SemaDecl.cpp revision 3603e0c11af0d958225d8db2f25ed2683d652436
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>(Context) != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(Context, D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if (isa<FunctionDecl>(D) &&
323             AllowOverloadingOfFunction(D, Context)) {
324    // We are pushing the name of a function, which might be an
325    // overloaded name.
326    FunctionDecl *FD = cast<FunctionDecl>(D);
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(FD->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  FD));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool
615DeclHasAttr(ASTContext &Context, const Decl *decl, const Attr *target) {
616  for (const Attr *attr = decl->getAttrs(Context); attr; attr = attr->getNext())
617    if (attr->getKind() == target->getKind())
618      return true;
619
620  return false;
621}
622
623/// MergeAttributes - append attributes from the Old decl to the New one.
624static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
625  for (const Attr *attr = Old->getAttrs(C); attr; attr = attr->getNext()) {
626    if (!DeclHasAttr(C, New, attr) && attr->isMerged()) {
627      Attr *NewAttr = attr->clone(C);
628      NewAttr->setInherited(true);
629      New->addAttr(C, NewAttr);
630    }
631  }
632}
633
634/// Used in MergeFunctionDecl to keep track of function parameters in
635/// C.
636struct GNUCompatibleParamWarning {
637  ParmVarDecl *OldParm;
638  ParmVarDecl *NewParm;
639  QualType PromotedType;
640};
641
642/// MergeFunctionDecl - We just parsed a function 'New' from
643/// declarator D which has the same name and scope as a previous
644/// declaration 'Old'.  Figure out how to resolve this situation,
645/// merging decls or emitting diagnostics as appropriate.
646///
647/// In C++, New and Old must be declarations that are not
648/// overloaded. Use IsOverload to determine whether New and Old are
649/// overloaded, and to select the Old declaration that New should be
650/// merged with.
651///
652/// Returns true if there was an error, false otherwise.
653bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
654  assert(!isa<OverloadedFunctionDecl>(OldD) &&
655         "Cannot merge with an overloaded function declaration");
656
657  // Verify the old decl was also a function.
658  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
659  if (!Old) {
660    Diag(New->getLocation(), diag::err_redefinition_different_kind)
661      << New->getDeclName();
662    Diag(OldD->getLocation(), diag::note_previous_definition);
663    return true;
664  }
665
666  // Determine whether the previous declaration was a definition,
667  // implicit declaration, or a declaration.
668  diag::kind PrevDiag;
669  if (Old->isThisDeclarationADefinition())
670    PrevDiag = diag::note_previous_definition;
671  else if (Old->isImplicit())
672    PrevDiag = diag::note_previous_implicit_declaration;
673  else
674    PrevDiag = diag::note_previous_declaration;
675
676  QualType OldQType = Context.getCanonicalType(Old->getType());
677  QualType NewQType = Context.getCanonicalType(New->getType());
678
679  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
680      New->getStorageClass() == FunctionDecl::Static &&
681      Old->getStorageClass() != FunctionDecl::Static) {
682    Diag(New->getLocation(), diag::err_static_non_static)
683      << New;
684    Diag(Old->getLocation(), PrevDiag);
685    return true;
686  }
687
688  if (getLangOptions().CPlusPlus) {
689    // (C++98 13.1p2):
690    //   Certain function declarations cannot be overloaded:
691    //     -- Function declarations that differ only in the return type
692    //        cannot be overloaded.
693    QualType OldReturnType
694      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
695    QualType NewReturnType
696      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
697    if (OldReturnType != NewReturnType) {
698      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
699      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
700      return true;
701    }
702
703    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
704    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
705    if (OldMethod && NewMethod &&
706        OldMethod->getLexicalDeclContext() ==
707          NewMethod->getLexicalDeclContext()) {
708      //    -- Member function declarations with the same name and the
709      //       same parameter types cannot be overloaded if any of them
710      //       is a static member function declaration.
711      if (OldMethod->isStatic() || NewMethod->isStatic()) {
712        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
713        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
714        return true;
715      }
716
717      // C++ [class.mem]p1:
718      //   [...] A member shall not be declared twice in the
719      //   member-specification, except that a nested class or member
720      //   class template can be declared and then later defined.
721      unsigned NewDiag;
722      if (isa<CXXConstructorDecl>(OldMethod))
723        NewDiag = diag::err_constructor_redeclared;
724      else if (isa<CXXDestructorDecl>(NewMethod))
725        NewDiag = diag::err_destructor_redeclared;
726      else if (isa<CXXConversionDecl>(NewMethod))
727        NewDiag = diag::err_conv_function_redeclared;
728      else
729        NewDiag = diag::err_member_redeclared;
730
731      Diag(New->getLocation(), NewDiag);
732      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733    }
734
735    // (C++98 8.3.5p3):
736    //   All declarations for a function shall agree exactly in both the
737    //   return type and the parameter-type-list.
738    if (OldQType == NewQType)
739      return MergeCompatibleFunctionDecls(New, Old);
740
741    // Fall through for conflicting redeclarations and redefinitions.
742  }
743
744  // C: Function types need to be compatible, not identical. This handles
745  // duplicate function decls like "void f(int); void f(enum X);" properly.
746  if (!getLangOptions().CPlusPlus &&
747      Context.typesAreCompatible(OldQType, NewQType)) {
748    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
749    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
750    const FunctionProtoType *OldProto = 0;
751    if (isa<FunctionNoProtoType>(NewFuncType) &&
752        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
753      // The old declaration provided a function prototype, but the
754      // new declaration does not. Merge in the prototype.
755      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
756      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
757                                                 OldProto->arg_type_end());
758      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
759                                         ParamTypes.data(), ParamTypes.size(),
760                                         OldProto->isVariadic(),
761                                         OldProto->getTypeQuals());
762      New->setType(NewQType);
763      New->setHasInheritedPrototype();
764
765      // Synthesize a parameter for each argument type.
766      llvm::SmallVector<ParmVarDecl*, 16> Params;
767      for (FunctionProtoType::arg_type_iterator
768             ParamType = OldProto->arg_type_begin(),
769             ParamEnd = OldProto->arg_type_end();
770           ParamType != ParamEnd; ++ParamType) {
771        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
772                                                 SourceLocation(), 0,
773                                                 *ParamType, VarDecl::None,
774                                                 0);
775        Param->setImplicit();
776        Params.push_back(Param);
777      }
778
779      New->setParams(Context, Params.data(), Params.size());
780    }
781
782    return MergeCompatibleFunctionDecls(New, Old);
783  }
784
785  // GNU C permits a K&R definition to follow a prototype declaration
786  // if the declared types of the parameters in the K&R definition
787  // match the types in the prototype declaration, even when the
788  // promoted types of the parameters from the K&R definition differ
789  // from the types in the prototype. GCC then keeps the types from
790  // the prototype.
791  //
792  // If a variadic prototype is followed by a non-variadic K&R definition,
793  // the K&R definition becomes variadic.  This is sort of an edge case, but
794  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
795  // C99 6.9.1p8.
796  if (!getLangOptions().CPlusPlus &&
797      Old->hasPrototype() && !New->hasPrototype() &&
798      New->getType()->getAsFunctionProtoType() &&
799      Old->getNumParams() == New->getNumParams()) {
800    llvm::SmallVector<QualType, 16> ArgTypes;
801    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
802    const FunctionProtoType *OldProto
803      = Old->getType()->getAsFunctionProtoType();
804    const FunctionProtoType *NewProto
805      = New->getType()->getAsFunctionProtoType();
806
807    // Determine whether this is the GNU C extension.
808    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
809                                               NewProto->getResultType());
810    bool LooseCompatible = !MergedReturn.isNull();
811    for (unsigned Idx = 0, End = Old->getNumParams();
812         LooseCompatible && Idx != End; ++Idx) {
813      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
814      ParmVarDecl *NewParm = New->getParamDecl(Idx);
815      if (Context.typesAreCompatible(OldParm->getType(),
816                                     NewProto->getArgType(Idx))) {
817        ArgTypes.push_back(NewParm->getType());
818      } else if (Context.typesAreCompatible(OldParm->getType(),
819                                            NewParm->getType())) {
820        GNUCompatibleParamWarning Warn
821          = { OldParm, NewParm, NewProto->getArgType(Idx) };
822        Warnings.push_back(Warn);
823        ArgTypes.push_back(NewParm->getType());
824      } else
825        LooseCompatible = false;
826    }
827
828    if (LooseCompatible) {
829      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
830        Diag(Warnings[Warn].NewParm->getLocation(),
831             diag::ext_param_promoted_not_compatible_with_prototype)
832          << Warnings[Warn].PromotedType
833          << Warnings[Warn].OldParm->getType();
834        Diag(Warnings[Warn].OldParm->getLocation(),
835             diag::note_previous_declaration);
836      }
837
838      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
839                                           ArgTypes.size(),
840                                           OldProto->isVariadic(), 0));
841      return MergeCompatibleFunctionDecls(New, Old);
842    }
843
844    // Fall through to diagnose conflicting types.
845  }
846
847  // A function that has already been declared has been redeclared or defined
848  // with a different type- show appropriate diagnostic
849  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
850    // The user has declared a builtin function with an incompatible
851    // signature.
852    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
853      // The function the user is redeclaring is a library-defined
854      // function like 'malloc' or 'printf'. Warn about the
855      // redeclaration, then pretend that we don't know about this
856      // library built-in.
857      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
858      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
859        << Old << Old->getType();
860      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
861      Old->setInvalidDecl();
862      return false;
863    }
864
865    PrevDiag = diag::note_previous_builtin_declaration;
866  }
867
868  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
869  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
870  return true;
871}
872
873/// \brief Completes the merge of two function declarations that are
874/// known to be compatible.
875///
876/// This routine handles the merging of attributes and other
877/// properties of function declarations form the old declaration to
878/// the new declaration, once we know that New is in fact a
879/// redeclaration of Old.
880///
881/// \returns false
882bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
883  // Merge the attributes
884  MergeAttributes(New, Old, Context);
885
886  // Merge the storage class.
887  if (Old->getStorageClass() != FunctionDecl::Extern)
888    New->setStorageClass(Old->getStorageClass());
889
890  // Merge "inline"
891  if (Old->isInline())
892    New->setInline(true);
893
894  // If this function declaration by itself qualifies as a C99 inline
895  // definition (C99 6.7.4p6), but the previous definition did not,
896  // then the function is not a C99 inline definition.
897  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
898    New->setC99InlineDefinition(false);
899  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
900    // Mark all preceding definitions as not being C99 inline definitions.
901    for (const FunctionDecl *Prev = Old; Prev;
902         Prev = Prev->getPreviousDeclaration())
903      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
904  }
905
906  // Merge "pure" flag.
907  if (Old->isPure())
908    New->setPure();
909
910  // Merge the "deleted" flag.
911  if (Old->isDeleted())
912    New->setDeleted();
913
914  if (getLangOptions().CPlusPlus)
915    return MergeCXXFunctionDecl(New, Old);
916
917  return false;
918}
919
920/// MergeVarDecl - We just parsed a variable 'New' which has the same name
921/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
922/// situation, merging decls or emitting diagnostics as appropriate.
923///
924/// Tentative definition rules (C99 6.9.2p2) are checked by
925/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
926/// definitions here, since the initializer hasn't been attached.
927///
928void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
929  // If either decl is invalid, make sure the new one is marked invalid and
930  // don't do any other checking.
931  if (New->isInvalidDecl() || OldD->isInvalidDecl())
932    return New->setInvalidDecl();
933
934  // Verify the old decl was also a variable.
935  VarDecl *Old = dyn_cast<VarDecl>(OldD);
936  if (!Old) {
937    Diag(New->getLocation(), diag::err_redefinition_different_kind)
938      << New->getDeclName();
939    Diag(OldD->getLocation(), diag::note_previous_definition);
940    return New->setInvalidDecl();
941  }
942
943  MergeAttributes(New, Old, Context);
944
945  // Merge the types
946  QualType MergedT;
947  if (getLangOptions().CPlusPlus) {
948    if (Context.hasSameType(New->getType(), Old->getType()))
949      MergedT = New->getType();
950  } else {
951    MergedT = Context.mergeTypes(New->getType(), Old->getType());
952  }
953  if (MergedT.isNull()) {
954    Diag(New->getLocation(), diag::err_redefinition_different_type)
955      << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957    return New->setInvalidDecl();
958  }
959  New->setType(MergedT);
960
961  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
962  if (New->getStorageClass() == VarDecl::Static &&
963      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
964    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
965    Diag(Old->getLocation(), diag::note_previous_definition);
966    return New->setInvalidDecl();
967  }
968  // C99 6.2.2p4:
969  //   For an identifier declared with the storage-class specifier
970  //   extern in a scope in which a prior declaration of that
971  //   identifier is visible,23) if the prior declaration specifies
972  //   internal or external linkage, the linkage of the identifier at
973  //   the later declaration is the same as the linkage specified at
974  //   the prior declaration. If no prior declaration is visible, or
975  //   if the prior declaration specifies no linkage, then the
976  //   identifier has external linkage.
977  if (New->hasExternalStorage() && Old->hasLinkage())
978    /* Okay */;
979  else if (New->getStorageClass() != VarDecl::Static &&
980           Old->getStorageClass() == VarDecl::Static) {
981    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
982    Diag(Old->getLocation(), diag::note_previous_definition);
983    return New->setInvalidDecl();
984  }
985
986  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
987
988  // FIXME: The test for external storage here seems wrong? We still
989  // need to check for mismatches.
990  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
991      // Don't complain about out-of-line definitions of static members.
992      !(Old->getLexicalDeclContext()->isRecord() &&
993        !New->getLexicalDeclContext()->isRecord())) {
994    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
995    Diag(Old->getLocation(), diag::note_previous_definition);
996    return New->setInvalidDecl();
997  }
998
999  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1000    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1003    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005  }
1006
1007  // Keep a chain of previous declarations.
1008  New->setPreviousDeclaration(Old);
1009}
1010
1011/// CheckParmsForFunctionDef - Check that the parameters of the given
1012/// function are appropriate for the definition of a function. This
1013/// takes care of any checks that cannot be performed on the
1014/// declaration itself, e.g., that the types of each of the function
1015/// parameters are complete.
1016bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1017  bool HasInvalidParm = false;
1018  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1019    ParmVarDecl *Param = FD->getParamDecl(p);
1020
1021    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1022    // function declarator that is part of a function definition of
1023    // that function shall not have incomplete type.
1024    //
1025    // This is also C++ [dcl.fct]p6.
1026    if (!Param->isInvalidDecl() &&
1027        RequireCompleteType(Param->getLocation(), Param->getType(),
1028                               diag::err_typecheck_decl_incomplete_type)) {
1029      Param->setInvalidDecl();
1030      HasInvalidParm = true;
1031    }
1032
1033    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1034    // declaration of each parameter shall include an identifier.
1035    if (Param->getIdentifier() == 0 &&
1036        !Param->isImplicit() &&
1037        !getLangOptions().CPlusPlus)
1038      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1039  }
1040
1041  return HasInvalidParm;
1042}
1043
1044/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1045/// no declarator (e.g. "struct foo;") is parsed.
1046Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1047  // FIXME: Error on auto/register at file scope
1048  // FIXME: Error on inline/virtual/explicit
1049  // FIXME: Error on invalid restrict
1050  // FIXME: Warn on useless __thread
1051  // FIXME: Warn on useless const/volatile
1052  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1053  // FIXME: Warn on useless attributes
1054  TagDecl *Tag = 0;
1055  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1056      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1057      DS.getTypeSpecType() == DeclSpec::TST_union ||
1058      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1059    if (!DS.getTypeRep()) // We probably had an error
1060      return DeclPtrTy();
1061
1062    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1063  }
1064
1065  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1066    if (!Record->getDeclName() && Record->isDefinition() &&
1067        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1068      if (getLangOptions().CPlusPlus ||
1069          Record->getDeclContext()->isRecord())
1070        return BuildAnonymousStructOrUnion(S, DS, Record);
1071
1072      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1073        << DS.getSourceRange();
1074    }
1075
1076    // Microsoft allows unnamed struct/union fields. Don't complain
1077    // about them.
1078    // FIXME: Should we support Microsoft's extensions in this area?
1079    if (Record->getDeclName() && getLangOptions().Microsoft)
1080      return DeclPtrTy::make(Tag);
1081  }
1082
1083  if (!DS.isMissingDeclaratorOk() &&
1084      DS.getTypeSpecType() != DeclSpec::TST_error) {
1085    // Warn about typedefs of enums without names, since this is an
1086    // extension in both Microsoft an GNU.
1087    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1088        Tag && isa<EnumDecl>(Tag)) {
1089      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1090        << DS.getSourceRange();
1091      return DeclPtrTy::make(Tag);
1092    }
1093
1094    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1095      << DS.getSourceRange();
1096    return DeclPtrTy();
1097  }
1098
1099  return DeclPtrTy::make(Tag);
1100}
1101
1102/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1103/// anonymous struct or union AnonRecord into the owning context Owner
1104/// and scope S. This routine will be invoked just after we realize
1105/// that an unnamed union or struct is actually an anonymous union or
1106/// struct, e.g.,
1107///
1108/// @code
1109/// union {
1110///   int i;
1111///   float f;
1112/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1113///    // f into the surrounding scope.x
1114/// @endcode
1115///
1116/// This routine is recursive, injecting the names of nested anonymous
1117/// structs/unions into the owning context and scope as well.
1118bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1119                                               RecordDecl *AnonRecord) {
1120  bool Invalid = false;
1121  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1122                               FEnd = AnonRecord->field_end(Context);
1123       F != FEnd; ++F) {
1124    if ((*F)->getDeclName()) {
1125      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1126                                                LookupOrdinaryName, true);
1127      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1128        // C++ [class.union]p2:
1129        //   The names of the members of an anonymous union shall be
1130        //   distinct from the names of any other entity in the
1131        //   scope in which the anonymous union is declared.
1132        unsigned diagKind
1133          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1134                                 : diag::err_anonymous_struct_member_redecl;
1135        Diag((*F)->getLocation(), diagKind)
1136          << (*F)->getDeclName();
1137        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1138        Invalid = true;
1139      } else {
1140        // C++ [class.union]p2:
1141        //   For the purpose of name lookup, after the anonymous union
1142        //   definition, the members of the anonymous union are
1143        //   considered to have been defined in the scope in which the
1144        //   anonymous union is declared.
1145        Owner->makeDeclVisibleInContext(Context, *F);
1146        S->AddDecl(DeclPtrTy::make(*F));
1147        IdResolver.AddDecl(*F);
1148      }
1149    } else if (const RecordType *InnerRecordType
1150                 = (*F)->getType()->getAsRecordType()) {
1151      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1152      if (InnerRecord->isAnonymousStructOrUnion())
1153        Invalid = Invalid ||
1154          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1155    }
1156  }
1157
1158  return Invalid;
1159}
1160
1161/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1162/// anonymous structure or union. Anonymous unions are a C++ feature
1163/// (C++ [class.union]) and a GNU C extension; anonymous structures
1164/// are a GNU C and GNU C++ extension.
1165Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1166                                                  RecordDecl *Record) {
1167  DeclContext *Owner = Record->getDeclContext();
1168
1169  // Diagnose whether this anonymous struct/union is an extension.
1170  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1171    Diag(Record->getLocation(), diag::ext_anonymous_union);
1172  else if (!Record->isUnion())
1173    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1174
1175  // C and C++ require different kinds of checks for anonymous
1176  // structs/unions.
1177  bool Invalid = false;
1178  if (getLangOptions().CPlusPlus) {
1179    const char* PrevSpec = 0;
1180    // C++ [class.union]p3:
1181    //   Anonymous unions declared in a named namespace or in the
1182    //   global namespace shall be declared static.
1183    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1184        (isa<TranslationUnitDecl>(Owner) ||
1185         (isa<NamespaceDecl>(Owner) &&
1186          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1187      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1188      Invalid = true;
1189
1190      // Recover by adding 'static'.
1191      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1192    }
1193    // C++ [class.union]p3:
1194    //   A storage class is not allowed in a declaration of an
1195    //   anonymous union in a class scope.
1196    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1197             isa<RecordDecl>(Owner)) {
1198      Diag(DS.getStorageClassSpecLoc(),
1199           diag::err_anonymous_union_with_storage_spec);
1200      Invalid = true;
1201
1202      // Recover by removing the storage specifier.
1203      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1204                             PrevSpec);
1205    }
1206
1207    // C++ [class.union]p2:
1208    //   The member-specification of an anonymous union shall only
1209    //   define non-static data members. [Note: nested types and
1210    //   functions cannot be declared within an anonymous union. ]
1211    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1212                                 MemEnd = Record->decls_end(Context);
1213         Mem != MemEnd; ++Mem) {
1214      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1215        // C++ [class.union]p3:
1216        //   An anonymous union shall not have private or protected
1217        //   members (clause 11).
1218        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1219          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1220            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1221          Invalid = true;
1222        }
1223      } else if ((*Mem)->isImplicit()) {
1224        // Any implicit members are fine.
1225      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1226        // This is a type that showed up in an
1227        // elaborated-type-specifier inside the anonymous struct or
1228        // union, but which actually declares a type outside of the
1229        // anonymous struct or union. It's okay.
1230      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1231        if (!MemRecord->isAnonymousStructOrUnion() &&
1232            MemRecord->getDeclName()) {
1233          // This is a nested type declaration.
1234          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1235            << (int)Record->isUnion();
1236          Invalid = true;
1237        }
1238      } else {
1239        // We have something that isn't a non-static data
1240        // member. Complain about it.
1241        unsigned DK = diag::err_anonymous_record_bad_member;
1242        if (isa<TypeDecl>(*Mem))
1243          DK = diag::err_anonymous_record_with_type;
1244        else if (isa<FunctionDecl>(*Mem))
1245          DK = diag::err_anonymous_record_with_function;
1246        else if (isa<VarDecl>(*Mem))
1247          DK = diag::err_anonymous_record_with_static;
1248        Diag((*Mem)->getLocation(), DK)
1249            << (int)Record->isUnion();
1250          Invalid = true;
1251      }
1252    }
1253  }
1254
1255  if (!Record->isUnion() && !Owner->isRecord()) {
1256    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1257      << (int)getLangOptions().CPlusPlus;
1258    Invalid = true;
1259  }
1260
1261  // Create a declaration for this anonymous struct/union.
1262  NamedDecl *Anon = 0;
1263  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1264    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1265                             /*IdentifierInfo=*/0,
1266                             Context.getTypeDeclType(Record),
1267                             /*BitWidth=*/0, /*Mutable=*/false);
1268    Anon->setAccess(AS_public);
1269    if (getLangOptions().CPlusPlus)
1270      FieldCollector->Add(cast<FieldDecl>(Anon));
1271  } else {
1272    VarDecl::StorageClass SC;
1273    switch (DS.getStorageClassSpec()) {
1274    default: assert(0 && "Unknown storage class!");
1275    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1276    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1277    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1278    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1279    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1280    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1281    case DeclSpec::SCS_mutable:
1282      // mutable can only appear on non-static class members, so it's always
1283      // an error here
1284      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1285      Invalid = true;
1286      SC = VarDecl::None;
1287      break;
1288    }
1289
1290    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1291                           /*IdentifierInfo=*/0,
1292                           Context.getTypeDeclType(Record),
1293                           SC, DS.getSourceRange().getBegin());
1294  }
1295  Anon->setImplicit();
1296
1297  // Add the anonymous struct/union object to the current
1298  // context. We'll be referencing this object when we refer to one of
1299  // its members.
1300  Owner->addDecl(Context, Anon);
1301
1302  // Inject the members of the anonymous struct/union into the owning
1303  // context and into the identifier resolver chain for name lookup
1304  // purposes.
1305  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1306    Invalid = true;
1307
1308  // Mark this as an anonymous struct/union type. Note that we do not
1309  // do this until after we have already checked and injected the
1310  // members of this anonymous struct/union type, because otherwise
1311  // the members could be injected twice: once by DeclContext when it
1312  // builds its lookup table, and once by
1313  // InjectAnonymousStructOrUnionMembers.
1314  Record->setAnonymousStructOrUnion(true);
1315
1316  if (Invalid)
1317    Anon->setInvalidDecl();
1318
1319  return DeclPtrTy::make(Anon);
1320}
1321
1322
1323/// GetNameForDeclarator - Determine the full declaration name for the
1324/// given Declarator.
1325DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1326  switch (D.getKind()) {
1327  case Declarator::DK_Abstract:
1328    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1329    return DeclarationName();
1330
1331  case Declarator::DK_Normal:
1332    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1333    return DeclarationName(D.getIdentifier());
1334
1335  case Declarator::DK_Constructor: {
1336    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1337    Ty = Context.getCanonicalType(Ty);
1338    return Context.DeclarationNames.getCXXConstructorName(Ty);
1339  }
1340
1341  case Declarator::DK_Destructor: {
1342    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1343    Ty = Context.getCanonicalType(Ty);
1344    return Context.DeclarationNames.getCXXDestructorName(Ty);
1345  }
1346
1347  case Declarator::DK_Conversion: {
1348    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1349    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1350    Ty = Context.getCanonicalType(Ty);
1351    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1352  }
1353
1354  case Declarator::DK_Operator:
1355    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1356    return Context.DeclarationNames.getCXXOperatorName(
1357                                                D.getOverloadedOperator());
1358  }
1359
1360  assert(false && "Unknown name kind");
1361  return DeclarationName();
1362}
1363
1364/// isNearlyMatchingFunction - Determine whether the C++ functions
1365/// Declaration and Definition are "nearly" matching. This heuristic
1366/// is used to improve diagnostics in the case where an out-of-line
1367/// function definition doesn't match any declaration within
1368/// the class or namespace.
1369static bool isNearlyMatchingFunction(ASTContext &Context,
1370                                     FunctionDecl *Declaration,
1371                                     FunctionDecl *Definition) {
1372  if (Declaration->param_size() != Definition->param_size())
1373    return false;
1374  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1375    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1376    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1377
1378    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1379    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1380    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1381      return false;
1382  }
1383
1384  return true;
1385}
1386
1387Sema::DeclPtrTy
1388Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1389  DeclarationName Name = GetNameForDeclarator(D);
1390
1391  // All of these full declarators require an identifier.  If it doesn't have
1392  // one, the ParsedFreeStandingDeclSpec action should be used.
1393  if (!Name) {
1394    if (!D.isInvalidType())  // Reject this if we think it is valid.
1395      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1396           diag::err_declarator_need_ident)
1397        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1398    return DeclPtrTy();
1399  }
1400
1401  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1402  // we find one that is.
1403  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1404         (S->getFlags() & Scope::TemplateParamScope) != 0)
1405    S = S->getParent();
1406
1407  DeclContext *DC;
1408  NamedDecl *PrevDecl;
1409  NamedDecl *New;
1410
1411  QualType R = GetTypeForDeclarator(D, S);
1412
1413  // See if this is a redefinition of a variable in the same scope.
1414  if (D.getCXXScopeSpec().isInvalid()) {
1415    DC = CurContext;
1416    PrevDecl = 0;
1417    D.setInvalidType();
1418  } else if (!D.getCXXScopeSpec().isSet()) {
1419    LookupNameKind NameKind = LookupOrdinaryName;
1420
1421    // If the declaration we're planning to build will be a function
1422    // or object with linkage, then look for another declaration with
1423    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1424    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1425      /* Do nothing*/;
1426    else if (R->isFunctionType()) {
1427      if (CurContext->isFunctionOrMethod())
1428        NameKind = LookupRedeclarationWithLinkage;
1429    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1430      NameKind = LookupRedeclarationWithLinkage;
1431
1432    DC = CurContext;
1433    PrevDecl = LookupName(S, Name, NameKind, true,
1434                          D.getDeclSpec().getStorageClassSpec() !=
1435                            DeclSpec::SCS_static,
1436                          D.getIdentifierLoc());
1437  } else { // Something like "int foo::x;"
1438    DC = computeDeclContext(D.getCXXScopeSpec());
1439    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1440    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1441
1442    // C++ 7.3.1.2p2:
1443    // Members (including explicit specializations of templates) of a named
1444    // namespace can also be defined outside that namespace by explicit
1445    // qualification of the name being defined, provided that the entity being
1446    // defined was already declared in the namespace and the definition appears
1447    // after the point of declaration in a namespace that encloses the
1448    // declarations namespace.
1449    //
1450    // Note that we only check the context at this point. We don't yet
1451    // have enough information to make sure that PrevDecl is actually
1452    // the declaration we want to match. For example, given:
1453    //
1454    //   class X {
1455    //     void f();
1456    //     void f(float);
1457    //   };
1458    //
1459    //   void X::f(int) { } // ill-formed
1460    //
1461    // In this case, PrevDecl will point to the overload set
1462    // containing the two f's declared in X, but neither of them
1463    // matches.
1464
1465    // First check whether we named the global scope.
1466    if (isa<TranslationUnitDecl>(DC)) {
1467      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1468        << Name << D.getCXXScopeSpec().getRange();
1469    } else if (!CurContext->Encloses(DC)) {
1470      // The qualifying scope doesn't enclose the original declaration.
1471      // Emit diagnostic based on current scope.
1472      SourceLocation L = D.getIdentifierLoc();
1473      SourceRange R = D.getCXXScopeSpec().getRange();
1474      if (isa<FunctionDecl>(CurContext))
1475        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1476      else
1477        Diag(L, diag::err_invalid_declarator_scope)
1478          << Name << cast<NamedDecl>(DC) << R;
1479      D.setInvalidType();
1480    }
1481  }
1482
1483  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1484    // Maybe we will complain about the shadowed template parameter.
1485    if (!D.isInvalidType())
1486      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1487        D.setInvalidType();
1488
1489    // Just pretend that we didn't see the previous declaration.
1490    PrevDecl = 0;
1491  }
1492
1493  // In C++, the previous declaration we find might be a tag type
1494  // (class or enum). In this case, the new declaration will hide the
1495  // tag type. Note that this does does not apply if we're declaring a
1496  // typedef (C++ [dcl.typedef]p4).
1497  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1498      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1499    PrevDecl = 0;
1500
1501  bool Redeclaration = false;
1502  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1503    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1504  } else if (R->isFunctionType()) {
1505    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1506                                  IsFunctionDefinition, Redeclaration);
1507  } else {
1508    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1509  }
1510
1511  if (New == 0)
1512    return DeclPtrTy();
1513
1514  // If this has an identifier and is not an invalid redeclaration,
1515  // add it to the scope stack.
1516  if (Name && !(Redeclaration && New->isInvalidDecl()))
1517    PushOnScopeChains(New, S);
1518
1519  return DeclPtrTy::make(New);
1520}
1521
1522/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1523/// types into constant array types in certain situations which would otherwise
1524/// be errors (for GCC compatibility).
1525static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1526                                                    ASTContext &Context,
1527                                                    bool &SizeIsNegative) {
1528  // This method tries to turn a variable array into a constant
1529  // array even when the size isn't an ICE.  This is necessary
1530  // for compatibility with code that depends on gcc's buggy
1531  // constant expression folding, like struct {char x[(int)(char*)2];}
1532  SizeIsNegative = false;
1533
1534  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1535    QualType Pointee = PTy->getPointeeType();
1536    QualType FixedType =
1537        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1538    if (FixedType.isNull()) return FixedType;
1539    FixedType = Context.getPointerType(FixedType);
1540    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1541    return FixedType;
1542  }
1543
1544  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1545  if (!VLATy)
1546    return QualType();
1547  // FIXME: We should probably handle this case
1548  if (VLATy->getElementType()->isVariablyModifiedType())
1549    return QualType();
1550
1551  Expr::EvalResult EvalResult;
1552  if (!VLATy->getSizeExpr() ||
1553      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1554      !EvalResult.Val.isInt())
1555    return QualType();
1556
1557  llvm::APSInt &Res = EvalResult.Val.getInt();
1558  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1559    return Context.getConstantArrayType(VLATy->getElementType(),
1560                                        Res, ArrayType::Normal, 0);
1561
1562  SizeIsNegative = true;
1563  return QualType();
1564}
1565
1566/// \brief Register the given locally-scoped external C declaration so
1567/// that it can be found later for redeclarations
1568void
1569Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1570                                       Scope *S) {
1571  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1572         "Decl is not a locally-scoped decl!");
1573  // Note that we have a locally-scoped external with this name.
1574  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1575
1576  if (!PrevDecl)
1577    return;
1578
1579  // If there was a previous declaration of this variable, it may be
1580  // in our identifier chain. Update the identifier chain with the new
1581  // declaration.
1582  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1583    // The previous declaration was found on the identifer resolver
1584    // chain, so remove it from its scope.
1585    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1586      S = S->getParent();
1587
1588    if (S)
1589      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1590  }
1591}
1592
1593/// \brief Diagnose function specifiers on a declaration of an identifier that
1594/// does not identify a function.
1595void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1596  // FIXME: We should probably indicate the identifier in question to avoid
1597  // confusion for constructs like "inline int a(), b;"
1598  if (D.getDeclSpec().isInlineSpecified())
1599    Diag(D.getDeclSpec().getInlineSpecLoc(),
1600         diag::err_inline_non_function);
1601
1602  if (D.getDeclSpec().isVirtualSpecified())
1603    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1604         diag::err_virtual_non_function);
1605
1606  if (D.getDeclSpec().isExplicitSpecified())
1607    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1608         diag::err_explicit_non_function);
1609}
1610
1611NamedDecl*
1612Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1613                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1614  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1615  if (D.getCXXScopeSpec().isSet()) {
1616    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1617      << D.getCXXScopeSpec().getRange();
1618    D.setInvalidType();
1619    // Pretend we didn't see the scope specifier.
1620    DC = 0;
1621  }
1622
1623  if (getLangOptions().CPlusPlus) {
1624    // Check that there are no default arguments (C++ only).
1625    CheckExtraCXXDefaultArguments(D);
1626  }
1627
1628  DiagnoseFunctionSpecifiers(D);
1629
1630  if (D.getDeclSpec().isThreadSpecified())
1631    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1632
1633  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1634  if (!NewTD) return 0;
1635
1636  if (D.isInvalidType())
1637    NewTD->setInvalidDecl();
1638
1639  // Handle attributes prior to checking for duplicates in MergeVarDecl
1640  ProcessDeclAttributes(S, NewTD, D);
1641  // Merge the decl with the existing one if appropriate. If the decl is
1642  // in an outer scope, it isn't the same thing.
1643  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1644    Redeclaration = true;
1645    MergeTypeDefDecl(NewTD, PrevDecl);
1646  }
1647
1648  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1649  // then it shall have block scope.
1650  QualType T = NewTD->getUnderlyingType();
1651  if (T->isVariablyModifiedType()) {
1652    CurFunctionNeedsScopeChecking = true;
1653
1654    if (S->getFnParent() == 0) {
1655      bool SizeIsNegative;
1656      QualType FixedTy =
1657          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1658      if (!FixedTy.isNull()) {
1659        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1660        NewTD->setUnderlyingType(FixedTy);
1661      } else {
1662        if (SizeIsNegative)
1663          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1664        else if (T->isVariableArrayType())
1665          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1666        else
1667          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1668        NewTD->setInvalidDecl();
1669      }
1670    }
1671  }
1672  return NewTD;
1673}
1674
1675/// \brief Determines whether the given declaration is an out-of-scope
1676/// previous declaration.
1677///
1678/// This routine should be invoked when name lookup has found a
1679/// previous declaration (PrevDecl) that is not in the scope where a
1680/// new declaration by the same name is being introduced. If the new
1681/// declaration occurs in a local scope, previous declarations with
1682/// linkage may still be considered previous declarations (C99
1683/// 6.2.2p4-5, C++ [basic.link]p6).
1684///
1685/// \param PrevDecl the previous declaration found by name
1686/// lookup
1687///
1688/// \param DC the context in which the new declaration is being
1689/// declared.
1690///
1691/// \returns true if PrevDecl is an out-of-scope previous declaration
1692/// for a new delcaration with the same name.
1693static bool
1694isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1695                                ASTContext &Context) {
1696  if (!PrevDecl)
1697    return 0;
1698
1699  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1700  // case we need to check each of the overloaded functions.
1701  if (!PrevDecl->hasLinkage())
1702    return false;
1703
1704  if (Context.getLangOptions().CPlusPlus) {
1705    // C++ [basic.link]p6:
1706    //   If there is a visible declaration of an entity with linkage
1707    //   having the same name and type, ignoring entities declared
1708    //   outside the innermost enclosing namespace scope, the block
1709    //   scope declaration declares that same entity and receives the
1710    //   linkage of the previous declaration.
1711    DeclContext *OuterContext = DC->getLookupContext();
1712    if (!OuterContext->isFunctionOrMethod())
1713      // This rule only applies to block-scope declarations.
1714      return false;
1715    else {
1716      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1717      if (PrevOuterContext->isRecord())
1718        // We found a member function: ignore it.
1719        return false;
1720      else {
1721        // Find the innermost enclosing namespace for the new and
1722        // previous declarations.
1723        while (!OuterContext->isFileContext())
1724          OuterContext = OuterContext->getParent();
1725        while (!PrevOuterContext->isFileContext())
1726          PrevOuterContext = PrevOuterContext->getParent();
1727
1728        // The previous declaration is in a different namespace, so it
1729        // isn't the same function.
1730        if (OuterContext->getPrimaryContext() !=
1731            PrevOuterContext->getPrimaryContext())
1732          return false;
1733      }
1734    }
1735  }
1736
1737  return true;
1738}
1739
1740NamedDecl*
1741Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1742                              QualType R,NamedDecl* PrevDecl,
1743                              bool &Redeclaration) {
1744  DeclarationName Name = GetNameForDeclarator(D);
1745
1746  // Check that there are no default arguments (C++ only).
1747  if (getLangOptions().CPlusPlus)
1748    CheckExtraCXXDefaultArguments(D);
1749
1750  VarDecl *NewVD;
1751  VarDecl::StorageClass SC;
1752  switch (D.getDeclSpec().getStorageClassSpec()) {
1753  default: assert(0 && "Unknown storage class!");
1754  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1755  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1756  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1757  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1758  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1759  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1760  case DeclSpec::SCS_mutable:
1761    // mutable can only appear on non-static class members, so it's always
1762    // an error here
1763    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1764    D.setInvalidType();
1765    SC = VarDecl::None;
1766    break;
1767  }
1768
1769  IdentifierInfo *II = Name.getAsIdentifierInfo();
1770  if (!II) {
1771    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1772      << Name.getAsString();
1773    return 0;
1774  }
1775
1776  DiagnoseFunctionSpecifiers(D);
1777
1778  if (!DC->isRecord() && S->getFnParent() == 0) {
1779    // C99 6.9p2: The storage-class specifiers auto and register shall not
1780    // appear in the declaration specifiers in an external declaration.
1781    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1782
1783      // If this is a register variable with an asm label specified, then this
1784      // is a GNU extension.
1785      if (SC == VarDecl::Register && D.getAsmLabel())
1786        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1787      else
1788        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1789      D.setInvalidType();
1790    }
1791  }
1792  if (DC->isRecord() && !CurContext->isRecord()) {
1793    // This is an out-of-line definition of a static data member.
1794    if (SC == VarDecl::Static) {
1795      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1796           diag::err_static_out_of_line)
1797        << CodeModificationHint::CreateRemoval(
1798                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1799    } else if (SC == VarDecl::None)
1800      SC = VarDecl::Static;
1801  }
1802
1803  // The variable can not
1804  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1805                          II, R, SC,
1806                          // FIXME: Move to DeclGroup...
1807                          D.getDeclSpec().getSourceRange().getBegin());
1808
1809  if (D.isInvalidType())
1810    NewVD->setInvalidDecl();
1811
1812  if (D.getDeclSpec().isThreadSpecified()) {
1813    if (NewVD->hasLocalStorage())
1814      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1815    else if (!Context.Target.isTLSSupported())
1816      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1817    else
1818      NewVD->setThreadSpecified(true);
1819  }
1820
1821  // Set the lexical context. If the declarator has a C++ scope specifier, the
1822  // lexical context will be different from the semantic context.
1823  NewVD->setLexicalDeclContext(CurContext);
1824
1825  // Handle attributes prior to checking for duplicates in MergeVarDecl
1826  ProcessDeclAttributes(S, NewVD, D);
1827
1828  // Handle GNU asm-label extension (encoded as an attribute).
1829  if (Expr *E = (Expr*) D.getAsmLabel()) {
1830    // The parser guarantees this is a string.
1831    StringLiteral *SE = cast<StringLiteral>(E);
1832    NewVD->addAttr(Context,
1833                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1834                                                        SE->getByteLength())));
1835  }
1836
1837  // If name lookup finds a previous declaration that is not in the
1838  // same scope as the new declaration, this may still be an
1839  // acceptable redeclaration.
1840  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1841      !(NewVD->hasLinkage() &&
1842        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1843    PrevDecl = 0;
1844
1845  // Merge the decl with the existing one if appropriate.
1846  if (PrevDecl) {
1847    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1848      // The user tried to define a non-static data member
1849      // out-of-line (C++ [dcl.meaning]p1).
1850      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1851        << D.getCXXScopeSpec().getRange();
1852      PrevDecl = 0;
1853      NewVD->setInvalidDecl();
1854    }
1855  } else if (D.getCXXScopeSpec().isSet()) {
1856    // No previous declaration in the qualifying scope.
1857    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1858      << Name << D.getCXXScopeSpec().getRange();
1859    NewVD->setInvalidDecl();
1860  }
1861
1862  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1863
1864  // If this is a locally-scoped extern C variable, update the map of
1865  // such variables.
1866  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1867      !NewVD->isInvalidDecl())
1868    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1869
1870  return NewVD;
1871}
1872
1873/// \brief Perform semantic checking on a newly-created variable
1874/// declaration.
1875///
1876/// This routine performs all of the type-checking required for a
1877/// variable declaration once it has been built. It is used both to
1878/// check variables after they have been parsed and their declarators
1879/// have been translated into a declaration, and to check variables
1880/// that have been instantiated from a template.
1881///
1882/// Sets NewVD->isInvalidDecl() if an error was encountered.
1883void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1884                                    bool &Redeclaration) {
1885  // If the decl is already known invalid, don't check it.
1886  if (NewVD->isInvalidDecl())
1887    return;
1888
1889  QualType T = NewVD->getType();
1890
1891  if (T->isObjCInterfaceType()) {
1892    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1893    return NewVD->setInvalidDecl();
1894  }
1895
1896  // The variable can not have an abstract class type.
1897  if (RequireNonAbstractType(NewVD->getLocation(), T,
1898                             diag::err_abstract_type_in_decl,
1899                             AbstractVariableType))
1900    return NewVD->setInvalidDecl();
1901
1902  // Emit an error if an address space was applied to decl with local storage.
1903  // This includes arrays of objects with address space qualifiers, but not
1904  // automatic variables that point to other address spaces.
1905  // ISO/IEC TR 18037 S5.1.2
1906  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1907    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1908    return NewVD->setInvalidDecl();
1909  }
1910
1911  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1912      && !NewVD->hasAttr<BlocksAttr>(Context))
1913    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1914
1915  bool isVM = T->isVariablyModifiedType();
1916  if (isVM || NewVD->hasAttr<CleanupAttr>(Context))
1917    CurFunctionNeedsScopeChecking = true;
1918
1919  if ((isVM && NewVD->hasLinkage()) ||
1920      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1921    bool SizeIsNegative;
1922    QualType FixedTy =
1923        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1924
1925    if (FixedTy.isNull() && T->isVariableArrayType()) {
1926      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1927      // FIXME: This won't give the correct result for
1928      // int a[10][n];
1929      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1930
1931      if (NewVD->isFileVarDecl())
1932        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1933        << SizeRange;
1934      else if (NewVD->getStorageClass() == VarDecl::Static)
1935        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1936        << SizeRange;
1937      else
1938        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1939        << SizeRange;
1940      return NewVD->setInvalidDecl();
1941    }
1942
1943    if (FixedTy.isNull()) {
1944      if (NewVD->isFileVarDecl())
1945        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1946      else
1947        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1948      return NewVD->setInvalidDecl();
1949    }
1950
1951    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1952    NewVD->setType(FixedTy);
1953  }
1954
1955  if (!PrevDecl && NewVD->isExternC(Context)) {
1956    // Since we did not find anything by this name and we're declaring
1957    // an extern "C" variable, look for a non-visible extern "C"
1958    // declaration with the same name.
1959    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1960      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1961    if (Pos != LocallyScopedExternalDecls.end())
1962      PrevDecl = Pos->second;
1963  }
1964
1965  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1966    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1967      << T;
1968    return NewVD->setInvalidDecl();
1969  }
1970
1971  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>(Context)) {
1972    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1973    return NewVD->setInvalidDecl();
1974  }
1975
1976  if (isVM && NewVD->hasAttr<BlocksAttr>(Context)) {
1977    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1978    return NewVD->setInvalidDecl();
1979  }
1980
1981  if (PrevDecl) {
1982    Redeclaration = true;
1983    MergeVarDecl(NewVD, PrevDecl);
1984  }
1985}
1986
1987NamedDecl*
1988Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1989                              QualType R, NamedDecl* PrevDecl,
1990                              bool IsFunctionDefinition, bool &Redeclaration) {
1991  assert(R.getTypePtr()->isFunctionType());
1992
1993  DeclarationName Name = GetNameForDeclarator(D);
1994  FunctionDecl::StorageClass SC = FunctionDecl::None;
1995  switch (D.getDeclSpec().getStorageClassSpec()) {
1996  default: assert(0 && "Unknown storage class!");
1997  case DeclSpec::SCS_auto:
1998  case DeclSpec::SCS_register:
1999  case DeclSpec::SCS_mutable:
2000    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2001         diag::err_typecheck_sclass_func);
2002    D.setInvalidType();
2003    break;
2004  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2005  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2006  case DeclSpec::SCS_static: {
2007    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2008      // C99 6.7.1p5:
2009      //   The declaration of an identifier for a function that has
2010      //   block scope shall have no explicit storage-class specifier
2011      //   other than extern
2012      // See also (C++ [dcl.stc]p4).
2013      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2014           diag::err_static_block_func);
2015      SC = FunctionDecl::None;
2016    } else
2017      SC = FunctionDecl::Static;
2018    break;
2019  }
2020  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2021  }
2022
2023  if (D.getDeclSpec().isThreadSpecified())
2024    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2025
2026  bool isInline = D.getDeclSpec().isInlineSpecified();
2027  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2028  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2029
2030  // Check that the return type is not an abstract class type.
2031  // For record types, this is done by the AbstractClassUsageDiagnoser once
2032  // the class has been completely parsed.
2033  if (!DC->isRecord() &&
2034      RequireNonAbstractType(D.getIdentifierLoc(),
2035                             R->getAsFunctionType()->getResultType(),
2036                             diag::err_abstract_type_in_decl,
2037                             AbstractReturnType))
2038    D.setInvalidType();
2039
2040  // Do not allow returning a objc interface by-value.
2041  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2042    Diag(D.getIdentifierLoc(),
2043         diag::err_object_cannot_be_passed_returned_by_value) << 0
2044      << R->getAsFunctionType()->getResultType();
2045    D.setInvalidType();
2046  }
2047
2048  bool isVirtualOkay = false;
2049  FunctionDecl *NewFD;
2050  if (D.getKind() == Declarator::DK_Constructor) {
2051    // This is a C++ constructor declaration.
2052    assert(DC->isRecord() &&
2053           "Constructors can only be declared in a member context");
2054
2055    R = CheckConstructorDeclarator(D, R, SC);
2056
2057    // Create the new declaration
2058    NewFD = CXXConstructorDecl::Create(Context,
2059                                       cast<CXXRecordDecl>(DC),
2060                                       D.getIdentifierLoc(), Name, R,
2061                                       isExplicit, isInline,
2062                                       /*isImplicitlyDeclared=*/false);
2063  } else if (D.getKind() == Declarator::DK_Destructor) {
2064    // This is a C++ destructor declaration.
2065    if (DC->isRecord()) {
2066      R = CheckDestructorDeclarator(D, SC);
2067
2068      NewFD = CXXDestructorDecl::Create(Context,
2069                                        cast<CXXRecordDecl>(DC),
2070                                        D.getIdentifierLoc(), Name, R,
2071                                        isInline,
2072                                        /*isImplicitlyDeclared=*/false);
2073
2074      isVirtualOkay = true;
2075    } else {
2076      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2077
2078      // Create a FunctionDecl to satisfy the function definition parsing
2079      // code path.
2080      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2081                                   Name, R, SC, isInline,
2082                                   /*hasPrototype=*/true,
2083                                   // FIXME: Move to DeclGroup...
2084                                   D.getDeclSpec().getSourceRange().getBegin());
2085      D.setInvalidType();
2086    }
2087  } else if (D.getKind() == Declarator::DK_Conversion) {
2088    if (!DC->isRecord()) {
2089      Diag(D.getIdentifierLoc(),
2090           diag::err_conv_function_not_member);
2091      return 0;
2092    }
2093
2094    CheckConversionDeclarator(D, R, SC);
2095    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2096                                      D.getIdentifierLoc(), Name, R,
2097                                      isInline, isExplicit);
2098
2099    isVirtualOkay = true;
2100  } else if (DC->isRecord()) {
2101    // If the of the function is the same as the name of the record, then this
2102    // must be an invalid constructor that has a return type.
2103    // (The parser checks for a return type and makes the declarator a
2104    // constructor if it has no return type).
2105    // must have an invalid constructor that has a return type
2106    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2107      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2108        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2109        << SourceRange(D.getIdentifierLoc());
2110      return 0;
2111    }
2112
2113    // This is a C++ method declaration.
2114    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2115                                  D.getIdentifierLoc(), Name, R,
2116                                  (SC == FunctionDecl::Static), isInline);
2117
2118    isVirtualOkay = (SC != FunctionDecl::Static);
2119  } else {
2120    // Determine whether the function was written with a
2121    // prototype. This true when:
2122    //   - we're in C++ (where every function has a prototype),
2123    //   - there is a prototype in the declarator, or
2124    //   - the type R of the function is some kind of typedef or other reference
2125    //     to a type name (which eventually refers to a function type).
2126    bool HasPrototype =
2127       getLangOptions().CPlusPlus ||
2128       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2129       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2130
2131    NewFD = FunctionDecl::Create(Context, DC,
2132                                 D.getIdentifierLoc(),
2133                                 Name, R, SC, isInline, HasPrototype,
2134                                 // FIXME: Move to DeclGroup...
2135                                 D.getDeclSpec().getSourceRange().getBegin());
2136  }
2137
2138  if (D.isInvalidType())
2139    NewFD->setInvalidDecl();
2140
2141  // Set the lexical context. If the declarator has a C++
2142  // scope specifier, the lexical context will be different
2143  // from the semantic context.
2144  NewFD->setLexicalDeclContext(CurContext);
2145
2146  // C++ [dcl.fct.spec]p5:
2147  //   The virtual specifier shall only be used in declarations of
2148  //   nonstatic class member functions that appear within a
2149  //   member-specification of a class declaration; see 10.3.
2150  //
2151  if (isVirtual && !NewFD->isInvalidDecl()) {
2152    if (!isVirtualOkay) {
2153       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2154           diag::err_virtual_non_function);
2155    } else if (!CurContext->isRecord()) {
2156      // 'virtual' was specified outside of the class.
2157      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2158        << CodeModificationHint::CreateRemoval(
2159                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2160    } else {
2161      // Okay: Add virtual to the method.
2162      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2163      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2164      CurClass->setAggregate(false);
2165      CurClass->setPOD(false);
2166      CurClass->setPolymorphic(true);
2167      CurClass->setHasTrivialConstructor(false);
2168    }
2169  }
2170
2171  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2172    // Look for virtual methods in base classes that this method might override.
2173
2174    BasePaths Paths;
2175    if (LookupInBases(cast<CXXRecordDecl>(DC),
2176                      MemberLookupCriteria(NewMD), Paths)) {
2177      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2178           E = Paths.found_decls_end(); I != E; ++I) {
2179        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2180          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2181            NewMD->addOverriddenMethod(OldMD);
2182        }
2183      }
2184    }
2185  }
2186
2187  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2188      !CurContext->isRecord()) {
2189    // C++ [class.static]p1:
2190    //   A data or function member of a class may be declared static
2191    //   in a class definition, in which case it is a static member of
2192    //   the class.
2193
2194    // Complain about the 'static' specifier if it's on an out-of-line
2195    // member function definition.
2196    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2197         diag::err_static_out_of_line)
2198      << CodeModificationHint::CreateRemoval(
2199                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2200  }
2201
2202  // Handle GNU asm-label extension (encoded as an attribute).
2203  if (Expr *E = (Expr*) D.getAsmLabel()) {
2204    // The parser guarantees this is a string.
2205    StringLiteral *SE = cast<StringLiteral>(E);
2206    NewFD->addAttr(Context,
2207                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2208                                                        SE->getByteLength())));
2209  }
2210
2211  // Copy the parameter declarations from the declarator D to the function
2212  // declaration NewFD, if they are available.  First scavenge them into Params.
2213  llvm::SmallVector<ParmVarDecl*, 16> Params;
2214  if (D.getNumTypeObjects() > 0) {
2215    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2216
2217    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2218    // function that takes no arguments, not a function that takes a
2219    // single void argument.
2220    // We let through "const void" here because Sema::GetTypeForDeclarator
2221    // already checks for that case.
2222    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2223        FTI.ArgInfo[0].Param &&
2224        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2225      // Empty arg list, don't push any params.
2226      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2227
2228      // In C++, the empty parameter-type-list must be spelled "void"; a
2229      // typedef of void is not permitted.
2230      if (getLangOptions().CPlusPlus &&
2231          Param->getType().getUnqualifiedType() != Context.VoidTy)
2232        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2233      // FIXME: Leaks decl?
2234    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2235      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2236        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2237    }
2238
2239  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2240    // When we're declaring a function with a typedef, typeof, etc as in the
2241    // following example, we'll need to synthesize (unnamed)
2242    // parameters for use in the declaration.
2243    //
2244    // @code
2245    // typedef void fn(int);
2246    // fn f;
2247    // @endcode
2248
2249    // Synthesize a parameter for each argument type.
2250    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2251         AE = FT->arg_type_end(); AI != AE; ++AI) {
2252      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2253                                               SourceLocation(), 0,
2254                                               *AI, VarDecl::None, 0);
2255      Param->setImplicit();
2256      Params.push_back(Param);
2257    }
2258  } else {
2259    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2260           "Should not need args for typedef of non-prototype fn");
2261  }
2262  // Finally, we know we have the right number of parameters, install them.
2263  NewFD->setParams(Context, Params.data(), Params.size());
2264
2265
2266
2267  // If name lookup finds a previous declaration that is not in the
2268  // same scope as the new declaration, this may still be an
2269  // acceptable redeclaration.
2270  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2271      !(NewFD->hasLinkage() &&
2272        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2273    PrevDecl = 0;
2274
2275  // Perform semantic checking on the function declaration.
2276  bool OverloadableAttrRequired = false; // FIXME: HACK!
2277  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2278                           /*FIXME:*/OverloadableAttrRequired);
2279
2280  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2281    // An out-of-line member function declaration must also be a
2282    // definition (C++ [dcl.meaning]p1).
2283    if (!IsFunctionDefinition) {
2284      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2285        << D.getCXXScopeSpec().getRange();
2286      NewFD->setInvalidDecl();
2287    } else if (!Redeclaration) {
2288      // The user tried to provide an out-of-line definition for a
2289      // function that is a member of a class or namespace, but there
2290      // was no such member function declared (C++ [class.mfct]p2,
2291      // C++ [namespace.memdef]p2). For example:
2292      //
2293      // class X {
2294      //   void f() const;
2295      // };
2296      //
2297      // void X::f() { } // ill-formed
2298      //
2299      // Complain about this problem, and attempt to suggest close
2300      // matches (e.g., those that differ only in cv-qualifiers and
2301      // whether the parameter types are references).
2302      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2303        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2304      NewFD->setInvalidDecl();
2305
2306      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2307                                              true);
2308      assert(!Prev.isAmbiguous() &&
2309             "Cannot have an ambiguity in previous-declaration lookup");
2310      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2311           Func != FuncEnd; ++Func) {
2312        if (isa<FunctionDecl>(*Func) &&
2313            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2314          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2315      }
2316
2317      PrevDecl = 0;
2318    }
2319  }
2320
2321  // Handle attributes. We need to have merged decls when handling attributes
2322  // (for example to check for conflicts, etc).
2323  // FIXME: This needs to happen before we merge declarations. Then,
2324  // let attribute merging cope with attribute conflicts.
2325  ProcessDeclAttributes(S, NewFD, D);
2326  AddKnownFunctionAttributes(NewFD);
2327
2328  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>(Context)) {
2329    // If a function name is overloadable in C, then every function
2330    // with that name must be marked "overloadable".
2331    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2332      << Redeclaration << NewFD;
2333    if (PrevDecl)
2334      Diag(PrevDecl->getLocation(),
2335           diag::note_attribute_overloadable_prev_overload);
2336    NewFD->addAttr(Context, ::new (Context) OverloadableAttr());
2337  }
2338
2339  // If this is a locally-scoped extern C function, update the
2340  // map of such names.
2341  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2342      && !NewFD->isInvalidDecl())
2343    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2344
2345  return NewFD;
2346}
2347
2348/// \brief Perform semantic checking of a new function declaration.
2349///
2350/// Performs semantic analysis of the new function declaration
2351/// NewFD. This routine performs all semantic checking that does not
2352/// require the actual declarator involved in the declaration, and is
2353/// used both for the declaration of functions as they are parsed
2354/// (called via ActOnDeclarator) and for the declaration of functions
2355/// that have been instantiated via C++ template instantiation (called
2356/// via InstantiateDecl).
2357///
2358/// This sets NewFD->isInvalidDecl() to true if there was an error.
2359void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2360                                    bool &Redeclaration,
2361                                    bool &OverloadableAttrRequired) {
2362  // If NewFD is already known erroneous, don't do any of this checking.
2363  if (NewFD->isInvalidDecl())
2364    return;
2365
2366  if (NewFD->getResultType()->isVariablyModifiedType()) {
2367    // Functions returning a variably modified type violate C99 6.7.5.2p2
2368    // because all functions have linkage.
2369    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2370    return NewFD->setInvalidDecl();
2371  }
2372
2373  // Semantic checking for this function declaration (in isolation).
2374  if (getLangOptions().CPlusPlus) {
2375    // C++-specific checks.
2376    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2377      CheckConstructor(Constructor);
2378    } else if (isa<CXXDestructorDecl>(NewFD)) {
2379      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2380      Record->setUserDeclaredDestructor(true);
2381      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2382      // user-defined destructor.
2383      Record->setPOD(false);
2384
2385      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2386      // declared destructor.
2387      Record->setHasTrivialDestructor(false);
2388    } else if (CXXConversionDecl *Conversion
2389               = dyn_cast<CXXConversionDecl>(NewFD))
2390      ActOnConversionDeclarator(Conversion);
2391
2392    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2393    if (NewFD->isOverloadedOperator() &&
2394        CheckOverloadedOperatorDeclaration(NewFD))
2395      return NewFD->setInvalidDecl();
2396  }
2397
2398  // C99 6.7.4p6:
2399  //   [... ] For a function with external linkage, the following
2400  //   restrictions apply: [...] If all of the file scope declarations
2401  //   for a function in a translation unit include the inline
2402  //   function specifier without extern, then the definition in that
2403  //   translation unit is an inline definition. An inline definition
2404  //   does not provide an external definition for the function, and
2405  //   does not forbid an external definition in another translation
2406  //   unit.
2407  //
2408  // Here we determine whether this function, in isolation, would be a
2409  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2410  // previous declarations.
2411  if (NewFD->isInline() && getLangOptions().C99 &&
2412      NewFD->getStorageClass() == FunctionDecl::None &&
2413      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2414    NewFD->setC99InlineDefinition(true);
2415
2416  // Check for a previous declaration of this name.
2417  if (!PrevDecl && NewFD->isExternC(Context)) {
2418    // Since we did not find anything by this name and we're declaring
2419    // an extern "C" function, look for a non-visible extern "C"
2420    // declaration with the same name.
2421    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2422      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2423    if (Pos != LocallyScopedExternalDecls.end())
2424      PrevDecl = Pos->second;
2425  }
2426
2427  // Merge or overload the declaration with an existing declaration of
2428  // the same name, if appropriate.
2429  if (PrevDecl) {
2430    // Determine whether NewFD is an overload of PrevDecl or
2431    // a declaration that requires merging. If it's an overload,
2432    // there's no more work to do here; we'll just add the new
2433    // function to the scope.
2434    OverloadedFunctionDecl::function_iterator MatchedDecl;
2435
2436    if (!getLangOptions().CPlusPlus &&
2437        AllowOverloadingOfFunction(PrevDecl, Context)) {
2438      OverloadableAttrRequired = true;
2439
2440      // Functions marked "overloadable" must have a prototype (that
2441      // we can't get through declaration merging).
2442      if (!NewFD->getType()->getAsFunctionProtoType()) {
2443        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2444          << NewFD;
2445        Redeclaration = true;
2446
2447        // Turn this into a variadic function with no parameters.
2448        QualType R = Context.getFunctionType(
2449                       NewFD->getType()->getAsFunctionType()->getResultType(),
2450                       0, 0, true, 0);
2451        NewFD->setType(R);
2452        return NewFD->setInvalidDecl();
2453      }
2454    }
2455
2456    if (PrevDecl &&
2457        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2458         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2459      Redeclaration = true;
2460      Decl *OldDecl = PrevDecl;
2461
2462      // If PrevDecl was an overloaded function, extract the
2463      // FunctionDecl that matched.
2464      if (isa<OverloadedFunctionDecl>(PrevDecl))
2465        OldDecl = *MatchedDecl;
2466
2467      // NewFD and OldDecl represent declarations that need to be
2468      // merged.
2469      if (MergeFunctionDecl(NewFD, OldDecl))
2470        return NewFD->setInvalidDecl();
2471
2472      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2473    }
2474  }
2475
2476  // In C++, check default arguments now that we have merged decls. Unless
2477  // the lexical context is the class, because in this case this is done
2478  // during delayed parsing anyway.
2479  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2480    CheckCXXDefaultArguments(NewFD);
2481}
2482
2483bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2484  // FIXME: Need strict checking.  In C89, we need to check for
2485  // any assignment, increment, decrement, function-calls, or
2486  // commas outside of a sizeof.  In C99, it's the same list,
2487  // except that the aforementioned are allowed in unevaluated
2488  // expressions.  Everything else falls under the
2489  // "may accept other forms of constant expressions" exception.
2490  // (We never end up here for C++, so the constant expression
2491  // rules there don't matter.)
2492  if (Init->isConstantInitializer(Context))
2493    return false;
2494  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2495    << Init->getSourceRange();
2496  return true;
2497}
2498
2499void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2500  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2501}
2502
2503/// AddInitializerToDecl - Adds the initializer Init to the
2504/// declaration dcl. If DirectInit is true, this is C++ direct
2505/// initialization rather than copy initialization.
2506void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2507  Decl *RealDecl = dcl.getAs<Decl>();
2508  // If there is no declaration, there was an error parsing it.  Just ignore
2509  // the initializer.
2510  if (RealDecl == 0)
2511    return;
2512
2513  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2514    // With declarators parsed the way they are, the parser cannot
2515    // distinguish between a normal initializer and a pure-specifier.
2516    // Thus this grotesque test.
2517    IntegerLiteral *IL;
2518    Expr *Init = static_cast<Expr *>(init.get());
2519    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2520        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2521      if (Method->isVirtualAsWritten()) {
2522        Method->setPure();
2523
2524        // A class is abstract if at least one function is pure virtual.
2525        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2526      } else if (!Method->isInvalidDecl()) {
2527        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2528          << Method->getDeclName() << Init->getSourceRange();
2529        Method->setInvalidDecl();
2530      }
2531    } else {
2532      Diag(Method->getLocation(), diag::err_member_function_initialization)
2533        << Method->getDeclName() << Init->getSourceRange();
2534      Method->setInvalidDecl();
2535    }
2536    return;
2537  }
2538
2539  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2540  if (!VDecl) {
2541    if (getLangOptions().CPlusPlus &&
2542        RealDecl->getLexicalDeclContext()->isRecord() &&
2543        isa<NamedDecl>(RealDecl))
2544      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2545        << cast<NamedDecl>(RealDecl)->getDeclName();
2546    else
2547      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2548    RealDecl->setInvalidDecl();
2549    return;
2550  }
2551
2552  if (!VDecl->getType()->isArrayType() &&
2553      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2554                          diag::err_typecheck_decl_incomplete_type)) {
2555    RealDecl->setInvalidDecl();
2556    return;
2557  }
2558
2559  const VarDecl *Def = 0;
2560  if (VDecl->getDefinition(Def)) {
2561    Diag(VDecl->getLocation(), diag::err_redefinition)
2562      << VDecl->getDeclName();
2563    Diag(Def->getLocation(), diag::note_previous_definition);
2564    VDecl->setInvalidDecl();
2565    return;
2566  }
2567
2568  // Take ownership of the expression, now that we're sure we have somewhere
2569  // to put it.
2570  Expr *Init = init.takeAs<Expr>();
2571  assert(Init && "missing initializer");
2572
2573  // Get the decls type and save a reference for later, since
2574  // CheckInitializerTypes may change it.
2575  QualType DclT = VDecl->getType(), SavT = DclT;
2576  if (VDecl->isBlockVarDecl()) {
2577    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2578      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2579      VDecl->setInvalidDecl();
2580    } else if (!VDecl->isInvalidDecl()) {
2581      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2582                                VDecl->getDeclName(), DirectInit))
2583        VDecl->setInvalidDecl();
2584
2585      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2586      // Don't check invalid declarations to avoid emitting useless diagnostics.
2587      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2588        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2589          CheckForConstantInitializer(Init, DclT);
2590      }
2591    }
2592  } else if (VDecl->isStaticDataMember() &&
2593             VDecl->getLexicalDeclContext()->isRecord()) {
2594    // This is an in-class initialization for a static data member, e.g.,
2595    //
2596    // struct S {
2597    //   static const int value = 17;
2598    // };
2599
2600    // Attach the initializer
2601    VDecl->setInit(Context, Init);
2602
2603    // C++ [class.mem]p4:
2604    //   A member-declarator can contain a constant-initializer only
2605    //   if it declares a static member (9.4) of const integral or
2606    //   const enumeration type, see 9.4.2.
2607    QualType T = VDecl->getType();
2608    if (!T->isDependentType() &&
2609        (!Context.getCanonicalType(T).isConstQualified() ||
2610         !T->isIntegralType())) {
2611      Diag(VDecl->getLocation(), diag::err_member_initialization)
2612        << VDecl->getDeclName() << Init->getSourceRange();
2613      VDecl->setInvalidDecl();
2614    } else {
2615      // C++ [class.static.data]p4:
2616      //   If a static data member is of const integral or const
2617      //   enumeration type, its declaration in the class definition
2618      //   can specify a constant-initializer which shall be an
2619      //   integral constant expression (5.19).
2620      if (!Init->isTypeDependent() &&
2621          !Init->getType()->isIntegralType()) {
2622        // We have a non-dependent, non-integral or enumeration type.
2623        Diag(Init->getSourceRange().getBegin(),
2624             diag::err_in_class_initializer_non_integral_type)
2625          << Init->getType() << Init->getSourceRange();
2626        VDecl->setInvalidDecl();
2627      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2628        // Check whether the expression is a constant expression.
2629        llvm::APSInt Value;
2630        SourceLocation Loc;
2631        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2632          Diag(Loc, diag::err_in_class_initializer_non_constant)
2633            << Init->getSourceRange();
2634          VDecl->setInvalidDecl();
2635        } else if (!VDecl->getType()->isDependentType())
2636          ImpCastExprToType(Init, VDecl->getType());
2637      }
2638    }
2639  } else if (VDecl->isFileVarDecl()) {
2640    if (VDecl->getStorageClass() == VarDecl::Extern)
2641      Diag(VDecl->getLocation(), diag::warn_extern_init);
2642    if (!VDecl->isInvalidDecl())
2643      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2644                                VDecl->getDeclName(), DirectInit))
2645        VDecl->setInvalidDecl();
2646
2647    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2648    // Don't check invalid declarations to avoid emitting useless diagnostics.
2649    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2650      // C99 6.7.8p4. All file scoped initializers need to be constant.
2651      CheckForConstantInitializer(Init, DclT);
2652    }
2653  }
2654  // If the type changed, it means we had an incomplete type that was
2655  // completed by the initializer. For example:
2656  //   int ary[] = { 1, 3, 5 };
2657  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2658  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2659    VDecl->setType(DclT);
2660    Init->setType(DclT);
2661  }
2662
2663  // Attach the initializer to the decl.
2664  VDecl->setInit(Context, Init);
2665
2666  // If the previous declaration of VDecl was a tentative definition,
2667  // remove it from the set of tentative definitions.
2668  if (VDecl->getPreviousDeclaration() &&
2669      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2670    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2671      = TentativeDefinitions.find(VDecl->getDeclName());
2672    assert(Pos != TentativeDefinitions.end() &&
2673           "Unrecorded tentative definition?");
2674    TentativeDefinitions.erase(Pos);
2675  }
2676
2677  return;
2678}
2679
2680void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2681  Decl *RealDecl = dcl.getAs<Decl>();
2682
2683  // If there is no declaration, there was an error parsing it. Just ignore it.
2684  if (RealDecl == 0)
2685    return;
2686
2687  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2688    QualType Type = Var->getType();
2689
2690    // Record tentative definitions.
2691    if (Var->isTentativeDefinition(Context))
2692      TentativeDefinitions[Var->getDeclName()] = Var;
2693
2694    // C++ [dcl.init.ref]p3:
2695    //   The initializer can be omitted for a reference only in a
2696    //   parameter declaration (8.3.5), in the declaration of a
2697    //   function return type, in the declaration of a class member
2698    //   within its class declaration (9.2), and where the extern
2699    //   specifier is explicitly used.
2700    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2701      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2702        << Var->getDeclName()
2703        << SourceRange(Var->getLocation(), Var->getLocation());
2704      Var->setInvalidDecl();
2705      return;
2706    }
2707
2708    // C++ [dcl.init]p9:
2709    //
2710    //   If no initializer is specified for an object, and the object
2711    //   is of (possibly cv-qualified) non-POD class type (or array
2712    //   thereof), the object shall be default-initialized; if the
2713    //   object is of const-qualified type, the underlying class type
2714    //   shall have a user-declared default constructor.
2715    if (getLangOptions().CPlusPlus) {
2716      QualType InitType = Type;
2717      if (const ArrayType *Array = Context.getAsArrayType(Type))
2718        InitType = Array->getElementType();
2719      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2720          InitType->isRecordType() && !InitType->isDependentType()) {
2721        CXXRecordDecl *RD =
2722          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2723        CXXConstructorDecl *Constructor = 0;
2724        if (!RequireCompleteType(Var->getLocation(), InitType,
2725                                    diag::err_invalid_incomplete_type_use))
2726          Constructor
2727            = PerformInitializationByConstructor(InitType, 0, 0,
2728                                                 Var->getLocation(),
2729                                               SourceRange(Var->getLocation(),
2730                                                           Var->getLocation()),
2731                                                 Var->getDeclName(),
2732                                                 IK_Default);
2733        if (!Constructor)
2734          Var->setInvalidDecl();
2735        else  {
2736          if (!RD->hasTrivialConstructor())
2737            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2738            // Check for valid construction.
2739            DefineImplicitDefaultConstructor(Var->getLocation(), Constructor);
2740        }
2741      }
2742    }
2743
2744#if 0
2745    // FIXME: Temporarily disabled because we are not properly parsing
2746    // linkage specifications on declarations, e.g.,
2747    //
2748    //   extern "C" const CGPoint CGPointerZero;
2749    //
2750    // C++ [dcl.init]p9:
2751    //
2752    //     If no initializer is specified for an object, and the
2753    //     object is of (possibly cv-qualified) non-POD class type (or
2754    //     array thereof), the object shall be default-initialized; if
2755    //     the object is of const-qualified type, the underlying class
2756    //     type shall have a user-declared default
2757    //     constructor. Otherwise, if no initializer is specified for
2758    //     an object, the object and its subobjects, if any, have an
2759    //     indeterminate initial value; if the object or any of its
2760    //     subobjects are of const-qualified type, the program is
2761    //     ill-formed.
2762    //
2763    // This isn't technically an error in C, so we don't diagnose it.
2764    //
2765    // FIXME: Actually perform the POD/user-defined default
2766    // constructor check.
2767    if (getLangOptions().CPlusPlus &&
2768        Context.getCanonicalType(Type).isConstQualified() &&
2769        !Var->hasExternalStorage())
2770      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2771        << Var->getName()
2772        << SourceRange(Var->getLocation(), Var->getLocation());
2773#endif
2774  }
2775}
2776
2777Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2778                                                   DeclPtrTy *Group,
2779                                                   unsigned NumDecls) {
2780  llvm::SmallVector<Decl*, 8> Decls;
2781
2782  if (DS.isTypeSpecOwned())
2783    Decls.push_back((Decl*)DS.getTypeRep());
2784
2785  for (unsigned i = 0; i != NumDecls; ++i)
2786    if (Decl *D = Group[i].getAs<Decl>())
2787      Decls.push_back(D);
2788
2789  // Perform semantic analysis that depends on having fully processed both
2790  // the declarator and initializer.
2791  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2792    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2793    if (!IDecl)
2794      continue;
2795    QualType T = IDecl->getType();
2796
2797    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2798    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2799    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2800      if (!IDecl->isInvalidDecl() &&
2801          RequireCompleteType(IDecl->getLocation(), T,
2802                              diag::err_typecheck_decl_incomplete_type))
2803        IDecl->setInvalidDecl();
2804    }
2805    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2806    // object that has file scope without an initializer, and without a
2807    // storage-class specifier or with the storage-class specifier "static",
2808    // constitutes a tentative definition. Note: A tentative definition with
2809    // external linkage is valid (C99 6.2.2p5).
2810    if (IDecl->isTentativeDefinition(Context)) {
2811      QualType CheckType = T;
2812      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2813
2814      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2815      if (ArrayT) {
2816        CheckType = ArrayT->getElementType();
2817        DiagID = diag::err_illegal_decl_array_incomplete_type;
2818      }
2819
2820      if (IDecl->isInvalidDecl()) {
2821        // Do nothing with invalid declarations
2822      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2823                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2824        // C99 6.9.2p3: If the declaration of an identifier for an object is
2825        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2826        // declared type shall not be an incomplete type.
2827        IDecl->setInvalidDecl();
2828      }
2829    }
2830  }
2831  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2832                                                   Decls.data(), Decls.size()));
2833}
2834
2835
2836/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2837/// to introduce parameters into function prototype scope.
2838Sema::DeclPtrTy
2839Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2840  const DeclSpec &DS = D.getDeclSpec();
2841
2842  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2843  VarDecl::StorageClass StorageClass = VarDecl::None;
2844  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2845    StorageClass = VarDecl::Register;
2846  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2847    Diag(DS.getStorageClassSpecLoc(),
2848         diag::err_invalid_storage_class_in_func_decl);
2849    D.getMutableDeclSpec().ClearStorageClassSpecs();
2850  }
2851
2852  if (D.getDeclSpec().isThreadSpecified())
2853    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2854
2855  DiagnoseFunctionSpecifiers(D);
2856
2857  // Check that there are no default arguments inside the type of this
2858  // parameter (C++ only).
2859  if (getLangOptions().CPlusPlus)
2860    CheckExtraCXXDefaultArguments(D);
2861
2862  TagDecl *OwnedDecl = 0;
2863  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2864
2865  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2866    // C++ [dcl.fct]p6:
2867    //   Types shall not be defined in return or parameter types.
2868    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2869      << Context.getTypeDeclType(OwnedDecl);
2870  }
2871
2872  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2873  // Can this happen for params?  We already checked that they don't conflict
2874  // among each other.  Here they can only shadow globals, which is ok.
2875  IdentifierInfo *II = D.getIdentifier();
2876  if (II) {
2877    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2878      if (PrevDecl->isTemplateParameter()) {
2879        // Maybe we will complain about the shadowed template parameter.
2880        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2881        // Just pretend that we didn't see the previous declaration.
2882        PrevDecl = 0;
2883      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2884        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2885
2886        // Recover by removing the name
2887        II = 0;
2888        D.SetIdentifier(0, D.getIdentifierLoc());
2889      }
2890    }
2891  }
2892
2893  // Parameters can not be abstract class types.
2894  // For record types, this is done by the AbstractClassUsageDiagnoser once
2895  // the class has been completely parsed.
2896  if (!CurContext->isRecord() &&
2897      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2898                             diag::err_abstract_type_in_decl,
2899                             AbstractParamType))
2900    D.setInvalidType(true);
2901
2902  QualType T = adjustParameterType(parmDeclType);
2903
2904  ParmVarDecl *New;
2905  if (T == parmDeclType) // parameter type did not need adjustment
2906    New = ParmVarDecl::Create(Context, CurContext,
2907                              D.getIdentifierLoc(), II,
2908                              parmDeclType, StorageClass,
2909                              0);
2910  else // keep track of both the adjusted and unadjusted types
2911    New = OriginalParmVarDecl::Create(Context, CurContext,
2912                                      D.getIdentifierLoc(), II, T,
2913                                      parmDeclType, StorageClass, 0);
2914
2915  if (D.isInvalidType())
2916    New->setInvalidDecl();
2917
2918  // Parameter declarators cannot be interface types. All ObjC objects are
2919  // passed by reference.
2920  if (T->isObjCInterfaceType()) {
2921    Diag(D.getIdentifierLoc(),
2922         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2923    New->setInvalidDecl();
2924  }
2925
2926  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2927  if (D.getCXXScopeSpec().isSet()) {
2928    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2929      << D.getCXXScopeSpec().getRange();
2930    New->setInvalidDecl();
2931  }
2932
2933  // Add the parameter declaration into this scope.
2934  S->AddDecl(DeclPtrTy::make(New));
2935  if (II)
2936    IdResolver.AddDecl(New);
2937
2938  ProcessDeclAttributes(S, New, D);
2939
2940  if (New->hasAttr<BlocksAttr>(Context)) {
2941    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2942  }
2943  return DeclPtrTy::make(New);
2944}
2945
2946void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2947                                           SourceLocation LocAfterDecls) {
2948  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2949         "Not a function declarator!");
2950  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2951
2952  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2953  // for a K&R function.
2954  if (!FTI.hasPrototype) {
2955    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2956      --i;
2957      if (FTI.ArgInfo[i].Param == 0) {
2958        std::string Code = "  int ";
2959        Code += FTI.ArgInfo[i].Ident->getName();
2960        Code += ";\n";
2961        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2962          << FTI.ArgInfo[i].Ident
2963          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2964
2965        // Implicitly declare the argument as type 'int' for lack of a better
2966        // type.
2967        DeclSpec DS;
2968        const char* PrevSpec; // unused
2969        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2970                           PrevSpec);
2971        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2972        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2973        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2974      }
2975    }
2976  }
2977}
2978
2979Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2980                                              Declarator &D) {
2981  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2982  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2983         "Not a function declarator!");
2984  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2985
2986  if (FTI.hasPrototype) {
2987    // FIXME: Diagnose arguments without names in C.
2988  }
2989
2990  Scope *ParentScope = FnBodyScope->getParent();
2991
2992  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2993  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2994}
2995
2996Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2997  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2998
2999  CurFunctionNeedsScopeChecking = false;
3000
3001  // See if this is a redefinition.
3002  const FunctionDecl *Definition;
3003  if (FD->getBody(Context, Definition)) {
3004    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3005    Diag(Definition->getLocation(), diag::note_previous_definition);
3006  }
3007
3008  // Builtin functions cannot be defined.
3009  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3010    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3011      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3012      FD->setInvalidDecl();
3013    }
3014  }
3015
3016  // The return type of a function definition must be complete
3017  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3018  QualType ResultType = FD->getResultType();
3019  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3020      !FD->isInvalidDecl() &&
3021      RequireCompleteType(FD->getLocation(), ResultType,
3022                          diag::err_func_def_incomplete_result))
3023    FD->setInvalidDecl();
3024
3025  // GNU warning -Wmissing-prototypes:
3026  //   Warn if a global function is defined without a previous
3027  //   prototype declaration. This warning is issued even if the
3028  //   definition itself provides a prototype. The aim is to detect
3029  //   global functions that fail to be declared in header files.
3030  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3031      !FD->isMain()) {
3032    bool MissingPrototype = true;
3033    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3034         Prev; Prev = Prev->getPreviousDeclaration()) {
3035      // Ignore any declarations that occur in function or method
3036      // scope, because they aren't visible from the header.
3037      if (Prev->getDeclContext()->isFunctionOrMethod())
3038        continue;
3039
3040      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3041      break;
3042    }
3043
3044    if (MissingPrototype)
3045      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3046  }
3047
3048  if (FnBodyScope)
3049    PushDeclContext(FnBodyScope, FD);
3050
3051  // Check the validity of our function parameters
3052  CheckParmsForFunctionDef(FD);
3053
3054  // Introduce our parameters into the function scope
3055  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3056    ParmVarDecl *Param = FD->getParamDecl(p);
3057    Param->setOwningFunction(FD);
3058
3059    // If this has an identifier, add it to the scope stack.
3060    if (Param->getIdentifier() && FnBodyScope)
3061      PushOnScopeChains(Param, FnBodyScope);
3062  }
3063
3064  // Checking attributes of current function definition
3065  // dllimport attribute.
3066  if (FD->getAttr<DLLImportAttr>(Context) &&
3067      (!FD->getAttr<DLLExportAttr>(Context))) {
3068    // dllimport attribute cannot be applied to definition.
3069    if (!(FD->getAttr<DLLImportAttr>(Context))->isInherited()) {
3070      Diag(FD->getLocation(),
3071           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3072        << "dllimport";
3073      FD->setInvalidDecl();
3074      return DeclPtrTy::make(FD);
3075    } else {
3076      // If a symbol previously declared dllimport is later defined, the
3077      // attribute is ignored in subsequent references, and a warning is
3078      // emitted.
3079      Diag(FD->getLocation(),
3080           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3081        << FD->getNameAsCString() << "dllimport";
3082    }
3083  }
3084  return DeclPtrTy::make(FD);
3085}
3086
3087Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3088  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3089}
3090
3091Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3092                                              bool IsInstantiation) {
3093  Decl *dcl = D.getAs<Decl>();
3094  Stmt *Body = BodyArg.takeAs<Stmt>();
3095  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3096    FD->setBody(Body);
3097    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3098  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3099    assert(MD == getCurMethodDecl() && "Method parsing confused");
3100    MD->setBody(Body);
3101  } else {
3102    Body->Destroy(Context);
3103    return DeclPtrTy();
3104  }
3105  if (!IsInstantiation)
3106    PopDeclContext();
3107
3108  // Verify and clean out per-function state.
3109
3110  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3111
3112  // Check goto/label use.
3113  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3114       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3115    LabelStmt *L = I->second;
3116
3117    // Verify that we have no forward references left.  If so, there was a goto
3118    // or address of a label taken, but no definition of it.  Label fwd
3119    // definitions are indicated with a null substmt.
3120    if (L->getSubStmt() != 0)
3121      continue;
3122
3123    // Emit error.
3124    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3125
3126    // At this point, we have gotos that use the bogus label.  Stitch it into
3127    // the function body so that they aren't leaked and that the AST is well
3128    // formed.
3129    if (Body == 0) {
3130      // The whole function wasn't parsed correctly, just delete this.
3131      L->Destroy(Context);
3132      continue;
3133    }
3134
3135    // Otherwise, the body is valid: we want to stitch the label decl into the
3136    // function somewhere so that it is properly owned and so that the goto
3137    // has a valid target.  Do this by creating a new compound stmt with the
3138    // label in it.
3139
3140    // Give the label a sub-statement.
3141    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3142
3143    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3144                               cast<CXXTryStmt>(Body)->getTryBlock() :
3145                               cast<CompoundStmt>(Body);
3146    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3147    Elements.push_back(L);
3148    Compound->setStmts(Context, &Elements[0], Elements.size());
3149  }
3150  FunctionLabelMap.clear();
3151
3152  if (!Body) return D;
3153
3154  // Verify that that gotos and switch cases don't jump into scopes illegally.
3155  if (CurFunctionNeedsScopeChecking)
3156    DiagnoseInvalidJumps(Body);
3157
3158  // C++ constructors that have function-try-blocks can't have return statements
3159  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3160  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3161    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3162
3163  return D;
3164}
3165
3166/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3167/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3168NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3169                                          IdentifierInfo &II, Scope *S) {
3170  // Before we produce a declaration for an implicitly defined
3171  // function, see whether there was a locally-scoped declaration of
3172  // this name as a function or variable. If so, use that
3173  // (non-visible) declaration, and complain about it.
3174  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3175    = LocallyScopedExternalDecls.find(&II);
3176  if (Pos != LocallyScopedExternalDecls.end()) {
3177    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3178    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3179    return Pos->second;
3180  }
3181
3182  // Extension in C99.  Legal in C90, but warn about it.
3183  if (getLangOptions().C99)
3184    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3185  else
3186    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3187
3188  // FIXME: handle stuff like:
3189  // void foo() { extern float X(); }
3190  // void bar() { X(); }  <-- implicit decl for X in another scope.
3191
3192  // Set a Declarator for the implicit definition: int foo();
3193  const char *Dummy;
3194  DeclSpec DS;
3195  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3196  Error = Error; // Silence warning.
3197  assert(!Error && "Error setting up implicit decl!");
3198  Declarator D(DS, Declarator::BlockContext);
3199  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3200                                             0, 0, false, SourceLocation(),
3201                                             false, 0,0,0, Loc, D),
3202                SourceLocation());
3203  D.SetIdentifier(&II, Loc);
3204
3205  // Insert this function into translation-unit scope.
3206
3207  DeclContext *PrevDC = CurContext;
3208  CurContext = Context.getTranslationUnitDecl();
3209
3210  FunctionDecl *FD =
3211 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3212  FD->setImplicit();
3213
3214  CurContext = PrevDC;
3215
3216  AddKnownFunctionAttributes(FD);
3217
3218  return FD;
3219}
3220
3221/// \brief Adds any function attributes that we know a priori based on
3222/// the declaration of this function.
3223///
3224/// These attributes can apply both to implicitly-declared builtins
3225/// (like __builtin___printf_chk) or to library-declared functions
3226/// like NSLog or printf.
3227void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3228  if (FD->isInvalidDecl())
3229    return;
3230
3231  // If this is a built-in function, map its builtin attributes to
3232  // actual attributes.
3233  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3234    // Handle printf-formatting attributes.
3235    unsigned FormatIdx;
3236    bool HasVAListArg;
3237    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3238      if (!FD->getAttr<FormatAttr>(Context))
3239        FD->addAttr(Context,
3240                    ::new (Context) FormatAttr("printf", FormatIdx + 1,
3241                                             HasVAListArg ? 0 : FormatIdx + 2));
3242    }
3243
3244    // Mark const if we don't care about errno and that is the only
3245    // thing preventing the function from being const. This allows
3246    // IRgen to use LLVM intrinsics for such functions.
3247    if (!getLangOptions().MathErrno &&
3248        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3249      if (!FD->getAttr<ConstAttr>(Context))
3250        FD->addAttr(Context, ::new (Context) ConstAttr());
3251    }
3252  }
3253
3254  IdentifierInfo *Name = FD->getIdentifier();
3255  if (!Name)
3256    return;
3257  if ((!getLangOptions().CPlusPlus &&
3258       FD->getDeclContext()->isTranslationUnit()) ||
3259      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3260       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3261       LinkageSpecDecl::lang_c)) {
3262    // Okay: this could be a libc/libm/Objective-C function we know
3263    // about.
3264  } else
3265    return;
3266
3267  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3268    if (const FormatAttr *Format = FD->getAttr<FormatAttr>(Context)) {
3269      // FIXME: We known better than our headers.
3270      const_cast<FormatAttr *>(Format)->setType("printf");
3271    } else
3272      FD->addAttr(Context,
3273                  ::new (Context) FormatAttr("printf", 1,
3274                                             Name->isStr("NSLogv") ? 0 : 2));
3275  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3276    if (!FD->getAttr<FormatAttr>(Context))
3277      FD->addAttr(Context,
3278                  ::new (Context) FormatAttr("printf", 2,
3279                                             Name->isStr("vasprintf") ? 0 : 3));
3280  }
3281}
3282
3283TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3284  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3285  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3286
3287  // Scope manipulation handled by caller.
3288  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3289                                           D.getIdentifierLoc(),
3290                                           D.getIdentifier(),
3291                                           T);
3292
3293  if (TagType *TT = dyn_cast<TagType>(T)) {
3294    TagDecl *TD = TT->getDecl();
3295
3296    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3297    // keep track of the TypedefDecl.
3298    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3299      TD->setTypedefForAnonDecl(NewTD);
3300  }
3301
3302  if (D.isInvalidType())
3303    NewTD->setInvalidDecl();
3304  return NewTD;
3305}
3306
3307
3308/// \brief Determine whether a tag with a given kind is acceptable
3309/// as a redeclaration of the given tag declaration.
3310///
3311/// \returns true if the new tag kind is acceptable, false otherwise.
3312bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3313                                        TagDecl::TagKind NewTag,
3314                                        SourceLocation NewTagLoc,
3315                                        const IdentifierInfo &Name) {
3316  // C++ [dcl.type.elab]p3:
3317  //   The class-key or enum keyword present in the
3318  //   elaborated-type-specifier shall agree in kind with the
3319  //   declaration to which the name in theelaborated-type-specifier
3320  //   refers. This rule also applies to the form of
3321  //   elaborated-type-specifier that declares a class-name or
3322  //   friend class since it can be construed as referring to the
3323  //   definition of the class. Thus, in any
3324  //   elaborated-type-specifier, the enum keyword shall be used to
3325  //   refer to an enumeration (7.2), the union class-keyshall be
3326  //   used to refer to a union (clause 9), and either the class or
3327  //   struct class-key shall be used to refer to a class (clause 9)
3328  //   declared using the class or struct class-key.
3329  TagDecl::TagKind OldTag = Previous->getTagKind();
3330  if (OldTag == NewTag)
3331    return true;
3332
3333  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3334      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3335    // Warn about the struct/class tag mismatch.
3336    bool isTemplate = false;
3337    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3338      isTemplate = Record->getDescribedClassTemplate();
3339
3340    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3341      << (NewTag == TagDecl::TK_class)
3342      << isTemplate << &Name
3343      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3344                              OldTag == TagDecl::TK_class? "class" : "struct");
3345    Diag(Previous->getLocation(), diag::note_previous_use);
3346    return true;
3347  }
3348  return false;
3349}
3350
3351/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3352/// former case, Name will be non-null.  In the later case, Name will be null.
3353/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3354/// reference/declaration/definition of a tag.
3355Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3356                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3357                               IdentifierInfo *Name, SourceLocation NameLoc,
3358                               AttributeList *Attr, AccessSpecifier AS,
3359                               bool &OwnedDecl) {
3360  // If this is not a definition, it must have a name.
3361  assert((Name != 0 || TK == TK_Definition) &&
3362         "Nameless record must be a definition!");
3363
3364  OwnedDecl = false;
3365  TagDecl::TagKind Kind;
3366  switch (TagSpec) {
3367  default: assert(0 && "Unknown tag type!");
3368  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3369  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3370  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3371  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3372  }
3373
3374  DeclContext *SearchDC = CurContext;
3375  DeclContext *DC = CurContext;
3376  NamedDecl *PrevDecl = 0;
3377
3378  bool Invalid = false;
3379
3380  if (Name && SS.isNotEmpty()) {
3381    // We have a nested-name tag ('struct foo::bar').
3382
3383    // Check for invalid 'foo::'.
3384    if (SS.isInvalid()) {
3385      Name = 0;
3386      goto CreateNewDecl;
3387    }
3388
3389    if (RequireCompleteDeclContext(SS))
3390      return DeclPtrTy::make((Decl *)0);
3391
3392    DC = computeDeclContext(SS);
3393    SearchDC = DC;
3394    // Look-up name inside 'foo::'.
3395    PrevDecl
3396      = dyn_cast_or_null<TagDecl>(
3397               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3398
3399    // A tag 'foo::bar' must already exist.
3400    if (PrevDecl == 0) {
3401      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3402      Name = 0;
3403      Invalid = true;
3404      goto CreateNewDecl;
3405    }
3406  } else if (Name) {
3407    // If this is a named struct, check to see if there was a previous forward
3408    // declaration or definition.
3409    // FIXME: We're looking into outer scopes here, even when we
3410    // shouldn't be. Doing so can result in ambiguities that we
3411    // shouldn't be diagnosing.
3412    LookupResult R = LookupName(S, Name, LookupTagName,
3413                                /*RedeclarationOnly=*/(TK != TK_Reference));
3414    if (R.isAmbiguous()) {
3415      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3416      // FIXME: This is not best way to recover from case like:
3417      //
3418      // struct S s;
3419      //
3420      // causes needless "incomplete type" error later.
3421      Name = 0;
3422      PrevDecl = 0;
3423      Invalid = true;
3424    }
3425    else
3426      PrevDecl = R;
3427
3428    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3429      // FIXME: This makes sure that we ignore the contexts associated
3430      // with C structs, unions, and enums when looking for a matching
3431      // tag declaration or definition. See the similar lookup tweak
3432      // in Sema::LookupName; is there a better way to deal with this?
3433      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3434        SearchDC = SearchDC->getParent();
3435    }
3436  }
3437
3438  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3439    // Maybe we will complain about the shadowed template parameter.
3440    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3441    // Just pretend that we didn't see the previous declaration.
3442    PrevDecl = 0;
3443  }
3444
3445  if (PrevDecl) {
3446    // Check whether the previous declaration is usable.
3447    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3448
3449    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3450      // If this is a use of a previous tag, or if the tag is already declared
3451      // in the same scope (so that the definition/declaration completes or
3452      // rementions the tag), reuse the decl.
3453      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3454        // Make sure that this wasn't declared as an enum and now used as a
3455        // struct or something similar.
3456        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3457          bool SafeToContinue
3458            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3459               Kind != TagDecl::TK_enum);
3460          if (SafeToContinue)
3461            Diag(KWLoc, diag::err_use_with_wrong_tag)
3462              << Name
3463              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3464                                                  PrevTagDecl->getKindName());
3465          else
3466            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3467          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3468
3469          if (SafeToContinue)
3470            Kind = PrevTagDecl->getTagKind();
3471          else {
3472            // Recover by making this an anonymous redefinition.
3473            Name = 0;
3474            PrevDecl = 0;
3475            Invalid = true;
3476          }
3477        }
3478
3479        if (!Invalid) {
3480          // If this is a use, just return the declaration we found.
3481
3482          // FIXME: In the future, return a variant or some other clue
3483          // for the consumer of this Decl to know it doesn't own it.
3484          // For our current ASTs this shouldn't be a problem, but will
3485          // need to be changed with DeclGroups.
3486          if (TK == TK_Reference)
3487            return DeclPtrTy::make(PrevDecl);
3488
3489          // Diagnose attempts to redefine a tag.
3490          if (TK == TK_Definition) {
3491            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3492              Diag(NameLoc, diag::err_redefinition) << Name;
3493              Diag(Def->getLocation(), diag::note_previous_definition);
3494              // If this is a redefinition, recover by making this
3495              // struct be anonymous, which will make any later
3496              // references get the previous definition.
3497              Name = 0;
3498              PrevDecl = 0;
3499              Invalid = true;
3500            } else {
3501              // If the type is currently being defined, complain
3502              // about a nested redefinition.
3503              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3504              if (Tag->isBeingDefined()) {
3505                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3506                Diag(PrevTagDecl->getLocation(),
3507                     diag::note_previous_definition);
3508                Name = 0;
3509                PrevDecl = 0;
3510                Invalid = true;
3511              }
3512            }
3513
3514            // Okay, this is definition of a previously declared or referenced
3515            // tag PrevDecl. We're going to create a new Decl for it.
3516          }
3517        }
3518        // If we get here we have (another) forward declaration or we
3519        // have a definition.  Just create a new decl.
3520      } else {
3521        // If we get here, this is a definition of a new tag type in a nested
3522        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3523        // new decl/type.  We set PrevDecl to NULL so that the entities
3524        // have distinct types.
3525        PrevDecl = 0;
3526      }
3527      // If we get here, we're going to create a new Decl. If PrevDecl
3528      // is non-NULL, it's a definition of the tag declared by
3529      // PrevDecl. If it's NULL, we have a new definition.
3530    } else {
3531      // PrevDecl is a namespace, template, or anything else
3532      // that lives in the IDNS_Tag identifier namespace.
3533      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3534        // The tag name clashes with a namespace name, issue an error and
3535        // recover by making this tag be anonymous.
3536        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3537        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3538        Name = 0;
3539        PrevDecl = 0;
3540        Invalid = true;
3541      } else {
3542        // The existing declaration isn't relevant to us; we're in a
3543        // new scope, so clear out the previous declaration.
3544        PrevDecl = 0;
3545      }
3546    }
3547  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3548             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3549    // C++ [basic.scope.pdecl]p5:
3550    //   -- for an elaborated-type-specifier of the form
3551    //
3552    //          class-key identifier
3553    //
3554    //      if the elaborated-type-specifier is used in the
3555    //      decl-specifier-seq or parameter-declaration-clause of a
3556    //      function defined in namespace scope, the identifier is
3557    //      declared as a class-name in the namespace that contains
3558    //      the declaration; otherwise, except as a friend
3559    //      declaration, the identifier is declared in the smallest
3560    //      non-class, non-function-prototype scope that contains the
3561    //      declaration.
3562    //
3563    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3564    // C structs and unions.
3565    //
3566    // GNU C also supports this behavior as part of its incomplete
3567    // enum types extension, while GNU C++ does not.
3568    //
3569    // Find the context where we'll be declaring the tag.
3570    // FIXME: We would like to maintain the current DeclContext as the
3571    // lexical context,
3572    while (SearchDC->isRecord())
3573      SearchDC = SearchDC->getParent();
3574
3575    // Find the scope where we'll be declaring the tag.
3576    while (S->isClassScope() ||
3577           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3578           ((S->getFlags() & Scope::DeclScope) == 0) ||
3579           (S->getEntity() &&
3580            ((DeclContext *)S->getEntity())->isTransparentContext()))
3581      S = S->getParent();
3582  }
3583
3584CreateNewDecl:
3585
3586  // If there is an identifier, use the location of the identifier as the
3587  // location of the decl, otherwise use the location of the struct/union
3588  // keyword.
3589  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3590
3591  // Otherwise, create a new declaration. If there is a previous
3592  // declaration of the same entity, the two will be linked via
3593  // PrevDecl.
3594  TagDecl *New;
3595
3596  if (Kind == TagDecl::TK_enum) {
3597    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3598    // enum X { A, B, C } D;    D should chain to X.
3599    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3600                           cast_or_null<EnumDecl>(PrevDecl));
3601    // If this is an undefined enum, warn.
3602    if (TK != TK_Definition && !Invalid)  {
3603      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3604                                              : diag::ext_forward_ref_enum;
3605      Diag(Loc, DK);
3606    }
3607  } else {
3608    // struct/union/class
3609
3610    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3611    // struct X { int A; } D;    D should chain to X.
3612    if (getLangOptions().CPlusPlus)
3613      // FIXME: Look for a way to use RecordDecl for simple structs.
3614      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3615                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3616    else
3617      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3618                               cast_or_null<RecordDecl>(PrevDecl));
3619  }
3620
3621  if (Kind != TagDecl::TK_enum) {
3622    // Handle #pragma pack: if the #pragma pack stack has non-default
3623    // alignment, make up a packed attribute for this decl. These
3624    // attributes are checked when the ASTContext lays out the
3625    // structure.
3626    //
3627    // It is important for implementing the correct semantics that this
3628    // happen here (in act on tag decl). The #pragma pack stack is
3629    // maintained as a result of parser callbacks which can occur at
3630    // many points during the parsing of a struct declaration (because
3631    // the #pragma tokens are effectively skipped over during the
3632    // parsing of the struct).
3633    if (unsigned Alignment = getPragmaPackAlignment())
3634      New->addAttr(Context, ::new (Context) PackedAttr(Alignment * 8));
3635  }
3636
3637  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3638    // C++ [dcl.typedef]p3:
3639    //   [...] Similarly, in a given scope, a class or enumeration
3640    //   shall not be declared with the same name as a typedef-name
3641    //   that is declared in that scope and refers to a type other
3642    //   than the class or enumeration itself.
3643    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3644    TypedefDecl *PrevTypedef = 0;
3645    if (Lookup.getKind() == LookupResult::Found)
3646      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3647
3648    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3649        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3650          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3651      Diag(Loc, diag::err_tag_definition_of_typedef)
3652        << Context.getTypeDeclType(New)
3653        << PrevTypedef->getUnderlyingType();
3654      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3655      Invalid = true;
3656    }
3657  }
3658
3659  if (Invalid)
3660    New->setInvalidDecl();
3661
3662  if (Attr)
3663    ProcessDeclAttributeList(S, New, Attr);
3664
3665  // If we're declaring or defining a tag in function prototype scope
3666  // in C, note that this type can only be used within the function.
3667  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3668    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3669
3670  // Set the lexical context. If the tag has a C++ scope specifier, the
3671  // lexical context will be different from the semantic context.
3672  New->setLexicalDeclContext(CurContext);
3673
3674  // Set the access specifier.
3675  if (!Invalid)
3676    SetMemberAccessSpecifier(New, PrevDecl, AS);
3677
3678  if (TK == TK_Definition)
3679    New->startDefinition();
3680
3681  // If this has an identifier, add it to the scope stack.
3682  if (Name) {
3683    S = getNonFieldDeclScope(S);
3684    PushOnScopeChains(New, S);
3685  } else {
3686    CurContext->addDecl(Context, New);
3687  }
3688
3689  OwnedDecl = true;
3690  return DeclPtrTy::make(New);
3691}
3692
3693void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3694  AdjustDeclIfTemplate(TagD);
3695  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3696
3697  // Enter the tag context.
3698  PushDeclContext(S, Tag);
3699
3700  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3701    FieldCollector->StartClass();
3702
3703    if (Record->getIdentifier()) {
3704      // C++ [class]p2:
3705      //   [...] The class-name is also inserted into the scope of the
3706      //   class itself; this is known as the injected-class-name. For
3707      //   purposes of access checking, the injected-class-name is treated
3708      //   as if it were a public member name.
3709      CXXRecordDecl *InjectedClassName
3710        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3711                                CurContext, Record->getLocation(),
3712                                Record->getIdentifier(), Record);
3713      InjectedClassName->setImplicit();
3714      InjectedClassName->setAccess(AS_public);
3715      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3716        InjectedClassName->setDescribedClassTemplate(Template);
3717      PushOnScopeChains(InjectedClassName, S);
3718      assert(InjectedClassName->isInjectedClassName() &&
3719             "Broken injected-class-name");
3720    }
3721  }
3722}
3723
3724void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3725  AdjustDeclIfTemplate(TagD);
3726  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3727
3728  if (isa<CXXRecordDecl>(Tag))
3729    FieldCollector->FinishClass();
3730
3731  // Exit this scope of this tag's definition.
3732  PopDeclContext();
3733
3734  // Notify the consumer that we've defined a tag.
3735  Consumer.HandleTagDeclDefinition(Tag);
3736}
3737
3738// Note that FieldName may be null for anonymous bitfields.
3739bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3740                          QualType FieldTy, const Expr *BitWidth) {
3741
3742  // C99 6.7.2.1p4 - verify the field type.
3743  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3744  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3745    // Handle incomplete types with specific error.
3746    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3747      return true;
3748    if (FieldName)
3749      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3750        << FieldName << FieldTy << BitWidth->getSourceRange();
3751    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3752      << FieldTy << BitWidth->getSourceRange();
3753  }
3754
3755  // If the bit-width is type- or value-dependent, don't try to check
3756  // it now.
3757  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3758    return false;
3759
3760  llvm::APSInt Value;
3761  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3762    return true;
3763
3764  // Zero-width bitfield is ok for anonymous field.
3765  if (Value == 0 && FieldName)
3766    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3767
3768  if (Value.isSigned() && Value.isNegative()) {
3769    if (FieldName)
3770      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3771               << FieldName << Value.toString(10);
3772    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3773      << Value.toString(10);
3774  }
3775
3776  if (!FieldTy->isDependentType()) {
3777    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3778    if (Value.getZExtValue() > TypeSize) {
3779      if (FieldName)
3780        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3781          << FieldName << (unsigned)TypeSize;
3782      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3783        << (unsigned)TypeSize;
3784    }
3785  }
3786
3787  return false;
3788}
3789
3790/// ActOnField - Each field of a struct/union/class is passed into this in order
3791/// to create a FieldDecl object for it.
3792Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3793                                 SourceLocation DeclStart,
3794                                 Declarator &D, ExprTy *BitfieldWidth) {
3795  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3796                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3797                               AS_public);
3798  return DeclPtrTy::make(Res);
3799}
3800
3801/// HandleField - Analyze a field of a C struct or a C++ data member.
3802///
3803FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3804                             SourceLocation DeclStart,
3805                             Declarator &D, Expr *BitWidth,
3806                             AccessSpecifier AS) {
3807  IdentifierInfo *II = D.getIdentifier();
3808  SourceLocation Loc = DeclStart;
3809  if (II) Loc = D.getIdentifierLoc();
3810
3811  QualType T = GetTypeForDeclarator(D, S);
3812  if (getLangOptions().CPlusPlus)
3813    CheckExtraCXXDefaultArguments(D);
3814
3815  DiagnoseFunctionSpecifiers(D);
3816
3817  if (D.getDeclSpec().isThreadSpecified())
3818    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3819
3820  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3821
3822  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3823    // Maybe we will complain about the shadowed template parameter.
3824    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3825    // Just pretend that we didn't see the previous declaration.
3826    PrevDecl = 0;
3827  }
3828
3829  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3830    PrevDecl = 0;
3831
3832  FieldDecl *NewFD
3833    = CheckFieldDecl(II, T, Record, Loc,
3834               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3835                     BitWidth, AS, PrevDecl, &D);
3836  if (NewFD->isInvalidDecl() && PrevDecl) {
3837    // Don't introduce NewFD into scope; there's already something
3838    // with the same name in the same scope.
3839  } else if (II) {
3840    PushOnScopeChains(NewFD, S);
3841  } else
3842    Record->addDecl(Context, NewFD);
3843
3844  return NewFD;
3845}
3846
3847/// \brief Build a new FieldDecl and check its well-formedness.
3848///
3849/// This routine builds a new FieldDecl given the fields name, type,
3850/// record, etc. \p PrevDecl should refer to any previous declaration
3851/// with the same name and in the same scope as the field to be
3852/// created.
3853///
3854/// \returns a new FieldDecl.
3855///
3856/// \todo The Declarator argument is a hack. It will be removed once
3857FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3858                                RecordDecl *Record, SourceLocation Loc,
3859                                bool Mutable, Expr *BitWidth,
3860                                AccessSpecifier AS, NamedDecl *PrevDecl,
3861                                Declarator *D) {
3862  IdentifierInfo *II = Name.getAsIdentifierInfo();
3863  bool InvalidDecl = false;
3864  if (D) InvalidDecl = D->isInvalidType();
3865
3866  // If we receive a broken type, recover by assuming 'int' and
3867  // marking this declaration as invalid.
3868  if (T.isNull()) {
3869    InvalidDecl = true;
3870    T = Context.IntTy;
3871  }
3872
3873  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3874  // than a variably modified type.
3875  if (T->isVariablyModifiedType()) {
3876    bool SizeIsNegative;
3877    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3878                                                           SizeIsNegative);
3879    if (!FixedTy.isNull()) {
3880      Diag(Loc, diag::warn_illegal_constant_array_size);
3881      T = FixedTy;
3882    } else {
3883      if (SizeIsNegative)
3884        Diag(Loc, diag::err_typecheck_negative_array_size);
3885      else
3886        Diag(Loc, diag::err_typecheck_field_variable_size);
3887      T = Context.IntTy;
3888      InvalidDecl = true;
3889    }
3890  }
3891
3892  // Fields can not have abstract class types
3893  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3894                             AbstractFieldType))
3895    InvalidDecl = true;
3896
3897  // If this is declared as a bit-field, check the bit-field.
3898  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3899    InvalidDecl = true;
3900    DeleteExpr(BitWidth);
3901    BitWidth = 0;
3902  }
3903
3904  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3905                                       Mutable);
3906  if (InvalidDecl)
3907    NewFD->setInvalidDecl();
3908
3909  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3910    Diag(Loc, diag::err_duplicate_member) << II;
3911    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3912    NewFD->setInvalidDecl();
3913  }
3914
3915  if (getLangOptions().CPlusPlus && !T->isPODType())
3916    cast<CXXRecordDecl>(Record)->setPOD(false);
3917
3918  // FIXME: We need to pass in the attributes given an AST
3919  // representation, not a parser representation.
3920  if (D)
3921    // FIXME: What to pass instead of TUScope?
3922    ProcessDeclAttributes(TUScope, NewFD, *D);
3923
3924  if (T.isObjCGCWeak())
3925    Diag(Loc, diag::warn_attribute_weak_on_field);
3926
3927  NewFD->setAccess(AS);
3928
3929  // C++ [dcl.init.aggr]p1:
3930  //   An aggregate is an array or a class (clause 9) with [...] no
3931  //   private or protected non-static data members (clause 11).
3932  // A POD must be an aggregate.
3933  if (getLangOptions().CPlusPlus &&
3934      (AS == AS_private || AS == AS_protected)) {
3935    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3936    CXXRecord->setAggregate(false);
3937    CXXRecord->setPOD(false);
3938  }
3939
3940  return NewFD;
3941}
3942
3943/// TranslateIvarVisibility - Translate visibility from a token ID to an
3944///  AST enum value.
3945static ObjCIvarDecl::AccessControl
3946TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3947  switch (ivarVisibility) {
3948  default: assert(0 && "Unknown visitibility kind");
3949  case tok::objc_private: return ObjCIvarDecl::Private;
3950  case tok::objc_public: return ObjCIvarDecl::Public;
3951  case tok::objc_protected: return ObjCIvarDecl::Protected;
3952  case tok::objc_package: return ObjCIvarDecl::Package;
3953  }
3954}
3955
3956/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3957/// in order to create an IvarDecl object for it.
3958Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3959                                SourceLocation DeclStart,
3960                                DeclPtrTy IntfDecl,
3961                                Declarator &D, ExprTy *BitfieldWidth,
3962                                tok::ObjCKeywordKind Visibility) {
3963
3964  IdentifierInfo *II = D.getIdentifier();
3965  Expr *BitWidth = (Expr*)BitfieldWidth;
3966  SourceLocation Loc = DeclStart;
3967  if (II) Loc = D.getIdentifierLoc();
3968
3969  // FIXME: Unnamed fields can be handled in various different ways, for
3970  // example, unnamed unions inject all members into the struct namespace!
3971
3972  QualType T = GetTypeForDeclarator(D, S);
3973
3974  if (BitWidth) {
3975    // 6.7.2.1p3, 6.7.2.1p4
3976    if (VerifyBitField(Loc, II, T, BitWidth)) {
3977      D.setInvalidType();
3978      DeleteExpr(BitWidth);
3979      BitWidth = 0;
3980    }
3981  } else {
3982    // Not a bitfield.
3983
3984    // validate II.
3985
3986  }
3987
3988  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3989  // than a variably modified type.
3990  if (T->isVariablyModifiedType()) {
3991    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3992    D.setInvalidType();
3993  }
3994
3995  // Get the visibility (access control) for this ivar.
3996  ObjCIvarDecl::AccessControl ac =
3997    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3998                                        : ObjCIvarDecl::None;
3999  // Must set ivar's DeclContext to its enclosing interface.
4000  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4001  DeclContext *EnclosingContext;
4002  if (ObjCImplementationDecl *IMPDecl =
4003      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4004    // Case of ivar declared in an implementation. Context is that of its class.
4005    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4006    assert(IDecl && "No class- ActOnIvar");
4007    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4008  }
4009  else
4010    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4011  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4012
4013  // Construct the decl.
4014  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4015                                             EnclosingContext, Loc, II, T,ac,
4016                                             (Expr *)BitfieldWidth);
4017
4018  if (II) {
4019    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4020    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4021        && !isa<TagDecl>(PrevDecl)) {
4022      Diag(Loc, diag::err_duplicate_member) << II;
4023      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4024      NewID->setInvalidDecl();
4025    }
4026  }
4027
4028  // Process attributes attached to the ivar.
4029  ProcessDeclAttributes(S, NewID, D);
4030
4031  if (D.isInvalidType())
4032    NewID->setInvalidDecl();
4033
4034  if (II) {
4035    // FIXME: When interfaces are DeclContexts, we'll need to add
4036    // these to the interface.
4037    S->AddDecl(DeclPtrTy::make(NewID));
4038    IdResolver.AddDecl(NewID);
4039  }
4040
4041  return DeclPtrTy::make(NewID);
4042}
4043
4044void Sema::ActOnFields(Scope* S,
4045                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4046                       DeclPtrTy *Fields, unsigned NumFields,
4047                       SourceLocation LBrac, SourceLocation RBrac,
4048                       AttributeList *Attr) {
4049  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4050  assert(EnclosingDecl && "missing record or interface decl");
4051
4052  // If the decl this is being inserted into is invalid, then it may be a
4053  // redeclaration or some other bogus case.  Don't try to add fields to it.
4054  if (EnclosingDecl->isInvalidDecl()) {
4055    // FIXME: Deallocate fields?
4056    return;
4057  }
4058
4059
4060  // Verify that all the fields are okay.
4061  unsigned NumNamedMembers = 0;
4062  llvm::SmallVector<FieldDecl*, 32> RecFields;
4063
4064  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4065  for (unsigned i = 0; i != NumFields; ++i) {
4066    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4067
4068    // Get the type for the field.
4069    Type *FDTy = FD->getType().getTypePtr();
4070
4071    if (!FD->isAnonymousStructOrUnion()) {
4072      // Remember all fields written by the user.
4073      RecFields.push_back(FD);
4074    }
4075
4076    // If the field is already invalid for some reason, don't emit more
4077    // diagnostics about it.
4078    if (FD->isInvalidDecl())
4079      continue;
4080
4081    // C99 6.7.2.1p2:
4082    //   A structure or union shall not contain a member with
4083    //   incomplete or function type (hence, a structure shall not
4084    //   contain an instance of itself, but may contain a pointer to
4085    //   an instance of itself), except that the last member of a
4086    //   structure with more than one named member may have incomplete
4087    //   array type; such a structure (and any union containing,
4088    //   possibly recursively, a member that is such a structure)
4089    //   shall not be a member of a structure or an element of an
4090    //   array.
4091    if (FDTy->isFunctionType()) {
4092      // Field declared as a function.
4093      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4094        << FD->getDeclName();
4095      FD->setInvalidDecl();
4096      EnclosingDecl->setInvalidDecl();
4097      continue;
4098    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4099               Record && Record->isStruct()) {
4100      // Flexible array member.
4101      if (NumNamedMembers < 1) {
4102        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4103          << FD->getDeclName();
4104        FD->setInvalidDecl();
4105        EnclosingDecl->setInvalidDecl();
4106        continue;
4107      }
4108      // Okay, we have a legal flexible array member at the end of the struct.
4109      if (Record)
4110        Record->setHasFlexibleArrayMember(true);
4111    } else if (!FDTy->isDependentType() &&
4112               RequireCompleteType(FD->getLocation(), FD->getType(),
4113                                   diag::err_field_incomplete)) {
4114      // Incomplete type
4115      FD->setInvalidDecl();
4116      EnclosingDecl->setInvalidDecl();
4117      continue;
4118    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4119      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4120        // If this is a member of a union, then entire union becomes "flexible".
4121        if (Record && Record->isUnion()) {
4122          Record->setHasFlexibleArrayMember(true);
4123        } else {
4124          // If this is a struct/class and this is not the last element, reject
4125          // it.  Note that GCC supports variable sized arrays in the middle of
4126          // structures.
4127          if (i != NumFields-1)
4128            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4129              << FD->getDeclName() << FD->getType();
4130          else {
4131            // We support flexible arrays at the end of structs in
4132            // other structs as an extension.
4133            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4134              << FD->getDeclName();
4135            if (Record)
4136              Record->setHasFlexibleArrayMember(true);
4137          }
4138        }
4139      }
4140    } else if (FDTy->isObjCInterfaceType()) {
4141      /// A field cannot be an Objective-c object
4142      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4143      FD->setInvalidDecl();
4144      EnclosingDecl->setInvalidDecl();
4145      continue;
4146    }
4147    // Keep track of the number of named members.
4148    if (FD->getIdentifier())
4149      ++NumNamedMembers;
4150  }
4151
4152  // Okay, we successfully defined 'Record'.
4153  if (Record) {
4154    Record->completeDefinition(Context);
4155  } else {
4156    ObjCIvarDecl **ClsFields =
4157      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4158    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4159      ID->setIVarList(ClsFields, RecFields.size(), Context);
4160      ID->setLocEnd(RBrac);
4161      // Add ivar's to class's DeclContext.
4162      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4163        ClsFields[i]->setLexicalDeclContext(ID);
4164        ID->addDecl(Context, ClsFields[i]);
4165      }
4166      // Must enforce the rule that ivars in the base classes may not be
4167      // duplicates.
4168      if (ID->getSuperClass()) {
4169        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4170             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4171          ObjCIvarDecl* Ivar = (*IVI);
4172
4173          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4174            ObjCIvarDecl* prevIvar =
4175              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4176            if (prevIvar) {
4177              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4178              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4179            }
4180          }
4181        }
4182      }
4183    } else if (ObjCImplementationDecl *IMPDecl =
4184                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4185      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4186      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4187        // Ivar declared in @implementation never belongs to the implementation.
4188        // Only it is in implementation's lexical context.
4189        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4190      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4191    }
4192  }
4193
4194  if (Attr)
4195    ProcessDeclAttributeList(S, Record, Attr);
4196}
4197
4198EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4199                                          EnumConstantDecl *LastEnumConst,
4200                                          SourceLocation IdLoc,
4201                                          IdentifierInfo *Id,
4202                                          ExprArg val) {
4203  Expr *Val = (Expr *)val.get();
4204
4205  llvm::APSInt EnumVal(32);
4206  QualType EltTy;
4207  if (Val && !Val->isTypeDependent()) {
4208    // Make sure to promote the operand type to int.
4209    UsualUnaryConversions(Val);
4210    if (Val != val.get()) {
4211      val.release();
4212      val = Val;
4213    }
4214
4215    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4216    SourceLocation ExpLoc;
4217    if (!Val->isValueDependent() &&
4218        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4219      Val = 0;
4220    } else {
4221      EltTy = Val->getType();
4222    }
4223  }
4224
4225  if (!Val) {
4226    if (LastEnumConst) {
4227      // Assign the last value + 1.
4228      EnumVal = LastEnumConst->getInitVal();
4229      ++EnumVal;
4230
4231      // Check for overflow on increment.
4232      if (EnumVal < LastEnumConst->getInitVal())
4233        Diag(IdLoc, diag::warn_enum_value_overflow);
4234
4235      EltTy = LastEnumConst->getType();
4236    } else {
4237      // First value, set to zero.
4238      EltTy = Context.IntTy;
4239      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4240    }
4241  }
4242
4243  val.release();
4244  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4245                                  Val, EnumVal);
4246}
4247
4248
4249Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4250                                        DeclPtrTy lastEnumConst,
4251                                        SourceLocation IdLoc,
4252                                        IdentifierInfo *Id,
4253                                        SourceLocation EqualLoc, ExprTy *val) {
4254  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4255  EnumConstantDecl *LastEnumConst =
4256    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4257  Expr *Val = static_cast<Expr*>(val);
4258
4259  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4260  // we find one that is.
4261  S = getNonFieldDeclScope(S);
4262
4263  // Verify that there isn't already something declared with this name in this
4264  // scope.
4265  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4266  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4267    // Maybe we will complain about the shadowed template parameter.
4268    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4269    // Just pretend that we didn't see the previous declaration.
4270    PrevDecl = 0;
4271  }
4272
4273  if (PrevDecl) {
4274    // When in C++, we may get a TagDecl with the same name; in this case the
4275    // enum constant will 'hide' the tag.
4276    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4277           "Received TagDecl when not in C++!");
4278    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4279      if (isa<EnumConstantDecl>(PrevDecl))
4280        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4281      else
4282        Diag(IdLoc, diag::err_redefinition) << Id;
4283      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4284      if (Val) Val->Destroy(Context);
4285      return DeclPtrTy();
4286    }
4287  }
4288
4289  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4290                                            IdLoc, Id, Owned(Val));
4291
4292  // Register this decl in the current scope stack.
4293  if (New)
4294    PushOnScopeChains(New, S);
4295
4296  return DeclPtrTy::make(New);
4297}
4298
4299void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4300                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4301                         DeclPtrTy *Elements, unsigned NumElements) {
4302  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4303  QualType EnumType = Context.getTypeDeclType(Enum);
4304
4305  // TODO: If the result value doesn't fit in an int, it must be a long or long
4306  // long value.  ISO C does not support this, but GCC does as an extension,
4307  // emit a warning.
4308  unsigned IntWidth = Context.Target.getIntWidth();
4309
4310  // Verify that all the values are okay, compute the size of the values, and
4311  // reverse the list.
4312  unsigned NumNegativeBits = 0;
4313  unsigned NumPositiveBits = 0;
4314
4315  // Keep track of whether all elements have type int.
4316  bool AllElementsInt = true;
4317
4318  for (unsigned i = 0; i != NumElements; ++i) {
4319    EnumConstantDecl *ECD =
4320      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4321    if (!ECD) continue;  // Already issued a diagnostic.
4322
4323    // If the enum value doesn't fit in an int, emit an extension warning.
4324    const llvm::APSInt &InitVal = ECD->getInitVal();
4325    assert(InitVal.getBitWidth() >= IntWidth &&
4326           "Should have promoted value to int");
4327    if (InitVal.getBitWidth() > IntWidth) {
4328      llvm::APSInt V(InitVal);
4329      V.trunc(IntWidth);
4330      V.extend(InitVal.getBitWidth());
4331      if (V != InitVal)
4332        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4333          << InitVal.toString(10);
4334    }
4335
4336    // Keep track of the size of positive and negative values.
4337    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4338      NumPositiveBits = std::max(NumPositiveBits,
4339                                 (unsigned)InitVal.getActiveBits());
4340    else
4341      NumNegativeBits = std::max(NumNegativeBits,
4342                                 (unsigned)InitVal.getMinSignedBits());
4343
4344    // Keep track of whether every enum element has type int (very commmon).
4345    if (AllElementsInt)
4346      AllElementsInt = ECD->getType() == Context.IntTy;
4347  }
4348
4349  // Figure out the type that should be used for this enum.
4350  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4351  QualType BestType;
4352  unsigned BestWidth;
4353
4354  if (NumNegativeBits) {
4355    // If there is a negative value, figure out the smallest integer type (of
4356    // int/long/longlong) that fits.
4357    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4358      BestType = Context.IntTy;
4359      BestWidth = IntWidth;
4360    } else {
4361      BestWidth = Context.Target.getLongWidth();
4362
4363      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4364        BestType = Context.LongTy;
4365      else {
4366        BestWidth = Context.Target.getLongLongWidth();
4367
4368        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4369          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4370        BestType = Context.LongLongTy;
4371      }
4372    }
4373  } else {
4374    // If there is no negative value, figure out which of uint, ulong, ulonglong
4375    // fits.
4376    if (NumPositiveBits <= IntWidth) {
4377      BestType = Context.UnsignedIntTy;
4378      BestWidth = IntWidth;
4379    } else if (NumPositiveBits <=
4380               (BestWidth = Context.Target.getLongWidth())) {
4381      BestType = Context.UnsignedLongTy;
4382    } else {
4383      BestWidth = Context.Target.getLongLongWidth();
4384      assert(NumPositiveBits <= BestWidth &&
4385             "How could an initializer get larger than ULL?");
4386      BestType = Context.UnsignedLongLongTy;
4387    }
4388  }
4389
4390  // Loop over all of the enumerator constants, changing their types to match
4391  // the type of the enum if needed.
4392  for (unsigned i = 0; i != NumElements; ++i) {
4393    EnumConstantDecl *ECD =
4394      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4395    if (!ECD) continue;  // Already issued a diagnostic.
4396
4397    // Standard C says the enumerators have int type, but we allow, as an
4398    // extension, the enumerators to be larger than int size.  If each
4399    // enumerator value fits in an int, type it as an int, otherwise type it the
4400    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4401    // that X has type 'int', not 'unsigned'.
4402    if (ECD->getType() == Context.IntTy) {
4403      // Make sure the init value is signed.
4404      llvm::APSInt IV = ECD->getInitVal();
4405      IV.setIsSigned(true);
4406      ECD->setInitVal(IV);
4407
4408      if (getLangOptions().CPlusPlus)
4409        // C++ [dcl.enum]p4: Following the closing brace of an
4410        // enum-specifier, each enumerator has the type of its
4411        // enumeration.
4412        ECD->setType(EnumType);
4413      continue;  // Already int type.
4414    }
4415
4416    // Determine whether the value fits into an int.
4417    llvm::APSInt InitVal = ECD->getInitVal();
4418    bool FitsInInt;
4419    if (InitVal.isUnsigned() || !InitVal.isNegative())
4420      FitsInInt = InitVal.getActiveBits() < IntWidth;
4421    else
4422      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4423
4424    // If it fits into an integer type, force it.  Otherwise force it to match
4425    // the enum decl type.
4426    QualType NewTy;
4427    unsigned NewWidth;
4428    bool NewSign;
4429    if (FitsInInt) {
4430      NewTy = Context.IntTy;
4431      NewWidth = IntWidth;
4432      NewSign = true;
4433    } else if (ECD->getType() == BestType) {
4434      // Already the right type!
4435      if (getLangOptions().CPlusPlus)
4436        // C++ [dcl.enum]p4: Following the closing brace of an
4437        // enum-specifier, each enumerator has the type of its
4438        // enumeration.
4439        ECD->setType(EnumType);
4440      continue;
4441    } else {
4442      NewTy = BestType;
4443      NewWidth = BestWidth;
4444      NewSign = BestType->isSignedIntegerType();
4445    }
4446
4447    // Adjust the APSInt value.
4448    InitVal.extOrTrunc(NewWidth);
4449    InitVal.setIsSigned(NewSign);
4450    ECD->setInitVal(InitVal);
4451
4452    // Adjust the Expr initializer and type.
4453    if (ECD->getInitExpr())
4454      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4455                                                      /*isLvalue=*/false));
4456    if (getLangOptions().CPlusPlus)
4457      // C++ [dcl.enum]p4: Following the closing brace of an
4458      // enum-specifier, each enumerator has the type of its
4459      // enumeration.
4460      ECD->setType(EnumType);
4461    else
4462      ECD->setType(NewTy);
4463  }
4464
4465  Enum->completeDefinition(Context, BestType);
4466}
4467
4468Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4469                                            ExprArg expr) {
4470  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4471
4472  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4473                                                   Loc, AsmString);
4474  CurContext->addDecl(Context, New);
4475  return DeclPtrTy::make(New);
4476}
4477
4478void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4479                             SourceLocation PragmaLoc,
4480                             SourceLocation NameLoc) {
4481  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4482
4483  // FIXME: This implementation is an ugly hack!
4484  if (PrevDecl) {
4485    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4486    return;
4487  }
4488  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4489  return;
4490}
4491
4492void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4493                                IdentifierInfo* AliasName,
4494                                SourceLocation PragmaLoc,
4495                                SourceLocation NameLoc,
4496                                SourceLocation AliasNameLoc) {
4497  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4498
4499  // FIXME: This implementation is an ugly hack!
4500  if (PrevDecl) {
4501    PrevDecl->addAttr(Context, ::new (Context) AliasAttr(AliasName->getName()));
4502    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4503    return;
4504  }
4505  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4506  return;
4507}
4508