SemaDecl.cpp revision 33500955d731c73717af52088b7fc0e7a85681e7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363}
364
365/// EnterDeclaratorContext - Used when we must lookup names in the context
366/// of a declarator's nested name specifier.
367///
368void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
369  // C++0x [basic.lookup.unqual]p13:
370  //   A name used in the definition of a static data member of class
371  //   X (after the qualified-id of the static member) is looked up as
372  //   if the name was used in a member function of X.
373  // C++0x [basic.lookup.unqual]p14:
374  //   If a variable member of a namespace is defined outside of the
375  //   scope of its namespace then any name used in the definition of
376  //   the variable member (after the declarator-id) is looked up as
377  //   if the definition of the variable member occurred in its
378  //   namespace.
379  // Both of these imply that we should push a scope whose context
380  // is the semantic context of the declaration.  We can't use
381  // PushDeclContext here because that context is not necessarily
382  // lexically contained in the current context.  Fortunately,
383  // the containing scope should have the appropriate information.
384
385  assert(!S->getEntity() && "scope already has entity");
386
387#ifndef NDEBUG
388  Scope *Ancestor = S->getParent();
389  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
390  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
391#endif
392
393  CurContext = DC;
394  S->setEntity(DC);
395}
396
397void Sema::ExitDeclaratorContext(Scope *S) {
398  assert(S->getEntity() == CurContext && "Context imbalance!");
399
400  // Switch back to the lexical context.  The safety of this is
401  // enforced by an assert in EnterDeclaratorContext.
402  Scope *Ancestor = S->getParent();
403  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
404  CurContext = (DeclContext*) Ancestor->getEntity();
405
406  // We don't need to do anything with the scope, which is going to
407  // disappear.
408}
409
410/// \brief Determine whether we allow overloading of the function
411/// PrevDecl with another declaration.
412///
413/// This routine determines whether overloading is possible, not
414/// whether some new function is actually an overload. It will return
415/// true in C++ (where we can always provide overloads) or, as an
416/// extension, in C when the previous function is already an
417/// overloaded function declaration or has the "overloadable"
418/// attribute.
419static bool AllowOverloadingOfFunction(LookupResult &Previous,
420                                       ASTContext &Context) {
421  if (Context.getLangOptions().CPlusPlus)
422    return true;
423
424  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
425    return true;
426
427  return (Previous.getResultKind() == LookupResult::Found
428          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
429}
430
431/// Add this decl to the scope shadowed decl chains.
432void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
433  // Move up the scope chain until we find the nearest enclosing
434  // non-transparent context. The declaration will be introduced into this
435  // scope.
436  while (S->getEntity() &&
437         ((DeclContext *)S->getEntity())->isTransparentContext())
438    S = S->getParent();
439
440  // Add scoped declarations into their context, so that they can be
441  // found later. Declarations without a context won't be inserted
442  // into any context.
443  if (AddToContext)
444    CurContext->addDecl(D);
445
446  // Out-of-line definitions shouldn't be pushed into scope in C++.
447  // Out-of-line variable and function definitions shouldn't even in C.
448  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
449      D->isOutOfLine())
450    return;
451
452  // Template instantiations should also not be pushed into scope.
453  if (isa<FunctionDecl>(D) &&
454      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
455    return;
456
457  // If this replaces anything in the current scope,
458  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
459                               IEnd = IdResolver.end();
460  for (; I != IEnd; ++I) {
461    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
462      S->RemoveDecl(DeclPtrTy::make(*I));
463      IdResolver.RemoveDecl(*I);
464
465      // Should only need to replace one decl.
466      break;
467    }
468  }
469
470  S->AddDecl(DeclPtrTy::make(D));
471  IdResolver.AddDecl(D);
472}
473
474bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
475  return IdResolver.isDeclInScope(D, Ctx, Context, S);
476}
477
478static bool isOutOfScopePreviousDeclaration(NamedDecl *,
479                                            DeclContext*,
480                                            ASTContext&);
481
482/// Filters out lookup results that don't fall within the given scope
483/// as determined by isDeclInScope.
484static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
485                                 DeclContext *Ctx, Scope *S,
486                                 bool ConsiderLinkage) {
487  LookupResult::Filter F = R.makeFilter();
488  while (F.hasNext()) {
489    NamedDecl *D = F.next();
490
491    if (SemaRef.isDeclInScope(D, Ctx, S))
492      continue;
493
494    if (ConsiderLinkage &&
495        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
496      continue;
497
498    F.erase();
499  }
500
501  F.done();
502}
503
504static bool isUsingDecl(NamedDecl *D) {
505  return isa<UsingShadowDecl>(D) ||
506         isa<UnresolvedUsingTypenameDecl>(D) ||
507         isa<UnresolvedUsingValueDecl>(D);
508}
509
510/// Removes using shadow declarations from the lookup results.
511static void RemoveUsingDecls(LookupResult &R) {
512  LookupResult::Filter F = R.makeFilter();
513  while (F.hasNext())
514    if (isUsingDecl(F.next()))
515      F.erase();
516
517  F.done();
518}
519
520static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
521  if (D->isInvalidDecl())
522    return false;
523
524  if (D->isUsed() || D->hasAttr<UnusedAttr>())
525    return false;
526
527  // White-list anything that isn't a local variable.
528  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
529      !D->getDeclContext()->isFunctionOrMethod())
530    return false;
531
532  // Types of valid local variables should be complete, so this should succeed.
533  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
534
535    // White-list anything with an __attribute__((unused)) type.
536    QualType Ty = VD->getType();
537
538    // Only look at the outermost level of typedef.
539    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
540      if (TT->getDecl()->hasAttr<UnusedAttr>())
541        return false;
542    }
543
544    // If we failed to complete the type for some reason, or if the type is
545    // dependent, don't diagnose the variable.
546    if (Ty->isIncompleteType() || Ty->isDependentType())
547      return false;
548
549    if (const TagType *TT = Ty->getAs<TagType>()) {
550      const TagDecl *Tag = TT->getDecl();
551      if (Tag->hasAttr<UnusedAttr>())
552        return false;
553
554      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
555        // FIXME: Checking for the presence of a user-declared constructor
556        // isn't completely accurate; we'd prefer to check that the initializer
557        // has no side effects.
558        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
559          return false;
560      }
561    }
562
563    // TODO: __attribute__((unused)) templates?
564  }
565
566  return true;
567}
568
569void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
570  if (!ShouldDiagnoseUnusedDecl(D))
571    return;
572
573  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
574    Diag(D->getLocation(), diag::warn_unused_exception_param)
575    << D->getDeclName();
576  else
577    Diag(D->getLocation(), diag::warn_unused_variable)
578    << D->getDeclName();
579}
580
581void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
582  if (S->decl_empty()) return;
583  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
584         "Scope shouldn't contain decls!");
585
586  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
587       I != E; ++I) {
588    Decl *TmpD = (*I).getAs<Decl>();
589    assert(TmpD && "This decl didn't get pushed??");
590
591    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
592    NamedDecl *D = cast<NamedDecl>(TmpD);
593
594    if (!D->getDeclName()) continue;
595
596    // Diagnose unused variables in this scope.
597    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
598      DiagnoseUnusedDecl(D);
599
600    // Remove this name from our lexical scope.
601    IdResolver.RemoveDecl(D);
602  }
603}
604
605/// \brief Look for an Objective-C class in the translation unit.
606///
607/// \param Id The name of the Objective-C class we're looking for. If
608/// typo-correction fixes this name, the Id will be updated
609/// to the fixed name.
610///
611/// \param IdLoc The location of the name in the translation unit.
612///
613/// \param TypoCorrection If true, this routine will attempt typo correction
614/// if there is no class with the given name.
615///
616/// \returns The declaration of the named Objective-C class, or NULL if the
617/// class could not be found.
618ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
619                                              SourceLocation IdLoc,
620                                              bool TypoCorrection) {
621  // The third "scope" argument is 0 since we aren't enabling lazy built-in
622  // creation from this context.
623  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
624
625  if (!IDecl && TypoCorrection) {
626    // Perform typo correction at the given location, but only if we
627    // find an Objective-C class name.
628    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
629    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
630        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
631      Diag(IdLoc, diag::err_undef_interface_suggest)
632        << Id << IDecl->getDeclName()
633        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
634      Diag(IDecl->getLocation(), diag::note_previous_decl)
635        << IDecl->getDeclName();
636
637      Id = IDecl->getIdentifier();
638    }
639  }
640
641  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
642}
643
644/// getNonFieldDeclScope - Retrieves the innermost scope, starting
645/// from S, where a non-field would be declared. This routine copes
646/// with the difference between C and C++ scoping rules in structs and
647/// unions. For example, the following code is well-formed in C but
648/// ill-formed in C++:
649/// @code
650/// struct S6 {
651///   enum { BAR } e;
652/// };
653///
654/// void test_S6() {
655///   struct S6 a;
656///   a.e = BAR;
657/// }
658/// @endcode
659/// For the declaration of BAR, this routine will return a different
660/// scope. The scope S will be the scope of the unnamed enumeration
661/// within S6. In C++, this routine will return the scope associated
662/// with S6, because the enumeration's scope is a transparent
663/// context but structures can contain non-field names. In C, this
664/// routine will return the translation unit scope, since the
665/// enumeration's scope is a transparent context and structures cannot
666/// contain non-field names.
667Scope *Sema::getNonFieldDeclScope(Scope *S) {
668  while (((S->getFlags() & Scope::DeclScope) == 0) ||
669         (S->getEntity() &&
670          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
671         (S->isClassScope() && !getLangOptions().CPlusPlus))
672    S = S->getParent();
673  return S;
674}
675
676void Sema::InitBuiltinVaListType() {
677  if (!Context.getBuiltinVaListType().isNull())
678    return;
679
680  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
681  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
682                                       LookupOrdinaryName, ForRedeclaration);
683  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
684  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
685}
686
687/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
688/// file scope.  lazily create a decl for it. ForRedeclaration is true
689/// if we're creating this built-in in anticipation of redeclaring the
690/// built-in.
691NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
692                                     Scope *S, bool ForRedeclaration,
693                                     SourceLocation Loc) {
694  Builtin::ID BID = (Builtin::ID)bid;
695
696  if (Context.BuiltinInfo.hasVAListUse(BID))
697    InitBuiltinVaListType();
698
699  ASTContext::GetBuiltinTypeError Error;
700  QualType R = Context.GetBuiltinType(BID, Error);
701  switch (Error) {
702  case ASTContext::GE_None:
703    // Okay
704    break;
705
706  case ASTContext::GE_Missing_stdio:
707    if (ForRedeclaration)
708      Diag(Loc, diag::err_implicit_decl_requires_stdio)
709        << Context.BuiltinInfo.GetName(BID);
710    return 0;
711
712  case ASTContext::GE_Missing_setjmp:
713    if (ForRedeclaration)
714      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
715        << Context.BuiltinInfo.GetName(BID);
716    return 0;
717  }
718
719  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
720    Diag(Loc, diag::ext_implicit_lib_function_decl)
721      << Context.BuiltinInfo.GetName(BID)
722      << R;
723    if (Context.BuiltinInfo.getHeaderName(BID) &&
724        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
725          != Diagnostic::Ignored)
726      Diag(Loc, diag::note_please_include_header)
727        << Context.BuiltinInfo.getHeaderName(BID)
728        << Context.BuiltinInfo.GetName(BID);
729  }
730
731  FunctionDecl *New = FunctionDecl::Create(Context,
732                                           Context.getTranslationUnitDecl(),
733                                           Loc, II, R, /*TInfo=*/0,
734                                           FunctionDecl::Extern,
735                                           FunctionDecl::None, false,
736                                           /*hasPrototype=*/true);
737  New->setImplicit();
738
739  // Create Decl objects for each parameter, adding them to the
740  // FunctionDecl.
741  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
742    llvm::SmallVector<ParmVarDecl*, 16> Params;
743    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
744      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
745                                           FT->getArgType(i), /*TInfo=*/0,
746                                           VarDecl::None, VarDecl::None, 0));
747    New->setParams(Params.data(), Params.size());
748  }
749
750  AddKnownFunctionAttributes(New);
751
752  // TUScope is the translation-unit scope to insert this function into.
753  // FIXME: This is hideous. We need to teach PushOnScopeChains to
754  // relate Scopes to DeclContexts, and probably eliminate CurContext
755  // entirely, but we're not there yet.
756  DeclContext *SavedContext = CurContext;
757  CurContext = Context.getTranslationUnitDecl();
758  PushOnScopeChains(New, TUScope);
759  CurContext = SavedContext;
760  return New;
761}
762
763/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
764/// same name and scope as a previous declaration 'Old'.  Figure out
765/// how to resolve this situation, merging decls or emitting
766/// diagnostics as appropriate. If there was an error, set New to be invalid.
767///
768void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
769  // If the new decl is known invalid already, don't bother doing any
770  // merging checks.
771  if (New->isInvalidDecl()) return;
772
773  // Allow multiple definitions for ObjC built-in typedefs.
774  // FIXME: Verify the underlying types are equivalent!
775  if (getLangOptions().ObjC1) {
776    const IdentifierInfo *TypeID = New->getIdentifier();
777    switch (TypeID->getLength()) {
778    default: break;
779    case 2:
780      if (!TypeID->isStr("id"))
781        break;
782      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
783      // Install the built-in type for 'id', ignoring the current definition.
784      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
785      return;
786    case 5:
787      if (!TypeID->isStr("Class"))
788        break;
789      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
790      // Install the built-in type for 'Class', ignoring the current definition.
791      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
792      return;
793    case 3:
794      if (!TypeID->isStr("SEL"))
795        break;
796      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
797      // Install the built-in type for 'SEL', ignoring the current definition.
798      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
799      return;
800    case 8:
801      if (!TypeID->isStr("Protocol"))
802        break;
803      Context.setObjCProtoType(New->getUnderlyingType());
804      return;
805    }
806    // Fall through - the typedef name was not a builtin type.
807  }
808
809  // Verify the old decl was also a type.
810  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814
815    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
816    if (OldD->getLocation().isValid())
817      Diag(OldD->getLocation(), diag::note_previous_definition);
818
819    return New->setInvalidDecl();
820  }
821
822  // If the old declaration is invalid, just give up here.
823  if (Old->isInvalidDecl())
824    return New->setInvalidDecl();
825
826  // Determine the "old" type we'll use for checking and diagnostics.
827  QualType OldType;
828  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
829    OldType = OldTypedef->getUnderlyingType();
830  else
831    OldType = Context.getTypeDeclType(Old);
832
833  // If the typedef types are not identical, reject them in all languages and
834  // with any extensions enabled.
835
836  if (OldType != New->getUnderlyingType() &&
837      Context.getCanonicalType(OldType) !=
838      Context.getCanonicalType(New->getUnderlyingType())) {
839    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
840      << New->getUnderlyingType() << OldType;
841    if (Old->getLocation().isValid())
842      Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // The types match.  Link up the redeclaration chain if the old
847  // declaration was a typedef.
848  // FIXME: this is a potential source of wierdness if the type
849  // spellings don't match exactly.
850  if (isa<TypedefDecl>(Old))
851    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
852
853  if (getLangOptions().Microsoft)
854    return;
855
856  if (getLangOptions().CPlusPlus) {
857    // C++ [dcl.typedef]p2:
858    //   In a given non-class scope, a typedef specifier can be used to
859    //   redefine the name of any type declared in that scope to refer
860    //   to the type to which it already refers.
861    if (!isa<CXXRecordDecl>(CurContext))
862      return;
863
864    // C++0x [dcl.typedef]p4:
865    //   In a given class scope, a typedef specifier can be used to redefine
866    //   any class-name declared in that scope that is not also a typedef-name
867    //   to refer to the type to which it already refers.
868    //
869    // This wording came in via DR424, which was a correction to the
870    // wording in DR56, which accidentally banned code like:
871    //
872    //   struct S {
873    //     typedef struct A { } A;
874    //   };
875    //
876    // in the C++03 standard. We implement the C++0x semantics, which
877    // allow the above but disallow
878    //
879    //   struct S {
880    //     typedef int I;
881    //     typedef int I;
882    //   };
883    //
884    // since that was the intent of DR56.
885    if (!isa<TypedefDecl >(Old))
886      return;
887
888    Diag(New->getLocation(), diag::err_redefinition)
889      << New->getDeclName();
890    Diag(Old->getLocation(), diag::note_previous_definition);
891    return New->setInvalidDecl();
892  }
893
894  // If we have a redefinition of a typedef in C, emit a warning.  This warning
895  // is normally mapped to an error, but can be controlled with
896  // -Wtypedef-redefinition.  If either the original or the redefinition is
897  // in a system header, don't emit this for compatibility with GCC.
898  if (getDiagnostics().getSuppressSystemWarnings() &&
899      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
900       Context.getSourceManager().isInSystemHeader(New->getLocation())))
901    return;
902
903  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
904    << New->getDeclName();
905  Diag(Old->getLocation(), diag::note_previous_definition);
906  return;
907}
908
909/// DeclhasAttr - returns true if decl Declaration already has the target
910/// attribute.
911static bool
912DeclHasAttr(const Decl *decl, const Attr *target) {
913  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
914    if (attr->getKind() == target->getKind())
915      return true;
916
917  return false;
918}
919
920/// MergeAttributes - append attributes from the Old decl to the New one.
921static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
922  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
923    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
924      Attr *NewAttr = attr->clone(C);
925      NewAttr->setInherited(true);
926      New->addAttr(NewAttr);
927    }
928  }
929}
930
931/// Used in MergeFunctionDecl to keep track of function parameters in
932/// C.
933struct GNUCompatibleParamWarning {
934  ParmVarDecl *OldParm;
935  ParmVarDecl *NewParm;
936  QualType PromotedType;
937};
938
939
940/// getSpecialMember - get the special member enum for a method.
941Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
942  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
943    if (Ctor->isCopyConstructor())
944      return Sema::CXXCopyConstructor;
945
946    return Sema::CXXConstructor;
947  }
948
949  if (isa<CXXDestructorDecl>(MD))
950    return Sema::CXXDestructor;
951
952  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
953  return Sema::CXXCopyAssignment;
954}
955
956/// canRedefineFunction - checks if a function can be redefined. Currently,
957/// only extern inline functions can be redefined, and even then only in
958/// GNU89 mode.
959static bool canRedefineFunction(const FunctionDecl *FD,
960                                const LangOptions& LangOpts) {
961  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
962          FD->isInlineSpecified() &&
963          FD->getStorageClass() == FunctionDecl::Extern);
964}
965
966/// MergeFunctionDecl - We just parsed a function 'New' from
967/// declarator D which has the same name and scope as a previous
968/// declaration 'Old'.  Figure out how to resolve this situation,
969/// merging decls or emitting diagnostics as appropriate.
970///
971/// In C++, New and Old must be declarations that are not
972/// overloaded. Use IsOverload to determine whether New and Old are
973/// overloaded, and to select the Old declaration that New should be
974/// merged with.
975///
976/// Returns true if there was an error, false otherwise.
977bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
978  // Verify the old decl was also a function.
979  FunctionDecl *Old = 0;
980  if (FunctionTemplateDecl *OldFunctionTemplate
981        = dyn_cast<FunctionTemplateDecl>(OldD))
982    Old = OldFunctionTemplate->getTemplatedDecl();
983  else
984    Old = dyn_cast<FunctionDecl>(OldD);
985  if (!Old) {
986    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
987      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
988      Diag(Shadow->getTargetDecl()->getLocation(),
989           diag::note_using_decl_target);
990      Diag(Shadow->getUsingDecl()->getLocation(),
991           diag::note_using_decl) << 0;
992      return true;
993    }
994
995    Diag(New->getLocation(), diag::err_redefinition_different_kind)
996      << New->getDeclName();
997    Diag(OldD->getLocation(), diag::note_previous_definition);
998    return true;
999  }
1000
1001  // Determine whether the previous declaration was a definition,
1002  // implicit declaration, or a declaration.
1003  diag::kind PrevDiag;
1004  if (Old->isThisDeclarationADefinition())
1005    PrevDiag = diag::note_previous_definition;
1006  else if (Old->isImplicit())
1007    PrevDiag = diag::note_previous_implicit_declaration;
1008  else
1009    PrevDiag = diag::note_previous_declaration;
1010
1011  QualType OldQType = Context.getCanonicalType(Old->getType());
1012  QualType NewQType = Context.getCanonicalType(New->getType());
1013
1014  // Don't complain about this if we're in GNU89 mode and the old function
1015  // is an extern inline function.
1016  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1017      New->getStorageClass() == FunctionDecl::Static &&
1018      Old->getStorageClass() != FunctionDecl::Static &&
1019      !canRedefineFunction(Old, getLangOptions())) {
1020    Diag(New->getLocation(), diag::err_static_non_static)
1021      << New;
1022    Diag(Old->getLocation(), PrevDiag);
1023    return true;
1024  }
1025
1026  // If a function is first declared with a calling convention, but is
1027  // later declared or defined without one, the second decl assumes the
1028  // calling convention of the first.
1029  //
1030  // For the new decl, we have to look at the NON-canonical type to tell the
1031  // difference between a function that really doesn't have a calling
1032  // convention and one that is declared cdecl. That's because in
1033  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1034  // because it is the default calling convention.
1035  //
1036  // Note also that we DO NOT return at this point, because we still have
1037  // other tests to run.
1038  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1039  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1040  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1041  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1042  if (OldTypeInfo.getCC() != CC_Default &&
1043      NewTypeInfo.getCC() == CC_Default) {
1044    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1045    New->setType(NewQType);
1046    NewQType = Context.getCanonicalType(NewQType);
1047  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1048                                     NewTypeInfo.getCC())) {
1049    // Calling conventions really aren't compatible, so complain.
1050    Diag(New->getLocation(), diag::err_cconv_change)
1051      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1052      << (OldTypeInfo.getCC() == CC_Default)
1053      << (OldTypeInfo.getCC() == CC_Default ? "" :
1054          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1055    Diag(Old->getLocation(), diag::note_previous_declaration);
1056    return true;
1057  }
1058
1059  // FIXME: diagnose the other way around?
1060  if (OldType->getNoReturnAttr() &&
1061      !NewType->getNoReturnAttr()) {
1062    NewQType = Context.getNoReturnType(NewQType);
1063    New->setType(NewQType);
1064    assert(NewQType.isCanonical());
1065  }
1066
1067  if (getLangOptions().CPlusPlus) {
1068    // (C++98 13.1p2):
1069    //   Certain function declarations cannot be overloaded:
1070    //     -- Function declarations that differ only in the return type
1071    //        cannot be overloaded.
1072    QualType OldReturnType
1073      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1074    QualType NewReturnType
1075      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1076    QualType ResQT;
1077    if (OldReturnType != NewReturnType) {
1078      if (NewReturnType->isObjCObjectPointerType()
1079          && OldReturnType->isObjCObjectPointerType())
1080        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1081      if (ResQT.isNull()) {
1082        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1083        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1084        return true;
1085      }
1086      else
1087        NewQType = ResQT;
1088    }
1089
1090    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1091    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1092    if (OldMethod && NewMethod) {
1093      // Preserve triviality.
1094      NewMethod->setTrivial(OldMethod->isTrivial());
1095
1096      bool isFriend = NewMethod->getFriendObjectKind();
1097
1098      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1099        //    -- Member function declarations with the same name and the
1100        //       same parameter types cannot be overloaded if any of them
1101        //       is a static member function declaration.
1102        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1103          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1104          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1105          return true;
1106        }
1107
1108        // C++ [class.mem]p1:
1109        //   [...] A member shall not be declared twice in the
1110        //   member-specification, except that a nested class or member
1111        //   class template can be declared and then later defined.
1112        unsigned NewDiag;
1113        if (isa<CXXConstructorDecl>(OldMethod))
1114          NewDiag = diag::err_constructor_redeclared;
1115        else if (isa<CXXDestructorDecl>(NewMethod))
1116          NewDiag = diag::err_destructor_redeclared;
1117        else if (isa<CXXConversionDecl>(NewMethod))
1118          NewDiag = diag::err_conv_function_redeclared;
1119        else
1120          NewDiag = diag::err_member_redeclared;
1121
1122        Diag(New->getLocation(), NewDiag);
1123        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1124
1125      // Complain if this is an explicit declaration of a special
1126      // member that was initially declared implicitly.
1127      //
1128      // As an exception, it's okay to befriend such methods in order
1129      // to permit the implicit constructor/destructor/operator calls.
1130      } else if (OldMethod->isImplicit()) {
1131        if (isFriend) {
1132          NewMethod->setImplicit();
1133        } else {
1134          Diag(NewMethod->getLocation(),
1135               diag::err_definition_of_implicitly_declared_member)
1136            << New << getSpecialMember(OldMethod);
1137          return true;
1138        }
1139      }
1140    }
1141
1142    // (C++98 8.3.5p3):
1143    //   All declarations for a function shall agree exactly in both the
1144    //   return type and the parameter-type-list.
1145    // attributes should be ignored when comparing.
1146    if (Context.getNoReturnType(OldQType, false) ==
1147        Context.getNoReturnType(NewQType, false))
1148      return MergeCompatibleFunctionDecls(New, Old);
1149
1150    // Fall through for conflicting redeclarations and redefinitions.
1151  }
1152
1153  // C: Function types need to be compatible, not identical. This handles
1154  // duplicate function decls like "void f(int); void f(enum X);" properly.
1155  if (!getLangOptions().CPlusPlus &&
1156      Context.typesAreCompatible(OldQType, NewQType)) {
1157    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1158    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1159    const FunctionProtoType *OldProto = 0;
1160    if (isa<FunctionNoProtoType>(NewFuncType) &&
1161        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1162      // The old declaration provided a function prototype, but the
1163      // new declaration does not. Merge in the prototype.
1164      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1165      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1166                                                 OldProto->arg_type_end());
1167      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1168                                         ParamTypes.data(), ParamTypes.size(),
1169                                         OldProto->isVariadic(),
1170                                         OldProto->getTypeQuals(),
1171                                         false, false, 0, 0,
1172                                         OldProto->getExtInfo());
1173      New->setType(NewQType);
1174      New->setHasInheritedPrototype();
1175
1176      // Synthesize a parameter for each argument type.
1177      llvm::SmallVector<ParmVarDecl*, 16> Params;
1178      for (FunctionProtoType::arg_type_iterator
1179             ParamType = OldProto->arg_type_begin(),
1180             ParamEnd = OldProto->arg_type_end();
1181           ParamType != ParamEnd; ++ParamType) {
1182        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1183                                                 SourceLocation(), 0,
1184                                                 *ParamType, /*TInfo=*/0,
1185                                                 VarDecl::None, VarDecl::None,
1186                                                 0);
1187        Param->setImplicit();
1188        Params.push_back(Param);
1189      }
1190
1191      New->setParams(Params.data(), Params.size());
1192    }
1193
1194    return MergeCompatibleFunctionDecls(New, Old);
1195  }
1196
1197  // GNU C permits a K&R definition to follow a prototype declaration
1198  // if the declared types of the parameters in the K&R definition
1199  // match the types in the prototype declaration, even when the
1200  // promoted types of the parameters from the K&R definition differ
1201  // from the types in the prototype. GCC then keeps the types from
1202  // the prototype.
1203  //
1204  // If a variadic prototype is followed by a non-variadic K&R definition,
1205  // the K&R definition becomes variadic.  This is sort of an edge case, but
1206  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1207  // C99 6.9.1p8.
1208  if (!getLangOptions().CPlusPlus &&
1209      Old->hasPrototype() && !New->hasPrototype() &&
1210      New->getType()->getAs<FunctionProtoType>() &&
1211      Old->getNumParams() == New->getNumParams()) {
1212    llvm::SmallVector<QualType, 16> ArgTypes;
1213    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1214    const FunctionProtoType *OldProto
1215      = Old->getType()->getAs<FunctionProtoType>();
1216    const FunctionProtoType *NewProto
1217      = New->getType()->getAs<FunctionProtoType>();
1218
1219    // Determine whether this is the GNU C extension.
1220    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1221                                               NewProto->getResultType());
1222    bool LooseCompatible = !MergedReturn.isNull();
1223    for (unsigned Idx = 0, End = Old->getNumParams();
1224         LooseCompatible && Idx != End; ++Idx) {
1225      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1226      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1227      if (Context.typesAreCompatible(OldParm->getType(),
1228                                     NewProto->getArgType(Idx))) {
1229        ArgTypes.push_back(NewParm->getType());
1230      } else if (Context.typesAreCompatible(OldParm->getType(),
1231                                            NewParm->getType())) {
1232        GNUCompatibleParamWarning Warn
1233          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1234        Warnings.push_back(Warn);
1235        ArgTypes.push_back(NewParm->getType());
1236      } else
1237        LooseCompatible = false;
1238    }
1239
1240    if (LooseCompatible) {
1241      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1242        Diag(Warnings[Warn].NewParm->getLocation(),
1243             diag::ext_param_promoted_not_compatible_with_prototype)
1244          << Warnings[Warn].PromotedType
1245          << Warnings[Warn].OldParm->getType();
1246        Diag(Warnings[Warn].OldParm->getLocation(),
1247             diag::note_previous_declaration);
1248      }
1249
1250      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1251                                           ArgTypes.size(),
1252                                           OldProto->isVariadic(), 0,
1253                                           false, false, 0, 0,
1254                                           OldProto->getExtInfo()));
1255      return MergeCompatibleFunctionDecls(New, Old);
1256    }
1257
1258    // Fall through to diagnose conflicting types.
1259  }
1260
1261  // A function that has already been declared has been redeclared or defined
1262  // with a different type- show appropriate diagnostic
1263  if (unsigned BuiltinID = Old->getBuiltinID()) {
1264    // The user has declared a builtin function with an incompatible
1265    // signature.
1266    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1267      // The function the user is redeclaring is a library-defined
1268      // function like 'malloc' or 'printf'. Warn about the
1269      // redeclaration, then pretend that we don't know about this
1270      // library built-in.
1271      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1272      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1273        << Old << Old->getType();
1274      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1275      Old->setInvalidDecl();
1276      return false;
1277    }
1278
1279    PrevDiag = diag::note_previous_builtin_declaration;
1280  }
1281
1282  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1283  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1284  return true;
1285}
1286
1287/// \brief Completes the merge of two function declarations that are
1288/// known to be compatible.
1289///
1290/// This routine handles the merging of attributes and other
1291/// properties of function declarations form the old declaration to
1292/// the new declaration, once we know that New is in fact a
1293/// redeclaration of Old.
1294///
1295/// \returns false
1296bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1297  // Merge the attributes
1298  MergeAttributes(New, Old, Context);
1299
1300  // Merge the storage class.
1301  if (Old->getStorageClass() != FunctionDecl::Extern &&
1302      Old->getStorageClass() != FunctionDecl::None)
1303    New->setStorageClass(Old->getStorageClass());
1304
1305  // Merge "pure" flag.
1306  if (Old->isPure())
1307    New->setPure();
1308
1309  // Merge the "deleted" flag.
1310  if (Old->isDeleted())
1311    New->setDeleted();
1312
1313  if (getLangOptions().CPlusPlus)
1314    return MergeCXXFunctionDecl(New, Old);
1315
1316  return false;
1317}
1318
1319/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1320/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1321/// situation, merging decls or emitting diagnostics as appropriate.
1322///
1323/// Tentative definition rules (C99 6.9.2p2) are checked by
1324/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1325/// definitions here, since the initializer hasn't been attached.
1326///
1327void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1328  // If the new decl is already invalid, don't do any other checking.
1329  if (New->isInvalidDecl())
1330    return;
1331
1332  // Verify the old decl was also a variable.
1333  VarDecl *Old = 0;
1334  if (!Previous.isSingleResult() ||
1335      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1336    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1337      << New->getDeclName();
1338    Diag(Previous.getRepresentativeDecl()->getLocation(),
1339         diag::note_previous_definition);
1340    return New->setInvalidDecl();
1341  }
1342
1343  MergeAttributes(New, Old, Context);
1344
1345  // Merge the types
1346  QualType MergedT;
1347  if (getLangOptions().CPlusPlus) {
1348    if (Context.hasSameType(New->getType(), Old->getType()))
1349      MergedT = New->getType();
1350    // C++ [basic.link]p10:
1351    //   [...] the types specified by all declarations referring to a given
1352    //   object or function shall be identical, except that declarations for an
1353    //   array object can specify array types that differ by the presence or
1354    //   absence of a major array bound (8.3.4).
1355    else if (Old->getType()->isIncompleteArrayType() &&
1356             New->getType()->isArrayType()) {
1357      CanQual<ArrayType> OldArray
1358        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1359      CanQual<ArrayType> NewArray
1360        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1361      if (OldArray->getElementType() == NewArray->getElementType())
1362        MergedT = New->getType();
1363    } else if (Old->getType()->isArrayType() &&
1364             New->getType()->isIncompleteArrayType()) {
1365      CanQual<ArrayType> OldArray
1366        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1367      CanQual<ArrayType> NewArray
1368        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1369      if (OldArray->getElementType() == NewArray->getElementType())
1370        MergedT = Old->getType();
1371    } else if (New->getType()->isObjCObjectPointerType()
1372               && Old->getType()->isObjCObjectPointerType()) {
1373        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1374    }
1375  } else {
1376    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1377  }
1378  if (MergedT.isNull()) {
1379    Diag(New->getLocation(), diag::err_redefinition_different_type)
1380      << New->getDeclName();
1381    Diag(Old->getLocation(), diag::note_previous_definition);
1382    return New->setInvalidDecl();
1383  }
1384  New->setType(MergedT);
1385
1386  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1387  if (New->getStorageClass() == VarDecl::Static &&
1388      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1389    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1390    Diag(Old->getLocation(), diag::note_previous_definition);
1391    return New->setInvalidDecl();
1392  }
1393  // C99 6.2.2p4:
1394  //   For an identifier declared with the storage-class specifier
1395  //   extern in a scope in which a prior declaration of that
1396  //   identifier is visible,23) if the prior declaration specifies
1397  //   internal or external linkage, the linkage of the identifier at
1398  //   the later declaration is the same as the linkage specified at
1399  //   the prior declaration. If no prior declaration is visible, or
1400  //   if the prior declaration specifies no linkage, then the
1401  //   identifier has external linkage.
1402  if (New->hasExternalStorage() && Old->hasLinkage())
1403    /* Okay */;
1404  else if (New->getStorageClass() != VarDecl::Static &&
1405           Old->getStorageClass() == VarDecl::Static) {
1406    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1407    Diag(Old->getLocation(), diag::note_previous_definition);
1408    return New->setInvalidDecl();
1409  }
1410
1411  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1412
1413  // FIXME: The test for external storage here seems wrong? We still
1414  // need to check for mismatches.
1415  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1416      // Don't complain about out-of-line definitions of static members.
1417      !(Old->getLexicalDeclContext()->isRecord() &&
1418        !New->getLexicalDeclContext()->isRecord())) {
1419    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1420    Diag(Old->getLocation(), diag::note_previous_definition);
1421    return New->setInvalidDecl();
1422  }
1423
1424  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1425    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1426    Diag(Old->getLocation(), diag::note_previous_definition);
1427  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1428    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1429    Diag(Old->getLocation(), diag::note_previous_definition);
1430  }
1431
1432  // C++ doesn't have tentative definitions, so go right ahead and check here.
1433  const VarDecl *Def;
1434  if (getLangOptions().CPlusPlus &&
1435      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1436      (Def = Old->getDefinition())) {
1437    Diag(New->getLocation(), diag::err_redefinition)
1438      << New->getDeclName();
1439    Diag(Def->getLocation(), diag::note_previous_definition);
1440    New->setInvalidDecl();
1441    return;
1442  }
1443
1444  // Keep a chain of previous declarations.
1445  New->setPreviousDeclaration(Old);
1446
1447  // Inherit access appropriately.
1448  New->setAccess(Old->getAccess());
1449}
1450
1451/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1452/// no declarator (e.g. "struct foo;") is parsed.
1453Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1454                                                 DeclSpec &DS) {
1455  // FIXME: Error on auto/register at file scope
1456  // FIXME: Error on inline/virtual/explicit
1457  // FIXME: Warn on useless __thread
1458  // FIXME: Warn on useless const/volatile
1459  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1460  // FIXME: Warn on useless attributes
1461  Decl *TagD = 0;
1462  TagDecl *Tag = 0;
1463  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1464      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1465      DS.getTypeSpecType() == DeclSpec::TST_union ||
1466      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1467    TagD = static_cast<Decl *>(DS.getTypeRep());
1468
1469    if (!TagD) // We probably had an error
1470      return DeclPtrTy();
1471
1472    // Note that the above type specs guarantee that the
1473    // type rep is a Decl, whereas in many of the others
1474    // it's a Type.
1475    Tag = dyn_cast<TagDecl>(TagD);
1476  }
1477
1478  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1479    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1480    // or incomplete types shall not be restrict-qualified."
1481    if (TypeQuals & DeclSpec::TQ_restrict)
1482      Diag(DS.getRestrictSpecLoc(),
1483           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1484           << DS.getSourceRange();
1485  }
1486
1487  if (DS.isFriendSpecified()) {
1488    // If we're dealing with a class template decl, assume that the
1489    // template routines are handling it.
1490    if (TagD && isa<ClassTemplateDecl>(TagD))
1491      return DeclPtrTy();
1492    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1493  }
1494
1495  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1496    // If there are attributes in the DeclSpec, apply them to the record.
1497    if (const AttributeList *AL = DS.getAttributes())
1498      ProcessDeclAttributeList(S, Record, AL);
1499
1500    if (!Record->getDeclName() && Record->isDefinition() &&
1501        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1502      if (getLangOptions().CPlusPlus ||
1503          Record->getDeclContext()->isRecord())
1504        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1505
1506      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1507        << DS.getSourceRange();
1508    }
1509
1510    // Microsoft allows unnamed struct/union fields. Don't complain
1511    // about them.
1512    // FIXME: Should we support Microsoft's extensions in this area?
1513    if (Record->getDeclName() && getLangOptions().Microsoft)
1514      return DeclPtrTy::make(Tag);
1515  }
1516
1517  if (!DS.isMissingDeclaratorOk() &&
1518      DS.getTypeSpecType() != DeclSpec::TST_error) {
1519    // Warn about typedefs of enums without names, since this is an
1520    // extension in both Microsoft an GNU.
1521    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1522        Tag && isa<EnumDecl>(Tag)) {
1523      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1524        << DS.getSourceRange();
1525      return DeclPtrTy::make(Tag);
1526    }
1527
1528    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1529      << DS.getSourceRange();
1530  }
1531
1532  return DeclPtrTy::make(Tag);
1533}
1534
1535/// We are trying to inject an anonymous member into the given scope;
1536/// check if there's an existing declaration that can't be overloaded.
1537///
1538/// \return true if this is a forbidden redeclaration
1539static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1540                                         Scope *S,
1541                                         DeclContext *Owner,
1542                                         DeclarationName Name,
1543                                         SourceLocation NameLoc,
1544                                         unsigned diagnostic) {
1545  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1546                 Sema::ForRedeclaration);
1547  if (!SemaRef.LookupName(R, S)) return false;
1548
1549  if (R.getAsSingle<TagDecl>())
1550    return false;
1551
1552  // Pick a representative declaration.
1553  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1554  if (PrevDecl && Owner->isRecord()) {
1555    RecordDecl *Record = cast<RecordDecl>(Owner);
1556    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1557      return false;
1558  }
1559
1560  SemaRef.Diag(NameLoc, diagnostic) << Name;
1561  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1562
1563  return true;
1564}
1565
1566/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1567/// anonymous struct or union AnonRecord into the owning context Owner
1568/// and scope S. This routine will be invoked just after we realize
1569/// that an unnamed union or struct is actually an anonymous union or
1570/// struct, e.g.,
1571///
1572/// @code
1573/// union {
1574///   int i;
1575///   float f;
1576/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1577///    // f into the surrounding scope.x
1578/// @endcode
1579///
1580/// This routine is recursive, injecting the names of nested anonymous
1581/// structs/unions into the owning context and scope as well.
1582static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1583                                                DeclContext *Owner,
1584                                                RecordDecl *AnonRecord,
1585                                                AccessSpecifier AS) {
1586  unsigned diagKind
1587    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1588                            : diag::err_anonymous_struct_member_redecl;
1589
1590  bool Invalid = false;
1591  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1592                               FEnd = AnonRecord->field_end();
1593       F != FEnd; ++F) {
1594    if ((*F)->getDeclName()) {
1595      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1596                                       (*F)->getLocation(), diagKind)) {
1597        // C++ [class.union]p2:
1598        //   The names of the members of an anonymous union shall be
1599        //   distinct from the names of any other entity in the
1600        //   scope in which the anonymous union is declared.
1601        Invalid = true;
1602      } else {
1603        // C++ [class.union]p2:
1604        //   For the purpose of name lookup, after the anonymous union
1605        //   definition, the members of the anonymous union are
1606        //   considered to have been defined in the scope in which the
1607        //   anonymous union is declared.
1608        Owner->makeDeclVisibleInContext(*F);
1609        S->AddDecl(Sema::DeclPtrTy::make(*F));
1610        SemaRef.IdResolver.AddDecl(*F);
1611
1612        // That includes picking up the appropriate access specifier.
1613        if (AS != AS_none) (*F)->setAccess(AS);
1614      }
1615    } else if (const RecordType *InnerRecordType
1616                 = (*F)->getType()->getAs<RecordType>()) {
1617      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1618      if (InnerRecord->isAnonymousStructOrUnion())
1619        Invalid = Invalid ||
1620          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1621                                              InnerRecord, AS);
1622    }
1623  }
1624
1625  return Invalid;
1626}
1627
1628/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1629/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1630/// illegal input values are mapped to VarDecl::None.
1631/// If the input declaration context is a linkage specification
1632/// with no braces, then Extern is mapped to None.
1633static VarDecl::StorageClass
1634StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1635                                      DeclContext *DC) {
1636  switch (StorageClassSpec) {
1637  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1638  case DeclSpec::SCS_extern:
1639    // If the current context is a C++ linkage specification
1640    // having no braces, then the keyword "extern" is properly part
1641    // of the linkage specification itself, rather than being
1642    // the written storage class specifier.
1643    return (DC && isa<LinkageSpecDecl>(DC) &&
1644            !cast<LinkageSpecDecl>(DC)->hasBraces())
1645      ? VarDecl::None : VarDecl::Extern;
1646  case DeclSpec::SCS_static:         return VarDecl::Static;
1647  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1648  case DeclSpec::SCS_register:       return VarDecl::Register;
1649  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1650    // Illegal SCSs map to None: error reporting is up to the caller.
1651  case DeclSpec::SCS_mutable:        // Fall through.
1652  case DeclSpec::SCS_typedef:        return VarDecl::None;
1653  }
1654  llvm_unreachable("unknown storage class specifier");
1655}
1656
1657/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1658/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1659/// illegal input values are mapped to FunctionDecl::None.
1660/// If the input declaration context is a linkage specification
1661/// with no braces, then Extern is mapped to None.
1662static FunctionDecl::StorageClass
1663StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1664                                           DeclContext *DC) {
1665  switch (StorageClassSpec) {
1666  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1667  case DeclSpec::SCS_extern:
1668    // If the current context is a C++ linkage specification
1669    // having no braces, then the keyword "extern" is properly part
1670    // of the linkage specification itself, rather than being
1671    // the written storage class specifier.
1672    return (DC && isa<LinkageSpecDecl>(DC) &&
1673            !cast<LinkageSpecDecl>(DC)->hasBraces())
1674      ? FunctionDecl::None : FunctionDecl::Extern;
1675  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1676  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1677    // Illegal SCSs map to None: error reporting is up to the caller.
1678  case DeclSpec::SCS_auto:           // Fall through.
1679  case DeclSpec::SCS_mutable:        // Fall through.
1680  case DeclSpec::SCS_register:       // Fall through.
1681  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1682  }
1683  llvm_unreachable("unknown storage class specifier");
1684}
1685
1686/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1687/// anonymous structure or union. Anonymous unions are a C++ feature
1688/// (C++ [class.union]) and a GNU C extension; anonymous structures
1689/// are a GNU C and GNU C++ extension.
1690Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1691                                                  AccessSpecifier AS,
1692                                                  RecordDecl *Record) {
1693  DeclContext *Owner = Record->getDeclContext();
1694
1695  // Diagnose whether this anonymous struct/union is an extension.
1696  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1697    Diag(Record->getLocation(), diag::ext_anonymous_union);
1698  else if (!Record->isUnion())
1699    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1700
1701  // C and C++ require different kinds of checks for anonymous
1702  // structs/unions.
1703  bool Invalid = false;
1704  if (getLangOptions().CPlusPlus) {
1705    const char* PrevSpec = 0;
1706    unsigned DiagID;
1707    // C++ [class.union]p3:
1708    //   Anonymous unions declared in a named namespace or in the
1709    //   global namespace shall be declared static.
1710    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1711        (isa<TranslationUnitDecl>(Owner) ||
1712         (isa<NamespaceDecl>(Owner) &&
1713          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1714      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1715      Invalid = true;
1716
1717      // Recover by adding 'static'.
1718      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1719                             PrevSpec, DiagID);
1720    }
1721    // C++ [class.union]p3:
1722    //   A storage class is not allowed in a declaration of an
1723    //   anonymous union in a class scope.
1724    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1725             isa<RecordDecl>(Owner)) {
1726      Diag(DS.getStorageClassSpecLoc(),
1727           diag::err_anonymous_union_with_storage_spec);
1728      Invalid = true;
1729
1730      // Recover by removing the storage specifier.
1731      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1732                             PrevSpec, DiagID);
1733    }
1734
1735    // C++ [class.union]p2:
1736    //   The member-specification of an anonymous union shall only
1737    //   define non-static data members. [Note: nested types and
1738    //   functions cannot be declared within an anonymous union. ]
1739    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1740                                 MemEnd = Record->decls_end();
1741         Mem != MemEnd; ++Mem) {
1742      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1743        // C++ [class.union]p3:
1744        //   An anonymous union shall not have private or protected
1745        //   members (clause 11).
1746        assert(FD->getAccess() != AS_none);
1747        if (FD->getAccess() != AS_public) {
1748          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1749            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1750          Invalid = true;
1751        }
1752      } else if ((*Mem)->isImplicit()) {
1753        // Any implicit members are fine.
1754      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1755        // This is a type that showed up in an
1756        // elaborated-type-specifier inside the anonymous struct or
1757        // union, but which actually declares a type outside of the
1758        // anonymous struct or union. It's okay.
1759      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1760        if (!MemRecord->isAnonymousStructOrUnion() &&
1761            MemRecord->getDeclName()) {
1762          // This is a nested type declaration.
1763          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1764            << (int)Record->isUnion();
1765          Invalid = true;
1766        }
1767      } else if (isa<AccessSpecDecl>(*Mem)) {
1768        // Any access specifier is fine.
1769      } else {
1770        // We have something that isn't a non-static data
1771        // member. Complain about it.
1772        unsigned DK = diag::err_anonymous_record_bad_member;
1773        if (isa<TypeDecl>(*Mem))
1774          DK = diag::err_anonymous_record_with_type;
1775        else if (isa<FunctionDecl>(*Mem))
1776          DK = diag::err_anonymous_record_with_function;
1777        else if (isa<VarDecl>(*Mem))
1778          DK = diag::err_anonymous_record_with_static;
1779        Diag((*Mem)->getLocation(), DK)
1780            << (int)Record->isUnion();
1781          Invalid = true;
1782      }
1783    }
1784  }
1785
1786  if (!Record->isUnion() && !Owner->isRecord()) {
1787    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1788      << (int)getLangOptions().CPlusPlus;
1789    Invalid = true;
1790  }
1791
1792  // Mock up a declarator.
1793  Declarator Dc(DS, Declarator::TypeNameContext);
1794  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1795  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1796
1797  // Create a declaration for this anonymous struct/union.
1798  NamedDecl *Anon = 0;
1799  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1800    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1801                             /*IdentifierInfo=*/0,
1802                             Context.getTypeDeclType(Record),
1803                             TInfo,
1804                             /*BitWidth=*/0, /*Mutable=*/false);
1805    Anon->setAccess(AS);
1806    if (getLangOptions().CPlusPlus) {
1807      FieldCollector->Add(cast<FieldDecl>(Anon));
1808      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1809        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1810    }
1811  } else {
1812    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1813    assert(SCSpec != DeclSpec::SCS_typedef &&
1814           "Parser allowed 'typedef' as storage class VarDecl.");
1815    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1816    if (SCSpec == DeclSpec::SCS_mutable) {
1817      // mutable can only appear on non-static class members, so it's always
1818      // an error here
1819      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1820      Invalid = true;
1821      SC = VarDecl::None;
1822    }
1823    SCSpec = DS.getStorageClassSpecAsWritten();
1824    VarDecl::StorageClass SCAsWritten
1825      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1826
1827    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1828                           /*IdentifierInfo=*/0,
1829                           Context.getTypeDeclType(Record),
1830                           TInfo, SC, SCAsWritten);
1831  }
1832  Anon->setImplicit();
1833
1834  // Add the anonymous struct/union object to the current
1835  // context. We'll be referencing this object when we refer to one of
1836  // its members.
1837  Owner->addDecl(Anon);
1838
1839  // Inject the members of the anonymous struct/union into the owning
1840  // context and into the identifier resolver chain for name lookup
1841  // purposes.
1842  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1843    Invalid = true;
1844
1845  // Mark this as an anonymous struct/union type. Note that we do not
1846  // do this until after we have already checked and injected the
1847  // members of this anonymous struct/union type, because otherwise
1848  // the members could be injected twice: once by DeclContext when it
1849  // builds its lookup table, and once by
1850  // InjectAnonymousStructOrUnionMembers.
1851  Record->setAnonymousStructOrUnion(true);
1852
1853  if (Invalid)
1854    Anon->setInvalidDecl();
1855
1856  return DeclPtrTy::make(Anon);
1857}
1858
1859
1860/// GetNameForDeclarator - Determine the full declaration name for the
1861/// given Declarator.
1862DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1863  return GetNameFromUnqualifiedId(D.getName());
1864}
1865
1866/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1867DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1868  switch (Name.getKind()) {
1869    case UnqualifiedId::IK_Identifier:
1870      return DeclarationName(Name.Identifier);
1871
1872    case UnqualifiedId::IK_OperatorFunctionId:
1873      return Context.DeclarationNames.getCXXOperatorName(
1874                                              Name.OperatorFunctionId.Operator);
1875
1876    case UnqualifiedId::IK_LiteralOperatorId:
1877      return Context.DeclarationNames.getCXXLiteralOperatorName(
1878                                                               Name.Identifier);
1879
1880    case UnqualifiedId::IK_ConversionFunctionId: {
1881      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1882      if (Ty.isNull())
1883        return DeclarationName();
1884
1885      return Context.DeclarationNames.getCXXConversionFunctionName(
1886                                                  Context.getCanonicalType(Ty));
1887    }
1888
1889    case UnqualifiedId::IK_ConstructorName: {
1890      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1891      if (Ty.isNull())
1892        return DeclarationName();
1893
1894      return Context.DeclarationNames.getCXXConstructorName(
1895                                                  Context.getCanonicalType(Ty));
1896    }
1897
1898    case UnqualifiedId::IK_ConstructorTemplateId: {
1899      // In well-formed code, we can only have a constructor
1900      // template-id that refers to the current context, so go there
1901      // to find the actual type being constructed.
1902      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1903      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1904        return DeclarationName();
1905
1906      // Determine the type of the class being constructed.
1907      QualType CurClassType = Context.getTypeDeclType(CurClass);
1908
1909      // FIXME: Check two things: that the template-id names the same type as
1910      // CurClassType, and that the template-id does not occur when the name
1911      // was qualified.
1912
1913      return Context.DeclarationNames.getCXXConstructorName(
1914                                       Context.getCanonicalType(CurClassType));
1915    }
1916
1917    case UnqualifiedId::IK_DestructorName: {
1918      QualType Ty = GetTypeFromParser(Name.DestructorName);
1919      if (Ty.isNull())
1920        return DeclarationName();
1921
1922      return Context.DeclarationNames.getCXXDestructorName(
1923                                                           Context.getCanonicalType(Ty));
1924    }
1925
1926    case UnqualifiedId::IK_TemplateId: {
1927      TemplateName TName
1928        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1929      return Context.getNameForTemplate(TName);
1930    }
1931  }
1932
1933  assert(false && "Unknown name kind");
1934  return DeclarationName();
1935}
1936
1937/// isNearlyMatchingFunction - Determine whether the C++ functions
1938/// Declaration and Definition are "nearly" matching. This heuristic
1939/// is used to improve diagnostics in the case where an out-of-line
1940/// function definition doesn't match any declaration within
1941/// the class or namespace.
1942static bool isNearlyMatchingFunction(ASTContext &Context,
1943                                     FunctionDecl *Declaration,
1944                                     FunctionDecl *Definition) {
1945  if (Declaration->param_size() != Definition->param_size())
1946    return false;
1947  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1948    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1949    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1950
1951    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1952                                        DefParamTy.getNonReferenceType()))
1953      return false;
1954  }
1955
1956  return true;
1957}
1958
1959/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1960/// declarator needs to be rebuilt in the current instantiation.
1961/// Any bits of declarator which appear before the name are valid for
1962/// consideration here.  That's specifically the type in the decl spec
1963/// and the base type in any member-pointer chunks.
1964static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1965                                                    DeclarationName Name) {
1966  // The types we specifically need to rebuild are:
1967  //   - typenames, typeofs, and decltypes
1968  //   - types which will become injected class names
1969  // Of course, we also need to rebuild any type referencing such a
1970  // type.  It's safest to just say "dependent", but we call out a
1971  // few cases here.
1972
1973  DeclSpec &DS = D.getMutableDeclSpec();
1974  switch (DS.getTypeSpecType()) {
1975  case DeclSpec::TST_typename:
1976  case DeclSpec::TST_typeofType:
1977  case DeclSpec::TST_typeofExpr:
1978  case DeclSpec::TST_decltype: {
1979    // Grab the type from the parser.
1980    TypeSourceInfo *TSI = 0;
1981    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
1982    if (T.isNull() || !T->isDependentType()) break;
1983
1984    // Make sure there's a type source info.  This isn't really much
1985    // of a waste; most dependent types should have type source info
1986    // attached already.
1987    if (!TSI)
1988      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
1989
1990    // Rebuild the type in the current instantiation.
1991    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
1992    if (!TSI) return true;
1993
1994    // Store the new type back in the decl spec.
1995    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
1996    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
1997    break;
1998  }
1999
2000  default:
2001    // Nothing to do for these decl specs.
2002    break;
2003  }
2004
2005  // It doesn't matter what order we do this in.
2006  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2007    DeclaratorChunk &Chunk = D.getTypeObject(I);
2008
2009    // The only type information in the declarator which can come
2010    // before the declaration name is the base type of a member
2011    // pointer.
2012    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2013      continue;
2014
2015    // Rebuild the scope specifier in-place.
2016    CXXScopeSpec &SS = Chunk.Mem.Scope();
2017    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2018      return true;
2019  }
2020
2021  return false;
2022}
2023
2024Sema::DeclPtrTy
2025Sema::HandleDeclarator(Scope *S, Declarator &D,
2026                       MultiTemplateParamsArg TemplateParamLists,
2027                       bool IsFunctionDefinition) {
2028  DeclarationName Name = GetNameForDeclarator(D);
2029
2030  // All of these full declarators require an identifier.  If it doesn't have
2031  // one, the ParsedFreeStandingDeclSpec action should be used.
2032  if (!Name) {
2033    if (!D.isInvalidType())  // Reject this if we think it is valid.
2034      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2035           diag::err_declarator_need_ident)
2036        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2037    return DeclPtrTy();
2038  }
2039
2040  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2041  // we find one that is.
2042  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2043         (S->getFlags() & Scope::TemplateParamScope) != 0)
2044    S = S->getParent();
2045
2046  DeclContext *DC = CurContext;
2047  if (D.getCXXScopeSpec().isInvalid())
2048    D.setInvalidType();
2049  else if (D.getCXXScopeSpec().isSet()) {
2050    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2051    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2052    if (!DC) {
2053      // If we could not compute the declaration context, it's because the
2054      // declaration context is dependent but does not refer to a class,
2055      // class template, or class template partial specialization. Complain
2056      // and return early, to avoid the coming semantic disaster.
2057      Diag(D.getIdentifierLoc(),
2058           diag::err_template_qualified_declarator_no_match)
2059        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2060        << D.getCXXScopeSpec().getRange();
2061      return DeclPtrTy();
2062    }
2063
2064    bool IsDependentContext = DC->isDependentContext();
2065
2066    if (!IsDependentContext &&
2067        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2068      return DeclPtrTy();
2069
2070    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2071      Diag(D.getIdentifierLoc(),
2072           diag::err_member_def_undefined_record)
2073        << Name << DC << D.getCXXScopeSpec().getRange();
2074      D.setInvalidType();
2075    }
2076
2077    // Check whether we need to rebuild the type of the given
2078    // declaration in the current instantiation.
2079    if (EnteringContext && IsDependentContext &&
2080        TemplateParamLists.size() != 0) {
2081      ContextRAII SavedContext(*this, DC);
2082      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2083        D.setInvalidType();
2084    }
2085  }
2086
2087  NamedDecl *New;
2088
2089  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2090  QualType R = TInfo->getType();
2091
2092  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2093                        ForRedeclaration);
2094
2095  // See if this is a redefinition of a variable in the same scope.
2096  if (!D.getCXXScopeSpec().isSet()) {
2097    bool IsLinkageLookup = false;
2098
2099    // If the declaration we're planning to build will be a function
2100    // or object with linkage, then look for another declaration with
2101    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2102    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2103      /* Do nothing*/;
2104    else if (R->isFunctionType()) {
2105      if (CurContext->isFunctionOrMethod() ||
2106          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2107        IsLinkageLookup = true;
2108    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2109      IsLinkageLookup = true;
2110    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2111             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2112      IsLinkageLookup = true;
2113
2114    if (IsLinkageLookup)
2115      Previous.clear(LookupRedeclarationWithLinkage);
2116
2117    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2118  } else { // Something like "int foo::x;"
2119    LookupQualifiedName(Previous, DC);
2120
2121    // Don't consider using declarations as previous declarations for
2122    // out-of-line members.
2123    RemoveUsingDecls(Previous);
2124
2125    // C++ 7.3.1.2p2:
2126    // Members (including explicit specializations of templates) of a named
2127    // namespace can also be defined outside that namespace by explicit
2128    // qualification of the name being defined, provided that the entity being
2129    // defined was already declared in the namespace and the definition appears
2130    // after the point of declaration in a namespace that encloses the
2131    // declarations namespace.
2132    //
2133    // Note that we only check the context at this point. We don't yet
2134    // have enough information to make sure that PrevDecl is actually
2135    // the declaration we want to match. For example, given:
2136    //
2137    //   class X {
2138    //     void f();
2139    //     void f(float);
2140    //   };
2141    //
2142    //   void X::f(int) { } // ill-formed
2143    //
2144    // In this case, PrevDecl will point to the overload set
2145    // containing the two f's declared in X, but neither of them
2146    // matches.
2147
2148    // First check whether we named the global scope.
2149    if (isa<TranslationUnitDecl>(DC)) {
2150      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2151        << Name << D.getCXXScopeSpec().getRange();
2152    } else {
2153      DeclContext *Cur = CurContext;
2154      while (isa<LinkageSpecDecl>(Cur))
2155        Cur = Cur->getParent();
2156      if (!Cur->Encloses(DC)) {
2157        // The qualifying scope doesn't enclose the original declaration.
2158        // Emit diagnostic based on current scope.
2159        SourceLocation L = D.getIdentifierLoc();
2160        SourceRange R = D.getCXXScopeSpec().getRange();
2161        if (isa<FunctionDecl>(Cur))
2162          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2163        else
2164          Diag(L, diag::err_invalid_declarator_scope)
2165            << Name << cast<NamedDecl>(DC) << R;
2166        D.setInvalidType();
2167      }
2168    }
2169  }
2170
2171  if (Previous.isSingleResult() &&
2172      Previous.getFoundDecl()->isTemplateParameter()) {
2173    // Maybe we will complain about the shadowed template parameter.
2174    if (!D.isInvalidType())
2175      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2176                                          Previous.getFoundDecl()))
2177        D.setInvalidType();
2178
2179    // Just pretend that we didn't see the previous declaration.
2180    Previous.clear();
2181  }
2182
2183  // In C++, the previous declaration we find might be a tag type
2184  // (class or enum). In this case, the new declaration will hide the
2185  // tag type. Note that this does does not apply if we're declaring a
2186  // typedef (C++ [dcl.typedef]p4).
2187  if (Previous.isSingleTagDecl() &&
2188      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2189    Previous.clear();
2190
2191  bool Redeclaration = false;
2192  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2193    if (TemplateParamLists.size()) {
2194      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2195      return DeclPtrTy();
2196    }
2197
2198    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2199  } else if (R->isFunctionType()) {
2200    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2201                                  move(TemplateParamLists),
2202                                  IsFunctionDefinition, Redeclaration);
2203  } else {
2204    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2205                                  move(TemplateParamLists),
2206                                  Redeclaration);
2207  }
2208
2209  if (New == 0)
2210    return DeclPtrTy();
2211
2212  // If this has an identifier and is not an invalid redeclaration or
2213  // function template specialization, add it to the scope stack.
2214  if (Name && !(Redeclaration && New->isInvalidDecl()))
2215    PushOnScopeChains(New, S);
2216
2217  return DeclPtrTy::make(New);
2218}
2219
2220/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2221/// types into constant array types in certain situations which would otherwise
2222/// be errors (for GCC compatibility).
2223static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2224                                                    ASTContext &Context,
2225                                                    bool &SizeIsNegative) {
2226  // This method tries to turn a variable array into a constant
2227  // array even when the size isn't an ICE.  This is necessary
2228  // for compatibility with code that depends on gcc's buggy
2229  // constant expression folding, like struct {char x[(int)(char*)2];}
2230  SizeIsNegative = false;
2231
2232  QualifierCollector Qs;
2233  const Type *Ty = Qs.strip(T);
2234
2235  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2236    QualType Pointee = PTy->getPointeeType();
2237    QualType FixedType =
2238        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2239    if (FixedType.isNull()) return FixedType;
2240    FixedType = Context.getPointerType(FixedType);
2241    return Qs.apply(FixedType);
2242  }
2243
2244  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2245  if (!VLATy)
2246    return QualType();
2247  // FIXME: We should probably handle this case
2248  if (VLATy->getElementType()->isVariablyModifiedType())
2249    return QualType();
2250
2251  Expr::EvalResult EvalResult;
2252  if (!VLATy->getSizeExpr() ||
2253      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2254      !EvalResult.Val.isInt())
2255    return QualType();
2256
2257  llvm::APSInt &Res = EvalResult.Val.getInt();
2258  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2259    // TODO: preserve the size expression in declarator info
2260    return Context.getConstantArrayType(VLATy->getElementType(),
2261                                        Res, ArrayType::Normal, 0);
2262  }
2263
2264  SizeIsNegative = true;
2265  return QualType();
2266}
2267
2268/// \brief Register the given locally-scoped external C declaration so
2269/// that it can be found later for redeclarations
2270void
2271Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2272                                       const LookupResult &Previous,
2273                                       Scope *S) {
2274  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2275         "Decl is not a locally-scoped decl!");
2276  // Note that we have a locally-scoped external with this name.
2277  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2278
2279  if (!Previous.isSingleResult())
2280    return;
2281
2282  NamedDecl *PrevDecl = Previous.getFoundDecl();
2283
2284  // If there was a previous declaration of this variable, it may be
2285  // in our identifier chain. Update the identifier chain with the new
2286  // declaration.
2287  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2288    // The previous declaration was found on the identifer resolver
2289    // chain, so remove it from its scope.
2290    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2291      S = S->getParent();
2292
2293    if (S)
2294      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2295  }
2296}
2297
2298/// \brief Diagnose function specifiers on a declaration of an identifier that
2299/// does not identify a function.
2300void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2301  // FIXME: We should probably indicate the identifier in question to avoid
2302  // confusion for constructs like "inline int a(), b;"
2303  if (D.getDeclSpec().isInlineSpecified())
2304    Diag(D.getDeclSpec().getInlineSpecLoc(),
2305         diag::err_inline_non_function);
2306
2307  if (D.getDeclSpec().isVirtualSpecified())
2308    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2309         diag::err_virtual_non_function);
2310
2311  if (D.getDeclSpec().isExplicitSpecified())
2312    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2313         diag::err_explicit_non_function);
2314}
2315
2316NamedDecl*
2317Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2318                             QualType R,  TypeSourceInfo *TInfo,
2319                             LookupResult &Previous, bool &Redeclaration) {
2320  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2321  if (D.getCXXScopeSpec().isSet()) {
2322    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2323      << D.getCXXScopeSpec().getRange();
2324    D.setInvalidType();
2325    // Pretend we didn't see the scope specifier.
2326    DC = CurContext;
2327    Previous.clear();
2328  }
2329
2330  if (getLangOptions().CPlusPlus) {
2331    // Check that there are no default arguments (C++ only).
2332    CheckExtraCXXDefaultArguments(D);
2333  }
2334
2335  DiagnoseFunctionSpecifiers(D);
2336
2337  if (D.getDeclSpec().isThreadSpecified())
2338    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2339
2340  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2341  if (!NewTD) return 0;
2342
2343  // Handle attributes prior to checking for duplicates in MergeVarDecl
2344  ProcessDeclAttributes(S, NewTD, D);
2345
2346  // Merge the decl with the existing one if appropriate. If the decl is
2347  // in an outer scope, it isn't the same thing.
2348  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2349  if (!Previous.empty()) {
2350    Redeclaration = true;
2351    MergeTypeDefDecl(NewTD, Previous);
2352  }
2353
2354  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2355  // then it shall have block scope.
2356  QualType T = NewTD->getUnderlyingType();
2357  if (T->isVariablyModifiedType()) {
2358    FunctionNeedsScopeChecking() = true;
2359
2360    if (S->getFnParent() == 0) {
2361      bool SizeIsNegative;
2362      QualType FixedTy =
2363          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2364      if (!FixedTy.isNull()) {
2365        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2366        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2367      } else {
2368        if (SizeIsNegative)
2369          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2370        else if (T->isVariableArrayType())
2371          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2372        else
2373          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2374        NewTD->setInvalidDecl();
2375      }
2376    }
2377  }
2378
2379  // If this is the C FILE type, notify the AST context.
2380  if (IdentifierInfo *II = NewTD->getIdentifier())
2381    if (!NewTD->isInvalidDecl() &&
2382        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2383      if (II->isStr("FILE"))
2384        Context.setFILEDecl(NewTD);
2385      else if (II->isStr("jmp_buf"))
2386        Context.setjmp_bufDecl(NewTD);
2387      else if (II->isStr("sigjmp_buf"))
2388        Context.setsigjmp_bufDecl(NewTD);
2389    }
2390
2391  return NewTD;
2392}
2393
2394/// \brief Determines whether the given declaration is an out-of-scope
2395/// previous declaration.
2396///
2397/// This routine should be invoked when name lookup has found a
2398/// previous declaration (PrevDecl) that is not in the scope where a
2399/// new declaration by the same name is being introduced. If the new
2400/// declaration occurs in a local scope, previous declarations with
2401/// linkage may still be considered previous declarations (C99
2402/// 6.2.2p4-5, C++ [basic.link]p6).
2403///
2404/// \param PrevDecl the previous declaration found by name
2405/// lookup
2406///
2407/// \param DC the context in which the new declaration is being
2408/// declared.
2409///
2410/// \returns true if PrevDecl is an out-of-scope previous declaration
2411/// for a new delcaration with the same name.
2412static bool
2413isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2414                                ASTContext &Context) {
2415  if (!PrevDecl)
2416    return 0;
2417
2418  if (!PrevDecl->hasLinkage())
2419    return false;
2420
2421  if (Context.getLangOptions().CPlusPlus) {
2422    // C++ [basic.link]p6:
2423    //   If there is a visible declaration of an entity with linkage
2424    //   having the same name and type, ignoring entities declared
2425    //   outside the innermost enclosing namespace scope, the block
2426    //   scope declaration declares that same entity and receives the
2427    //   linkage of the previous declaration.
2428    DeclContext *OuterContext = DC->getLookupContext();
2429    if (!OuterContext->isFunctionOrMethod())
2430      // This rule only applies to block-scope declarations.
2431      return false;
2432    else {
2433      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2434      if (PrevOuterContext->isRecord())
2435        // We found a member function: ignore it.
2436        return false;
2437      else {
2438        // Find the innermost enclosing namespace for the new and
2439        // previous declarations.
2440        while (!OuterContext->isFileContext())
2441          OuterContext = OuterContext->getParent();
2442        while (!PrevOuterContext->isFileContext())
2443          PrevOuterContext = PrevOuterContext->getParent();
2444
2445        // The previous declaration is in a different namespace, so it
2446        // isn't the same function.
2447        if (OuterContext->getPrimaryContext() !=
2448            PrevOuterContext->getPrimaryContext())
2449          return false;
2450      }
2451    }
2452  }
2453
2454  return true;
2455}
2456
2457static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2458  CXXScopeSpec &SS = D.getCXXScopeSpec();
2459  if (!SS.isSet()) return;
2460  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2461                       SS.getRange());
2462}
2463
2464NamedDecl*
2465Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2466                              QualType R, TypeSourceInfo *TInfo,
2467                              LookupResult &Previous,
2468                              MultiTemplateParamsArg TemplateParamLists,
2469                              bool &Redeclaration) {
2470  DeclarationName Name = GetNameForDeclarator(D);
2471
2472  // Check that there are no default arguments (C++ only).
2473  if (getLangOptions().CPlusPlus)
2474    CheckExtraCXXDefaultArguments(D);
2475
2476  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2477  assert(SCSpec != DeclSpec::SCS_typedef &&
2478         "Parser allowed 'typedef' as storage class VarDecl.");
2479  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2480  if (SCSpec == DeclSpec::SCS_mutable) {
2481    // mutable can only appear on non-static class members, so it's always
2482    // an error here
2483    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2484    D.setInvalidType();
2485    SC = VarDecl::None;
2486  }
2487  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2488  VarDecl::StorageClass SCAsWritten
2489    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2490
2491  IdentifierInfo *II = Name.getAsIdentifierInfo();
2492  if (!II) {
2493    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2494      << Name.getAsString();
2495    return 0;
2496  }
2497
2498  DiagnoseFunctionSpecifiers(D);
2499
2500  if (!DC->isRecord() && S->getFnParent() == 0) {
2501    // C99 6.9p2: The storage-class specifiers auto and register shall not
2502    // appear in the declaration specifiers in an external declaration.
2503    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2504
2505      // If this is a register variable with an asm label specified, then this
2506      // is a GNU extension.
2507      if (SC == VarDecl::Register && D.getAsmLabel())
2508        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2509      else
2510        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2511      D.setInvalidType();
2512    }
2513  }
2514  if (DC->isRecord() && !CurContext->isRecord()) {
2515    // This is an out-of-line definition of a static data member.
2516    if (SC == VarDecl::Static) {
2517      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2518           diag::err_static_out_of_line)
2519        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2520    } else if (SC == VarDecl::None)
2521      SC = VarDecl::Static;
2522  }
2523  if (SC == VarDecl::Static) {
2524    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2525      if (RD->isLocalClass())
2526        Diag(D.getIdentifierLoc(),
2527             diag::err_static_data_member_not_allowed_in_local_class)
2528          << Name << RD->getDeclName();
2529    }
2530  }
2531
2532  // Match up the template parameter lists with the scope specifier, then
2533  // determine whether we have a template or a template specialization.
2534  bool isExplicitSpecialization = false;
2535  if (TemplateParameterList *TemplateParams
2536        = MatchTemplateParametersToScopeSpecifier(
2537                                  D.getDeclSpec().getSourceRange().getBegin(),
2538                                                  D.getCXXScopeSpec(),
2539                        (TemplateParameterList**)TemplateParamLists.get(),
2540                                                   TemplateParamLists.size(),
2541                                                  /*never a friend*/ false,
2542                                                  isExplicitSpecialization)) {
2543    if (TemplateParams->size() > 0) {
2544      // There is no such thing as a variable template.
2545      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2546        << II
2547        << SourceRange(TemplateParams->getTemplateLoc(),
2548                       TemplateParams->getRAngleLoc());
2549      return 0;
2550    } else {
2551      // There is an extraneous 'template<>' for this variable. Complain
2552      // about it, but allow the declaration of the variable.
2553      Diag(TemplateParams->getTemplateLoc(),
2554           diag::err_template_variable_noparams)
2555        << II
2556        << SourceRange(TemplateParams->getTemplateLoc(),
2557                       TemplateParams->getRAngleLoc());
2558
2559      isExplicitSpecialization = true;
2560    }
2561  }
2562
2563  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2564                                   II, R, TInfo, SC, SCAsWritten);
2565
2566  if (D.isInvalidType())
2567    NewVD->setInvalidDecl();
2568
2569  SetNestedNameSpecifier(NewVD, D);
2570
2571  if (D.getDeclSpec().isThreadSpecified()) {
2572    if (NewVD->hasLocalStorage())
2573      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2574    else if (!Context.Target.isTLSSupported())
2575      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2576    else
2577      NewVD->setThreadSpecified(true);
2578  }
2579
2580  // Set the lexical context. If the declarator has a C++ scope specifier, the
2581  // lexical context will be different from the semantic context.
2582  NewVD->setLexicalDeclContext(CurContext);
2583
2584  // Handle attributes prior to checking for duplicates in MergeVarDecl
2585  ProcessDeclAttributes(S, NewVD, D);
2586
2587  // Handle GNU asm-label extension (encoded as an attribute).
2588  if (Expr *E = (Expr*) D.getAsmLabel()) {
2589    // The parser guarantees this is a string.
2590    StringLiteral *SE = cast<StringLiteral>(E);
2591    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2592  }
2593
2594  // Diagnose shadowed variables before filtering for scope.
2595  if (!D.getCXXScopeSpec().isSet())
2596    CheckShadow(S, NewVD, Previous);
2597
2598  // Don't consider existing declarations that are in a different
2599  // scope and are out-of-semantic-context declarations (if the new
2600  // declaration has linkage).
2601  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2602
2603  // Merge the decl with the existing one if appropriate.
2604  if (!Previous.empty()) {
2605    if (Previous.isSingleResult() &&
2606        isa<FieldDecl>(Previous.getFoundDecl()) &&
2607        D.getCXXScopeSpec().isSet()) {
2608      // The user tried to define a non-static data member
2609      // out-of-line (C++ [dcl.meaning]p1).
2610      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2611        << D.getCXXScopeSpec().getRange();
2612      Previous.clear();
2613      NewVD->setInvalidDecl();
2614    }
2615  } else if (D.getCXXScopeSpec().isSet()) {
2616    // No previous declaration in the qualifying scope.
2617    Diag(D.getIdentifierLoc(), diag::err_no_member)
2618      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2619      << D.getCXXScopeSpec().getRange();
2620    NewVD->setInvalidDecl();
2621  }
2622
2623  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2624
2625  // This is an explicit specialization of a static data member. Check it.
2626  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2627      CheckMemberSpecialization(NewVD, Previous))
2628    NewVD->setInvalidDecl();
2629
2630  // attributes declared post-definition are currently ignored
2631  if (Previous.isSingleResult()) {
2632    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2633    if (Def && (Def = Def->getDefinition()) &&
2634        Def != NewVD && D.hasAttributes()) {
2635      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2636      Diag(Def->getLocation(), diag::note_previous_definition);
2637    }
2638  }
2639
2640  // If this is a locally-scoped extern C variable, update the map of
2641  // such variables.
2642  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2643      !NewVD->isInvalidDecl())
2644    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2645
2646  return NewVD;
2647}
2648
2649/// \brief Diagnose variable or built-in function shadowing.  Implements
2650/// -Wshadow.
2651///
2652/// This method is called whenever a VarDecl is added to a "useful"
2653/// scope.
2654///
2655/// \param S the scope in which the shadowing name is being declared
2656/// \param R the lookup of the name
2657///
2658void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2659  // Return if warning is ignored.
2660  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2661    return;
2662
2663  // Don't diagnose declarations at file scope.  The scope might not
2664  // have a DeclContext if (e.g.) we're parsing a function prototype.
2665  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2666  if (NewDC && NewDC->isFileContext())
2667    return;
2668
2669  // Only diagnose if we're shadowing an unambiguous field or variable.
2670  if (R.getResultKind() != LookupResult::Found)
2671    return;
2672
2673  NamedDecl* ShadowedDecl = R.getFoundDecl();
2674  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2675    return;
2676
2677  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2678
2679  // Only warn about certain kinds of shadowing for class members.
2680  if (NewDC && NewDC->isRecord()) {
2681    // In particular, don't warn about shadowing non-class members.
2682    if (!OldDC->isRecord())
2683      return;
2684
2685    // TODO: should we warn about static data members shadowing
2686    // static data members from base classes?
2687
2688    // TODO: don't diagnose for inaccessible shadowed members.
2689    // This is hard to do perfectly because we might friend the
2690    // shadowing context, but that's just a false negative.
2691  }
2692
2693  // Determine what kind of declaration we're shadowing.
2694  unsigned Kind;
2695  if (isa<RecordDecl>(OldDC)) {
2696    if (isa<FieldDecl>(ShadowedDecl))
2697      Kind = 3; // field
2698    else
2699      Kind = 2; // static data member
2700  } else if (OldDC->isFileContext())
2701    Kind = 1; // global
2702  else
2703    Kind = 0; // local
2704
2705  DeclarationName Name = R.getLookupName();
2706
2707  // Emit warning and note.
2708  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2709  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2710}
2711
2712/// \brief Check -Wshadow without the advantage of a previous lookup.
2713void Sema::CheckShadow(Scope *S, VarDecl *D) {
2714  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2715                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2716  LookupName(R, S);
2717  CheckShadow(S, D, R);
2718}
2719
2720/// \brief Perform semantic checking on a newly-created variable
2721/// declaration.
2722///
2723/// This routine performs all of the type-checking required for a
2724/// variable declaration once it has been built. It is used both to
2725/// check variables after they have been parsed and their declarators
2726/// have been translated into a declaration, and to check variables
2727/// that have been instantiated from a template.
2728///
2729/// Sets NewVD->isInvalidDecl() if an error was encountered.
2730void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2731                                    LookupResult &Previous,
2732                                    bool &Redeclaration) {
2733  // If the decl is already known invalid, don't check it.
2734  if (NewVD->isInvalidDecl())
2735    return;
2736
2737  QualType T = NewVD->getType();
2738
2739  if (T->isObjCObjectType()) {
2740    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2741    return NewVD->setInvalidDecl();
2742  }
2743
2744  // Emit an error if an address space was applied to decl with local storage.
2745  // This includes arrays of objects with address space qualifiers, but not
2746  // automatic variables that point to other address spaces.
2747  // ISO/IEC TR 18037 S5.1.2
2748  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2749    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2750    return NewVD->setInvalidDecl();
2751  }
2752
2753  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2754      && !NewVD->hasAttr<BlocksAttr>())
2755    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2756
2757  bool isVM = T->isVariablyModifiedType();
2758  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2759      NewVD->hasAttr<BlocksAttr>() ||
2760      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2761      // However, this turns on the scope checker for everything with a variable
2762      // which may impact compile time.  See if we can find a better solution
2763      // to this, perhaps only checking functions that contain gotos in C++?
2764      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2765    FunctionNeedsScopeChecking() = true;
2766
2767  if ((isVM && NewVD->hasLinkage()) ||
2768      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2769    bool SizeIsNegative;
2770    QualType FixedTy =
2771        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2772
2773    if (FixedTy.isNull() && T->isVariableArrayType()) {
2774      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2775      // FIXME: This won't give the correct result for
2776      // int a[10][n];
2777      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2778
2779      if (NewVD->isFileVarDecl())
2780        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2781        << SizeRange;
2782      else if (NewVD->getStorageClass() == VarDecl::Static)
2783        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2784        << SizeRange;
2785      else
2786        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2787        << SizeRange;
2788      return NewVD->setInvalidDecl();
2789    }
2790
2791    if (FixedTy.isNull()) {
2792      if (NewVD->isFileVarDecl())
2793        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2794      else
2795        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2796      return NewVD->setInvalidDecl();
2797    }
2798
2799    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2800    NewVD->setType(FixedTy);
2801  }
2802
2803  if (Previous.empty() && NewVD->isExternC()) {
2804    // Since we did not find anything by this name and we're declaring
2805    // an extern "C" variable, look for a non-visible extern "C"
2806    // declaration with the same name.
2807    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2808      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2809    if (Pos != LocallyScopedExternalDecls.end())
2810      Previous.addDecl(Pos->second);
2811  }
2812
2813  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2814    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2815      << T;
2816    return NewVD->setInvalidDecl();
2817  }
2818
2819  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2820    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2821    return NewVD->setInvalidDecl();
2822  }
2823
2824  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2825    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2826    return NewVD->setInvalidDecl();
2827  }
2828
2829  if (!Previous.empty()) {
2830    Redeclaration = true;
2831    MergeVarDecl(NewVD, Previous);
2832  }
2833}
2834
2835/// \brief Data used with FindOverriddenMethod
2836struct FindOverriddenMethodData {
2837  Sema *S;
2838  CXXMethodDecl *Method;
2839};
2840
2841/// \brief Member lookup function that determines whether a given C++
2842/// method overrides a method in a base class, to be used with
2843/// CXXRecordDecl::lookupInBases().
2844static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2845                                 CXXBasePath &Path,
2846                                 void *UserData) {
2847  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2848
2849  FindOverriddenMethodData *Data
2850    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2851
2852  DeclarationName Name = Data->Method->getDeclName();
2853
2854  // FIXME: Do we care about other names here too?
2855  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2856    // We really want to find the base class constructor here.
2857    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2858    CanQualType CT = Data->S->Context.getCanonicalType(T);
2859
2860    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2861  }
2862
2863  for (Path.Decls = BaseRecord->lookup(Name);
2864       Path.Decls.first != Path.Decls.second;
2865       ++Path.Decls.first) {
2866    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2867      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2868        return true;
2869    }
2870  }
2871
2872  return false;
2873}
2874
2875/// AddOverriddenMethods - See if a method overrides any in the base classes,
2876/// and if so, check that it's a valid override and remember it.
2877void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2878  // Look for virtual methods in base classes that this method might override.
2879  CXXBasePaths Paths;
2880  FindOverriddenMethodData Data;
2881  Data.Method = MD;
2882  Data.S = this;
2883  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2884    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2885         E = Paths.found_decls_end(); I != E; ++I) {
2886      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2887        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2888            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2889            !CheckOverridingFunctionAttributes(MD, OldMD))
2890          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2891      }
2892    }
2893  }
2894}
2895
2896NamedDecl*
2897Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2898                              QualType R, TypeSourceInfo *TInfo,
2899                              LookupResult &Previous,
2900                              MultiTemplateParamsArg TemplateParamLists,
2901                              bool IsFunctionDefinition, bool &Redeclaration) {
2902  assert(R.getTypePtr()->isFunctionType());
2903
2904  DeclarationName Name = GetNameForDeclarator(D);
2905  FunctionDecl::StorageClass SC = FunctionDecl::None;
2906  switch (D.getDeclSpec().getStorageClassSpec()) {
2907  default: assert(0 && "Unknown storage class!");
2908  case DeclSpec::SCS_auto:
2909  case DeclSpec::SCS_register:
2910  case DeclSpec::SCS_mutable:
2911    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2912         diag::err_typecheck_sclass_func);
2913    D.setInvalidType();
2914    break;
2915  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2916  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2917  case DeclSpec::SCS_static: {
2918    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2919      // C99 6.7.1p5:
2920      //   The declaration of an identifier for a function that has
2921      //   block scope shall have no explicit storage-class specifier
2922      //   other than extern
2923      // See also (C++ [dcl.stc]p4).
2924      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2925           diag::err_static_block_func);
2926      SC = FunctionDecl::None;
2927    } else
2928      SC = FunctionDecl::Static;
2929    break;
2930  }
2931  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2932  }
2933
2934  if (D.getDeclSpec().isThreadSpecified())
2935    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2936
2937  bool isFriend = D.getDeclSpec().isFriendSpecified();
2938  bool isInline = D.getDeclSpec().isInlineSpecified();
2939  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2940  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2941
2942  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2943  FunctionDecl::StorageClass SCAsWritten
2944    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
2945
2946  // Check that the return type is not an abstract class type.
2947  // For record types, this is done by the AbstractClassUsageDiagnoser once
2948  // the class has been completely parsed.
2949  if (!DC->isRecord() &&
2950      RequireNonAbstractType(D.getIdentifierLoc(),
2951                             R->getAs<FunctionType>()->getResultType(),
2952                             diag::err_abstract_type_in_decl,
2953                             AbstractReturnType))
2954    D.setInvalidType();
2955
2956  // Do not allow returning a objc interface by-value.
2957  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
2958    Diag(D.getIdentifierLoc(),
2959         diag::err_object_cannot_be_passed_returned_by_value) << 0
2960      << R->getAs<FunctionType>()->getResultType();
2961    D.setInvalidType();
2962  }
2963
2964  bool isVirtualOkay = false;
2965  FunctionDecl *NewFD;
2966
2967  if (isFriend) {
2968    // C++ [class.friend]p5
2969    //   A function can be defined in a friend declaration of a
2970    //   class . . . . Such a function is implicitly inline.
2971    isInline |= IsFunctionDefinition;
2972  }
2973
2974  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2975    // This is a C++ constructor declaration.
2976    assert(DC->isRecord() &&
2977           "Constructors can only be declared in a member context");
2978
2979    R = CheckConstructorDeclarator(D, R, SC);
2980
2981    // Create the new declaration
2982    NewFD = CXXConstructorDecl::Create(Context,
2983                                       cast<CXXRecordDecl>(DC),
2984                                       D.getIdentifierLoc(), Name, R, TInfo,
2985                                       isExplicit, isInline,
2986                                       /*isImplicitlyDeclared=*/false);
2987  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2988    // This is a C++ destructor declaration.
2989    if (DC->isRecord()) {
2990      R = CheckDestructorDeclarator(D, SC);
2991
2992      NewFD = CXXDestructorDecl::Create(Context,
2993                                        cast<CXXRecordDecl>(DC),
2994                                        D.getIdentifierLoc(), Name, R,
2995                                        isInline,
2996                                        /*isImplicitlyDeclared=*/false);
2997      NewFD->setTypeSourceInfo(TInfo);
2998
2999      isVirtualOkay = true;
3000    } else {
3001      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3002
3003      // Create a FunctionDecl to satisfy the function definition parsing
3004      // code path.
3005      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3006                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3007                                   /*hasPrototype=*/true);
3008      D.setInvalidType();
3009    }
3010  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3011    if (!DC->isRecord()) {
3012      Diag(D.getIdentifierLoc(),
3013           diag::err_conv_function_not_member);
3014      return 0;
3015    }
3016
3017    CheckConversionDeclarator(D, R, SC);
3018    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3019                                      D.getIdentifierLoc(), Name, R, TInfo,
3020                                      isInline, isExplicit);
3021
3022    isVirtualOkay = true;
3023  } else if (DC->isRecord()) {
3024    // If the of the function is the same as the name of the record, then this
3025    // must be an invalid constructor that has a return type.
3026    // (The parser checks for a return type and makes the declarator a
3027    // constructor if it has no return type).
3028    // must have an invalid constructor that has a return type
3029    if (Name.getAsIdentifierInfo() &&
3030        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3031      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3032        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3033        << SourceRange(D.getIdentifierLoc());
3034      return 0;
3035    }
3036
3037    bool isStatic = SC == FunctionDecl::Static;
3038
3039    // [class.free]p1:
3040    // Any allocation function for a class T is a static member
3041    // (even if not explicitly declared static).
3042    if (Name.getCXXOverloadedOperator() == OO_New ||
3043        Name.getCXXOverloadedOperator() == OO_Array_New)
3044      isStatic = true;
3045
3046    // [class.free]p6 Any deallocation function for a class X is a static member
3047    // (even if not explicitly declared static).
3048    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3049        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3050      isStatic = true;
3051
3052    // This is a C++ method declaration.
3053    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3054                                  D.getIdentifierLoc(), Name, R, TInfo,
3055                                  isStatic, SCAsWritten, isInline);
3056
3057    isVirtualOkay = !isStatic;
3058  } else {
3059    // Determine whether the function was written with a
3060    // prototype. This true when:
3061    //   - we're in C++ (where every function has a prototype),
3062    //   - there is a prototype in the declarator, or
3063    //   - the type R of the function is some kind of typedef or other reference
3064    //     to a type name (which eventually refers to a function type).
3065    bool HasPrototype =
3066       getLangOptions().CPlusPlus ||
3067       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3068       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3069
3070    NewFD = FunctionDecl::Create(Context, DC,
3071                                 D.getIdentifierLoc(),
3072                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3073                                 HasPrototype);
3074  }
3075
3076  if (D.isInvalidType())
3077    NewFD->setInvalidDecl();
3078
3079  SetNestedNameSpecifier(NewFD, D);
3080
3081  // Set the lexical context. If the declarator has a C++
3082  // scope specifier, or is the object of a friend declaration, the
3083  // lexical context will be different from the semantic context.
3084  NewFD->setLexicalDeclContext(CurContext);
3085
3086  // Match up the template parameter lists with the scope specifier, then
3087  // determine whether we have a template or a template specialization.
3088  FunctionTemplateDecl *FunctionTemplate = 0;
3089  bool isExplicitSpecialization = false;
3090  bool isFunctionTemplateSpecialization = false;
3091  if (TemplateParameterList *TemplateParams
3092        = MatchTemplateParametersToScopeSpecifier(
3093                                  D.getDeclSpec().getSourceRange().getBegin(),
3094                                  D.getCXXScopeSpec(),
3095                           (TemplateParameterList**)TemplateParamLists.get(),
3096                                                  TemplateParamLists.size(),
3097                                                  isFriend,
3098                                                  isExplicitSpecialization)) {
3099    if (TemplateParams->size() > 0) {
3100      // This is a function template
3101
3102      // Check that we can declare a template here.
3103      if (CheckTemplateDeclScope(S, TemplateParams))
3104        return 0;
3105
3106      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3107                                                      NewFD->getLocation(),
3108                                                      Name, TemplateParams,
3109                                                      NewFD);
3110      FunctionTemplate->setLexicalDeclContext(CurContext);
3111      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3112    } else {
3113      // This is a function template specialization.
3114      isFunctionTemplateSpecialization = true;
3115
3116      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3117      if (isFriend && isFunctionTemplateSpecialization) {
3118        // We want to remove the "template<>", found here.
3119        SourceRange RemoveRange = TemplateParams->getSourceRange();
3120
3121        // If we remove the template<> and the name is not a
3122        // template-id, we're actually silently creating a problem:
3123        // the friend declaration will refer to an untemplated decl,
3124        // and clearly the user wants a template specialization.  So
3125        // we need to insert '<>' after the name.
3126        SourceLocation InsertLoc;
3127        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3128          InsertLoc = D.getName().getSourceRange().getEnd();
3129          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3130        }
3131
3132        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3133          << Name << RemoveRange
3134          << FixItHint::CreateRemoval(RemoveRange)
3135          << FixItHint::CreateInsertion(InsertLoc, "<>");
3136      }
3137    }
3138
3139    // FIXME: Free this memory properly.
3140    TemplateParamLists.release();
3141  }
3142
3143  // C++ [dcl.fct.spec]p5:
3144  //   The virtual specifier shall only be used in declarations of
3145  //   nonstatic class member functions that appear within a
3146  //   member-specification of a class declaration; see 10.3.
3147  //
3148  if (isVirtual && !NewFD->isInvalidDecl()) {
3149    if (!isVirtualOkay) {
3150       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3151           diag::err_virtual_non_function);
3152    } else if (!CurContext->isRecord()) {
3153      // 'virtual' was specified outside of the class.
3154      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3155        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3156    } else {
3157      // Okay: Add virtual to the method.
3158      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3159      CurClass->setMethodAsVirtual(NewFD);
3160    }
3161  }
3162
3163  // C++ [dcl.fct.spec]p6:
3164  //  The explicit specifier shall be used only in the declaration of a
3165  //  constructor or conversion function within its class definition; see 12.3.1
3166  //  and 12.3.2.
3167  if (isExplicit && !NewFD->isInvalidDecl()) {
3168    if (!CurContext->isRecord()) {
3169      // 'explicit' was specified outside of the class.
3170      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3171           diag::err_explicit_out_of_class)
3172        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3173    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3174               !isa<CXXConversionDecl>(NewFD)) {
3175      // 'explicit' was specified on a function that wasn't a constructor
3176      // or conversion function.
3177      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3178           diag::err_explicit_non_ctor_or_conv_function)
3179        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3180    }
3181  }
3182
3183  // Filter out previous declarations that don't match the scope.
3184  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3185
3186  if (isFriend) {
3187    // DC is the namespace in which the function is being declared.
3188    assert((DC->isFileContext() || !Previous.empty()) &&
3189           "previously-undeclared friend function being created "
3190           "in a non-namespace context");
3191
3192    // For now, claim that the objects have no previous declaration.
3193    if (FunctionTemplate) {
3194      FunctionTemplate->setObjectOfFriendDecl(false);
3195      FunctionTemplate->setAccess(AS_public);
3196    }
3197    NewFD->setObjectOfFriendDecl(false);
3198    NewFD->setAccess(AS_public);
3199  }
3200
3201  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3202      !CurContext->isRecord()) {
3203    // C++ [class.static]p1:
3204    //   A data or function member of a class may be declared static
3205    //   in a class definition, in which case it is a static member of
3206    //   the class.
3207
3208    // Complain about the 'static' specifier if it's on an out-of-line
3209    // member function definition.
3210    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3211         diag::err_static_out_of_line)
3212      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3213  }
3214
3215  // Handle GNU asm-label extension (encoded as an attribute).
3216  if (Expr *E = (Expr*) D.getAsmLabel()) {
3217    // The parser guarantees this is a string.
3218    StringLiteral *SE = cast<StringLiteral>(E);
3219    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3220  }
3221
3222  // Copy the parameter declarations from the declarator D to the function
3223  // declaration NewFD, if they are available.  First scavenge them into Params.
3224  llvm::SmallVector<ParmVarDecl*, 16> Params;
3225  if (D.getNumTypeObjects() > 0) {
3226    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3227
3228    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3229    // function that takes no arguments, not a function that takes a
3230    // single void argument.
3231    // We let through "const void" here because Sema::GetTypeForDeclarator
3232    // already checks for that case.
3233    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3234        FTI.ArgInfo[0].Param &&
3235        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3236      // Empty arg list, don't push any params.
3237      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3238
3239      // In C++, the empty parameter-type-list must be spelled "void"; a
3240      // typedef of void is not permitted.
3241      if (getLangOptions().CPlusPlus &&
3242          Param->getType().getUnqualifiedType() != Context.VoidTy)
3243        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3244      // FIXME: Leaks decl?
3245    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3246      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3247        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3248        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3249        Param->setDeclContext(NewFD);
3250        Params.push_back(Param);
3251
3252        if (Param->isInvalidDecl())
3253          NewFD->setInvalidDecl();
3254      }
3255    }
3256
3257  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3258    // When we're declaring a function with a typedef, typeof, etc as in the
3259    // following example, we'll need to synthesize (unnamed)
3260    // parameters for use in the declaration.
3261    //
3262    // @code
3263    // typedef void fn(int);
3264    // fn f;
3265    // @endcode
3266
3267    // Synthesize a parameter for each argument type.
3268    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3269         AE = FT->arg_type_end(); AI != AE; ++AI) {
3270      ParmVarDecl *Param =
3271        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3272      Params.push_back(Param);
3273    }
3274  } else {
3275    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3276           "Should not need args for typedef of non-prototype fn");
3277  }
3278  // Finally, we know we have the right number of parameters, install them.
3279  NewFD->setParams(Params.data(), Params.size());
3280
3281  // If the declarator is a template-id, translate the parser's template
3282  // argument list into our AST format.
3283  bool HasExplicitTemplateArgs = false;
3284  TemplateArgumentListInfo TemplateArgs;
3285  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3286    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3287    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3288    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3289    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3290                                       TemplateId->getTemplateArgs(),
3291                                       TemplateId->NumArgs);
3292    translateTemplateArguments(TemplateArgsPtr,
3293                               TemplateArgs);
3294    TemplateArgsPtr.release();
3295
3296    HasExplicitTemplateArgs = true;
3297
3298    if (FunctionTemplate) {
3299      // FIXME: Diagnose function template with explicit template
3300      // arguments.
3301      HasExplicitTemplateArgs = false;
3302    } else if (!isFunctionTemplateSpecialization &&
3303               !D.getDeclSpec().isFriendSpecified()) {
3304      // We have encountered something that the user meant to be a
3305      // specialization (because it has explicitly-specified template
3306      // arguments) but that was not introduced with a "template<>" (or had
3307      // too few of them).
3308      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3309        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3310        << FixItHint::CreateInsertion(
3311                                   D.getDeclSpec().getSourceRange().getBegin(),
3312                                                 "template<> ");
3313      isFunctionTemplateSpecialization = true;
3314    } else {
3315      // "friend void foo<>(int);" is an implicit specialization decl.
3316      isFunctionTemplateSpecialization = true;
3317    }
3318  } else if (isFriend && isFunctionTemplateSpecialization) {
3319    // This combination is only possible in a recovery case;  the user
3320    // wrote something like:
3321    //   template <> friend void foo(int);
3322    // which we're recovering from as if the user had written:
3323    //   friend void foo<>(int);
3324    // Go ahead and fake up a template id.
3325    HasExplicitTemplateArgs = true;
3326    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3327    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3328  }
3329
3330  // If it's a friend (and only if it's a friend), it's possible
3331  // that either the specialized function type or the specialized
3332  // template is dependent, and therefore matching will fail.  In
3333  // this case, don't check the specialization yet.
3334  if (isFunctionTemplateSpecialization && isFriend &&
3335      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3336    assert(HasExplicitTemplateArgs &&
3337           "friend function specialization without template args");
3338    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3339                                                     Previous))
3340      NewFD->setInvalidDecl();
3341  } else if (isFunctionTemplateSpecialization) {
3342    if (CheckFunctionTemplateSpecialization(NewFD,
3343                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3344                                            Previous))
3345      NewFD->setInvalidDecl();
3346  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3347    if (CheckMemberSpecialization(NewFD, Previous))
3348      NewFD->setInvalidDecl();
3349  }
3350
3351  // Perform semantic checking on the function declaration.
3352  bool OverloadableAttrRequired = false; // FIXME: HACK!
3353  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3354                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3355
3356  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3357          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3358         "previous declaration set still overloaded");
3359
3360  NamedDecl *PrincipalDecl = (FunctionTemplate
3361                              ? cast<NamedDecl>(FunctionTemplate)
3362                              : NewFD);
3363
3364  if (isFriend && Redeclaration) {
3365    AccessSpecifier Access = AS_public;
3366    if (!NewFD->isInvalidDecl())
3367      Access = NewFD->getPreviousDeclaration()->getAccess();
3368
3369    NewFD->setAccess(Access);
3370    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3371
3372    PrincipalDecl->setObjectOfFriendDecl(true);
3373  }
3374
3375  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3376      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3377    PrincipalDecl->setNonMemberOperator();
3378
3379  // If we have a function template, check the template parameter
3380  // list. This will check and merge default template arguments.
3381  if (FunctionTemplate) {
3382    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3383    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3384                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3385             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3386                                                : TPC_FunctionTemplate);
3387  }
3388
3389  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3390    // Fake up an access specifier if it's supposed to be a class member.
3391    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3392      NewFD->setAccess(AS_public);
3393
3394    // An out-of-line member function declaration must also be a
3395    // definition (C++ [dcl.meaning]p1).
3396    // Note that this is not the case for explicit specializations of
3397    // function templates or member functions of class templates, per
3398    // C++ [temp.expl.spec]p2.
3399    if (!IsFunctionDefinition && !isFriend &&
3400        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3401      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3402        << D.getCXXScopeSpec().getRange();
3403      NewFD->setInvalidDecl();
3404    } else if (!Redeclaration &&
3405               !(isFriend && CurContext->isDependentContext())) {
3406      // The user tried to provide an out-of-line definition for a
3407      // function that is a member of a class or namespace, but there
3408      // was no such member function declared (C++ [class.mfct]p2,
3409      // C++ [namespace.memdef]p2). For example:
3410      //
3411      // class X {
3412      //   void f() const;
3413      // };
3414      //
3415      // void X::f() { } // ill-formed
3416      //
3417      // Complain about this problem, and attempt to suggest close
3418      // matches (e.g., those that differ only in cv-qualifiers and
3419      // whether the parameter types are references).
3420      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3421        << Name << DC << D.getCXXScopeSpec().getRange();
3422      NewFD->setInvalidDecl();
3423
3424      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3425                        ForRedeclaration);
3426      LookupQualifiedName(Prev, DC);
3427      assert(!Prev.isAmbiguous() &&
3428             "Cannot have an ambiguity in previous-declaration lookup");
3429      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3430           Func != FuncEnd; ++Func) {
3431        if (isa<FunctionDecl>(*Func) &&
3432            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3433          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3434      }
3435    }
3436  }
3437
3438  // Handle attributes. We need to have merged decls when handling attributes
3439  // (for example to check for conflicts, etc).
3440  // FIXME: This needs to happen before we merge declarations. Then,
3441  // let attribute merging cope with attribute conflicts.
3442  ProcessDeclAttributes(S, NewFD, D);
3443
3444  // attributes declared post-definition are currently ignored
3445  if (Redeclaration && Previous.isSingleResult()) {
3446    const FunctionDecl *Def;
3447    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3448    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3449      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3450      Diag(Def->getLocation(), diag::note_previous_definition);
3451    }
3452  }
3453
3454  AddKnownFunctionAttributes(NewFD);
3455
3456  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3457    // If a function name is overloadable in C, then every function
3458    // with that name must be marked "overloadable".
3459    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3460      << Redeclaration << NewFD;
3461    if (!Previous.empty())
3462      Diag(Previous.getRepresentativeDecl()->getLocation(),
3463           diag::note_attribute_overloadable_prev_overload);
3464    NewFD->addAttr(::new (Context) OverloadableAttr());
3465  }
3466
3467  // If this is a locally-scoped extern C function, update the
3468  // map of such names.
3469  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3470      && !NewFD->isInvalidDecl())
3471    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3472
3473  // Set this FunctionDecl's range up to the right paren.
3474  NewFD->setLocEnd(D.getSourceRange().getEnd());
3475
3476  if (FunctionTemplate && NewFD->isInvalidDecl())
3477    FunctionTemplate->setInvalidDecl();
3478
3479  if (FunctionTemplate)
3480    return FunctionTemplate;
3481
3482
3483  // Keep track of static, non-inlined function definitions that
3484  // have not been used. We will warn later.
3485  // FIXME: Also include static functions declared but not defined.
3486  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3487      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3488      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3489      && !NewFD->hasAttr<ConstructorAttr>()
3490      && !NewFD->hasAttr<DestructorAttr>())
3491    UnusedStaticFuncs.push_back(NewFD);
3492
3493  return NewFD;
3494}
3495
3496/// \brief Perform semantic checking of a new function declaration.
3497///
3498/// Performs semantic analysis of the new function declaration
3499/// NewFD. This routine performs all semantic checking that does not
3500/// require the actual declarator involved in the declaration, and is
3501/// used both for the declaration of functions as they are parsed
3502/// (called via ActOnDeclarator) and for the declaration of functions
3503/// that have been instantiated via C++ template instantiation (called
3504/// via InstantiateDecl).
3505///
3506/// \param IsExplicitSpecialiation whether this new function declaration is
3507/// an explicit specialization of the previous declaration.
3508///
3509/// This sets NewFD->isInvalidDecl() to true if there was an error.
3510void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3511                                    LookupResult &Previous,
3512                                    bool IsExplicitSpecialization,
3513                                    bool &Redeclaration,
3514                                    bool &OverloadableAttrRequired) {
3515  // If NewFD is already known erroneous, don't do any of this checking.
3516  if (NewFD->isInvalidDecl())
3517    return;
3518
3519  if (NewFD->getResultType()->isVariablyModifiedType()) {
3520    // Functions returning a variably modified type violate C99 6.7.5.2p2
3521    // because all functions have linkage.
3522    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3523    return NewFD->setInvalidDecl();
3524  }
3525
3526  if (NewFD->isMain())
3527    CheckMain(NewFD);
3528
3529  // Check for a previous declaration of this name.
3530  if (Previous.empty() && NewFD->isExternC()) {
3531    // Since we did not find anything by this name and we're declaring
3532    // an extern "C" function, look for a non-visible extern "C"
3533    // declaration with the same name.
3534    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3535      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3536    if (Pos != LocallyScopedExternalDecls.end())
3537      Previous.addDecl(Pos->second);
3538  }
3539
3540  // Merge or overload the declaration with an existing declaration of
3541  // the same name, if appropriate.
3542  if (!Previous.empty()) {
3543    // Determine whether NewFD is an overload of PrevDecl or
3544    // a declaration that requires merging. If it's an overload,
3545    // there's no more work to do here; we'll just add the new
3546    // function to the scope.
3547
3548    NamedDecl *OldDecl = 0;
3549    if (!AllowOverloadingOfFunction(Previous, Context)) {
3550      Redeclaration = true;
3551      OldDecl = Previous.getFoundDecl();
3552    } else {
3553      if (!getLangOptions().CPlusPlus) {
3554        OverloadableAttrRequired = true;
3555
3556        // Functions marked "overloadable" must have a prototype (that
3557        // we can't get through declaration merging).
3558        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3559          Diag(NewFD->getLocation(),
3560               diag::err_attribute_overloadable_no_prototype)
3561            << NewFD;
3562          Redeclaration = true;
3563
3564          // Turn this into a variadic function with no parameters.
3565          QualType R = Context.getFunctionType(
3566                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3567                     0, 0, true, 0, false, false, 0, 0,
3568                     FunctionType::ExtInfo());
3569          NewFD->setType(R);
3570          return NewFD->setInvalidDecl();
3571        }
3572      }
3573
3574      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3575      case Ovl_Match:
3576        Redeclaration = true;
3577        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3578          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3579          Redeclaration = false;
3580        }
3581        break;
3582
3583      case Ovl_NonFunction:
3584        Redeclaration = true;
3585        break;
3586
3587      case Ovl_Overload:
3588        Redeclaration = false;
3589        break;
3590      }
3591    }
3592
3593    if (Redeclaration) {
3594      // NewFD and OldDecl represent declarations that need to be
3595      // merged.
3596      if (MergeFunctionDecl(NewFD, OldDecl))
3597        return NewFD->setInvalidDecl();
3598
3599      Previous.clear();
3600      Previous.addDecl(OldDecl);
3601
3602      if (FunctionTemplateDecl *OldTemplateDecl
3603                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3604        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3605        FunctionTemplateDecl *NewTemplateDecl
3606          = NewFD->getDescribedFunctionTemplate();
3607        assert(NewTemplateDecl && "Template/non-template mismatch");
3608        if (CXXMethodDecl *Method
3609              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3610          Method->setAccess(OldTemplateDecl->getAccess());
3611          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3612        }
3613
3614        // If this is an explicit specialization of a member that is a function
3615        // template, mark it as a member specialization.
3616        if (IsExplicitSpecialization &&
3617            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3618          NewTemplateDecl->setMemberSpecialization();
3619          assert(OldTemplateDecl->isMemberSpecialization());
3620        }
3621      } else {
3622        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3623          NewFD->setAccess(OldDecl->getAccess());
3624        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3625      }
3626    }
3627  }
3628
3629  // Semantic checking for this function declaration (in isolation).
3630  if (getLangOptions().CPlusPlus) {
3631    // C++-specific checks.
3632    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3633      CheckConstructor(Constructor);
3634    } else if (CXXDestructorDecl *Destructor =
3635                dyn_cast<CXXDestructorDecl>(NewFD)) {
3636      CXXRecordDecl *Record = Destructor->getParent();
3637      QualType ClassType = Context.getTypeDeclType(Record);
3638
3639      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3640      // type is dependent? Both gcc and edg can handle that.
3641      if (!ClassType->isDependentType()) {
3642        DeclarationName Name
3643          = Context.DeclarationNames.getCXXDestructorName(
3644                                        Context.getCanonicalType(ClassType));
3645        if (NewFD->getDeclName() != Name) {
3646          Diag(NewFD->getLocation(), diag::err_destructor_name);
3647          return NewFD->setInvalidDecl();
3648        }
3649      }
3650
3651      Record->setUserDeclaredDestructor(true);
3652      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3653      // user-defined destructor.
3654      Record->setPOD(false);
3655
3656      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3657      // declared destructor.
3658      // FIXME: C++0x: don't do this for "= default" destructors
3659      Record->setHasTrivialDestructor(false);
3660    } else if (CXXConversionDecl *Conversion
3661               = dyn_cast<CXXConversionDecl>(NewFD)) {
3662      ActOnConversionDeclarator(Conversion);
3663    }
3664
3665    // Find any virtual functions that this function overrides.
3666    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3667      if (!Method->isFunctionTemplateSpecialization() &&
3668          !Method->getDescribedFunctionTemplate())
3669        AddOverriddenMethods(Method->getParent(), Method);
3670    }
3671
3672    // Additional checks for the destructor; make sure we do this after we
3673    // figure out whether the destructor is virtual.
3674    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3675      if (!Destructor->getParent()->isDependentType())
3676        CheckDestructor(Destructor);
3677
3678    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3679    if (NewFD->isOverloadedOperator() &&
3680        CheckOverloadedOperatorDeclaration(NewFD))
3681      return NewFD->setInvalidDecl();
3682
3683    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3684    if (NewFD->getLiteralIdentifier() &&
3685        CheckLiteralOperatorDeclaration(NewFD))
3686      return NewFD->setInvalidDecl();
3687
3688    // In C++, check default arguments now that we have merged decls. Unless
3689    // the lexical context is the class, because in this case this is done
3690    // during delayed parsing anyway.
3691    if (!CurContext->isRecord())
3692      CheckCXXDefaultArguments(NewFD);
3693  }
3694}
3695
3696void Sema::CheckMain(FunctionDecl* FD) {
3697  // C++ [basic.start.main]p3:  A program that declares main to be inline
3698  //   or static is ill-formed.
3699  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3700  //   shall not appear in a declaration of main.
3701  // static main is not an error under C99, but we should warn about it.
3702  bool isInline = FD->isInlineSpecified();
3703  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3704  if (isInline || isStatic) {
3705    unsigned diagID = diag::warn_unusual_main_decl;
3706    if (isInline || getLangOptions().CPlusPlus)
3707      diagID = diag::err_unusual_main_decl;
3708
3709    int which = isStatic + (isInline << 1) - 1;
3710    Diag(FD->getLocation(), diagID) << which;
3711  }
3712
3713  QualType T = FD->getType();
3714  assert(T->isFunctionType() && "function decl is not of function type");
3715  const FunctionType* FT = T->getAs<FunctionType>();
3716
3717  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3718    // TODO: add a replacement fixit to turn the return type into 'int'.
3719    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3720    FD->setInvalidDecl(true);
3721  }
3722
3723  // Treat protoless main() as nullary.
3724  if (isa<FunctionNoProtoType>(FT)) return;
3725
3726  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3727  unsigned nparams = FTP->getNumArgs();
3728  assert(FD->getNumParams() == nparams);
3729
3730  bool HasExtraParameters = (nparams > 3);
3731
3732  // Darwin passes an undocumented fourth argument of type char**.  If
3733  // other platforms start sprouting these, the logic below will start
3734  // getting shifty.
3735  if (nparams == 4 &&
3736      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3737    HasExtraParameters = false;
3738
3739  if (HasExtraParameters) {
3740    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3741    FD->setInvalidDecl(true);
3742    nparams = 3;
3743  }
3744
3745  // FIXME: a lot of the following diagnostics would be improved
3746  // if we had some location information about types.
3747
3748  QualType CharPP =
3749    Context.getPointerType(Context.getPointerType(Context.CharTy));
3750  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3751
3752  for (unsigned i = 0; i < nparams; ++i) {
3753    QualType AT = FTP->getArgType(i);
3754
3755    bool mismatch = true;
3756
3757    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3758      mismatch = false;
3759    else if (Expected[i] == CharPP) {
3760      // As an extension, the following forms are okay:
3761      //   char const **
3762      //   char const * const *
3763      //   char * const *
3764
3765      QualifierCollector qs;
3766      const PointerType* PT;
3767      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3768          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3769          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3770        qs.removeConst();
3771        mismatch = !qs.empty();
3772      }
3773    }
3774
3775    if (mismatch) {
3776      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3777      // TODO: suggest replacing given type with expected type
3778      FD->setInvalidDecl(true);
3779    }
3780  }
3781
3782  if (nparams == 1 && !FD->isInvalidDecl()) {
3783    Diag(FD->getLocation(), diag::warn_main_one_arg);
3784  }
3785}
3786
3787bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3788  // FIXME: Need strict checking.  In C89, we need to check for
3789  // any assignment, increment, decrement, function-calls, or
3790  // commas outside of a sizeof.  In C99, it's the same list,
3791  // except that the aforementioned are allowed in unevaluated
3792  // expressions.  Everything else falls under the
3793  // "may accept other forms of constant expressions" exception.
3794  // (We never end up here for C++, so the constant expression
3795  // rules there don't matter.)
3796  if (Init->isConstantInitializer(Context))
3797    return false;
3798  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3799    << Init->getSourceRange();
3800  return true;
3801}
3802
3803void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3804  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3805}
3806
3807/// AddInitializerToDecl - Adds the initializer Init to the
3808/// declaration dcl. If DirectInit is true, this is C++ direct
3809/// initialization rather than copy initialization.
3810void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3811  Decl *RealDecl = dcl.getAs<Decl>();
3812  // If there is no declaration, there was an error parsing it.  Just ignore
3813  // the initializer.
3814  if (RealDecl == 0)
3815    return;
3816
3817  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3818    // With declarators parsed the way they are, the parser cannot
3819    // distinguish between a normal initializer and a pure-specifier.
3820    // Thus this grotesque test.
3821    IntegerLiteral *IL;
3822    Expr *Init = static_cast<Expr *>(init.get());
3823    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3824        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3825      CheckPureMethod(Method, Init->getSourceRange());
3826    else {
3827      Diag(Method->getLocation(), diag::err_member_function_initialization)
3828        << Method->getDeclName() << Init->getSourceRange();
3829      Method->setInvalidDecl();
3830    }
3831    return;
3832  }
3833
3834  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3835  if (!VDecl) {
3836    if (getLangOptions().CPlusPlus &&
3837        RealDecl->getLexicalDeclContext()->isRecord() &&
3838        isa<NamedDecl>(RealDecl))
3839      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3840        << cast<NamedDecl>(RealDecl)->getDeclName();
3841    else
3842      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3843    RealDecl->setInvalidDecl();
3844    return;
3845  }
3846
3847  // A definition must end up with a complete type, which means it must be
3848  // complete with the restriction that an array type might be completed by the
3849  // initializer; note that later code assumes this restriction.
3850  QualType BaseDeclType = VDecl->getType();
3851  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3852    BaseDeclType = Array->getElementType();
3853  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3854                          diag::err_typecheck_decl_incomplete_type)) {
3855    RealDecl->setInvalidDecl();
3856    return;
3857  }
3858
3859  // The variable can not have an abstract class type.
3860  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3861                             diag::err_abstract_type_in_decl,
3862                             AbstractVariableType))
3863    VDecl->setInvalidDecl();
3864
3865  const VarDecl *Def;
3866  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3867    Diag(VDecl->getLocation(), diag::err_redefinition)
3868      << VDecl->getDeclName();
3869    Diag(Def->getLocation(), diag::note_previous_definition);
3870    VDecl->setInvalidDecl();
3871    return;
3872  }
3873
3874  // Take ownership of the expression, now that we're sure we have somewhere
3875  // to put it.
3876  Expr *Init = init.takeAs<Expr>();
3877  assert(Init && "missing initializer");
3878
3879  // Capture the variable that is being initialized and the style of
3880  // initialization.
3881  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3882
3883  // FIXME: Poor source location information.
3884  InitializationKind Kind
3885    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3886                                                   Init->getLocStart(),
3887                                                   Init->getLocEnd())
3888                : InitializationKind::CreateCopy(VDecl->getLocation(),
3889                                                 Init->getLocStart());
3890
3891  // Get the decls type and save a reference for later, since
3892  // CheckInitializerTypes may change it.
3893  QualType DclT = VDecl->getType(), SavT = DclT;
3894  if (VDecl->isBlockVarDecl()) {
3895    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3896      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3897      VDecl->setInvalidDecl();
3898    } else if (!VDecl->isInvalidDecl()) {
3899      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3900      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3901                                          MultiExprArg(*this, (void**)&Init, 1),
3902                                                &DclT);
3903      if (Result.isInvalid()) {
3904        VDecl->setInvalidDecl();
3905        return;
3906      }
3907
3908      Init = Result.takeAs<Expr>();
3909
3910      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3911      // Don't check invalid declarations to avoid emitting useless diagnostics.
3912      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3913        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3914          CheckForConstantInitializer(Init, DclT);
3915      }
3916    }
3917  } else if (VDecl->isStaticDataMember() &&
3918             VDecl->getLexicalDeclContext()->isRecord()) {
3919    // This is an in-class initialization for a static data member, e.g.,
3920    //
3921    // struct S {
3922    //   static const int value = 17;
3923    // };
3924
3925    // Attach the initializer
3926    VDecl->setInit(Init);
3927
3928    // C++ [class.mem]p4:
3929    //   A member-declarator can contain a constant-initializer only
3930    //   if it declares a static member (9.4) of const integral or
3931    //   const enumeration type, see 9.4.2.
3932    QualType T = VDecl->getType();
3933    if (!T->isDependentType() &&
3934        (!Context.getCanonicalType(T).isConstQualified() ||
3935         !T->isIntegralType())) {
3936      Diag(VDecl->getLocation(), diag::err_member_initialization)
3937        << VDecl->getDeclName() << Init->getSourceRange();
3938      VDecl->setInvalidDecl();
3939    } else {
3940      // C++ [class.static.data]p4:
3941      //   If a static data member is of const integral or const
3942      //   enumeration type, its declaration in the class definition
3943      //   can specify a constant-initializer which shall be an
3944      //   integral constant expression (5.19).
3945      if (!Init->isTypeDependent() &&
3946          !Init->getType()->isIntegralType()) {
3947        // We have a non-dependent, non-integral or enumeration type.
3948        Diag(Init->getSourceRange().getBegin(),
3949             diag::err_in_class_initializer_non_integral_type)
3950          << Init->getType() << Init->getSourceRange();
3951        VDecl->setInvalidDecl();
3952      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3953        // Check whether the expression is a constant expression.
3954        llvm::APSInt Value;
3955        SourceLocation Loc;
3956        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3957          Diag(Loc, diag::err_in_class_initializer_non_constant)
3958            << Init->getSourceRange();
3959          VDecl->setInvalidDecl();
3960        } else if (!VDecl->getType()->isDependentType())
3961          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3962      }
3963    }
3964  } else if (VDecl->isFileVarDecl()) {
3965    if (VDecl->getStorageClass() == VarDecl::Extern &&
3966        (!getLangOptions().CPlusPlus ||
3967         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
3968      Diag(VDecl->getLocation(), diag::warn_extern_init);
3969    if (!VDecl->isInvalidDecl()) {
3970      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3971      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3972                                          MultiExprArg(*this, (void**)&Init, 1),
3973                                                &DclT);
3974      if (Result.isInvalid()) {
3975        VDecl->setInvalidDecl();
3976        return;
3977      }
3978
3979      Init = Result.takeAs<Expr>();
3980    }
3981
3982    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3983    // Don't check invalid declarations to avoid emitting useless diagnostics.
3984    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3985      // C99 6.7.8p4. All file scoped initializers need to be constant.
3986      CheckForConstantInitializer(Init, DclT);
3987    }
3988  }
3989  // If the type changed, it means we had an incomplete type that was
3990  // completed by the initializer. For example:
3991  //   int ary[] = { 1, 3, 5 };
3992  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3993  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3994    VDecl->setType(DclT);
3995    Init->setType(DclT);
3996  }
3997
3998  Init = MaybeCreateCXXExprWithTemporaries(Init);
3999  // Attach the initializer to the decl.
4000  VDecl->setInit(Init);
4001
4002  if (getLangOptions().CPlusPlus) {
4003    // Make sure we mark the destructor as used if necessary.
4004    QualType InitType = VDecl->getType();
4005    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4006      InitType = Context.getBaseElementType(Array);
4007    if (const RecordType *Record = InitType->getAs<RecordType>())
4008      FinalizeVarWithDestructor(VDecl, Record);
4009  }
4010
4011  return;
4012}
4013
4014/// ActOnInitializerError - Given that there was an error parsing an
4015/// initializer for the given declaration, try to return to some form
4016/// of sanity.
4017void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4018  // Our main concern here is re-establishing invariants like "a
4019  // variable's type is either dependent or complete".
4020  Decl *D = dcl.getAs<Decl>();
4021  if (!D || D->isInvalidDecl()) return;
4022
4023  VarDecl *VD = dyn_cast<VarDecl>(D);
4024  if (!VD) return;
4025
4026  QualType Ty = VD->getType();
4027  if (Ty->isDependentType()) return;
4028
4029  // Require a complete type.
4030  if (RequireCompleteType(VD->getLocation(),
4031                          Context.getBaseElementType(Ty),
4032                          diag::err_typecheck_decl_incomplete_type)) {
4033    VD->setInvalidDecl();
4034    return;
4035  }
4036
4037  // Require an abstract type.
4038  if (RequireNonAbstractType(VD->getLocation(), Ty,
4039                             diag::err_abstract_type_in_decl,
4040                             AbstractVariableType)) {
4041    VD->setInvalidDecl();
4042    return;
4043  }
4044
4045  // Don't bother complaining about constructors or destructors,
4046  // though.
4047}
4048
4049void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4050                                  bool TypeContainsUndeducedAuto) {
4051  Decl *RealDecl = dcl.getAs<Decl>();
4052
4053  // If there is no declaration, there was an error parsing it. Just ignore it.
4054  if (RealDecl == 0)
4055    return;
4056
4057  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4058    QualType Type = Var->getType();
4059
4060    // C++0x [dcl.spec.auto]p3
4061    if (TypeContainsUndeducedAuto) {
4062      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4063        << Var->getDeclName() << Type;
4064      Var->setInvalidDecl();
4065      return;
4066    }
4067
4068    switch (Var->isThisDeclarationADefinition()) {
4069    case VarDecl::Definition:
4070      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4071        break;
4072
4073      // We have an out-of-line definition of a static data member
4074      // that has an in-class initializer, so we type-check this like
4075      // a declaration.
4076      //
4077      // Fall through
4078
4079    case VarDecl::DeclarationOnly:
4080      // It's only a declaration.
4081
4082      // Block scope. C99 6.7p7: If an identifier for an object is
4083      // declared with no linkage (C99 6.2.2p6), the type for the
4084      // object shall be complete.
4085      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4086          !Var->getLinkage() && !Var->isInvalidDecl() &&
4087          RequireCompleteType(Var->getLocation(), Type,
4088                              diag::err_typecheck_decl_incomplete_type))
4089        Var->setInvalidDecl();
4090
4091      // Make sure that the type is not abstract.
4092      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4093          RequireNonAbstractType(Var->getLocation(), Type,
4094                                 diag::err_abstract_type_in_decl,
4095                                 AbstractVariableType))
4096        Var->setInvalidDecl();
4097      return;
4098
4099    case VarDecl::TentativeDefinition:
4100      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4101      // object that has file scope without an initializer, and without a
4102      // storage-class specifier or with the storage-class specifier "static",
4103      // constitutes a tentative definition. Note: A tentative definition with
4104      // external linkage is valid (C99 6.2.2p5).
4105      if (!Var->isInvalidDecl()) {
4106        if (const IncompleteArrayType *ArrayT
4107                                    = Context.getAsIncompleteArrayType(Type)) {
4108          if (RequireCompleteType(Var->getLocation(),
4109                                  ArrayT->getElementType(),
4110                                  diag::err_illegal_decl_array_incomplete_type))
4111            Var->setInvalidDecl();
4112        } else if (Var->getStorageClass() == VarDecl::Static) {
4113          // C99 6.9.2p3: If the declaration of an identifier for an object is
4114          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4115          // declared type shall not be an incomplete type.
4116          // NOTE: code such as the following
4117          //     static struct s;
4118          //     struct s { int a; };
4119          // is accepted by gcc. Hence here we issue a warning instead of
4120          // an error and we do not invalidate the static declaration.
4121          // NOTE: to avoid multiple warnings, only check the first declaration.
4122          if (Var->getPreviousDeclaration() == 0)
4123            RequireCompleteType(Var->getLocation(), Type,
4124                                diag::ext_typecheck_decl_incomplete_type);
4125        }
4126      }
4127
4128      // Record the tentative definition; we're done.
4129      if (!Var->isInvalidDecl())
4130        TentativeDefinitions.push_back(Var);
4131      return;
4132    }
4133
4134    // Provide a specific diagnostic for uninitialized variable
4135    // definitions with incomplete array type.
4136    if (Type->isIncompleteArrayType()) {
4137      Diag(Var->getLocation(),
4138           diag::err_typecheck_incomplete_array_needs_initializer);
4139      Var->setInvalidDecl();
4140      return;
4141    }
4142
4143   // Provide a specific diagnostic for uninitialized variable
4144   // definitions with reference type.
4145   if (Type->isReferenceType()) {
4146     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4147       << Var->getDeclName()
4148       << SourceRange(Var->getLocation(), Var->getLocation());
4149     Var->setInvalidDecl();
4150     return;
4151   }
4152
4153    // Do not attempt to type-check the default initializer for a
4154    // variable with dependent type.
4155    if (Type->isDependentType())
4156      return;
4157
4158    if (Var->isInvalidDecl())
4159      return;
4160
4161    if (RequireCompleteType(Var->getLocation(),
4162                            Context.getBaseElementType(Type),
4163                            diag::err_typecheck_decl_incomplete_type)) {
4164      Var->setInvalidDecl();
4165      return;
4166    }
4167
4168    // The variable can not have an abstract class type.
4169    if (RequireNonAbstractType(Var->getLocation(), Type,
4170                               diag::err_abstract_type_in_decl,
4171                               AbstractVariableType)) {
4172      Var->setInvalidDecl();
4173      return;
4174    }
4175
4176    const RecordType *Record
4177      = Context.getBaseElementType(Type)->getAs<RecordType>();
4178    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4179        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4180      // C++03 [dcl.init]p9:
4181      //   If no initializer is specified for an object, and the
4182      //   object is of (possibly cv-qualified) non-POD class type (or
4183      //   array thereof), the object shall be default-initialized; if
4184      //   the object is of const-qualified type, the underlying class
4185      //   type shall have a user-declared default
4186      //   constructor. Otherwise, if no initializer is specified for
4187      //   a non- static object, the object and its subobjects, if
4188      //   any, have an indeterminate initial value); if the object
4189      //   or any of its subobjects are of const-qualified type, the
4190      //   program is ill-formed.
4191      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4192    } else {
4193      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4194      InitializationKind Kind
4195        = InitializationKind::CreateDefault(Var->getLocation());
4196
4197      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4198      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4199                                              MultiExprArg(*this, 0, 0));
4200      if (Init.isInvalid())
4201        Var->setInvalidDecl();
4202      else if (Init.get())
4203        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4204    }
4205
4206    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4207      FinalizeVarWithDestructor(Var, Record);
4208  }
4209}
4210
4211Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4212                                                   DeclPtrTy *Group,
4213                                                   unsigned NumDecls) {
4214  llvm::SmallVector<Decl*, 8> Decls;
4215
4216  if (DS.isTypeSpecOwned())
4217    Decls.push_back((Decl*)DS.getTypeRep());
4218
4219  for (unsigned i = 0; i != NumDecls; ++i)
4220    if (Decl *D = Group[i].getAs<Decl>())
4221      Decls.push_back(D);
4222
4223  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4224                                                   Decls.data(), Decls.size()));
4225}
4226
4227
4228/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4229/// to introduce parameters into function prototype scope.
4230Sema::DeclPtrTy
4231Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4232  const DeclSpec &DS = D.getDeclSpec();
4233
4234  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4235  VarDecl::StorageClass StorageClass = VarDecl::None;
4236  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4237  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4238    StorageClass = VarDecl::Register;
4239    StorageClassAsWritten = VarDecl::Register;
4240  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4241    Diag(DS.getStorageClassSpecLoc(),
4242         diag::err_invalid_storage_class_in_func_decl);
4243    D.getMutableDeclSpec().ClearStorageClassSpecs();
4244  }
4245
4246  if (D.getDeclSpec().isThreadSpecified())
4247    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4248
4249  DiagnoseFunctionSpecifiers(D);
4250
4251  // Check that there are no default arguments inside the type of this
4252  // parameter (C++ only).
4253  if (getLangOptions().CPlusPlus)
4254    CheckExtraCXXDefaultArguments(D);
4255
4256  TagDecl *OwnedDecl = 0;
4257  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4258  QualType parmDeclType = TInfo->getType();
4259
4260  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4261    // C++ [dcl.fct]p6:
4262    //   Types shall not be defined in return or parameter types.
4263    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4264      << Context.getTypeDeclType(OwnedDecl);
4265  }
4266
4267  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4268  IdentifierInfo *II = D.getIdentifier();
4269  if (II) {
4270    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4271                   ForRedeclaration);
4272    LookupName(R, S);
4273    if (R.isSingleResult()) {
4274      NamedDecl *PrevDecl = R.getFoundDecl();
4275      if (PrevDecl->isTemplateParameter()) {
4276        // Maybe we will complain about the shadowed template parameter.
4277        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4278        // Just pretend that we didn't see the previous declaration.
4279        PrevDecl = 0;
4280      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4281        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4282        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4283
4284        // Recover by removing the name
4285        II = 0;
4286        D.SetIdentifier(0, D.getIdentifierLoc());
4287        D.setInvalidType(true);
4288      }
4289    }
4290  }
4291
4292  // Temporarily put parameter variables in the translation unit, not
4293  // the enclosing context.  This prevents them from accidentally
4294  // looking like class members in C++.
4295  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4296                                    TInfo, parmDeclType, II,
4297                                    D.getIdentifierLoc(),
4298                                    StorageClass, StorageClassAsWritten);
4299
4300  if (D.isInvalidType())
4301    New->setInvalidDecl();
4302
4303  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4304  if (D.getCXXScopeSpec().isSet()) {
4305    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4306      << D.getCXXScopeSpec().getRange();
4307    New->setInvalidDecl();
4308  }
4309
4310  // Add the parameter declaration into this scope.
4311  S->AddDecl(DeclPtrTy::make(New));
4312  if (II)
4313    IdResolver.AddDecl(New);
4314
4315  ProcessDeclAttributes(S, New, D);
4316
4317  if (New->hasAttr<BlocksAttr>()) {
4318    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4319  }
4320  return DeclPtrTy::make(New);
4321}
4322
4323/// \brief Synthesizes a variable for a parameter arising from a
4324/// typedef.
4325ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4326                                              SourceLocation Loc,
4327                                              QualType T) {
4328  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4329                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4330                                           VarDecl::None, VarDecl::None, 0);
4331  Param->setImplicit();
4332  return Param;
4333}
4334
4335ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4336                                  TypeSourceInfo *TSInfo, QualType T,
4337                                  IdentifierInfo *Name,
4338                                  SourceLocation NameLoc,
4339                                  VarDecl::StorageClass StorageClass,
4340                                  VarDecl::StorageClass StorageClassAsWritten) {
4341  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4342                                         adjustParameterType(T), TSInfo,
4343                                         StorageClass, StorageClassAsWritten,
4344                                         0);
4345
4346  // Parameters can not be abstract class types.
4347  // For record types, this is done by the AbstractClassUsageDiagnoser once
4348  // the class has been completely parsed.
4349  if (!CurContext->isRecord() &&
4350      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4351                             AbstractParamType))
4352    New->setInvalidDecl();
4353
4354  // Parameter declarators cannot be interface types. All ObjC objects are
4355  // passed by reference.
4356  if (T->isObjCObjectType()) {
4357    Diag(NameLoc,
4358         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4359    New->setInvalidDecl();
4360  }
4361
4362  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4363  // duration shall not be qualified by an address-space qualifier."
4364  // Since all parameters have automatic store duration, they can not have
4365  // an address space.
4366  if (T.getAddressSpace() != 0) {
4367    Diag(NameLoc, diag::err_arg_with_address_space);
4368    New->setInvalidDecl();
4369  }
4370
4371  return New;
4372}
4373
4374void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4375                                           SourceLocation LocAfterDecls) {
4376  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4377         "Not a function declarator!");
4378  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4379
4380  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4381  // for a K&R function.
4382  if (!FTI.hasPrototype) {
4383    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4384      --i;
4385      if (FTI.ArgInfo[i].Param == 0) {
4386        llvm::SmallString<256> Code;
4387        llvm::raw_svector_ostream(Code) << "  int "
4388                                        << FTI.ArgInfo[i].Ident->getName()
4389                                        << ";\n";
4390        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4391          << FTI.ArgInfo[i].Ident
4392          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4393
4394        // Implicitly declare the argument as type 'int' for lack of a better
4395        // type.
4396        DeclSpec DS;
4397        const char* PrevSpec; // unused
4398        unsigned DiagID; // unused
4399        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4400                           PrevSpec, DiagID);
4401        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4402        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4403        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4404      }
4405    }
4406  }
4407}
4408
4409Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4410                                              Declarator &D) {
4411  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4412  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4413         "Not a function declarator!");
4414  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4415
4416  if (FTI.hasPrototype) {
4417    // FIXME: Diagnose arguments without names in C.
4418  }
4419
4420  Scope *ParentScope = FnBodyScope->getParent();
4421
4422  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4423                                  MultiTemplateParamsArg(*this),
4424                                  /*IsFunctionDefinition=*/true);
4425  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4426}
4427
4428static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4429  // Don't warn about invalid declarations.
4430  if (FD->isInvalidDecl())
4431    return false;
4432
4433  // Or declarations that aren't global.
4434  if (!FD->isGlobal())
4435    return false;
4436
4437  // Don't warn about C++ member functions.
4438  if (isa<CXXMethodDecl>(FD))
4439    return false;
4440
4441  // Don't warn about 'main'.
4442  if (FD->isMain())
4443    return false;
4444
4445  // Don't warn about inline functions.
4446  if (FD->isInlineSpecified())
4447    return false;
4448
4449  // Don't warn about function templates.
4450  if (FD->getDescribedFunctionTemplate())
4451    return false;
4452
4453  // Don't warn about function template specializations.
4454  if (FD->isFunctionTemplateSpecialization())
4455    return false;
4456
4457  bool MissingPrototype = true;
4458  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4459       Prev; Prev = Prev->getPreviousDeclaration()) {
4460    // Ignore any declarations that occur in function or method
4461    // scope, because they aren't visible from the header.
4462    if (Prev->getDeclContext()->isFunctionOrMethod())
4463      continue;
4464
4465    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4466    break;
4467  }
4468
4469  return MissingPrototype;
4470}
4471
4472Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4473  // Clear the last template instantiation error context.
4474  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4475
4476  if (!D)
4477    return D;
4478  FunctionDecl *FD = 0;
4479
4480  if (FunctionTemplateDecl *FunTmpl
4481        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4482    FD = FunTmpl->getTemplatedDecl();
4483  else
4484    FD = cast<FunctionDecl>(D.getAs<Decl>());
4485
4486  // Enter a new function scope
4487  PushFunctionScope();
4488
4489  // See if this is a redefinition.
4490  // But don't complain if we're in GNU89 mode and the previous definition
4491  // was an extern inline function.
4492  const FunctionDecl *Definition;
4493  if (FD->getBody(Definition) &&
4494      !canRedefineFunction(Definition, getLangOptions())) {
4495    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4496    Diag(Definition->getLocation(), diag::note_previous_definition);
4497  }
4498
4499  // Builtin functions cannot be defined.
4500  if (unsigned BuiltinID = FD->getBuiltinID()) {
4501    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4502      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4503      FD->setInvalidDecl();
4504    }
4505  }
4506
4507  // The return type of a function definition must be complete
4508  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4509  QualType ResultType = FD->getResultType();
4510  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4511      !FD->isInvalidDecl() &&
4512      RequireCompleteType(FD->getLocation(), ResultType,
4513                          diag::err_func_def_incomplete_result))
4514    FD->setInvalidDecl();
4515
4516  // GNU warning -Wmissing-prototypes:
4517  //   Warn if a global function is defined without a previous
4518  //   prototype declaration. This warning is issued even if the
4519  //   definition itself provides a prototype. The aim is to detect
4520  //   global functions that fail to be declared in header files.
4521  if (ShouldWarnAboutMissingPrototype(FD))
4522    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4523
4524  if (FnBodyScope)
4525    PushDeclContext(FnBodyScope, FD);
4526
4527  // Check the validity of our function parameters
4528  CheckParmsForFunctionDef(FD);
4529
4530  bool ShouldCheckShadow =
4531    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4532
4533  // Introduce our parameters into the function scope
4534  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4535    ParmVarDecl *Param = FD->getParamDecl(p);
4536    Param->setOwningFunction(FD);
4537
4538    // If this has an identifier, add it to the scope stack.
4539    if (Param->getIdentifier() && FnBodyScope) {
4540      if (ShouldCheckShadow)
4541        CheckShadow(FnBodyScope, Param);
4542
4543      PushOnScopeChains(Param, FnBodyScope);
4544    }
4545  }
4546
4547  // Checking attributes of current function definition
4548  // dllimport attribute.
4549  if (FD->getAttr<DLLImportAttr>() &&
4550      (!FD->getAttr<DLLExportAttr>())) {
4551    // dllimport attribute cannot be applied to definition.
4552    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4553      Diag(FD->getLocation(),
4554           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4555        << "dllimport";
4556      FD->setInvalidDecl();
4557      return DeclPtrTy::make(FD);
4558    }
4559
4560    // Visual C++ appears to not think this is an issue, so only issue
4561    // a warning when Microsoft extensions are disabled.
4562    if (!LangOpts.Microsoft) {
4563      // If a symbol previously declared dllimport is later defined, the
4564      // attribute is ignored in subsequent references, and a warning is
4565      // emitted.
4566      Diag(FD->getLocation(),
4567           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4568        << FD->getNameAsCString() << "dllimport";
4569    }
4570  }
4571  return DeclPtrTy::make(FD);
4572}
4573
4574/// \brief Given the set of return statements within a function body,
4575/// compute the variables that are subject to the named return value
4576/// optimization.
4577///
4578/// Each of the variables that is subject to the named return value
4579/// optimization will be marked as NRVO variables in the AST, and any
4580/// return statement that has a marked NRVO variable as its NRVO candidate can
4581/// use the named return value optimization.
4582///
4583/// This function applies a very simplistic algorithm for NRVO: if every return
4584/// statement in the function has the same NRVO candidate, that candidate is
4585/// the NRVO variable.
4586///
4587/// FIXME: Employ a smarter algorithm that accounts for multiple return
4588/// statements and the lifetimes of the NRVO candidates. We should be able to
4589/// find a maximal set of NRVO variables.
4590static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4591  const VarDecl *NRVOCandidate = 0;
4592  for (unsigned I = 0; I != NumReturns; ++I) {
4593    if (!Returns[I]->getNRVOCandidate())
4594      return;
4595
4596    if (!NRVOCandidate)
4597      NRVOCandidate = Returns[I]->getNRVOCandidate();
4598    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4599      return;
4600  }
4601
4602  if (NRVOCandidate)
4603    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4604}
4605
4606Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4607  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4608}
4609
4610Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4611                                              bool IsInstantiation) {
4612  Decl *dcl = D.getAs<Decl>();
4613  Stmt *Body = BodyArg.takeAs<Stmt>();
4614
4615  FunctionDecl *FD = 0;
4616  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4617  if (FunTmpl)
4618    FD = FunTmpl->getTemplatedDecl();
4619  else
4620    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4621
4622  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4623
4624  if (FD) {
4625    FD->setBody(Body);
4626    if (FD->isMain()) {
4627      // C and C++ allow for main to automagically return 0.
4628      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4629      FD->setHasImplicitReturnZero(true);
4630      WP.disableCheckFallThrough();
4631    }
4632
4633    if (!FD->isInvalidDecl()) {
4634      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4635
4636      // If this is a constructor, we need a vtable.
4637      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4638        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4639
4640      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4641                  FunctionScopes.back()->Returns.size());
4642    }
4643
4644    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4645  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4646    assert(MD == getCurMethodDecl() && "Method parsing confused");
4647    MD->setBody(Body);
4648    MD->setEndLoc(Body->getLocEnd());
4649    if (!MD->isInvalidDecl())
4650      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4651  } else {
4652    Body->Destroy(Context);
4653    return DeclPtrTy();
4654  }
4655
4656  // Verify and clean out per-function state.
4657
4658  // Check goto/label use.
4659  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4660       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4661    LabelStmt *L = I->second;
4662
4663    // Verify that we have no forward references left.  If so, there was a goto
4664    // or address of a label taken, but no definition of it.  Label fwd
4665    // definitions are indicated with a null substmt.
4666    if (L->getSubStmt() != 0)
4667      continue;
4668
4669    // Emit error.
4670    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4671
4672    // At this point, we have gotos that use the bogus label.  Stitch it into
4673    // the function body so that they aren't leaked and that the AST is well
4674    // formed.
4675    if (Body == 0) {
4676      // The whole function wasn't parsed correctly, just delete this.
4677      L->Destroy(Context);
4678      continue;
4679    }
4680
4681    // Otherwise, the body is valid: we want to stitch the label decl into the
4682    // function somewhere so that it is properly owned and so that the goto
4683    // has a valid target.  Do this by creating a new compound stmt with the
4684    // label in it.
4685
4686    // Give the label a sub-statement.
4687    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4688
4689    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4690                               cast<CXXTryStmt>(Body)->getTryBlock() :
4691                               cast<CompoundStmt>(Body);
4692    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4693                                          Compound->body_end());
4694    Elements.push_back(L);
4695    Compound->setStmts(Context, Elements.data(), Elements.size());
4696  }
4697
4698  if (Body) {
4699    // C++ constructors that have function-try-blocks can't have return
4700    // statements in the handlers of that block. (C++ [except.handle]p14)
4701    // Verify this.
4702    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4703      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4704
4705    // Verify that that gotos and switch cases don't jump into scopes illegally.
4706    // Verify that that gotos and switch cases don't jump into scopes illegally.
4707    if (FunctionNeedsScopeChecking() &&
4708        !dcl->isInvalidDecl() &&
4709        !hasAnyErrorsInThisFunction())
4710      DiagnoseInvalidJumps(Body);
4711
4712    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4713      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4714                                             Destructor->getParent());
4715
4716    // If any errors have occurred, clear out any temporaries that may have
4717    // been leftover. This ensures that these temporaries won't be picked up for
4718    // deletion in some later function.
4719    if (PP.getDiagnostics().hasErrorOccurred())
4720      ExprTemporaries.clear();
4721    else if (!isa<FunctionTemplateDecl>(dcl)) {
4722      // Since the body is valid, issue any analysis-based warnings that are
4723      // enabled.
4724      QualType ResultType;
4725      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4726        ResultType = FD->getResultType();
4727      }
4728      else {
4729        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4730        ResultType = MD->getResultType();
4731      }
4732      AnalysisWarnings.IssueWarnings(WP, dcl);
4733    }
4734
4735    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4736  }
4737
4738  if (!IsInstantiation)
4739    PopDeclContext();
4740
4741  PopFunctionOrBlockScope();
4742
4743  // If any errors have occurred, clear out any temporaries that may have
4744  // been leftover. This ensures that these temporaries won't be picked up for
4745  // deletion in some later function.
4746  if (getDiagnostics().hasErrorOccurred())
4747    ExprTemporaries.clear();
4748
4749  return D;
4750}
4751
4752/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4753/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4754NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4755                                          IdentifierInfo &II, Scope *S) {
4756  // Before we produce a declaration for an implicitly defined
4757  // function, see whether there was a locally-scoped declaration of
4758  // this name as a function or variable. If so, use that
4759  // (non-visible) declaration, and complain about it.
4760  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4761    = LocallyScopedExternalDecls.find(&II);
4762  if (Pos != LocallyScopedExternalDecls.end()) {
4763    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4764    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4765    return Pos->second;
4766  }
4767
4768  // Extension in C99.  Legal in C90, but warn about it.
4769  if (II.getName().startswith("__builtin_"))
4770    Diag(Loc, diag::warn_builtin_unknown) << &II;
4771  else if (getLangOptions().C99)
4772    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4773  else
4774    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4775
4776  // Set a Declarator for the implicit definition: int foo();
4777  const char *Dummy;
4778  DeclSpec DS;
4779  unsigned DiagID;
4780  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4781  Error = Error; // Silence warning.
4782  assert(!Error && "Error setting up implicit decl!");
4783  Declarator D(DS, Declarator::BlockContext);
4784  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4785                                             0, 0, false, SourceLocation(),
4786                                             false, 0,0,0, Loc, Loc, D),
4787                SourceLocation());
4788  D.SetIdentifier(&II, Loc);
4789
4790  // Insert this function into translation-unit scope.
4791
4792  DeclContext *PrevDC = CurContext;
4793  CurContext = Context.getTranslationUnitDecl();
4794
4795  FunctionDecl *FD =
4796 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4797  FD->setImplicit();
4798
4799  CurContext = PrevDC;
4800
4801  AddKnownFunctionAttributes(FD);
4802
4803  return FD;
4804}
4805
4806/// \brief Adds any function attributes that we know a priori based on
4807/// the declaration of this function.
4808///
4809/// These attributes can apply both to implicitly-declared builtins
4810/// (like __builtin___printf_chk) or to library-declared functions
4811/// like NSLog or printf.
4812void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4813  if (FD->isInvalidDecl())
4814    return;
4815
4816  // If this is a built-in function, map its builtin attributes to
4817  // actual attributes.
4818  if (unsigned BuiltinID = FD->getBuiltinID()) {
4819    // Handle printf-formatting attributes.
4820    unsigned FormatIdx;
4821    bool HasVAListArg;
4822    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4823      if (!FD->getAttr<FormatAttr>())
4824        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4825                                               HasVAListArg ? 0 : FormatIdx+2));
4826    }
4827
4828    // Mark const if we don't care about errno and that is the only
4829    // thing preventing the function from being const. This allows
4830    // IRgen to use LLVM intrinsics for such functions.
4831    if (!getLangOptions().MathErrno &&
4832        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4833      if (!FD->getAttr<ConstAttr>())
4834        FD->addAttr(::new (Context) ConstAttr());
4835    }
4836
4837    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4838      FD->setType(Context.getNoReturnType(FD->getType()));
4839    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4840      FD->addAttr(::new (Context) NoThrowAttr());
4841    if (Context.BuiltinInfo.isConst(BuiltinID))
4842      FD->addAttr(::new (Context) ConstAttr());
4843  }
4844
4845  IdentifierInfo *Name = FD->getIdentifier();
4846  if (!Name)
4847    return;
4848  if ((!getLangOptions().CPlusPlus &&
4849       FD->getDeclContext()->isTranslationUnit()) ||
4850      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4851       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4852       LinkageSpecDecl::lang_c)) {
4853    // Okay: this could be a libc/libm/Objective-C function we know
4854    // about.
4855  } else
4856    return;
4857
4858  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4859    // FIXME: NSLog and NSLogv should be target specific
4860    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4861      // FIXME: We known better than our headers.
4862      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4863    } else
4864      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4865                                             Name->isStr("NSLogv") ? 0 : 2));
4866  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4867    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4868    // target-specific builtins, perhaps?
4869    if (!FD->getAttr<FormatAttr>())
4870      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4871                                             Name->isStr("vasprintf") ? 0 : 3));
4872  }
4873}
4874
4875TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4876                                    TypeSourceInfo *TInfo) {
4877  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4878  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4879
4880  if (!TInfo) {
4881    assert(D.isInvalidType() && "no declarator info for valid type");
4882    TInfo = Context.getTrivialTypeSourceInfo(T);
4883  }
4884
4885  // Scope manipulation handled by caller.
4886  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4887                                           D.getIdentifierLoc(),
4888                                           D.getIdentifier(),
4889                                           TInfo);
4890
4891  if (const TagType *TT = T->getAs<TagType>()) {
4892    TagDecl *TD = TT->getDecl();
4893
4894    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4895    // keep track of the TypedefDecl.
4896    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4897      TD->setTypedefForAnonDecl(NewTD);
4898  }
4899
4900  if (D.isInvalidType())
4901    NewTD->setInvalidDecl();
4902  return NewTD;
4903}
4904
4905
4906/// \brief Determine whether a tag with a given kind is acceptable
4907/// as a redeclaration of the given tag declaration.
4908///
4909/// \returns true if the new tag kind is acceptable, false otherwise.
4910bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4911                                        TagTypeKind NewTag,
4912                                        SourceLocation NewTagLoc,
4913                                        const IdentifierInfo &Name) {
4914  // C++ [dcl.type.elab]p3:
4915  //   The class-key or enum keyword present in the
4916  //   elaborated-type-specifier shall agree in kind with the
4917  //   declaration to which the name in the elaborated-type-specifier
4918  //   refers. This rule also applies to the form of
4919  //   elaborated-type-specifier that declares a class-name or
4920  //   friend class since it can be construed as referring to the
4921  //   definition of the class. Thus, in any
4922  //   elaborated-type-specifier, the enum keyword shall be used to
4923  //   refer to an enumeration (7.2), the union class-key shall be
4924  //   used to refer to a union (clause 9), and either the class or
4925  //   struct class-key shall be used to refer to a class (clause 9)
4926  //   declared using the class or struct class-key.
4927  TagTypeKind OldTag = Previous->getTagKind();
4928  if (OldTag == NewTag)
4929    return true;
4930
4931  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
4932      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
4933    // Warn about the struct/class tag mismatch.
4934    bool isTemplate = false;
4935    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4936      isTemplate = Record->getDescribedClassTemplate();
4937
4938    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4939      << (NewTag == TTK_Class)
4940      << isTemplate << &Name
4941      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4942                              OldTag == TTK_Class? "class" : "struct");
4943    Diag(Previous->getLocation(), diag::note_previous_use);
4944    return true;
4945  }
4946  return false;
4947}
4948
4949/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4950/// former case, Name will be non-null.  In the later case, Name will be null.
4951/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4952/// reference/declaration/definition of a tag.
4953Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4954                               SourceLocation KWLoc, CXXScopeSpec &SS,
4955                               IdentifierInfo *Name, SourceLocation NameLoc,
4956                               AttributeList *Attr, AccessSpecifier AS,
4957                               MultiTemplateParamsArg TemplateParameterLists,
4958                               bool &OwnedDecl, bool &IsDependent) {
4959  // If this is not a definition, it must have a name.
4960  assert((Name != 0 || TUK == TUK_Definition) &&
4961         "Nameless record must be a definition!");
4962
4963  OwnedDecl = false;
4964  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4965
4966  // FIXME: Check explicit specializations more carefully.
4967  bool isExplicitSpecialization = false;
4968  if (TUK != TUK_Reference) {
4969    if (TemplateParameterList *TemplateParams
4970          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4971                        (TemplateParameterList**)TemplateParameterLists.get(),
4972                                              TemplateParameterLists.size(),
4973                                                    TUK == TUK_Friend,
4974                                                    isExplicitSpecialization)) {
4975      if (TemplateParams->size() > 0) {
4976        // This is a declaration or definition of a class template (which may
4977        // be a member of another template).
4978        OwnedDecl = false;
4979        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4980                                               SS, Name, NameLoc, Attr,
4981                                               TemplateParams,
4982                                               AS);
4983        TemplateParameterLists.release();
4984        return Result.get();
4985      } else {
4986        // The "template<>" header is extraneous.
4987        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4988          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
4989        isExplicitSpecialization = true;
4990      }
4991    }
4992
4993    TemplateParameterLists.release();
4994  }
4995
4996  DeclContext *SearchDC = CurContext;
4997  DeclContext *DC = CurContext;
4998  bool isStdBadAlloc = false;
4999  bool Invalid = false;
5000
5001  RedeclarationKind Redecl = ForRedeclaration;
5002  if (TUK == TUK_Friend || TUK == TUK_Reference)
5003    Redecl = NotForRedeclaration;
5004
5005  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5006
5007  if (Name && SS.isNotEmpty()) {
5008    // We have a nested-name tag ('struct foo::bar').
5009
5010    // Check for invalid 'foo::'.
5011    if (SS.isInvalid()) {
5012      Name = 0;
5013      goto CreateNewDecl;
5014    }
5015
5016    // If this is a friend or a reference to a class in a dependent
5017    // context, don't try to make a decl for it.
5018    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5019      DC = computeDeclContext(SS, false);
5020      if (!DC) {
5021        IsDependent = true;
5022        return DeclPtrTy();
5023      }
5024    } else {
5025      DC = computeDeclContext(SS, true);
5026      if (!DC) {
5027        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5028          << SS.getRange();
5029        return DeclPtrTy();
5030      }
5031    }
5032
5033    if (RequireCompleteDeclContext(SS, DC))
5034      return DeclPtrTy::make((Decl *)0);
5035
5036    SearchDC = DC;
5037    // Look-up name inside 'foo::'.
5038    LookupQualifiedName(Previous, DC);
5039
5040    if (Previous.isAmbiguous())
5041      return DeclPtrTy();
5042
5043    if (Previous.empty()) {
5044      // Name lookup did not find anything. However, if the
5045      // nested-name-specifier refers to the current instantiation,
5046      // and that current instantiation has any dependent base
5047      // classes, we might find something at instantiation time: treat
5048      // this as a dependent elaborated-type-specifier.
5049      if (Previous.wasNotFoundInCurrentInstantiation()) {
5050        IsDependent = true;
5051        return DeclPtrTy();
5052      }
5053
5054      // A tag 'foo::bar' must already exist.
5055      Diag(NameLoc, diag::err_not_tag_in_scope)
5056        << Kind << Name << DC << SS.getRange();
5057      Name = 0;
5058      Invalid = true;
5059      goto CreateNewDecl;
5060    }
5061  } else if (Name) {
5062    // If this is a named struct, check to see if there was a previous forward
5063    // declaration or definition.
5064    // FIXME: We're looking into outer scopes here, even when we
5065    // shouldn't be. Doing so can result in ambiguities that we
5066    // shouldn't be diagnosing.
5067    LookupName(Previous, S);
5068
5069    // Note:  there used to be some attempt at recovery here.
5070    if (Previous.isAmbiguous())
5071      return DeclPtrTy();
5072
5073    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5074      // FIXME: This makes sure that we ignore the contexts associated
5075      // with C structs, unions, and enums when looking for a matching
5076      // tag declaration or definition. See the similar lookup tweak
5077      // in Sema::LookupName; is there a better way to deal with this?
5078      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5079        SearchDC = SearchDC->getParent();
5080    }
5081  }
5082
5083  if (Previous.isSingleResult() &&
5084      Previous.getFoundDecl()->isTemplateParameter()) {
5085    // Maybe we will complain about the shadowed template parameter.
5086    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5087    // Just pretend that we didn't see the previous declaration.
5088    Previous.clear();
5089  }
5090
5091  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5092      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5093    // This is a declaration of or a reference to "std::bad_alloc".
5094    isStdBadAlloc = true;
5095
5096    if (Previous.empty() && StdBadAlloc) {
5097      // std::bad_alloc has been implicitly declared (but made invisible to
5098      // name lookup). Fill in this implicit declaration as the previous
5099      // declaration, so that the declarations get chained appropriately.
5100      Previous.addDecl(StdBadAlloc);
5101    }
5102  }
5103
5104  // If we didn't find a previous declaration, and this is a reference
5105  // (or friend reference), move to the correct scope.  In C++, we
5106  // also need to do a redeclaration lookup there, just in case
5107  // there's a shadow friend decl.
5108  if (Name && Previous.empty() &&
5109      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5110    if (Invalid) goto CreateNewDecl;
5111    assert(SS.isEmpty());
5112
5113    if (TUK == TUK_Reference) {
5114      // C++ [basic.scope.pdecl]p5:
5115      //   -- for an elaborated-type-specifier of the form
5116      //
5117      //          class-key identifier
5118      //
5119      //      if the elaborated-type-specifier is used in the
5120      //      decl-specifier-seq or parameter-declaration-clause of a
5121      //      function defined in namespace scope, the identifier is
5122      //      declared as a class-name in the namespace that contains
5123      //      the declaration; otherwise, except as a friend
5124      //      declaration, the identifier is declared in the smallest
5125      //      non-class, non-function-prototype scope that contains the
5126      //      declaration.
5127      //
5128      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5129      // C structs and unions.
5130      //
5131      // It is an error in C++ to declare (rather than define) an enum
5132      // type, including via an elaborated type specifier.  We'll
5133      // diagnose that later; for now, declare the enum in the same
5134      // scope as we would have picked for any other tag type.
5135      //
5136      // GNU C also supports this behavior as part of its incomplete
5137      // enum types extension, while GNU C++ does not.
5138      //
5139      // Find the context where we'll be declaring the tag.
5140      // FIXME: We would like to maintain the current DeclContext as the
5141      // lexical context,
5142      while (SearchDC->isRecord())
5143        SearchDC = SearchDC->getParent();
5144
5145      // Find the scope where we'll be declaring the tag.
5146      while (S->isClassScope() ||
5147             (getLangOptions().CPlusPlus &&
5148              S->isFunctionPrototypeScope()) ||
5149             ((S->getFlags() & Scope::DeclScope) == 0) ||
5150             (S->getEntity() &&
5151              ((DeclContext *)S->getEntity())->isTransparentContext()))
5152        S = S->getParent();
5153    } else {
5154      assert(TUK == TUK_Friend);
5155      // C++ [namespace.memdef]p3:
5156      //   If a friend declaration in a non-local class first declares a
5157      //   class or function, the friend class or function is a member of
5158      //   the innermost enclosing namespace.
5159      SearchDC = SearchDC->getEnclosingNamespaceContext();
5160    }
5161
5162    // In C++, we need to do a redeclaration lookup to properly
5163    // diagnose some problems.
5164    if (getLangOptions().CPlusPlus) {
5165      Previous.setRedeclarationKind(ForRedeclaration);
5166      LookupQualifiedName(Previous, SearchDC);
5167    }
5168  }
5169
5170  if (!Previous.empty()) {
5171    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5172
5173    // It's okay to have a tag decl in the same scope as a typedef
5174    // which hides a tag decl in the same scope.  Finding this
5175    // insanity with a redeclaration lookup can only actually happen
5176    // in C++.
5177    //
5178    // This is also okay for elaborated-type-specifiers, which is
5179    // technically forbidden by the current standard but which is
5180    // okay according to the likely resolution of an open issue;
5181    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5182    if (getLangOptions().CPlusPlus) {
5183      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5184        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5185          TagDecl *Tag = TT->getDecl();
5186          if (Tag->getDeclName() == Name &&
5187              Tag->getDeclContext()->getLookupContext()
5188                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5189            PrevDecl = Tag;
5190            Previous.clear();
5191            Previous.addDecl(Tag);
5192          }
5193        }
5194      }
5195    }
5196
5197    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5198      // If this is a use of a previous tag, or if the tag is already declared
5199      // in the same scope (so that the definition/declaration completes or
5200      // rementions the tag), reuse the decl.
5201      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5202          isDeclInScope(PrevDecl, SearchDC, S)) {
5203        // Make sure that this wasn't declared as an enum and now used as a
5204        // struct or something similar.
5205        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5206          bool SafeToContinue
5207            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5208               Kind != TTK_Enum);
5209          if (SafeToContinue)
5210            Diag(KWLoc, diag::err_use_with_wrong_tag)
5211              << Name
5212              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5213                                              PrevTagDecl->getKindName());
5214          else
5215            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5216          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5217
5218          if (SafeToContinue)
5219            Kind = PrevTagDecl->getTagKind();
5220          else {
5221            // Recover by making this an anonymous redefinition.
5222            Name = 0;
5223            Previous.clear();
5224            Invalid = true;
5225          }
5226        }
5227
5228        if (!Invalid) {
5229          // If this is a use, just return the declaration we found.
5230
5231          // FIXME: In the future, return a variant or some other clue
5232          // for the consumer of this Decl to know it doesn't own it.
5233          // For our current ASTs this shouldn't be a problem, but will
5234          // need to be changed with DeclGroups.
5235          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5236              TUK == TUK_Friend)
5237            return DeclPtrTy::make(PrevTagDecl);
5238
5239          // Diagnose attempts to redefine a tag.
5240          if (TUK == TUK_Definition) {
5241            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5242              // If we're defining a specialization and the previous definition
5243              // is from an implicit instantiation, don't emit an error
5244              // here; we'll catch this in the general case below.
5245              if (!isExplicitSpecialization ||
5246                  !isa<CXXRecordDecl>(Def) ||
5247                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5248                                               == TSK_ExplicitSpecialization) {
5249                Diag(NameLoc, diag::err_redefinition) << Name;
5250                Diag(Def->getLocation(), diag::note_previous_definition);
5251                // If this is a redefinition, recover by making this
5252                // struct be anonymous, which will make any later
5253                // references get the previous definition.
5254                Name = 0;
5255                Previous.clear();
5256                Invalid = true;
5257              }
5258            } else {
5259              // If the type is currently being defined, complain
5260              // about a nested redefinition.
5261              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5262              if (Tag->isBeingDefined()) {
5263                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5264                Diag(PrevTagDecl->getLocation(),
5265                     diag::note_previous_definition);
5266                Name = 0;
5267                Previous.clear();
5268                Invalid = true;
5269              }
5270            }
5271
5272            // Okay, this is definition of a previously declared or referenced
5273            // tag PrevDecl. We're going to create a new Decl for it.
5274          }
5275        }
5276        // If we get here we have (another) forward declaration or we
5277        // have a definition.  Just create a new decl.
5278
5279      } else {
5280        // If we get here, this is a definition of a new tag type in a nested
5281        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5282        // new decl/type.  We set PrevDecl to NULL so that the entities
5283        // have distinct types.
5284        Previous.clear();
5285      }
5286      // If we get here, we're going to create a new Decl. If PrevDecl
5287      // is non-NULL, it's a definition of the tag declared by
5288      // PrevDecl. If it's NULL, we have a new definition.
5289
5290
5291    // Otherwise, PrevDecl is not a tag, but was found with tag
5292    // lookup.  This is only actually possible in C++, where a few
5293    // things like templates still live in the tag namespace.
5294    } else {
5295      assert(getLangOptions().CPlusPlus);
5296
5297      // Use a better diagnostic if an elaborated-type-specifier
5298      // found the wrong kind of type on the first
5299      // (non-redeclaration) lookup.
5300      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5301          !Previous.isForRedeclaration()) {
5302        unsigned Kind = 0;
5303        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5304        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5305        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5306        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5307        Invalid = true;
5308
5309      // Otherwise, only diagnose if the declaration is in scope.
5310      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5311        // do nothing
5312
5313      // Diagnose implicit declarations introduced by elaborated types.
5314      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5315        unsigned Kind = 0;
5316        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5317        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5318        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5319        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5320        Invalid = true;
5321
5322      // Otherwise it's a declaration.  Call out a particularly common
5323      // case here.
5324      } else if (isa<TypedefDecl>(PrevDecl)) {
5325        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5326          << Name
5327          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5328        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5329        Invalid = true;
5330
5331      // Otherwise, diagnose.
5332      } else {
5333        // The tag name clashes with something else in the target scope,
5334        // issue an error and recover by making this tag be anonymous.
5335        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5336        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5337        Name = 0;
5338        Invalid = true;
5339      }
5340
5341      // The existing declaration isn't relevant to us; we're in a
5342      // new scope, so clear out the previous declaration.
5343      Previous.clear();
5344    }
5345  }
5346
5347CreateNewDecl:
5348
5349  TagDecl *PrevDecl = 0;
5350  if (Previous.isSingleResult())
5351    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5352
5353  // If there is an identifier, use the location of the identifier as the
5354  // location of the decl, otherwise use the location of the struct/union
5355  // keyword.
5356  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5357
5358  // Otherwise, create a new declaration. If there is a previous
5359  // declaration of the same entity, the two will be linked via
5360  // PrevDecl.
5361  TagDecl *New;
5362
5363  if (Kind == TTK_Enum) {
5364    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5365    // enum X { A, B, C } D;    D should chain to X.
5366    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5367                           cast_or_null<EnumDecl>(PrevDecl));
5368    // If this is an undefined enum, warn.
5369    if (TUK != TUK_Definition && !Invalid)  {
5370      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5371                                              : diag::ext_forward_ref_enum;
5372      Diag(Loc, DK);
5373    }
5374  } else {
5375    // struct/union/class
5376
5377    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5378    // struct X { int A; } D;    D should chain to X.
5379    if (getLangOptions().CPlusPlus) {
5380      // FIXME: Look for a way to use RecordDecl for simple structs.
5381      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5382                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5383
5384      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5385        StdBadAlloc = cast<CXXRecordDecl>(New);
5386    } else
5387      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5388                               cast_or_null<RecordDecl>(PrevDecl));
5389  }
5390
5391  // Maybe add qualifier info.
5392  if (SS.isNotEmpty()) {
5393    if (SS.isSet()) {
5394      NestedNameSpecifier *NNS
5395        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5396      New->setQualifierInfo(NNS, SS.getRange());
5397    }
5398    else
5399      Invalid = true;
5400  }
5401
5402  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5403    // Add alignment attributes if necessary; these attributes are checked when
5404    // the ASTContext lays out the structure.
5405    //
5406    // It is important for implementing the correct semantics that this
5407    // happen here (in act on tag decl). The #pragma pack stack is
5408    // maintained as a result of parser callbacks which can occur at
5409    // many points during the parsing of a struct declaration (because
5410    // the #pragma tokens are effectively skipped over during the
5411    // parsing of the struct).
5412    AddAlignmentAttributesForRecord(RD);
5413  }
5414
5415  // If this is a specialization of a member class (of a class template),
5416  // check the specialization.
5417  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5418    Invalid = true;
5419
5420  if (Invalid)
5421    New->setInvalidDecl();
5422
5423  if (Attr)
5424    ProcessDeclAttributeList(S, New, Attr);
5425
5426  // If we're declaring or defining a tag in function prototype scope
5427  // in C, note that this type can only be used within the function.
5428  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5429    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5430
5431  // Set the lexical context. If the tag has a C++ scope specifier, the
5432  // lexical context will be different from the semantic context.
5433  New->setLexicalDeclContext(CurContext);
5434
5435  // Mark this as a friend decl if applicable.
5436  if (TUK == TUK_Friend)
5437    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5438
5439  // Set the access specifier.
5440  if (!Invalid && SearchDC->isRecord())
5441    SetMemberAccessSpecifier(New, PrevDecl, AS);
5442
5443  if (TUK == TUK_Definition)
5444    New->startDefinition();
5445
5446  // If this has an identifier, add it to the scope stack.
5447  if (TUK == TUK_Friend) {
5448    // We might be replacing an existing declaration in the lookup tables;
5449    // if so, borrow its access specifier.
5450    if (PrevDecl)
5451      New->setAccess(PrevDecl->getAccess());
5452
5453    DeclContext *DC = New->getDeclContext()->getLookupContext();
5454    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5455    if (Name) // can be null along some error paths
5456      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5457        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5458  } else if (Name) {
5459    S = getNonFieldDeclScope(S);
5460    PushOnScopeChains(New, S);
5461  } else {
5462    CurContext->addDecl(New);
5463  }
5464
5465  // If this is the C FILE type, notify the AST context.
5466  if (IdentifierInfo *II = New->getIdentifier())
5467    if (!New->isInvalidDecl() &&
5468        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5469        II->isStr("FILE"))
5470      Context.setFILEDecl(New);
5471
5472  OwnedDecl = true;
5473  return DeclPtrTy::make(New);
5474}
5475
5476void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5477  AdjustDeclIfTemplate(TagD);
5478  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5479
5480  // Enter the tag context.
5481  PushDeclContext(S, Tag);
5482}
5483
5484void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5485                                           SourceLocation LBraceLoc) {
5486  AdjustDeclIfTemplate(TagD);
5487  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5488
5489  FieldCollector->StartClass();
5490
5491  if (!Record->getIdentifier())
5492    return;
5493
5494  // C++ [class]p2:
5495  //   [...] The class-name is also inserted into the scope of the
5496  //   class itself; this is known as the injected-class-name. For
5497  //   purposes of access checking, the injected-class-name is treated
5498  //   as if it were a public member name.
5499  CXXRecordDecl *InjectedClassName
5500    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5501                            CurContext, Record->getLocation(),
5502                            Record->getIdentifier(),
5503                            Record->getTagKeywordLoc(),
5504                            Record);
5505  InjectedClassName->setImplicit();
5506  InjectedClassName->setAccess(AS_public);
5507  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5508      InjectedClassName->setDescribedClassTemplate(Template);
5509  PushOnScopeChains(InjectedClassName, S);
5510  assert(InjectedClassName->isInjectedClassName() &&
5511         "Broken injected-class-name");
5512}
5513
5514void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5515                                    SourceLocation RBraceLoc) {
5516  AdjustDeclIfTemplate(TagD);
5517  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5518  Tag->setRBraceLoc(RBraceLoc);
5519
5520  if (isa<CXXRecordDecl>(Tag))
5521    FieldCollector->FinishClass();
5522
5523  // Exit this scope of this tag's definition.
5524  PopDeclContext();
5525
5526  // Notify the consumer that we've defined a tag.
5527  Consumer.HandleTagDeclDefinition(Tag);
5528}
5529
5530void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5531  AdjustDeclIfTemplate(TagD);
5532  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5533  Tag->setInvalidDecl();
5534
5535  // We're undoing ActOnTagStartDefinition here, not
5536  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5537  // the FieldCollector.
5538
5539  PopDeclContext();
5540}
5541
5542// Note that FieldName may be null for anonymous bitfields.
5543bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5544                          QualType FieldTy, const Expr *BitWidth,
5545                          bool *ZeroWidth) {
5546  // Default to true; that shouldn't confuse checks for emptiness
5547  if (ZeroWidth)
5548    *ZeroWidth = true;
5549
5550  // C99 6.7.2.1p4 - verify the field type.
5551  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5552  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5553    // Handle incomplete types with specific error.
5554    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5555      return true;
5556    if (FieldName)
5557      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5558        << FieldName << FieldTy << BitWidth->getSourceRange();
5559    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5560      << FieldTy << BitWidth->getSourceRange();
5561  }
5562
5563  // If the bit-width is type- or value-dependent, don't try to check
5564  // it now.
5565  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5566    return false;
5567
5568  llvm::APSInt Value;
5569  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5570    return true;
5571
5572  if (Value != 0 && ZeroWidth)
5573    *ZeroWidth = false;
5574
5575  // Zero-width bitfield is ok for anonymous field.
5576  if (Value == 0 && FieldName)
5577    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5578
5579  if (Value.isSigned() && Value.isNegative()) {
5580    if (FieldName)
5581      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5582               << FieldName << Value.toString(10);
5583    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5584      << Value.toString(10);
5585  }
5586
5587  if (!FieldTy->isDependentType()) {
5588    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5589    if (Value.getZExtValue() > TypeSize) {
5590      if (!getLangOptions().CPlusPlus) {
5591        if (FieldName)
5592          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5593            << FieldName << (unsigned)Value.getZExtValue()
5594            << (unsigned)TypeSize;
5595
5596        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5597          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5598      }
5599
5600      if (FieldName)
5601        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5602          << FieldName << (unsigned)Value.getZExtValue()
5603          << (unsigned)TypeSize;
5604      else
5605        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5606          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5607    }
5608  }
5609
5610  return false;
5611}
5612
5613/// ActOnField - Each field of a struct/union/class is passed into this in order
5614/// to create a FieldDecl object for it.
5615Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5616                                 SourceLocation DeclStart,
5617                                 Declarator &D, ExprTy *BitfieldWidth) {
5618  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5619                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5620                               AS_public);
5621  return DeclPtrTy::make(Res);
5622}
5623
5624/// HandleField - Analyze a field of a C struct or a C++ data member.
5625///
5626FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5627                             SourceLocation DeclStart,
5628                             Declarator &D, Expr *BitWidth,
5629                             AccessSpecifier AS) {
5630  IdentifierInfo *II = D.getIdentifier();
5631  SourceLocation Loc = DeclStart;
5632  if (II) Loc = D.getIdentifierLoc();
5633
5634  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5635  QualType T = TInfo->getType();
5636  if (getLangOptions().CPlusPlus)
5637    CheckExtraCXXDefaultArguments(D);
5638
5639  DiagnoseFunctionSpecifiers(D);
5640
5641  if (D.getDeclSpec().isThreadSpecified())
5642    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5643
5644  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5645                                         ForRedeclaration);
5646
5647  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5648    // Maybe we will complain about the shadowed template parameter.
5649    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5650    // Just pretend that we didn't see the previous declaration.
5651    PrevDecl = 0;
5652  }
5653
5654  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5655    PrevDecl = 0;
5656
5657  bool Mutable
5658    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5659  SourceLocation TSSL = D.getSourceRange().getBegin();
5660  FieldDecl *NewFD
5661    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5662                     AS, PrevDecl, &D);
5663
5664  if (NewFD->isInvalidDecl())
5665    Record->setInvalidDecl();
5666
5667  if (NewFD->isInvalidDecl() && PrevDecl) {
5668    // Don't introduce NewFD into scope; there's already something
5669    // with the same name in the same scope.
5670  } else if (II) {
5671    PushOnScopeChains(NewFD, S);
5672  } else
5673    Record->addDecl(NewFD);
5674
5675  return NewFD;
5676}
5677
5678/// \brief Build a new FieldDecl and check its well-formedness.
5679///
5680/// This routine builds a new FieldDecl given the fields name, type,
5681/// record, etc. \p PrevDecl should refer to any previous declaration
5682/// with the same name and in the same scope as the field to be
5683/// created.
5684///
5685/// \returns a new FieldDecl.
5686///
5687/// \todo The Declarator argument is a hack. It will be removed once
5688FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5689                                TypeSourceInfo *TInfo,
5690                                RecordDecl *Record, SourceLocation Loc,
5691                                bool Mutable, Expr *BitWidth,
5692                                SourceLocation TSSL,
5693                                AccessSpecifier AS, NamedDecl *PrevDecl,
5694                                Declarator *D) {
5695  IdentifierInfo *II = Name.getAsIdentifierInfo();
5696  bool InvalidDecl = false;
5697  if (D) InvalidDecl = D->isInvalidType();
5698
5699  // If we receive a broken type, recover by assuming 'int' and
5700  // marking this declaration as invalid.
5701  if (T.isNull()) {
5702    InvalidDecl = true;
5703    T = Context.IntTy;
5704  }
5705
5706  QualType EltTy = Context.getBaseElementType(T);
5707  if (!EltTy->isDependentType() &&
5708      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5709    InvalidDecl = true;
5710
5711  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5712  // than a variably modified type.
5713  if (!InvalidDecl && T->isVariablyModifiedType()) {
5714    bool SizeIsNegative;
5715    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5716                                                           SizeIsNegative);
5717    if (!FixedTy.isNull()) {
5718      Diag(Loc, diag::warn_illegal_constant_array_size);
5719      T = FixedTy;
5720    } else {
5721      if (SizeIsNegative)
5722        Diag(Loc, diag::err_typecheck_negative_array_size);
5723      else
5724        Diag(Loc, diag::err_typecheck_field_variable_size);
5725      InvalidDecl = true;
5726    }
5727  }
5728
5729  // Fields can not have abstract class types
5730  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5731                                             diag::err_abstract_type_in_decl,
5732                                             AbstractFieldType))
5733    InvalidDecl = true;
5734
5735  bool ZeroWidth = false;
5736  // If this is declared as a bit-field, check the bit-field.
5737  if (!InvalidDecl && BitWidth &&
5738      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5739    InvalidDecl = true;
5740    DeleteExpr(BitWidth);
5741    BitWidth = 0;
5742    ZeroWidth = false;
5743  }
5744
5745  // Check that 'mutable' is consistent with the type of the declaration.
5746  if (!InvalidDecl && Mutable) {
5747    unsigned DiagID = 0;
5748    if (T->isReferenceType())
5749      DiagID = diag::err_mutable_reference;
5750    else if (T.isConstQualified())
5751      DiagID = diag::err_mutable_const;
5752
5753    if (DiagID) {
5754      SourceLocation ErrLoc = Loc;
5755      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5756        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5757      Diag(ErrLoc, DiagID);
5758      Mutable = false;
5759      InvalidDecl = true;
5760    }
5761  }
5762
5763  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5764                                       BitWidth, Mutable);
5765  if (InvalidDecl)
5766    NewFD->setInvalidDecl();
5767
5768  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5769    Diag(Loc, diag::err_duplicate_member) << II;
5770    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5771    NewFD->setInvalidDecl();
5772  }
5773
5774  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5775    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5776
5777    if (!T->isPODType())
5778      CXXRecord->setPOD(false);
5779    if (!ZeroWidth)
5780      CXXRecord->setEmpty(false);
5781
5782    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5783      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5784
5785      if (!RDecl->hasTrivialConstructor())
5786        CXXRecord->setHasTrivialConstructor(false);
5787      if (!RDecl->hasTrivialCopyConstructor())
5788        CXXRecord->setHasTrivialCopyConstructor(false);
5789      if (!RDecl->hasTrivialCopyAssignment())
5790        CXXRecord->setHasTrivialCopyAssignment(false);
5791      if (!RDecl->hasTrivialDestructor())
5792        CXXRecord->setHasTrivialDestructor(false);
5793
5794      // C++ 9.5p1: An object of a class with a non-trivial
5795      // constructor, a non-trivial copy constructor, a non-trivial
5796      // destructor, or a non-trivial copy assignment operator
5797      // cannot be a member of a union, nor can an array of such
5798      // objects.
5799      // TODO: C++0x alters this restriction significantly.
5800      if (Record->isUnion()) {
5801        // We check for copy constructors before constructors
5802        // because otherwise we'll never get complaints about
5803        // copy constructors.
5804
5805        CXXSpecialMember member = CXXInvalid;
5806        if (!RDecl->hasTrivialCopyConstructor())
5807          member = CXXCopyConstructor;
5808        else if (!RDecl->hasTrivialConstructor())
5809          member = CXXConstructor;
5810        else if (!RDecl->hasTrivialCopyAssignment())
5811          member = CXXCopyAssignment;
5812        else if (!RDecl->hasTrivialDestructor())
5813          member = CXXDestructor;
5814
5815        if (member != CXXInvalid) {
5816          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5817          DiagnoseNontrivial(RT, member);
5818          NewFD->setInvalidDecl();
5819        }
5820      }
5821    }
5822  }
5823
5824  // FIXME: We need to pass in the attributes given an AST
5825  // representation, not a parser representation.
5826  if (D)
5827    // FIXME: What to pass instead of TUScope?
5828    ProcessDeclAttributes(TUScope, NewFD, *D);
5829
5830  if (T.isObjCGCWeak())
5831    Diag(Loc, diag::warn_attribute_weak_on_field);
5832
5833  NewFD->setAccess(AS);
5834
5835  // C++ [dcl.init.aggr]p1:
5836  //   An aggregate is an array or a class (clause 9) with [...] no
5837  //   private or protected non-static data members (clause 11).
5838  // A POD must be an aggregate.
5839  if (getLangOptions().CPlusPlus &&
5840      (AS == AS_private || AS == AS_protected)) {
5841    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5842    CXXRecord->setAggregate(false);
5843    CXXRecord->setPOD(false);
5844  }
5845
5846  return NewFD;
5847}
5848
5849/// DiagnoseNontrivial - Given that a class has a non-trivial
5850/// special member, figure out why.
5851void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5852  QualType QT(T, 0U);
5853  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5854
5855  // Check whether the member was user-declared.
5856  switch (member) {
5857  case CXXInvalid:
5858    break;
5859
5860  case CXXConstructor:
5861    if (RD->hasUserDeclaredConstructor()) {
5862      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5863      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5864        const FunctionDecl *body = 0;
5865        ci->getBody(body);
5866        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5867          SourceLocation CtorLoc = ci->getLocation();
5868          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5869          return;
5870        }
5871      }
5872
5873      assert(0 && "found no user-declared constructors");
5874      return;
5875    }
5876    break;
5877
5878  case CXXCopyConstructor:
5879    if (RD->hasUserDeclaredCopyConstructor()) {
5880      SourceLocation CtorLoc =
5881        RD->getCopyConstructor(Context, 0)->getLocation();
5882      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5883      return;
5884    }
5885    break;
5886
5887  case CXXCopyAssignment:
5888    if (RD->hasUserDeclaredCopyAssignment()) {
5889      // FIXME: this should use the location of the copy
5890      // assignment, not the type.
5891      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5892      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5893      return;
5894    }
5895    break;
5896
5897  case CXXDestructor:
5898    if (RD->hasUserDeclaredDestructor()) {
5899      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5900      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5901      return;
5902    }
5903    break;
5904  }
5905
5906  typedef CXXRecordDecl::base_class_iterator base_iter;
5907
5908  // Virtual bases and members inhibit trivial copying/construction,
5909  // but not trivial destruction.
5910  if (member != CXXDestructor) {
5911    // Check for virtual bases.  vbases includes indirect virtual bases,
5912    // so we just iterate through the direct bases.
5913    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5914      if (bi->isVirtual()) {
5915        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5916        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5917        return;
5918      }
5919
5920    // Check for virtual methods.
5921    typedef CXXRecordDecl::method_iterator meth_iter;
5922    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5923         ++mi) {
5924      if (mi->isVirtual()) {
5925        SourceLocation MLoc = mi->getSourceRange().getBegin();
5926        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5927        return;
5928      }
5929    }
5930  }
5931
5932  bool (CXXRecordDecl::*hasTrivial)() const;
5933  switch (member) {
5934  case CXXConstructor:
5935    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5936  case CXXCopyConstructor:
5937    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5938  case CXXCopyAssignment:
5939    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5940  case CXXDestructor:
5941    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5942  default:
5943    assert(0 && "unexpected special member"); return;
5944  }
5945
5946  // Check for nontrivial bases (and recurse).
5947  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5948    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5949    assert(BaseRT && "Don't know how to handle dependent bases");
5950    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5951    if (!(BaseRecTy->*hasTrivial)()) {
5952      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5953      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5954      DiagnoseNontrivial(BaseRT, member);
5955      return;
5956    }
5957  }
5958
5959  // Check for nontrivial members (and recurse).
5960  typedef RecordDecl::field_iterator field_iter;
5961  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5962       ++fi) {
5963    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5964    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5965      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5966
5967      if (!(EltRD->*hasTrivial)()) {
5968        SourceLocation FLoc = (*fi)->getLocation();
5969        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5970        DiagnoseNontrivial(EltRT, member);
5971        return;
5972      }
5973    }
5974  }
5975
5976  assert(0 && "found no explanation for non-trivial member");
5977}
5978
5979/// TranslateIvarVisibility - Translate visibility from a token ID to an
5980///  AST enum value.
5981static ObjCIvarDecl::AccessControl
5982TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5983  switch (ivarVisibility) {
5984  default: assert(0 && "Unknown visitibility kind");
5985  case tok::objc_private: return ObjCIvarDecl::Private;
5986  case tok::objc_public: return ObjCIvarDecl::Public;
5987  case tok::objc_protected: return ObjCIvarDecl::Protected;
5988  case tok::objc_package: return ObjCIvarDecl::Package;
5989  }
5990}
5991
5992/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5993/// in order to create an IvarDecl object for it.
5994Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5995                                SourceLocation DeclStart,
5996                                DeclPtrTy IntfDecl,
5997                                Declarator &D, ExprTy *BitfieldWidth,
5998                                tok::ObjCKeywordKind Visibility) {
5999
6000  IdentifierInfo *II = D.getIdentifier();
6001  Expr *BitWidth = (Expr*)BitfieldWidth;
6002  SourceLocation Loc = DeclStart;
6003  if (II) Loc = D.getIdentifierLoc();
6004
6005  // FIXME: Unnamed fields can be handled in various different ways, for
6006  // example, unnamed unions inject all members into the struct namespace!
6007
6008  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6009  QualType T = TInfo->getType();
6010
6011  if (BitWidth) {
6012    // 6.7.2.1p3, 6.7.2.1p4
6013    if (VerifyBitField(Loc, II, T, BitWidth)) {
6014      D.setInvalidType();
6015      DeleteExpr(BitWidth);
6016      BitWidth = 0;
6017    }
6018  } else {
6019    // Not a bitfield.
6020
6021    // validate II.
6022
6023  }
6024  if (T->isReferenceType()) {
6025    Diag(Loc, diag::err_ivar_reference_type);
6026    D.setInvalidType();
6027  }
6028  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6029  // than a variably modified type.
6030  else if (T->isVariablyModifiedType()) {
6031    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6032    D.setInvalidType();
6033  }
6034
6035  // Get the visibility (access control) for this ivar.
6036  ObjCIvarDecl::AccessControl ac =
6037    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6038                                        : ObjCIvarDecl::None;
6039  // Must set ivar's DeclContext to its enclosing interface.
6040  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6041  ObjCContainerDecl *EnclosingContext;
6042  if (ObjCImplementationDecl *IMPDecl =
6043      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6044    // Case of ivar declared in an implementation. Context is that of its class.
6045    EnclosingContext = IMPDecl->getClassInterface();
6046    assert(EnclosingContext && "Implementation has no class interface!");
6047  } else {
6048    if (ObjCCategoryDecl *CDecl =
6049        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6050      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6051        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6052        return DeclPtrTy();
6053      }
6054    }
6055    EnclosingContext = EnclosingDecl;
6056  }
6057
6058  // Construct the decl.
6059  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6060                                             EnclosingContext, Loc, II, T,
6061                                             TInfo, ac, (Expr *)BitfieldWidth);
6062
6063  if (II) {
6064    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6065                                           ForRedeclaration);
6066    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6067        && !isa<TagDecl>(PrevDecl)) {
6068      Diag(Loc, diag::err_duplicate_member) << II;
6069      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6070      NewID->setInvalidDecl();
6071    }
6072  }
6073
6074  // Process attributes attached to the ivar.
6075  ProcessDeclAttributes(S, NewID, D);
6076
6077  if (D.isInvalidType())
6078    NewID->setInvalidDecl();
6079
6080  if (II) {
6081    // FIXME: When interfaces are DeclContexts, we'll need to add
6082    // these to the interface.
6083    S->AddDecl(DeclPtrTy::make(NewID));
6084    IdResolver.AddDecl(NewID);
6085  }
6086
6087  return DeclPtrTy::make(NewID);
6088}
6089
6090void Sema::ActOnFields(Scope* S,
6091                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6092                       DeclPtrTy *Fields, unsigned NumFields,
6093                       SourceLocation LBrac, SourceLocation RBrac,
6094                       AttributeList *Attr) {
6095  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6096  assert(EnclosingDecl && "missing record or interface decl");
6097
6098  // If the decl this is being inserted into is invalid, then it may be a
6099  // redeclaration or some other bogus case.  Don't try to add fields to it.
6100  if (EnclosingDecl->isInvalidDecl()) {
6101    // FIXME: Deallocate fields?
6102    return;
6103  }
6104
6105
6106  // Verify that all the fields are okay.
6107  unsigned NumNamedMembers = 0;
6108  llvm::SmallVector<FieldDecl*, 32> RecFields;
6109
6110  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6111  for (unsigned i = 0; i != NumFields; ++i) {
6112    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6113
6114    // Get the type for the field.
6115    Type *FDTy = FD->getType().getTypePtr();
6116
6117    if (!FD->isAnonymousStructOrUnion()) {
6118      // Remember all fields written by the user.
6119      RecFields.push_back(FD);
6120    }
6121
6122    // If the field is already invalid for some reason, don't emit more
6123    // diagnostics about it.
6124    if (FD->isInvalidDecl()) {
6125      EnclosingDecl->setInvalidDecl();
6126      continue;
6127    }
6128
6129    // C99 6.7.2.1p2:
6130    //   A structure or union shall not contain a member with
6131    //   incomplete or function type (hence, a structure shall not
6132    //   contain an instance of itself, but may contain a pointer to
6133    //   an instance of itself), except that the last member of a
6134    //   structure with more than one named member may have incomplete
6135    //   array type; such a structure (and any union containing,
6136    //   possibly recursively, a member that is such a structure)
6137    //   shall not be a member of a structure or an element of an
6138    //   array.
6139    if (FDTy->isFunctionType()) {
6140      // Field declared as a function.
6141      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6142        << FD->getDeclName();
6143      FD->setInvalidDecl();
6144      EnclosingDecl->setInvalidDecl();
6145      continue;
6146    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6147               Record && Record->isStruct()) {
6148      // Flexible array member.
6149      if (NumNamedMembers < 1) {
6150        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6151          << FD->getDeclName();
6152        FD->setInvalidDecl();
6153        EnclosingDecl->setInvalidDecl();
6154        continue;
6155      }
6156      if (!FD->getType()->isDependentType() &&
6157          !Context.getBaseElementType(FD->getType())->isPODType()) {
6158        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6159          << FD->getDeclName() << FD->getType();
6160        FD->setInvalidDecl();
6161        EnclosingDecl->setInvalidDecl();
6162        continue;
6163      }
6164
6165      // Okay, we have a legal flexible array member at the end of the struct.
6166      if (Record)
6167        Record->setHasFlexibleArrayMember(true);
6168    } else if (!FDTy->isDependentType() &&
6169               RequireCompleteType(FD->getLocation(), FD->getType(),
6170                                   diag::err_field_incomplete)) {
6171      // Incomplete type
6172      FD->setInvalidDecl();
6173      EnclosingDecl->setInvalidDecl();
6174      continue;
6175    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6176      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6177        // If this is a member of a union, then entire union becomes "flexible".
6178        if (Record && Record->isUnion()) {
6179          Record->setHasFlexibleArrayMember(true);
6180        } else {
6181          // If this is a struct/class and this is not the last element, reject
6182          // it.  Note that GCC supports variable sized arrays in the middle of
6183          // structures.
6184          if (i != NumFields-1)
6185            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6186              << FD->getDeclName() << FD->getType();
6187          else {
6188            // We support flexible arrays at the end of structs in
6189            // other structs as an extension.
6190            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6191              << FD->getDeclName();
6192            if (Record)
6193              Record->setHasFlexibleArrayMember(true);
6194          }
6195        }
6196      }
6197      if (Record && FDTTy->getDecl()->hasObjectMember())
6198        Record->setHasObjectMember(true);
6199    } else if (FDTy->isObjCObjectType()) {
6200      /// A field cannot be an Objective-c object
6201      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6202      FD->setInvalidDecl();
6203      EnclosingDecl->setInvalidDecl();
6204      continue;
6205    } else if (getLangOptions().ObjC1 &&
6206               getLangOptions().getGCMode() != LangOptions::NonGC &&
6207               Record &&
6208               (FD->getType()->isObjCObjectPointerType() ||
6209                FD->getType().isObjCGCStrong()))
6210      Record->setHasObjectMember(true);
6211    // Keep track of the number of named members.
6212    if (FD->getIdentifier())
6213      ++NumNamedMembers;
6214  }
6215
6216  // Okay, we successfully defined 'Record'.
6217  if (Record) {
6218    Record->completeDefinition();
6219  } else {
6220    ObjCIvarDecl **ClsFields =
6221      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6222    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6223      ID->setLocEnd(RBrac);
6224      // Add ivar's to class's DeclContext.
6225      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6226        ClsFields[i]->setLexicalDeclContext(ID);
6227        ID->addDecl(ClsFields[i]);
6228      }
6229      // Must enforce the rule that ivars in the base classes may not be
6230      // duplicates.
6231      if (ID->getSuperClass())
6232        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6233    } else if (ObjCImplementationDecl *IMPDecl =
6234                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6235      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6236      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6237        // Ivar declared in @implementation never belongs to the implementation.
6238        // Only it is in implementation's lexical context.
6239        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6240      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6241    } else if (ObjCCategoryDecl *CDecl =
6242                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6243      // case of ivars in class extension; all other cases have been
6244      // reported as errors elsewhere.
6245      // FIXME. Class extension does not have a LocEnd field.
6246      // CDecl->setLocEnd(RBrac);
6247      // Add ivar's to class extension's DeclContext.
6248      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6249        ClsFields[i]->setLexicalDeclContext(CDecl);
6250        CDecl->addDecl(ClsFields[i]);
6251      }
6252    }
6253  }
6254
6255  if (Attr)
6256    ProcessDeclAttributeList(S, Record, Attr);
6257}
6258
6259/// \brief Determine whether the given integral value is representable within
6260/// the given type T.
6261static bool isRepresentableIntegerValue(ASTContext &Context,
6262                                        llvm::APSInt &Value,
6263                                        QualType T) {
6264  assert(T->isIntegralType() && "Integral type required!");
6265  unsigned BitWidth = Context.getIntWidth(T);
6266
6267  if (Value.isUnsigned() || Value.isNonNegative())
6268    return Value.getActiveBits() < BitWidth;
6269
6270  return Value.getMinSignedBits() <= BitWidth;
6271}
6272
6273// \brief Given an integral type, return the next larger integral type
6274// (or a NULL type of no such type exists).
6275static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6276  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6277  // enum checking below.
6278  assert(T->isIntegralType() && "Integral type required!");
6279  const unsigned NumTypes = 4;
6280  QualType SignedIntegralTypes[NumTypes] = {
6281    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6282  };
6283  QualType UnsignedIntegralTypes[NumTypes] = {
6284    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6285    Context.UnsignedLongLongTy
6286  };
6287
6288  unsigned BitWidth = Context.getTypeSize(T);
6289  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6290                                            : UnsignedIntegralTypes;
6291  for (unsigned I = 0; I != NumTypes; ++I)
6292    if (Context.getTypeSize(Types[I]) > BitWidth)
6293      return Types[I];
6294
6295  return QualType();
6296}
6297
6298EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6299                                          EnumConstantDecl *LastEnumConst,
6300                                          SourceLocation IdLoc,
6301                                          IdentifierInfo *Id,
6302                                          ExprArg val) {
6303  Expr *Val = (Expr *)val.get();
6304
6305  unsigned IntWidth = Context.Target.getIntWidth();
6306  llvm::APSInt EnumVal(IntWidth);
6307  QualType EltTy;
6308  if (Val) {
6309    if (Enum->isDependentType() || Val->isTypeDependent())
6310      EltTy = Context.DependentTy;
6311    else {
6312      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6313      SourceLocation ExpLoc;
6314      if (!Val->isValueDependent() &&
6315          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6316        Val = 0;
6317      } else {
6318        if (!getLangOptions().CPlusPlus) {
6319          // C99 6.7.2.2p2:
6320          //   The expression that defines the value of an enumeration constant
6321          //   shall be an integer constant expression that has a value
6322          //   representable as an int.
6323
6324          // Complain if the value is not representable in an int.
6325          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6326            Diag(IdLoc, diag::ext_enum_value_not_int)
6327              << EnumVal.toString(10) << Val->getSourceRange()
6328              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6329          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6330            // Force the type of the expression to 'int'.
6331            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6332
6333            if (Val != val.get()) {
6334              val.release();
6335              val = Val;
6336            }
6337          }
6338        }
6339
6340        // C++0x [dcl.enum]p5:
6341        //   If the underlying type is not fixed, the type of each enumerator
6342        //   is the type of its initializing value:
6343        //     - If an initializer is specified for an enumerator, the
6344        //       initializing value has the same type as the expression.
6345        EltTy = Val->getType();
6346      }
6347    }
6348  }
6349
6350  if (!Val) {
6351    if (Enum->isDependentType())
6352      EltTy = Context.DependentTy;
6353    else if (!LastEnumConst) {
6354      // C++0x [dcl.enum]p5:
6355      //   If the underlying type is not fixed, the type of each enumerator
6356      //   is the type of its initializing value:
6357      //     - If no initializer is specified for the first enumerator, the
6358      //       initializing value has an unspecified integral type.
6359      //
6360      // GCC uses 'int' for its unspecified integral type, as does
6361      // C99 6.7.2.2p3.
6362      EltTy = Context.IntTy;
6363    } else {
6364      // Assign the last value + 1.
6365      EnumVal = LastEnumConst->getInitVal();
6366      ++EnumVal;
6367      EltTy = LastEnumConst->getType();
6368
6369      // Check for overflow on increment.
6370      if (EnumVal < LastEnumConst->getInitVal()) {
6371        // C++0x [dcl.enum]p5:
6372        //   If the underlying type is not fixed, the type of each enumerator
6373        //   is the type of its initializing value:
6374        //
6375        //     - Otherwise the type of the initializing value is the same as
6376        //       the type of the initializing value of the preceding enumerator
6377        //       unless the incremented value is not representable in that type,
6378        //       in which case the type is an unspecified integral type
6379        //       sufficient to contain the incremented value. If no such type
6380        //       exists, the program is ill-formed.
6381        QualType T = getNextLargerIntegralType(Context, EltTy);
6382        if (T.isNull()) {
6383          // There is no integral type larger enough to represent this
6384          // value. Complain, then allow the value to wrap around.
6385          EnumVal = LastEnumConst->getInitVal();
6386          EnumVal.zext(EnumVal.getBitWidth() * 2);
6387          Diag(IdLoc, diag::warn_enumerator_too_large)
6388            << EnumVal.toString(10);
6389        } else {
6390          EltTy = T;
6391        }
6392
6393        // Retrieve the last enumerator's value, extent that type to the
6394        // type that is supposed to be large enough to represent the incremented
6395        // value, then increment.
6396        EnumVal = LastEnumConst->getInitVal();
6397        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6398        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6399        ++EnumVal;
6400
6401        // If we're not in C++, diagnose the overflow of enumerator values,
6402        // which in C99 means that the enumerator value is not representable in
6403        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6404        // permits enumerator values that are representable in some larger
6405        // integral type.
6406        if (!getLangOptions().CPlusPlus && !T.isNull())
6407          Diag(IdLoc, diag::warn_enum_value_overflow);
6408      } else if (!getLangOptions().CPlusPlus &&
6409                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6410        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6411        Diag(IdLoc, diag::ext_enum_value_not_int)
6412          << EnumVal.toString(10) << 1;
6413      }
6414    }
6415  }
6416
6417  if (!EltTy->isDependentType()) {
6418    // Make the enumerator value match the signedness and size of the
6419    // enumerator's type.
6420    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6421    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6422  }
6423
6424  val.release();
6425  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6426                                  Val, EnumVal);
6427}
6428
6429
6430Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6431                                        DeclPtrTy lastEnumConst,
6432                                        SourceLocation IdLoc,
6433                                        IdentifierInfo *Id,
6434                                        SourceLocation EqualLoc, ExprTy *val) {
6435  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6436  EnumConstantDecl *LastEnumConst =
6437    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6438  Expr *Val = static_cast<Expr*>(val);
6439
6440  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6441  // we find one that is.
6442  S = getNonFieldDeclScope(S);
6443
6444  // Verify that there isn't already something declared with this name in this
6445  // scope.
6446  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6447                                         ForRedeclaration);
6448  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6449    // Maybe we will complain about the shadowed template parameter.
6450    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6451    // Just pretend that we didn't see the previous declaration.
6452    PrevDecl = 0;
6453  }
6454
6455  if (PrevDecl) {
6456    // When in C++, we may get a TagDecl with the same name; in this case the
6457    // enum constant will 'hide' the tag.
6458    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6459           "Received TagDecl when not in C++!");
6460    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6461      if (isa<EnumConstantDecl>(PrevDecl))
6462        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6463      else
6464        Diag(IdLoc, diag::err_redefinition) << Id;
6465      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6466      if (Val) Val->Destroy(Context);
6467      return DeclPtrTy();
6468    }
6469  }
6470
6471  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6472                                            IdLoc, Id, Owned(Val));
6473
6474  // Register this decl in the current scope stack.
6475  if (New) {
6476    New->setAccess(TheEnumDecl->getAccess());
6477    PushOnScopeChains(New, S);
6478  }
6479
6480  return DeclPtrTy::make(New);
6481}
6482
6483void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6484                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6485                         DeclPtrTy *Elements, unsigned NumElements,
6486                         Scope *S, AttributeList *Attr) {
6487  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6488  QualType EnumType = Context.getTypeDeclType(Enum);
6489
6490  if (Attr)
6491    ProcessDeclAttributeList(S, Enum, Attr);
6492
6493  if (Enum->isDependentType()) {
6494    for (unsigned i = 0; i != NumElements; ++i) {
6495      EnumConstantDecl *ECD =
6496        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6497      if (!ECD) continue;
6498
6499      ECD->setType(EnumType);
6500    }
6501
6502    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6503    return;
6504  }
6505
6506  // TODO: If the result value doesn't fit in an int, it must be a long or long
6507  // long value.  ISO C does not support this, but GCC does as an extension,
6508  // emit a warning.
6509  unsigned IntWidth = Context.Target.getIntWidth();
6510  unsigned CharWidth = Context.Target.getCharWidth();
6511  unsigned ShortWidth = Context.Target.getShortWidth();
6512
6513  // Verify that all the values are okay, compute the size of the values, and
6514  // reverse the list.
6515  unsigned NumNegativeBits = 0;
6516  unsigned NumPositiveBits = 0;
6517
6518  // Keep track of whether all elements have type int.
6519  bool AllElementsInt = true;
6520
6521  for (unsigned i = 0; i != NumElements; ++i) {
6522    EnumConstantDecl *ECD =
6523      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6524    if (!ECD) continue;  // Already issued a diagnostic.
6525
6526    const llvm::APSInt &InitVal = ECD->getInitVal();
6527
6528    // Keep track of the size of positive and negative values.
6529    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6530      NumPositiveBits = std::max(NumPositiveBits,
6531                                 (unsigned)InitVal.getActiveBits());
6532    else
6533      NumNegativeBits = std::max(NumNegativeBits,
6534                                 (unsigned)InitVal.getMinSignedBits());
6535
6536    // Keep track of whether every enum element has type int (very commmon).
6537    if (AllElementsInt)
6538      AllElementsInt = ECD->getType() == Context.IntTy;
6539  }
6540
6541  // Figure out the type that should be used for this enum.
6542  // FIXME: Support -fshort-enums.
6543  QualType BestType;
6544  unsigned BestWidth;
6545
6546  // C++0x N3000 [conv.prom]p3:
6547  //   An rvalue of an unscoped enumeration type whose underlying
6548  //   type is not fixed can be converted to an rvalue of the first
6549  //   of the following types that can represent all the values of
6550  //   the enumeration: int, unsigned int, long int, unsigned long
6551  //   int, long long int, or unsigned long long int.
6552  // C99 6.4.4.3p2:
6553  //   An identifier declared as an enumeration constant has type int.
6554  // The C99 rule is modified by a gcc extension
6555  QualType BestPromotionType;
6556
6557  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6558
6559  if (NumNegativeBits) {
6560    // If there is a negative value, figure out the smallest integer type (of
6561    // int/long/longlong) that fits.
6562    // If it's packed, check also if it fits a char or a short.
6563    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6564      BestType = Context.SignedCharTy;
6565      BestWidth = CharWidth;
6566    } else if (Packed && NumNegativeBits <= ShortWidth &&
6567               NumPositiveBits < ShortWidth) {
6568      BestType = Context.ShortTy;
6569      BestWidth = ShortWidth;
6570    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6571      BestType = Context.IntTy;
6572      BestWidth = IntWidth;
6573    } else {
6574      BestWidth = Context.Target.getLongWidth();
6575
6576      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6577        BestType = Context.LongTy;
6578      } else {
6579        BestWidth = Context.Target.getLongLongWidth();
6580
6581        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6582          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6583        BestType = Context.LongLongTy;
6584      }
6585    }
6586    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6587  } else {
6588    // If there is no negative value, figure out the smallest type that fits
6589    // all of the enumerator values.
6590    // If it's packed, check also if it fits a char or a short.
6591    if (Packed && NumPositiveBits <= CharWidth) {
6592      BestType = Context.UnsignedCharTy;
6593      BestPromotionType = Context.IntTy;
6594      BestWidth = CharWidth;
6595    } else if (Packed && NumPositiveBits <= ShortWidth) {
6596      BestType = Context.UnsignedShortTy;
6597      BestPromotionType = Context.IntTy;
6598      BestWidth = ShortWidth;
6599    } else if (NumPositiveBits <= IntWidth) {
6600      BestType = Context.UnsignedIntTy;
6601      BestWidth = IntWidth;
6602      BestPromotionType
6603        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6604                           ? Context.UnsignedIntTy : Context.IntTy;
6605    } else if (NumPositiveBits <=
6606               (BestWidth = Context.Target.getLongWidth())) {
6607      BestType = Context.UnsignedLongTy;
6608      BestPromotionType
6609        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6610                           ? Context.UnsignedLongTy : Context.LongTy;
6611    } else {
6612      BestWidth = Context.Target.getLongLongWidth();
6613      assert(NumPositiveBits <= BestWidth &&
6614             "How could an initializer get larger than ULL?");
6615      BestType = Context.UnsignedLongLongTy;
6616      BestPromotionType
6617        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6618                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6619    }
6620  }
6621
6622  // Loop over all of the enumerator constants, changing their types to match
6623  // the type of the enum if needed.
6624  for (unsigned i = 0; i != NumElements; ++i) {
6625    EnumConstantDecl *ECD =
6626      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6627    if (!ECD) continue;  // Already issued a diagnostic.
6628
6629    // Standard C says the enumerators have int type, but we allow, as an
6630    // extension, the enumerators to be larger than int size.  If each
6631    // enumerator value fits in an int, type it as an int, otherwise type it the
6632    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6633    // that X has type 'int', not 'unsigned'.
6634
6635    // Determine whether the value fits into an int.
6636    llvm::APSInt InitVal = ECD->getInitVal();
6637
6638    // If it fits into an integer type, force it.  Otherwise force it to match
6639    // the enum decl type.
6640    QualType NewTy;
6641    unsigned NewWidth;
6642    bool NewSign;
6643    if (!getLangOptions().CPlusPlus &&
6644        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6645      NewTy = Context.IntTy;
6646      NewWidth = IntWidth;
6647      NewSign = true;
6648    } else if (ECD->getType() == BestType) {
6649      // Already the right type!
6650      if (getLangOptions().CPlusPlus)
6651        // C++ [dcl.enum]p4: Following the closing brace of an
6652        // enum-specifier, each enumerator has the type of its
6653        // enumeration.
6654        ECD->setType(EnumType);
6655      continue;
6656    } else {
6657      NewTy = BestType;
6658      NewWidth = BestWidth;
6659      NewSign = BestType->isSignedIntegerType();
6660    }
6661
6662    // Adjust the APSInt value.
6663    InitVal.extOrTrunc(NewWidth);
6664    InitVal.setIsSigned(NewSign);
6665    ECD->setInitVal(InitVal);
6666
6667    // Adjust the Expr initializer and type.
6668    if (ECD->getInitExpr())
6669      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6670                                                      CastExpr::CK_IntegralCast,
6671                                                      ECD->getInitExpr(),
6672                                                      CXXBaseSpecifierArray(),
6673                                                      /*isLvalue=*/false));
6674    if (getLangOptions().CPlusPlus)
6675      // C++ [dcl.enum]p4: Following the closing brace of an
6676      // enum-specifier, each enumerator has the type of its
6677      // enumeration.
6678      ECD->setType(EnumType);
6679    else
6680      ECD->setType(NewTy);
6681  }
6682
6683  Enum->completeDefinition(BestType, BestPromotionType,
6684                           NumPositiveBits, NumNegativeBits);
6685}
6686
6687Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6688                                            ExprArg expr) {
6689  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6690
6691  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6692                                                   Loc, AsmString);
6693  CurContext->addDecl(New);
6694  return DeclPtrTy::make(New);
6695}
6696
6697void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6698                             SourceLocation PragmaLoc,
6699                             SourceLocation NameLoc) {
6700  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6701
6702  if (PrevDecl) {
6703    PrevDecl->addAttr(::new (Context) WeakAttr());
6704  } else {
6705    (void)WeakUndeclaredIdentifiers.insert(
6706      std::pair<IdentifierInfo*,WeakInfo>
6707        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6708  }
6709}
6710
6711void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6712                                IdentifierInfo* AliasName,
6713                                SourceLocation PragmaLoc,
6714                                SourceLocation NameLoc,
6715                                SourceLocation AliasNameLoc) {
6716  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6717                                    LookupOrdinaryName);
6718  WeakInfo W = WeakInfo(Name, NameLoc);
6719
6720  if (PrevDecl) {
6721    if (!PrevDecl->hasAttr<AliasAttr>())
6722      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6723        DeclApplyPragmaWeak(TUScope, ND, W);
6724  } else {
6725    (void)WeakUndeclaredIdentifiers.insert(
6726      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6727  }
6728}
6729