation(), diag::err_duplicate_member)
2008      << New->getIdentifier();
2009    Diag(Old->getLocation(), diag::note_previous_declaration);
2010    New->setInvalidDecl();
2011  }
2012
2013  mergeDeclAttributes(New, Old, Context);
2014
2015  // Merge the types.
2016  MergeVarDeclTypes(New, Old);
2017  if (New->isInvalidDecl())
2018    return;
2019
2020  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2021  if (New->getStorageClass() == SC_Static &&
2022      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2023    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2024    Diag(Old->getLocation(), diag::note_previous_definition);
2025    return New->setInvalidDecl();
2026  }
2027  // C99 6.2.2p4:
2028  //   For an identifier declared with the storage-class specifier
2029  //   extern in a scope in which a prior declaration of that
2030  //   identifier is visible,23) if the prior declaration specifies
2031  //   internal or external linkage, the linkage of the identifier at
2032  //   the later declaration is the same as the linkage specified at
2033  //   the prior declaration. If no prior declaration is visible, or
2034  //   if the prior declaration specifies no linkage, then the
2035  //   identifier has external linkage.
2036  if (New->hasExternalStorage() && Old->hasLinkage())
2037    /* Okay */;
2038  else if (New->getStorageClass() != SC_Static &&
2039           Old->getStorageClass() == SC_Static) {
2040    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2041    Diag(Old->getLocation(), diag::note_previous_definition);
2042    return New->setInvalidDecl();
2043  }
2044
2045  // Check if extern is followed by non-extern and vice-versa.
2046  if (New->hasExternalStorage() &&
2047      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2048    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2049    Diag(Old->getLocation(), diag::note_previous_definition);
2050    return New->setInvalidDecl();
2051  }
2052  if (Old->hasExternalStorage() &&
2053      !New->hasLinkage() && New->isLocalVarDecl()) {
2054    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2055    Diag(Old->getLocation(), diag::note_previous_definition);
2056    return New->setInvalidDecl();
2057  }
2058
2059  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2060
2061  // FIXME: The test for external storage here seems wrong? We still
2062  // need to check for mismatches.
2063  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2064      // Don't complain about out-of-line definitions of static members.
2065      !(Old->getLexicalDeclContext()->isRecord() &&
2066        !New->getLexicalDeclContext()->isRecord())) {
2067    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2068    Diag(Old->getLocation(), diag::note_previous_definition);
2069    return New->setInvalidDecl();
2070  }
2071
2072  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2073    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2074    Diag(Old->getLocation(), diag::note_previous_definition);
2075  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2076    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2077    Diag(Old->getLocation(), diag::note_previous_definition);
2078  }
2079
2080  // C++ doesn't have tentative definitions, so go right ahead and check here.
2081  const VarDecl *Def;
2082  if (getLangOptions().CPlusPlus &&
2083      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2084      (Def = Old->getDefinition())) {
2085    Diag(New->getLocation(), diag::err_redefinition)
2086      << New->getDeclName();
2087    Diag(Def->getLocation(), diag::note_previous_definition);
2088    New->setInvalidDecl();
2089    return;
2090  }
2091  // c99 6.2.2 P4.
2092  // For an identifier declared with the storage-class specifier extern in a
2093  // scope in which a prior declaration of that identifier is visible, if
2094  // the prior declaration specifies internal or external linkage, the linkage
2095  // of the identifier at the later declaration is the same as the linkage
2096  // specified at the prior declaration.
2097  // FIXME. revisit this code.
2098  if (New->hasExternalStorage() &&
2099      Old->getLinkage() == InternalLinkage &&
2100      New->getDeclContext() == Old->getDeclContext())
2101    New->setStorageClass(Old->getStorageClass());
2102
2103  // Keep a chain of previous declarations.
2104  New->setPreviousDeclaration(Old);
2105
2106  // Inherit access appropriately.
2107  New->setAccess(Old->getAccess());
2108}
2109
2110/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2111/// no declarator (e.g. "struct foo;") is parsed.
2112Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2113                                       DeclSpec &DS) {
2114  Decl *TagD = 0;
2115  TagDecl *Tag = 0;
2116  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2117      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2118      DS.getTypeSpecType() == DeclSpec::TST_union ||
2119      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2120    TagD = DS.getRepAsDecl();
2121
2122    if (!TagD) // We probably had an error
2123      return 0;
2124
2125    // Note that the above type specs guarantee that the
2126    // type rep is a Decl, whereas in many of the others
2127    // it's a Type.
2128    Tag = dyn_cast<TagDecl>(TagD);
2129  }
2130
2131  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2132    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2133    // or incomplete types shall not be restrict-qualified."
2134    if (TypeQuals & DeclSpec::TQ_restrict)
2135      Diag(DS.getRestrictSpecLoc(),
2136           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2137           << DS.getSourceRange();
2138  }
2139
2140  if (DS.isFriendSpecified()) {
2141    // If we're dealing with a decl but not a TagDecl, assume that
2142    // whatever routines created it handled the friendship aspect.
2143    if (TagD && !Tag)
2144      return 0;
2145    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
2146  }
2147
2148  // Track whether we warned about the fact that there aren't any
2149  // declarators.
2150  bool emittedWarning = false;
2151
2152  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2153    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2154
2155    if (!Record->getDeclName() && Record->isDefinition() &&
2156        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2157      if (getLangOptions().CPlusPlus ||
2158          Record->getDeclContext()->isRecord())
2159        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2160
2161      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2162        << DS.getSourceRange();
2163      emittedWarning = true;
2164    }
2165  }
2166
2167  // Check for Microsoft C extension: anonymous struct.
2168  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2169      CurContext->isRecord() &&
2170      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2171    // Handle 2 kinds of anonymous struct:
2172    //   struct STRUCT;
2173    // and
2174    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2175    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2176    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2177        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2178         DS.getRepAsType().get()->isStructureType())) {
2179      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2180        << DS.getSourceRange();
2181      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2182    }
2183  }
2184
2185  if (getLangOptions().CPlusPlus &&
2186      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2187    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2188      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2189          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2190        Diag(Enum->getLocation(), diag::ext_no_declarators)
2191          << DS.getSourceRange();
2192        emittedWarning = true;
2193      }
2194
2195  // Skip all the checks below if we have a type error.
2196  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2197
2198  if (!DS.isMissingDeclaratorOk()) {
2199    // Warn about typedefs of enums without names, since this is an
2200    // extension in both Microsoft and GNU.
2201    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2202        Tag && isa<EnumDecl>(Tag)) {
2203      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2204        << DS.getSourceRange();
2205      return Tag;
2206    }
2207
2208    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2209      << DS.getSourceRange();
2210    emittedWarning = true;
2211  }
2212
2213  // We're going to complain about a bunch of spurious specifiers;
2214  // only do this if we're declaring a tag, because otherwise we
2215  // should be getting diag::ext_no_declarators.
2216  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2217    return TagD;
2218
2219  // Note that a linkage-specification sets a storage class, but
2220  // 'extern "C" struct foo;' is actually valid and not theoretically
2221  // useless.
2222  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2223    if (!DS.isExternInLinkageSpec())
2224      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2225        << DeclSpec::getSpecifierName(scs);
2226
2227  if (DS.isThreadSpecified())
2228    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2229  if (DS.getTypeQualifiers()) {
2230    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2231      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2232    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2233      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2234    // Restrict is covered above.
2235  }
2236  if (DS.isInlineSpecified())
2237    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2238  if (DS.isVirtualSpecified())
2239    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2240  if (DS.isExplicitSpecified())
2241    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2242
2243  // FIXME: Warn on useless attributes
2244
2245  return TagD;
2246}
2247
2248/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2249/// builds a statement for it and returns it so it is evaluated.
2250StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2251  StmtResult R;
2252  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2253    Expr *Exp = DS.getRepAsExpr();
2254    QualType Ty = Exp->getType();
2255    if (Ty->isPointerType()) {
2256      do
2257        Ty = Ty->getAs<PointerType>()->getPointeeType();
2258      while (Ty->isPointerType());
2259    }
2260    if (Ty->isVariableArrayType()) {
2261      R = ActOnExprStmt(MakeFullExpr(Exp));
2262    }
2263  }
2264  return R;
2265}
2266
2267/// We are trying to inject an anonymous member into the given scope;
2268/// check if there's an existing declaration that can't be overloaded.
2269///
2270/// \return true if this is a forbidden redeclaration
2271static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2272                                         Scope *S,
2273                                         DeclContext *Owner,
2274                                         DeclarationName Name,
2275                                         SourceLocation NameLoc,
2276                                         unsigned diagnostic) {
2277  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2278                 Sema::ForRedeclaration);
2279  if (!SemaRef.LookupName(R, S)) return false;
2280
2281  if (R.getAsSingle<TagDecl>())
2282    return false;
2283
2284  // Pick a representative declaration.
2285  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2286  assert(PrevDecl && "Expected a non-null Decl");
2287
2288  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2289    return false;
2290
2291  SemaRef.Diag(NameLoc, diagnostic) << Name;
2292  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2293
2294  return true;
2295}
2296
2297/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2298/// anonymous struct or union AnonRecord into the owning context Owner
2299/// and scope S. This routine will be invoked just after we realize
2300/// that an unnamed union or struct is actually an anonymous union or
2301/// struct, e.g.,
2302///
2303/// @code
2304/// union {
2305///   int i;
2306///   float f;
2307/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2308///    // f into the surrounding scope.x
2309/// @endcode
2310///
2311/// This routine is recursive, injecting the names of nested anonymous
2312/// structs/unions into the owning context and scope as well.
2313static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2314                                                DeclContext *Owner,
2315                                                RecordDecl *AnonRecord,
2316                                                AccessSpecifier AS,
2317                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2318                                                      bool MSAnonStruct) {
2319  unsigned diagKind
2320    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2321                            : diag::err_anonymous_struct_member_redecl;
2322
2323  bool Invalid = false;
2324
2325  // Look every FieldDecl and IndirectFieldDecl with a name.
2326  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2327                               DEnd = AnonRecord->decls_end();
2328       D != DEnd; ++D) {
2329    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2330        cast<NamedDecl>(*D)->getDeclName()) {
2331      ValueDecl *VD = cast<ValueDecl>(*D);
2332      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2333                                       VD->getLocation(), diagKind)) {
2334        // C++ [class.union]p2:
2335        //   The names of the members of an anonymous union shall be
2336        //   distinct from the names of any other entity in the
2337        //   scope in which the anonymous union is declared.
2338        Invalid = true;
2339      } else {
2340        // C++ [class.union]p2:
2341        //   For the purpose of name lookup, after the anonymous union
2342        //   definition, the members of the anonymous union are
2343        //   considered to have been defined in the scope in which the
2344        //   anonymous union is declared.
2345        unsigned OldChainingSize = Chaining.size();
2346        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2347          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2348               PE = IF->chain_end(); PI != PE; ++PI)
2349            Chaining.push_back(*PI);
2350        else
2351          Chaining.push_back(VD);
2352
2353        assert(Chaining.size() >= 2);
2354        NamedDecl **NamedChain =
2355          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2356        for (unsigned i = 0; i < Chaining.size(); i++)
2357          NamedChain[i] = Chaining[i];
2358
2359        IndirectFieldDecl* IndirectField =
2360          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2361                                    VD->getIdentifier(), VD->getType(),
2362                                    NamedChain, Chaining.size());
2363
2364        IndirectField->setAccess(AS);
2365        IndirectField->setImplicit();
2366        SemaRef.PushOnScopeChains(IndirectField, S);
2367
2368        // That includes picking up the appropriate access specifier.
2369        if (AS != AS_none) IndirectField->setAccess(AS);
2370
2371        Chaining.resize(OldChainingSize);
2372      }
2373    }
2374  }
2375
2376  return Invalid;
2377}
2378
2379/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2380/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2381/// illegal input values are mapped to SC_None.
2382static StorageClass
2383StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2384  switch (StorageClassSpec) {
2385  case DeclSpec::SCS_unspecified:    return SC_None;
2386  case DeclSpec::SCS_extern:         return SC_Extern;
2387  case DeclSpec::SCS_static:         return SC_Static;
2388  case DeclSpec::SCS_auto:           return SC_Auto;
2389  case DeclSpec::SCS_register:       return SC_Register;
2390  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2391    // Illegal SCSs map to None: error reporting is up to the caller.
2392  case DeclSpec::SCS_mutable:        // Fall through.
2393  case DeclSpec::SCS_typedef:        return SC_None;
2394  }
2395  llvm_unreachable("unknown storage class specifier");
2396}
2397
2398/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2399/// a StorageClass. Any error reporting is up to the caller:
2400/// illegal input values are mapped to SC_None.
2401static StorageClass
2402StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2403  switch (StorageClassSpec) {
2404  case DeclSpec::SCS_unspecified:    return SC_None;
2405  case DeclSpec::SCS_extern:         return SC_Extern;
2406  case DeclSpec::SCS_static:         return SC_Static;
2407  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2408    // Illegal SCSs map to None: error reporting is up to the caller.
2409  case DeclSpec::SCS_auto:           // Fall through.
2410  case DeclSpec::SCS_mutable:        // Fall through.
2411  case DeclSpec::SCS_register:       // Fall through.
2412  case DeclSpec::SCS_typedef:        return SC_None;
2413  }
2414  llvm_unreachable("unknown storage class specifier");
2415}
2416
2417/// BuildAnonymousStructOrUnion - Handle the declaration of an
2418/// anonymous structure or union. Anonymous unions are a C++ feature
2419/// (C++ [class.union]) and a GNU C extension; anonymous structures
2420/// are a GNU C and GNU C++ extension.
2421Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2422                                             AccessSpecifier AS,
2423                                             RecordDecl *Record) {
2424  DeclContext *Owner = Record->getDeclContext();
2425
2426  // Diagnose whether this anonymous struct/union is an extension.
2427  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2428    Diag(Record->getLocation(), diag::ext_anonymous_union);
2429  else if (!Record->isUnion())
2430    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2431
2432  // C and C++ require different kinds of checks for anonymous
2433  // structs/unions.
2434  bool Invalid = false;
2435  if (getLangOptions().CPlusPlus) {
2436    const char* PrevSpec = 0;
2437    unsigned DiagID;
2438    // C++ [class.union]p3:
2439    //   Anonymous unions declared in a named namespace or in the
2440    //   global namespace shall be declared static.
2441    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2442        (isa<TranslationUnitDecl>(Owner) ||
2443         (isa<NamespaceDecl>(Owner) &&
2444          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2445      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2446      Invalid = true;
2447
2448      // Recover by adding 'static'.
2449      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2450                             PrevSpec, DiagID, getLangOptions());
2451    }
2452    // C++ [class.union]p3:
2453    //   A storage class is not allowed in a declaration of an
2454    //   anonymous union in a class scope.
2455    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2456             isa<RecordDecl>(Owner)) {
2457      Diag(DS.getStorageClassSpecLoc(),
2458           diag::err_anonymous_union_with_storage_spec);
2459      Invalid = true;
2460
2461      // Recover by removing the storage specifier.
2462      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2463                             PrevSpec, DiagID, getLangOptions());
2464    }
2465
2466    // C++ [class.union]p2:
2467    //   The member-specification of an anonymous union shall only
2468    //   define non-static data members. [Note: nested types and
2469    //   functions cannot be declared within an anonymous union. ]
2470    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2471                                 MemEnd = Record->decls_end();
2472         Mem != MemEnd; ++Mem) {
2473      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2474        // C++ [class.union]p3:
2475        //   An anonymous union shall not have private or protected
2476        //   members (clause 11).
2477        assert(FD->getAccess() != AS_none);
2478        if (FD->getAccess() != AS_public) {
2479          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2480            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2481          Invalid = true;
2482        }
2483
2484        if (CheckNontrivialField(FD))
2485          Invalid = true;
2486      } else if ((*Mem)->isImplicit()) {
2487        // Any implicit members are fine.
2488      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2489        // This is a type that showed up in an
2490        // elaborated-type-specifier inside the anonymous struct or
2491        // union, but which actually declares a type outside of the
2492        // anonymous struct or union. It's okay.
2493      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2494        if (!MemRecord->isAnonymousStructOrUnion() &&
2495            MemRecord->getDeclName()) {
2496          // Visual C++ allows type definition in anonymous struct or union.
2497          if (getLangOptions().Microsoft)
2498            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2499              << (int)Record->isUnion();
2500          else {
2501            // This is a nested type declaration.
2502            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2503              << (int)Record->isUnion();
2504            Invalid = true;
2505          }
2506        }
2507      } else if (isa<AccessSpecDecl>(*Mem)) {
2508        // Any access specifier is fine.
2509      } else {
2510        // We have something that isn't a non-static data
2511        // member. Complain about it.
2512        unsigned DK = diag::err_anonymous_record_bad_member;
2513        if (isa<TypeDecl>(*Mem))
2514          DK = diag::err_anonymous_record_with_type;
2515        else if (isa<FunctionDecl>(*Mem))
2516          DK = diag::err_anonymous_record_with_function;
2517        else if (isa<VarDecl>(*Mem))
2518          DK = diag::err_anonymous_record_with_static;
2519
2520        // Visual C++ allows type definition in anonymous struct or union.
2521        if (getLangOptions().Microsoft &&
2522            DK == diag::err_anonymous_record_with_type)
2523          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2524            << (int)Record->isUnion();
2525        else {
2526          Diag((*Mem)->getLocation(), DK)
2527              << (int)Record->isUnion();
2528          Invalid = true;
2529        }
2530      }
2531    }
2532  }
2533
2534  if (!Record->isUnion() && !Owner->isRecord()) {
2535    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2536      << (int)getLangOptions().CPlusPlus;
2537    Invalid = true;
2538  }
2539
2540  // Mock up a declarator.
2541  Declarator Dc(DS, Declarator::TypeNameContext);
2542  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2543  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2544
2545  // Create a declaration for this anonymous struct/union.
2546  NamedDecl *Anon = 0;
2547  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2548    Anon = FieldDecl::Create(Context, OwningClass,
2549                             DS.getSourceRange().getBegin(),
2550                             Record->getLocation(),
2551                             /*IdentifierInfo=*/0,
2552                             Context.getTypeDeclType(Record),
2553                             TInfo,
2554                             /*BitWidth=*/0, /*Mutable=*/false);
2555    Anon->setAccess(AS);
2556    if (getLangOptions().CPlusPlus)
2557      FieldCollector->Add(cast<FieldDecl>(Anon));
2558  } else {
2559    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2560    assert(SCSpec != DeclSpec::SCS_typedef &&
2561           "Parser allowed 'typedef' as storage class VarDecl.");
2562    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2563    if (SCSpec == DeclSpec::SCS_mutable) {
2564      // mutable can only appear on non-static class members, so it's always
2565      // an error here
2566      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2567      Invalid = true;
2568      SC = SC_None;
2569    }
2570    SCSpec = DS.getStorageClassSpecAsWritten();
2571    VarDecl::StorageClass SCAsWritten
2572      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2573
2574    Anon = VarDecl::Create(Context, Owner,
2575                           DS.getSourceRange().getBegin(),
2576                           Record->getLocation(), /*IdentifierInfo=*/0,
2577                           Context.getTypeDeclType(Record),
2578                           TInfo, SC, SCAsWritten);
2579  }
2580  Anon->setImplicit();
2581
2582  // Add the anonymous struct/union object to the current
2583  // context. We'll be referencing this object when we refer to one of
2584  // its members.
2585  Owner->addDecl(Anon);
2586
2587  // Inject the members of the anonymous struct/union into the owning
2588  // context and into the identifier resolver chain for name lookup
2589  // purposes.
2590  llvm::SmallVector<NamedDecl*, 2> Chain;
2591  Chain.push_back(Anon);
2592
2593  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2594                                          Chain, false))
2595    Invalid = true;
2596
2597  // Mark this as an anonymous struct/union type. Note that we do not
2598  // do this until after we have already checked and injected the
2599  // members of this anonymous struct/union type, because otherwise
2600  // the members could be injected twice: once by DeclContext when it
2601  // builds its lookup table, and once by
2602  // InjectAnonymousStructOrUnionMembers.
2603  Record->setAnonymousStructOrUnion(true);
2604
2605  if (Invalid)
2606    Anon->setInvalidDecl();
2607
2608  return Anon;
2609}
2610
2611/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2612/// Microsoft C anonymous structure.
2613/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2614/// Example:
2615///
2616/// struct A { int a; };
2617/// struct B { struct A; int b; };
2618///
2619/// void foo() {
2620///   B var;
2621///   var.a = 3;
2622/// }
2623///
2624Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2625                                           RecordDecl *Record) {
2626
2627  // If there is no Record, get the record via the typedef.
2628  if (!Record)
2629    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2630
2631  // Mock up a declarator.
2632  Declarator Dc(DS, Declarator::TypeNameContext);
2633  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2634  assert(TInfo && "couldn't build declarator info for anonymous struct");
2635
2636  // Create a declaration for this anonymous struct.
2637  NamedDecl* Anon = FieldDecl::Create(Context,
2638                             cast<RecordDecl>(CurContext),
2639                             DS.getSourceRange().getBegin(),
2640                             DS.getSourceRange().getBegin(),
2641                             /*IdentifierInfo=*/0,
2642                             Context.getTypeDeclType(Record),
2643                             TInfo,
2644                             /*BitWidth=*/0, /*Mutable=*/false);
2645  Anon->setImplicit();
2646
2647  // Add the anonymous struct object to the current context.
2648  CurContext->addDecl(Anon);
2649
2650  // Inject the members of the anonymous struct into the current
2651  // context and into the identifier resolver chain for name lookup
2652  // purposes.
2653  llvm::SmallVector<NamedDecl*, 2> Chain;
2654  Chain.push_back(Anon);
2655
2656  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2657                                          Record->getDefinition(),
2658                                          AS_none, Chain, true))
2659    Anon->setInvalidDecl();
2660
2661  return Anon;
2662}
2663
2664/// GetNameForDeclarator - Determine the full declaration name for the
2665/// given Declarator.
2666DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2667  return GetNameFromUnqualifiedId(D.getName());
2668}
2669
2670/// \brief Retrieves the declaration name from a parsed unqualified-id.
2671DeclarationNameInfo
2672Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2673  DeclarationNameInfo NameInfo;
2674  NameInfo.setLoc(Name.StartLocation);
2675
2676  switch (Name.getKind()) {
2677
2678  case UnqualifiedId::IK_Identifier:
2679    NameInfo.setName(Name.Identifier);
2680    NameInfo.setLoc(Name.StartLocation);
2681    return NameInfo;
2682
2683  case UnqualifiedId::IK_OperatorFunctionId:
2684    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2685                                           Name.OperatorFunctionId.Operator));
2686    NameInfo.setLoc(Name.StartLocation);
2687    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2688      = Name.OperatorFunctionId.SymbolLocations[0];
2689    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2690      = Name.EndLocation.getRawEncoding();
2691    return NameInfo;
2692
2693  case UnqualifiedId::IK_LiteralOperatorId:
2694    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2695                                                           Name.Identifier));
2696    NameInfo.setLoc(Name.StartLocation);
2697    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2698    return NameInfo;
2699
2700  case UnqualifiedId::IK_ConversionFunctionId: {
2701    TypeSourceInfo *TInfo;
2702    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2703    if (Ty.isNull())
2704      return DeclarationNameInfo();
2705    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2706                                               Context.getCanonicalType(Ty)));
2707    NameInfo.setLoc(Name.StartLocation);
2708    NameInfo.setNamedTypeInfo(TInfo);
2709    return NameInfo;
2710  }
2711
2712  case UnqualifiedId::IK_ConstructorName: {
2713    TypeSourceInfo *TInfo;
2714    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2715    if (Ty.isNull())
2716      return DeclarationNameInfo();
2717    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2718                                              Context.getCanonicalType(Ty)));
2719    NameInfo.setLoc(Name.StartLocation);
2720    NameInfo.setNamedTypeInfo(TInfo);
2721    return NameInfo;
2722  }
2723
2724  case UnqualifiedId::IK_ConstructorTemplateId: {
2725    // In well-formed code, we can only have a constructor
2726    // template-id that refers to the current context, so go there
2727    // to find the actual type being constructed.
2728    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2729    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2730      return DeclarationNameInfo();
2731
2732    // Determine the type of the class being constructed.
2733    QualType CurClassType = Context.getTypeDeclType(CurClass);
2734
2735    // FIXME: Check two things: that the template-id names the same type as
2736    // CurClassType, and that the template-id does not occur when the name
2737    // was qualified.
2738
2739    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2740                                    Context.getCanonicalType(CurClassType)));
2741    NameInfo.setLoc(Name.StartLocation);
2742    // FIXME: should we retrieve TypeSourceInfo?
2743    NameInfo.setNamedTypeInfo(0);
2744    return NameInfo;
2745  }
2746
2747  case UnqualifiedId::IK_DestructorName: {
2748    TypeSourceInfo *TInfo;
2749    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2750    if (Ty.isNull())
2751      return DeclarationNameInfo();
2752    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2753                                              Context.getCanonicalType(Ty)));
2754    NameInfo.setLoc(Name.StartLocation);
2755    NameInfo.setNamedTypeInfo(TInfo);
2756    return NameInfo;
2757  }
2758
2759  case UnqualifiedId::IK_TemplateId: {
2760    TemplateName TName = Name.TemplateId->Template.get();
2761    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2762    return Context.getNameForTemplate(TName, TNameLoc);
2763  }
2764
2765  } // switch (Name.getKind())
2766
2767  assert(false && "Unknown name kind");
2768  return DeclarationNameInfo();
2769}
2770
2771/// isNearlyMatchingFunction - Determine whether the C++ functions
2772/// Declaration and Definition are "nearly" matching. This heuristic
2773/// is used to improve diagnostics in the case where an out-of-line
2774/// function definition doesn't match any declaration within
2775/// the class or namespace.
2776static bool isNearlyMatchingFunction(ASTContext &Context,
2777                                     FunctionDecl *Declaration,
2778                                     FunctionDecl *Definition) {
2779  if (Declaration->param_size() != Definition->param_size())
2780    return false;
2781  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2782    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2783    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2784
2785    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2786                                        DefParamTy.getNonReferenceType()))
2787      return false;
2788  }
2789
2790  return true;
2791}
2792
2793/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2794/// declarator needs to be rebuilt in the current instantiation.
2795/// Any bits of declarator which appear before the name are valid for
2796/// consideration here.  That's specifically the type in the decl spec
2797/// and the base type in any member-pointer chunks.
2798static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2799                                                    DeclarationName Name) {
2800  // The types we specifically need to rebuild are:
2801  //   - typenames, typeofs, and decltypes
2802  //   - types which will become injected class names
2803  // Of course, we also need to rebuild any type referencing such a
2804  // type.  It's safest to just say "dependent", but we call out a
2805  // few cases here.
2806
2807  DeclSpec &DS = D.getMutableDeclSpec();
2808  switch (DS.getTypeSpecType()) {
2809  case DeclSpec::TST_typename:
2810  case DeclSpec::TST_typeofType:
2811  case DeclSpec::TST_decltype: {
2812    // Grab the type from the parser.
2813    TypeSourceInfo *TSI = 0;
2814    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2815    if (T.isNull() || !T->isDependentType()) break;
2816
2817    // Make sure there's a type source info.  This isn't really much
2818    // of a waste; most dependent types should have type source info
2819    // attached already.
2820    if (!TSI)
2821      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2822
2823    // Rebuild the type in the current instantiation.
2824    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2825    if (!TSI) return true;
2826
2827    // Store the new type back in the decl spec.
2828    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2829    DS.UpdateTypeRep(LocType);
2830    break;
2831  }
2832
2833  case DeclSpec::TST_typeofExpr: {
2834    Expr *E = DS.getRepAsExpr();
2835    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2836    if (Result.isInvalid()) return true;
2837    DS.UpdateExprRep(Result.get());
2838    break;
2839  }
2840
2841  default:
2842    // Nothing to do for these decl specs.
2843    break;
2844  }
2845
2846  // It doesn't matter what order we do this in.
2847  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2848    DeclaratorChunk &Chunk = D.getTypeObject(I);
2849
2850    // The only type information in the declarator which can come
2851    // before the declaration name is the base type of a member
2852    // pointer.
2853    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2854      continue;
2855
2856    // Rebuild the scope specifier in-place.
2857    CXXScopeSpec &SS = Chunk.Mem.Scope();
2858    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2859      return true;
2860  }
2861
2862  return false;
2863}
2864
2865Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2866  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2867}
2868
2869/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2870///   If T is the name of a class, then each of the following shall have a
2871///   name different from T:
2872///     - every static data member of class T;
2873///     - every member function of class T
2874///     - every member of class T that is itself a type;
2875/// \returns true if the declaration name violates these rules.
2876bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2877                                   DeclarationNameInfo NameInfo) {
2878  DeclarationName Name = NameInfo.getName();
2879
2880  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2881    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2882      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2883      return true;
2884    }
2885
2886  return false;
2887}
2888
2889Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2890                             MultiTemplateParamsArg TemplateParamLists,
2891                             bool IsFunctionDefinition) {
2892  // TODO: consider using NameInfo for diagnostic.
2893  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2894  DeclarationName Name = NameInfo.getName();
2895
2896  // All of these full declarators require an identifier.  If it doesn't have
2897  // one, the ParsedFreeStandingDeclSpec action should be used.
2898  if (!Name) {
2899    if (!D.isInvalidType())  // Reject this if we think it is valid.
2900      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2901           diag::err_declarator_need_ident)
2902        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2903    return 0;
2904  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2905    return 0;
2906
2907  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2908  // we find one that is.
2909  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2910         (S->getFlags() & Scope::TemplateParamScope) != 0)
2911    S = S->getParent();
2912
2913  DeclContext *DC = CurContext;
2914  if (D.getCXXScopeSpec().isInvalid())
2915    D.setInvalidType();
2916  else if (D.getCXXScopeSpec().isSet()) {
2917    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2918                                        UPPC_DeclarationQualifier))
2919      return 0;
2920
2921    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2922    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2923    if (!DC) {
2924      // If we could not compute the declaration context, it's because the
2925      // declaration context is dependent but does not refer to a class,
2926      // class template, or class template partial specialization. Complain
2927      // and return early, to avoid the coming semantic disaster.
2928      Diag(D.getIdentifierLoc(),
2929           diag::err_template_qualified_declarator_no_match)
2930        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2931        << D.getCXXScopeSpec().getRange();
2932      return 0;
2933    }
2934
2935    bool IsDependentContext = DC->isDependentContext();
2936
2937    if (!IsDependentContext &&
2938        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2939      return 0;
2940
2941    if (isa<CXXRecordDecl>(DC)) {
2942      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2943        Diag(D.getIdentifierLoc(),
2944             diag::err_member_def_undefined_record)
2945          << Name << DC << D.getCXXScopeSpec().getRange();
2946        D.setInvalidType();
2947      } else if (isa<CXXRecordDecl>(CurContext) &&
2948                 !D.getDeclSpec().isFriendSpecified()) {
2949        // The user provided a superfluous scope specifier inside a class
2950        // definition:
2951        //
2952        // class X {
2953        //   void X::f();
2954        // };
2955        if (CurContext->Equals(DC))
2956          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2957            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2958        else
2959          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2960            << Name << D.getCXXScopeSpec().getRange();
2961
2962        // Pretend that this qualifier was not here.
2963        D.getCXXScopeSpec().clear();
2964      }
2965    }
2966
2967    // Check whether we need to rebuild the type of the given
2968    // declaration in the current instantiation.
2969    if (EnteringContext && IsDependentContext &&
2970        TemplateParamLists.size() != 0) {
2971      ContextRAII SavedContext(*this, DC);
2972      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2973        D.setInvalidType();
2974    }
2975  }
2976
2977  if (DiagnoseClassNameShadow(DC, NameInfo))
2978    // If this is a typedef, we'll end up spewing multiple diagnostics.
2979    // Just return early; it's safer.
2980    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2981      return 0;
2982
2983  NamedDecl *New;
2984
2985  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2986  QualType R = TInfo->getType();
2987
2988  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2989                                      UPPC_DeclarationType))
2990    D.setInvalidType();
2991
2992  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2993                        ForRedeclaration);
2994
2995  // See if this is a redefinition of a variable in the same scope.
2996  if (!D.getCXXScopeSpec().isSet()) {
2997    bool IsLinkageLookup = false;
2998
2999    // If the declaration we're planning to build will be a function
3000    // or object with linkage, then look for another declaration with
3001    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3002    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3003      /* Do nothing*/;
3004    else if (R->isFunctionType()) {
3005      if (CurContext->isFunctionOrMethod() ||
3006          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3007        IsLinkageLookup = true;
3008    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3009      IsLinkageLookup = true;
3010    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3011             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3012      IsLinkageLookup = true;
3013
3014    if (IsLinkageLookup)
3015      Previous.clear(LookupRedeclarationWithLinkage);
3016
3017    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3018  } else { // Something like "int foo::x;"
3019    LookupQualifiedName(Previous, DC);
3020
3021    // Don't consider using declarations as previous declarations for
3022    // out-of-line members.
3023    RemoveUsingDecls(Previous);
3024
3025    // C++ 7.3.1.2p2:
3026    // Members (including explicit specializations of templates) of a named
3027    // namespace can also be defined outside that namespace by explicit
3028    // qualification of the name being defined, provided that the entity being
3029    // defined was already declared in the namespace and the definition appears
3030    // after the point of declaration in a namespace that encloses the
3031    // declarations namespace.
3032    //
3033    // Note that we only check the context at this point. We don't yet
3034    // have enough information to make sure that PrevDecl is actually
3035    // the declaration we want to match. For example, given:
3036    //
3037    //   class X {
3038    //     void f();
3039    //     void f(float);
3040    //   };
3041    //
3042    //   void X::f(int) { } // ill-formed
3043    //
3044    // In this case, PrevDecl will point to the overload set
3045    // containing the two f's declared in X, but neither of them
3046    // matches.
3047
3048    // First check whether we named the global scope.
3049    if (isa<TranslationUnitDecl>(DC)) {
3050      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3051        << Name << D.getCXXScopeSpec().getRange();
3052    } else {
3053      DeclContext *Cur = CurContext;
3054      while (isa<LinkageSpecDecl>(Cur))
3055        Cur = Cur->getParent();
3056      if (!Cur->Encloses(DC)) {
3057        // The qualifying scope doesn't enclose the original declaration.
3058        // Emit diagnostic based on current scope.
3059        SourceLocation L = D.getIdentifierLoc();
3060        SourceRange R = D.getCXXScopeSpec().getRange();
3061        if (isa<FunctionDecl>(Cur))
3062          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3063        else
3064          Diag(L, diag::err_invalid_declarator_scope)
3065            << Name << cast<NamedDecl>(DC) << R;
3066        D.setInvalidType();
3067      }
3068    }
3069  }
3070
3071  if (Previous.isSingleResult() &&
3072      Previous.getFoundDecl()->isTemplateParameter()) {
3073    // Maybe we will complain about the shadowed template parameter.
3074    if (!D.isInvalidType())
3075      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3076                                          Previous.getFoundDecl()))
3077        D.setInvalidType();
3078
3079    // Just pretend that we didn't see the previous declaration.
3080    Previous.clear();
3081  }
3082
3083  // In C++, the previous declaration we find might be a tag type
3084  // (class or enum). In this case, the new declaration will hide the
3085  // tag type. Note that this does does not apply if we're declaring a
3086  // typedef (C++ [dcl.typedef]p4).
3087  if (Previous.isSingleTagDecl() &&
3088      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3089    Previous.clear();
3090
3091  bool Redeclaration = false;
3092  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3093    if (TemplateParamLists.size()) {
3094      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3095      return 0;
3096    }
3097
3098    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3099  } else if (R->isFunctionType()) {
3100    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3101                                  move(TemplateParamLists),
3102                                  IsFunctionDefinition, Redeclaration);
3103  } else {
3104    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3105                                  move(TemplateParamLists),
3106                                  Redeclaration);
3107  }
3108
3109  if (New == 0)
3110    return 0;
3111
3112  // If this has an identifier and is not an invalid redeclaration or
3113  // function template specialization, add it to the scope stack.
3114  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3115    PushOnScopeChains(New, S);
3116
3117  return New;
3118}
3119
3120/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3121/// types into constant array types in certain situations which would otherwise
3122/// be errors (for GCC compatibility).
3123static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3124                                                    ASTContext &Context,
3125                                                    bool &SizeIsNegative,
3126                                                    llvm::APSInt &Oversized) {
3127  // This method tries to turn a variable array into a constant
3128  // array even when the size isn't an ICE.  This is necessary
3129  // for compatibility with code that depends on gcc's buggy
3130  // constant expression folding, like struct {char x[(int)(char*)2];}
3131  SizeIsNegative = false;
3132  Oversized = 0;
3133
3134  if (T->isDependentType())
3135    return QualType();
3136
3137  QualifierCollector Qs;
3138  const Type *Ty = Qs.strip(T);
3139
3140  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3141    QualType Pointee = PTy->getPointeeType();
3142    QualType FixedType =
3143        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3144                                            Oversized);
3145    if (FixedType.isNull()) return FixedType;
3146    FixedType = Context.getPointerType(FixedType);
3147    return Qs.apply(Context, FixedType);
3148  }
3149  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3150    QualType Inner = PTy->getInnerType();
3151    QualType FixedType =
3152        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3153                                            Oversized);
3154    if (FixedType.isNull()) return FixedType;
3155    FixedType = Context.getParenType(FixedType);
3156    return Qs.apply(Context, FixedType);
3157  }
3158
3159  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3160  if (!VLATy)
3161    return QualType();
3162  // FIXME: We should probably handle this case
3163  if (VLATy->getElementType()->isVariablyModifiedType())
3164    return QualType();
3165
3166  Expr::EvalResult EvalResult;
3167  if (!VLATy->getSizeExpr() ||
3168      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3169      !EvalResult.Val.isInt())
3170    return QualType();
3171
3172  // Check whether the array size is negative.
3173  llvm::APSInt &Res = EvalResult.Val.getInt();
3174  if (Res.isSigned() && Res.isNegative()) {
3175    SizeIsNegative = true;
3176    return QualType();
3177  }
3178
3179  // Check whether the array is too large to be addressed.
3180  unsigned ActiveSizeBits
3181    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3182                                              Res);
3183  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3184    Oversized = Res;
3185    return QualType();
3186  }
3187
3188  return Context.getConstantArrayType(VLATy->getElementType(),
3189                                      Res, ArrayType::Normal, 0);
3190}
3191
3192/// \brief Register the given locally-scoped external C declaration so
3193/// that it can be found later for redeclarations
3194void
3195Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3196                                       const LookupResult &Previous,
3197                                       Scope *S) {
3198  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3199         "Decl is not a locally-scoped decl!");
3200  // Note that we have a locally-scoped external with this name.
3201  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3202
3203  if (!Previous.isSingleResult())
3204    return;
3205
3206  NamedDecl *PrevDecl = Previous.getFoundDecl();
3207
3208  // If there was a previous declaration of this variable, it may be
3209  // in our identifier chain. Update the identifier chain with the new
3210  // declaration.
3211  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3212    // The previous declaration was found on the identifer resolver
3213    // chain, so remove it from its scope.
3214    while (S && !S->isDeclScope(PrevDecl))
3215      S = S->getParent();
3216
3217    if (S)
3218      S->RemoveDecl(PrevDecl);
3219  }
3220}
3221
3222/// \brief Diagnose function specifiers on a declaration of an identifier that
3223/// does not identify a function.
3224void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3225  // FIXME: We should probably indicate the identifier in question to avoid
3226  // confusion for constructs like "inline int a(), b;"
3227  if (D.getDeclSpec().isInlineSpecified())
3228    Diag(D.getDeclSpec().getInlineSpecLoc(),
3229         diag::err_inline_non_function);
3230
3231  if (D.getDeclSpec().isVirtualSpecified())
3232    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3233         diag::err_virtual_non_function);
3234
3235  if (D.getDeclSpec().isExplicitSpecified())
3236    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3237         diag::err_explicit_non_function);
3238}
3239
3240NamedDecl*
3241Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3242                             QualType R,  TypeSourceInfo *TInfo,
3243                             LookupResult &Previous, bool &Redeclaration) {
3244  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3245  if (D.getCXXScopeSpec().isSet()) {
3246    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3247      << D.getCXXScopeSpec().getRange();
3248    D.setInvalidType();
3249    // Pretend we didn't see the scope specifier.
3250    DC = CurContext;
3251    Previous.clear();
3252  }
3253
3254  if (getLangOptions().CPlusPlus) {
3255    // Check that there are no default arguments (C++ only).
3256    CheckExtraCXXDefaultArguments(D);
3257  }
3258
3259  DiagnoseFunctionSpecifiers(D);
3260
3261  if (D.getDeclSpec().isThreadSpecified())
3262    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3263
3264  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3265    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3266      << D.getName().getSourceRange();
3267    return 0;
3268  }
3269
3270  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3271  if (!NewTD) return 0;
3272
3273  // Handle attributes prior to checking for duplicates in MergeVarDecl
3274  ProcessDeclAttributes(S, NewTD, D);
3275
3276  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3277}
3278
3279/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3280/// declares a typedef-name, either using the 'typedef' type specifier or via
3281/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3282NamedDecl*
3283Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3284                           LookupResult &Previous, bool &Redeclaration) {
3285  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3286  // then it shall have block scope.
3287  // Note that variably modified types must be fixed before merging the decl so
3288  // that redeclarations will match.
3289  QualType T = NewTD->getUnderlyingType();
3290  if (T->isVariablyModifiedType()) {
3291    getCurFunction()->setHasBranchProtectedScope();
3292
3293    if (S->getFnParent() == 0) {
3294      bool SizeIsNegative;
3295      llvm::APSInt Oversized;
3296      QualType FixedTy =
3297          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3298                                              Oversized);
3299      if (!FixedTy.isNull()) {
3300        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3301        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3302      } else {
3303        if (SizeIsNegative)
3304          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3305        else if (T->isVariableArrayType())
3306          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3307        else if (Oversized.getBoolValue())
3308          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3309        else
3310          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3311        NewTD->setInvalidDecl();
3312      }
3313    }
3314  }
3315
3316  // Merge the decl with the existing one if appropriate. If the decl is
3317  // in an outer scope, it isn't the same thing.
3318  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3319                       /*ExplicitInstantiationOrSpecialization=*/false);
3320  if (!Previous.empty()) {
3321    Redeclaration = true;
3322    MergeTypedefNameDecl(NewTD, Previous);
3323  }
3324
3325  // If this is the C FILE type, notify the AST context.
3326  if (IdentifierInfo *II = NewTD->getIdentifier())
3327    if (!NewTD->isInvalidDecl() &&
3328        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3329      if (II->isStr("FILE"))
3330        Context.setFILEDecl(NewTD);
3331      else if (II->isStr("jmp_buf"))
3332        Context.setjmp_bufDecl(NewTD);
3333      else if (II->isStr("sigjmp_buf"))
3334        Context.setsigjmp_bufDecl(NewTD);
3335      else if (II->isStr("__builtin_va_list"))
3336        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3337    }
3338
3339  return NewTD;
3340}
3341
3342/// \brief Determines whether the given declaration is an out-of-scope
3343/// previous declaration.
3344///
3345/// This routine should be invoked when name lookup has found a
3346/// previous declaration (PrevDecl) that is not in the scope where a
3347/// new declaration by the same name is being introduced. If the new
3348/// declaration occurs in a local scope, previous declarations with
3349/// linkage may still be considered previous declarations (C99
3350/// 6.2.2p4-5, C++ [basic.link]p6).
3351///
3352/// \param PrevDecl the previous declaration found by name
3353/// lookup
3354///
3355/// \param DC the context in which the new declaration is being
3356/// declared.
3357///
3358/// \returns true if PrevDecl is an out-of-scope previous declaration
3359/// for a new delcaration with the same name.
3360static bool
3361isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3362                                ASTContext &Context) {
3363  if (!PrevDecl)
3364    return false;
3365
3366  if (!PrevDecl->hasLinkage())
3367    return false;
3368
3369  if (Context.getLangOptions().CPlusPlus) {
3370    // C++ [basic.link]p6:
3371    //   If there is a visible declaration of an entity with linkage
3372    //   having the same name and type, ignoring entities declared
3373    //   outside the innermost enclosing namespace scope, the block
3374    //   scope declaration declares that same entity and receives the
3375    //   linkage of the previous declaration.
3376    DeclContext *OuterContext = DC->getRedeclContext();
3377    if (!OuterContext->isFunctionOrMethod())
3378      // This rule only applies to block-scope declarations.
3379      return false;
3380
3381    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3382    if (PrevOuterContext->isRecord())
3383      // We found a member function: ignore it.
3384      return false;
3385
3386    // Find the innermost enclosing namespace for the new and
3387    // previous declarations.
3388    OuterContext = OuterContext->getEnclosingNamespaceContext();
3389    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3390
3391    // The previous declaration is in a different namespace, so it
3392    // isn't the same function.
3393    if (!OuterContext->Equals(PrevOuterContext))
3394      return false;
3395  }
3396
3397  return true;
3398}
3399
3400static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3401  CXXScopeSpec &SS = D.getCXXScopeSpec();
3402  if (!SS.isSet()) return;
3403  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3404}
3405
3406NamedDecl*
3407Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3408                              QualType R, TypeSourceInfo *TInfo,
3409                              LookupResult &Previous,
3410                              MultiTemplateParamsArg TemplateParamLists,
3411                              bool &Redeclaration) {
3412  DeclarationName Name = GetNameForDeclarator(D).getName();
3413
3414  // Check that there are no default arguments (C++ only).
3415  if (getLangOptions().CPlusPlus)
3416    CheckExtraCXXDefaultArguments(D);
3417
3418  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3419  assert(SCSpec != DeclSpec::SCS_typedef &&
3420         "Parser allowed 'typedef' as storage class VarDecl.");
3421  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3422  if (SCSpec == DeclSpec::SCS_mutable) {
3423    // mutable can only appear on non-static class members, so it's always
3424    // an error here
3425    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3426    D.setInvalidType();
3427    SC = SC_None;
3428  }
3429  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3430  VarDecl::StorageClass SCAsWritten
3431    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3432
3433  IdentifierInfo *II = Name.getAsIdentifierInfo();
3434  if (!II) {
3435    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3436      << Name.getAsString();
3437    return 0;
3438  }
3439
3440  DiagnoseFunctionSpecifiers(D);
3441
3442  if (!DC->isRecord() && S->getFnParent() == 0) {
3443    // C99 6.9p2: The storage-class specifiers auto and register shall not
3444    // appear in the declaration specifiers in an external declaration.
3445    if (SC == SC_Auto || SC == SC_Register) {
3446
3447      // If this is a register variable with an asm label specified, then this
3448      // is a GNU extension.
3449      if (SC == SC_Register && D.getAsmLabel())
3450        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3451      else
3452        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3453      D.setInvalidType();
3454    }
3455  }
3456
3457  bool isExplicitSpecialization = false;
3458  VarDecl *NewVD;
3459  if (!getLangOptions().CPlusPlus) {
3460    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3461                            D.getIdentifierLoc(), II,
3462                            R, TInfo, SC, SCAsWritten);
3463
3464    if (D.isInvalidType())
3465      NewVD->setInvalidDecl();
3466  } else {
3467    if (DC->isRecord() && !CurContext->isRecord()) {
3468      // This is an out-of-line definition of a static data member.
3469      if (SC == SC_Static) {
3470        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3471             diag::err_static_out_of_line)
3472          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3473      } else if (SC == SC_None)
3474        SC = SC_Static;
3475    }
3476    if (SC == SC_Static) {
3477      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3478        if (RD->isLocalClass())
3479          Diag(D.getIdentifierLoc(),
3480               diag::err_static_data_member_not_allowed_in_local_class)
3481            << Name << RD->getDeclName();
3482
3483        // C++ [class.union]p1: If a union contains a static data member,
3484        // the program is ill-formed.
3485        //
3486        // We also disallow static data members in anonymous structs.
3487        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3488          Diag(D.getIdentifierLoc(),
3489               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3490            << Name << RD->isUnion();
3491      }
3492    }
3493
3494    // Match up the template parameter lists with the scope specifier, then
3495    // determine whether we have a template or a template specialization.
3496    isExplicitSpecialization = false;
3497    bool Invalid = false;
3498    if (TemplateParameterList *TemplateParams
3499        = MatchTemplateParametersToScopeSpecifier(
3500                                                  D.getDeclSpec().getSourceRange().getBegin(),
3501                                                  D.getCXXScopeSpec(),
3502                                                  TemplateParamLists.get(),
3503                                                  TemplateParamLists.size(),
3504                                                  /*never a friend*/ false,
3505                                                  isExplicitSpecialization,
3506                                                  Invalid)) {
3507      if (TemplateParams->size() > 0) {
3508        // There is no such thing as a variable template.
3509        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3510          << II
3511          << SourceRange(TemplateParams->getTemplateLoc(),
3512                         TemplateParams->getRAngleLoc());
3513        return 0;
3514      } else {
3515        // There is an extraneous 'template<>' for this variable. Complain
3516        // about it, but allow the declaration of the variable.
3517        Diag(TemplateParams->getTemplateLoc(),
3518             diag::err_template_variable_noparams)
3519          << II
3520          << SourceRange(TemplateParams->getTemplateLoc(),
3521                         TemplateParams->getRAngleLoc());
3522        isExplicitSpecialization = true;
3523      }
3524    }
3525
3526    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3527                            D.getIdentifierLoc(), II,
3528                            R, TInfo, SC, SCAsWritten);
3529
3530    // If this decl has an auto type in need of deduction, make a note of the
3531    // Decl so we can diagnose uses of it in its own initializer.
3532    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3533        R->getContainedAutoType())
3534      ParsingInitForAutoVars.insert(NewVD);
3535
3536    if (D.isInvalidType() || Invalid)
3537      NewVD->setInvalidDecl();
3538
3539    SetNestedNameSpecifier(NewVD, D);
3540
3541    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3542      NewVD->setTemplateParameterListsInfo(Context,
3543                                           TemplateParamLists.size(),
3544                                           TemplateParamLists.release());
3545    }
3546  }
3547
3548  if (D.getDeclSpec().isThreadSpecified()) {
3549    if (NewVD->hasLocalStorage())
3550      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3551    else if (!Context.Target.isTLSSupported())
3552      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3553    else
3554      NewVD->setThreadSpecified(true);
3555  }
3556
3557  // Set the lexical context. If the declarator has a C++ scope specifier, the
3558  // lexical context will be different from the semantic context.
3559  NewVD->setLexicalDeclContext(CurContext);
3560
3561  // Handle attributes prior to checking for duplicates in MergeVarDecl
3562  ProcessDeclAttributes(S, NewVD, D);
3563
3564  // Handle GNU asm-label extension (encoded as an attribute).
3565  if (Expr *E = (Expr*)D.getAsmLabel()) {
3566    // The parser guarantees this is a string.
3567    StringLiteral *SE = cast<StringLiteral>(E);
3568    llvm::StringRef Label = SE->getString();
3569    if (S->getFnParent() != 0) {
3570      switch (SC) {
3571      case SC_None:
3572      case SC_Auto:
3573        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3574        break;
3575      case SC_Register:
3576        if (!Context.Target.isValidGCCRegisterName(Label))
3577          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3578        break;
3579      case SC_Static:
3580      case SC_Extern:
3581      case SC_PrivateExtern:
3582        break;
3583      }
3584    }
3585
3586    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3587                                                Context, Label));
3588  }
3589
3590  // Diagnose shadowed variables before filtering for scope.
3591  if (!D.getCXXScopeSpec().isSet())
3592    CheckShadow(S, NewVD, Previous);
3593
3594  // Don't consider existing declarations that are in a different
3595  // scope and are out-of-semantic-context declarations (if the new
3596  // declaration has linkage).
3597  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3598                       isExplicitSpecialization);
3599
3600  if (!getLangOptions().CPlusPlus)
3601    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3602  else {
3603    // Merge the decl with the existing one if appropriate.
3604    if (!Previous.empty()) {
3605      if (Previous.isSingleResult() &&
3606          isa<FieldDecl>(Previous.getFoundDecl()) &&
3607          D.getCXXScopeSpec().isSet()) {
3608        // The user tried to define a non-static data member
3609        // out-of-line (C++ [dcl.meaning]p1).
3610        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3611          << D.getCXXScopeSpec().getRange();
3612        Previous.clear();
3613        NewVD->setInvalidDecl();
3614      }
3615    } else if (D.getCXXScopeSpec().isSet()) {
3616      // No previous declaration in the qualifying scope.
3617      Diag(D.getIdentifierLoc(), diag::err_no_member)
3618        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3619        << D.getCXXScopeSpec().getRange();
3620      NewVD->setInvalidDecl();
3621    }
3622
3623    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3624
3625    // This is an explicit specialization of a static data member. Check it.
3626    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3627        CheckMemberSpecialization(NewVD, Previous))
3628      NewVD->setInvalidDecl();
3629  }
3630
3631  // attributes declared post-definition are currently ignored
3632  // FIXME: This should be handled in attribute merging, not
3633  // here.
3634  if (Previous.isSingleResult()) {
3635    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3636    if (Def && (Def = Def->getDefinition()) &&
3637        Def != NewVD && D.hasAttributes()) {
3638      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3639      Diag(Def->getLocation(), diag::note_previous_definition);
3640    }
3641  }
3642
3643  // If this is a locally-scoped extern C variable, update the map of
3644  // such variables.
3645  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3646      !NewVD->isInvalidDecl())
3647    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3648
3649  // If there's a #pragma GCC visibility in scope, and this isn't a class
3650  // member, set the visibility of this variable.
3651  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3652    AddPushedVisibilityAttribute(NewVD);
3653
3654  MarkUnusedFileScopedDecl(NewVD);
3655
3656  return NewVD;
3657}
3658
3659/// \brief Diagnose variable or built-in function shadowing.  Implements
3660/// -Wshadow.
3661///
3662/// This method is called whenever a VarDecl is added to a "useful"
3663/// scope.
3664///
3665/// \param S the scope in which the shadowing name is being declared
3666/// \param R the lookup of the name
3667///
3668void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3669  // Return if warning is ignored.
3670  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3671        Diagnostic::Ignored)
3672    return;
3673
3674  // Don't diagnose declarations at file scope.
3675  DeclContext *NewDC = D->getDeclContext();
3676  if (NewDC->isFileContext())
3677    return;
3678
3679  // Only diagnose if we're shadowing an unambiguous field or variable.
3680  if (R.getResultKind() != LookupResult::Found)
3681    return;
3682
3683  NamedDecl* ShadowedDecl = R.getFoundDecl();
3684  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3685    return;
3686
3687  // Fields are not shadowed by variables in C++ static methods.
3688  if (isa<FieldDecl>(ShadowedDecl))
3689    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3690      if (MD->isStatic())
3691        return;
3692
3693  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3694    if (shadowedVar->isExternC()) {
3695      // Don't warn for this case:
3696      //
3697      // @code
3698      // extern int bob;
3699      // void f() {
3700      //   extern int bob;
3701      // }
3702      // @endcode
3703      if (D->isExternC())
3704        return;
3705
3706      // For shadowing external vars, make sure that we point to the global
3707      // declaration, not a locally scoped extern declaration.
3708      for (VarDecl::redecl_iterator
3709             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3710           I != E; ++I)
3711        if (I->isFileVarDecl()) {
3712          ShadowedDecl = *I;
3713          break;
3714        }
3715    }
3716
3717  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3718
3719  // Only warn about certain kinds of shadowing for class members.
3720  if (NewDC && NewDC->isRecord()) {
3721    // In particular, don't warn about shadowing non-class members.
3722    if (!OldDC->isRecord())
3723      return;
3724
3725    // TODO: should we warn about static data members shadowing
3726    // static data members from base classes?
3727
3728    // TODO: don't diagnose for inaccessible shadowed members.
3729    // This is hard to do perfectly because we might friend the
3730    // shadowing context, but that's just a false negative.
3731  }
3732
3733  // Determine what kind of declaration we're shadowing.
3734  unsigned Kind;
3735  if (isa<RecordDecl>(OldDC)) {
3736    if (isa<FieldDecl>(ShadowedDecl))
3737      Kind = 3; // field
3738    else
3739      Kind = 2; // static data member
3740  } else if (OldDC->isFileContext())
3741    Kind = 1; // global
3742  else
3743    Kind = 0; // local
3744
3745  DeclarationName Name = R.getLookupName();
3746
3747  // Emit warning and note.
3748  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3749  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3750}
3751
3752/// \brief Check -Wshadow without the advantage of a previous lookup.
3753void Sema::CheckShadow(Scope *S, VarDecl *D) {
3754  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3755        Diagnostic::Ignored)
3756    return;
3757
3758  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3759                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3760  LookupName(R, S);
3761  CheckShadow(S, D, R);
3762}
3763
3764/// \brief Perform semantic checking on a newly-created variable
3765/// declaration.
3766///
3767/// This routine performs all of the type-checking required for a
3768/// variable declaration once it has been built. It is used both to
3769/// check variables after they have been parsed and their declarators
3770/// have been translated into a declaration, and to check variables
3771/// that have been instantiated from a template.
3772///
3773/// Sets NewVD->isInvalidDecl() if an error was encountered.
3774void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3775                                    LookupResult &Previous,
3776                                    bool &Redeclaration) {
3777  // If the decl is already known invalid, don't check it.
3778  if (NewVD->isInvalidDecl())
3779    return;
3780
3781  QualType T = NewVD->getType();
3782
3783  if (T->isObjCObjectType()) {
3784    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3785    return NewVD->setInvalidDecl();
3786  }
3787
3788  // Emit an error if an address space was applied to decl with local storage.
3789  // This includes arrays of objects with address space qualifiers, but not
3790  // automatic variables that point to other address spaces.
3791  // ISO/IEC TR 18037 S5.1.2
3792  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3793    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3794    return NewVD->setInvalidDecl();
3795  }
3796
3797  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3798      && !NewVD->hasAttr<BlocksAttr>())
3799    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3800
3801  bool isVM = T->isVariablyModifiedType();
3802  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3803      NewVD->hasAttr<BlocksAttr>())
3804    getCurFunction()->setHasBranchProtectedScope();
3805
3806  if ((isVM && NewVD->hasLinkage()) ||
3807      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3808    bool SizeIsNegative;
3809    llvm::APSInt Oversized;
3810    QualType FixedTy =
3811        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3812                                            Oversized);
3813
3814    if (FixedTy.isNull() && T->isVariableArrayType()) {
3815      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3816      // FIXME: This won't give the correct result for
3817      // int a[10][n];
3818      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3819
3820      if (NewVD->isFileVarDecl())
3821        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3822        << SizeRange;
3823      else if (NewVD->getStorageClass() == SC_Static)
3824        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3825        << SizeRange;
3826      else
3827        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3828        << SizeRange;
3829      return NewVD->setInvalidDecl();
3830    }
3831
3832    if (FixedTy.isNull()) {
3833      if (NewVD->isFileVarDecl())
3834        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3835      else
3836        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3837      return NewVD->setInvalidDecl();
3838    }
3839
3840    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3841    NewVD->setType(FixedTy);
3842  }
3843
3844  if (Previous.empty() && NewVD->isExternC()) {
3845    // Since we did not find anything by this name and we're declaring
3846    // an extern "C" variable, look for a non-visible extern "C"
3847    // declaration with the same name.
3848    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3849      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3850    if (Pos != LocallyScopedExternalDecls.end())
3851      Previous.addDecl(Pos->second);
3852  }
3853
3854  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3855    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3856      << T;
3857    return NewVD->setInvalidDecl();
3858  }
3859
3860  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3861    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3862    return NewVD->setInvalidDecl();
3863  }
3864
3865  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3866    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3867    return NewVD->setInvalidDecl();
3868  }
3869
3870  // Function pointers and references cannot have qualified function type, only
3871  // function pointer-to-members can do that.
3872  QualType Pointee;
3873  unsigned PtrOrRef = 0;
3874  if (const PointerType *Ptr = T->getAs<PointerType>())
3875    Pointee = Ptr->getPointeeType();
3876  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3877    Pointee = Ref->getPointeeType();
3878    PtrOrRef = 1;
3879  }
3880  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3881      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3882    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3883        << PtrOrRef;
3884    return NewVD->setInvalidDecl();
3885  }
3886
3887  if (!Previous.empty()) {
3888    Redeclaration = true;
3889    MergeVarDecl(NewVD, Previous);
3890  }
3891}
3892
3893/// \brief Data used with FindOverriddenMethod
3894struct FindOverriddenMethodData {
3895  Sema *S;
3896  CXXMethodDecl *Method;
3897};
3898
3899/// \brief Member lookup function that determines whether a given C++
3900/// method overrides a method in a base class, to be used with
3901/// CXXRecordDecl::lookupInBases().
3902static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3903                                 CXXBasePath &Path,
3904                                 void *UserData) {
3905  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3906
3907  FindOverriddenMethodData *Data
3908    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3909
3910  DeclarationName Name = Data->Method->getDeclName();
3911
3912  // FIXME: Do we care about other names here too?
3913  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3914    // We really want to find the base class destructor here.
3915    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3916    CanQualType CT = Data->S->Context.getCanonicalType(T);
3917
3918    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3919  }
3920
3921  for (Path.Decls = BaseRecord->lookup(Name);
3922       Path.Decls.first != Path.Decls.second;
3923       ++Path.Decls.first) {
3924    NamedDecl *D = *Path.Decls.first;
3925    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3926      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3927        return true;
3928    }
3929  }
3930
3931  return false;
3932}
3933
3934/// AddOverriddenMethods - See if a method overrides any in the base classes,
3935/// and if so, check that it's a valid override and remember it.
3936bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3937  // Look for virtual methods in base classes that this method might override.
3938  CXXBasePaths Paths;
3939  FindOverriddenMethodData Data;
3940  Data.Method = MD;
3941  Data.S = this;
3942  bool AddedAny = false;
3943  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3944    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3945         E = Paths.found_decls_end(); I != E; ++I) {
3946      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3947        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3948            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3949            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3950          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3951          AddedAny = true;
3952        }
3953      }
3954    }
3955  }
3956
3957  return AddedAny;
3958}
3959
3960static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3961  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3962                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3963  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3964  assert(!Prev.isAmbiguous() &&
3965         "Cannot have an ambiguity in previous-declaration lookup");
3966  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3967       Func != FuncEnd; ++Func) {
3968    if (isa<FunctionDecl>(*Func) &&
3969        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3970      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3971  }
3972}
3973
3974NamedDecl*
3975Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3976                              QualType R, TypeSourceInfo *TInfo,
3977                              LookupResult &Previous,
3978                              MultiTemplateParamsArg TemplateParamLists,
3979                              bool IsFunctionDefinition, bool &Redeclaration) {
3980  assert(R.getTypePtr()->isFunctionType());
3981
3982  // TODO: consider using NameInfo for diagnostic.
3983  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3984  DeclarationName Name = NameInfo.getName();
3985  FunctionDecl::StorageClass SC = SC_None;
3986  switch (D.getDeclSpec().getStorageClassSpec()) {
3987  default: assert(0 && "Unknown storage class!");
3988  case DeclSpec::SCS_auto:
3989  case DeclSpec::SCS_register:
3990  case DeclSpec::SCS_mutable:
3991    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3992         diag::err_typecheck_sclass_func);
3993    D.setInvalidType();
3994    break;
3995  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3996  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3997  case DeclSpec::SCS_static: {
3998    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3999      // C99 6.7.1p5:
4000      //   The declaration of an identifier for a function that has
4001      //   block scope shall have no explicit storage-class specifier
4002      //   other than extern
4003      // See also (C++ [dcl.stc]p4).
4004      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4005           diag::err_static_block_func);
4006      SC = SC_None;
4007    } else
4008      SC = SC_Static;
4009    break;
4010  }
4011  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4012  }
4013
4014  if (D.getDeclSpec().isThreadSpecified())
4015    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4016
4017  // Do not allow returning a objc interface by-value.
4018  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4019    Diag(D.getIdentifierLoc(),
4020         diag::err_object_cannot_be_passed_returned_by_value) << 0
4021    << R->getAs<FunctionType>()->getResultType();
4022    D.setInvalidType();
4023  }
4024
4025  FunctionDecl *NewFD;
4026  bool isInline = D.getDeclSpec().isInlineSpecified();
4027  bool isFriend = false;
4028  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4029  FunctionDecl::StorageClass SCAsWritten
4030    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4031  FunctionTemplateDecl *FunctionTemplate = 0;
4032  bool isExplicitSpecialization = false;
4033  bool isFunctionTemplateSpecialization = false;
4034
4035  if (!getLangOptions().CPlusPlus) {
4036    // Determine whether the function was written with a
4037    // prototype. This true when:
4038    //   - there is a prototype in the declarator, or
4039    //   - the type R of the function is some kind of typedef or other reference
4040    //     to a type name (which eventually refers to a function type).
4041    bool HasPrototype =
4042    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4043    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4044
4045    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4046                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4047                                 HasPrototype);
4048    if (D.isInvalidType())
4049      NewFD->setInvalidDecl();
4050
4051    // Set the lexical context.
4052    NewFD->setLexicalDeclContext(CurContext);
4053    // Filter out previous declarations that don't match the scope.
4054    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4055                         /*ExplicitInstantiationOrSpecialization=*/false);
4056  } else {
4057    isFriend = D.getDeclSpec().isFriendSpecified();
4058    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4059    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4060    bool isVirtualOkay = false;
4061
4062    // Check that the return type is not an abstract class type.
4063    // For record types, this is done by the AbstractClassUsageDiagnoser once
4064    // the class has been completely parsed.
4065    if (!DC->isRecord() &&
4066      RequireNonAbstractType(D.getIdentifierLoc(),
4067                             R->getAs<FunctionType>()->getResultType(),
4068                             diag::err_abstract_type_in_decl,
4069                             AbstractReturnType))
4070      D.setInvalidType();
4071
4072    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4073      // This is a C++ constructor declaration.
4074      assert(DC->isRecord() &&
4075             "Constructors can only be declared in a member context");
4076
4077      R = CheckConstructorDeclarator(D, R, SC);
4078
4079      // Create the new declaration
4080      NewFD = CXXConstructorDecl::Create(Context,
4081                                         cast<CXXRecordDecl>(DC),
4082                                         D.getSourceRange().getBegin(),
4083                                         NameInfo, R, TInfo,
4084                                         isExplicit, isInline,
4085                                         /*isImplicitlyDeclared=*/false);
4086    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4087      // This is a C++ destructor declaration.
4088      if (DC->isRecord()) {
4089        R = CheckDestructorDeclarator(D, R, SC);
4090
4091        NewFD = CXXDestructorDecl::Create(Context,
4092                                          cast<CXXRecordDecl>(DC),
4093                                          D.getSourceRange().getBegin(),
4094                                          NameInfo, R, TInfo,
4095                                          isInline,
4096                                          /*isImplicitlyDeclared=*/false);
4097        isVirtualOkay = true;
4098      } else {
4099        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4100
4101        // Create a FunctionDecl to satisfy the function definition parsing
4102        // code path.
4103        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4104                                     D.getIdentifierLoc(), Name, R, TInfo,
4105                                     SC, SCAsWritten, isInline,
4106                                     /*hasPrototype=*/true);
4107        D.setInvalidType();
4108      }
4109    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4110      if (!DC->isRecord()) {
4111        Diag(D.getIdentifierLoc(),
4112             diag::err_conv_function_not_member);
4113        return 0;
4114      }
4115
4116      CheckConversionDeclarator(D, R, SC);
4117      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4118                                        D.getSourceRange().getBegin(),
4119                                        NameInfo, R, TInfo,
4120                                        isInline, isExplicit,
4121                                        SourceLocation());
4122
4123      isVirtualOkay = true;
4124    } else if (DC->isRecord()) {
4125      // If the of the function is the same as the name of the record, then this
4126      // must be an invalid constructor that has a return type.
4127      // (The parser checks for a return type and makes the declarator a
4128      // constructor if it has no return type).
4129      // must have an invalid constructor that has a return type
4130      if (Name.getAsIdentifierInfo() &&
4131          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4132        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4133          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4134          << SourceRange(D.getIdentifierLoc());
4135        return 0;
4136      }
4137
4138      bool isStatic = SC == SC_Static;
4139
4140      // [class.free]p1:
4141      // Any allocation function for a class T is a static member
4142      // (even if not explicitly declared static).
4143      if (Name.getCXXOverloadedOperator() == OO_New ||
4144          Name.getCXXOverloadedOperator() == OO_Array_New)
4145        isStatic = true;
4146
4147      // [class.free]p6 Any deallocation function for a class X is a static member
4148      // (even if not explicitly declared static).
4149      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4150          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4151        isStatic = true;
4152
4153      // This is a C++ method declaration.
4154      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
4155                                    D.getSourceRange().getBegin(),
4156                                    NameInfo, R, TInfo,
4157                                    isStatic, SCAsWritten, isInline,
4158                                    SourceLocation());
4159
4160      isVirtualOkay = !isStatic;
4161    } else {
4162      // Determine whether the function was written with a
4163      // prototype. This true when:
4164      //   - we're in C++ (where every function has a prototype),
4165      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4166                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4167                                   true/*HasPrototype*/);
4168    }
4169
4170    if (isFriend && !isInline && IsFunctionDefinition) {
4171      // C++ [class.friend]p5
4172      //   A function can be defined in a friend declaration of a
4173      //   class . . . . Such a function is implicitly inline.
4174      NewFD->setImplicitlyInline();
4175    }
4176
4177    SetNestedNameSpecifier(NewFD, D);
4178    isExplicitSpecialization = false;
4179    isFunctionTemplateSpecialization = false;
4180    if (D.isInvalidType())
4181      NewFD->setInvalidDecl();
4182
4183    // Set the lexical context. If the declarator has a C++
4184    // scope specifier, or is the object of a friend declaration, the
4185    // lexical context will be different from the semantic context.
4186    NewFD->setLexicalDeclContext(CurContext);
4187
4188    // Match up the template parameter lists with the scope specifier, then
4189    // determine whether we have a template or a template specialization.
4190    bool Invalid = false;
4191    if (TemplateParameterList *TemplateParams
4192          = MatchTemplateParametersToScopeSpecifier(
4193                                  D.getDeclSpec().getSourceRange().getBegin(),
4194                                  D.getCXXScopeSpec(),
4195                                  TemplateParamLists.get(),
4196                                  TemplateParamLists.size(),
4197                                  isFriend,
4198                                  isExplicitSpecialization,
4199                                  Invalid)) {
4200      if (TemplateParams->size() > 0) {
4201        // This is a function template
4202
4203        // Check that we can declare a template here.
4204        if (CheckTemplateDeclScope(S, TemplateParams))
4205          return 0;
4206
4207        // A destructor cannot be a template.
4208        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4209          Diag(NewFD->getLocation(), diag::err_destructor_template);
4210          return 0;
4211        }
4212
4213        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4214                                                        NewFD->getLocation(),
4215                                                        Name, TemplateParams,
4216                                                        NewFD);
4217        FunctionTemplate->setLexicalDeclContext(CurContext);
4218        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4219
4220        // For source fidelity, store the other template param lists.
4221        if (TemplateParamLists.size() > 1) {
4222          NewFD->setTemplateParameterListsInfo(Context,
4223                                               TemplateParamLists.size() - 1,
4224                                               TemplateParamLists.release());
4225        }
4226      } else {
4227        // This is a function template specialization.
4228        isFunctionTemplateSpecialization = true;
4229        // For source fidelity, store all the template param lists.
4230        NewFD->setTemplateParameterListsInfo(Context,
4231                                             TemplateParamLists.size(),
4232                                             TemplateParamLists.release());
4233
4234        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4235        if (isFriend) {
4236          // We want to remove the "template<>", found here.
4237          SourceRange RemoveRange = TemplateParams->getSourceRange();
4238
4239          // If we remove the template<> and the name is not a
4240          // template-id, we're actually silently creating a problem:
4241          // the friend declaration will refer to an untemplated decl,
4242          // and clearly the user wants a template specialization.  So
4243          // we need to insert '<>' after the name.
4244          SourceLocation InsertLoc;
4245          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4246            InsertLoc = D.getName().getSourceRange().getEnd();
4247            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4248          }
4249
4250          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4251            << Name << RemoveRange
4252            << FixItHint::CreateRemoval(RemoveRange)
4253            << FixItHint::CreateInsertion(InsertLoc, "<>");
4254        }
4255      }
4256    }
4257    else {
4258      // All template param lists were matched against the scope specifier:
4259      // this is NOT (an explicit specialization of) a template.
4260      if (TemplateParamLists.size() > 0)
4261        // For source fidelity, store all the template param lists.
4262        NewFD->setTemplateParameterListsInfo(Context,
4263                                             TemplateParamLists.size(),
4264                                             TemplateParamLists.release());
4265    }
4266
4267    if (Invalid) {
4268      NewFD->setInvalidDecl();
4269      if (FunctionTemplate)
4270        FunctionTemplate->setInvalidDecl();
4271    }
4272
4273    // C++ [dcl.fct.spec]p5:
4274    //   The virtual specifier shall only be used in declarations of
4275    //   nonstatic class member functions that appear within a
4276    //   member-specification of a class declaration; see 10.3.
4277    //
4278    if (isVirtual && !NewFD->isInvalidDecl()) {
4279      if (!isVirtualOkay) {
4280        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4281             diag::err_virtual_non_function);
4282      } else if (!CurContext->isRecord()) {
4283        // 'virtual' was specified outside of the class.
4284        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4285             diag::err_virtual_out_of_class)
4286          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4287      } else if (NewFD->getDescribedFunctionTemplate()) {
4288        // C++ [temp.mem]p3:
4289        //  A member function template shall not be virtual.
4290        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4291             diag::err_virtual_member_function_template)
4292          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4293      } else {
4294        // Okay: Add virtual to the method.
4295        NewFD->setVirtualAsWritten(true);
4296      }
4297    }
4298
4299    // C++ [dcl.fct.spec]p3:
4300    //  The inline specifier shall not appear on a block scope function declaration.
4301    if (isInline && !NewFD->isInvalidDecl()) {
4302      if (CurContext->isFunctionOrMethod()) {
4303        // 'inline' is not allowed on block scope function declaration.
4304        Diag(D.getDeclSpec().getInlineSpecLoc(),
4305             diag::err_inline_declaration_block_scope) << Name
4306          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4307      }
4308    }
4309
4310    // C++ [dcl.fct.spec]p6:
4311    //  The explicit specifier shall be used only in the declaration of a
4312    //  constructor or conversion function within its class definition; see 12.3.1
4313    //  and 12.3.2.
4314    if (isExplicit && !NewFD->isInvalidDecl()) {
4315      if (!CurContext->isRecord()) {
4316        // 'explicit' was specified outside of the class.
4317        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4318             diag::err_explicit_out_of_class)
4319          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4320      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4321                 !isa<CXXConversionDecl>(NewFD)) {
4322        // 'explicit' was specified on a function that wasn't a constructor
4323        // or conversion function.
4324        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4325             diag::err_explicit_non_ctor_or_conv_function)
4326          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4327      }
4328    }
4329
4330    // Filter out previous declarations that don't match the scope.
4331    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4332                         isExplicitSpecialization ||
4333                         isFunctionTemplateSpecialization);
4334
4335    if (isFriend) {
4336      // For now, claim that the objects have no previous declaration.
4337      if (FunctionTemplate) {
4338        FunctionTemplate->setObjectOfFriendDecl(false);
4339        FunctionTemplate->setAccess(AS_public);
4340      }
4341      NewFD->setObjectOfFriendDecl(false);
4342      NewFD->setAccess(AS_public);
4343    }
4344
4345    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4346      // A method is implicitly inline if it's defined in its class
4347      // definition.
4348      NewFD->setImplicitlyInline();
4349    }
4350
4351    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4352        !CurContext->isRecord()) {
4353      // C++ [class.static]p1:
4354      //   A data or function member of a class may be declared static
4355      //   in a class definition, in which case it is a static member of
4356      //   the class.
4357
4358      // Complain about the 'static' specifier if it's on an out-of-line
4359      // member function definition.
4360      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4361           diag::err_static_out_of_line)
4362        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4363    }
4364  }
4365
4366  // Handle GNU asm-label extension (encoded as an attribute).
4367  if (Expr *E = (Expr*) D.getAsmLabel()) {
4368    // The parser guarantees this is a string.
4369    StringLiteral *SE = cast<StringLiteral>(E);
4370    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4371                                                SE->getString()));
4372  }
4373
4374  // Copy the parameter declarations from the declarator D to the function
4375  // declaration NewFD, if they are available.  First scavenge them into Params.
4376  llvm::SmallVector<ParmVarDecl*, 16> Params;
4377  if (D.isFunctionDeclarator()) {
4378    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4379
4380    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4381    // function that takes no arguments, not a function that takes a
4382    // single void argument.
4383    // We let through "const void" here because Sema::GetTypeForDeclarator
4384    // already checks for that case.
4385    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4386        FTI.ArgInfo[0].Param &&
4387        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4388      // Empty arg list, don't push any params.
4389      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4390
4391      // In C++, the empty parameter-type-list must be spelled "void"; a
4392      // typedef of void is not permitted.
4393      if (getLangOptions().CPlusPlus &&
4394          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4395        bool IsTypeAlias = false;
4396        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4397          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4398        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4399          << IsTypeAlias;
4400      }
4401    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4402      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4403        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4404        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4405        Param->setDeclContext(NewFD);
4406        Params.push_back(Param);
4407
4408        if (Param->isInvalidDecl())
4409          NewFD->setInvalidDecl();
4410      }
4411    }
4412
4413  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4414    // When we're declaring a function with a typedef, typeof, etc as in the
4415    // following example, we'll need to synthesize (unnamed)
4416    // parameters for use in the declaration.
4417    //
4418    // @code
4419    // typedef void fn(int);
4420    // fn f;
4421    // @endcode
4422
4423    // Synthesize a parameter for each argument type.
4424    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4425         AE = FT->arg_type_end(); AI != AE; ++AI) {
4426      ParmVarDecl *Param =
4427        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4428      Params.push_back(Param);
4429    }
4430  } else {
4431    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4432           "Should not need args for typedef of non-prototype fn");
4433  }
4434  // Finally, we know we have the right number of parameters, install them.
4435  NewFD->setParams(Params.data(), Params.size());
4436
4437  // Process the non-inheritable attributes on this declaration.
4438  ProcessDeclAttributes(S, NewFD, D,
4439                        /*NonInheritable=*/true, /*Inheritable=*/false);
4440
4441  if (!getLangOptions().CPlusPlus) {
4442    // Perform semantic checking on the function declaration.
4443    bool isExplctSpecialization=false;
4444    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4445                             Redeclaration);
4446    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4447            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4448           "previous declaration set still overloaded");
4449  } else {
4450    // If the declarator is a template-id, translate the parser's template
4451    // argument list into our AST format.
4452    bool HasExplicitTemplateArgs = false;
4453    TemplateArgumentListInfo TemplateArgs;
4454    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4455      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4456      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4457      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4458      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4459                                         TemplateId->getTemplateArgs(),
4460                                         TemplateId->NumArgs);
4461      translateTemplateArguments(TemplateArgsPtr,
4462                                 TemplateArgs);
4463      TemplateArgsPtr.release();
4464
4465      HasExplicitTemplateArgs = true;
4466
4467      if (FunctionTemplate) {
4468        // Function template with explicit template arguments.
4469        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4470          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4471
4472        HasExplicitTemplateArgs = false;
4473      } else if (!isFunctionTemplateSpecialization &&
4474                 !D.getDeclSpec().isFriendSpecified()) {
4475        // We have encountered something that the user meant to be a
4476        // specialization (because it has explicitly-specified template
4477        // arguments) but that was not introduced with a "template<>" (or had
4478        // too few of them).
4479        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4480          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4481          << FixItHint::CreateInsertion(
4482                                        D.getDeclSpec().getSourceRange().getBegin(),
4483                                                  "template<> ");
4484        isFunctionTemplateSpecialization = true;
4485      } else {
4486        // "friend void foo<>(int);" is an implicit specialization decl.
4487        isFunctionTemplateSpecialization = true;
4488      }
4489    } else if (isFriend && isFunctionTemplateSpecialization) {
4490      // This combination is only possible in a recovery case;  the user
4491      // wrote something like:
4492      //   template <> friend void foo(int);
4493      // which we're recovering from as if the user had written:
4494      //   friend void foo<>(int);
4495      // Go ahead and fake up a template id.
4496      HasExplicitTemplateArgs = true;
4497        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4498      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4499    }
4500
4501    // If it's a friend (and only if it's a friend), it's possible
4502    // that either the specialized function type or the specialized
4503    // template is dependent, and therefore matching will fail.  In
4504    // this case, don't check the specialization yet.
4505    if (isFunctionTemplateSpecialization && isFriend &&
4506        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4507      assert(HasExplicitTemplateArgs &&
4508             "friend function specialization without template args");
4509      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4510                                                       Previous))
4511        NewFD->setInvalidDecl();
4512    } else if (isFunctionTemplateSpecialization) {
4513      if (CurContext->isDependentContext() && CurContext->isRecord()
4514          && !isFriend) {
4515        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4516          << NewFD->getDeclName();
4517        NewFD->setInvalidDecl();
4518        return 0;
4519      } else if (CheckFunctionTemplateSpecialization(NewFD,
4520                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4521                                                     Previous))
4522        NewFD->setInvalidDecl();
4523    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4524      if (CheckMemberSpecialization(NewFD, Previous))
4525          NewFD->setInvalidDecl();
4526    }
4527
4528    // Perform semantic checking on the function declaration.
4529    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4530                             Redeclaration);
4531
4532    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4533            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4534           "previous declaration set still overloaded");
4535
4536    NamedDecl *PrincipalDecl = (FunctionTemplate
4537                                ? cast<NamedDecl>(FunctionTemplate)
4538                                : NewFD);
4539
4540    if (isFriend && Redeclaration) {
4541      AccessSpecifier Access = AS_public;
4542      if (!NewFD->isInvalidDecl())
4543        Access = NewFD->getPreviousDeclaration()->getAccess();
4544
4545      NewFD->setAccess(Access);
4546      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4547
4548      PrincipalDecl->setObjectOfFriendDecl(true);
4549    }
4550
4551    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4552        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4553      PrincipalDecl->setNonMemberOperator();
4554
4555    // If we have a function template, check the template parameter
4556    // list. This will check and merge default template arguments.
4557    if (FunctionTemplate) {
4558      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4559      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4560                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4561                            D.getDeclSpec().isFriendSpecified()
4562                              ? (IsFunctionDefinition
4563                                   ? TPC_FriendFunctionTemplateDefinition
4564                                   : TPC_FriendFunctionTemplate)
4565                              : (D.getCXXScopeSpec().isSet() &&
4566                                 DC && DC->isRecord() &&
4567                                 DC->isDependentContext())
4568                                  ? TPC_ClassTemplateMember
4569                                  : TPC_FunctionTemplate);
4570    }
4571
4572    if (NewFD->isInvalidDecl()) {
4573      // Ignore all the rest of this.
4574    } else if (!Redeclaration) {
4575      // Fake up an access specifier if it's supposed to be a class member.
4576      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4577        NewFD->setAccess(AS_public);
4578
4579      // Qualified decls generally require a previous declaration.
4580      if (D.getCXXScopeSpec().isSet()) {
4581        // ...with the major exception of templated-scope or
4582        // dependent-scope friend declarations.
4583
4584        // TODO: we currently also suppress this check in dependent
4585        // contexts because (1) the parameter depth will be off when
4586        // matching friend templates and (2) we might actually be
4587        // selecting a friend based on a dependent factor.  But there
4588        // are situations where these conditions don't apply and we
4589        // can actually do this check immediately.
4590        if (isFriend &&
4591            (TemplateParamLists.size() ||
4592             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4593             CurContext->isDependentContext())) {
4594              // ignore these
4595            } else {
4596              // The user tried to provide an out-of-line definition for a
4597              // function that is a member of a class or namespace, but there
4598              // was no such member function declared (C++ [class.mfct]p2,
4599              // C++ [namespace.memdef]p2). For example:
4600              //
4601              // class X {
4602              //   void f() const;
4603              // };
4604              //
4605              // void X::f() { } // ill-formed
4606              //
4607              // Complain about this problem, and attempt to suggest close
4608              // matches (e.g., those that differ only in cv-qualifiers and
4609              // whether the parameter types are references).
4610              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4611              << Name << DC << D.getCXXScopeSpec().getRange();
4612              NewFD->setInvalidDecl();
4613
4614              DiagnoseInvalidRedeclaration(*this, NewFD);
4615            }
4616
4617        // Unqualified local friend declarations are required to resolve
4618        // to something.
4619        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4620          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4621          NewFD->setInvalidDecl();
4622          DiagnoseInvalidRedeclaration(*this, NewFD);
4623        }
4624
4625    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4626               !isFriend && !isFunctionTemplateSpecialization &&
4627               !isExplicitSpecialization) {
4628      // An out-of-line member function declaration must also be a
4629      // definition (C++ [dcl.meaning]p1).
4630      // Note that this is not the case for explicit specializations of
4631      // function templates or member functions of class templates, per
4632      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4633      // for compatibility with old SWIG code which likes to generate them.
4634      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4635        << D.getCXXScopeSpec().getRange();
4636    }
4637  }
4638
4639
4640  // Handle attributes. We need to have merged decls when handling attributes
4641  // (for example to check for conflicts, etc).
4642  // FIXME: This needs to happen before we merge declarations. Then,
4643  // let attribute merging cope with attribute conflicts.
4644  ProcessDeclAttributes(S, NewFD, D,
4645                        /*NonInheritable=*/false, /*Inheritable=*/true);
4646
4647  // attributes declared post-definition are currently ignored
4648  // FIXME: This should happen during attribute merging
4649  if (Redeclaration && Previous.isSingleResult()) {
4650    const FunctionDecl *Def;
4651    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4652    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4653      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4654      Diag(Def->getLocation(), diag::note_previous_definition);
4655    }
4656  }
4657
4658  AddKnownFunctionAttributes(NewFD);
4659
4660  if (NewFD->hasAttr<OverloadableAttr>() &&
4661      !NewFD->getType()->getAs<FunctionProtoType>()) {
4662    Diag(NewFD->getLocation(),
4663         diag::err_attribute_overloadable_no_prototype)
4664      << NewFD;
4665
4666    // Turn this into a variadic function with no parameters.
4667    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4668    FunctionProtoType::ExtProtoInfo EPI;
4669    EPI.Variadic = true;
4670    EPI.ExtInfo = FT->getExtInfo();
4671
4672    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4673    NewFD->setType(R);
4674  }
4675
4676  // If there's a #pragma GCC visibility in scope, and this isn't a class
4677  // member, set the visibility of this function.
4678  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4679    AddPushedVisibilityAttribute(NewFD);
4680
4681  // If this is a locally-scoped extern C function, update the
4682  // map of such names.
4683  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4684      && !NewFD->isInvalidDecl())
4685    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4686
4687  // Set this FunctionDecl's range up to the right paren.
4688  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4689
4690  if (getLangOptions().CPlusPlus) {
4691    if (FunctionTemplate) {
4692      if (NewFD->isInvalidDecl())
4693        FunctionTemplate->setInvalidDecl();
4694      return FunctionTemplate;
4695    }
4696  }
4697
4698  MarkUnusedFileScopedDecl(NewFD);
4699
4700  if (getLangOptions().CUDA)
4701    if (IdentifierInfo *II = NewFD->getIdentifier())
4702      if (!NewFD->isInvalidDecl() &&
4703          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4704        if (II->isStr("cudaConfigureCall")) {
4705          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4706            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4707
4708          Context.setcudaConfigureCallDecl(NewFD);
4709        }
4710      }
4711
4712  return NewFD;
4713}
4714
4715/// \brief Perform semantic checking of a new function declaration.
4716///
4717/// Performs semantic analysis of the new function declaration
4718/// NewFD. This routine performs all semantic checking that does not
4719/// require the actual declarator involved in the declaration, and is
4720/// used both for the declaration of functions as they are parsed
4721/// (called via ActOnDeclarator) and for the declaration of functions
4722/// that have been instantiated via C++ template instantiation (called
4723/// via InstantiateDecl).
4724///
4725/// \param IsExplicitSpecialiation whether this new function declaration is
4726/// an explicit specialization of the previous declaration.
4727///
4728/// This sets NewFD->isInvalidDecl() to true if there was an error.
4729void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4730                                    LookupResult &Previous,
4731                                    bool IsExplicitSpecialization,
4732                                    bool &Redeclaration) {
4733  // If NewFD is already known erroneous, don't do any of this checking.
4734  if (NewFD->isInvalidDecl()) {
4735    // If this is a class member, mark the class invalid immediately.
4736    // This avoids some consistency errors later.
4737    if (isa<CXXMethodDecl>(NewFD))
4738      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4739
4740    return;
4741  }
4742
4743  if (NewFD->getResultType()->isVariablyModifiedType()) {
4744    // Functions returning a variably modified type violate C99 6.7.5.2p2
4745    // because all functions have linkage.
4746    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4747    return NewFD->setInvalidDecl();
4748  }
4749
4750  if (NewFD->isMain())
4751    CheckMain(NewFD);
4752
4753  // Check for a previous declaration of this name.
4754  if (Previous.empty() && NewFD->isExternC()) {
4755    // Since we did not find anything by this name and we're declaring
4756    // an extern "C" function, look for a non-visible extern "C"
4757    // declaration with the same name.
4758    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4759      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4760    if (Pos != LocallyScopedExternalDecls.end())
4761      Previous.addDecl(Pos->second);
4762  }
4763
4764  // Merge or overload the declaration with an existing declaration of
4765  // the same name, if appropriate.
4766  if (!Previous.empty()) {
4767    // Determine whether NewFD is an overload of PrevDecl or
4768    // a declaration that requires merging. If it's an overload,
4769    // there's no more work to do here; we'll just add the new
4770    // function to the scope.
4771
4772    NamedDecl *OldDecl = 0;
4773    if (!AllowOverloadingOfFunction(Previous, Context)) {
4774      Redeclaration = true;
4775      OldDecl = Previous.getFoundDecl();
4776    } else {
4777      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4778                            /*NewIsUsingDecl*/ false)) {
4779      case Ovl_Match:
4780        Redeclaration = true;
4781        break;
4782
4783      case Ovl_NonFunction:
4784        Redeclaration = true;
4785        break;
4786
4787      case Ovl_Overload:
4788        Redeclaration = false;
4789        break;
4790      }
4791
4792      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4793        // If a function name is overloadable in C, then every function
4794        // with that name must be marked "overloadable".
4795        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4796          << Redeclaration << NewFD;
4797        NamedDecl *OverloadedDecl = 0;
4798        if (Redeclaration)
4799          OverloadedDecl = OldDecl;
4800        else if (!Previous.empty())
4801          OverloadedDecl = Previous.getRepresentativeDecl();
4802        if (OverloadedDecl)
4803          Diag(OverloadedDecl->getLocation(),
4804               diag::note_attribute_overloadable_prev_overload);
4805        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4806                                                        Context));
4807      }
4808    }
4809
4810    if (Redeclaration) {
4811      // NewFD and OldDecl represent declarations that need to be
4812      // merged.
4813      if (MergeFunctionDecl(NewFD, OldDecl))
4814        return NewFD->setInvalidDecl();
4815
4816      Previous.clear();
4817      Previous.addDecl(OldDecl);
4818
4819      if (FunctionTemplateDecl *OldTemplateDecl
4820                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4821        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4822        FunctionTemplateDecl *NewTemplateDecl
4823          = NewFD->getDescribedFunctionTemplate();
4824        assert(NewTemplateDecl && "Template/non-template mismatch");
4825        if (CXXMethodDecl *Method
4826              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4827          Method->setAccess(OldTemplateDecl->getAccess());
4828          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4829        }
4830
4831        // If this is an explicit specialization of a member that is a function
4832        // template, mark it as a member specialization.
4833        if (IsExplicitSpecialization &&
4834            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4835          NewTemplateDecl->setMemberSpecialization();
4836          assert(OldTemplateDecl->isMemberSpecialization());
4837        }
4838      } else {
4839        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4840          NewFD->setAccess(OldDecl->getAccess());
4841        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4842      }
4843    }
4844  }
4845
4846  // Semantic checking for this function declaration (in isolation).
4847  if (getLangOptions().CPlusPlus) {
4848    // C++-specific checks.
4849    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4850      CheckConstructor(Constructor);
4851    } else if (CXXDestructorDecl *Destructor =
4852                dyn_cast<CXXDestructorDecl>(NewFD)) {
4853      CXXRecordDecl *Record = Destructor->getParent();
4854      QualType ClassType = Context.getTypeDeclType(Record);
4855
4856      // FIXME: Shouldn't we be able to perform this check even when the class
4857      // type is dependent? Both gcc and edg can handle that.
4858      if (!ClassType->isDependentType()) {
4859        DeclarationName Name
4860          = Context.DeclarationNames.getCXXDestructorName(
4861                                        Context.getCanonicalType(ClassType));
4862        if (NewFD->getDeclName() != Name) {
4863          Diag(NewFD->getLocation(), diag::err_destructor_name);
4864          return NewFD->setInvalidDecl();
4865        }
4866      }
4867    } else if (CXXConversionDecl *Conversion
4868               = dyn_cast<CXXConversionDecl>(NewFD)) {
4869      ActOnConversionDeclarator(Conversion);
4870    }
4871
4872    // Find any virtual functions that this function overrides.
4873    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4874      if (!Method->isFunctionTemplateSpecialization() &&
4875          !Method->getDescribedFunctionTemplate()) {
4876        if (AddOverriddenMethods(Method->getParent(), Method)) {
4877          // If the function was marked as "static", we have a problem.
4878          if (NewFD->getStorageClass() == SC_Static) {
4879            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4880              << NewFD->getDeclName();
4881            for (CXXMethodDecl::method_iterator
4882                      Overridden = Method->begin_overridden_methods(),
4883                   OverriddenEnd = Method->end_overridden_methods();
4884                 Overridden != OverriddenEnd;
4885                 ++Overridden) {
4886              Diag((*Overridden)->getLocation(),
4887                   diag::note_overridden_virtual_function);
4888            }
4889          }
4890        }
4891      }
4892    }
4893
4894    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4895    if (NewFD->isOverloadedOperator() &&
4896        CheckOverloadedOperatorDeclaration(NewFD))
4897      return NewFD->setInvalidDecl();
4898
4899    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4900    if (NewFD->getLiteralIdentifier() &&
4901        CheckLiteralOperatorDeclaration(NewFD))
4902      return NewFD->setInvalidDecl();
4903
4904    // In C++, check default arguments now that we have merged decls. Unless
4905    // the lexical context is the class, because in this case this is done
4906    // during delayed parsing anyway.
4907    if (!CurContext->isRecord())
4908      CheckCXXDefaultArguments(NewFD);
4909
4910    // If this function declares a builtin function, check the type of this
4911    // declaration against the expected type for the builtin.
4912    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4913      ASTContext::GetBuiltinTypeError Error;
4914      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4915      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4916        // The type of this function differs from the type of the builtin,
4917        // so forget about the builtin entirely.
4918        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4919      }
4920    }
4921  }
4922}
4923
4924void Sema::CheckMain(FunctionDecl* FD) {
4925  // C++ [basic.start.main]p3:  A program that declares main to be inline
4926  //   or static is ill-formed.
4927  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4928  //   shall not appear in a declaration of main.
4929  // static main is not an error under C99, but we should warn about it.
4930  bool isInline = FD->isInlineSpecified();
4931  bool isStatic = FD->getStorageClass() == SC_Static;
4932  if (isInline || isStatic) {
4933    unsigned diagID = diag::warn_unusual_main_decl;
4934    if (isInline || getLangOptions().CPlusPlus)
4935      diagID = diag::err_unusual_main_decl;
4936
4937    int which = isStatic + (isInline << 1) - 1;
4938    Diag(FD->getLocation(), diagID) << which;
4939  }
4940
4941  QualType T = FD->getType();
4942  assert(T->isFunctionType() && "function decl is not of function type");
4943  const FunctionType* FT = T->getAs<FunctionType>();
4944
4945  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4946    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4947    FD->setInvalidDecl(true);
4948  }
4949
4950  // Treat protoless main() as nullary.
4951  if (isa<FunctionNoProtoType>(FT)) return;
4952
4953  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4954  unsigned nparams = FTP->getNumArgs();
4955  assert(FD->getNumParams() == nparams);
4956
4957  bool HasExtraParameters = (nparams > 3);
4958
4959  // Darwin passes an undocumented fourth argument of type char**.  If
4960  // other platforms start sprouting these, the logic below will start
4961  // getting shifty.
4962  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4963    HasExtraParameters = false;
4964
4965  if (HasExtraParameters) {
4966    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4967    FD->setInvalidDecl(true);
4968    nparams = 3;
4969  }
4970
4971  // FIXME: a lot of the following diagnostics would be improved
4972  // if we had some location information about types.
4973
4974  QualType CharPP =
4975    Context.getPointerType(Context.getPointerType(Context.CharTy));
4976  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4977
4978  for (unsigned i = 0; i < nparams; ++i) {
4979    QualType AT = FTP->getArgType(i);
4980
4981    bool mismatch = true;
4982
4983    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4984      mismatch = false;
4985    else if (Expected[i] == CharPP) {
4986      // As an extension, the following forms are okay:
4987      //   char const **
4988      //   char const * const *
4989      //   char * const *
4990
4991      QualifierCollector qs;
4992      const PointerType* PT;
4993      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4994          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4995          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4996        qs.removeConst();
4997        mismatch = !qs.empty();
4998      }
4999    }
5000
5001    if (mismatch) {
5002      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5003      // TODO: suggest replacing given type with expected type
5004      FD->setInvalidDecl(true);
5005    }
5006  }
5007
5008  if (nparams == 1 && !FD->isInvalidDecl()) {
5009    Diag(FD->getLocation(), diag::warn_main_one_arg);
5010  }
5011
5012  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5013    Diag(FD->getLocation(), diag::err_main_template_decl);
5014    FD->setInvalidDecl();
5015  }
5016}
5017
5018bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5019  // FIXME: Need strict checking.  In C89, we need to check for
5020  // any assignment, increment, decrement, function-calls, or
5021  // commas outside of a sizeof.  In C99, it's the same list,
5022  // except that the aforementioned are allowed in unevaluated
5023  // expressions.  Everything else falls under the
5024  // "may accept other forms of constant expressions" exception.
5025  // (We never end up here for C++, so the constant expression
5026  // rules there don't matter.)
5027  if (Init->isConstantInitializer(Context, false))
5028    return false;
5029  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5030    << Init->getSourceRange();
5031  return true;
5032}
5033
5034namespace {
5035  // Visits an initialization expression to see if OrigDecl is evaluated in
5036  // its own initialization and throws a warning if it does.
5037  class SelfReferenceChecker
5038      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5039    Sema &S;
5040    Decl *OrigDecl;
5041
5042  public:
5043    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5044
5045    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5046                                                    S(S), OrigDecl(OrigDecl) { }
5047
5048    void VisitExpr(Expr *E) {
5049      if (isa<ObjCMessageExpr>(*E)) return;
5050      Inherited::VisitExpr(E);
5051    }
5052
5053    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5054      CheckForSelfReference(E);
5055      Inherited::VisitImplicitCastExpr(E);
5056    }
5057
5058    void CheckForSelfReference(ImplicitCastExpr *E) {
5059      if (E->getCastKind() != CK_LValueToRValue) return;
5060      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5061      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5062      if (!DRE) return;
5063      Decl* ReferenceDecl = DRE->getDecl();
5064      if (OrigDecl != ReferenceDecl) return;
5065      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5066                          Sema::NotForRedeclaration);
5067      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5068        << Result.getLookupName() << OrigDecl->getLocation()
5069        << SubExpr->getSourceRange();
5070    }
5071  };
5072}
5073
5074/// AddInitializerToDecl - Adds the initializer Init to the
5075/// declaration dcl. If DirectInit is true, this is C++ direct
5076/// initialization rather than copy initialization.
5077void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5078                                bool DirectInit, bool TypeMayContainAuto) {
5079  // If there is no declaration, there was an error parsing it.  Just ignore
5080  // the initializer.
5081  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5082    return;
5083
5084  // Check for self-references within variable initializers.
5085  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5086    // Variables declared within a function/method body are handled
5087    // by a dataflow analysis.
5088    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5089      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5090  }
5091  else {
5092    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5093  }
5094
5095  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5096    // With declarators parsed the way they are, the parser cannot
5097    // distinguish between a normal initializer and a pure-specifier.
5098    // Thus this grotesque test.
5099    IntegerLiteral *IL;
5100    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5101        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5102      CheckPureMethod(Method, Init->getSourceRange());
5103    else {
5104      Diag(Method->getLocation(), diag::err_member_function_initialization)
5105        << Method->getDeclName() << Init->getSourceRange();
5106      Method->setInvalidDecl();
5107    }
5108    return;
5109  }
5110
5111  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5112  if (!VDecl) {
5113    if (getLangOptions().CPlusPlus &&
5114        RealDecl->getLexicalDeclContext()->isRecord() &&
5115        isa<NamedDecl>(RealDecl))
5116      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5117    else
5118      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5119    RealDecl->setInvalidDecl();
5120    return;
5121  }
5122
5123  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5124  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5125    TypeSourceInfo *DeducedType = 0;
5126    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5127      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5128        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5129        << Init->getSourceRange();
5130    if (!DeducedType) {
5131      RealDecl->setInvalidDecl();
5132      return;
5133    }
5134    VDecl->setTypeSourceInfo(DeducedType);
5135    VDecl->setType(DeducedType->getType());
5136
5137    // If this is a redeclaration, check that the type we just deduced matches
5138    // the previously declared type.
5139    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5140      MergeVarDeclTypes(VDecl, Old);
5141  }
5142
5143
5144  // A definition must end up with a complete type, which means it must be
5145  // complete with the restriction that an array type might be completed by the
5146  // initializer; note that later code assumes this restriction.
5147  QualType BaseDeclType = VDecl->getType();
5148  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5149    BaseDeclType = Array->getElementType();
5150  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5151                          diag::err_typecheck_decl_incomplete_type)) {
5152    RealDecl->setInvalidDecl();
5153    return;
5154  }
5155
5156  // The variable can not have an abstract class type.
5157  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5158                             diag::err_abstract_type_in_decl,
5159                             AbstractVariableType))
5160    VDecl->setInvalidDecl();
5161
5162  const VarDecl *Def;
5163  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5164    Diag(VDecl->getLocation(), diag::err_redefinition)
5165      << VDecl->getDeclName();
5166    Diag(Def->getLocation(), diag::note_previous_definition);
5167    VDecl->setInvalidDecl();
5168    return;
5169  }
5170
5171  const VarDecl* PrevInit = 0;
5172  if (getLangOptions().CPlusPlus) {
5173    // C++ [class.static.data]p4
5174    //   If a static data member is of const integral or const
5175    //   enumeration type, its declaration in the class definition can
5176    //   specify a constant-initializer which shall be an integral
5177    //   constant expression (5.19). In that case, the member can appear
5178    //   in integral constant expressions. The member shall still be
5179    //   defined in a namespace scope if it is used in the program and the
5180    //   namespace scope definition shall not contain an initializer.
5181    //
5182    // We already performed a redefinition check above, but for static
5183    // data members we also need to check whether there was an in-class
5184    // declaration with an initializer.
5185    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5186      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5187      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5188      return;
5189    }
5190
5191    if (VDecl->hasLocalStorage())
5192      getCurFunction()->setHasBranchProtectedScope();
5193
5194    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5195      VDecl->setInvalidDecl();
5196      return;
5197    }
5198  }
5199
5200  // Capture the variable that is being initialized and the style of
5201  // initialization.
5202  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5203
5204  // FIXME: Poor source location information.
5205  InitializationKind Kind
5206    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5207                                                   Init->getLocStart(),
5208                                                   Init->getLocEnd())
5209                : InitializationKind::CreateCopy(VDecl->getLocation(),
5210                                                 Init->getLocStart());
5211
5212  // Get the decls type and save a reference for later, since
5213  // CheckInitializerTypes may change it.
5214  QualType DclT = VDecl->getType(), SavT = DclT;
5215  if (VDecl->isLocalVarDecl()) {
5216    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5217      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5218      VDecl->setInvalidDecl();
5219    } else if (!VDecl->isInvalidDecl()) {
5220      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5221      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5222                                                MultiExprArg(*this, &Init, 1),
5223                                                &DclT);
5224      if (Result.isInvalid()) {
5225        VDecl->setInvalidDecl();
5226        return;
5227      }
5228
5229      Init = Result.takeAs<Expr>();
5230
5231      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5232      // Don't check invalid declarations to avoid emitting useless diagnostics.
5233      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5234        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5235          CheckForConstantInitializer(Init, DclT);
5236      }
5237    }
5238  } else if (VDecl->isStaticDataMember() &&
5239             VDecl->getLexicalDeclContext()->isRecord()) {
5240    // This is an in-class initialization for a static data member, e.g.,
5241    //
5242    // struct S {
5243    //   static const int value = 17;
5244    // };
5245
5246    // Try to perform the initialization regardless.
5247    if (!VDecl->isInvalidDecl()) {
5248      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5249      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5250                                          MultiExprArg(*this, &Init, 1),
5251                                          &DclT);
5252      if (Result.isInvalid()) {
5253        VDecl->setInvalidDecl();
5254        return;
5255      }
5256
5257      Init = Result.takeAs<Expr>();
5258    }
5259
5260    // C++ [class.mem]p4:
5261    //   A member-declarator can contain a constant-initializer only
5262    //   if it declares a static member (9.4) of const integral or
5263    //   const enumeration type, see 9.4.2.
5264    QualType T = VDecl->getType();
5265
5266    // Do nothing on dependent types.
5267    if (T->isDependentType()) {
5268
5269    // Require constness.
5270    } else if (!T.isConstQualified()) {
5271      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5272        << Init->getSourceRange();
5273      VDecl->setInvalidDecl();
5274
5275    // We allow integer constant expressions in all cases.
5276    } else if (T->isIntegralOrEnumerationType()) {
5277      if (!Init->isValueDependent()) {
5278        // Check whether the expression is a constant expression.
5279        llvm::APSInt Value;
5280        SourceLocation Loc;
5281        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5282          Diag(Loc, diag::err_in_class_initializer_non_constant)
5283            << Init->getSourceRange();
5284          VDecl->setInvalidDecl();
5285        }
5286      }
5287
5288    // We allow floating-point constants as an extension in C++03, and
5289    // C++0x has far more complicated rules that we don't really
5290    // implement fully.
5291    } else {
5292      bool Allowed = false;
5293      if (getLangOptions().CPlusPlus0x) {
5294        Allowed = T->isLiteralType();
5295      } else if (T->isFloatingType()) { // also permits complex, which is ok
5296        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5297          << T << Init->getSourceRange();
5298        Allowed = true;
5299      }
5300
5301      if (!Allowed) {
5302        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5303          << T << Init->getSourceRange();
5304        VDecl->setInvalidDecl();
5305
5306      // TODO: there are probably expressions that pass here that shouldn't.
5307      } else if (!Init->isValueDependent() &&
5308                 !Init->isConstantInitializer(Context, false)) {
5309        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5310          << Init->getSourceRange();
5311        VDecl->setInvalidDecl();
5312      }
5313    }
5314  } else if (VDecl->isFileVarDecl()) {
5315    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5316        (!getLangOptions().CPlusPlus ||
5317         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5318      Diag(VDecl->getLocation(), diag::warn_extern_init);
5319    if (!VDecl->isInvalidDecl()) {
5320      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5321      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5322                                                MultiExprArg(*this, &Init, 1),
5323                                                &DclT);
5324      if (Result.isInvalid()) {
5325        VDecl->setInvalidDecl();
5326        return;
5327      }
5328
5329      Init = Result.takeAs<Expr>();
5330    }
5331
5332    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5333    // Don't check invalid declarations to avoid emitting useless diagnostics.
5334    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5335      // C99 6.7.8p4. All file scoped initializers need to be constant.
5336      CheckForConstantInitializer(Init, DclT);
5337    }
5338  }
5339  // If the type changed, it means we had an incomplete type that was
5340  // completed by the initializer. For example:
5341  //   int ary[] = { 1, 3, 5 };
5342  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5343  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5344    VDecl->setType(DclT);
5345    Init->setType(DclT);
5346  }
5347
5348
5349  // If this variable is a local declaration with record type, make sure it
5350  // doesn't have a flexible member initialization.  We only support this as a
5351  // global/static definition.
5352  if (VDecl->hasLocalStorage())
5353    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5354      if (RT->getDecl()->hasFlexibleArrayMember()) {
5355        // Check whether the initializer tries to initialize the flexible
5356        // array member itself to anything other than an empty initializer list.
5357        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5358          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5359                                         RT->getDecl()->field_end()) - 1;
5360          if (Index < ILE->getNumInits() &&
5361              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5362                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5363            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5364            VDecl->setInvalidDecl();
5365          }
5366        }
5367      }
5368
5369  // Check any implicit conversions within the expression.
5370  CheckImplicitConversions(Init, VDecl->getLocation());
5371
5372  Init = MaybeCreateExprWithCleanups(Init);
5373  // Attach the initializer to the decl.
5374  VDecl->setInit(Init);
5375
5376  CheckCompleteVariableDeclaration(VDecl);
5377}
5378
5379/// ActOnInitializerError - Given that there was an error parsing an
5380/// initializer for the given declaration, try to return to some form
5381/// of sanity.
5382void Sema::ActOnInitializerError(Decl *D) {
5383  // Our main concern here is re-establishing invariants like "a
5384  // variable's type is either dependent or complete".
5385  if (!D || D->isInvalidDecl()) return;
5386
5387  VarDecl *VD = dyn_cast<VarDecl>(D);
5388  if (!VD) return;
5389
5390  // Auto types are meaningless if we can't make sense of the initializer.
5391  if (ParsingInitForAutoVars.count(D)) {
5392    D->setInvalidDecl();
5393    return;
5394  }
5395
5396  QualType Ty = VD->getType();
5397  if (Ty->isDependentType()) return;
5398
5399  // Require a complete type.
5400  if (RequireCompleteType(VD->getLocation(),
5401                          Context.getBaseElementType(Ty),
5402                          diag::err_typecheck_decl_incomplete_type)) {
5403    VD->setInvalidDecl();
5404    return;
5405  }
5406
5407  // Require an abstract type.
5408  if (RequireNonAbstractType(VD->getLocation(), Ty,
5409                             diag::err_abstract_type_in_decl,
5410                             AbstractVariableType)) {
5411    VD->setInvalidDecl();
5412    return;
5413  }
5414
5415  // Don't bother complaining about constructors or destructors,
5416  // though.
5417}
5418
5419void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5420                                  bool TypeMayContainAuto) {
5421  // If there is no declaration, there was an error parsing it. Just ignore it.
5422  if (RealDecl == 0)
5423    return;
5424
5425  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5426    QualType Type = Var->getType();
5427
5428    // C++0x [dcl.spec.auto]p3
5429    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5430      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5431        << Var->getDeclName() << Type;
5432      Var->setInvalidDecl();
5433      return;
5434    }
5435
5436    switch (Var->isThisDeclarationADefinition()) {
5437    case VarDecl::Definition:
5438      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5439        break;
5440
5441      // We have an out-of-line definition of a static data member
5442      // that has an in-class initializer, so we type-check this like
5443      // a declaration.
5444      //
5445      // Fall through
5446
5447    case VarDecl::DeclarationOnly:
5448      // It's only a declaration.
5449
5450      // Block scope. C99 6.7p7: If an identifier for an object is
5451      // declared with no linkage (C99 6.2.2p6), the type for the
5452      // object shall be complete.
5453      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5454          !Var->getLinkage() && !Var->isInvalidDecl() &&
5455          RequireCompleteType(Var->getLocation(), Type,
5456                              diag::err_typecheck_decl_incomplete_type))
5457        Var->setInvalidDecl();
5458
5459      // Make sure that the type is not abstract.
5460      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5461          RequireNonAbstractType(Var->getLocation(), Type,
5462                                 diag::err_abstract_type_in_decl,
5463                                 AbstractVariableType))
5464        Var->setInvalidDecl();
5465      return;
5466
5467    case VarDecl::TentativeDefinition:
5468      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5469      // object that has file scope without an initializer, and without a
5470      // storage-class specifier or with the storage-class specifier "static",
5471      // constitutes a tentative definition. Note: A tentative definition with
5472      // external linkage is valid (C99 6.2.2p5).
5473      if (!Var->isInvalidDecl()) {
5474        if (const IncompleteArrayType *ArrayT
5475                                    = Context.getAsIncompleteArrayType(Type)) {
5476          if (RequireCompleteType(Var->getLocation(),
5477                                  ArrayT->getElementType(),
5478                                  diag::err_illegal_decl_array_incomplete_type))
5479            Var->setInvalidDecl();
5480        } else if (Var->getStorageClass() == SC_Static) {
5481          // C99 6.9.2p3: If the declaration of an identifier for an object is
5482          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5483          // declared type shall not be an incomplete type.
5484          // NOTE: code such as the following
5485          //     static struct s;
5486          //     struct s { int a; };
5487          // is accepted by gcc. Hence here we issue a warning instead of
5488          // an error and we do not invalidate the static declaration.
5489          // NOTE: to avoid multiple warnings, only check the first declaration.
5490          if (Var->getPreviousDeclaration() == 0)
5491            RequireCompleteType(Var->getLocation(), Type,
5492                                diag::ext_typecheck_decl_incomplete_type);
5493        }
5494      }
5495
5496      // Record the tentative definition; we're done.
5497      if (!Var->isInvalidDecl())
5498        TentativeDefinitions.push_back(Var);
5499      return;
5500    }
5501
5502    // Provide a specific diagnostic for uninitialized variable
5503    // definitions with incomplete array type.
5504    if (Type->isIncompleteArrayType()) {
5505      Diag(Var->getLocation(),
5506           diag::err_typecheck_incomplete_array_needs_initializer);
5507      Var->setInvalidDecl();
5508      return;
5509    }
5510
5511    // Provide a specific diagnostic for uninitialized variable
5512    // definitions with reference type.
5513    if (Type->isReferenceType()) {
5514      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5515        << Var->getDeclName()
5516        << SourceRange(Var->getLocation(), Var->getLocation());
5517      Var->setInvalidDecl();
5518      return;
5519    }
5520
5521    // Do not attempt to type-check the default initializer for a
5522    // variable with dependent type.
5523    if (Type->isDependentType())
5524      return;
5525
5526    if (Var->isInvalidDecl())
5527      return;
5528
5529    if (RequireCompleteType(Var->getLocation(),
5530                            Context.getBaseElementType(Type),
5531                            diag::err_typecheck_decl_incomplete_type)) {
5532      Var->setInvalidDecl();
5533      return;
5534    }
5535
5536    // The variable can not have an abstract class type.
5537    if (RequireNonAbstractType(Var->getLocation(), Type,
5538                               diag::err_abstract_type_in_decl,
5539                               AbstractVariableType)) {
5540      Var->setInvalidDecl();
5541      return;
5542    }
5543
5544    const RecordType *Record
5545      = Context.getBaseElementType(Type)->getAs<RecordType>();
5546    if (Record && getLangOptions().CPlusPlus &&
5547        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5548      // C++03 [dcl.init]p9:
5549      //   If no initializer is specified for an object, and the
5550      //   object is of (possibly cv-qualified) non-POD class type (or
5551      //   array thereof), the object shall be default-initialized; if
5552      //   the object is of const-qualified type, the underlying class
5553      //   type shall have a user-declared default
5554      //   constructor. Otherwise, if no initializer is specified for
5555      //   a non- static object, the object and its subobjects, if
5556      //   any, have an indeterminate initial value); if the object
5557      //   or any of its subobjects are of const-qualified type, the
5558      //   program is ill-formed.
5559    } else {
5560      // Check for jumps past the implicit initializer.  C++0x
5561      // clarifies that this applies to a "variable with automatic
5562      // storage duration", not a "local variable".
5563      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5564        getCurFunction()->setHasBranchProtectedScope();
5565
5566      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5567      InitializationKind Kind
5568        = InitializationKind::CreateDefault(Var->getLocation());
5569
5570      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5571      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5572                                        MultiExprArg(*this, 0, 0));
5573      if (Init.isInvalid())
5574        Var->setInvalidDecl();
5575      else if (Init.get())
5576        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5577    }
5578
5579    CheckCompleteVariableDeclaration(Var);
5580  }
5581}
5582
5583void Sema::ActOnCXXForRangeDecl(Decl *D) {
5584  VarDecl *VD = dyn_cast<VarDecl>(D);
5585  if (!VD) {
5586    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5587    D->setInvalidDecl();
5588    return;
5589  }
5590
5591  VD->setCXXForRangeDecl(true);
5592
5593  // for-range-declaration cannot be given a storage class specifier.
5594  int Error = -1;
5595  switch (VD->getStorageClassAsWritten()) {
5596  case SC_None:
5597    break;
5598  case SC_Extern:
5599    Error = 0;
5600    break;
5601  case SC_Static:
5602    Error = 1;
5603    break;
5604  case SC_PrivateExtern:
5605    Error = 2;
5606    break;
5607  case SC_Auto:
5608    Error = 3;
5609    break;
5610  case SC_Register:
5611    Error = 4;
5612    break;
5613  }
5614  // FIXME: constexpr isn't allowed here.
5615  //if (DS.isConstexprSpecified())
5616  //  Error = 5;
5617  if (Error != -1) {
5618    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5619      << VD->getDeclName() << Error;
5620    D->setInvalidDecl();
5621  }
5622}
5623
5624void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5625  if (var->isInvalidDecl()) return;
5626
5627  // All the following checks are C++ only.
5628  if (!getLangOptions().CPlusPlus) return;
5629
5630  QualType baseType = Context.getBaseElementType(var->getType());
5631  if (baseType->isDependentType()) return;
5632
5633  // __block variables might require us to capture a copy-initializer.
5634  if (var->hasAttr<BlocksAttr>()) {
5635    // It's currently invalid to ever have a __block variable with an
5636    // array type; should we diagnose that here?
5637
5638    // Regardless, we don't want to ignore array nesting when
5639    // constructing this copy.
5640    QualType type = var->getType();
5641
5642    if (type->isStructureOrClassType()) {
5643      SourceLocation poi = var->getLocation();
5644      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5645      ExprResult result =
5646        PerformCopyInitialization(
5647                        InitializedEntity::InitializeBlock(poi, type, false),
5648                                  poi, Owned(varRef));
5649      if (!result.isInvalid()) {
5650        result = MaybeCreateExprWithCleanups(result);
5651        Expr *init = result.takeAs<Expr>();
5652        Context.setBlockVarCopyInits(var, init);
5653      }
5654    }
5655  }
5656
5657  // Check for global constructors.
5658  if (!var->getDeclContext()->isDependentContext() &&
5659      var->hasGlobalStorage() &&
5660      !var->isStaticLocal() &&
5661      var->getInit() &&
5662      !var->getInit()->isConstantInitializer(Context,
5663                                             baseType->isReferenceType()))
5664    Diag(var->getLocation(), diag::warn_global_constructor)
5665      << var->getInit()->getSourceRange();
5666
5667  // Require the destructor.
5668  if (const RecordType *recordType = baseType->getAs<RecordType>())
5669    FinalizeVarWithDestructor(var, recordType);
5670}
5671
5672/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5673/// any semantic actions necessary after any initializer has been attached.
5674void
5675Sema::FinalizeDeclaration(Decl *ThisDecl) {
5676  // Note that we are no longer parsing the initializer for this declaration.
5677  ParsingInitForAutoVars.erase(ThisDecl);
5678}
5679
5680Sema::DeclGroupPtrTy
5681Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5682                              Decl **Group, unsigned NumDecls) {
5683  llvm::SmallVector<Decl*, 8> Decls;
5684
5685  if (DS.isTypeSpecOwned())
5686    Decls.push_back(DS.getRepAsDecl());
5687
5688  for (unsigned i = 0; i != NumDecls; ++i)
5689    if (Decl *D = Group[i])
5690      Decls.push_back(D);
5691
5692  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5693                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5694}
5695
5696/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5697/// group, performing any necessary semantic checking.
5698Sema::DeclGroupPtrTy
5699Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5700                           bool TypeMayContainAuto) {
5701  // C++0x [dcl.spec.auto]p7:
5702  //   If the type deduced for the template parameter U is not the same in each
5703  //   deduction, the program is ill-formed.
5704  // FIXME: When initializer-list support is added, a distinction is needed
5705  // between the deduced type U and the deduced type which 'auto' stands for.
5706  //   auto a = 0, b = { 1, 2, 3 };
5707  // is legal because the deduced type U is 'int' in both cases.
5708  if (TypeMayContainAuto && NumDecls > 1) {
5709    QualType Deduced;
5710    CanQualType DeducedCanon;
5711    VarDecl *DeducedDecl = 0;
5712    for (unsigned i = 0; i != NumDecls; ++i) {
5713      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5714        AutoType *AT = D->getType()->getContainedAutoType();
5715        // Don't reissue diagnostics when instantiating a template.
5716        if (AT && D->isInvalidDecl())
5717          break;
5718        if (AT && AT->isDeduced()) {
5719          QualType U = AT->getDeducedType();
5720          CanQualType UCanon = Context.getCanonicalType(U);
5721          if (Deduced.isNull()) {
5722            Deduced = U;
5723            DeducedCanon = UCanon;
5724            DeducedDecl = D;
5725          } else if (DeducedCanon != UCanon) {
5726            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5727                 diag::err_auto_different_deductions)
5728              << Deduced << DeducedDecl->getDeclName()
5729              << U << D->getDeclName()
5730              << DeducedDecl->getInit()->getSourceRange()
5731              << D->getInit()->getSourceRange();
5732            D->setInvalidDecl();
5733            break;
5734          }
5735        }
5736      }
5737    }
5738  }
5739
5740  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5741}
5742
5743
5744/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5745/// to introduce parameters into function prototype scope.
5746Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5747  const DeclSpec &DS = D.getDeclSpec();
5748
5749  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5750  VarDecl::StorageClass StorageClass = SC_None;
5751  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5752  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5753    StorageClass = SC_Register;
5754    StorageClassAsWritten = SC_Register;
5755  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5756    Diag(DS.getStorageClassSpecLoc(),
5757         diag::err_invalid_storage_class_in_func_decl);
5758    D.getMutableDeclSpec().ClearStorageClassSpecs();
5759  }
5760
5761  if (D.getDeclSpec().isThreadSpecified())
5762    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5763
5764  DiagnoseFunctionSpecifiers(D);
5765
5766  TagDecl *OwnedDecl = 0;
5767  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5768  QualType parmDeclType = TInfo->getType();
5769
5770  if (getLangOptions().CPlusPlus) {
5771    // Check that there are no default arguments inside the type of this
5772    // parameter.
5773    CheckExtraCXXDefaultArguments(D);
5774
5775    if (OwnedDecl && OwnedDecl->isDefinition()) {
5776      // C++ [dcl.fct]p6:
5777      //   Types shall not be defined in return or parameter types.
5778      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5779        << Context.getTypeDeclType(OwnedDecl);
5780    }
5781
5782    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5783    if (D.getCXXScopeSpec().isSet()) {
5784      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5785        << D.getCXXScopeSpec().getRange();
5786      D.getCXXScopeSpec().clear();
5787    }
5788  }
5789
5790  // Ensure we have a valid name
5791  IdentifierInfo *II = 0;
5792  if (D.hasName()) {
5793    II = D.getIdentifier();
5794    if (!II) {
5795      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5796        << GetNameForDeclarator(D).getName().getAsString();
5797      D.setInvalidType(true);
5798    }
5799  }
5800
5801  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5802  if (II) {
5803    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5804                   ForRedeclaration);
5805    LookupName(R, S);
5806    if (R.isSingleResult()) {
5807      NamedDecl *PrevDecl = R.getFoundDecl();
5808      if (PrevDecl->isTemplateParameter()) {
5809        // Maybe we will complain about the shadowed template parameter.
5810        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5811        // Just pretend that we didn't see the previous declaration.
5812        PrevDecl = 0;
5813      } else if (S->isDeclScope(PrevDecl)) {
5814        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5815        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5816
5817        // Recover by removing the name
5818        II = 0;
5819        D.SetIdentifier(0, D.getIdentifierLoc());
5820        D.setInvalidType(true);
5821      }
5822    }
5823  }
5824
5825  // Temporarily put parameter variables in the translation unit, not
5826  // the enclosing context.  This prevents them from accidentally
5827  // looking like class members in C++.
5828  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5829                                    D.getSourceRange().getBegin(),
5830                                    D.getIdentifierLoc(), II,
5831                                    parmDeclType, TInfo,
5832                                    StorageClass, StorageClassAsWritten);
5833
5834  if (D.isInvalidType())
5835    New->setInvalidDecl();
5836
5837  // Add the parameter declaration into this scope.
5838  S->AddDecl(New);
5839  if (II)
5840    IdResolver.AddDecl(New);
5841
5842  ProcessDeclAttributes(S, New, D);
5843
5844  if (New->hasAttr<BlocksAttr>()) {
5845    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5846  }
5847  return New;
5848}
5849
5850/// \brief Synthesizes a variable for a parameter arising from a
5851/// typedef.
5852ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5853                                              SourceLocation Loc,
5854                                              QualType T) {
5855  /* FIXME: setting StartLoc == Loc.
5856     Would it be worth to modify callers so as to provide proper source
5857     location for the unnamed parameters, embedding the parameter's type? */
5858  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5859                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5860                                           SC_None, SC_None, 0);
5861  Param->setImplicit();
5862  return Param;
5863}
5864
5865void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5866                                    ParmVarDecl * const *ParamEnd) {
5867  // Don't diagnose unused-parameter errors in template instantiations; we
5868  // will already have done so in the template itself.
5869  if (!ActiveTemplateInstantiations.empty())
5870    return;
5871
5872  for (; Param != ParamEnd; ++Param) {
5873    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5874        !(*Param)->hasAttr<UnusedAttr>()) {
5875      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5876        << (*Param)->getDeclName();
5877    }
5878  }
5879}
5880
5881void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5882                                                  ParmVarDecl * const *ParamEnd,
5883                                                  QualType ReturnTy,
5884                                                  NamedDecl *D) {
5885  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5886    return;
5887
5888  // Warn if the return value is pass-by-value and larger than the specified
5889  // threshold.
5890  if (ReturnTy->isPODType()) {
5891    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5892    if (Size > LangOpts.NumLargeByValueCopy)
5893      Diag(D->getLocation(), diag::warn_return_value_size)
5894          << D->getDeclName() << Size;
5895  }
5896
5897  // Warn if any parameter is pass-by-value and larger than the specified
5898  // threshold.
5899  for (; Param != ParamEnd; ++Param) {
5900    QualType T = (*Param)->getType();
5901    if (!T->isPODType())
5902      continue;
5903    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5904    if (Size > LangOpts.NumLargeByValueCopy)
5905      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5906          << (*Param)->getDeclName() << Size;
5907  }
5908}
5909
5910ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5911                                  SourceLocation NameLoc, IdentifierInfo *Name,
5912                                  QualType T, TypeSourceInfo *TSInfo,
5913                                  VarDecl::StorageClass StorageClass,
5914                                  VarDecl::StorageClass StorageClassAsWritten) {
5915  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5916                                         adjustParameterType(T), TSInfo,
5917                                         StorageClass, StorageClassAsWritten,
5918                                         0);
5919
5920  // Parameters can not be abstract class types.
5921  // For record types, this is done by the AbstractClassUsageDiagnoser once
5922  // the class has been completely parsed.
5923  if (!CurContext->isRecord() &&
5924      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5925                             AbstractParamType))
5926    New->setInvalidDecl();
5927
5928  // Parameter declarators cannot be interface types. All ObjC objects are
5929  // passed by reference.
5930  if (T->isObjCObjectType()) {
5931    Diag(NameLoc,
5932         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5933    New->setInvalidDecl();
5934  }
5935
5936  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5937  // duration shall not be qualified by an address-space qualifier."
5938  // Since all parameters have automatic store duration, they can not have
5939  // an address space.
5940  if (T.getAddressSpace() != 0) {
5941    Diag(NameLoc, diag::err_arg_with_address_space);
5942    New->setInvalidDecl();
5943  }
5944
5945  return New;
5946}
5947
5948void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5949                                           SourceLocation LocAfterDecls) {
5950  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5951
5952  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5953  // for a K&R function.
5954  if (!FTI.hasPrototype) {
5955    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5956      --i;
5957      if (FTI.ArgInfo[i].Param == 0) {
5958        llvm::SmallString<256> Code;
5959        llvm::raw_svector_ostream(Code) << "  int "
5960                                        << FTI.ArgInfo[i].Ident->getName()
5961                                        << ";\n";
5962        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5963          << FTI.ArgInfo[i].Ident
5964          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5965
5966        // Implicitly declare the argument as type 'int' for lack of a better
5967        // type.
5968        AttributeFactory attrs;
5969        DeclSpec DS(attrs);
5970        const char* PrevSpec; // unused
5971        unsigned DiagID; // unused
5972        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5973                           PrevSpec, DiagID);
5974        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5975        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5976        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5977      }
5978    }
5979  }
5980}
5981
5982Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5983                                         Declarator &D) {
5984  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5985  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5986  Scope *ParentScope = FnBodyScope->getParent();
5987
5988  Decl *DP = HandleDeclarator(ParentScope, D,
5989                              MultiTemplateParamsArg(*this),
5990                              /*IsFunctionDefinition=*/true);
5991  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5992}
5993
5994static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5995  // Don't warn about invalid declarations.
5996  if (FD->isInvalidDecl())
5997    return false;
5998
5999  // Or declarations that aren't global.
6000  if (!FD->isGlobal())
6001    return false;
6002
6003  // Don't warn about C++ member functions.
6004  if (isa<CXXMethodDecl>(FD))
6005    return false;
6006
6007  // Don't warn about 'main'.
6008  if (FD->isMain())
6009    return false;
6010
6011  // Don't warn about inline functions.
6012  if (FD->isInlined())
6013    return false;
6014
6015  // Don't warn about function templates.
6016  if (FD->getDescribedFunctionTemplate())
6017    return false;
6018
6019  // Don't warn about function template specializations.
6020  if (FD->isFunctionTemplateSpecialization())
6021    return false;
6022
6023  bool MissingPrototype = true;
6024  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6025       Prev; Prev = Prev->getPreviousDeclaration()) {
6026    // Ignore any declarations that occur in function or method
6027    // scope, because they aren't visible from the header.
6028    if (Prev->getDeclContext()->isFunctionOrMethod())
6029      continue;
6030
6031    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6032    break;
6033  }
6034
6035  return MissingPrototype;
6036}
6037
6038void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6039  // Don't complain if we're in GNU89 mode and the previous definition
6040  // was an extern inline function.
6041  const FunctionDecl *Definition;
6042  if (FD->hasBody(Definition) &&
6043      !canRedefineFunction(Definition, getLangOptions())) {
6044    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6045        Definition->getStorageClass() == SC_Extern)
6046      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6047        << FD->getDeclName() << getLangOptions().CPlusPlus;
6048    else
6049      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6050    Diag(Definition->getLocation(), diag::note_previous_definition);
6051  }
6052}
6053
6054Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6055  // Clear the last template instantiation error context.
6056  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6057
6058  if (!D)
6059    return D;
6060  FunctionDecl *FD = 0;
6061
6062  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6063    FD = FunTmpl->getTemplatedDecl();
6064  else
6065    FD = cast<FunctionDecl>(D);
6066
6067  // Enter a new function scope
6068  PushFunctionScope();
6069
6070  // See if this is a redefinition.
6071  if (!FD->isLateTemplateParsed())
6072    CheckForFunctionRedefinition(FD);
6073
6074  // Builtin functions cannot be defined.
6075  if (unsigned BuiltinID = FD->getBuiltinID()) {
6076    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6077      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6078      FD->setInvalidDecl();
6079    }
6080  }
6081
6082  // The return type of a function definition must be complete
6083  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6084  QualType ResultType = FD->getResultType();
6085  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6086      !FD->isInvalidDecl() &&
6087      RequireCompleteType(FD->getLocation(), ResultType,
6088                          diag::err_func_def_incomplete_result))
6089    FD->setInvalidDecl();
6090
6091  // GNU warning -Wmissing-prototypes:
6092  //   Warn if a global function is defined without a previous
6093  //   prototype declaration. This warning is issued even if the
6094  //   definition itself provides a prototype. The aim is to detect
6095  //   global functions that fail to be declared in header files.
6096  if (ShouldWarnAboutMissingPrototype(FD))
6097    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6098
6099  if (FnBodyScope)
6100    PushDeclContext(FnBodyScope, FD);
6101
6102  // Check the validity of our function parameters
6103  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6104                           /*CheckParameterNames=*/true);
6105
6106  // Introduce our parameters into the function scope
6107  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6108    ParmVarDecl *Param = FD->getParamDecl(p);
6109    Param->setOwningFunction(FD);
6110
6111    // If this has an identifier, add it to the scope stack.
6112    if (Param->getIdentifier() && FnBodyScope) {
6113      CheckShadow(FnBodyScope, Param);
6114
6115      PushOnScopeChains(Param, FnBodyScope);
6116    }
6117  }
6118
6119  // Checking attributes of current function definition
6120  // dllimport attribute.
6121  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6122  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6123    // dllimport attribute cannot be directly applied to definition.
6124    // Microsoft accepts dllimport for functions defined within class scope.
6125    if (!DA->isInherited() &&
6126        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6127      Diag(FD->getLocation(),
6128           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6129        << "dllimport";
6130      FD->setInvalidDecl();
6131      return FD;
6132    }
6133
6134    // Visual C++ appears to not think this is an issue, so only issue
6135    // a warning when Microsoft extensions are disabled.
6136    if (!LangOpts.Microsoft) {
6137      // If a symbol previously declared dllimport is later defined, the
6138      // attribute is ignored in subsequent references, and a warning is
6139      // emitted.
6140      Diag(FD->getLocation(),
6141           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6142        << FD->getName() << "dllimport";
6143    }
6144  }
6145  return FD;
6146}
6147
6148/// \brief Given the set of return statements within a function body,
6149/// compute the variables that are subject to the named return value
6150/// optimization.
6151///
6152/// Each of the variables that is subject to the named return value
6153/// optimization will be marked as NRVO variables in the AST, and any
6154/// return statement that has a marked NRVO variable as its NRVO candidate can
6155/// use the named return value optimization.
6156///
6157/// This function applies a very simplistic algorithm for NRVO: if every return
6158/// statement in the function has the same NRVO candidate, that candidate is
6159/// the NRVO variable.
6160///
6161/// FIXME: Employ a smarter algorithm that accounts for multiple return
6162/// statements and the lifetimes of the NRVO candidates. We should be able to
6163/// find a maximal set of NRVO variables.
6164static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6165  ReturnStmt **Returns = Scope->Returns.data();
6166
6167  const VarDecl *NRVOCandidate = 0;
6168  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6169    if (!Returns[I]->getNRVOCandidate())
6170      return;
6171
6172    if (!NRVOCandidate)
6173      NRVOCandidate = Returns[I]->getNRVOCandidate();
6174    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6175      return;
6176  }
6177
6178  if (NRVOCandidate)
6179    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6180}
6181
6182Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6183  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6184}
6185
6186Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6187                                    bool IsInstantiation) {
6188  FunctionDecl *FD = 0;
6189  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6190  if (FunTmpl)
6191    FD = FunTmpl->getTemplatedDecl();
6192  else
6193    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6194
6195  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6196  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6197
6198  if (FD) {
6199    FD->setBody(Body);
6200    if (FD->isMain()) {
6201      // C and C++ allow for main to automagically return 0.
6202      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6203      FD->setHasImplicitReturnZero(true);
6204      WP.disableCheckFallThrough();
6205    }
6206
6207    if (!FD->isInvalidDecl()) {
6208      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6209      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6210                                             FD->getResultType(), FD);
6211
6212      // If this is a constructor, we need a vtable.
6213      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6214        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6215
6216      ComputeNRVO(Body, getCurFunction());
6217    }
6218
6219    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6220  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6221    assert(MD == getCurMethodDecl() && "Method parsing confused");
6222    MD->setBody(Body);
6223    if (Body)
6224      MD->setEndLoc(Body->getLocEnd());
6225    if (!MD->isInvalidDecl()) {
6226      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6227      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6228                                             MD->getResultType(), MD);
6229    }
6230  } else {
6231    return 0;
6232  }
6233
6234  // Verify and clean out per-function state.
6235  if (Body) {
6236    // C++ constructors that have function-try-blocks can't have return
6237    // statements in the handlers of that block. (C++ [except.handle]p14)
6238    // Verify this.
6239    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6240      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6241
6242    // Verify that that gotos and switch cases don't jump into scopes illegally.
6243    // Verify that that gotos and switch cases don't jump into scopes illegally.
6244    if (getCurFunction()->NeedsScopeChecking() &&
6245        !dcl->isInvalidDecl() &&
6246        !hasAnyErrorsInThisFunction())
6247      DiagnoseInvalidJumps(Body);
6248
6249    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6250      if (!Destructor->getParent()->isDependentType())
6251        CheckDestructor(Destructor);
6252
6253      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6254                                             Destructor->getParent());
6255    }
6256
6257    // If any errors have occurred, clear out any temporaries that may have
6258    // been leftover. This ensures that these temporaries won't be picked up for
6259    // deletion in some later function.
6260    if (PP.getDiagnostics().hasErrorOccurred() ||
6261        PP.getDiagnostics().getSuppressAllDiagnostics())
6262      ExprTemporaries.clear();
6263    else if (!isa<FunctionTemplateDecl>(dcl)) {
6264      // Since the body is valid, issue any analysis-based warnings that are
6265      // enabled.
6266      ActivePolicy = &WP;
6267    }
6268
6269    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6270  }
6271
6272  if (!IsInstantiation)
6273    PopDeclContext();
6274
6275  PopFunctionOrBlockScope(ActivePolicy, dcl);
6276
6277  // If any errors have occurred, clear out any temporaries that may have
6278  // been leftover. This ensures that these temporaries won't be picked up for
6279  // deletion in some later function.
6280  if (getDiagnostics().hasErrorOccurred())
6281    ExprTemporaries.clear();
6282
6283  return dcl;
6284}
6285
6286/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6287/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6288NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6289                                          IdentifierInfo &II, Scope *S) {
6290  // Before we produce a declaration for an implicitly defined
6291  // function, see whether there was a locally-scoped declaration of
6292  // this name as a function or variable. If so, use that
6293  // (non-visible) declaration, and complain about it.
6294  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6295    = LocallyScopedExternalDecls.find(&II);
6296  if (Pos != LocallyScopedExternalDecls.end()) {
6297    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6298    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6299    return Pos->second;
6300  }
6301
6302  // Extension in C99.  Legal in C90, but warn about it.
6303  if (II.getName().startswith("__builtin_"))
6304    Diag(Loc, diag::warn_builtin_unknown) << &II;
6305  else if (getLangOptions().C99)
6306    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6307  else
6308    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6309
6310  // Set a Declarator for the implicit definition: int foo();
6311  const char *Dummy;
6312  AttributeFactory attrFactory;
6313  DeclSpec DS(attrFactory);
6314  unsigned DiagID;
6315  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6316  (void)Error; // Silence warning.
6317  assert(!Error && "Error setting up implicit decl!");
6318  Declarator D(DS, Declarator::BlockContext);
6319  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6320                                             0, 0, true, SourceLocation(),
6321                                             EST_None, SourceLocation(),
6322                                             0, 0, 0, 0, Loc, Loc, D),
6323                DS.getAttributes(),
6324                SourceLocation());
6325  D.SetIdentifier(&II, Loc);
6326
6327  // Insert this function into translation-unit scope.
6328
6329  DeclContext *PrevDC = CurContext;
6330  CurContext = Context.getTranslationUnitDecl();
6331
6332  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6333  FD->setImplicit();
6334
6335  CurContext = PrevDC;
6336
6337  AddKnownFunctionAttributes(FD);
6338
6339  return FD;
6340}
6341
6342/// \brief Adds any function attributes that we know a priori based on
6343/// the declaration of this function.
6344///
6345/// These attributes can apply both to implicitly-declared builtins
6346/// (like __builtin___printf_chk) or to library-declared functions
6347/// like NSLog or printf.
6348void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6349  if (FD->isInvalidDecl())
6350    return;
6351
6352  // If this is a built-in function, map its builtin attributes to
6353  // actual attributes.
6354  if (unsigned BuiltinID = FD->getBuiltinID()) {
6355    // Handle printf-formatting attributes.
6356    unsigned FormatIdx;
6357    bool HasVAListArg;
6358    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6359      if (!FD->getAttr<FormatAttr>())
6360        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6361                                                "printf", FormatIdx+1,
6362                                               HasVAListArg ? 0 : FormatIdx+2));
6363    }
6364    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6365                                             HasVAListArg)) {
6366     if (!FD->getAttr<FormatAttr>())
6367       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6368                                              "scanf", FormatIdx+1,
6369                                              HasVAListArg ? 0 : FormatIdx+2));
6370    }
6371
6372    // Mark const if we don't care about errno and that is the only
6373    // thing preventing the function from being const. This allows
6374    // IRgen to use LLVM intrinsics for such functions.
6375    if (!getLangOptions().MathErrno &&
6376        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6377      if (!FD->getAttr<ConstAttr>())
6378        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6379    }
6380
6381    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6382      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6383    if (Context.BuiltinInfo.isConst(BuiltinID))
6384      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6385  }
6386
6387  IdentifierInfo *Name = FD->getIdentifier();
6388  if (!Name)
6389    return;
6390  if ((!getLangOptions().CPlusPlus &&
6391       FD->getDeclContext()->isTranslationUnit()) ||
6392      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6393       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6394       LinkageSpecDecl::lang_c)) {
6395    // Okay: this could be a libc/libm/Objective-C function we know
6396    // about.
6397  } else
6398    return;
6399
6400  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6401    // FIXME: NSLog and NSLogv should be target specific
6402    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6403      // FIXME: We known better than our headers.
6404      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6405    } else
6406      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6407                                             "printf", 1,
6408                                             Name->isStr("NSLogv") ? 0 : 2));
6409  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6410    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6411    // target-specific builtins, perhaps?
6412    if (!FD->getAttr<FormatAttr>())
6413      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6414                                             "printf", 2,
6415                                             Name->isStr("vasprintf") ? 0 : 3));
6416  }
6417}
6418
6419TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6420                                    TypeSourceInfo *TInfo) {
6421  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6422  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6423
6424  if (!TInfo) {
6425    assert(D.isInvalidType() && "no declarator info for valid type");
6426    TInfo = Context.getTrivialTypeSourceInfo(T);
6427  }
6428
6429  // Scope manipulation handled by caller.
6430  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6431                                           D.getSourceRange().getBegin(),
6432                                           D.getIdentifierLoc(),
6433                                           D.getIdentifier(),
6434                                           TInfo);
6435
6436  // Bail out immediately if we have an invalid declaration.
6437  if (D.isInvalidType()) {
6438    NewTD->setInvalidDecl();
6439    return NewTD;
6440  }
6441
6442  // C++ [dcl.typedef]p8:
6443  //   If the typedef declaration defines an unnamed class (or
6444  //   enum), the first typedef-name declared by the declaration
6445  //   to be that class type (or enum type) is used to denote the
6446  //   class type (or enum type) for linkage purposes only.
6447  // We need to check whether the type was declared in the declaration.
6448  switch (D.getDeclSpec().getTypeSpecType()) {
6449  case TST_enum:
6450  case TST_struct:
6451  case TST_union:
6452  case TST_class: {
6453    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6454
6455    // Do nothing if the tag is not anonymous or already has an
6456    // associated typedef (from an earlier typedef in this decl group).
6457    if (tagFromDeclSpec->getIdentifier()) break;
6458    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6459
6460    // A well-formed anonymous tag must always be a TUK_Definition.
6461    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6462
6463    // The type must match the tag exactly;  no qualifiers allowed.
6464    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6465      break;
6466
6467    // Otherwise, set this is the anon-decl typedef for the tag.
6468    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6469    break;
6470  }
6471
6472  default:
6473    break;
6474  }
6475
6476  return NewTD;
6477}
6478
6479
6480/// \brief Determine whether a tag with a given kind is acceptable
6481/// as a redeclaration of the given tag declaration.
6482///
6483/// \returns true if the new tag kind is acceptable, false otherwise.
6484bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6485                                        TagTypeKind NewTag,
6486                                        SourceLocation NewTagLoc,
6487                                        const IdentifierInfo &Name) {
6488  // C++ [dcl.type.elab]p3:
6489  //   The class-key or enum keyword present in the
6490  //   elaborated-type-specifier shall agree in kind with the
6491  //   declaration to which the name in the elaborated-type-specifier
6492  //   refers. This rule also applies to the form of
6493  //   elaborated-type-specifier that declares a class-name or
6494  //   friend class since it can be construed as referring to the
6495  //   definition of the class. Thus, in any
6496  //   elaborated-type-specifier, the enum keyword shall be used to
6497  //   refer to an enumeration (7.2), the union class-key shall be
6498  //   used to refer to a union (clause 9), and either the class or
6499  //   struct class-key shall be used to refer to a class (clause 9)
6500  //   declared using the class or struct class-key.
6501  TagTypeKind OldTag = Previous->getTagKind();
6502  if (OldTag == NewTag)
6503    return true;
6504
6505  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6506      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6507    // Warn about the struct/class tag mismatch.
6508    bool isTemplate = false;
6509    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6510      isTemplate = Record->getDescribedClassTemplate();
6511
6512    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6513      << (NewTag == TTK_Class)
6514      << isTemplate << &Name
6515      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6516                              OldTag == TTK_Class? "class" : "struct");
6517    Diag(Previous->getLocation(), diag::note_previous_use);
6518    return true;
6519  }
6520  return false;
6521}
6522
6523/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6524/// former case, Name will be non-null.  In the later case, Name will be null.
6525/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6526/// reference/declaration/definition of a tag.
6527Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6528                     SourceLocation KWLoc, CXXScopeSpec &SS,
6529                     IdentifierInfo *Name, SourceLocation NameLoc,
6530                     AttributeList *Attr, AccessSpecifier AS,
6531                     MultiTemplateParamsArg TemplateParameterLists,
6532                     bool &OwnedDecl, bool &IsDependent,
6533                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6534                     TypeResult UnderlyingType) {
6535  // If this is not a definition, it must have a name.
6536  assert((Name != 0 || TUK == TUK_Definition) &&
6537         "Nameless record must be a definition!");
6538  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6539
6540  OwnedDecl = false;
6541  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6542
6543  // FIXME: Check explicit specializations more carefully.
6544  bool isExplicitSpecialization = false;
6545  bool Invalid = false;
6546
6547  // We only need to do this matching if we have template parameters
6548  // or a scope specifier, which also conveniently avoids this work
6549  // for non-C++ cases.
6550  if (TemplateParameterLists.size() > 0 ||
6551      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6552    if (TemplateParameterList *TemplateParams
6553          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6554                                                TemplateParameterLists.get(),
6555                                                TemplateParameterLists.size(),
6556                                                    TUK == TUK_Friend,
6557                                                    isExplicitSpecialization,
6558                                                    Invalid)) {
6559      if (TemplateParams->size() > 0) {
6560        // This is a declaration or definition of a class template (which may
6561        // be a member of another template).
6562
6563        if (Invalid)
6564          return 0;
6565
6566        OwnedDecl = false;
6567        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6568                                               SS, Name, NameLoc, Attr,
6569                                               TemplateParams, AS,
6570                                           TemplateParameterLists.size() - 1,
6571                 (TemplateParameterList**) TemplateParameterLists.release());
6572        return Result.get();
6573      } else {
6574        // The "template<>" header is extraneous.
6575        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6576          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6577        isExplicitSpecialization = true;
6578      }
6579    }
6580  }
6581
6582  // Figure out the underlying type if this a enum declaration. We need to do
6583  // this early, because it's needed to detect if this is an incompatible
6584  // redeclaration.
6585  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6586
6587  if (Kind == TTK_Enum) {
6588    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6589      // No underlying type explicitly specified, or we failed to parse the
6590      // type, default to int.
6591      EnumUnderlying = Context.IntTy.getTypePtr();
6592    else if (UnderlyingType.get()) {
6593      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6594      // integral type; any cv-qualification is ignored.
6595      TypeSourceInfo *TI = 0;
6596      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6597      EnumUnderlying = TI;
6598
6599      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6600
6601      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6602        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6603          << T;
6604        // Recover by falling back to int.
6605        EnumUnderlying = Context.IntTy.getTypePtr();
6606      }
6607
6608      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6609                                          UPPC_FixedUnderlyingType))
6610        EnumUnderlying = Context.IntTy.getTypePtr();
6611
6612    } else if (getLangOptions().Microsoft)
6613      // Microsoft enums are always of int type.
6614      EnumUnderlying = Context.IntTy.getTypePtr();
6615  }
6616
6617  DeclContext *SearchDC = CurContext;
6618  DeclContext *DC = CurContext;
6619  bool isStdBadAlloc = false;
6620
6621  RedeclarationKind Redecl = ForRedeclaration;
6622  if (TUK == TUK_Friend || TUK == TUK_Reference)
6623    Redecl = NotForRedeclaration;
6624
6625  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6626
6627  if (Name && SS.isNotEmpty()) {
6628    // We have a nested-name tag ('struct foo::bar').
6629
6630    // Check for invalid 'foo::'.
6631    if (SS.isInvalid()) {
6632      Name = 0;
6633      goto CreateNewDecl;
6634    }
6635
6636    // If this is a friend or a reference to a class in a dependent
6637    // context, don't try to make a decl for it.
6638    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6639      DC = computeDeclContext(SS, false);
6640      if (!DC) {
6641        IsDependent = true;
6642        return 0;
6643      }
6644    } else {
6645      DC = computeDeclContext(SS, true);
6646      if (!DC) {
6647        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6648          << SS.getRange();
6649        return 0;
6650      }
6651    }
6652
6653    if (RequireCompleteDeclContext(SS, DC))
6654      return 0;
6655
6656    SearchDC = DC;
6657    // Look-up name inside 'foo::'.
6658    LookupQualifiedName(Previous, DC);
6659
6660    if (Previous.isAmbiguous())
6661      return 0;
6662
6663    if (Previous.empty()) {
6664      // Name lookup did not find anything. However, if the
6665      // nested-name-specifier refers to the current instantiation,
6666      // and that current instantiation has any dependent base
6667      // classes, we might find something at instantiation time: treat
6668      // this as a dependent elaborated-type-specifier.
6669      // But this only makes any sense for reference-like lookups.
6670      if (Previous.wasNotFoundInCurrentInstantiation() &&
6671          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6672        IsDependent = true;
6673        return 0;
6674      }
6675
6676      // A tag 'foo::bar' must already exist.
6677      Diag(NameLoc, diag::err_not_tag_in_scope)
6678        << Kind << Name << DC << SS.getRange();
6679      Name = 0;
6680      Invalid = true;
6681      goto CreateNewDecl;
6682    }
6683  } else if (Name) {
6684    // If this is a named struct, check to see if there was a previous forward
6685    // declaration or definition.
6686    // FIXME: We're looking into outer scopes here, even when we
6687    // shouldn't be. Doing so can result in ambiguities that we
6688    // shouldn't be diagnosing.
6689    LookupName(Previous, S);
6690
6691    // Note:  there used to be some attempt at recovery here.
6692    if (Previous.isAmbiguous())
6693      return 0;
6694
6695    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6696      // FIXME: This makes sure that we ignore the contexts associated
6697      // with C structs, unions, and enums when looking for a matching
6698      // tag declaration or definition. See the similar lookup tweak
6699      // in Sema::LookupName; is there a better way to deal with this?
6700      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6701        SearchDC = SearchDC->getParent();
6702    }
6703  } else if (S->isFunctionPrototypeScope()) {
6704    // If this is an enum declaration in function prototype scope, set its
6705    // initial context to the translation unit.
6706    SearchDC = Context.getTranslationUnitDecl();
6707  }
6708
6709  if (Previous.isSingleResult() &&
6710      Previous.getFoundDecl()->isTemplateParameter()) {
6711    // Maybe we will complain about the shadowed template parameter.
6712    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6713    // Just pretend that we didn't see the previous declaration.
6714    Previous.clear();
6715  }
6716
6717  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6718      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6719    // This is a declaration of or a reference to "std::bad_alloc".
6720    isStdBadAlloc = true;
6721
6722    if (Previous.empty() && StdBadAlloc) {
6723      // std::bad_alloc has been implicitly declared (but made invisible to
6724      // name lookup). Fill in this implicit declaration as the previous
6725      // declaration, so that the declarations get chained appropriately.
6726      Previous.addDecl(getStdBadAlloc());
6727    }
6728  }
6729
6730  // If we didn't find a previous declaration, and this is a reference
6731  // (or friend reference), move to the correct scope.  In C++, we
6732  // also need to do a redeclaration lookup there, just in case
6733  // there's a shadow friend decl.
6734  if (Name && Previous.empty() &&
6735      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6736    if (Invalid) goto CreateNewDecl;
6737    assert(SS.isEmpty());
6738
6739    if (TUK == TUK_Reference) {
6740      // C++ [basic.scope.pdecl]p5:
6741      //   -- for an elaborated-type-specifier of the form
6742      //
6743      //          class-key identifier
6744      //
6745      //      if the elaborated-type-specifier is used in the
6746      //      decl-specifier-seq or parameter-declaration-clause of a
6747      //      function defined in namespace scope, the identifier is
6748      //      declared as a class-name in the namespace that contains
6749      //      the declaration; otherwise, except as a friend
6750      //      declaration, the identifier is declared in the smallest
6751      //      non-class, non-function-prototype scope that contains the
6752      //      declaration.
6753      //
6754      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6755      // C structs and unions.
6756      //
6757      // It is an error in C++ to declare (rather than define) an enum
6758      // type, including via an elaborated type specifier.  We'll
6759      // diagnose that later; for now, declare the enum in the same
6760      // scope as we would have picked for any other tag type.
6761      //
6762      // GNU C also supports this behavior as part of its incomplete
6763      // enum types extension, while GNU C++ does not.
6764      //
6765      // Find the context where we'll be declaring the tag.
6766      // FIXME: We would like to maintain the current DeclContext as the
6767      // lexical context,
6768      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6769        SearchDC = SearchDC->getParent();
6770
6771      // Find the scope where we'll be declaring the tag.
6772      while (S->isClassScope() ||
6773             (getLangOptions().CPlusPlus &&
6774              S->isFunctionPrototypeScope()) ||
6775             ((S->getFlags() & Scope::DeclScope) == 0) ||
6776             (S->getEntity() &&
6777              ((DeclContext *)S->getEntity())->isTransparentContext()))
6778        S = S->getParent();
6779    } else {
6780      assert(TUK == TUK_Friend);
6781      // C++ [namespace.memdef]p3:
6782      //   If a friend declaration in a non-local class first declares a
6783      //   class or function, the friend class or function is a member of
6784      //   the innermost enclosing namespace.
6785      SearchDC = SearchDC->getEnclosingNamespaceContext();
6786    }
6787
6788    // In C++, we need to do a redeclaration lookup to properly
6789    // diagnose some problems.
6790    if (getLangOptions().CPlusPlus) {
6791      Previous.setRedeclarationKind(ForRedeclaration);
6792      LookupQualifiedName(Previous, SearchDC);
6793    }
6794  }
6795
6796  if (!Previous.empty()) {
6797    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6798
6799    // It's okay to have a tag decl in the same scope as a typedef
6800    // which hides a tag decl in the same scope.  Finding this
6801    // insanity with a redeclaration lookup can only actually happen
6802    // in C++.
6803    //
6804    // This is also okay for elaborated-type-specifiers, which is
6805    // technically forbidden by the current standard but which is
6806    // okay according to the likely resolution of an open issue;
6807    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6808    if (getLangOptions().CPlusPlus) {
6809      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6810        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6811          TagDecl *Tag = TT->getDecl();
6812          if (Tag->getDeclName() == Name &&
6813              Tag->getDeclContext()->getRedeclContext()
6814                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6815            PrevDecl = Tag;
6816            Previous.clear();
6817            Previous.addDecl(Tag);
6818            Previous.resolveKind();
6819          }
6820        }
6821      }
6822    }
6823
6824    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6825      // If this is a use of a previous tag, or if the tag is already declared
6826      // in the same scope (so that the definition/declaration completes or
6827      // rementions the tag), reuse the decl.
6828      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6829          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6830        // Make sure that this wasn't declared as an enum and now used as a
6831        // struct or something similar.
6832        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6833          bool SafeToContinue
6834            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6835               Kind != TTK_Enum);
6836          if (SafeToContinue)
6837            Diag(KWLoc, diag::err_use_with_wrong_tag)
6838              << Name
6839              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6840                                              PrevTagDecl->getKindName());
6841          else
6842            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6843          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6844
6845          if (SafeToContinue)
6846            Kind = PrevTagDecl->getTagKind();
6847          else {
6848            // Recover by making this an anonymous redefinition.
6849            Name = 0;
6850            Previous.clear();
6851            Invalid = true;
6852          }
6853        }
6854
6855        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6856          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6857
6858          // All conflicts with previous declarations are recovered by
6859          // returning the previous declaration.
6860          if (ScopedEnum != PrevEnum->isScoped()) {
6861            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6862              << PrevEnum->isScoped();
6863            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6864            return PrevTagDecl;
6865          }
6866          else if (EnumUnderlying && PrevEnum->isFixed()) {
6867            QualType T;
6868            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6869                T = TI->getType();
6870            else
6871                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6872
6873            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6874              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6875                   diag::err_enum_redeclare_type_mismatch)
6876                << T
6877                << PrevEnum->getIntegerType();
6878              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6879              return PrevTagDecl;
6880            }
6881          }
6882          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6883            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6884              << PrevEnum->isFixed();
6885            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6886            return PrevTagDecl;
6887          }
6888        }
6889
6890        if (!Invalid) {
6891          // If this is a use, just return the declaration we found.
6892
6893          // FIXME: In the future, return a variant or some other clue
6894          // for the consumer of this Decl to know it doesn't own it.
6895          // For our current ASTs this shouldn't be a problem, but will
6896          // need to be changed with DeclGroups.
6897          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6898              TUK == TUK_Friend)
6899            return PrevTagDecl;
6900
6901          // Diagnose attempts to redefine a tag.
6902          if (TUK == TUK_Definition) {
6903            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6904              // If we're defining a specialization and the previous definition
6905              // is from an implicit instantiation, don't emit an error
6906              // here; we'll catch this in the general case below.
6907              if (!isExplicitSpecialization ||
6908                  !isa<CXXRecordDecl>(Def) ||
6909                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6910                                               == TSK_ExplicitSpecialization) {
6911                Diag(NameLoc, diag::err_redefinition) << Name;
6912                Diag(Def->getLocation(), diag::note_previous_definition);
6913                // If this is a redefinition, recover by making this
6914                // struct be anonymous, which will make any later
6915                // references get the previous definition.
6916                Name = 0;
6917                Previous.clear();
6918                Invalid = true;
6919              }
6920            } else {
6921              // If the type is currently being defined, complain
6922              // about a nested redefinition.
6923              const TagType *Tag
6924                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6925              if (Tag->isBeingDefined()) {
6926                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6927                Diag(PrevTagDecl->getLocation(),
6928                     diag::note_previous_definition);
6929                Name = 0;
6930                Previous.clear();
6931                Invalid = true;
6932              }
6933            }
6934
6935            // Okay, this is definition of a previously declared or referenced
6936            // tag PrevDecl. We're going to create a new Decl for it.
6937          }
6938        }
6939        // If we get here we have (another) forward declaration or we
6940        // have a definition.  Just create a new decl.
6941
6942      } else {
6943        // If we get here, this is a definition of a new tag type in a nested
6944        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6945        // new decl/type.  We set PrevDecl to NULL so that the entities
6946        // have distinct types.
6947        Previous.clear();
6948      }
6949      // If we get here, we're going to create a new Decl. If PrevDecl
6950      // is non-NULL, it's a definition of the tag declared by
6951      // PrevDecl. If it's NULL, we have a new definition.
6952
6953
6954    // Otherwise, PrevDecl is not a tag, but was found with tag
6955    // lookup.  This is only actually possible in C++, where a few
6956    // things like templates still live in the tag namespace.
6957    } else {
6958      assert(getLangOptions().CPlusPlus);
6959
6960      // Use a better diagnostic if an elaborated-type-specifier
6961      // found the wrong kind of type on the first
6962      // (non-redeclaration) lookup.
6963      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6964          !Previous.isForRedeclaration()) {
6965        unsigned Kind = 0;
6966        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6967        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6968        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6969        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6970        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6971        Invalid = true;
6972
6973      // Otherwise, only diagnose if the declaration is in scope.
6974      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6975                                isExplicitSpecialization)) {
6976        // do nothing
6977
6978      // Diagnose implicit declarations introduced by elaborated types.
6979      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6980        unsigned Kind = 0;
6981        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6982        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6983        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6984        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6985        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6986        Invalid = true;
6987
6988      // Otherwise it's a declaration.  Call out a particularly common
6989      // case here.
6990      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6991        unsigned Kind = 0;
6992        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
6993        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6994          << Name << Kind << TND->getUnderlyingType();
6995        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6996        Invalid = true;
6997
6998      // Otherwise, diagnose.
6999      } else {
7000        // The tag name clashes with something else in the target scope,
7001        // issue an error and recover by making this tag be anonymous.
7002        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7003        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7004        Name = 0;
7005        Invalid = true;
7006      }
7007
7008      // The existing declaration isn't relevant to us; we're in a
7009      // new scope, so clear out the previous declaration.
7010      Previous.clear();
7011    }
7012  }
7013
7014CreateNewDecl:
7015
7016  TagDecl *PrevDecl = 0;
7017  if (Previous.isSingleResult())
7018    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7019
7020  // If there is an identifier, use the location of the identifier as the
7021  // location of the decl, otherwise use the location of the struct/union
7022  // keyword.
7023  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7024
7025  // Otherwise, create a new declaration. If there is a previous
7026  // declaration of the same entity, the two will be linked via
7027  // PrevDecl.
7028  TagDecl *New;
7029
7030  bool IsForwardReference = false;
7031  if (Kind == TTK_Enum) {
7032    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7033    // enum X { A, B, C } D;    D should chain to X.
7034    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7035                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7036                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7037    // If this is an undefined enum, warn.
7038    if (TUK != TUK_Definition && !Invalid) {
7039      TagDecl *Def;
7040      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7041        // C++0x: 7.2p2: opaque-enum-declaration.
7042        // Conflicts are diagnosed above. Do nothing.
7043      }
7044      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7045        Diag(Loc, diag::ext_forward_ref_enum_def)
7046          << New;
7047        Diag(Def->getLocation(), diag::note_previous_definition);
7048      } else {
7049        unsigned DiagID = diag::ext_forward_ref_enum;
7050        if (getLangOptions().Microsoft)
7051          DiagID = diag::ext_ms_forward_ref_enum;
7052        else if (getLangOptions().CPlusPlus)
7053          DiagID = diag::err_forward_ref_enum;
7054        Diag(Loc, DiagID);
7055
7056        // If this is a forward-declared reference to an enumeration, make a
7057        // note of it; we won't actually be introducing the declaration into
7058        // the declaration context.
7059        if (TUK == TUK_Reference)
7060          IsForwardReference = true;
7061      }
7062    }
7063
7064    if (EnumUnderlying) {
7065      EnumDecl *ED = cast<EnumDecl>(New);
7066      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7067        ED->setIntegerTypeSourceInfo(TI);
7068      else
7069        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7070      ED->setPromotionType(ED->getIntegerType());
7071    }
7072
7073  } else {
7074    // struct/union/class
7075
7076    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7077    // struct X { int A; } D;    D should chain to X.
7078    if (getLangOptions().CPlusPlus) {
7079      // FIXME: Look for a way to use RecordDecl for simple structs.
7080      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7081                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7082
7083      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7084        StdBadAlloc = cast<CXXRecordDecl>(New);
7085    } else
7086      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7087                               cast_or_null<RecordDecl>(PrevDecl));
7088  }
7089
7090  // Maybe add qualifier info.
7091  if (SS.isNotEmpty()) {
7092    if (SS.isSet()) {
7093      New->setQualifierInfo(SS.getWithLocInContext(Context));
7094      if (TemplateParameterLists.size() > 0) {
7095        New->setTemplateParameterListsInfo(Context,
7096                                           TemplateParameterLists.size(),
7097                    (TemplateParameterList**) TemplateParameterLists.release());
7098      }
7099    }
7100    else
7101      Invalid = true;
7102  }
7103
7104  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7105    // Add alignment attributes if necessary; these attributes are checked when
7106    // the ASTContext lays out the structure.
7107    //
7108    // It is important for implementing the correct semantics that this
7109    // happen here (in act on tag decl). The #pragma pack stack is
7110    // maintained as a result of parser callbacks which can occur at
7111    // many points during the parsing of a struct declaration (because
7112    // the #pragma tokens are effectively skipped over during the
7113    // parsing of the struct).
7114    AddAlignmentAttributesForRecord(RD);
7115  }
7116
7117  // If this is a specialization of a member class (of a class template),
7118  // check the specialization.
7119  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7120    Invalid = true;
7121
7122  if (Invalid)
7123    New->setInvalidDecl();
7124
7125  if (Attr)
7126    ProcessDeclAttributeList(S, New, Attr);
7127
7128  // If we're declaring or defining a tag in function prototype scope
7129  // in C, note that this type can only be used within the function.
7130  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7131    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7132
7133  // Set the lexical context. If the tag has a C++ scope specifier, the
7134  // lexical context will be different from the semantic context.
7135  New->setLexicalDeclContext(CurContext);
7136
7137  // Mark this as a friend decl if applicable.
7138  if (TUK == TUK_Friend)
7139    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7140
7141  // Set the access specifier.
7142  if (!Invalid && SearchDC->isRecord())
7143    SetMemberAccessSpecifier(New, PrevDecl, AS);
7144
7145  if (TUK == TUK_Definition)
7146    New->startDefinition();
7147
7148  // If this has an identifier, add it to the scope stack.
7149  if (TUK == TUK_Friend) {
7150    // We might be replacing an existing declaration in the lookup tables;
7151    // if so, borrow its access specifier.
7152    if (PrevDecl)
7153      New->setAccess(PrevDecl->getAccess());
7154
7155    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7156    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7157    if (Name) // can be null along some error paths
7158      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7159        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7160  } else if (Name) {
7161    S = getNonFieldDeclScope(S);
7162    PushOnScopeChains(New, S, !IsForwardReference);
7163    if (IsForwardReference)
7164      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7165
7166  } else {
7167    CurContext->addDecl(New);
7168  }
7169
7170  // If this is the C FILE type, notify the AST context.
7171  if (IdentifierInfo *II = New->getIdentifier())
7172    if (!New->isInvalidDecl() &&
7173        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7174        II->isStr("FILE"))
7175      Context.setFILEDecl(New);
7176
7177  OwnedDecl = true;
7178  return New;
7179}
7180
7181void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7182  AdjustDeclIfTemplate(TagD);
7183  TagDecl *Tag = cast<TagDecl>(TagD);
7184
7185  // Enter the tag context.
7186  PushDeclContext(S, Tag);
7187}
7188
7189void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7190                                           SourceLocation FinalLoc,
7191                                           SourceLocation LBraceLoc) {
7192  AdjustDeclIfTemplate(TagD);
7193  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7194
7195  FieldCollector->StartClass();
7196
7197  if (!Record->getIdentifier())
7198    return;
7199
7200  if (FinalLoc.isValid())
7201    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7202
7203  // C++ [class]p2:
7204  //   [...] The class-name is also inserted into the scope of the
7205  //   class itself; this is known as the injected-class-name. For
7206  //   purposes of access checking, the injected-class-name is treated
7207  //   as if it were a public member name.
7208  CXXRecordDecl *InjectedClassName
7209    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7210                            Record->getLocStart(), Record->getLocation(),
7211                            Record->getIdentifier(),
7212                            /*PrevDecl=*/0,
7213                            /*DelayTypeCreation=*/true);
7214  Context.getTypeDeclType(InjectedClassName, Record);
7215  InjectedClassName->setImplicit();
7216  InjectedClassName->setAccess(AS_public);
7217  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7218      InjectedClassName->setDescribedClassTemplate(Template);
7219  PushOnScopeChains(InjectedClassName, S);
7220  assert(InjectedClassName->isInjectedClassName() &&
7221         "Broken injected-class-name");
7222}
7223
7224void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7225                                    SourceLocation RBraceLoc) {
7226  AdjustDeclIfTemplate(TagD);
7227  TagDecl *Tag = cast<TagDecl>(TagD);
7228  Tag->setRBraceLoc(RBraceLoc);
7229
7230  if (isa<CXXRecordDecl>(Tag))
7231    FieldCollector->FinishClass();
7232
7233  // Exit this scope of this tag's definition.
7234  PopDeclContext();
7235
7236  // Notify the consumer that we've defined a tag.
7237  Consumer.HandleTagDeclDefinition(Tag);
7238}
7239
7240void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7241  AdjustDeclIfTemplate(TagD);
7242  TagDecl *Tag = cast<TagDecl>(TagD);
7243  Tag->setInvalidDecl();
7244
7245  // We're undoing ActOnTagStartDefinition here, not
7246  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7247  // the FieldCollector.
7248
7249  PopDeclContext();
7250}
7251
7252// Note that FieldName may be null for anonymous bitfields.
7253bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7254                          QualType FieldTy, const Expr *BitWidth,
7255                          bool *ZeroWidth) {
7256  // Default to true; that shouldn't confuse checks for emptiness
7257  if (ZeroWidth)
7258    *ZeroWidth = true;
7259
7260  // C99 6.7.2.1p4 - verify the field type.
7261  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7262  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7263    // Handle incomplete types with specific error.
7264    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7265      return true;
7266    if (FieldName)
7267      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7268        << FieldName << FieldTy << BitWidth->getSourceRange();
7269    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7270      << FieldTy << BitWidth->getSourceRange();
7271  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7272                                             UPPC_BitFieldWidth))
7273    return true;
7274
7275  // If the bit-width is type- or value-dependent, don't try to check
7276  // it now.
7277  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7278    return false;
7279
7280  llvm::APSInt Value;
7281  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7282    return true;
7283
7284  if (Value != 0 && ZeroWidth)
7285    *ZeroWidth = false;
7286
7287  // Zero-width bitfield is ok for anonymous field.
7288  if (Value == 0 && FieldName)
7289    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7290
7291  if (Value.isSigned() && Value.isNegative()) {
7292    if (FieldName)
7293      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7294               << FieldName << Value.toString(10);
7295    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7296      << Value.toString(10);
7297  }
7298
7299  if (!FieldTy->isDependentType()) {
7300    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7301    if (Value.getZExtValue() > TypeSize) {
7302      if (!getLangOptions().CPlusPlus) {
7303        if (FieldName)
7304          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7305            << FieldName << (unsigned)Value.getZExtValue()
7306            << (unsigned)TypeSize;
7307
7308        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7309          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7310      }
7311
7312      if (FieldName)
7313        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7314          << FieldName << (unsigned)Value.getZExtValue()
7315          << (unsigned)TypeSize;
7316      else
7317        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7318          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7319    }
7320  }
7321
7322  return false;
7323}
7324
7325/// ActOnField - Each field of a struct/union/class is passed into this in order
7326/// to create a FieldDecl object for it.
7327Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7328                                 SourceLocation DeclStart,
7329                                 Declarator &D, ExprTy *BitfieldWidth) {
7330  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7331                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7332                               AS_public);
7333  return Res;
7334}
7335
7336/// HandleField - Analyze a field of a C struct or a C++ data member.
7337///
7338FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7339                             SourceLocation DeclStart,
7340                             Declarator &D, Expr *BitWidth,
7341                             AccessSpecifier AS) {
7342  IdentifierInfo *II = D.getIdentifier();
7343  SourceLocation Loc = DeclStart;
7344  if (II) Loc = D.getIdentifierLoc();
7345
7346  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7347  QualType T = TInfo->getType();
7348  if (getLangOptions().CPlusPlus) {
7349    CheckExtraCXXDefaultArguments(D);
7350
7351    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7352                                        UPPC_DataMemberType)) {
7353      D.setInvalidType();
7354      T = Context.IntTy;
7355      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7356    }
7357  }
7358
7359  DiagnoseFunctionSpecifiers(D);
7360
7361  if (D.getDeclSpec().isThreadSpecified())
7362    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7363
7364  // Check to see if this name was declared as a member previously
7365  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7366  LookupName(Previous, S);
7367  assert((Previous.empty() || Previous.isOverloadedResult() ||
7368          Previous.isSingleResult())
7369    && "Lookup of member name should be either overloaded, single or null");
7370
7371  // If the name is overloaded then get any declaration else get the single result
7372  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7373    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7374
7375  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7376    // Maybe we will complain about the shadowed template parameter.
7377    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7378    // Just pretend that we didn't see the previous declaration.
7379    PrevDecl = 0;
7380  }
7381
7382  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7383    PrevDecl = 0;
7384
7385  bool Mutable
7386    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7387  SourceLocation TSSL = D.getSourceRange().getBegin();
7388  FieldDecl *NewFD
7389    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7390                     AS, PrevDecl, &D);
7391
7392  if (NewFD->isInvalidDecl())
7393    Record->setInvalidDecl();
7394
7395  if (NewFD->isInvalidDecl() && PrevDecl) {
7396    // Don't introduce NewFD into scope; there's already something
7397    // with the same name in the same scope.
7398  } else if (II) {
7399    PushOnScopeChains(NewFD, S);
7400  } else
7401    Record->addDecl(NewFD);
7402
7403  return NewFD;
7404}
7405
7406/// \brief Build a new FieldDecl and check its well-formedness.
7407///
7408/// This routine builds a new FieldDecl given the fields name, type,
7409/// record, etc. \p PrevDecl should refer to any previous declaration
7410/// with the same name and in the same scope as the field to be
7411/// created.
7412///
7413/// \returns a new FieldDecl.
7414///
7415/// \todo The Declarator argument is a hack. It will be removed once
7416FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7417                                TypeSourceInfo *TInfo,
7418                                RecordDecl *Record, SourceLocation Loc,
7419                                bool Mutable, Expr *BitWidth,
7420                                SourceLocation TSSL,
7421                                AccessSpecifier AS, NamedDecl *PrevDecl,
7422                                Declarator *D) {
7423  IdentifierInfo *II = Name.getAsIdentifierInfo();
7424  bool InvalidDecl = false;
7425  if (D) InvalidDecl = D->isInvalidType();
7426
7427  // If we receive a broken type, recover by assuming 'int' and
7428  // marking this declaration as invalid.
7429  if (T.isNull()) {
7430    InvalidDecl = true;
7431    T = Context.IntTy;
7432  }
7433
7434  QualType EltTy = Context.getBaseElementType(T);
7435  if (!EltTy->isDependentType() &&
7436      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7437    // Fields of incomplete type force their record to be invalid.
7438    Record->setInvalidDecl();
7439    InvalidDecl = true;
7440  }
7441
7442  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7443  // than a variably modified type.
7444  if (!InvalidDecl && T->isVariablyModifiedType()) {
7445    bool SizeIsNegative;
7446    llvm::APSInt Oversized;
7447    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7448                                                           SizeIsNegative,
7449                                                           Oversized);
7450    if (!FixedTy.isNull()) {
7451      Diag(Loc, diag::warn_illegal_constant_array_size);
7452      T = FixedTy;
7453    } else {
7454      if (SizeIsNegative)
7455        Diag(Loc, diag::err_typecheck_negative_array_size);
7456      else if (Oversized.getBoolValue())
7457        Diag(Loc, diag::err_array_too_large)
7458          << Oversized.toString(10);
7459      else
7460        Diag(Loc, diag::err_typecheck_field_variable_size);
7461      InvalidDecl = true;
7462    }
7463  }
7464
7465  // Fields can not have abstract class types
7466  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7467                                             diag::err_abstract_type_in_decl,
7468                                             AbstractFieldType))
7469    InvalidDecl = true;
7470
7471  bool ZeroWidth = false;
7472  // If this is declared as a bit-field, check the bit-field.
7473  if (!InvalidDecl && BitWidth &&
7474      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7475    InvalidDecl = true;
7476    BitWidth = 0;
7477    ZeroWidth = false;
7478  }
7479
7480  // Check that 'mutable' is consistent with the type of the declaration.
7481  if (!InvalidDecl && Mutable) {
7482    unsigned DiagID = 0;
7483    if (T->isReferenceType())
7484      DiagID = diag::err_mutable_reference;
7485    else if (T.isConstQualified())
7486      DiagID = diag::err_mutable_const;
7487
7488    if (DiagID) {
7489      SourceLocation ErrLoc = Loc;
7490      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7491        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7492      Diag(ErrLoc, DiagID);
7493      Mutable = false;
7494      InvalidDecl = true;
7495    }
7496  }
7497
7498  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7499                                       BitWidth, Mutable);
7500  if (InvalidDecl)
7501    NewFD->setInvalidDecl();
7502
7503  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7504    Diag(Loc, diag::err_duplicate_member) << II;
7505    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7506    NewFD->setInvalidDecl();
7507  }
7508
7509  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7510    if (Record->isUnion()) {
7511      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7512        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7513        if (RDecl->getDefinition()) {
7514          // C++ [class.union]p1: An object of a class with a non-trivial
7515          // constructor, a non-trivial copy constructor, a non-trivial
7516          // destructor, or a non-trivial copy assignment operator
7517          // cannot be a member of a union, nor can an array of such
7518          // objects.
7519          // TODO: C++0x alters this restriction significantly.
7520          if (CheckNontrivialField(NewFD))
7521            NewFD->setInvalidDecl();
7522        }
7523      }
7524
7525      // C++ [class.union]p1: If a union contains a member of reference type,
7526      // the program is ill-formed.
7527      if (EltTy->isReferenceType()) {
7528        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7529          << NewFD->getDeclName() << EltTy;
7530        NewFD->setInvalidDecl();
7531      }
7532    }
7533  }
7534
7535  // FIXME: We need to pass in the attributes given an AST
7536  // representation, not a parser representation.
7537  if (D)
7538    // FIXME: What to pass instead of TUScope?
7539    ProcessDeclAttributes(TUScope, NewFD, *D);
7540
7541  if (T.isObjCGCWeak())
7542    Diag(Loc, diag::warn_attribute_weak_on_field);
7543
7544  NewFD->setAccess(AS);
7545  return NewFD;
7546}
7547
7548bool Sema::CheckNontrivialField(FieldDecl *FD) {
7549  assert(FD);
7550  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7551
7552  if (FD->isInvalidDecl())
7553    return true;
7554
7555  QualType EltTy = Context.getBaseElementType(FD->getType());
7556  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7557    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7558    if (RDecl->getDefinition()) {
7559      // We check for copy constructors before constructors
7560      // because otherwise we'll never get complaints about
7561      // copy constructors.
7562
7563      CXXSpecialMember member = CXXInvalid;
7564      if (!RDecl->hasTrivialCopyConstructor())
7565        member = CXXCopyConstructor;
7566      else if (!RDecl->hasTrivialConstructor())
7567        member = CXXConstructor;
7568      else if (!RDecl->hasTrivialCopyAssignment())
7569        member = CXXCopyAssignment;
7570      else if (!RDecl->hasTrivialDestructor())
7571        member = CXXDestructor;
7572
7573      if (member != CXXInvalid) {
7574        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7575              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7576        DiagnoseNontrivial(RT, member);
7577        return true;
7578      }
7579    }
7580  }
7581
7582  return false;
7583}
7584
7585/// DiagnoseNontrivial - Given that a class has a non-trivial
7586/// special member, figure out why.
7587void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7588  QualType QT(T, 0U);
7589  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7590
7591  // Check whether the member was user-declared.
7592  switch (member) {
7593  case CXXInvalid:
7594    break;
7595
7596  case CXXConstructor:
7597    if (RD->hasUserDeclaredConstructor()) {
7598      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7599      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7600        const FunctionDecl *body = 0;
7601        ci->hasBody(body);
7602        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7603          SourceLocation CtorLoc = ci->getLocation();
7604          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7605          return;
7606        }
7607      }
7608
7609      assert(0 && "found no user-declared constructors");
7610      return;
7611    }
7612    break;
7613
7614  case CXXCopyConstructor:
7615    if (RD->hasUserDeclaredCopyConstructor()) {
7616      SourceLocation CtorLoc =
7617        RD->getCopyConstructor(Context, 0)->getLocation();
7618      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7619      return;
7620    }
7621    break;
7622
7623  case CXXCopyAssignment:
7624    if (RD->hasUserDeclaredCopyAssignment()) {
7625      // FIXME: this should use the location of the copy
7626      // assignment, not the type.
7627      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7628      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7629      return;
7630    }
7631    break;
7632
7633  case CXXDestructor:
7634    if (RD->hasUserDeclaredDestructor()) {
7635      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7636      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7637      return;
7638    }
7639    break;
7640  }
7641
7642  typedef CXXRecordDecl::base_class_iterator base_iter;
7643
7644  // Virtual bases and members inhibit trivial copying/construction,
7645  // but not trivial destruction.
7646  if (member != CXXDestructor) {
7647    // Check for virtual bases.  vbases includes indirect virtual bases,
7648    // so we just iterate through the direct bases.
7649    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7650      if (bi->isVirtual()) {
7651        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7652        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7653        return;
7654      }
7655
7656    // Check for virtual methods.
7657    typedef CXXRecordDecl::method_iterator meth_iter;
7658    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7659         ++mi) {
7660      if (mi->isVirtual()) {
7661        SourceLocation MLoc = mi->getSourceRange().getBegin();
7662        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7663        return;
7664      }
7665    }
7666  }
7667
7668  bool (CXXRecordDecl::*hasTrivial)() const;
7669  switch (member) {
7670  case CXXConstructor:
7671    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7672  case CXXCopyConstructor:
7673    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7674  case CXXCopyAssignment:
7675    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7676  case CXXDestructor:
7677    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7678  default:
7679    assert(0 && "unexpected special member"); return;
7680  }
7681
7682  // Check for nontrivial bases (and recurse).
7683  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7684    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7685    assert(BaseRT && "Don't know how to handle dependent bases");
7686    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7687    if (!(BaseRecTy->*hasTrivial)()) {
7688      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7689      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7690      DiagnoseNontrivial(BaseRT, member);
7691      return;
7692    }
7693  }
7694
7695  // Check for nontrivial members (and recurse).
7696  typedef RecordDecl::field_iterator field_iter;
7697  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7698       ++fi) {
7699    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7700    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7701      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7702
7703      if (!(EltRD->*hasTrivial)()) {
7704        SourceLocation FLoc = (*fi)->getLocation();
7705        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7706        DiagnoseNontrivial(EltRT, member);
7707        return;
7708      }
7709    }
7710  }
7711
7712  assert(0 && "found no explanation for non-trivial member");
7713}
7714
7715/// TranslateIvarVisibility - Translate visibility from a token ID to an
7716///  AST enum value.
7717static ObjCIvarDecl::AccessControl
7718TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7719  switch (ivarVisibility) {
7720  default: assert(0 && "Unknown visitibility kind");
7721  case tok::objc_private: return ObjCIvarDecl::Private;
7722  case tok::objc_public: return ObjCIvarDecl::Public;
7723  case tok::objc_protected: return ObjCIvarDecl::Protected;
7724  case tok::objc_package: return ObjCIvarDecl::Package;
7725  }
7726}
7727
7728/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7729/// in order to create an IvarDecl object for it.
7730Decl *Sema::ActOnIvar(Scope *S,
7731                                SourceLocation DeclStart,
7732                                Decl *IntfDecl,
7733                                Declarator &D, ExprTy *BitfieldWidth,
7734                                tok::ObjCKeywordKind Visibility) {
7735
7736  IdentifierInfo *II = D.getIdentifier();
7737  Expr *BitWidth = (Expr*)BitfieldWidth;
7738  SourceLocation Loc = DeclStart;
7739  if (II) Loc = D.getIdentifierLoc();
7740
7741  // FIXME: Unnamed fields can be handled in various different ways, for
7742  // example, unnamed unions inject all members into the struct namespace!
7743
7744  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7745  QualType T = TInfo->getType();
7746
7747  if (BitWidth) {
7748    // 6.7.2.1p3, 6.7.2.1p4
7749    if (VerifyBitField(Loc, II, T, BitWidth)) {
7750      D.setInvalidType();
7751      BitWidth = 0;
7752    }
7753  } else {
7754    // Not a bitfield.
7755
7756    // validate II.
7757
7758  }
7759  if (T->isReferenceType()) {
7760    Diag(Loc, diag::err_ivar_reference_type);
7761    D.setInvalidType();
7762  }
7763  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7764  // than a variably modified type.
7765  else if (T->isVariablyModifiedType()) {
7766    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7767    D.setInvalidType();
7768  }
7769
7770  // Get the visibility (access control) for this ivar.
7771  ObjCIvarDecl::AccessControl ac =
7772    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7773                                        : ObjCIvarDecl::None;
7774  // Must set ivar's DeclContext to its enclosing interface.
7775  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7776  ObjCContainerDecl *EnclosingContext;
7777  if (ObjCImplementationDecl *IMPDecl =
7778      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7779    if (!LangOpts.ObjCNonFragileABI2) {
7780    // Case of ivar declared in an implementation. Context is that of its class.
7781      EnclosingContext = IMPDecl->getClassInterface();
7782      assert(EnclosingContext && "Implementation has no class interface!");
7783    }
7784    else
7785      EnclosingContext = EnclosingDecl;
7786  } else {
7787    if (ObjCCategoryDecl *CDecl =
7788        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7789      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7790        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7791        return 0;
7792      }
7793    }
7794    EnclosingContext = EnclosingDecl;
7795  }
7796
7797  // Construct the decl.
7798  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7799                                             DeclStart, Loc, II, T,
7800                                             TInfo, ac, (Expr *)BitfieldWidth);
7801
7802  if (II) {
7803    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7804                                           ForRedeclaration);
7805    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7806        && !isa<TagDecl>(PrevDecl)) {
7807      Diag(Loc, diag::err_duplicate_member) << II;
7808      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7809      NewID->setInvalidDecl();
7810    }
7811  }
7812
7813  // Process attributes attached to the ivar.
7814  ProcessDeclAttributes(S, NewID, D);
7815
7816  if (D.isInvalidType())
7817    NewID->setInvalidDecl();
7818
7819  if (II) {
7820    // FIXME: When interfaces are DeclContexts, we'll need to add
7821    // these to the interface.
7822    S->AddDecl(NewID);
7823    IdResolver.AddDecl(NewID);
7824  }
7825
7826  return NewID;
7827}
7828
7829/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7830/// class and class extensions. For every class @interface and class
7831/// extension @interface, if the last ivar is a bitfield of any type,
7832/// then add an implicit `char :0` ivar to the end of that interface.
7833void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7834                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7835  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7836    return;
7837
7838  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7839  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7840
7841  if (!Ivar->isBitField())
7842    return;
7843  uint64_t BitFieldSize =
7844    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7845  if (BitFieldSize == 0)
7846    return;
7847  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7848  if (!ID) {
7849    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7850      if (!CD->IsClassExtension())
7851        return;
7852    }
7853    // No need to add this to end of @implementation.
7854    else
7855      return;
7856  }
7857  // All conditions are met. Add a new bitfield to the tail end of ivars.
7858  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7859  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7860
7861  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7862                              DeclLoc, DeclLoc, 0,
7863                              Context.CharTy,
7864                              Context.CreateTypeSourceInfo(Context.CharTy),
7865                              ObjCIvarDecl::Private, BW,
7866                              true);
7867  AllIvarDecls.push_back(Ivar);
7868}
7869
7870void Sema::ActOnFields(Scope* S,
7871                       SourceLocation RecLoc, Decl *EnclosingDecl,
7872                       Decl **Fields, unsigned NumFields,
7873                       SourceLocation LBrac, SourceLocation RBrac,
7874                       AttributeList *Attr) {
7875  assert(EnclosingDecl && "missing record or interface decl");
7876
7877  // If the decl this is being inserted into is invalid, then it may be a
7878  // redeclaration or some other bogus case.  Don't try to add fields to it.
7879  if (EnclosingDecl->isInvalidDecl()) {
7880    // FIXME: Deallocate fields?
7881    return;
7882  }
7883
7884
7885  // Verify that all the fields are okay.
7886  unsigned NumNamedMembers = 0;
7887  llvm::SmallVector<FieldDecl*, 32> RecFields;
7888
7889  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7890  for (unsigned i = 0; i != NumFields; ++i) {
7891    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7892
7893    // Get the type for the field.
7894    const Type *FDTy = FD->getType().getTypePtr();
7895
7896    if (!FD->isAnonymousStructOrUnion()) {
7897      // Remember all fields written by the user.
7898      RecFields.push_back(FD);
7899    }
7900
7901    // If the field is already invalid for some reason, don't emit more
7902    // diagnostics about it.
7903    if (FD->isInvalidDecl()) {
7904      EnclosingDecl->setInvalidDecl();
7905      continue;
7906    }
7907
7908    // C99 6.7.2.1p2:
7909    //   A structure or union shall not contain a member with
7910    //   incomplete or function type (hence, a structure shall not
7911    //   contain an instance of itself, but may contain a pointer to
7912    //   an instance of itself), except that the last member of a
7913    //   structure with more than one named member may have incomplete
7914    //   array type; such a structure (and any union containing,
7915    //   possibly recursively, a member that is such a structure)
7916    //   shall not be a member of a structure or an element of an
7917    //   array.
7918    if (FDTy->isFunctionType()) {
7919      // Field declared as a function.
7920      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7921        << FD->getDeclName();
7922      FD->setInvalidDecl();
7923      EnclosingDecl->setInvalidDecl();
7924      continue;
7925    } else if (FDTy->isIncompleteArrayType() && Record &&
7926               ((i == NumFields - 1 && !Record->isUnion()) ||
7927                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7928                 (i == NumFields - 1 || Record->isUnion())))) {
7929      // Flexible array member.
7930      // Microsoft and g++ is more permissive regarding flexible array.
7931      // It will accept flexible array in union and also
7932      // as the sole element of a struct/class.
7933      if (getLangOptions().Microsoft) {
7934        if (Record->isUnion())
7935          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7936            << FD->getDeclName();
7937        else if (NumFields == 1)
7938          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7939            << FD->getDeclName() << Record->getTagKind();
7940      } else if (getLangOptions().CPlusPlus) {
7941        if (Record->isUnion())
7942          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7943            << FD->getDeclName();
7944        else if (NumFields == 1)
7945          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7946            << FD->getDeclName() << Record->getTagKind();
7947      } else if (NumNamedMembers < 1) {
7948        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7949          << FD->getDeclName();
7950        FD->setInvalidDecl();
7951        EnclosingDecl->setInvalidDecl();
7952        continue;
7953      }
7954      if (!FD->getType()->isDependentType() &&
7955          !Context.getBaseElementType(FD->getType())->isPODType()) {
7956        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7957          << FD->getDeclName() << FD->getType();
7958        FD->setInvalidDecl();
7959        EnclosingDecl->setInvalidDecl();
7960        continue;
7961      }
7962      // Okay, we have a legal flexible array member at the end of the struct.
7963      if (Record)
7964        Record->setHasFlexibleArrayMember(true);
7965    } else if (!FDTy->isDependentType() &&
7966               RequireCompleteType(FD->getLocation(), FD->getType(),
7967                                   diag::err_field_incomplete)) {
7968      // Incomplete type
7969      FD->setInvalidDecl();
7970      EnclosingDecl->setInvalidDecl();
7971      continue;
7972    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7973      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7974        // If this is a member of a union, then entire union becomes "flexible".
7975        if (Record && Record->isUnion()) {
7976          Record->setHasFlexibleArrayMember(true);
7977        } else {
7978          // If this is a struct/class and this is not the last element, reject
7979          // it.  Note that GCC supports variable sized arrays in the middle of
7980          // structures.
7981          if (i != NumFields-1)
7982            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7983              << FD->getDeclName() << FD->getType();
7984          else {
7985            // We support flexible arrays at the end of structs in
7986            // other structs as an extension.
7987            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7988              << FD->getDeclName();
7989            if (Record)
7990              Record->setHasFlexibleArrayMember(true);
7991          }
7992        }
7993      }
7994      if (Record && FDTTy->getDecl()->hasObjectMember())
7995        Record->setHasObjectMember(true);
7996    } else if (FDTy->isObjCObjectType()) {
7997      /// A field cannot be an Objective-c object
7998      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7999      FD->setInvalidDecl();
8000      EnclosingDecl->setInvalidDecl();
8001      continue;
8002    } else if (getLangOptions().ObjC1 &&
8003               getLangOptions().getGCMode() != LangOptions::NonGC &&
8004               Record &&
8005               (FD->getType()->isObjCObjectPointerType() ||
8006                FD->getType().isObjCGCStrong()))
8007      Record->setHasObjectMember(true);
8008    else if (Context.getAsArrayType(FD->getType())) {
8009      QualType BaseType = Context.getBaseElementType(FD->getType());
8010      if (Record && BaseType->isRecordType() &&
8011          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8012        Record->setHasObjectMember(true);
8013    }
8014    // Keep track of the number of named members.
8015    if (FD->getIdentifier())
8016      ++NumNamedMembers;
8017  }
8018
8019  // Okay, we successfully defined 'Record'.
8020  if (Record) {
8021    bool Completed = false;
8022    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8023      if (!CXXRecord->isInvalidDecl()) {
8024        // Set access bits correctly on the directly-declared conversions.
8025        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8026        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8027             I != E; ++I)
8028          Convs->setAccess(I, (*I)->getAccess());
8029
8030        if (!CXXRecord->isDependentType()) {
8031          // Add any implicitly-declared members to this class.
8032          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8033
8034          // If we have virtual base classes, we may end up finding multiple
8035          // final overriders for a given virtual function. Check for this
8036          // problem now.
8037          if (CXXRecord->getNumVBases()) {
8038            CXXFinalOverriderMap FinalOverriders;
8039            CXXRecord->getFinalOverriders(FinalOverriders);
8040
8041            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8042                                             MEnd = FinalOverriders.end();
8043                 M != MEnd; ++M) {
8044              for (OverridingMethods::iterator SO = M->second.begin(),
8045                                            SOEnd = M->second.end();
8046                   SO != SOEnd; ++SO) {
8047                assert(SO->second.size() > 0 &&
8048                       "Virtual function without overridding functions?");
8049                if (SO->second.size() == 1)
8050                  continue;
8051
8052                // C++ [class.virtual]p2:
8053                //   In a derived class, if a virtual member function of a base
8054                //   class subobject has more than one final overrider the
8055                //   program is ill-formed.
8056                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8057                  << (NamedDecl *)M->first << Record;
8058                Diag(M->first->getLocation(),
8059                     diag::note_overridden_virtual_function);
8060                for (OverridingMethods::overriding_iterator
8061                          OM = SO->second.begin(),
8062                       OMEnd = SO->second.end();
8063                     OM != OMEnd; ++OM)
8064                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8065                    << (NamedDecl *)M->first << OM->Method->getParent();
8066
8067                Record->setInvalidDecl();
8068              }
8069            }
8070            CXXRecord->completeDefinition(&FinalOverriders);
8071            Completed = true;
8072          }
8073        }
8074      }
8075    }
8076
8077    if (!Completed)
8078      Record->completeDefinition();
8079  } else {
8080    ObjCIvarDecl **ClsFields =
8081      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8082    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8083      ID->setLocEnd(RBrac);
8084      // Add ivar's to class's DeclContext.
8085      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8086        ClsFields[i]->setLexicalDeclContext(ID);
8087        ID->addDecl(ClsFields[i]);
8088      }
8089      // Must enforce the rule that ivars in the base classes may not be
8090      // duplicates.
8091      if (ID->getSuperClass())
8092        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8093    } else if (ObjCImplementationDecl *IMPDecl =
8094                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8095      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8096      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8097        // Ivar declared in @implementation never belongs to the implementation.
8098        // Only it is in implementation's lexical context.
8099        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8100      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8101    } else if (ObjCCategoryDecl *CDecl =
8102                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8103      // case of ivars in class extension; all other cases have been
8104      // reported as errors elsewhere.
8105      // FIXME. Class extension does not have a LocEnd field.
8106      // CDecl->setLocEnd(RBrac);
8107      // Add ivar's to class extension's DeclContext.
8108      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8109        ClsFields[i]->setLexicalDeclContext(CDecl);
8110        CDecl->addDecl(ClsFields[i]);
8111      }
8112    }
8113  }
8114
8115  if (Attr)
8116    ProcessDeclAttributeList(S, Record, Attr);
8117
8118  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8119  // set the visibility of this record.
8120  if (Record && !Record->getDeclContext()->isRecord())
8121    AddPushedVisibilityAttribute(Record);
8122}
8123
8124/// \brief Determine whether the given integral value is representable within
8125/// the given type T.
8126static bool isRepresentableIntegerValue(ASTContext &Context,
8127                                        llvm::APSInt &Value,
8128                                        QualType T) {
8129  assert(T->isIntegralType(Context) && "Integral type required!");
8130  unsigned BitWidth = Context.getIntWidth(T);
8131
8132  if (Value.isUnsigned() || Value.isNonNegative()) {
8133    if (T->isSignedIntegerType())
8134      --BitWidth;
8135    return Value.getActiveBits() <= BitWidth;
8136  }
8137  return Value.getMinSignedBits() <= BitWidth;
8138}
8139
8140// \brief Given an integral type, return the next larger integral type
8141// (or a NULL type of no such type exists).
8142static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8143  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8144  // enum checking below.
8145  assert(T->isIntegralType(Context) && "Integral type required!");
8146  const unsigned NumTypes = 4;
8147  QualType SignedIntegralTypes[NumTypes] = {
8148    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8149  };
8150  QualType UnsignedIntegralTypes[NumTypes] = {
8151    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8152    Context.UnsignedLongLongTy
8153  };
8154
8155  unsigned BitWidth = Context.getTypeSize(T);
8156  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8157                                            : UnsignedIntegralTypes;
8158  for (unsigned I = 0; I != NumTypes; ++I)
8159    if (Context.getTypeSize(Types[I]) > BitWidth)
8160      return Types[I];
8161
8162  return QualType();
8163}
8164
8165EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8166                                          EnumConstantDecl *LastEnumConst,
8167                                          SourceLocation IdLoc,
8168                                          IdentifierInfo *Id,
8169                                          Expr *Val) {
8170  unsigned IntWidth = Context.Target.getIntWidth();
8171  llvm::APSInt EnumVal(IntWidth);
8172  QualType EltTy;
8173
8174  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8175    Val = 0;
8176
8177  if (Val) {
8178    if (Enum->isDependentType() || Val->isTypeDependent())
8179      EltTy = Context.DependentTy;
8180    else {
8181      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8182      SourceLocation ExpLoc;
8183      if (!Val->isValueDependent() &&
8184          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8185        Val = 0;
8186      } else {
8187        if (!getLangOptions().CPlusPlus) {
8188          // C99 6.7.2.2p2:
8189          //   The expression that defines the value of an enumeration constant
8190          //   shall be an integer constant expression that has a value
8191          //   representable as an int.
8192
8193          // Complain if the value is not representable in an int.
8194          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8195            Diag(IdLoc, diag::ext_enum_value_not_int)
8196              << EnumVal.toString(10) << Val->getSourceRange()
8197              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8198          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8199            // Force the type of the expression to 'int'.
8200            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8201          }
8202        }
8203
8204        if (Enum->isFixed()) {
8205          EltTy = Enum->getIntegerType();
8206
8207          // C++0x [dcl.enum]p5:
8208          //   ... if the initializing value of an enumerator cannot be
8209          //   represented by the underlying type, the program is ill-formed.
8210          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8211            if (getLangOptions().Microsoft) {
8212              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8213              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8214            } else
8215              Diag(IdLoc, diag::err_enumerator_too_large)
8216                << EltTy;
8217          } else
8218            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8219        }
8220        else {
8221          // C++0x [dcl.enum]p5:
8222          //   If the underlying type is not fixed, the type of each enumerator
8223          //   is the type of its initializing value:
8224          //     - If an initializer is specified for an enumerator, the
8225          //       initializing value has the same type as the expression.
8226          EltTy = Val->getType();
8227        }
8228      }
8229    }
8230  }
8231
8232  if (!Val) {
8233    if (Enum->isDependentType())
8234      EltTy = Context.DependentTy;
8235    else if (!LastEnumConst) {
8236      // C++0x [dcl.enum]p5:
8237      //   If the underlying type is not fixed, the type of each enumerator
8238      //   is the type of its initializing value:
8239      //     - If no initializer is specified for the first enumerator, the
8240      //       initializing value has an unspecified integral type.
8241      //
8242      // GCC uses 'int' for its unspecified integral type, as does
8243      // C99 6.7.2.2p3.
8244      if (Enum->isFixed()) {
8245        EltTy = Enum->getIntegerType();
8246      }
8247      else {
8248        EltTy = Context.IntTy;
8249      }
8250    } else {
8251      // Assign the last value + 1.
8252      EnumVal = LastEnumConst->getInitVal();
8253      ++EnumVal;
8254      EltTy = LastEnumConst->getType();
8255
8256      // Check for overflow on increment.
8257      if (EnumVal < LastEnumConst->getInitVal()) {
8258        // C++0x [dcl.enum]p5:
8259        //   If the underlying type is not fixed, the type of each enumerator
8260        //   is the type of its initializing value:
8261        //
8262        //     - Otherwise the type of the initializing value is the same as
8263        //       the type of the initializing value of the preceding enumerator
8264        //       unless the incremented value is not representable in that type,
8265        //       in which case the type is an unspecified integral type
8266        //       sufficient to contain the incremented value. If no such type
8267        //       exists, the program is ill-formed.
8268        QualType T = getNextLargerIntegralType(Context, EltTy);
8269        if (T.isNull() || Enum->isFixed()) {
8270          // There is no integral type larger enough to represent this
8271          // value. Complain, then allow the value to wrap around.
8272          EnumVal = LastEnumConst->getInitVal();
8273          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8274          ++EnumVal;
8275          if (Enum->isFixed())
8276            // When the underlying type is fixed, this is ill-formed.
8277            Diag(IdLoc, diag::err_enumerator_wrapped)
8278              << EnumVal.toString(10)
8279              << EltTy;
8280          else
8281            Diag(IdLoc, diag::warn_enumerator_too_large)
8282              << EnumVal.toString(10);
8283        } else {
8284          EltTy = T;
8285        }
8286
8287        // Retrieve the last enumerator's value, extent that type to the
8288        // type that is supposed to be large enough to represent the incremented
8289        // value, then increment.
8290        EnumVal = LastEnumConst->getInitVal();
8291        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8292        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8293        ++EnumVal;
8294
8295        // If we're not in C++, diagnose the overflow of enumerator values,
8296        // which in C99 means that the enumerator value is not representable in
8297        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8298        // permits enumerator values that are representable in some larger
8299        // integral type.
8300        if (!getLangOptions().CPlusPlus && !T.isNull())
8301          Diag(IdLoc, diag::warn_enum_value_overflow);
8302      } else if (!getLangOptions().CPlusPlus &&
8303                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8304        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8305        Diag(IdLoc, diag::ext_enum_value_not_int)
8306          << EnumVal.toString(10) << 1;
8307      }
8308    }
8309  }
8310
8311  if (!EltTy->isDependentType()) {
8312    // Make the enumerator value match the signedness and size of the
8313    // enumerator's type.
8314    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8315    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8316  }
8317
8318  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8319                                  Val, EnumVal);
8320}
8321
8322
8323Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8324                              SourceLocation IdLoc, IdentifierInfo *Id,
8325                              AttributeList *Attr,
8326                              SourceLocation EqualLoc, ExprTy *val) {
8327  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8328  EnumConstantDecl *LastEnumConst =
8329    cast_or_null<EnumConstantDecl>(lastEnumConst);
8330  Expr *Val = static_cast<Expr*>(val);
8331
8332  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8333  // we find one that is.
8334  S = getNonFieldDeclScope(S);
8335
8336  // Verify that there isn't already something declared with this name in this
8337  // scope.
8338  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8339                                         ForRedeclaration);
8340  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8341    // Maybe we will complain about the shadowed template parameter.
8342    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8343    // Just pretend that we didn't see the previous declaration.
8344    PrevDecl = 0;
8345  }
8346
8347  if (PrevDecl) {
8348    // When in C++, we may get a TagDecl with the same name; in this case the
8349    // enum constant will 'hide' the tag.
8350    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8351           "Received TagDecl when not in C++!");
8352    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8353      if (isa<EnumConstantDecl>(PrevDecl))
8354        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8355      else
8356        Diag(IdLoc, diag::err_redefinition) << Id;
8357      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8358      return 0;
8359    }
8360  }
8361
8362  // C++ [class.mem]p13:
8363  //   If T is the name of a class, then each of the following shall have a
8364  //   name different from T:
8365  //     - every enumerator of every member of class T that is an enumerated
8366  //       type
8367  if (CXXRecordDecl *Record
8368                      = dyn_cast<CXXRecordDecl>(
8369                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8370    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8371      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8372
8373  EnumConstantDecl *New =
8374    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8375
8376  if (New) {
8377    // Process attributes.
8378    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8379
8380    // Register this decl in the current scope stack.
8381    New->setAccess(TheEnumDecl->getAccess());
8382    PushOnScopeChains(New, S);
8383  }
8384
8385  return New;
8386}
8387
8388void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8389                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8390                         Decl **Elements, unsigned NumElements,
8391                         Scope *S, AttributeList *Attr) {
8392  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8393  QualType EnumType = Context.getTypeDeclType(Enum);
8394
8395  if (Attr)
8396    ProcessDeclAttributeList(S, Enum, Attr);
8397
8398  if (Enum->isDependentType()) {
8399    for (unsigned i = 0; i != NumElements; ++i) {
8400      EnumConstantDecl *ECD =
8401        cast_or_null<EnumConstantDecl>(Elements[i]);
8402      if (!ECD) continue;
8403
8404      ECD->setType(EnumType);
8405    }
8406
8407    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8408    return;
8409  }
8410
8411  // TODO: If the result value doesn't fit in an int, it must be a long or long
8412  // long value.  ISO C does not support this, but GCC does as an extension,
8413  // emit a warning.
8414  unsigned IntWidth = Context.Target.getIntWidth();
8415  unsigned CharWidth = Context.Target.getCharWidth();
8416  unsigned ShortWidth = Context.Target.getShortWidth();
8417
8418  // Verify that all the values are okay, compute the size of the values, and
8419  // reverse the list.
8420  unsigned NumNegativeBits = 0;
8421  unsigned NumPositiveBits = 0;
8422
8423  // Keep track of whether all elements have type int.
8424  bool AllElementsInt = true;
8425
8426  for (unsigned i = 0; i != NumElements; ++i) {
8427    EnumConstantDecl *ECD =
8428      cast_or_null<EnumConstantDecl>(Elements[i]);
8429    if (!ECD) continue;  // Already issued a diagnostic.
8430
8431    const llvm::APSInt &InitVal = ECD->getInitVal();
8432
8433    // Keep track of the size of positive and negative values.
8434    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8435      NumPositiveBits = std::max(NumPositiveBits,
8436                                 (unsigned)InitVal.getActiveBits());
8437    else
8438      NumNegativeBits = std::max(NumNegativeBits,
8439                                 (unsigned)InitVal.getMinSignedBits());
8440
8441    // Keep track of whether every enum element has type int (very commmon).
8442    if (AllElementsInt)
8443      AllElementsInt = ECD->getType() == Context.IntTy;
8444  }
8445
8446  // Figure out the type that should be used for this enum.
8447  QualType BestType;
8448  unsigned BestWidth;
8449
8450  // C++0x N3000 [conv.prom]p3:
8451  //   An rvalue of an unscoped enumeration type whose underlying
8452  //   type is not fixed can be converted to an rvalue of the first
8453  //   of the following types that can represent all the values of
8454  //   the enumeration: int, unsigned int, long int, unsigned long
8455  //   int, long long int, or unsigned long long int.
8456  // C99 6.4.4.3p2:
8457  //   An identifier declared as an enumeration constant has type int.
8458  // The C99 rule is modified by a gcc extension
8459  QualType BestPromotionType;
8460
8461  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8462  // -fshort-enums is the equivalent to specifying the packed attribute on all
8463  // enum definitions.
8464  if (LangOpts.ShortEnums)
8465    Packed = true;
8466
8467  if (Enum->isFixed()) {
8468    BestType = BestPromotionType = Enum->getIntegerType();
8469    // We don't need to set BestWidth, because BestType is going to be the type
8470    // of the enumerators, but we do anyway because otherwise some compilers
8471    // warn that it might be used uninitialized.
8472    BestWidth = CharWidth;
8473  }
8474  else if (NumNegativeBits) {
8475    // If there is a negative value, figure out the smallest integer type (of
8476    // int/long/longlong) that fits.
8477    // If it's packed, check also if it fits a char or a short.
8478    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8479      BestType = Context.SignedCharTy;
8480      BestWidth = CharWidth;
8481    } else if (Packed && NumNegativeBits <= ShortWidth &&
8482               NumPositiveBits < ShortWidth) {
8483      BestType = Context.ShortTy;
8484      BestWidth = ShortWidth;
8485    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8486      BestType = Context.IntTy;
8487      BestWidth = IntWidth;
8488    } else {
8489      BestWidth = Context.Target.getLongWidth();
8490
8491      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8492        BestType = Context.LongTy;
8493      } else {
8494        BestWidth = Context.Target.getLongLongWidth();
8495
8496        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8497          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8498        BestType = Context.LongLongTy;
8499      }
8500    }
8501    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8502  } else {
8503    // If there is no negative value, figure out the smallest type that fits
8504    // all of the enumerator values.
8505    // If it's packed, check also if it fits a char or a short.
8506    if (Packed && NumPositiveBits <= CharWidth) {
8507      BestType = Context.UnsignedCharTy;
8508      BestPromotionType = Context.IntTy;
8509      BestWidth = CharWidth;
8510    } else if (Packed && NumPositiveBits <= ShortWidth) {
8511      BestType = Context.UnsignedShortTy;
8512      BestPromotionType = Context.IntTy;
8513      BestWidth = ShortWidth;
8514    } else if (NumPositiveBits <= IntWidth) {
8515      BestType = Context.UnsignedIntTy;
8516      BestWidth = IntWidth;
8517      BestPromotionType
8518        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8519                           ? Context.UnsignedIntTy : Context.IntTy;
8520    } else if (NumPositiveBits <=
8521               (BestWidth = Context.Target.getLongWidth())) {
8522      BestType = Context.UnsignedLongTy;
8523      BestPromotionType
8524        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8525                           ? Context.UnsignedLongTy : Context.LongTy;
8526    } else {
8527      BestWidth = Context.Target.getLongLongWidth();
8528      assert(NumPositiveBits <= BestWidth &&
8529             "How could an initializer get larger than ULL?");
8530      BestType = Context.UnsignedLongLongTy;
8531      BestPromotionType
8532        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8533                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8534    }
8535  }
8536
8537  // Loop over all of the enumerator constants, changing their types to match
8538  // the type of the enum if needed.
8539  for (unsigned i = 0; i != NumElements; ++i) {
8540    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8541    if (!ECD) continue;  // Already issued a diagnostic.
8542
8543    // Standard C says the enumerators have int type, but we allow, as an
8544    // extension, the enumerators to be larger than int size.  If each
8545    // enumerator value fits in an int, type it as an int, otherwise type it the
8546    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8547    // that X has type 'int', not 'unsigned'.
8548
8549    // Determine whether the value fits into an int.
8550    llvm::APSInt InitVal = ECD->getInitVal();
8551
8552    // If it fits into an integer type, force it.  Otherwise force it to match
8553    // the enum decl type.
8554    QualType NewTy;
8555    unsigned NewWidth;
8556    bool NewSign;
8557    if (!getLangOptions().CPlusPlus &&
8558        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8559      NewTy = Context.IntTy;
8560      NewWidth = IntWidth;
8561      NewSign = true;
8562    } else if (ECD->getType() == BestType) {
8563      // Already the right type!
8564      if (getLangOptions().CPlusPlus)
8565        // C++ [dcl.enum]p4: Following the closing brace of an
8566        // enum-specifier, each enumerator has the type of its
8567        // enumeration.
8568        ECD->setType(EnumType);
8569      continue;
8570    } else {
8571      NewTy = BestType;
8572      NewWidth = BestWidth;
8573      NewSign = BestType->isSignedIntegerType();
8574    }
8575
8576    // Adjust the APSInt value.
8577    InitVal = InitVal.extOrTrunc(NewWidth);
8578    InitVal.setIsSigned(NewSign);
8579    ECD->setInitVal(InitVal);
8580
8581    // Adjust the Expr initializer and type.
8582    if (ECD->getInitExpr() &&
8583	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8584      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8585                                                CK_IntegralCast,
8586                                                ECD->getInitExpr(),
8587                                                /*base paths*/ 0,
8588                                                VK_RValue));
8589    if (getLangOptions().CPlusPlus)
8590      // C++ [dcl.enum]p4: Following the closing brace of an
8591      // enum-specifier, each enumerator has the type of its
8592      // enumeration.
8593      ECD->setType(EnumType);
8594    else
8595      ECD->setType(NewTy);
8596  }
8597
8598  Enum->completeDefinition(BestType, BestPromotionType,
8599                           NumPositiveBits, NumNegativeBits);
8600}
8601
8602Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8603                                  SourceLocation StartLoc,
8604                                  SourceLocation EndLoc) {
8605  StringLiteral *AsmString = cast<StringLiteral>(expr);
8606
8607  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8608                                                   AsmString, StartLoc,
8609                                                   EndLoc);
8610  CurContext->addDecl(New);
8611  return New;
8612}
8613
8614void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8615                             SourceLocation PragmaLoc,
8616                             SourceLocation NameLoc) {
8617  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8618
8619  if (PrevDecl) {
8620    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8621  } else {
8622    (void)WeakUndeclaredIdentifiers.insert(
8623      std::pair<IdentifierInfo*,WeakInfo>
8624        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8625  }
8626}
8627
8628void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8629                                IdentifierInfo* AliasName,
8630                                SourceLocation PragmaLoc,
8631                                SourceLocation NameLoc,
8632                                SourceLocation AliasNameLoc) {
8633  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8634                                    LookupOrdinaryName);
8635  WeakInfo W = WeakInfo(Name, NameLoc);
8636
8637  if (PrevDecl) {
8638    if (!PrevDecl->hasAttr<AliasAttr>())
8639      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8640        DeclApplyPragmaWeak(TUScope, ND, W);
8641  } else {
8642    (void)WeakUndeclaredIdentifiers.insert(
8643      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8644  }
8645}
8646