SemaDecl.cpp revision 36eb5e43bcdbe291da4df696755009ffd6a35ac2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext() ||
561      D->getLexicalDeclContext()->isDependentContext())
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition() &&
579        Context.DeclMustBeEmitted(FD))
580      return false;
581
582  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
583    if (!VD->isFileVarDecl() ||
584        VD->getType().isConstant(Context) ||
585        Context.DeclMustBeEmitted(VD))
586      return false;
587
588    if (VD->isStaticDataMember() &&
589        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
590      return false;
591
592  } else {
593    return false;
594  }
595
596  // Only warn for unused decls internal to the translation unit.
597  if (D->getLinkage() == ExternalLinkage)
598    return false;
599
600  return true;
601}
602
603void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
604  if (!D)
605    return;
606
607  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
608    const FunctionDecl *First = FD->getFirstDeclaration();
609    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
610      return; // First should already be in the vector.
611  }
612
613  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
614    const VarDecl *First = VD->getFirstDeclaration();
615    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
616      return; // First should already be in the vector.
617  }
618
619   if (ShouldWarnIfUnusedFileScopedDecl(D))
620     UnusedFileScopedDecls.push_back(D);
621 }
622
623static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
624  if (D->isInvalidDecl())
625    return false;
626
627  if (D->isUsed() || D->hasAttr<UnusedAttr>())
628    return false;
629
630  // White-list anything that isn't a local variable.
631  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
632      !D->getDeclContext()->isFunctionOrMethod())
633    return false;
634
635  // Types of valid local variables should be complete, so this should succeed.
636  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
637
638    // White-list anything with an __attribute__((unused)) type.
639    QualType Ty = VD->getType();
640
641    // Only look at the outermost level of typedef.
642    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
643      if (TT->getDecl()->hasAttr<UnusedAttr>())
644        return false;
645    }
646
647    // If we failed to complete the type for some reason, or if the type is
648    // dependent, don't diagnose the variable.
649    if (Ty->isIncompleteType() || Ty->isDependentType())
650      return false;
651
652    if (const TagType *TT = Ty->getAs<TagType>()) {
653      const TagDecl *Tag = TT->getDecl();
654      if (Tag->hasAttr<UnusedAttr>())
655        return false;
656
657      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
658        // FIXME: Checking for the presence of a user-declared constructor
659        // isn't completely accurate; we'd prefer to check that the initializer
660        // has no side effects.
661        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
662          return false;
663      }
664    }
665
666    // TODO: __attribute__((unused)) templates?
667  }
668
669  return true;
670}
671
672void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
673  if (!ShouldDiagnoseUnusedDecl(D))
674    return;
675
676  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
677    Diag(D->getLocation(), diag::warn_unused_exception_param)
678    << D->getDeclName();
679  else
680    Diag(D->getLocation(), diag::warn_unused_variable)
681    << D->getDeclName();
682}
683
684void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
685  if (S->decl_empty()) return;
686  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
687         "Scope shouldn't contain decls!");
688
689  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
690       I != E; ++I) {
691    Decl *TmpD = (*I);
692    assert(TmpD && "This decl didn't get pushed??");
693
694    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
695    NamedDecl *D = cast<NamedDecl>(TmpD);
696
697    if (!D->getDeclName()) continue;
698
699    // Diagnose unused variables in this scope.
700    if (!S->hasErrorOccurred())
701      DiagnoseUnusedDecl(D);
702
703    // Remove this name from our lexical scope.
704    IdResolver.RemoveDecl(D);
705  }
706}
707
708/// \brief Look for an Objective-C class in the translation unit.
709///
710/// \param Id The name of the Objective-C class we're looking for. If
711/// typo-correction fixes this name, the Id will be updated
712/// to the fixed name.
713///
714/// \param IdLoc The location of the name in the translation unit.
715///
716/// \param TypoCorrection If true, this routine will attempt typo correction
717/// if there is no class with the given name.
718///
719/// \returns The declaration of the named Objective-C class, or NULL if the
720/// class could not be found.
721ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
722                                              SourceLocation IdLoc,
723                                              bool TypoCorrection) {
724  // The third "scope" argument is 0 since we aren't enabling lazy built-in
725  // creation from this context.
726  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
727
728  if (!IDecl && TypoCorrection) {
729    // Perform typo correction at the given location, but only if we
730    // find an Objective-C class name.
731    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
732    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
733        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
734      Diag(IdLoc, diag::err_undef_interface_suggest)
735        << Id << IDecl->getDeclName()
736        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
737      Diag(IDecl->getLocation(), diag::note_previous_decl)
738        << IDecl->getDeclName();
739
740      Id = IDecl->getIdentifier();
741    }
742  }
743
744  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
745}
746
747/// getNonFieldDeclScope - Retrieves the innermost scope, starting
748/// from S, where a non-field would be declared. This routine copes
749/// with the difference between C and C++ scoping rules in structs and
750/// unions. For example, the following code is well-formed in C but
751/// ill-formed in C++:
752/// @code
753/// struct S6 {
754///   enum { BAR } e;
755/// };
756///
757/// void test_S6() {
758///   struct S6 a;
759///   a.e = BAR;
760/// }
761/// @endcode
762/// For the declaration of BAR, this routine will return a different
763/// scope. The scope S will be the scope of the unnamed enumeration
764/// within S6. In C++, this routine will return the scope associated
765/// with S6, because the enumeration's scope is a transparent
766/// context but structures can contain non-field names. In C, this
767/// routine will return the translation unit scope, since the
768/// enumeration's scope is a transparent context and structures cannot
769/// contain non-field names.
770Scope *Sema::getNonFieldDeclScope(Scope *S) {
771  while (((S->getFlags() & Scope::DeclScope) == 0) ||
772         (S->getEntity() &&
773          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
774         (S->isClassScope() && !getLangOptions().CPlusPlus))
775    S = S->getParent();
776  return S;
777}
778
779/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
780/// file scope.  lazily create a decl for it. ForRedeclaration is true
781/// if we're creating this built-in in anticipation of redeclaring the
782/// built-in.
783NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
784                                     Scope *S, bool ForRedeclaration,
785                                     SourceLocation Loc) {
786  Builtin::ID BID = (Builtin::ID)bid;
787
788  ASTContext::GetBuiltinTypeError Error;
789  QualType R = Context.GetBuiltinType(BID, Error);
790  switch (Error) {
791  case ASTContext::GE_None:
792    // Okay
793    break;
794
795  case ASTContext::GE_Missing_stdio:
796    if (ForRedeclaration)
797      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
798        << Context.BuiltinInfo.GetName(BID);
799    return 0;
800
801  case ASTContext::GE_Missing_setjmp:
802    if (ForRedeclaration)
803      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
804        << Context.BuiltinInfo.GetName(BID);
805    return 0;
806  }
807
808  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
809    Diag(Loc, diag::ext_implicit_lib_function_decl)
810      << Context.BuiltinInfo.GetName(BID)
811      << R;
812    if (Context.BuiltinInfo.getHeaderName(BID) &&
813        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
814          != Diagnostic::Ignored)
815      Diag(Loc, diag::note_please_include_header)
816        << Context.BuiltinInfo.getHeaderName(BID)
817        << Context.BuiltinInfo.GetName(BID);
818  }
819
820  FunctionDecl *New = FunctionDecl::Create(Context,
821                                           Context.getTranslationUnitDecl(),
822                                           Loc, II, R, /*TInfo=*/0,
823                                           SC_Extern,
824                                           SC_None, false,
825                                           /*hasPrototype=*/true);
826  New->setImplicit();
827
828  // Create Decl objects for each parameter, adding them to the
829  // FunctionDecl.
830  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
831    llvm::SmallVector<ParmVarDecl*, 16> Params;
832    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
833      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
834                                           FT->getArgType(i), /*TInfo=*/0,
835                                           SC_None, SC_None, 0));
836    New->setParams(Params.data(), Params.size());
837  }
838
839  AddKnownFunctionAttributes(New);
840
841  // TUScope is the translation-unit scope to insert this function into.
842  // FIXME: This is hideous. We need to teach PushOnScopeChains to
843  // relate Scopes to DeclContexts, and probably eliminate CurContext
844  // entirely, but we're not there yet.
845  DeclContext *SavedContext = CurContext;
846  CurContext = Context.getTranslationUnitDecl();
847  PushOnScopeChains(New, TUScope);
848  CurContext = SavedContext;
849  return New;
850}
851
852/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
853/// same name and scope as a previous declaration 'Old'.  Figure out
854/// how to resolve this situation, merging decls or emitting
855/// diagnostics as appropriate. If there was an error, set New to be invalid.
856///
857void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
858  // If the new decl is known invalid already, don't bother doing any
859  // merging checks.
860  if (New->isInvalidDecl()) return;
861
862  // Allow multiple definitions for ObjC built-in typedefs.
863  // FIXME: Verify the underlying types are equivalent!
864  if (getLangOptions().ObjC1) {
865    const IdentifierInfo *TypeID = New->getIdentifier();
866    switch (TypeID->getLength()) {
867    default: break;
868    case 2:
869      if (!TypeID->isStr("id"))
870        break;
871      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
872      // Install the built-in type for 'id', ignoring the current definition.
873      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
874      return;
875    case 5:
876      if (!TypeID->isStr("Class"))
877        break;
878      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'Class', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
881      return;
882    case 3:
883      if (!TypeID->isStr("SEL"))
884        break;
885      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'SEL', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
888      return;
889    case 8:
890      if (!TypeID->isStr("Protocol"))
891        break;
892      Context.setObjCProtoType(New->getUnderlyingType());
893      return;
894    }
895    // Fall through - the typedef name was not a builtin type.
896  }
897
898  // Verify the old decl was also a type.
899  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
900  if (!Old) {
901    Diag(New->getLocation(), diag::err_redefinition_different_kind)
902      << New->getDeclName();
903
904    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
905    if (OldD->getLocation().isValid())
906      Diag(OldD->getLocation(), diag::note_previous_definition);
907
908    return New->setInvalidDecl();
909  }
910
911  // If the old declaration is invalid, just give up here.
912  if (Old->isInvalidDecl())
913    return New->setInvalidDecl();
914
915  // Determine the "old" type we'll use for checking and diagnostics.
916  QualType OldType;
917  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
918    OldType = OldTypedef->getUnderlyingType();
919  else
920    OldType = Context.getTypeDeclType(Old);
921
922  // If the typedef types are not identical, reject them in all languages and
923  // with any extensions enabled.
924
925  if (OldType != New->getUnderlyingType() &&
926      Context.getCanonicalType(OldType) !=
927      Context.getCanonicalType(New->getUnderlyingType())) {
928    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
929      << New->getUnderlyingType() << OldType;
930    if (Old->getLocation().isValid())
931      Diag(Old->getLocation(), diag::note_previous_definition);
932    return New->setInvalidDecl();
933  }
934
935  // The types match.  Link up the redeclaration chain if the old
936  // declaration was a typedef.
937  // FIXME: this is a potential source of wierdness if the type
938  // spellings don't match exactly.
939  if (isa<TypedefDecl>(Old))
940    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
941
942  if (getLangOptions().Microsoft)
943    return;
944
945  if (getLangOptions().CPlusPlus) {
946    // C++ [dcl.typedef]p2:
947    //   In a given non-class scope, a typedef specifier can be used to
948    //   redefine the name of any type declared in that scope to refer
949    //   to the type to which it already refers.
950    if (!isa<CXXRecordDecl>(CurContext))
951      return;
952
953    // C++0x [dcl.typedef]p4:
954    //   In a given class scope, a typedef specifier can be used to redefine
955    //   any class-name declared in that scope that is not also a typedef-name
956    //   to refer to the type to which it already refers.
957    //
958    // This wording came in via DR424, which was a correction to the
959    // wording in DR56, which accidentally banned code like:
960    //
961    //   struct S {
962    //     typedef struct A { } A;
963    //   };
964    //
965    // in the C++03 standard. We implement the C++0x semantics, which
966    // allow the above but disallow
967    //
968    //   struct S {
969    //     typedef int I;
970    //     typedef int I;
971    //   };
972    //
973    // since that was the intent of DR56.
974    if (!isa<TypedefDecl >(Old))
975      return;
976
977    Diag(New->getLocation(), diag::err_redefinition)
978      << New->getDeclName();
979    Diag(Old->getLocation(), diag::note_previous_definition);
980    return New->setInvalidDecl();
981  }
982
983  // If we have a redefinition of a typedef in C, emit a warning.  This warning
984  // is normally mapped to an error, but can be controlled with
985  // -Wtypedef-redefinition.  If either the original or the redefinition is
986  // in a system header, don't emit this for compatibility with GCC.
987  if (getDiagnostics().getSuppressSystemWarnings() &&
988      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
989       Context.getSourceManager().isInSystemHeader(New->getLocation())))
990    return;
991
992  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
993    << New->getDeclName();
994  Diag(Old->getLocation(), diag::note_previous_definition);
995  return;
996}
997
998/// DeclhasAttr - returns true if decl Declaration already has the target
999/// attribute.
1000static bool
1001DeclHasAttr(const Decl *D, const Attr *A) {
1002  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1003  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1004    if ((*i)->getKind() == A->getKind()) {
1005      // FIXME: Don't hardcode this check
1006      if (OA && isa<OwnershipAttr>(*i))
1007        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1008      return true;
1009    }
1010
1011  return false;
1012}
1013
1014/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1015static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1016  if (!Old->hasAttrs())
1017    return;
1018  // Ensure that any moving of objects within the allocated map is done before
1019  // we process them.
1020  if (!New->hasAttrs())
1021    New->setAttrs(AttrVec());
1022  for (specific_attr_iterator<InheritableAttr>
1023       i = Old->specific_attr_begin<InheritableAttr>(),
1024       e = Old->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1025    if (!DeclHasAttr(New, *i)) {
1026      InheritableAttr *NewAttr = cast<InheritableAttr>((*i)->clone(C));
1027      NewAttr->setInherited(true);
1028      New->addAttr(NewAttr);
1029    }
1030  }
1031}
1032
1033namespace {
1034
1035/// Used in MergeFunctionDecl to keep track of function parameters in
1036/// C.
1037struct GNUCompatibleParamWarning {
1038  ParmVarDecl *OldParm;
1039  ParmVarDecl *NewParm;
1040  QualType PromotedType;
1041};
1042
1043}
1044
1045/// getSpecialMember - get the special member enum for a method.
1046Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1047  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1048    if (Ctor->isCopyConstructor())
1049      return Sema::CXXCopyConstructor;
1050
1051    return Sema::CXXConstructor;
1052  }
1053
1054  if (isa<CXXDestructorDecl>(MD))
1055    return Sema::CXXDestructor;
1056
1057  assert(MD->isCopyAssignmentOperator() &&
1058         "Must have copy assignment operator");
1059  return Sema::CXXCopyAssignment;
1060}
1061
1062/// canRedefineFunction - checks if a function can be redefined. Currently,
1063/// only extern inline functions can be redefined, and even then only in
1064/// GNU89 mode.
1065static bool canRedefineFunction(const FunctionDecl *FD,
1066                                const LangOptions& LangOpts) {
1067  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1068          FD->isInlineSpecified() &&
1069          FD->getStorageClass() == SC_Extern);
1070}
1071
1072/// MergeFunctionDecl - We just parsed a function 'New' from
1073/// declarator D which has the same name and scope as a previous
1074/// declaration 'Old'.  Figure out how to resolve this situation,
1075/// merging decls or emitting diagnostics as appropriate.
1076///
1077/// In C++, New and Old must be declarations that are not
1078/// overloaded. Use IsOverload to determine whether New and Old are
1079/// overloaded, and to select the Old declaration that New should be
1080/// merged with.
1081///
1082/// Returns true if there was an error, false otherwise.
1083bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1084  // Verify the old decl was also a function.
1085  FunctionDecl *Old = 0;
1086  if (FunctionTemplateDecl *OldFunctionTemplate
1087        = dyn_cast<FunctionTemplateDecl>(OldD))
1088    Old = OldFunctionTemplate->getTemplatedDecl();
1089  else
1090    Old = dyn_cast<FunctionDecl>(OldD);
1091  if (!Old) {
1092    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1093      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1094      Diag(Shadow->getTargetDecl()->getLocation(),
1095           diag::note_using_decl_target);
1096      Diag(Shadow->getUsingDecl()->getLocation(),
1097           diag::note_using_decl) << 0;
1098      return true;
1099    }
1100
1101    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1102      << New->getDeclName();
1103    Diag(OldD->getLocation(), diag::note_previous_definition);
1104    return true;
1105  }
1106
1107  // Determine whether the previous declaration was a definition,
1108  // implicit declaration, or a declaration.
1109  diag::kind PrevDiag;
1110  if (Old->isThisDeclarationADefinition())
1111    PrevDiag = diag::note_previous_definition;
1112  else if (Old->isImplicit())
1113    PrevDiag = diag::note_previous_implicit_declaration;
1114  else
1115    PrevDiag = diag::note_previous_declaration;
1116
1117  QualType OldQType = Context.getCanonicalType(Old->getType());
1118  QualType NewQType = Context.getCanonicalType(New->getType());
1119
1120  // Don't complain about this if we're in GNU89 mode and the old function
1121  // is an extern inline function.
1122  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1123      New->getStorageClass() == SC_Static &&
1124      Old->getStorageClass() != SC_Static &&
1125      !canRedefineFunction(Old, getLangOptions())) {
1126    Diag(New->getLocation(), diag::err_static_non_static)
1127      << New;
1128    Diag(Old->getLocation(), PrevDiag);
1129    return true;
1130  }
1131
1132  // If a function is first declared with a calling convention, but is
1133  // later declared or defined without one, the second decl assumes the
1134  // calling convention of the first.
1135  //
1136  // For the new decl, we have to look at the NON-canonical type to tell the
1137  // difference between a function that really doesn't have a calling
1138  // convention and one that is declared cdecl. That's because in
1139  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1140  // because it is the default calling convention.
1141  //
1142  // Note also that we DO NOT return at this point, because we still have
1143  // other tests to run.
1144  const FunctionType *OldType = cast<FunctionType>(OldQType);
1145  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1146  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1147  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1148  bool RequiresAdjustment = false;
1149  if (OldTypeInfo.getCC() != CC_Default &&
1150      NewTypeInfo.getCC() == CC_Default) {
1151    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1152    RequiresAdjustment = true;
1153  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1154                                     NewTypeInfo.getCC())) {
1155    // Calling conventions really aren't compatible, so complain.
1156    Diag(New->getLocation(), diag::err_cconv_change)
1157      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1158      << (OldTypeInfo.getCC() == CC_Default)
1159      << (OldTypeInfo.getCC() == CC_Default ? "" :
1160          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1161    Diag(Old->getLocation(), diag::note_previous_declaration);
1162    return true;
1163  }
1164
1165  // FIXME: diagnose the other way around?
1166  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1167    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1168    RequiresAdjustment = true;
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1173    if (NewTypeInfo.getRegParm()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1182    RequiresAdjustment = true;
1183  }
1184
1185  if (RequiresAdjustment) {
1186    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1187    New->setType(QualType(NewType, 0));
1188    NewQType = Context.getCanonicalType(New->getType());
1189  }
1190
1191  if (getLangOptions().CPlusPlus) {
1192    // (C++98 13.1p2):
1193    //   Certain function declarations cannot be overloaded:
1194    //     -- Function declarations that differ only in the return type
1195    //        cannot be overloaded.
1196    QualType OldReturnType = OldType->getResultType();
1197    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1198    QualType ResQT;
1199    if (OldReturnType != NewReturnType) {
1200      if (NewReturnType->isObjCObjectPointerType()
1201          && OldReturnType->isObjCObjectPointerType())
1202        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1203      if (ResQT.isNull()) {
1204        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1205        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1206        return true;
1207      }
1208      else
1209        NewQType = ResQT;
1210    }
1211
1212    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1213    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1214    if (OldMethod && NewMethod) {
1215      // Preserve triviality.
1216      NewMethod->setTrivial(OldMethod->isTrivial());
1217
1218      bool isFriend = NewMethod->getFriendObjectKind();
1219
1220      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1221        //    -- Member function declarations with the same name and the
1222        //       same parameter types cannot be overloaded if any of them
1223        //       is a static member function declaration.
1224        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1225          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1226          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1227          return true;
1228        }
1229
1230        // C++ [class.mem]p1:
1231        //   [...] A member shall not be declared twice in the
1232        //   member-specification, except that a nested class or member
1233        //   class template can be declared and then later defined.
1234        unsigned NewDiag;
1235        if (isa<CXXConstructorDecl>(OldMethod))
1236          NewDiag = diag::err_constructor_redeclared;
1237        else if (isa<CXXDestructorDecl>(NewMethod))
1238          NewDiag = diag::err_destructor_redeclared;
1239        else if (isa<CXXConversionDecl>(NewMethod))
1240          NewDiag = diag::err_conv_function_redeclared;
1241        else
1242          NewDiag = diag::err_member_redeclared;
1243
1244        Diag(New->getLocation(), NewDiag);
1245        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1246
1247      // Complain if this is an explicit declaration of a special
1248      // member that was initially declared implicitly.
1249      //
1250      // As an exception, it's okay to befriend such methods in order
1251      // to permit the implicit constructor/destructor/operator calls.
1252      } else if (OldMethod->isImplicit()) {
1253        if (isFriend) {
1254          NewMethod->setImplicit();
1255        } else {
1256          Diag(NewMethod->getLocation(),
1257               diag::err_definition_of_implicitly_declared_member)
1258            << New << getSpecialMember(OldMethod);
1259          return true;
1260        }
1261      }
1262    }
1263
1264    // (C++98 8.3.5p3):
1265    //   All declarations for a function shall agree exactly in both the
1266    //   return type and the parameter-type-list.
1267    // We also want to respect all the extended bits except noreturn.
1268
1269    // noreturn should now match unless the old type info didn't have it.
1270    QualType OldQTypeForComparison = OldQType;
1271    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1272      assert(OldQType == QualType(OldType, 0));
1273      const FunctionType *OldTypeForComparison
1274        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1275      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1276      assert(OldQTypeForComparison.isCanonical());
1277    }
1278
1279    if (OldQTypeForComparison == NewQType)
1280      return MergeCompatibleFunctionDecls(New, Old);
1281
1282    // Fall through for conflicting redeclarations and redefinitions.
1283  }
1284
1285  // C: Function types need to be compatible, not identical. This handles
1286  // duplicate function decls like "void f(int); void f(enum X);" properly.
1287  if (!getLangOptions().CPlusPlus &&
1288      Context.typesAreCompatible(OldQType, NewQType)) {
1289    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1290    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1291    const FunctionProtoType *OldProto = 0;
1292    if (isa<FunctionNoProtoType>(NewFuncType) &&
1293        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1294      // The old declaration provided a function prototype, but the
1295      // new declaration does not. Merge in the prototype.
1296      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1297      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1298                                                 OldProto->arg_type_end());
1299      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1300                                         ParamTypes.data(), ParamTypes.size(),
1301                                         OldProto->getExtProtoInfo());
1302      New->setType(NewQType);
1303      New->setHasInheritedPrototype();
1304
1305      // Synthesize a parameter for each argument type.
1306      llvm::SmallVector<ParmVarDecl*, 16> Params;
1307      for (FunctionProtoType::arg_type_iterator
1308             ParamType = OldProto->arg_type_begin(),
1309             ParamEnd = OldProto->arg_type_end();
1310           ParamType != ParamEnd; ++ParamType) {
1311        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312                                                 SourceLocation(), 0,
1313                                                 *ParamType, /*TInfo=*/0,
1314                                                 SC_None, SC_None,
1315                                                 0);
1316        Param->setImplicit();
1317        Params.push_back(Param);
1318      }
1319
1320      New->setParams(Params.data(), Params.size());
1321    }
1322
1323    return MergeCompatibleFunctionDecls(New, Old);
1324  }
1325
1326  // GNU C permits a K&R definition to follow a prototype declaration
1327  // if the declared types of the parameters in the K&R definition
1328  // match the types in the prototype declaration, even when the
1329  // promoted types of the parameters from the K&R definition differ
1330  // from the types in the prototype. GCC then keeps the types from
1331  // the prototype.
1332  //
1333  // If a variadic prototype is followed by a non-variadic K&R definition,
1334  // the K&R definition becomes variadic.  This is sort of an edge case, but
1335  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336  // C99 6.9.1p8.
1337  if (!getLangOptions().CPlusPlus &&
1338      Old->hasPrototype() && !New->hasPrototype() &&
1339      New->getType()->getAs<FunctionProtoType>() &&
1340      Old->getNumParams() == New->getNumParams()) {
1341    llvm::SmallVector<QualType, 16> ArgTypes;
1342    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343    const FunctionProtoType *OldProto
1344      = Old->getType()->getAs<FunctionProtoType>();
1345    const FunctionProtoType *NewProto
1346      = New->getType()->getAs<FunctionProtoType>();
1347
1348    // Determine whether this is the GNU C extension.
1349    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350                                               NewProto->getResultType());
1351    bool LooseCompatible = !MergedReturn.isNull();
1352    for (unsigned Idx = 0, End = Old->getNumParams();
1353         LooseCompatible && Idx != End; ++Idx) {
1354      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356      if (Context.typesAreCompatible(OldParm->getType(),
1357                                     NewProto->getArgType(Idx))) {
1358        ArgTypes.push_back(NewParm->getType());
1359      } else if (Context.typesAreCompatible(OldParm->getType(),
1360                                            NewParm->getType(),
1361                                            /*CompareUnqualified=*/true)) {
1362        GNUCompatibleParamWarning Warn
1363          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364        Warnings.push_back(Warn);
1365        ArgTypes.push_back(NewParm->getType());
1366      } else
1367        LooseCompatible = false;
1368    }
1369
1370    if (LooseCompatible) {
1371      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372        Diag(Warnings[Warn].NewParm->getLocation(),
1373             diag::ext_param_promoted_not_compatible_with_prototype)
1374          << Warnings[Warn].PromotedType
1375          << Warnings[Warn].OldParm->getType();
1376        if (Warnings[Warn].OldParm->getLocation().isValid())
1377          Diag(Warnings[Warn].OldParm->getLocation(),
1378               diag::note_previous_declaration);
1379      }
1380
1381      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382                                           ArgTypes.size(),
1383                                           OldProto->getExtProtoInfo()));
1384      return MergeCompatibleFunctionDecls(New, Old);
1385    }
1386
1387    // Fall through to diagnose conflicting types.
1388  }
1389
1390  // A function that has already been declared has been redeclared or defined
1391  // with a different type- show appropriate diagnostic
1392  if (unsigned BuiltinID = Old->getBuiltinID()) {
1393    // The user has declared a builtin function with an incompatible
1394    // signature.
1395    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1396      // The function the user is redeclaring is a library-defined
1397      // function like 'malloc' or 'printf'. Warn about the
1398      // redeclaration, then pretend that we don't know about this
1399      // library built-in.
1400      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1401      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1402        << Old << Old->getType();
1403      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1404      Old->setInvalidDecl();
1405      return false;
1406    }
1407
1408    PrevDiag = diag::note_previous_builtin_declaration;
1409  }
1410
1411  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1412  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1413  return true;
1414}
1415
1416/// \brief Completes the merge of two function declarations that are
1417/// known to be compatible.
1418///
1419/// This routine handles the merging of attributes and other
1420/// properties of function declarations form the old declaration to
1421/// the new declaration, once we know that New is in fact a
1422/// redeclaration of Old.
1423///
1424/// \returns false
1425bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1426  // Merge the attributes
1427  MergeDeclAttributes(New, Old, Context);
1428
1429  // Merge the storage class.
1430  if (Old->getStorageClass() != SC_Extern &&
1431      Old->getStorageClass() != SC_None)
1432    New->setStorageClass(Old->getStorageClass());
1433
1434  // Merge "pure" flag.
1435  if (Old->isPure())
1436    New->setPure();
1437
1438  // Merge the "deleted" flag.
1439  if (Old->isDeleted())
1440    New->setDeleted();
1441
1442  if (getLangOptions().CPlusPlus)
1443    return MergeCXXFunctionDecl(New, Old);
1444
1445  return false;
1446}
1447
1448/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1449/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1450/// situation, merging decls or emitting diagnostics as appropriate.
1451///
1452/// Tentative definition rules (C99 6.9.2p2) are checked by
1453/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1454/// definitions here, since the initializer hasn't been attached.
1455///
1456void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1457  // If the new decl is already invalid, don't do any other checking.
1458  if (New->isInvalidDecl())
1459    return;
1460
1461  // Verify the old decl was also a variable.
1462  VarDecl *Old = 0;
1463  if (!Previous.isSingleResult() ||
1464      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1465    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1466      << New->getDeclName();
1467    Diag(Previous.getRepresentativeDecl()->getLocation(),
1468         diag::note_previous_definition);
1469    return New->setInvalidDecl();
1470  }
1471
1472  // C++ [class.mem]p1:
1473  //   A member shall not be declared twice in the member-specification [...]
1474  //
1475  // Here, we need only consider static data members.
1476  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1477    Diag(New->getLocation(), diag::err_duplicate_member)
1478      << New->getIdentifier();
1479    Diag(Old->getLocation(), diag::note_previous_declaration);
1480    New->setInvalidDecl();
1481  }
1482
1483  MergeDeclAttributes(New, Old, Context);
1484
1485  // Merge the types
1486  QualType MergedT;
1487  if (getLangOptions().CPlusPlus) {
1488    if (Context.hasSameType(New->getType(), Old->getType()))
1489      MergedT = New->getType();
1490    // C++ [basic.link]p10:
1491    //   [...] the types specified by all declarations referring to a given
1492    //   object or function shall be identical, except that declarations for an
1493    //   array object can specify array types that differ by the presence or
1494    //   absence of a major array bound (8.3.4).
1495    else if (Old->getType()->isIncompleteArrayType() &&
1496             New->getType()->isArrayType()) {
1497      CanQual<ArrayType> OldArray
1498        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499      CanQual<ArrayType> NewArray
1500        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501      if (OldArray->getElementType() == NewArray->getElementType())
1502        MergedT = New->getType();
1503    } else if (Old->getType()->isArrayType() &&
1504             New->getType()->isIncompleteArrayType()) {
1505      CanQual<ArrayType> OldArray
1506        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1507      CanQual<ArrayType> NewArray
1508        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1509      if (OldArray->getElementType() == NewArray->getElementType())
1510        MergedT = Old->getType();
1511    } else if (New->getType()->isObjCObjectPointerType()
1512               && Old->getType()->isObjCObjectPointerType()) {
1513        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1514    }
1515  } else {
1516    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1517  }
1518  if (MergedT.isNull()) {
1519    Diag(New->getLocation(), diag::err_redefinition_different_type)
1520      << New->getDeclName();
1521    Diag(Old->getLocation(), diag::note_previous_definition);
1522    return New->setInvalidDecl();
1523  }
1524  New->setType(MergedT);
1525
1526  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1527  if (New->getStorageClass() == SC_Static &&
1528      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1529    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1530    Diag(Old->getLocation(), diag::note_previous_definition);
1531    return New->setInvalidDecl();
1532  }
1533  // C99 6.2.2p4:
1534  //   For an identifier declared with the storage-class specifier
1535  //   extern in a scope in which a prior declaration of that
1536  //   identifier is visible,23) if the prior declaration specifies
1537  //   internal or external linkage, the linkage of the identifier at
1538  //   the later declaration is the same as the linkage specified at
1539  //   the prior declaration. If no prior declaration is visible, or
1540  //   if the prior declaration specifies no linkage, then the
1541  //   identifier has external linkage.
1542  if (New->hasExternalStorage() && Old->hasLinkage())
1543    /* Okay */;
1544  else if (New->getStorageClass() != SC_Static &&
1545           Old->getStorageClass() == SC_Static) {
1546    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1547    Diag(Old->getLocation(), diag::note_previous_definition);
1548    return New->setInvalidDecl();
1549  }
1550
1551  // Check if extern is followed by non-extern and vice-versa.
1552  if (New->hasExternalStorage() &&
1553      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1554    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1555    Diag(Old->getLocation(), diag::note_previous_definition);
1556    return New->setInvalidDecl();
1557  }
1558  if (Old->hasExternalStorage() &&
1559      !New->hasLinkage() && New->isLocalVarDecl()) {
1560    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562    return New->setInvalidDecl();
1563  }
1564
1565  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1566
1567  // FIXME: The test for external storage here seems wrong? We still
1568  // need to check for mismatches.
1569  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1570      // Don't complain about out-of-line definitions of static members.
1571      !(Old->getLexicalDeclContext()->isRecord() &&
1572        !New->getLexicalDeclContext()->isRecord())) {
1573    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1574    Diag(Old->getLocation(), diag::note_previous_definition);
1575    return New->setInvalidDecl();
1576  }
1577
1578  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1579    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1580    Diag(Old->getLocation(), diag::note_previous_definition);
1581  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1582    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1583    Diag(Old->getLocation(), diag::note_previous_definition);
1584  }
1585
1586  // C++ doesn't have tentative definitions, so go right ahead and check here.
1587  const VarDecl *Def;
1588  if (getLangOptions().CPlusPlus &&
1589      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1590      (Def = Old->getDefinition())) {
1591    Diag(New->getLocation(), diag::err_redefinition)
1592      << New->getDeclName();
1593    Diag(Def->getLocation(), diag::note_previous_definition);
1594    New->setInvalidDecl();
1595    return;
1596  }
1597  // c99 6.2.2 P4.
1598  // For an identifier declared with the storage-class specifier extern in a
1599  // scope in which a prior declaration of that identifier is visible, if
1600  // the prior declaration specifies internal or external linkage, the linkage
1601  // of the identifier at the later declaration is the same as the linkage
1602  // specified at the prior declaration.
1603  // FIXME. revisit this code.
1604  if (New->hasExternalStorage() &&
1605      Old->getLinkage() == InternalLinkage &&
1606      New->getDeclContext() == Old->getDeclContext())
1607    New->setStorageClass(Old->getStorageClass());
1608
1609  // Keep a chain of previous declarations.
1610  New->setPreviousDeclaration(Old);
1611
1612  // Inherit access appropriately.
1613  New->setAccess(Old->getAccess());
1614}
1615
1616/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1617/// no declarator (e.g. "struct foo;") is parsed.
1618Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1619                                            DeclSpec &DS) {
1620  // FIXME: Error on inline/virtual/explicit
1621  // FIXME: Warn on useless __thread
1622  // FIXME: Warn on useless const/volatile
1623  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1624  // FIXME: Warn on useless attributes
1625  Decl *TagD = 0;
1626  TagDecl *Tag = 0;
1627  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1628      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1629      DS.getTypeSpecType() == DeclSpec::TST_union ||
1630      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1631    TagD = DS.getRepAsDecl();
1632
1633    if (!TagD) // We probably had an error
1634      return 0;
1635
1636    // Note that the above type specs guarantee that the
1637    // type rep is a Decl, whereas in many of the others
1638    // it's a Type.
1639    Tag = dyn_cast<TagDecl>(TagD);
1640  }
1641
1642  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1643    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1644    // or incomplete types shall not be restrict-qualified."
1645    if (TypeQuals & DeclSpec::TQ_restrict)
1646      Diag(DS.getRestrictSpecLoc(),
1647           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1648           << DS.getSourceRange();
1649  }
1650
1651  if (DS.isFriendSpecified()) {
1652    // If we're dealing with a decl but not a TagDecl, assume that
1653    // whatever routines created it handled the friendship aspect.
1654    if (TagD && !Tag)
1655      return 0;
1656    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1657  }
1658
1659  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1660    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1661
1662    if (!Record->getDeclName() && Record->isDefinition() &&
1663        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1664      if (getLangOptions().CPlusPlus ||
1665          Record->getDeclContext()->isRecord())
1666        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1667
1668      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1669        << DS.getSourceRange();
1670    }
1671  }
1672
1673  // Check for Microsoft C extension: anonymous struct.
1674  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1675      CurContext->isRecord() &&
1676      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1677    // Handle 2 kinds of anonymous struct:
1678    //   struct STRUCT;
1679    // and
1680    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1681    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1682    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1683        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1684         DS.getRepAsType().get()->isStructureType())) {
1685      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1686        << DS.getSourceRange();
1687      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1688    }
1689  }
1690
1691  if (getLangOptions().CPlusPlus &&
1692      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1693    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1694      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1695          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1696        Diag(Enum->getLocation(), diag::ext_no_declarators)
1697          << DS.getSourceRange();
1698
1699  if (!DS.isMissingDeclaratorOk() &&
1700      DS.getTypeSpecType() != DeclSpec::TST_error) {
1701    // Warn about typedefs of enums without names, since this is an
1702    // extension in both Microsoft and GNU.
1703    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1704        Tag && isa<EnumDecl>(Tag)) {
1705      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1706        << DS.getSourceRange();
1707      return Tag;
1708    }
1709
1710    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1711      << DS.getSourceRange();
1712  }
1713
1714  return TagD;
1715}
1716
1717/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1718/// builds a statement for it and returns it so it is evaluated.
1719StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1720  StmtResult R;
1721  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1722    Expr *Exp = DS.getRepAsExpr();
1723    QualType Ty = Exp->getType();
1724    if (Ty->isPointerType()) {
1725      do
1726        Ty = Ty->getAs<PointerType>()->getPointeeType();
1727      while (Ty->isPointerType());
1728    }
1729    if (Ty->isVariableArrayType()) {
1730      R = ActOnExprStmt(MakeFullExpr(Exp));
1731    }
1732  }
1733  return R;
1734}
1735
1736/// We are trying to inject an anonymous member into the given scope;
1737/// check if there's an existing declaration that can't be overloaded.
1738///
1739/// \return true if this is a forbidden redeclaration
1740static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1741                                         Scope *S,
1742                                         DeclContext *Owner,
1743                                         DeclarationName Name,
1744                                         SourceLocation NameLoc,
1745                                         unsigned diagnostic) {
1746  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1747                 Sema::ForRedeclaration);
1748  if (!SemaRef.LookupName(R, S)) return false;
1749
1750  if (R.getAsSingle<TagDecl>())
1751    return false;
1752
1753  // Pick a representative declaration.
1754  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1755  assert(PrevDecl && "Expected a non-null Decl");
1756
1757  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1758    return false;
1759
1760  SemaRef.Diag(NameLoc, diagnostic) << Name;
1761  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1762
1763  return true;
1764}
1765
1766/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1767/// anonymous struct or union AnonRecord into the owning context Owner
1768/// and scope S. This routine will be invoked just after we realize
1769/// that an unnamed union or struct is actually an anonymous union or
1770/// struct, e.g.,
1771///
1772/// @code
1773/// union {
1774///   int i;
1775///   float f;
1776/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1777///    // f into the surrounding scope.x
1778/// @endcode
1779///
1780/// This routine is recursive, injecting the names of nested anonymous
1781/// structs/unions into the owning context and scope as well.
1782static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1783                                                DeclContext *Owner,
1784                                                RecordDecl *AnonRecord,
1785                                                AccessSpecifier AS,
1786                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1787                                                      bool MSAnonStruct) {
1788  unsigned diagKind
1789    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1790                            : diag::err_anonymous_struct_member_redecl;
1791
1792  bool Invalid = false;
1793
1794  // Look every FieldDecl and IndirectFieldDecl with a name.
1795  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1796                               DEnd = AnonRecord->decls_end();
1797       D != DEnd; ++D) {
1798    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1799        cast<NamedDecl>(*D)->getDeclName()) {
1800      ValueDecl *VD = cast<ValueDecl>(*D);
1801      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1802                                       VD->getLocation(), diagKind)) {
1803        // C++ [class.union]p2:
1804        //   The names of the members of an anonymous union shall be
1805        //   distinct from the names of any other entity in the
1806        //   scope in which the anonymous union is declared.
1807        Invalid = true;
1808      } else {
1809        // C++ [class.union]p2:
1810        //   For the purpose of name lookup, after the anonymous union
1811        //   definition, the members of the anonymous union are
1812        //   considered to have been defined in the scope in which the
1813        //   anonymous union is declared.
1814        unsigned OldChainingSize = Chaining.size();
1815        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1816          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1817               PE = IF->chain_end(); PI != PE; ++PI)
1818            Chaining.push_back(*PI);
1819        else
1820          Chaining.push_back(VD);
1821
1822        assert(Chaining.size() >= 2);
1823        NamedDecl **NamedChain =
1824          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1825        for (unsigned i = 0; i < Chaining.size(); i++)
1826          NamedChain[i] = Chaining[i];
1827
1828        IndirectFieldDecl* IndirectField =
1829          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1830                                    VD->getIdentifier(), VD->getType(),
1831                                    NamedChain, Chaining.size());
1832
1833        IndirectField->setAccess(AS);
1834        IndirectField->setImplicit();
1835        SemaRef.PushOnScopeChains(IndirectField, S);
1836
1837        // That includes picking up the appropriate access specifier.
1838        if (AS != AS_none) IndirectField->setAccess(AS);
1839
1840        Chaining.resize(OldChainingSize);
1841      }
1842    }
1843  }
1844
1845  return Invalid;
1846}
1847
1848/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1849/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1850/// illegal input values are mapped to SC_None.
1851static StorageClass
1852StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1853  switch (StorageClassSpec) {
1854  case DeclSpec::SCS_unspecified:    return SC_None;
1855  case DeclSpec::SCS_extern:         return SC_Extern;
1856  case DeclSpec::SCS_static:         return SC_Static;
1857  case DeclSpec::SCS_auto:           return SC_Auto;
1858  case DeclSpec::SCS_register:       return SC_Register;
1859  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1860    // Illegal SCSs map to None: error reporting is up to the caller.
1861  case DeclSpec::SCS_mutable:        // Fall through.
1862  case DeclSpec::SCS_typedef:        return SC_None;
1863  }
1864  llvm_unreachable("unknown storage class specifier");
1865}
1866
1867/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1868/// a StorageClass. Any error reporting is up to the caller:
1869/// illegal input values are mapped to SC_None.
1870static StorageClass
1871StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1872  switch (StorageClassSpec) {
1873  case DeclSpec::SCS_unspecified:    return SC_None;
1874  case DeclSpec::SCS_extern:         return SC_Extern;
1875  case DeclSpec::SCS_static:         return SC_Static;
1876  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1877    // Illegal SCSs map to None: error reporting is up to the caller.
1878  case DeclSpec::SCS_auto:           // Fall through.
1879  case DeclSpec::SCS_mutable:        // Fall through.
1880  case DeclSpec::SCS_register:       // Fall through.
1881  case DeclSpec::SCS_typedef:        return SC_None;
1882  }
1883  llvm_unreachable("unknown storage class specifier");
1884}
1885
1886/// BuildAnonymousStructOrUnion - Handle the declaration of an
1887/// anonymous structure or union. Anonymous unions are a C++ feature
1888/// (C++ [class.union]) and a GNU C extension; anonymous structures
1889/// are a GNU C and GNU C++ extension.
1890Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1891                                             AccessSpecifier AS,
1892                                             RecordDecl *Record) {
1893  DeclContext *Owner = Record->getDeclContext();
1894
1895  // Diagnose whether this anonymous struct/union is an extension.
1896  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1897    Diag(Record->getLocation(), diag::ext_anonymous_union);
1898  else if (!Record->isUnion())
1899    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1900
1901  // C and C++ require different kinds of checks for anonymous
1902  // structs/unions.
1903  bool Invalid = false;
1904  if (getLangOptions().CPlusPlus) {
1905    const char* PrevSpec = 0;
1906    unsigned DiagID;
1907    // C++ [class.union]p3:
1908    //   Anonymous unions declared in a named namespace or in the
1909    //   global namespace shall be declared static.
1910    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1911        (isa<TranslationUnitDecl>(Owner) ||
1912         (isa<NamespaceDecl>(Owner) &&
1913          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1914      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1915      Invalid = true;
1916
1917      // Recover by adding 'static'.
1918      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1919                             PrevSpec, DiagID);
1920    }
1921    // C++ [class.union]p3:
1922    //   A storage class is not allowed in a declaration of an
1923    //   anonymous union in a class scope.
1924    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1925             isa<RecordDecl>(Owner)) {
1926      Diag(DS.getStorageClassSpecLoc(),
1927           diag::err_anonymous_union_with_storage_spec);
1928      Invalid = true;
1929
1930      // Recover by removing the storage specifier.
1931      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1932                             PrevSpec, DiagID);
1933    }
1934
1935    // C++ [class.union]p2:
1936    //   The member-specification of an anonymous union shall only
1937    //   define non-static data members. [Note: nested types and
1938    //   functions cannot be declared within an anonymous union. ]
1939    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1940                                 MemEnd = Record->decls_end();
1941         Mem != MemEnd; ++Mem) {
1942      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1943        // C++ [class.union]p3:
1944        //   An anonymous union shall not have private or protected
1945        //   members (clause 11).
1946        assert(FD->getAccess() != AS_none);
1947        if (FD->getAccess() != AS_public) {
1948          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1949            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1950          Invalid = true;
1951        }
1952
1953        if (CheckNontrivialField(FD))
1954          Invalid = true;
1955      } else if ((*Mem)->isImplicit()) {
1956        // Any implicit members are fine.
1957      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1958        // This is a type that showed up in an
1959        // elaborated-type-specifier inside the anonymous struct or
1960        // union, but which actually declares a type outside of the
1961        // anonymous struct or union. It's okay.
1962      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1963        if (!MemRecord->isAnonymousStructOrUnion() &&
1964            MemRecord->getDeclName()) {
1965          // Visual C++ allows type definition in anonymous struct or union.
1966          if (getLangOptions().Microsoft)
1967            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1968              << (int)Record->isUnion();
1969          else {
1970            // This is a nested type declaration.
1971            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1972              << (int)Record->isUnion();
1973            Invalid = true;
1974          }
1975        }
1976      } else if (isa<AccessSpecDecl>(*Mem)) {
1977        // Any access specifier is fine.
1978      } else {
1979        // We have something that isn't a non-static data
1980        // member. Complain about it.
1981        unsigned DK = diag::err_anonymous_record_bad_member;
1982        if (isa<TypeDecl>(*Mem))
1983          DK = diag::err_anonymous_record_with_type;
1984        else if (isa<FunctionDecl>(*Mem))
1985          DK = diag::err_anonymous_record_with_function;
1986        else if (isa<VarDecl>(*Mem))
1987          DK = diag::err_anonymous_record_with_static;
1988
1989        // Visual C++ allows type definition in anonymous struct or union.
1990        if (getLangOptions().Microsoft &&
1991            DK == diag::err_anonymous_record_with_type)
1992          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1993            << (int)Record->isUnion();
1994        else {
1995          Diag((*Mem)->getLocation(), DK)
1996              << (int)Record->isUnion();
1997          Invalid = true;
1998        }
1999      }
2000    }
2001  }
2002
2003  if (!Record->isUnion() && !Owner->isRecord()) {
2004    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2005      << (int)getLangOptions().CPlusPlus;
2006    Invalid = true;
2007  }
2008
2009  // Mock up a declarator.
2010  Declarator Dc(DS, Declarator::TypeNameContext);
2011  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2012  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2013
2014  // Create a declaration for this anonymous struct/union.
2015  NamedDecl *Anon = 0;
2016  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2017    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2018                             /*IdentifierInfo=*/0,
2019                             Context.getTypeDeclType(Record),
2020                             TInfo,
2021                             /*BitWidth=*/0, /*Mutable=*/false);
2022    Anon->setAccess(AS);
2023    if (getLangOptions().CPlusPlus)
2024      FieldCollector->Add(cast<FieldDecl>(Anon));
2025  } else {
2026    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2027    assert(SCSpec != DeclSpec::SCS_typedef &&
2028           "Parser allowed 'typedef' as storage class VarDecl.");
2029    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2030    if (SCSpec == DeclSpec::SCS_mutable) {
2031      // mutable can only appear on non-static class members, so it's always
2032      // an error here
2033      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2034      Invalid = true;
2035      SC = SC_None;
2036    }
2037    SCSpec = DS.getStorageClassSpecAsWritten();
2038    VarDecl::StorageClass SCAsWritten
2039      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2040
2041    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2042                           /*IdentifierInfo=*/0,
2043                           Context.getTypeDeclType(Record),
2044                           TInfo, SC, SCAsWritten);
2045  }
2046  Anon->setImplicit();
2047
2048  // Add the anonymous struct/union object to the current
2049  // context. We'll be referencing this object when we refer to one of
2050  // its members.
2051  Owner->addDecl(Anon);
2052
2053  // Inject the members of the anonymous struct/union into the owning
2054  // context and into the identifier resolver chain for name lookup
2055  // purposes.
2056  llvm::SmallVector<NamedDecl*, 2> Chain;
2057  Chain.push_back(Anon);
2058
2059  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2060                                          Chain, false))
2061    Invalid = true;
2062
2063  // Mark this as an anonymous struct/union type. Note that we do not
2064  // do this until after we have already checked and injected the
2065  // members of this anonymous struct/union type, because otherwise
2066  // the members could be injected twice: once by DeclContext when it
2067  // builds its lookup table, and once by
2068  // InjectAnonymousStructOrUnionMembers.
2069  Record->setAnonymousStructOrUnion(true);
2070
2071  if (Invalid)
2072    Anon->setInvalidDecl();
2073
2074  return Anon;
2075}
2076
2077/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2078/// Microsoft C anonymous structure.
2079/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2080/// Example:
2081///
2082/// struct A { int a; };
2083/// struct B { struct A; int b; };
2084///
2085/// void foo() {
2086///   B var;
2087///   var.a = 3;
2088/// }
2089///
2090Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2091                                           RecordDecl *Record) {
2092
2093  // If there is no Record, get the record via the typedef.
2094  if (!Record)
2095    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2096
2097  // Mock up a declarator.
2098  Declarator Dc(DS, Declarator::TypeNameContext);
2099  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2100  assert(TInfo && "couldn't build declarator info for anonymous struct");
2101
2102  // Create a declaration for this anonymous struct.
2103  NamedDecl* Anon = FieldDecl::Create(Context,
2104                             cast<RecordDecl>(CurContext),
2105                             DS.getSourceRange().getBegin(),
2106                             /*IdentifierInfo=*/0,
2107                             Context.getTypeDeclType(Record),
2108                             TInfo,
2109                             /*BitWidth=*/0, /*Mutable=*/false);
2110  Anon->setImplicit();
2111
2112  // Add the anonymous struct object to the current context.
2113  CurContext->addDecl(Anon);
2114
2115  // Inject the members of the anonymous struct into the current
2116  // context and into the identifier resolver chain for name lookup
2117  // purposes.
2118  llvm::SmallVector<NamedDecl*, 2> Chain;
2119  Chain.push_back(Anon);
2120
2121  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2122                                          Record->getDefinition(),
2123                                          AS_none, Chain, true))
2124    Anon->setInvalidDecl();
2125
2126  return Anon;
2127}
2128
2129/// GetNameForDeclarator - Determine the full declaration name for the
2130/// given Declarator.
2131DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2132  return GetNameFromUnqualifiedId(D.getName());
2133}
2134
2135/// \brief Retrieves the declaration name from a parsed unqualified-id.
2136DeclarationNameInfo
2137Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2138  DeclarationNameInfo NameInfo;
2139  NameInfo.setLoc(Name.StartLocation);
2140
2141  switch (Name.getKind()) {
2142
2143  case UnqualifiedId::IK_Identifier:
2144    NameInfo.setName(Name.Identifier);
2145    NameInfo.setLoc(Name.StartLocation);
2146    return NameInfo;
2147
2148  case UnqualifiedId::IK_OperatorFunctionId:
2149    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2150                                           Name.OperatorFunctionId.Operator));
2151    NameInfo.setLoc(Name.StartLocation);
2152    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2153      = Name.OperatorFunctionId.SymbolLocations[0];
2154    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2155      = Name.EndLocation.getRawEncoding();
2156    return NameInfo;
2157
2158  case UnqualifiedId::IK_LiteralOperatorId:
2159    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2160                                                           Name.Identifier));
2161    NameInfo.setLoc(Name.StartLocation);
2162    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2163    return NameInfo;
2164
2165  case UnqualifiedId::IK_ConversionFunctionId: {
2166    TypeSourceInfo *TInfo;
2167    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2168    if (Ty.isNull())
2169      return DeclarationNameInfo();
2170    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2171                                               Context.getCanonicalType(Ty)));
2172    NameInfo.setLoc(Name.StartLocation);
2173    NameInfo.setNamedTypeInfo(TInfo);
2174    return NameInfo;
2175  }
2176
2177  case UnqualifiedId::IK_ConstructorName: {
2178    TypeSourceInfo *TInfo;
2179    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2180    if (Ty.isNull())
2181      return DeclarationNameInfo();
2182    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2183                                              Context.getCanonicalType(Ty)));
2184    NameInfo.setLoc(Name.StartLocation);
2185    NameInfo.setNamedTypeInfo(TInfo);
2186    return NameInfo;
2187  }
2188
2189  case UnqualifiedId::IK_ConstructorTemplateId: {
2190    // In well-formed code, we can only have a constructor
2191    // template-id that refers to the current context, so go there
2192    // to find the actual type being constructed.
2193    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2194    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2195      return DeclarationNameInfo();
2196
2197    // Determine the type of the class being constructed.
2198    QualType CurClassType = Context.getTypeDeclType(CurClass);
2199
2200    // FIXME: Check two things: that the template-id names the same type as
2201    // CurClassType, and that the template-id does not occur when the name
2202    // was qualified.
2203
2204    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2205                                    Context.getCanonicalType(CurClassType)));
2206    NameInfo.setLoc(Name.StartLocation);
2207    // FIXME: should we retrieve TypeSourceInfo?
2208    NameInfo.setNamedTypeInfo(0);
2209    return NameInfo;
2210  }
2211
2212  case UnqualifiedId::IK_DestructorName: {
2213    TypeSourceInfo *TInfo;
2214    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2215    if (Ty.isNull())
2216      return DeclarationNameInfo();
2217    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2218                                              Context.getCanonicalType(Ty)));
2219    NameInfo.setLoc(Name.StartLocation);
2220    NameInfo.setNamedTypeInfo(TInfo);
2221    return NameInfo;
2222  }
2223
2224  case UnqualifiedId::IK_TemplateId: {
2225    TemplateName TName = Name.TemplateId->Template.get();
2226    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2227    return Context.getNameForTemplate(TName, TNameLoc);
2228  }
2229
2230  } // switch (Name.getKind())
2231
2232  assert(false && "Unknown name kind");
2233  return DeclarationNameInfo();
2234}
2235
2236/// isNearlyMatchingFunction - Determine whether the C++ functions
2237/// Declaration and Definition are "nearly" matching. This heuristic
2238/// is used to improve diagnostics in the case where an out-of-line
2239/// function definition doesn't match any declaration within
2240/// the class or namespace.
2241static bool isNearlyMatchingFunction(ASTContext &Context,
2242                                     FunctionDecl *Declaration,
2243                                     FunctionDecl *Definition) {
2244  if (Declaration->param_size() != Definition->param_size())
2245    return false;
2246  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2247    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2248    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2249
2250    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2251                                        DefParamTy.getNonReferenceType()))
2252      return false;
2253  }
2254
2255  return true;
2256}
2257
2258/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2259/// declarator needs to be rebuilt in the current instantiation.
2260/// Any bits of declarator which appear before the name are valid for
2261/// consideration here.  That's specifically the type in the decl spec
2262/// and the base type in any member-pointer chunks.
2263static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2264                                                    DeclarationName Name) {
2265  // The types we specifically need to rebuild are:
2266  //   - typenames, typeofs, and decltypes
2267  //   - types which will become injected class names
2268  // Of course, we also need to rebuild any type referencing such a
2269  // type.  It's safest to just say "dependent", but we call out a
2270  // few cases here.
2271
2272  DeclSpec &DS = D.getMutableDeclSpec();
2273  switch (DS.getTypeSpecType()) {
2274  case DeclSpec::TST_typename:
2275  case DeclSpec::TST_typeofType:
2276  case DeclSpec::TST_decltype: {
2277    // Grab the type from the parser.
2278    TypeSourceInfo *TSI = 0;
2279    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2280    if (T.isNull() || !T->isDependentType()) break;
2281
2282    // Make sure there's a type source info.  This isn't really much
2283    // of a waste; most dependent types should have type source info
2284    // attached already.
2285    if (!TSI)
2286      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2287
2288    // Rebuild the type in the current instantiation.
2289    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2290    if (!TSI) return true;
2291
2292    // Store the new type back in the decl spec.
2293    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2294    DS.UpdateTypeRep(LocType);
2295    break;
2296  }
2297
2298  case DeclSpec::TST_typeofExpr: {
2299    Expr *E = DS.getRepAsExpr();
2300    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2301    if (Result.isInvalid()) return true;
2302    DS.UpdateExprRep(Result.get());
2303    break;
2304  }
2305
2306  default:
2307    // Nothing to do for these decl specs.
2308    break;
2309  }
2310
2311  // It doesn't matter what order we do this in.
2312  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2313    DeclaratorChunk &Chunk = D.getTypeObject(I);
2314
2315    // The only type information in the declarator which can come
2316    // before the declaration name is the base type of a member
2317    // pointer.
2318    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2319      continue;
2320
2321    // Rebuild the scope specifier in-place.
2322    CXXScopeSpec &SS = Chunk.Mem.Scope();
2323    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2324      return true;
2325  }
2326
2327  return false;
2328}
2329
2330Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2331  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2332}
2333
2334Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2335                             MultiTemplateParamsArg TemplateParamLists,
2336                             bool IsFunctionDefinition) {
2337  // TODO: consider using NameInfo for diagnostic.
2338  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2339  DeclarationName Name = NameInfo.getName();
2340
2341  // All of these full declarators require an identifier.  If it doesn't have
2342  // one, the ParsedFreeStandingDeclSpec action should be used.
2343  if (!Name) {
2344    if (!D.isInvalidType())  // Reject this if we think it is valid.
2345      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2346           diag::err_declarator_need_ident)
2347        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2348    return 0;
2349  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2350    return 0;
2351
2352  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2353  // we find one that is.
2354  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2355         (S->getFlags() & Scope::TemplateParamScope) != 0)
2356    S = S->getParent();
2357
2358  DeclContext *DC = CurContext;
2359  if (D.getCXXScopeSpec().isInvalid())
2360    D.setInvalidType();
2361  else if (D.getCXXScopeSpec().isSet()) {
2362    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2363                                        UPPC_DeclarationQualifier))
2364      return 0;
2365
2366    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2367    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2368    if (!DC) {
2369      // If we could not compute the declaration context, it's because the
2370      // declaration context is dependent but does not refer to a class,
2371      // class template, or class template partial specialization. Complain
2372      // and return early, to avoid the coming semantic disaster.
2373      Diag(D.getIdentifierLoc(),
2374           diag::err_template_qualified_declarator_no_match)
2375        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2376        << D.getCXXScopeSpec().getRange();
2377      return 0;
2378    }
2379
2380    bool IsDependentContext = DC->isDependentContext();
2381
2382    if (!IsDependentContext &&
2383        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2384      return 0;
2385
2386    if (isa<CXXRecordDecl>(DC)) {
2387      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2388        Diag(D.getIdentifierLoc(),
2389             diag::err_member_def_undefined_record)
2390          << Name << DC << D.getCXXScopeSpec().getRange();
2391        D.setInvalidType();
2392      } else if (isa<CXXRecordDecl>(CurContext) &&
2393                 !D.getDeclSpec().isFriendSpecified()) {
2394        // The user provided a superfluous scope specifier inside a class
2395        // definition:
2396        //
2397        // class X {
2398        //   void X::f();
2399        // };
2400        if (CurContext->Equals(DC))
2401          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2402            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2403        else
2404          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2405            << Name << D.getCXXScopeSpec().getRange();
2406
2407        // Pretend that this qualifier was not here.
2408        D.getCXXScopeSpec().clear();
2409      }
2410    }
2411
2412    // Check whether we need to rebuild the type of the given
2413    // declaration in the current instantiation.
2414    if (EnteringContext && IsDependentContext &&
2415        TemplateParamLists.size() != 0) {
2416      ContextRAII SavedContext(*this, DC);
2417      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2418        D.setInvalidType();
2419    }
2420  }
2421
2422  // C++ [class.mem]p13:
2423  //   If T is the name of a class, then each of the following shall have a
2424  //   name different from T:
2425  //     - every static data member of class T;
2426  //     - every member function of class T
2427  //     - every member of class T that is itself a type;
2428  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2429    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2430      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2431        << Name;
2432
2433      // If this is a typedef, we'll end up spewing multiple diagnostics.
2434      // Just return early; it's safer.
2435      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2436        return 0;
2437    }
2438
2439  NamedDecl *New;
2440
2441  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2442  QualType R = TInfo->getType();
2443
2444  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2445                                      UPPC_DeclarationType))
2446    D.setInvalidType();
2447
2448  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2449                        ForRedeclaration);
2450
2451  // See if this is a redefinition of a variable in the same scope.
2452  if (!D.getCXXScopeSpec().isSet()) {
2453    bool IsLinkageLookup = false;
2454
2455    // If the declaration we're planning to build will be a function
2456    // or object with linkage, then look for another declaration with
2457    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2458    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2459      /* Do nothing*/;
2460    else if (R->isFunctionType()) {
2461      if (CurContext->isFunctionOrMethod() ||
2462          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2463        IsLinkageLookup = true;
2464    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2465      IsLinkageLookup = true;
2466    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2467             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2468      IsLinkageLookup = true;
2469
2470    if (IsLinkageLookup)
2471      Previous.clear(LookupRedeclarationWithLinkage);
2472
2473    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2474  } else { // Something like "int foo::x;"
2475    LookupQualifiedName(Previous, DC);
2476
2477    // Don't consider using declarations as previous declarations for
2478    // out-of-line members.
2479    RemoveUsingDecls(Previous);
2480
2481    // C++ 7.3.1.2p2:
2482    // Members (including explicit specializations of templates) of a named
2483    // namespace can also be defined outside that namespace by explicit
2484    // qualification of the name being defined, provided that the entity being
2485    // defined was already declared in the namespace and the definition appears
2486    // after the point of declaration in a namespace that encloses the
2487    // declarations namespace.
2488    //
2489    // Note that we only check the context at this point. We don't yet
2490    // have enough information to make sure that PrevDecl is actually
2491    // the declaration we want to match. For example, given:
2492    //
2493    //   class X {
2494    //     void f();
2495    //     void f(float);
2496    //   };
2497    //
2498    //   void X::f(int) { } // ill-formed
2499    //
2500    // In this case, PrevDecl will point to the overload set
2501    // containing the two f's declared in X, but neither of them
2502    // matches.
2503
2504    // First check whether we named the global scope.
2505    if (isa<TranslationUnitDecl>(DC)) {
2506      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2507        << Name << D.getCXXScopeSpec().getRange();
2508    } else {
2509      DeclContext *Cur = CurContext;
2510      while (isa<LinkageSpecDecl>(Cur))
2511        Cur = Cur->getParent();
2512      if (!Cur->Encloses(DC)) {
2513        // The qualifying scope doesn't enclose the original declaration.
2514        // Emit diagnostic based on current scope.
2515        SourceLocation L = D.getIdentifierLoc();
2516        SourceRange R = D.getCXXScopeSpec().getRange();
2517        if (isa<FunctionDecl>(Cur))
2518          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2519        else
2520          Diag(L, diag::err_invalid_declarator_scope)
2521            << Name << cast<NamedDecl>(DC) << R;
2522        D.setInvalidType();
2523      }
2524    }
2525  }
2526
2527  if (Previous.isSingleResult() &&
2528      Previous.getFoundDecl()->isTemplateParameter()) {
2529    // Maybe we will complain about the shadowed template parameter.
2530    if (!D.isInvalidType())
2531      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2532                                          Previous.getFoundDecl()))
2533        D.setInvalidType();
2534
2535    // Just pretend that we didn't see the previous declaration.
2536    Previous.clear();
2537  }
2538
2539  // In C++, the previous declaration we find might be a tag type
2540  // (class or enum). In this case, the new declaration will hide the
2541  // tag type. Note that this does does not apply if we're declaring a
2542  // typedef (C++ [dcl.typedef]p4).
2543  if (Previous.isSingleTagDecl() &&
2544      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2545    Previous.clear();
2546
2547  bool Redeclaration = false;
2548  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2549    if (TemplateParamLists.size()) {
2550      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2551      return 0;
2552    }
2553
2554    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2555  } else if (R->isFunctionType()) {
2556    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2557                                  move(TemplateParamLists),
2558                                  IsFunctionDefinition, Redeclaration);
2559  } else {
2560    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2561                                  move(TemplateParamLists),
2562                                  Redeclaration);
2563  }
2564
2565  if (New == 0)
2566    return 0;
2567
2568  // If this has an identifier and is not an invalid redeclaration or
2569  // function template specialization, add it to the scope stack.
2570  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2571    PushOnScopeChains(New, S);
2572
2573  return New;
2574}
2575
2576/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2577/// types into constant array types in certain situations which would otherwise
2578/// be errors (for GCC compatibility).
2579static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2580                                                    ASTContext &Context,
2581                                                    bool &SizeIsNegative,
2582                                                    llvm::APSInt &Oversized) {
2583  // This method tries to turn a variable array into a constant
2584  // array even when the size isn't an ICE.  This is necessary
2585  // for compatibility with code that depends on gcc's buggy
2586  // constant expression folding, like struct {char x[(int)(char*)2];}
2587  SizeIsNegative = false;
2588  Oversized = 0;
2589
2590  if (T->isDependentType())
2591    return QualType();
2592
2593  QualifierCollector Qs;
2594  const Type *Ty = Qs.strip(T);
2595
2596  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2597    QualType Pointee = PTy->getPointeeType();
2598    QualType FixedType =
2599        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2600                                            Oversized);
2601    if (FixedType.isNull()) return FixedType;
2602    FixedType = Context.getPointerType(FixedType);
2603    return Qs.apply(Context, FixedType);
2604  }
2605  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2606    QualType Inner = PTy->getInnerType();
2607    QualType FixedType =
2608        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2609                                            Oversized);
2610    if (FixedType.isNull()) return FixedType;
2611    FixedType = Context.getParenType(FixedType);
2612    return Qs.apply(Context, FixedType);
2613  }
2614
2615  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2616  if (!VLATy)
2617    return QualType();
2618  // FIXME: We should probably handle this case
2619  if (VLATy->getElementType()->isVariablyModifiedType())
2620    return QualType();
2621
2622  Expr::EvalResult EvalResult;
2623  if (!VLATy->getSizeExpr() ||
2624      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2625      !EvalResult.Val.isInt())
2626    return QualType();
2627
2628  // Check whether the array size is negative.
2629  llvm::APSInt &Res = EvalResult.Val.getInt();
2630  if (Res.isSigned() && Res.isNegative()) {
2631    SizeIsNegative = true;
2632    return QualType();
2633  }
2634
2635  // Check whether the array is too large to be addressed.
2636  unsigned ActiveSizeBits
2637    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2638                                              Res);
2639  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2640    Oversized = Res;
2641    return QualType();
2642  }
2643
2644  return Context.getConstantArrayType(VLATy->getElementType(),
2645                                      Res, ArrayType::Normal, 0);
2646}
2647
2648/// \brief Register the given locally-scoped external C declaration so
2649/// that it can be found later for redeclarations
2650void
2651Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2652                                       const LookupResult &Previous,
2653                                       Scope *S) {
2654  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2655         "Decl is not a locally-scoped decl!");
2656  // Note that we have a locally-scoped external with this name.
2657  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2658
2659  if (!Previous.isSingleResult())
2660    return;
2661
2662  NamedDecl *PrevDecl = Previous.getFoundDecl();
2663
2664  // If there was a previous declaration of this variable, it may be
2665  // in our identifier chain. Update the identifier chain with the new
2666  // declaration.
2667  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2668    // The previous declaration was found on the identifer resolver
2669    // chain, so remove it from its scope.
2670    while (S && !S->isDeclScope(PrevDecl))
2671      S = S->getParent();
2672
2673    if (S)
2674      S->RemoveDecl(PrevDecl);
2675  }
2676}
2677
2678/// \brief Diagnose function specifiers on a declaration of an identifier that
2679/// does not identify a function.
2680void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2681  // FIXME: We should probably indicate the identifier in question to avoid
2682  // confusion for constructs like "inline int a(), b;"
2683  if (D.getDeclSpec().isInlineSpecified())
2684    Diag(D.getDeclSpec().getInlineSpecLoc(),
2685         diag::err_inline_non_function);
2686
2687  if (D.getDeclSpec().isVirtualSpecified())
2688    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2689         diag::err_virtual_non_function);
2690
2691  if (D.getDeclSpec().isExplicitSpecified())
2692    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2693         diag::err_explicit_non_function);
2694}
2695
2696NamedDecl*
2697Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2698                             QualType R,  TypeSourceInfo *TInfo,
2699                             LookupResult &Previous, bool &Redeclaration) {
2700  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2701  if (D.getCXXScopeSpec().isSet()) {
2702    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2703      << D.getCXXScopeSpec().getRange();
2704    D.setInvalidType();
2705    // Pretend we didn't see the scope specifier.
2706    DC = CurContext;
2707    Previous.clear();
2708  }
2709
2710  if (getLangOptions().CPlusPlus) {
2711    // Check that there are no default arguments (C++ only).
2712    CheckExtraCXXDefaultArguments(D);
2713  }
2714
2715  DiagnoseFunctionSpecifiers(D);
2716
2717  if (D.getDeclSpec().isThreadSpecified())
2718    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2719
2720  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2721    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2722      << D.getName().getSourceRange();
2723    return 0;
2724  }
2725
2726  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2727  if (!NewTD) return 0;
2728
2729  // Handle attributes prior to checking for duplicates in MergeVarDecl
2730  ProcessDeclAttributes(S, NewTD, D);
2731
2732  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2733  // then it shall have block scope.
2734  // Note that variably modified types must be fixed before merging the decl so
2735  // that redeclarations will match.
2736  QualType T = NewTD->getUnderlyingType();
2737  if (T->isVariablyModifiedType()) {
2738    getCurFunction()->setHasBranchProtectedScope();
2739
2740    if (S->getFnParent() == 0) {
2741      bool SizeIsNegative;
2742      llvm::APSInt Oversized;
2743      QualType FixedTy =
2744          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2745                                              Oversized);
2746      if (!FixedTy.isNull()) {
2747        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2748        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2749      } else {
2750        if (SizeIsNegative)
2751          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2752        else if (T->isVariableArrayType())
2753          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2754        else if (Oversized.getBoolValue())
2755          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2756            << Oversized.toString(10);
2757        else
2758          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2759        NewTD->setInvalidDecl();
2760      }
2761    }
2762  }
2763
2764  // Merge the decl with the existing one if appropriate. If the decl is
2765  // in an outer scope, it isn't the same thing.
2766  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2767  if (!Previous.empty()) {
2768    Redeclaration = true;
2769    MergeTypeDefDecl(NewTD, Previous);
2770  }
2771
2772  // If this is the C FILE type, notify the AST context.
2773  if (IdentifierInfo *II = NewTD->getIdentifier())
2774    if (!NewTD->isInvalidDecl() &&
2775        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2776      if (II->isStr("FILE"))
2777        Context.setFILEDecl(NewTD);
2778      else if (II->isStr("jmp_buf"))
2779        Context.setjmp_bufDecl(NewTD);
2780      else if (II->isStr("sigjmp_buf"))
2781        Context.setsigjmp_bufDecl(NewTD);
2782      else if (II->isStr("__builtin_va_list"))
2783        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2784    }
2785
2786  return NewTD;
2787}
2788
2789/// \brief Determines whether the given declaration is an out-of-scope
2790/// previous declaration.
2791///
2792/// This routine should be invoked when name lookup has found a
2793/// previous declaration (PrevDecl) that is not in the scope where a
2794/// new declaration by the same name is being introduced. If the new
2795/// declaration occurs in a local scope, previous declarations with
2796/// linkage may still be considered previous declarations (C99
2797/// 6.2.2p4-5, C++ [basic.link]p6).
2798///
2799/// \param PrevDecl the previous declaration found by name
2800/// lookup
2801///
2802/// \param DC the context in which the new declaration is being
2803/// declared.
2804///
2805/// \returns true if PrevDecl is an out-of-scope previous declaration
2806/// for a new delcaration with the same name.
2807static bool
2808isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2809                                ASTContext &Context) {
2810  if (!PrevDecl)
2811    return false;
2812
2813  if (!PrevDecl->hasLinkage())
2814    return false;
2815
2816  if (Context.getLangOptions().CPlusPlus) {
2817    // C++ [basic.link]p6:
2818    //   If there is a visible declaration of an entity with linkage
2819    //   having the same name and type, ignoring entities declared
2820    //   outside the innermost enclosing namespace scope, the block
2821    //   scope declaration declares that same entity and receives the
2822    //   linkage of the previous declaration.
2823    DeclContext *OuterContext = DC->getRedeclContext();
2824    if (!OuterContext->isFunctionOrMethod())
2825      // This rule only applies to block-scope declarations.
2826      return false;
2827
2828    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2829    if (PrevOuterContext->isRecord())
2830      // We found a member function: ignore it.
2831      return false;
2832
2833    // Find the innermost enclosing namespace for the new and
2834    // previous declarations.
2835    OuterContext = OuterContext->getEnclosingNamespaceContext();
2836    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2837
2838    // The previous declaration is in a different namespace, so it
2839    // isn't the same function.
2840    if (!OuterContext->Equals(PrevOuterContext))
2841      return false;
2842  }
2843
2844  return true;
2845}
2846
2847static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2848  CXXScopeSpec &SS = D.getCXXScopeSpec();
2849  if (!SS.isSet()) return;
2850  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2851                       SS.getRange());
2852}
2853
2854NamedDecl*
2855Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2856                              QualType R, TypeSourceInfo *TInfo,
2857                              LookupResult &Previous,
2858                              MultiTemplateParamsArg TemplateParamLists,
2859                              bool &Redeclaration) {
2860  DeclarationName Name = GetNameForDeclarator(D).getName();
2861
2862  // Check that there are no default arguments (C++ only).
2863  if (getLangOptions().CPlusPlus)
2864    CheckExtraCXXDefaultArguments(D);
2865
2866  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2867  assert(SCSpec != DeclSpec::SCS_typedef &&
2868         "Parser allowed 'typedef' as storage class VarDecl.");
2869  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2870  if (SCSpec == DeclSpec::SCS_mutable) {
2871    // mutable can only appear on non-static class members, so it's always
2872    // an error here
2873    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2874    D.setInvalidType();
2875    SC = SC_None;
2876  }
2877  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2878  VarDecl::StorageClass SCAsWritten
2879    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2880
2881  IdentifierInfo *II = Name.getAsIdentifierInfo();
2882  if (!II) {
2883    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2884      << Name.getAsString();
2885    return 0;
2886  }
2887
2888  DiagnoseFunctionSpecifiers(D);
2889
2890  if (!DC->isRecord() && S->getFnParent() == 0) {
2891    // C99 6.9p2: The storage-class specifiers auto and register shall not
2892    // appear in the declaration specifiers in an external declaration.
2893    if (SC == SC_Auto || SC == SC_Register) {
2894
2895      // If this is a register variable with an asm label specified, then this
2896      // is a GNU extension.
2897      if (SC == SC_Register && D.getAsmLabel())
2898        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2899      else
2900        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2901      D.setInvalidType();
2902    }
2903  }
2904
2905  bool isExplicitSpecialization = false;
2906  VarDecl *NewVD;
2907  if (!getLangOptions().CPlusPlus) {
2908      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2909                              II, R, TInfo, SC, SCAsWritten);
2910
2911    if (D.isInvalidType())
2912      NewVD->setInvalidDecl();
2913  } else {
2914    if (DC->isRecord() && !CurContext->isRecord()) {
2915      // This is an out-of-line definition of a static data member.
2916      if (SC == SC_Static) {
2917        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2918             diag::err_static_out_of_line)
2919          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2920      } else if (SC == SC_None)
2921        SC = SC_Static;
2922    }
2923    if (SC == SC_Static) {
2924      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2925        if (RD->isLocalClass())
2926          Diag(D.getIdentifierLoc(),
2927               diag::err_static_data_member_not_allowed_in_local_class)
2928            << Name << RD->getDeclName();
2929
2930        // C++ [class.union]p1: If a union contains a static data member,
2931        // the program is ill-formed.
2932        //
2933        // We also disallow static data members in anonymous structs.
2934        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2935          Diag(D.getIdentifierLoc(),
2936               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2937            << Name << RD->isUnion();
2938      }
2939    }
2940
2941    // Match up the template parameter lists with the scope specifier, then
2942    // determine whether we have a template or a template specialization.
2943    isExplicitSpecialization = false;
2944    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2945    bool Invalid = false;
2946    if (TemplateParameterList *TemplateParams
2947        = MatchTemplateParametersToScopeSpecifier(
2948                                                  D.getDeclSpec().getSourceRange().getBegin(),
2949                                                  D.getCXXScopeSpec(),
2950                                                  TemplateParamLists.get(),
2951                                                  TemplateParamLists.size(),
2952                                                  /*never a friend*/ false,
2953                                                  isExplicitSpecialization,
2954                                                  Invalid)) {
2955      // All but one template parameter lists have been matching.
2956      --NumMatchedTemplateParamLists;
2957
2958      if (TemplateParams->size() > 0) {
2959        // There is no such thing as a variable template.
2960        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2961          << II
2962          << SourceRange(TemplateParams->getTemplateLoc(),
2963                         TemplateParams->getRAngleLoc());
2964        return 0;
2965      } else {
2966        // There is an extraneous 'template<>' for this variable. Complain
2967        // about it, but allow the declaration of the variable.
2968        Diag(TemplateParams->getTemplateLoc(),
2969             diag::err_template_variable_noparams)
2970          << II
2971          << SourceRange(TemplateParams->getTemplateLoc(),
2972                         TemplateParams->getRAngleLoc());
2973
2974        isExplicitSpecialization = true;
2975      }
2976    }
2977
2978    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2979                            II, R, TInfo, SC, SCAsWritten);
2980
2981    if (D.isInvalidType() || Invalid)
2982      NewVD->setInvalidDecl();
2983
2984    SetNestedNameSpecifier(NewVD, D);
2985
2986    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2987      NewVD->setTemplateParameterListsInfo(Context,
2988                                           NumMatchedTemplateParamLists,
2989                                           TemplateParamLists.release());
2990    }
2991  }
2992
2993  if (D.getDeclSpec().isThreadSpecified()) {
2994    if (NewVD->hasLocalStorage())
2995      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2996    else if (!Context.Target.isTLSSupported())
2997      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2998    else
2999      NewVD->setThreadSpecified(true);
3000  }
3001
3002  // Set the lexical context. If the declarator has a C++ scope specifier, the
3003  // lexical context will be different from the semantic context.
3004  NewVD->setLexicalDeclContext(CurContext);
3005
3006  // Handle attributes prior to checking for duplicates in MergeVarDecl
3007  ProcessDeclAttributes(S, NewVD, D);
3008
3009  // Handle GNU asm-label extension (encoded as an attribute).
3010  if (Expr *E = (Expr*)D.getAsmLabel()) {
3011    // The parser guarantees this is a string.
3012    StringLiteral *SE = cast<StringLiteral>(E);
3013    llvm::StringRef Label = SE->getString();
3014    if (S->getFnParent() != 0) {
3015      switch (SC) {
3016      case SC_None:
3017      case SC_Auto:
3018        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3019        break;
3020      case SC_Register:
3021        if (!Context.Target.isValidGCCRegisterName(Label))
3022          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3023        break;
3024      case SC_Static:
3025      case SC_Extern:
3026      case SC_PrivateExtern:
3027        break;
3028      }
3029    }
3030
3031    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3032                                                Context, Label));
3033  }
3034
3035  // Diagnose shadowed variables before filtering for scope.
3036  if (!D.getCXXScopeSpec().isSet())
3037    CheckShadow(S, NewVD, Previous);
3038
3039  // Don't consider existing declarations that are in a different
3040  // scope and are out-of-semantic-context declarations (if the new
3041  // declaration has linkage).
3042  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3043
3044  if (!getLangOptions().CPlusPlus)
3045    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3046  else {
3047    // Merge the decl with the existing one if appropriate.
3048    if (!Previous.empty()) {
3049      if (Previous.isSingleResult() &&
3050          isa<FieldDecl>(Previous.getFoundDecl()) &&
3051          D.getCXXScopeSpec().isSet()) {
3052        // The user tried to define a non-static data member
3053        // out-of-line (C++ [dcl.meaning]p1).
3054        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3055          << D.getCXXScopeSpec().getRange();
3056        Previous.clear();
3057        NewVD->setInvalidDecl();
3058      }
3059    } else if (D.getCXXScopeSpec().isSet()) {
3060      // No previous declaration in the qualifying scope.
3061      Diag(D.getIdentifierLoc(), diag::err_no_member)
3062        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3063        << D.getCXXScopeSpec().getRange();
3064      NewVD->setInvalidDecl();
3065    }
3066
3067    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3068
3069    // This is an explicit specialization of a static data member. Check it.
3070    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3071        CheckMemberSpecialization(NewVD, Previous))
3072      NewVD->setInvalidDecl();
3073  }
3074
3075  // attributes declared post-definition are currently ignored
3076  // FIXME: This should be handled in attribute merging, not
3077  // here.
3078  if (Previous.isSingleResult()) {
3079    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3080    if (Def && (Def = Def->getDefinition()) &&
3081        Def != NewVD && D.hasAttributes()) {
3082      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3083      Diag(Def->getLocation(), diag::note_previous_definition);
3084    }
3085  }
3086
3087  // If this is a locally-scoped extern C variable, update the map of
3088  // such variables.
3089  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3090      !NewVD->isInvalidDecl())
3091    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3092
3093  // If there's a #pragma GCC visibility in scope, and this isn't a class
3094  // member, set the visibility of this variable.
3095  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3096    AddPushedVisibilityAttribute(NewVD);
3097
3098  MarkUnusedFileScopedDecl(NewVD);
3099
3100  return NewVD;
3101}
3102
3103/// \brief Diagnose variable or built-in function shadowing.  Implements
3104/// -Wshadow.
3105///
3106/// This method is called whenever a VarDecl is added to a "useful"
3107/// scope.
3108///
3109/// \param S the scope in which the shadowing name is being declared
3110/// \param R the lookup of the name
3111///
3112void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3113  // Return if warning is ignored.
3114  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3115        Diagnostic::Ignored)
3116    return;
3117
3118  // Don't diagnose declarations at file scope.  The scope might not
3119  // have a DeclContext if (e.g.) we're parsing a function prototype.
3120  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3121  if (NewDC && NewDC->isFileContext())
3122    return;
3123
3124  // Only diagnose if we're shadowing an unambiguous field or variable.
3125  if (R.getResultKind() != LookupResult::Found)
3126    return;
3127
3128  NamedDecl* ShadowedDecl = R.getFoundDecl();
3129  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3130    return;
3131
3132  // Fields are not shadowed by variables in C++ static methods.
3133  if (isa<FieldDecl>(ShadowedDecl))
3134    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3135      if (MD->isStatic())
3136        return;
3137
3138  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3139    if (shadowedVar->isExternC()) {
3140      // Don't warn for this case:
3141      //
3142      // @code
3143      // extern int bob;
3144      // void f() {
3145      //   extern int bob;
3146      // }
3147      // @endcode
3148      if (D->isExternC())
3149        return;
3150
3151      // For shadowing external vars, make sure that we point to the global
3152      // declaration, not a locally scoped extern declaration.
3153      for (VarDecl::redecl_iterator
3154             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3155           I != E; ++I)
3156        if (I->isFileVarDecl()) {
3157          ShadowedDecl = *I;
3158          break;
3159        }
3160    }
3161
3162  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3163
3164  // Only warn about certain kinds of shadowing for class members.
3165  if (NewDC && NewDC->isRecord()) {
3166    // In particular, don't warn about shadowing non-class members.
3167    if (!OldDC->isRecord())
3168      return;
3169
3170    // TODO: should we warn about static data members shadowing
3171    // static data members from base classes?
3172
3173    // TODO: don't diagnose for inaccessible shadowed members.
3174    // This is hard to do perfectly because we might friend the
3175    // shadowing context, but that's just a false negative.
3176  }
3177
3178  // Determine what kind of declaration we're shadowing.
3179  unsigned Kind;
3180  if (isa<RecordDecl>(OldDC)) {
3181    if (isa<FieldDecl>(ShadowedDecl))
3182      Kind = 3; // field
3183    else
3184      Kind = 2; // static data member
3185  } else if (OldDC->isFileContext())
3186    Kind = 1; // global
3187  else
3188    Kind = 0; // local
3189
3190  DeclarationName Name = R.getLookupName();
3191
3192  // Emit warning and note.
3193  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3194  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3195}
3196
3197/// \brief Check -Wshadow without the advantage of a previous lookup.
3198void Sema::CheckShadow(Scope *S, VarDecl *D) {
3199  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3200        Diagnostic::Ignored)
3201    return;
3202
3203  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3204                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3205  LookupName(R, S);
3206  CheckShadow(S, D, R);
3207}
3208
3209/// \brief Perform semantic checking on a newly-created variable
3210/// declaration.
3211///
3212/// This routine performs all of the type-checking required for a
3213/// variable declaration once it has been built. It is used both to
3214/// check variables after they have been parsed and their declarators
3215/// have been translated into a declaration, and to check variables
3216/// that have been instantiated from a template.
3217///
3218/// Sets NewVD->isInvalidDecl() if an error was encountered.
3219void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3220                                    LookupResult &Previous,
3221                                    bool &Redeclaration) {
3222  // If the decl is already known invalid, don't check it.
3223  if (NewVD->isInvalidDecl())
3224    return;
3225
3226  QualType T = NewVD->getType();
3227
3228  if (T->isObjCObjectType()) {
3229    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3230    return NewVD->setInvalidDecl();
3231  }
3232
3233  // Emit an error if an address space was applied to decl with local storage.
3234  // This includes arrays of objects with address space qualifiers, but not
3235  // automatic variables that point to other address spaces.
3236  // ISO/IEC TR 18037 S5.1.2
3237  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3238    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3239    return NewVD->setInvalidDecl();
3240  }
3241
3242  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3243      && !NewVD->hasAttr<BlocksAttr>())
3244    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3245
3246  bool isVM = T->isVariablyModifiedType();
3247  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3248      NewVD->hasAttr<BlocksAttr>())
3249    getCurFunction()->setHasBranchProtectedScope();
3250
3251  if ((isVM && NewVD->hasLinkage()) ||
3252      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3253    bool SizeIsNegative;
3254    llvm::APSInt Oversized;
3255    QualType FixedTy =
3256        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3257                                            Oversized);
3258
3259    if (FixedTy.isNull() && T->isVariableArrayType()) {
3260      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3261      // FIXME: This won't give the correct result for
3262      // int a[10][n];
3263      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3264
3265      if (NewVD->isFileVarDecl())
3266        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3267        << SizeRange;
3268      else if (NewVD->getStorageClass() == SC_Static)
3269        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3270        << SizeRange;
3271      else
3272        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3273        << SizeRange;
3274      return NewVD->setInvalidDecl();
3275    }
3276
3277    if (FixedTy.isNull()) {
3278      if (NewVD->isFileVarDecl())
3279        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3280      else
3281        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3282      return NewVD->setInvalidDecl();
3283    }
3284
3285    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3286    NewVD->setType(FixedTy);
3287  }
3288
3289  if (Previous.empty() && NewVD->isExternC()) {
3290    // Since we did not find anything by this name and we're declaring
3291    // an extern "C" variable, look for a non-visible extern "C"
3292    // declaration with the same name.
3293    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3294      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3295    if (Pos != LocallyScopedExternalDecls.end())
3296      Previous.addDecl(Pos->second);
3297  }
3298
3299  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3300    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3301      << T;
3302    return NewVD->setInvalidDecl();
3303  }
3304
3305  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3306    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3307    return NewVD->setInvalidDecl();
3308  }
3309
3310  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3311    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3312    return NewVD->setInvalidDecl();
3313  }
3314
3315  // Function pointers and references cannot have qualified function type, only
3316  // function pointer-to-members can do that.
3317  QualType Pointee;
3318  unsigned PtrOrRef = 0;
3319  if (const PointerType *Ptr = T->getAs<PointerType>())
3320    Pointee = Ptr->getPointeeType();
3321  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3322    Pointee = Ref->getPointeeType();
3323    PtrOrRef = 1;
3324  }
3325  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3326      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3327    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3328        << PtrOrRef;
3329    return NewVD->setInvalidDecl();
3330  }
3331
3332  if (!Previous.empty()) {
3333    Redeclaration = true;
3334    MergeVarDecl(NewVD, Previous);
3335  }
3336}
3337
3338/// \brief Data used with FindOverriddenMethod
3339struct FindOverriddenMethodData {
3340  Sema *S;
3341  CXXMethodDecl *Method;
3342};
3343
3344/// \brief Member lookup function that determines whether a given C++
3345/// method overrides a method in a base class, to be used with
3346/// CXXRecordDecl::lookupInBases().
3347static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3348                                 CXXBasePath &Path,
3349                                 void *UserData) {
3350  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3351
3352  FindOverriddenMethodData *Data
3353    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3354
3355  DeclarationName Name = Data->Method->getDeclName();
3356
3357  // FIXME: Do we care about other names here too?
3358  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3359    // We really want to find the base class destructor here.
3360    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3361    CanQualType CT = Data->S->Context.getCanonicalType(T);
3362
3363    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3364  }
3365
3366  for (Path.Decls = BaseRecord->lookup(Name);
3367       Path.Decls.first != Path.Decls.second;
3368       ++Path.Decls.first) {
3369    NamedDecl *D = *Path.Decls.first;
3370    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3371      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3372        return true;
3373    }
3374  }
3375
3376  return false;
3377}
3378
3379/// AddOverriddenMethods - See if a method overrides any in the base classes,
3380/// and if so, check that it's a valid override and remember it.
3381bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3382  // Look for virtual methods in base classes that this method might override.
3383  CXXBasePaths Paths;
3384  FindOverriddenMethodData Data;
3385  Data.Method = MD;
3386  Data.S = this;
3387  bool AddedAny = false;
3388  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3389    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3390         E = Paths.found_decls_end(); I != E; ++I) {
3391      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3392        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3393            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3394            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3395          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3396          AddedAny = true;
3397        }
3398      }
3399    }
3400  }
3401
3402  return AddedAny;
3403}
3404
3405static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3406  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3407                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3408  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3409  assert(!Prev.isAmbiguous() &&
3410         "Cannot have an ambiguity in previous-declaration lookup");
3411  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3412       Func != FuncEnd; ++Func) {
3413    if (isa<FunctionDecl>(*Func) &&
3414        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3415      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3416  }
3417}
3418
3419NamedDecl*
3420Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3421                              QualType R, TypeSourceInfo *TInfo,
3422                              LookupResult &Previous,
3423                              MultiTemplateParamsArg TemplateParamLists,
3424                              bool IsFunctionDefinition, bool &Redeclaration) {
3425  assert(R.getTypePtr()->isFunctionType());
3426
3427  // TODO: consider using NameInfo for diagnostic.
3428  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3429  DeclarationName Name = NameInfo.getName();
3430  FunctionDecl::StorageClass SC = SC_None;
3431  switch (D.getDeclSpec().getStorageClassSpec()) {
3432  default: assert(0 && "Unknown storage class!");
3433  case DeclSpec::SCS_auto:
3434  case DeclSpec::SCS_register:
3435  case DeclSpec::SCS_mutable:
3436    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3437         diag::err_typecheck_sclass_func);
3438    D.setInvalidType();
3439    break;
3440  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3441  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3442  case DeclSpec::SCS_static: {
3443    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3444      // C99 6.7.1p5:
3445      //   The declaration of an identifier for a function that has
3446      //   block scope shall have no explicit storage-class specifier
3447      //   other than extern
3448      // See also (C++ [dcl.stc]p4).
3449      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3450           diag::err_static_block_func);
3451      SC = SC_None;
3452    } else
3453      SC = SC_Static;
3454    break;
3455  }
3456  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3457  }
3458
3459  if (D.getDeclSpec().isThreadSpecified())
3460    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3461
3462  // Do not allow returning a objc interface by-value.
3463  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3464    Diag(D.getIdentifierLoc(),
3465         diag::err_object_cannot_be_passed_returned_by_value) << 0
3466    << R->getAs<FunctionType>()->getResultType();
3467    D.setInvalidType();
3468  }
3469
3470  FunctionDecl *NewFD;
3471  bool isInline = D.getDeclSpec().isInlineSpecified();
3472  bool isFriend = false;
3473  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3474  FunctionDecl::StorageClass SCAsWritten
3475    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3476  FunctionTemplateDecl *FunctionTemplate = 0;
3477  bool isExplicitSpecialization = false;
3478  bool isFunctionTemplateSpecialization = false;
3479  unsigned NumMatchedTemplateParamLists = 0;
3480
3481  if (!getLangOptions().CPlusPlus) {
3482    // Determine whether the function was written with a
3483    // prototype. This true when:
3484    //   - there is a prototype in the declarator, or
3485    //   - the type R of the function is some kind of typedef or other reference
3486    //     to a type name (which eventually refers to a function type).
3487    bool HasPrototype =
3488    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3489    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3490
3491    NewFD = FunctionDecl::Create(Context, DC,
3492                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3493                                 HasPrototype);
3494    if (D.isInvalidType())
3495      NewFD->setInvalidDecl();
3496
3497    // Set the lexical context.
3498    NewFD->setLexicalDeclContext(CurContext);
3499    // Filter out previous declarations that don't match the scope.
3500    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3501  } else {
3502    isFriend = D.getDeclSpec().isFriendSpecified();
3503    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3504    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3505    bool isVirtualOkay = false;
3506
3507    // Check that the return type is not an abstract class type.
3508    // For record types, this is done by the AbstractClassUsageDiagnoser once
3509    // the class has been completely parsed.
3510    if (!DC->isRecord() &&
3511      RequireNonAbstractType(D.getIdentifierLoc(),
3512                             R->getAs<FunctionType>()->getResultType(),
3513                             diag::err_abstract_type_in_decl,
3514                             AbstractReturnType))
3515      D.setInvalidType();
3516
3517
3518    if (isFriend) {
3519      // C++ [class.friend]p5
3520      //   A function can be defined in a friend declaration of a
3521      //   class . . . . Such a function is implicitly inline.
3522      isInline |= IsFunctionDefinition;
3523    }
3524
3525    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3526      // This is a C++ constructor declaration.
3527      assert(DC->isRecord() &&
3528             "Constructors can only be declared in a member context");
3529
3530      R = CheckConstructorDeclarator(D, R, SC);
3531
3532      // Create the new declaration
3533      NewFD = CXXConstructorDecl::Create(Context,
3534                                         cast<CXXRecordDecl>(DC),
3535                                         NameInfo, R, TInfo,
3536                                         isExplicit, isInline,
3537                                         /*isImplicitlyDeclared=*/false);
3538    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3539      // This is a C++ destructor declaration.
3540      if (DC->isRecord()) {
3541        R = CheckDestructorDeclarator(D, R, SC);
3542
3543        NewFD = CXXDestructorDecl::Create(Context,
3544                                          cast<CXXRecordDecl>(DC),
3545                                          NameInfo, R, TInfo,
3546                                          isInline,
3547                                          /*isImplicitlyDeclared=*/false);
3548        isVirtualOkay = true;
3549      } else {
3550        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3551
3552        // Create a FunctionDecl to satisfy the function definition parsing
3553        // code path.
3554        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3555                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3556                                     /*hasPrototype=*/true);
3557        D.setInvalidType();
3558      }
3559    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3560      if (!DC->isRecord()) {
3561        Diag(D.getIdentifierLoc(),
3562             diag::err_conv_function_not_member);
3563        return 0;
3564      }
3565
3566      CheckConversionDeclarator(D, R, SC);
3567      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3568                                        NameInfo, R, TInfo,
3569                                        isInline, isExplicit);
3570
3571      isVirtualOkay = true;
3572    } else if (DC->isRecord()) {
3573      // If the of the function is the same as the name of the record, then this
3574      // must be an invalid constructor that has a return type.
3575      // (The parser checks for a return type and makes the declarator a
3576      // constructor if it has no return type).
3577      // must have an invalid constructor that has a return type
3578      if (Name.getAsIdentifierInfo() &&
3579          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3580        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3581          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3582          << SourceRange(D.getIdentifierLoc());
3583        return 0;
3584      }
3585
3586      bool isStatic = SC == SC_Static;
3587
3588      // [class.free]p1:
3589      // Any allocation function for a class T is a static member
3590      // (even if not explicitly declared static).
3591      if (Name.getCXXOverloadedOperator() == OO_New ||
3592          Name.getCXXOverloadedOperator() == OO_Array_New)
3593        isStatic = true;
3594
3595      // [class.free]p6 Any deallocation function for a class X is a static member
3596      // (even if not explicitly declared static).
3597      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3598          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3599        isStatic = true;
3600
3601      // This is a C++ method declaration.
3602      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3603                                    NameInfo, R, TInfo,
3604                                    isStatic, SCAsWritten, isInline);
3605
3606      isVirtualOkay = !isStatic;
3607    } else {
3608      // Determine whether the function was written with a
3609      // prototype. This true when:
3610      //   - we're in C++ (where every function has a prototype),
3611      NewFD = FunctionDecl::Create(Context, DC,
3612                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3613                                   true/*HasPrototype*/);
3614    }
3615    SetNestedNameSpecifier(NewFD, D);
3616    isExplicitSpecialization = false;
3617    isFunctionTemplateSpecialization = false;
3618    NumMatchedTemplateParamLists = TemplateParamLists.size();
3619    if (D.isInvalidType())
3620      NewFD->setInvalidDecl();
3621
3622    // Set the lexical context. If the declarator has a C++
3623    // scope specifier, or is the object of a friend declaration, the
3624    // lexical context will be different from the semantic context.
3625    NewFD->setLexicalDeclContext(CurContext);
3626
3627    // Match up the template parameter lists with the scope specifier, then
3628    // determine whether we have a template or a template specialization.
3629    bool Invalid = false;
3630    if (TemplateParameterList *TemplateParams
3631        = MatchTemplateParametersToScopeSpecifier(
3632                                  D.getDeclSpec().getSourceRange().getBegin(),
3633                                  D.getCXXScopeSpec(),
3634                                  TemplateParamLists.get(),
3635                                  TemplateParamLists.size(),
3636                                  isFriend,
3637                                  isExplicitSpecialization,
3638                                  Invalid)) {
3639          // All but one template parameter lists have been matching.
3640          --NumMatchedTemplateParamLists;
3641
3642          if (TemplateParams->size() > 0) {
3643            // This is a function template
3644
3645            // Check that we can declare a template here.
3646            if (CheckTemplateDeclScope(S, TemplateParams))
3647              return 0;
3648
3649            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3650                                                      NewFD->getLocation(),
3651                                                      Name, TemplateParams,
3652                                                      NewFD);
3653            FunctionTemplate->setLexicalDeclContext(CurContext);
3654            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3655          } else {
3656            // This is a function template specialization.
3657            isFunctionTemplateSpecialization = true;
3658
3659            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3660            if (isFriend && isFunctionTemplateSpecialization) {
3661              // We want to remove the "template<>", found here.
3662              SourceRange RemoveRange = TemplateParams->getSourceRange();
3663
3664              // If we remove the template<> and the name is not a
3665              // template-id, we're actually silently creating a problem:
3666              // the friend declaration will refer to an untemplated decl,
3667              // and clearly the user wants a template specialization.  So
3668              // we need to insert '<>' after the name.
3669              SourceLocation InsertLoc;
3670              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3671                InsertLoc = D.getName().getSourceRange().getEnd();
3672                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3673              }
3674
3675              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3676              << Name << RemoveRange
3677              << FixItHint::CreateRemoval(RemoveRange)
3678              << FixItHint::CreateInsertion(InsertLoc, "<>");
3679            }
3680          }
3681        }
3682
3683    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3684      NewFD->setTemplateParameterListsInfo(Context,
3685                                           NumMatchedTemplateParamLists,
3686                                           TemplateParamLists.release());
3687    }
3688
3689    if (Invalid) {
3690      NewFD->setInvalidDecl();
3691      if (FunctionTemplate)
3692        FunctionTemplate->setInvalidDecl();
3693    }
3694
3695    // C++ [dcl.fct.spec]p5:
3696    //   The virtual specifier shall only be used in declarations of
3697    //   nonstatic class member functions that appear within a
3698    //   member-specification of a class declaration; see 10.3.
3699    //
3700    if (isVirtual && !NewFD->isInvalidDecl()) {
3701      if (!isVirtualOkay) {
3702        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3703             diag::err_virtual_non_function);
3704      } else if (!CurContext->isRecord()) {
3705        // 'virtual' was specified outside of the class.
3706        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3707             diag::err_virtual_out_of_class)
3708          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3709      } else if (NewFD->getDescribedFunctionTemplate()) {
3710        // C++ [temp.mem]p3:
3711        //  A member function template shall not be virtual.
3712        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3713             diag::err_virtual_member_function_template)
3714          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3715      } else {
3716        // Okay: Add virtual to the method.
3717        NewFD->setVirtualAsWritten(true);
3718      }
3719    }
3720
3721    // C++ [dcl.fct.spec]p3:
3722    //  The inline specifier shall not appear on a block scope function declaration.
3723    if (isInline && !NewFD->isInvalidDecl()) {
3724      if (CurContext->isFunctionOrMethod()) {
3725        // 'inline' is not allowed on block scope function declaration.
3726        Diag(D.getDeclSpec().getInlineSpecLoc(),
3727             diag::err_inline_declaration_block_scope) << Name
3728          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3729      }
3730    }
3731
3732    // C++ [dcl.fct.spec]p6:
3733    //  The explicit specifier shall be used only in the declaration of a
3734    //  constructor or conversion function within its class definition; see 12.3.1
3735    //  and 12.3.2.
3736    if (isExplicit && !NewFD->isInvalidDecl()) {
3737      if (!CurContext->isRecord()) {
3738        // 'explicit' was specified outside of the class.
3739        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3740             diag::err_explicit_out_of_class)
3741          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3742      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3743                 !isa<CXXConversionDecl>(NewFD)) {
3744        // 'explicit' was specified on a function that wasn't a constructor
3745        // or conversion function.
3746        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3747             diag::err_explicit_non_ctor_or_conv_function)
3748          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3749      }
3750    }
3751
3752    // Filter out previous declarations that don't match the scope.
3753    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3754
3755    if (isFriend) {
3756      // For now, claim that the objects have no previous declaration.
3757      if (FunctionTemplate) {
3758        FunctionTemplate->setObjectOfFriendDecl(false);
3759        FunctionTemplate->setAccess(AS_public);
3760      }
3761      NewFD->setObjectOfFriendDecl(false);
3762      NewFD->setAccess(AS_public);
3763    }
3764
3765    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3766      // A method is implicitly inline if it's defined in its class
3767      // definition.
3768      NewFD->setImplicitlyInline();
3769    }
3770
3771    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3772        !CurContext->isRecord()) {
3773      // C++ [class.static]p1:
3774      //   A data or function member of a class may be declared static
3775      //   in a class definition, in which case it is a static member of
3776      //   the class.
3777
3778      // Complain about the 'static' specifier if it's on an out-of-line
3779      // member function definition.
3780      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3781           diag::err_static_out_of_line)
3782        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3783    }
3784  }
3785
3786  // Handle GNU asm-label extension (encoded as an attribute).
3787  if (Expr *E = (Expr*) D.getAsmLabel()) {
3788    // The parser guarantees this is a string.
3789    StringLiteral *SE = cast<StringLiteral>(E);
3790    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3791                                                SE->getString()));
3792  }
3793
3794  // Copy the parameter declarations from the declarator D to the function
3795  // declaration NewFD, if they are available.  First scavenge them into Params.
3796  llvm::SmallVector<ParmVarDecl*, 16> Params;
3797  if (D.isFunctionDeclarator()) {
3798    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3799
3800    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3801    // function that takes no arguments, not a function that takes a
3802    // single void argument.
3803    // We let through "const void" here because Sema::GetTypeForDeclarator
3804    // already checks for that case.
3805    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3806        FTI.ArgInfo[0].Param &&
3807        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3808      // Empty arg list, don't push any params.
3809      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3810
3811      // In C++, the empty parameter-type-list must be spelled "void"; a
3812      // typedef of void is not permitted.
3813      if (getLangOptions().CPlusPlus &&
3814          Param->getType().getUnqualifiedType() != Context.VoidTy)
3815        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3816    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3817      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3818        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3819        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3820        Param->setDeclContext(NewFD);
3821        Params.push_back(Param);
3822
3823        if (Param->isInvalidDecl())
3824          NewFD->setInvalidDecl();
3825      }
3826    }
3827
3828  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3829    // When we're declaring a function with a typedef, typeof, etc as in the
3830    // following example, we'll need to synthesize (unnamed)
3831    // parameters for use in the declaration.
3832    //
3833    // @code
3834    // typedef void fn(int);
3835    // fn f;
3836    // @endcode
3837
3838    // Synthesize a parameter for each argument type.
3839    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3840         AE = FT->arg_type_end(); AI != AE; ++AI) {
3841      ParmVarDecl *Param =
3842        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3843      Params.push_back(Param);
3844    }
3845  } else {
3846    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3847           "Should not need args for typedef of non-prototype fn");
3848  }
3849  // Finally, we know we have the right number of parameters, install them.
3850  NewFD->setParams(Params.data(), Params.size());
3851
3852  // Process the non-inheritable attributes on this declaration.
3853  ProcessDeclAttributes(S, NewFD, D,
3854                        /*NonInheritable=*/true, /*Inheritable=*/false);
3855
3856  if (!getLangOptions().CPlusPlus) {
3857    // Perform semantic checking on the function declaration.
3858    bool isExplctSpecialization=false;
3859    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3860                             Redeclaration);
3861    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3862            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3863           "previous declaration set still overloaded");
3864  } else {
3865    // If the declarator is a template-id, translate the parser's template
3866    // argument list into our AST format.
3867    bool HasExplicitTemplateArgs = false;
3868    TemplateArgumentListInfo TemplateArgs;
3869    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3870      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3871      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3872      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3873      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3874                                         TemplateId->getTemplateArgs(),
3875                                         TemplateId->NumArgs);
3876      translateTemplateArguments(TemplateArgsPtr,
3877                                 TemplateArgs);
3878      TemplateArgsPtr.release();
3879
3880      HasExplicitTemplateArgs = true;
3881
3882      if (FunctionTemplate) {
3883        // Function template with explicit template arguments.
3884        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
3885          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
3886
3887        HasExplicitTemplateArgs = false;
3888      } else if (!isFunctionTemplateSpecialization &&
3889                 !D.getDeclSpec().isFriendSpecified()) {
3890        // We have encountered something that the user meant to be a
3891        // specialization (because it has explicitly-specified template
3892        // arguments) but that was not introduced with a "template<>" (or had
3893        // too few of them).
3894        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3895          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3896          << FixItHint::CreateInsertion(
3897                                        D.getDeclSpec().getSourceRange().getBegin(),
3898                                                  "template<> ");
3899        isFunctionTemplateSpecialization = true;
3900      } else {
3901        // "friend void foo<>(int);" is an implicit specialization decl.
3902        isFunctionTemplateSpecialization = true;
3903      }
3904    } else if (isFriend && isFunctionTemplateSpecialization) {
3905      // This combination is only possible in a recovery case;  the user
3906      // wrote something like:
3907      //   template <> friend void foo(int);
3908      // which we're recovering from as if the user had written:
3909      //   friend void foo<>(int);
3910      // Go ahead and fake up a template id.
3911      HasExplicitTemplateArgs = true;
3912        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3913      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3914    }
3915
3916    // If it's a friend (and only if it's a friend), it's possible
3917    // that either the specialized function type or the specialized
3918    // template is dependent, and therefore matching will fail.  In
3919    // this case, don't check the specialization yet.
3920    if (isFunctionTemplateSpecialization && isFriend &&
3921        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3922      assert(HasExplicitTemplateArgs &&
3923             "friend function specialization without template args");
3924      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3925                                                       Previous))
3926        NewFD->setInvalidDecl();
3927    } else if (isFunctionTemplateSpecialization) {
3928      if (CheckFunctionTemplateSpecialization(NewFD,
3929                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3930                                              Previous))
3931        NewFD->setInvalidDecl();
3932    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3933      if (CheckMemberSpecialization(NewFD, Previous))
3934          NewFD->setInvalidDecl();
3935    }
3936
3937    // Perform semantic checking on the function declaration.
3938    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3939                             Redeclaration);
3940
3941    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3942            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3943           "previous declaration set still overloaded");
3944
3945    NamedDecl *PrincipalDecl = (FunctionTemplate
3946                                ? cast<NamedDecl>(FunctionTemplate)
3947                                : NewFD);
3948
3949    if (isFriend && Redeclaration) {
3950      AccessSpecifier Access = AS_public;
3951      if (!NewFD->isInvalidDecl())
3952        Access = NewFD->getPreviousDeclaration()->getAccess();
3953
3954      NewFD->setAccess(Access);
3955      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3956
3957      PrincipalDecl->setObjectOfFriendDecl(true);
3958    }
3959
3960    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3961        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3962      PrincipalDecl->setNonMemberOperator();
3963
3964    // If we have a function template, check the template parameter
3965    // list. This will check and merge default template arguments.
3966    if (FunctionTemplate) {
3967      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3968      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3969                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3970                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3971                                                  : TPC_FunctionTemplate);
3972    }
3973
3974    if (NewFD->isInvalidDecl()) {
3975      // Ignore all the rest of this.
3976    } else if (!Redeclaration) {
3977      // Fake up an access specifier if it's supposed to be a class member.
3978      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3979        NewFD->setAccess(AS_public);
3980
3981      // Qualified decls generally require a previous declaration.
3982      if (D.getCXXScopeSpec().isSet()) {
3983        // ...with the major exception of templated-scope or
3984        // dependent-scope friend declarations.
3985
3986        // TODO: we currently also suppress this check in dependent
3987        // contexts because (1) the parameter depth will be off when
3988        // matching friend templates and (2) we might actually be
3989        // selecting a friend based on a dependent factor.  But there
3990        // are situations where these conditions don't apply and we
3991        // can actually do this check immediately.
3992        if (isFriend &&
3993            (NumMatchedTemplateParamLists ||
3994             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3995             CurContext->isDependentContext())) {
3996              // ignore these
3997            } else {
3998              // The user tried to provide an out-of-line definition for a
3999              // function that is a member of a class or namespace, but there
4000              // was no such member function declared (C++ [class.mfct]p2,
4001              // C++ [namespace.memdef]p2). For example:
4002              //
4003              // class X {
4004              //   void f() const;
4005              // };
4006              //
4007              // void X::f() { } // ill-formed
4008              //
4009              // Complain about this problem, and attempt to suggest close
4010              // matches (e.g., those that differ only in cv-qualifiers and
4011              // whether the parameter types are references).
4012              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4013              << Name << DC << D.getCXXScopeSpec().getRange();
4014              NewFD->setInvalidDecl();
4015
4016              DiagnoseInvalidRedeclaration(*this, NewFD);
4017            }
4018
4019        // Unqualified local friend declarations are required to resolve
4020        // to something.
4021        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4022          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4023          NewFD->setInvalidDecl();
4024          DiagnoseInvalidRedeclaration(*this, NewFD);
4025        }
4026
4027    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4028               !isFriend && !isFunctionTemplateSpecialization &&
4029               !isExplicitSpecialization) {
4030      // An out-of-line member function declaration must also be a
4031      // definition (C++ [dcl.meaning]p1).
4032      // Note that this is not the case for explicit specializations of
4033      // function templates or member functions of class templates, per
4034      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4035      // for compatibility with old SWIG code which likes to generate them.
4036      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4037        << D.getCXXScopeSpec().getRange();
4038    }
4039  }
4040
4041
4042  // Handle attributes. We need to have merged decls when handling attributes
4043  // (for example to check for conflicts, etc).
4044  // FIXME: This needs to happen before we merge declarations. Then,
4045  // let attribute merging cope with attribute conflicts.
4046  ProcessDeclAttributes(S, NewFD, D,
4047                        /*NonInheritable=*/false, /*Inheritable=*/true);
4048
4049  // attributes declared post-definition are currently ignored
4050  // FIXME: This should happen during attribute merging
4051  if (Redeclaration && Previous.isSingleResult()) {
4052    const FunctionDecl *Def;
4053    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4054    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4055      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4056      Diag(Def->getLocation(), diag::note_previous_definition);
4057    }
4058  }
4059
4060  AddKnownFunctionAttributes(NewFD);
4061
4062  if (NewFD->hasAttr<OverloadableAttr>() &&
4063      !NewFD->getType()->getAs<FunctionProtoType>()) {
4064    Diag(NewFD->getLocation(),
4065         diag::err_attribute_overloadable_no_prototype)
4066      << NewFD;
4067
4068    // Turn this into a variadic function with no parameters.
4069    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4070    FunctionProtoType::ExtProtoInfo EPI;
4071    EPI.Variadic = true;
4072    EPI.ExtInfo = FT->getExtInfo();
4073
4074    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4075    NewFD->setType(R);
4076  }
4077
4078  // If there's a #pragma GCC visibility in scope, and this isn't a class
4079  // member, set the visibility of this function.
4080  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4081    AddPushedVisibilityAttribute(NewFD);
4082
4083  // If this is a locally-scoped extern C function, update the
4084  // map of such names.
4085  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4086      && !NewFD->isInvalidDecl())
4087    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4088
4089  // Set this FunctionDecl's range up to the right paren.
4090  NewFD->setLocEnd(D.getSourceRange().getEnd());
4091
4092  if (getLangOptions().CPlusPlus) {
4093    if (FunctionTemplate) {
4094      if (NewFD->isInvalidDecl())
4095        FunctionTemplate->setInvalidDecl();
4096      return FunctionTemplate;
4097    }
4098  }
4099
4100  MarkUnusedFileScopedDecl(NewFD);
4101  return NewFD;
4102}
4103
4104/// \brief Perform semantic checking of a new function declaration.
4105///
4106/// Performs semantic analysis of the new function declaration
4107/// NewFD. This routine performs all semantic checking that does not
4108/// require the actual declarator involved in the declaration, and is
4109/// used both for the declaration of functions as they are parsed
4110/// (called via ActOnDeclarator) and for the declaration of functions
4111/// that have been instantiated via C++ template instantiation (called
4112/// via InstantiateDecl).
4113///
4114/// \param IsExplicitSpecialiation whether this new function declaration is
4115/// an explicit specialization of the previous declaration.
4116///
4117/// This sets NewFD->isInvalidDecl() to true if there was an error.
4118void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4119                                    LookupResult &Previous,
4120                                    bool IsExplicitSpecialization,
4121                                    bool &Redeclaration) {
4122  // If NewFD is already known erroneous, don't do any of this checking.
4123  if (NewFD->isInvalidDecl()) {
4124    // If this is a class member, mark the class invalid immediately.
4125    // This avoids some consistency errors later.
4126    if (isa<CXXMethodDecl>(NewFD))
4127      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4128
4129    return;
4130  }
4131
4132  if (NewFD->getResultType()->isVariablyModifiedType()) {
4133    // Functions returning a variably modified type violate C99 6.7.5.2p2
4134    // because all functions have linkage.
4135    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4136    return NewFD->setInvalidDecl();
4137  }
4138
4139  if (NewFD->isMain())
4140    CheckMain(NewFD);
4141
4142  // Check for a previous declaration of this name.
4143  if (Previous.empty() && NewFD->isExternC()) {
4144    // Since we did not find anything by this name and we're declaring
4145    // an extern "C" function, look for a non-visible extern "C"
4146    // declaration with the same name.
4147    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4148      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4149    if (Pos != LocallyScopedExternalDecls.end())
4150      Previous.addDecl(Pos->second);
4151  }
4152
4153  // Merge or overload the declaration with an existing declaration of
4154  // the same name, if appropriate.
4155  if (!Previous.empty()) {
4156    // Determine whether NewFD is an overload of PrevDecl or
4157    // a declaration that requires merging. If it's an overload,
4158    // there's no more work to do here; we'll just add the new
4159    // function to the scope.
4160
4161    NamedDecl *OldDecl = 0;
4162    if (!AllowOverloadingOfFunction(Previous, Context)) {
4163      Redeclaration = true;
4164      OldDecl = Previous.getFoundDecl();
4165    } else {
4166      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4167                            /*NewIsUsingDecl*/ false)) {
4168      case Ovl_Match:
4169        Redeclaration = true;
4170        break;
4171
4172      case Ovl_NonFunction:
4173        Redeclaration = true;
4174        break;
4175
4176      case Ovl_Overload:
4177        Redeclaration = false;
4178        break;
4179      }
4180
4181      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4182        // If a function name is overloadable in C, then every function
4183        // with that name must be marked "overloadable".
4184        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4185          << Redeclaration << NewFD;
4186        NamedDecl *OverloadedDecl = 0;
4187        if (Redeclaration)
4188          OverloadedDecl = OldDecl;
4189        else if (!Previous.empty())
4190          OverloadedDecl = Previous.getRepresentativeDecl();
4191        if (OverloadedDecl)
4192          Diag(OverloadedDecl->getLocation(),
4193               diag::note_attribute_overloadable_prev_overload);
4194        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4195                                                        Context));
4196      }
4197    }
4198
4199    if (Redeclaration) {
4200      // NewFD and OldDecl represent declarations that need to be
4201      // merged.
4202      if (MergeFunctionDecl(NewFD, OldDecl))
4203        return NewFD->setInvalidDecl();
4204
4205      Previous.clear();
4206      Previous.addDecl(OldDecl);
4207
4208      if (FunctionTemplateDecl *OldTemplateDecl
4209                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4210        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4211        FunctionTemplateDecl *NewTemplateDecl
4212          = NewFD->getDescribedFunctionTemplate();
4213        assert(NewTemplateDecl && "Template/non-template mismatch");
4214        if (CXXMethodDecl *Method
4215              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4216          Method->setAccess(OldTemplateDecl->getAccess());
4217          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4218        }
4219
4220        // If this is an explicit specialization of a member that is a function
4221        // template, mark it as a member specialization.
4222        if (IsExplicitSpecialization &&
4223            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4224          NewTemplateDecl->setMemberSpecialization();
4225          assert(OldTemplateDecl->isMemberSpecialization());
4226        }
4227      } else {
4228        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4229          NewFD->setAccess(OldDecl->getAccess());
4230        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4231      }
4232    }
4233  }
4234
4235  // Semantic checking for this function declaration (in isolation).
4236  if (getLangOptions().CPlusPlus) {
4237    // C++-specific checks.
4238    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4239      CheckConstructor(Constructor);
4240    } else if (CXXDestructorDecl *Destructor =
4241                dyn_cast<CXXDestructorDecl>(NewFD)) {
4242      CXXRecordDecl *Record = Destructor->getParent();
4243      QualType ClassType = Context.getTypeDeclType(Record);
4244
4245      // FIXME: Shouldn't we be able to perform this check even when the class
4246      // type is dependent? Both gcc and edg can handle that.
4247      if (!ClassType->isDependentType()) {
4248        DeclarationName Name
4249          = Context.DeclarationNames.getCXXDestructorName(
4250                                        Context.getCanonicalType(ClassType));
4251        if (NewFD->getDeclName() != Name) {
4252          Diag(NewFD->getLocation(), diag::err_destructor_name);
4253          return NewFD->setInvalidDecl();
4254        }
4255      }
4256    } else if (CXXConversionDecl *Conversion
4257               = dyn_cast<CXXConversionDecl>(NewFD)) {
4258      ActOnConversionDeclarator(Conversion);
4259    }
4260
4261    // Find any virtual functions that this function overrides.
4262    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4263      if (!Method->isFunctionTemplateSpecialization() &&
4264          !Method->getDescribedFunctionTemplate()) {
4265        if (AddOverriddenMethods(Method->getParent(), Method)) {
4266          // If the function was marked as "static", we have a problem.
4267          if (NewFD->getStorageClass() == SC_Static) {
4268            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4269              << NewFD->getDeclName();
4270            for (CXXMethodDecl::method_iterator
4271                      Overridden = Method->begin_overridden_methods(),
4272                   OverriddenEnd = Method->end_overridden_methods();
4273                 Overridden != OverriddenEnd;
4274                 ++Overridden) {
4275              Diag((*Overridden)->getLocation(),
4276                   diag::note_overridden_virtual_function);
4277            }
4278          }
4279        }
4280      }
4281    }
4282
4283    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4284    if (NewFD->isOverloadedOperator() &&
4285        CheckOverloadedOperatorDeclaration(NewFD))
4286      return NewFD->setInvalidDecl();
4287
4288    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4289    if (NewFD->getLiteralIdentifier() &&
4290        CheckLiteralOperatorDeclaration(NewFD))
4291      return NewFD->setInvalidDecl();
4292
4293    // In C++, check default arguments now that we have merged decls. Unless
4294    // the lexical context is the class, because in this case this is done
4295    // during delayed parsing anyway.
4296    if (!CurContext->isRecord())
4297      CheckCXXDefaultArguments(NewFD);
4298
4299    // If this function declares a builtin function, check the type of this
4300    // declaration against the expected type for the builtin.
4301    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4302      ASTContext::GetBuiltinTypeError Error;
4303      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4304      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4305        // The type of this function differs from the type of the builtin,
4306        // so forget about the builtin entirely.
4307        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4308      }
4309    }
4310  }
4311}
4312
4313void Sema::CheckMain(FunctionDecl* FD) {
4314  // C++ [basic.start.main]p3:  A program that declares main to be inline
4315  //   or static is ill-formed.
4316  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4317  //   shall not appear in a declaration of main.
4318  // static main is not an error under C99, but we should warn about it.
4319  bool isInline = FD->isInlineSpecified();
4320  bool isStatic = FD->getStorageClass() == SC_Static;
4321  if (isInline || isStatic) {
4322    unsigned diagID = diag::warn_unusual_main_decl;
4323    if (isInline || getLangOptions().CPlusPlus)
4324      diagID = diag::err_unusual_main_decl;
4325
4326    int which = isStatic + (isInline << 1) - 1;
4327    Diag(FD->getLocation(), diagID) << which;
4328  }
4329
4330  QualType T = FD->getType();
4331  assert(T->isFunctionType() && "function decl is not of function type");
4332  const FunctionType* FT = T->getAs<FunctionType>();
4333
4334  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4335    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4336    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4337    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4338                                          diag::err_main_returns_nonint);
4339    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4340      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4341                                        "int");
4342    }
4343    FD->setInvalidDecl(true);
4344  }
4345
4346  // Treat protoless main() as nullary.
4347  if (isa<FunctionNoProtoType>(FT)) return;
4348
4349  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4350  unsigned nparams = FTP->getNumArgs();
4351  assert(FD->getNumParams() == nparams);
4352
4353  bool HasExtraParameters = (nparams > 3);
4354
4355  // Darwin passes an undocumented fourth argument of type char**.  If
4356  // other platforms start sprouting these, the logic below will start
4357  // getting shifty.
4358  if (nparams == 4 &&
4359      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4360    HasExtraParameters = false;
4361
4362  if (HasExtraParameters) {
4363    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4364    FD->setInvalidDecl(true);
4365    nparams = 3;
4366  }
4367
4368  // FIXME: a lot of the following diagnostics would be improved
4369  // if we had some location information about types.
4370
4371  QualType CharPP =
4372    Context.getPointerType(Context.getPointerType(Context.CharTy));
4373  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4374
4375  for (unsigned i = 0; i < nparams; ++i) {
4376    QualType AT = FTP->getArgType(i);
4377
4378    bool mismatch = true;
4379
4380    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4381      mismatch = false;
4382    else if (Expected[i] == CharPP) {
4383      // As an extension, the following forms are okay:
4384      //   char const **
4385      //   char const * const *
4386      //   char * const *
4387
4388      QualifierCollector qs;
4389      const PointerType* PT;
4390      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4391          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4392          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4393        qs.removeConst();
4394        mismatch = !qs.empty();
4395      }
4396    }
4397
4398    if (mismatch) {
4399      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4400      // TODO: suggest replacing given type with expected type
4401      FD->setInvalidDecl(true);
4402    }
4403  }
4404
4405  if (nparams == 1 && !FD->isInvalidDecl()) {
4406    Diag(FD->getLocation(), diag::warn_main_one_arg);
4407  }
4408
4409  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4410    Diag(FD->getLocation(), diag::err_main_template_decl);
4411    FD->setInvalidDecl();
4412  }
4413}
4414
4415bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4416  // FIXME: Need strict checking.  In C89, we need to check for
4417  // any assignment, increment, decrement, function-calls, or
4418  // commas outside of a sizeof.  In C99, it's the same list,
4419  // except that the aforementioned are allowed in unevaluated
4420  // expressions.  Everything else falls under the
4421  // "may accept other forms of constant expressions" exception.
4422  // (We never end up here for C++, so the constant expression
4423  // rules there don't matter.)
4424  if (Init->isConstantInitializer(Context, false))
4425    return false;
4426  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4427    << Init->getSourceRange();
4428  return true;
4429}
4430
4431void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4432  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4433}
4434
4435/// AddInitializerToDecl - Adds the initializer Init to the
4436/// declaration dcl. If DirectInit is true, this is C++ direct
4437/// initialization rather than copy initialization.
4438void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4439  // If there is no declaration, there was an error parsing it.  Just ignore
4440  // the initializer.
4441  if (RealDecl == 0)
4442    return;
4443
4444  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4445    // With declarators parsed the way they are, the parser cannot
4446    // distinguish between a normal initializer and a pure-specifier.
4447    // Thus this grotesque test.
4448    IntegerLiteral *IL;
4449    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4450        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4451      CheckPureMethod(Method, Init->getSourceRange());
4452    else {
4453      Diag(Method->getLocation(), diag::err_member_function_initialization)
4454        << Method->getDeclName() << Init->getSourceRange();
4455      Method->setInvalidDecl();
4456    }
4457    return;
4458  }
4459
4460  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4461  if (!VDecl) {
4462    if (getLangOptions().CPlusPlus &&
4463        RealDecl->getLexicalDeclContext()->isRecord() &&
4464        isa<NamedDecl>(RealDecl))
4465      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4466    else
4467      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4468    RealDecl->setInvalidDecl();
4469    return;
4470  }
4471
4472
4473
4474  // A definition must end up with a complete type, which means it must be
4475  // complete with the restriction that an array type might be completed by the
4476  // initializer; note that later code assumes this restriction.
4477  QualType BaseDeclType = VDecl->getType();
4478  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4479    BaseDeclType = Array->getElementType();
4480  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4481                          diag::err_typecheck_decl_incomplete_type)) {
4482    RealDecl->setInvalidDecl();
4483    return;
4484  }
4485
4486  // The variable can not have an abstract class type.
4487  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4488                             diag::err_abstract_type_in_decl,
4489                             AbstractVariableType))
4490    VDecl->setInvalidDecl();
4491
4492  const VarDecl *Def;
4493  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4494    Diag(VDecl->getLocation(), diag::err_redefinition)
4495      << VDecl->getDeclName();
4496    Diag(Def->getLocation(), diag::note_previous_definition);
4497    VDecl->setInvalidDecl();
4498    return;
4499  }
4500
4501  const VarDecl* PrevInit = 0;
4502  if (getLangOptions().CPlusPlus) {
4503    // C++ [class.static.data]p4
4504    //   If a static data member is of const integral or const
4505    //   enumeration type, its declaration in the class definition can
4506    //   specify a constant-initializer which shall be an integral
4507    //   constant expression (5.19). In that case, the member can appear
4508    //   in integral constant expressions. The member shall still be
4509    //   defined in a namespace scope if it is used in the program and the
4510    //   namespace scope definition shall not contain an initializer.
4511    //
4512    // We already performed a redefinition check above, but for static
4513    // data members we also need to check whether there was an in-class
4514    // declaration with an initializer.
4515    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4516      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4517      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4518      return;
4519    }
4520
4521    if (VDecl->hasLocalStorage())
4522      getCurFunction()->setHasBranchProtectedScope();
4523
4524    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4525      VDecl->setInvalidDecl();
4526      return;
4527    }
4528  }
4529
4530  // Capture the variable that is being initialized and the style of
4531  // initialization.
4532  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4533
4534  // FIXME: Poor source location information.
4535  InitializationKind Kind
4536    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4537                                                   Init->getLocStart(),
4538                                                   Init->getLocEnd())
4539                : InitializationKind::CreateCopy(VDecl->getLocation(),
4540                                                 Init->getLocStart());
4541
4542  // Get the decls type and save a reference for later, since
4543  // CheckInitializerTypes may change it.
4544  QualType DclT = VDecl->getType(), SavT = DclT;
4545  if (VDecl->isLocalVarDecl()) {
4546    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4547      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4548      VDecl->setInvalidDecl();
4549    } else if (!VDecl->isInvalidDecl()) {
4550      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4551      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4552                                                MultiExprArg(*this, &Init, 1),
4553                                                &DclT);
4554      if (Result.isInvalid()) {
4555        VDecl->setInvalidDecl();
4556        return;
4557      }
4558
4559      Init = Result.takeAs<Expr>();
4560
4561      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4562      // Don't check invalid declarations to avoid emitting useless diagnostics.
4563      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4564        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4565          CheckForConstantInitializer(Init, DclT);
4566      }
4567    }
4568  } else if (VDecl->isStaticDataMember() &&
4569             VDecl->getLexicalDeclContext()->isRecord()) {
4570    // This is an in-class initialization for a static data member, e.g.,
4571    //
4572    // struct S {
4573    //   static const int value = 17;
4574    // };
4575
4576    // Try to perform the initialization regardless.
4577    if (!VDecl->isInvalidDecl()) {
4578      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4579      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4580                                          MultiExprArg(*this, &Init, 1),
4581                                          &DclT);
4582      if (Result.isInvalid()) {
4583        VDecl->setInvalidDecl();
4584        return;
4585      }
4586
4587      Init = Result.takeAs<Expr>();
4588    }
4589
4590    // C++ [class.mem]p4:
4591    //   A member-declarator can contain a constant-initializer only
4592    //   if it declares a static member (9.4) of const integral or
4593    //   const enumeration type, see 9.4.2.
4594    QualType T = VDecl->getType();
4595
4596    // Do nothing on dependent types.
4597    if (T->isDependentType()) {
4598
4599    // Require constness.
4600    } else if (!T.isConstQualified()) {
4601      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4602        << Init->getSourceRange();
4603      VDecl->setInvalidDecl();
4604
4605    // We allow integer constant expressions in all cases.
4606    } else if (T->isIntegralOrEnumerationType()) {
4607      if (!Init->isValueDependent()) {
4608        // Check whether the expression is a constant expression.
4609        llvm::APSInt Value;
4610        SourceLocation Loc;
4611        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4612          Diag(Loc, diag::err_in_class_initializer_non_constant)
4613            << Init->getSourceRange();
4614          VDecl->setInvalidDecl();
4615        }
4616      }
4617
4618    // We allow floating-point constants as an extension in C++03, and
4619    // C++0x has far more complicated rules that we don't really
4620    // implement fully.
4621    } else {
4622      bool Allowed = false;
4623      if (getLangOptions().CPlusPlus0x) {
4624        Allowed = T->isLiteralType();
4625      } else if (T->isFloatingType()) { // also permits complex, which is ok
4626        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4627          << T << Init->getSourceRange();
4628        Allowed = true;
4629      }
4630
4631      if (!Allowed) {
4632        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4633          << T << Init->getSourceRange();
4634        VDecl->setInvalidDecl();
4635
4636      // TODO: there are probably expressions that pass here that shouldn't.
4637      } else if (!Init->isValueDependent() &&
4638                 !Init->isConstantInitializer(Context, false)) {
4639        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4640          << Init->getSourceRange();
4641        VDecl->setInvalidDecl();
4642      }
4643    }
4644  } else if (VDecl->isFileVarDecl()) {
4645    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4646        (!getLangOptions().CPlusPlus ||
4647         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4648      Diag(VDecl->getLocation(), diag::warn_extern_init);
4649    if (!VDecl->isInvalidDecl()) {
4650      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4651      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4652                                                MultiExprArg(*this, &Init, 1),
4653                                                &DclT);
4654      if (Result.isInvalid()) {
4655        VDecl->setInvalidDecl();
4656        return;
4657      }
4658
4659      Init = Result.takeAs<Expr>();
4660    }
4661
4662    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4663    // Don't check invalid declarations to avoid emitting useless diagnostics.
4664    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4665      // C99 6.7.8p4. All file scoped initializers need to be constant.
4666      CheckForConstantInitializer(Init, DclT);
4667    }
4668  }
4669  // If the type changed, it means we had an incomplete type that was
4670  // completed by the initializer. For example:
4671  //   int ary[] = { 1, 3, 5 };
4672  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4673  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4674    VDecl->setType(DclT);
4675    Init->setType(DclT);
4676  }
4677
4678
4679  // If this variable is a local declaration with record type, make sure it
4680  // doesn't have a flexible member initialization.  We only support this as a
4681  // global/static definition.
4682  if (VDecl->hasLocalStorage())
4683    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4684      if (RT->getDecl()->hasFlexibleArrayMember()) {
4685        // Check whether the initializer tries to initialize the flexible
4686        // array member itself to anything other than an empty initializer list.
4687        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4688          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4689                                         RT->getDecl()->field_end()) - 1;
4690          if (Index < ILE->getNumInits() &&
4691              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4692                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4693            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4694            VDecl->setInvalidDecl();
4695          }
4696        }
4697      }
4698
4699  // Check any implicit conversions within the expression.
4700  CheckImplicitConversions(Init, VDecl->getLocation());
4701
4702  Init = MaybeCreateExprWithCleanups(Init);
4703  // Attach the initializer to the decl.
4704  VDecl->setInit(Init);
4705
4706  CheckCompleteVariableDeclaration(VDecl);
4707}
4708
4709/// ActOnInitializerError - Given that there was an error parsing an
4710/// initializer for the given declaration, try to return to some form
4711/// of sanity.
4712void Sema::ActOnInitializerError(Decl *D) {
4713  // Our main concern here is re-establishing invariants like "a
4714  // variable's type is either dependent or complete".
4715  if (!D || D->isInvalidDecl()) return;
4716
4717  VarDecl *VD = dyn_cast<VarDecl>(D);
4718  if (!VD) return;
4719
4720  QualType Ty = VD->getType();
4721  if (Ty->isDependentType()) return;
4722
4723  // Require a complete type.
4724  if (RequireCompleteType(VD->getLocation(),
4725                          Context.getBaseElementType(Ty),
4726                          diag::err_typecheck_decl_incomplete_type)) {
4727    VD->setInvalidDecl();
4728    return;
4729  }
4730
4731  // Require an abstract type.
4732  if (RequireNonAbstractType(VD->getLocation(), Ty,
4733                             diag::err_abstract_type_in_decl,
4734                             AbstractVariableType)) {
4735    VD->setInvalidDecl();
4736    return;
4737  }
4738
4739  // Don't bother complaining about constructors or destructors,
4740  // though.
4741}
4742
4743void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4744                                  bool TypeContainsUndeducedAuto) {
4745  // If there is no declaration, there was an error parsing it. Just ignore it.
4746  if (RealDecl == 0)
4747    return;
4748
4749  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4750    QualType Type = Var->getType();
4751
4752    // C++0x [dcl.spec.auto]p3
4753    if (TypeContainsUndeducedAuto) {
4754      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4755        << Var->getDeclName() << Type;
4756      Var->setInvalidDecl();
4757      return;
4758    }
4759
4760    switch (Var->isThisDeclarationADefinition()) {
4761    case VarDecl::Definition:
4762      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4763        break;
4764
4765      // We have an out-of-line definition of a static data member
4766      // that has an in-class initializer, so we type-check this like
4767      // a declaration.
4768      //
4769      // Fall through
4770
4771    case VarDecl::DeclarationOnly:
4772      // It's only a declaration.
4773
4774      // Block scope. C99 6.7p7: If an identifier for an object is
4775      // declared with no linkage (C99 6.2.2p6), the type for the
4776      // object shall be complete.
4777      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4778          !Var->getLinkage() && !Var->isInvalidDecl() &&
4779          RequireCompleteType(Var->getLocation(), Type,
4780                              diag::err_typecheck_decl_incomplete_type))
4781        Var->setInvalidDecl();
4782
4783      // Make sure that the type is not abstract.
4784      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4785          RequireNonAbstractType(Var->getLocation(), Type,
4786                                 diag::err_abstract_type_in_decl,
4787                                 AbstractVariableType))
4788        Var->setInvalidDecl();
4789      return;
4790
4791    case VarDecl::TentativeDefinition:
4792      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4793      // object that has file scope without an initializer, and without a
4794      // storage-class specifier or with the storage-class specifier "static",
4795      // constitutes a tentative definition. Note: A tentative definition with
4796      // external linkage is valid (C99 6.2.2p5).
4797      if (!Var->isInvalidDecl()) {
4798        if (const IncompleteArrayType *ArrayT
4799                                    = Context.getAsIncompleteArrayType(Type)) {
4800          if (RequireCompleteType(Var->getLocation(),
4801                                  ArrayT->getElementType(),
4802                                  diag::err_illegal_decl_array_incomplete_type))
4803            Var->setInvalidDecl();
4804        } else if (Var->getStorageClass() == SC_Static) {
4805          // C99 6.9.2p3: If the declaration of an identifier for an object is
4806          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4807          // declared type shall not be an incomplete type.
4808          // NOTE: code such as the following
4809          //     static struct s;
4810          //     struct s { int a; };
4811          // is accepted by gcc. Hence here we issue a warning instead of
4812          // an error and we do not invalidate the static declaration.
4813          // NOTE: to avoid multiple warnings, only check the first declaration.
4814          if (Var->getPreviousDeclaration() == 0)
4815            RequireCompleteType(Var->getLocation(), Type,
4816                                diag::ext_typecheck_decl_incomplete_type);
4817        }
4818      }
4819
4820      // Record the tentative definition; we're done.
4821      if (!Var->isInvalidDecl())
4822        TentativeDefinitions.push_back(Var);
4823      return;
4824    }
4825
4826    // Provide a specific diagnostic for uninitialized variable
4827    // definitions with incomplete array type.
4828    if (Type->isIncompleteArrayType()) {
4829      Diag(Var->getLocation(),
4830           diag::err_typecheck_incomplete_array_needs_initializer);
4831      Var->setInvalidDecl();
4832      return;
4833    }
4834
4835    // Provide a specific diagnostic for uninitialized variable
4836    // definitions with reference type.
4837    if (Type->isReferenceType()) {
4838      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4839        << Var->getDeclName()
4840        << SourceRange(Var->getLocation(), Var->getLocation());
4841      Var->setInvalidDecl();
4842      return;
4843    }
4844
4845    // Do not attempt to type-check the default initializer for a
4846    // variable with dependent type.
4847    if (Type->isDependentType())
4848      return;
4849
4850    if (Var->isInvalidDecl())
4851      return;
4852
4853    if (RequireCompleteType(Var->getLocation(),
4854                            Context.getBaseElementType(Type),
4855                            diag::err_typecheck_decl_incomplete_type)) {
4856      Var->setInvalidDecl();
4857      return;
4858    }
4859
4860    // The variable can not have an abstract class type.
4861    if (RequireNonAbstractType(Var->getLocation(), Type,
4862                               diag::err_abstract_type_in_decl,
4863                               AbstractVariableType)) {
4864      Var->setInvalidDecl();
4865      return;
4866    }
4867
4868    const RecordType *Record
4869      = Context.getBaseElementType(Type)->getAs<RecordType>();
4870    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4871        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4872      // C++03 [dcl.init]p9:
4873      //   If no initializer is specified for an object, and the
4874      //   object is of (possibly cv-qualified) non-POD class type (or
4875      //   array thereof), the object shall be default-initialized; if
4876      //   the object is of const-qualified type, the underlying class
4877      //   type shall have a user-declared default
4878      //   constructor. Otherwise, if no initializer is specified for
4879      //   a non- static object, the object and its subobjects, if
4880      //   any, have an indeterminate initial value); if the object
4881      //   or any of its subobjects are of const-qualified type, the
4882      //   program is ill-formed.
4883      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4884    } else {
4885      // Check for jumps past the implicit initializer.  C++0x
4886      // clarifies that this applies to a "variable with automatic
4887      // storage duration", not a "local variable".
4888      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4889        getCurFunction()->setHasBranchProtectedScope();
4890
4891      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4892      InitializationKind Kind
4893        = InitializationKind::CreateDefault(Var->getLocation());
4894
4895      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4896      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4897                                        MultiExprArg(*this, 0, 0));
4898      if (Init.isInvalid())
4899        Var->setInvalidDecl();
4900      else if (Init.get())
4901        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4902    }
4903
4904    CheckCompleteVariableDeclaration(Var);
4905  }
4906}
4907
4908void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4909  if (var->isInvalidDecl()) return;
4910
4911  // All the following checks are C++ only.
4912  if (!getLangOptions().CPlusPlus) return;
4913
4914  QualType baseType = Context.getBaseElementType(var->getType());
4915  if (baseType->isDependentType()) return;
4916
4917  // __block variables might require us to capture a copy-initializer.
4918  if (var->hasAttr<BlocksAttr>()) {
4919    // It's currently invalid to ever have a __block variable with an
4920    // array type; should we diagnose that here?
4921
4922    // Regardless, we don't want to ignore array nesting when
4923    // constructing this copy.
4924    QualType type = var->getType();
4925
4926    if (type->isStructureOrClassType()) {
4927      SourceLocation poi = var->getLocation();
4928      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
4929      ExprResult result =
4930        PerformCopyInitialization(
4931                        InitializedEntity::InitializeBlock(poi, type, false),
4932                                  poi, Owned(varRef));
4933      if (!result.isInvalid()) {
4934        result = MaybeCreateExprWithCleanups(result);
4935        Expr *init = result.takeAs<Expr>();
4936        Context.setBlockVarCopyInits(var, init);
4937      }
4938    }
4939  }
4940
4941  // Check for global constructors.
4942  if (!var->getDeclContext()->isDependentContext() &&
4943      var->hasGlobalStorage() &&
4944      !var->isStaticLocal() &&
4945      var->getInit() &&
4946      !var->getInit()->isConstantInitializer(Context,
4947                                             baseType->isReferenceType()))
4948    Diag(var->getLocation(), diag::warn_global_constructor)
4949      << var->getInit()->getSourceRange();
4950
4951  // Require the destructor.
4952  if (const RecordType *recordType = baseType->getAs<RecordType>())
4953    FinalizeVarWithDestructor(var, recordType);
4954}
4955
4956Sema::DeclGroupPtrTy
4957Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4958                              Decl **Group, unsigned NumDecls) {
4959  llvm::SmallVector<Decl*, 8> Decls;
4960
4961  if (DS.isTypeSpecOwned())
4962    Decls.push_back(DS.getRepAsDecl());
4963
4964  for (unsigned i = 0; i != NumDecls; ++i)
4965    if (Decl *D = Group[i])
4966      Decls.push_back(D);
4967
4968  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4969                                                   Decls.data(), Decls.size()));
4970}
4971
4972
4973/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4974/// to introduce parameters into function prototype scope.
4975Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4976  const DeclSpec &DS = D.getDeclSpec();
4977
4978  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4979  VarDecl::StorageClass StorageClass = SC_None;
4980  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4981  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4982    StorageClass = SC_Register;
4983    StorageClassAsWritten = SC_Register;
4984  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4985    Diag(DS.getStorageClassSpecLoc(),
4986         diag::err_invalid_storage_class_in_func_decl);
4987    D.getMutableDeclSpec().ClearStorageClassSpecs();
4988  }
4989
4990  if (D.getDeclSpec().isThreadSpecified())
4991    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4992
4993  DiagnoseFunctionSpecifiers(D);
4994
4995  TagDecl *OwnedDecl = 0;
4996  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4997  QualType parmDeclType = TInfo->getType();
4998
4999  if (getLangOptions().CPlusPlus) {
5000    // Check that there are no default arguments inside the type of this
5001    // parameter.
5002    CheckExtraCXXDefaultArguments(D);
5003
5004    if (OwnedDecl && OwnedDecl->isDefinition()) {
5005      // C++ [dcl.fct]p6:
5006      //   Types shall not be defined in return or parameter types.
5007      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5008        << Context.getTypeDeclType(OwnedDecl);
5009    }
5010
5011    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5012    if (D.getCXXScopeSpec().isSet()) {
5013      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5014        << D.getCXXScopeSpec().getRange();
5015      D.getCXXScopeSpec().clear();
5016    }
5017  }
5018
5019  // Ensure we have a valid name
5020  IdentifierInfo *II = 0;
5021  if (D.hasName()) {
5022    II = D.getIdentifier();
5023    if (!II) {
5024      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5025        << GetNameForDeclarator(D).getName().getAsString();
5026      D.setInvalidType(true);
5027    }
5028  }
5029
5030  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5031  if (II) {
5032    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5033                   ForRedeclaration);
5034    LookupName(R, S);
5035    if (R.isSingleResult()) {
5036      NamedDecl *PrevDecl = R.getFoundDecl();
5037      if (PrevDecl->isTemplateParameter()) {
5038        // Maybe we will complain about the shadowed template parameter.
5039        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5040        // Just pretend that we didn't see the previous declaration.
5041        PrevDecl = 0;
5042      } else if (S->isDeclScope(PrevDecl)) {
5043        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5044        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5045
5046        // Recover by removing the name
5047        II = 0;
5048        D.SetIdentifier(0, D.getIdentifierLoc());
5049        D.setInvalidType(true);
5050      }
5051    }
5052  }
5053
5054  // Temporarily put parameter variables in the translation unit, not
5055  // the enclosing context.  This prevents them from accidentally
5056  // looking like class members in C++.
5057  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5058                                    TInfo, parmDeclType, II,
5059                                    D.getIdentifierLoc(),
5060                                    StorageClass, StorageClassAsWritten);
5061
5062  if (D.isInvalidType())
5063    New->setInvalidDecl();
5064
5065  // Add the parameter declaration into this scope.
5066  S->AddDecl(New);
5067  if (II)
5068    IdResolver.AddDecl(New);
5069
5070  ProcessDeclAttributes(S, New, D);
5071
5072  if (New->hasAttr<BlocksAttr>()) {
5073    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5074  }
5075  return New;
5076}
5077
5078/// \brief Synthesizes a variable for a parameter arising from a
5079/// typedef.
5080ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5081                                              SourceLocation Loc,
5082                                              QualType T) {
5083  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5084                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5085                                           SC_None, SC_None, 0);
5086  Param->setImplicit();
5087  return Param;
5088}
5089
5090void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5091                                    ParmVarDecl * const *ParamEnd) {
5092  // Don't diagnose unused-parameter errors in template instantiations; we
5093  // will already have done so in the template itself.
5094  if (!ActiveTemplateInstantiations.empty())
5095    return;
5096
5097  for (; Param != ParamEnd; ++Param) {
5098    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5099        !(*Param)->hasAttr<UnusedAttr>()) {
5100      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5101        << (*Param)->getDeclName();
5102    }
5103  }
5104}
5105
5106void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5107                                                  ParmVarDecl * const *ParamEnd,
5108                                                  QualType ReturnTy,
5109                                                  NamedDecl *D) {
5110  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5111    return;
5112
5113  // Warn if the return value is pass-by-value and larger than the specified
5114  // threshold.
5115  if (ReturnTy->isPODType()) {
5116    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5117    if (Size > LangOpts.NumLargeByValueCopy)
5118      Diag(D->getLocation(), diag::warn_return_value_size)
5119          << D->getDeclName() << Size;
5120  }
5121
5122  // Warn if any parameter is pass-by-value and larger than the specified
5123  // threshold.
5124  for (; Param != ParamEnd; ++Param) {
5125    QualType T = (*Param)->getType();
5126    if (!T->isPODType())
5127      continue;
5128    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5129    if (Size > LangOpts.NumLargeByValueCopy)
5130      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5131          << (*Param)->getDeclName() << Size;
5132  }
5133}
5134
5135ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5136                                  TypeSourceInfo *TSInfo, QualType T,
5137                                  IdentifierInfo *Name,
5138                                  SourceLocation NameLoc,
5139                                  VarDecl::StorageClass StorageClass,
5140                                  VarDecl::StorageClass StorageClassAsWritten) {
5141  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5142                                         adjustParameterType(T), TSInfo,
5143                                         StorageClass, StorageClassAsWritten,
5144                                         0);
5145
5146  // Parameters can not be abstract class types.
5147  // For record types, this is done by the AbstractClassUsageDiagnoser once
5148  // the class has been completely parsed.
5149  if (!CurContext->isRecord() &&
5150      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5151                             AbstractParamType))
5152    New->setInvalidDecl();
5153
5154  // Parameter declarators cannot be interface types. All ObjC objects are
5155  // passed by reference.
5156  if (T->isObjCObjectType()) {
5157    Diag(NameLoc,
5158         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5159    New->setInvalidDecl();
5160  }
5161
5162  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5163  // duration shall not be qualified by an address-space qualifier."
5164  // Since all parameters have automatic store duration, they can not have
5165  // an address space.
5166  if (T.getAddressSpace() != 0) {
5167    Diag(NameLoc, diag::err_arg_with_address_space);
5168    New->setInvalidDecl();
5169  }
5170
5171  return New;
5172}
5173
5174void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5175                                           SourceLocation LocAfterDecls) {
5176  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5177
5178  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5179  // for a K&R function.
5180  if (!FTI.hasPrototype) {
5181    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5182      --i;
5183      if (FTI.ArgInfo[i].Param == 0) {
5184        llvm::SmallString<256> Code;
5185        llvm::raw_svector_ostream(Code) << "  int "
5186                                        << FTI.ArgInfo[i].Ident->getName()
5187                                        << ";\n";
5188        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5189          << FTI.ArgInfo[i].Ident
5190          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5191
5192        // Implicitly declare the argument as type 'int' for lack of a better
5193        // type.
5194        DeclSpec DS;
5195        const char* PrevSpec; // unused
5196        unsigned DiagID; // unused
5197        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5198                           PrevSpec, DiagID);
5199        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5200        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5201        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5202      }
5203    }
5204  }
5205}
5206
5207Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5208                                         Declarator &D) {
5209  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5210  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5211  Scope *ParentScope = FnBodyScope->getParent();
5212
5213  Decl *DP = HandleDeclarator(ParentScope, D,
5214                              MultiTemplateParamsArg(*this),
5215                              /*IsFunctionDefinition=*/true);
5216  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5217}
5218
5219static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5220  // Don't warn about invalid declarations.
5221  if (FD->isInvalidDecl())
5222    return false;
5223
5224  // Or declarations that aren't global.
5225  if (!FD->isGlobal())
5226    return false;
5227
5228  // Don't warn about C++ member functions.
5229  if (isa<CXXMethodDecl>(FD))
5230    return false;
5231
5232  // Don't warn about 'main'.
5233  if (FD->isMain())
5234    return false;
5235
5236  // Don't warn about inline functions.
5237  if (FD->isInlineSpecified())
5238    return false;
5239
5240  // Don't warn about function templates.
5241  if (FD->getDescribedFunctionTemplate())
5242    return false;
5243
5244  // Don't warn about function template specializations.
5245  if (FD->isFunctionTemplateSpecialization())
5246    return false;
5247
5248  bool MissingPrototype = true;
5249  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5250       Prev; Prev = Prev->getPreviousDeclaration()) {
5251    // Ignore any declarations that occur in function or method
5252    // scope, because they aren't visible from the header.
5253    if (Prev->getDeclContext()->isFunctionOrMethod())
5254      continue;
5255
5256    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5257    break;
5258  }
5259
5260  return MissingPrototype;
5261}
5262
5263Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5264  // Clear the last template instantiation error context.
5265  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5266
5267  if (!D)
5268    return D;
5269  FunctionDecl *FD = 0;
5270
5271  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5272    FD = FunTmpl->getTemplatedDecl();
5273  else
5274    FD = cast<FunctionDecl>(D);
5275
5276  // Enter a new function scope
5277  PushFunctionScope();
5278
5279  // See if this is a redefinition.
5280  // But don't complain if we're in GNU89 mode and the previous definition
5281  // was an extern inline function.
5282  const FunctionDecl *Definition;
5283  if (FD->hasBody(Definition) &&
5284      !canRedefineFunction(Definition, getLangOptions())) {
5285    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5286        Definition->getStorageClass() == SC_Extern)
5287      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5288        << FD->getDeclName() << getLangOptions().CPlusPlus;
5289    else
5290      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5291    Diag(Definition->getLocation(), diag::note_previous_definition);
5292  }
5293
5294  // Builtin functions cannot be defined.
5295  if (unsigned BuiltinID = FD->getBuiltinID()) {
5296    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5297      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5298      FD->setInvalidDecl();
5299    }
5300  }
5301
5302  // The return type of a function definition must be complete
5303  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5304  QualType ResultType = FD->getResultType();
5305  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5306      !FD->isInvalidDecl() &&
5307      RequireCompleteType(FD->getLocation(), ResultType,
5308                          diag::err_func_def_incomplete_result))
5309    FD->setInvalidDecl();
5310
5311  // GNU warning -Wmissing-prototypes:
5312  //   Warn if a global function is defined without a previous
5313  //   prototype declaration. This warning is issued even if the
5314  //   definition itself provides a prototype. The aim is to detect
5315  //   global functions that fail to be declared in header files.
5316  if (ShouldWarnAboutMissingPrototype(FD))
5317    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5318
5319  if (FnBodyScope)
5320    PushDeclContext(FnBodyScope, FD);
5321
5322  // Check the validity of our function parameters
5323  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5324                           /*CheckParameterNames=*/true);
5325
5326  // Introduce our parameters into the function scope
5327  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5328    ParmVarDecl *Param = FD->getParamDecl(p);
5329    Param->setOwningFunction(FD);
5330
5331    // If this has an identifier, add it to the scope stack.
5332    if (Param->getIdentifier() && FnBodyScope) {
5333      CheckShadow(FnBodyScope, Param);
5334
5335      PushOnScopeChains(Param, FnBodyScope);
5336    }
5337  }
5338
5339  // Checking attributes of current function definition
5340  // dllimport attribute.
5341  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5342  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5343    // dllimport attribute cannot be directly applied to definition.
5344    if (!DA->isInherited()) {
5345      Diag(FD->getLocation(),
5346           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5347        << "dllimport";
5348      FD->setInvalidDecl();
5349      return FD;
5350    }
5351
5352    // Visual C++ appears to not think this is an issue, so only issue
5353    // a warning when Microsoft extensions are disabled.
5354    if (!LangOpts.Microsoft) {
5355      // If a symbol previously declared dllimport is later defined, the
5356      // attribute is ignored in subsequent references, and a warning is
5357      // emitted.
5358      Diag(FD->getLocation(),
5359           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5360        << FD->getName() << "dllimport";
5361    }
5362  }
5363  return FD;
5364}
5365
5366/// \brief Given the set of return statements within a function body,
5367/// compute the variables that are subject to the named return value
5368/// optimization.
5369///
5370/// Each of the variables that is subject to the named return value
5371/// optimization will be marked as NRVO variables in the AST, and any
5372/// return statement that has a marked NRVO variable as its NRVO candidate can
5373/// use the named return value optimization.
5374///
5375/// This function applies a very simplistic algorithm for NRVO: if every return
5376/// statement in the function has the same NRVO candidate, that candidate is
5377/// the NRVO variable.
5378///
5379/// FIXME: Employ a smarter algorithm that accounts for multiple return
5380/// statements and the lifetimes of the NRVO candidates. We should be able to
5381/// find a maximal set of NRVO variables.
5382static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5383  ReturnStmt **Returns = Scope->Returns.data();
5384
5385  const VarDecl *NRVOCandidate = 0;
5386  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5387    if (!Returns[I]->getNRVOCandidate())
5388      return;
5389
5390    if (!NRVOCandidate)
5391      NRVOCandidate = Returns[I]->getNRVOCandidate();
5392    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5393      return;
5394  }
5395
5396  if (NRVOCandidate)
5397    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5398}
5399
5400Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5401  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5402}
5403
5404Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5405                                    bool IsInstantiation) {
5406  FunctionDecl *FD = 0;
5407  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5408  if (FunTmpl)
5409    FD = FunTmpl->getTemplatedDecl();
5410  else
5411    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5412
5413  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5414
5415  if (FD) {
5416    FD->setBody(Body);
5417    if (FD->isMain()) {
5418      // C and C++ allow for main to automagically return 0.
5419      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5420      FD->setHasImplicitReturnZero(true);
5421      WP.disableCheckFallThrough();
5422    }
5423
5424    if (!FD->isInvalidDecl()) {
5425      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5426      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5427                                             FD->getResultType(), FD);
5428
5429      // If this is a constructor, we need a vtable.
5430      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5431        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5432
5433      ComputeNRVO(Body, getCurFunction());
5434    }
5435
5436    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5437  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5438    assert(MD == getCurMethodDecl() && "Method parsing confused");
5439    MD->setBody(Body);
5440    if (Body)
5441      MD->setEndLoc(Body->getLocEnd());
5442    if (!MD->isInvalidDecl()) {
5443      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5444      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5445                                             MD->getResultType(), MD);
5446    }
5447  } else {
5448    return 0;
5449  }
5450
5451  // Verify and clean out per-function state.
5452
5453  // Check goto/label use.
5454  FunctionScopeInfo *CurFn = getCurFunction();
5455  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5456         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5457    LabelStmt *L = I->second;
5458
5459    // Verify that we have no forward references left.  If so, there was a goto
5460    // or address of a label taken, but no definition of it.  Label fwd
5461    // definitions are indicated with a null substmt.
5462    if (L->getSubStmt() != 0) {
5463      if (!L->isUsed())
5464        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5465      continue;
5466    }
5467
5468    // Emit error.
5469    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5470
5471    // At this point, we have gotos that use the bogus label.  Stitch it into
5472    // the function body so that they aren't leaked and that the AST is well
5473    // formed.
5474    if (Body == 0) {
5475      // The whole function wasn't parsed correctly.
5476      continue;
5477    }
5478
5479    // Otherwise, the body is valid: we want to stitch the label decl into the
5480    // function somewhere so that it is properly owned and so that the goto
5481    // has a valid target.  Do this by creating a new compound stmt with the
5482    // label in it.
5483
5484    // Give the label a sub-statement.
5485    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5486
5487    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5488                               cast<CXXTryStmt>(Body)->getTryBlock() :
5489                               cast<CompoundStmt>(Body);
5490    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5491                                          Compound->body_end());
5492    Elements.push_back(L);
5493    Compound->setStmts(Context, Elements.data(), Elements.size());
5494  }
5495
5496  if (Body) {
5497    // C++ constructors that have function-try-blocks can't have return
5498    // statements in the handlers of that block. (C++ [except.handle]p14)
5499    // Verify this.
5500    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5501      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5502
5503    // Verify that that gotos and switch cases don't jump into scopes illegally.
5504    // Verify that that gotos and switch cases don't jump into scopes illegally.
5505    if (getCurFunction()->NeedsScopeChecking() &&
5506        !dcl->isInvalidDecl() &&
5507        !hasAnyErrorsInThisFunction())
5508      DiagnoseInvalidJumps(Body);
5509
5510    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5511      if (!Destructor->getParent()->isDependentType())
5512        CheckDestructor(Destructor);
5513
5514      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5515                                             Destructor->getParent());
5516    }
5517
5518    // If any errors have occurred, clear out any temporaries that may have
5519    // been leftover. This ensures that these temporaries won't be picked up for
5520    // deletion in some later function.
5521    if (PP.getDiagnostics().hasErrorOccurred())
5522      ExprTemporaries.clear();
5523    else if (!isa<FunctionTemplateDecl>(dcl)) {
5524      // Since the body is valid, issue any analysis-based warnings that are
5525      // enabled.
5526      QualType ResultType;
5527      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5528        AnalysisWarnings.IssueWarnings(WP, FD);
5529      } else {
5530        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5531        AnalysisWarnings.IssueWarnings(WP, MD);
5532      }
5533    }
5534
5535    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5536  }
5537
5538  if (!IsInstantiation)
5539    PopDeclContext();
5540
5541  PopFunctionOrBlockScope();
5542
5543  // If any errors have occurred, clear out any temporaries that may have
5544  // been leftover. This ensures that these temporaries won't be picked up for
5545  // deletion in some later function.
5546  if (getDiagnostics().hasErrorOccurred())
5547    ExprTemporaries.clear();
5548
5549  return dcl;
5550}
5551
5552/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5553/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5554NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5555                                          IdentifierInfo &II, Scope *S) {
5556  // Before we produce a declaration for an implicitly defined
5557  // function, see whether there was a locally-scoped declaration of
5558  // this name as a function or variable. If so, use that
5559  // (non-visible) declaration, and complain about it.
5560  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5561    = LocallyScopedExternalDecls.find(&II);
5562  if (Pos != LocallyScopedExternalDecls.end()) {
5563    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5564    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5565    return Pos->second;
5566  }
5567
5568  // Extension in C99.  Legal in C90, but warn about it.
5569  if (II.getName().startswith("__builtin_"))
5570    Diag(Loc, diag::warn_builtin_unknown) << &II;
5571  else if (getLangOptions().C99)
5572    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5573  else
5574    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5575
5576  // Set a Declarator for the implicit definition: int foo();
5577  const char *Dummy;
5578  DeclSpec DS;
5579  unsigned DiagID;
5580  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5581  (void)Error; // Silence warning.
5582  assert(!Error && "Error setting up implicit decl!");
5583  Declarator D(DS, Declarator::BlockContext);
5584  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5585                                             false, false, SourceLocation(), 0,
5586                                             0, 0, true, SourceLocation(),
5587                                             false, SourceLocation(),
5588                                             false, 0,0,0, Loc, Loc, D),
5589                SourceLocation());
5590  D.SetIdentifier(&II, Loc);
5591
5592  // Insert this function into translation-unit scope.
5593
5594  DeclContext *PrevDC = CurContext;
5595  CurContext = Context.getTranslationUnitDecl();
5596
5597  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5598  FD->setImplicit();
5599
5600  CurContext = PrevDC;
5601
5602  AddKnownFunctionAttributes(FD);
5603
5604  return FD;
5605}
5606
5607/// \brief Adds any function attributes that we know a priori based on
5608/// the declaration of this function.
5609///
5610/// These attributes can apply both to implicitly-declared builtins
5611/// (like __builtin___printf_chk) or to library-declared functions
5612/// like NSLog or printf.
5613void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5614  if (FD->isInvalidDecl())
5615    return;
5616
5617  // If this is a built-in function, map its builtin attributes to
5618  // actual attributes.
5619  if (unsigned BuiltinID = FD->getBuiltinID()) {
5620    // Handle printf-formatting attributes.
5621    unsigned FormatIdx;
5622    bool HasVAListArg;
5623    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5624      if (!FD->getAttr<FormatAttr>())
5625        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5626                                                "printf", FormatIdx+1,
5627                                               HasVAListArg ? 0 : FormatIdx+2));
5628    }
5629    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5630                                             HasVAListArg)) {
5631     if (!FD->getAttr<FormatAttr>())
5632       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5633                                              "scanf", FormatIdx+1,
5634                                              HasVAListArg ? 0 : FormatIdx+2));
5635    }
5636
5637    // Mark const if we don't care about errno and that is the only
5638    // thing preventing the function from being const. This allows
5639    // IRgen to use LLVM intrinsics for such functions.
5640    if (!getLangOptions().MathErrno &&
5641        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5642      if (!FD->getAttr<ConstAttr>())
5643        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5644    }
5645
5646    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5647      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5648    if (Context.BuiltinInfo.isConst(BuiltinID))
5649      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5650  }
5651
5652  IdentifierInfo *Name = FD->getIdentifier();
5653  if (!Name)
5654    return;
5655  if ((!getLangOptions().CPlusPlus &&
5656       FD->getDeclContext()->isTranslationUnit()) ||
5657      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5658       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5659       LinkageSpecDecl::lang_c)) {
5660    // Okay: this could be a libc/libm/Objective-C function we know
5661    // about.
5662  } else
5663    return;
5664
5665  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5666    // FIXME: NSLog and NSLogv should be target specific
5667    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5668      // FIXME: We known better than our headers.
5669      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5670    } else
5671      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5672                                             "printf", 1,
5673                                             Name->isStr("NSLogv") ? 0 : 2));
5674  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5675    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5676    // target-specific builtins, perhaps?
5677    if (!FD->getAttr<FormatAttr>())
5678      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5679                                             "printf", 2,
5680                                             Name->isStr("vasprintf") ? 0 : 3));
5681  }
5682}
5683
5684TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5685                                    TypeSourceInfo *TInfo) {
5686  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5687  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5688
5689  if (!TInfo) {
5690    assert(D.isInvalidType() && "no declarator info for valid type");
5691    TInfo = Context.getTrivialTypeSourceInfo(T);
5692  }
5693
5694  // Scope manipulation handled by caller.
5695  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5696                                           D.getIdentifierLoc(),
5697                                           D.getIdentifier(),
5698                                           TInfo);
5699
5700  if (const TagType *TT = T->getAs<TagType>()) {
5701    TagDecl *TD = TT->getDecl();
5702
5703    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5704    // keep track of the TypedefDecl.
5705    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5706      TD->setTypedefForAnonDecl(NewTD);
5707  }
5708
5709  if (D.isInvalidType())
5710    NewTD->setInvalidDecl();
5711  return NewTD;
5712}
5713
5714
5715/// \brief Determine whether a tag with a given kind is acceptable
5716/// as a redeclaration of the given tag declaration.
5717///
5718/// \returns true if the new tag kind is acceptable, false otherwise.
5719bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5720                                        TagTypeKind NewTag,
5721                                        SourceLocation NewTagLoc,
5722                                        const IdentifierInfo &Name) {
5723  // C++ [dcl.type.elab]p3:
5724  //   The class-key or enum keyword present in the
5725  //   elaborated-type-specifier shall agree in kind with the
5726  //   declaration to which the name in the elaborated-type-specifier
5727  //   refers. This rule also applies to the form of
5728  //   elaborated-type-specifier that declares a class-name or
5729  //   friend class since it can be construed as referring to the
5730  //   definition of the class. Thus, in any
5731  //   elaborated-type-specifier, the enum keyword shall be used to
5732  //   refer to an enumeration (7.2), the union class-key shall be
5733  //   used to refer to a union (clause 9), and either the class or
5734  //   struct class-key shall be used to refer to a class (clause 9)
5735  //   declared using the class or struct class-key.
5736  TagTypeKind OldTag = Previous->getTagKind();
5737  if (OldTag == NewTag)
5738    return true;
5739
5740  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5741      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5742    // Warn about the struct/class tag mismatch.
5743    bool isTemplate = false;
5744    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5745      isTemplate = Record->getDescribedClassTemplate();
5746
5747    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5748      << (NewTag == TTK_Class)
5749      << isTemplate << &Name
5750      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5751                              OldTag == TTK_Class? "class" : "struct");
5752    Diag(Previous->getLocation(), diag::note_previous_use);
5753    return true;
5754  }
5755  return false;
5756}
5757
5758/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5759/// former case, Name will be non-null.  In the later case, Name will be null.
5760/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5761/// reference/declaration/definition of a tag.
5762Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5763                     SourceLocation KWLoc, CXXScopeSpec &SS,
5764                     IdentifierInfo *Name, SourceLocation NameLoc,
5765                     AttributeList *Attr, AccessSpecifier AS,
5766                     MultiTemplateParamsArg TemplateParameterLists,
5767                     bool &OwnedDecl, bool &IsDependent,
5768                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5769                     TypeResult UnderlyingType) {
5770  // If this is not a definition, it must have a name.
5771  assert((Name != 0 || TUK == TUK_Definition) &&
5772         "Nameless record must be a definition!");
5773  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5774
5775  OwnedDecl = false;
5776  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5777
5778  // FIXME: Check explicit specializations more carefully.
5779  bool isExplicitSpecialization = false;
5780  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5781  bool Invalid = false;
5782
5783  // We only need to do this matching if we have template parameters
5784  // or a scope specifier, which also conveniently avoids this work
5785  // for non-C++ cases.
5786  if (NumMatchedTemplateParamLists ||
5787      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5788    if (TemplateParameterList *TemplateParams
5789          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5790                                                TemplateParameterLists.get(),
5791                                               TemplateParameterLists.size(),
5792                                                    TUK == TUK_Friend,
5793                                                    isExplicitSpecialization,
5794                                                    Invalid)) {
5795      // All but one template parameter lists have been matching.
5796      --NumMatchedTemplateParamLists;
5797
5798      if (TemplateParams->size() > 0) {
5799        // This is a declaration or definition of a class template (which may
5800        // be a member of another template).
5801        if (Invalid)
5802          return 0;
5803
5804        OwnedDecl = false;
5805        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5806                                               SS, Name, NameLoc, Attr,
5807                                               TemplateParams,
5808                                               AS);
5809        TemplateParameterLists.release();
5810        return Result.get();
5811      } else {
5812        // The "template<>" header is extraneous.
5813        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5814          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5815        isExplicitSpecialization = true;
5816      }
5817    }
5818  }
5819
5820  // Figure out the underlying type if this a enum declaration. We need to do
5821  // this early, because it's needed to detect if this is an incompatible
5822  // redeclaration.
5823  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5824
5825  if (Kind == TTK_Enum) {
5826    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5827      // No underlying type explicitly specified, or we failed to parse the
5828      // type, default to int.
5829      EnumUnderlying = Context.IntTy.getTypePtr();
5830    else if (UnderlyingType.get()) {
5831      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5832      // integral type; any cv-qualification is ignored.
5833      TypeSourceInfo *TI = 0;
5834      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5835      EnumUnderlying = TI;
5836
5837      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5838
5839      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5840        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5841          << T;
5842        // Recover by falling back to int.
5843        EnumUnderlying = Context.IntTy.getTypePtr();
5844      }
5845
5846      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5847                                          UPPC_FixedUnderlyingType))
5848        EnumUnderlying = Context.IntTy.getTypePtr();
5849
5850    } else if (getLangOptions().Microsoft)
5851      // Microsoft enums are always of int type.
5852      EnumUnderlying = Context.IntTy.getTypePtr();
5853  }
5854
5855  DeclContext *SearchDC = CurContext;
5856  DeclContext *DC = CurContext;
5857  bool isStdBadAlloc = false;
5858
5859  RedeclarationKind Redecl = ForRedeclaration;
5860  if (TUK == TUK_Friend || TUK == TUK_Reference)
5861    Redecl = NotForRedeclaration;
5862
5863  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5864
5865  if (Name && SS.isNotEmpty()) {
5866    // We have a nested-name tag ('struct foo::bar').
5867
5868    // Check for invalid 'foo::'.
5869    if (SS.isInvalid()) {
5870      Name = 0;
5871      goto CreateNewDecl;
5872    }
5873
5874    // If this is a friend or a reference to a class in a dependent
5875    // context, don't try to make a decl for it.
5876    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5877      DC = computeDeclContext(SS, false);
5878      if (!DC) {
5879        IsDependent = true;
5880        return 0;
5881      }
5882    } else {
5883      DC = computeDeclContext(SS, true);
5884      if (!DC) {
5885        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5886          << SS.getRange();
5887        return 0;
5888      }
5889    }
5890
5891    if (RequireCompleteDeclContext(SS, DC))
5892      return 0;
5893
5894    SearchDC = DC;
5895    // Look-up name inside 'foo::'.
5896    LookupQualifiedName(Previous, DC);
5897
5898    if (Previous.isAmbiguous())
5899      return 0;
5900
5901    if (Previous.empty()) {
5902      // Name lookup did not find anything. However, if the
5903      // nested-name-specifier refers to the current instantiation,
5904      // and that current instantiation has any dependent base
5905      // classes, we might find something at instantiation time: treat
5906      // this as a dependent elaborated-type-specifier.
5907      // But this only makes any sense for reference-like lookups.
5908      if (Previous.wasNotFoundInCurrentInstantiation() &&
5909          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5910        IsDependent = true;
5911        return 0;
5912      }
5913
5914      // A tag 'foo::bar' must already exist.
5915      Diag(NameLoc, diag::err_not_tag_in_scope)
5916        << Kind << Name << DC << SS.getRange();
5917      Name = 0;
5918      Invalid = true;
5919      goto CreateNewDecl;
5920    }
5921  } else if (Name) {
5922    // If this is a named struct, check to see if there was a previous forward
5923    // declaration or definition.
5924    // FIXME: We're looking into outer scopes here, even when we
5925    // shouldn't be. Doing so can result in ambiguities that we
5926    // shouldn't be diagnosing.
5927    LookupName(Previous, S);
5928
5929    // Note:  there used to be some attempt at recovery here.
5930    if (Previous.isAmbiguous())
5931      return 0;
5932
5933    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5934      // FIXME: This makes sure that we ignore the contexts associated
5935      // with C structs, unions, and enums when looking for a matching
5936      // tag declaration or definition. See the similar lookup tweak
5937      // in Sema::LookupName; is there a better way to deal with this?
5938      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5939        SearchDC = SearchDC->getParent();
5940    }
5941  } else if (S->isFunctionPrototypeScope()) {
5942    // If this is an enum declaration in function prototype scope, set its
5943    // initial context to the translation unit.
5944    SearchDC = Context.getTranslationUnitDecl();
5945  }
5946
5947  if (Previous.isSingleResult() &&
5948      Previous.getFoundDecl()->isTemplateParameter()) {
5949    // Maybe we will complain about the shadowed template parameter.
5950    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5951    // Just pretend that we didn't see the previous declaration.
5952    Previous.clear();
5953  }
5954
5955  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5956      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5957    // This is a declaration of or a reference to "std::bad_alloc".
5958    isStdBadAlloc = true;
5959
5960    if (Previous.empty() && StdBadAlloc) {
5961      // std::bad_alloc has been implicitly declared (but made invisible to
5962      // name lookup). Fill in this implicit declaration as the previous
5963      // declaration, so that the declarations get chained appropriately.
5964      Previous.addDecl(getStdBadAlloc());
5965    }
5966  }
5967
5968  // If we didn't find a previous declaration, and this is a reference
5969  // (or friend reference), move to the correct scope.  In C++, we
5970  // also need to do a redeclaration lookup there, just in case
5971  // there's a shadow friend decl.
5972  if (Name && Previous.empty() &&
5973      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5974    if (Invalid) goto CreateNewDecl;
5975    assert(SS.isEmpty());
5976
5977    if (TUK == TUK_Reference) {
5978      // C++ [basic.scope.pdecl]p5:
5979      //   -- for an elaborated-type-specifier of the form
5980      //
5981      //          class-key identifier
5982      //
5983      //      if the elaborated-type-specifier is used in the
5984      //      decl-specifier-seq or parameter-declaration-clause of a
5985      //      function defined in namespace scope, the identifier is
5986      //      declared as a class-name in the namespace that contains
5987      //      the declaration; otherwise, except as a friend
5988      //      declaration, the identifier is declared in the smallest
5989      //      non-class, non-function-prototype scope that contains the
5990      //      declaration.
5991      //
5992      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5993      // C structs and unions.
5994      //
5995      // It is an error in C++ to declare (rather than define) an enum
5996      // type, including via an elaborated type specifier.  We'll
5997      // diagnose that later; for now, declare the enum in the same
5998      // scope as we would have picked for any other tag type.
5999      //
6000      // GNU C also supports this behavior as part of its incomplete
6001      // enum types extension, while GNU C++ does not.
6002      //
6003      // Find the context where we'll be declaring the tag.
6004      // FIXME: We would like to maintain the current DeclContext as the
6005      // lexical context,
6006      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6007        SearchDC = SearchDC->getParent();
6008
6009      // Find the scope where we'll be declaring the tag.
6010      while (S->isClassScope() ||
6011             (getLangOptions().CPlusPlus &&
6012              S->isFunctionPrototypeScope()) ||
6013             ((S->getFlags() & Scope::DeclScope) == 0) ||
6014             (S->getEntity() &&
6015              ((DeclContext *)S->getEntity())->isTransparentContext()))
6016        S = S->getParent();
6017    } else {
6018      assert(TUK == TUK_Friend);
6019      // C++ [namespace.memdef]p3:
6020      //   If a friend declaration in a non-local class first declares a
6021      //   class or function, the friend class or function is a member of
6022      //   the innermost enclosing namespace.
6023      SearchDC = SearchDC->getEnclosingNamespaceContext();
6024    }
6025
6026    // In C++, we need to do a redeclaration lookup to properly
6027    // diagnose some problems.
6028    if (getLangOptions().CPlusPlus) {
6029      Previous.setRedeclarationKind(ForRedeclaration);
6030      LookupQualifiedName(Previous, SearchDC);
6031    }
6032  }
6033
6034  if (!Previous.empty()) {
6035    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6036
6037    // It's okay to have a tag decl in the same scope as a typedef
6038    // which hides a tag decl in the same scope.  Finding this
6039    // insanity with a redeclaration lookup can only actually happen
6040    // in C++.
6041    //
6042    // This is also okay for elaborated-type-specifiers, which is
6043    // technically forbidden by the current standard but which is
6044    // okay according to the likely resolution of an open issue;
6045    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6046    if (getLangOptions().CPlusPlus) {
6047      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6048        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6049          TagDecl *Tag = TT->getDecl();
6050          if (Tag->getDeclName() == Name &&
6051              Tag->getDeclContext()->getRedeclContext()
6052                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6053            PrevDecl = Tag;
6054            Previous.clear();
6055            Previous.addDecl(Tag);
6056            Previous.resolveKind();
6057          }
6058        }
6059      }
6060    }
6061
6062    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6063      // If this is a use of a previous tag, or if the tag is already declared
6064      // in the same scope (so that the definition/declaration completes or
6065      // rementions the tag), reuse the decl.
6066      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6067          isDeclInScope(PrevDecl, SearchDC, S)) {
6068        // Make sure that this wasn't declared as an enum and now used as a
6069        // struct or something similar.
6070        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6071          bool SafeToContinue
6072            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6073               Kind != TTK_Enum);
6074          if (SafeToContinue)
6075            Diag(KWLoc, diag::err_use_with_wrong_tag)
6076              << Name
6077              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6078                                              PrevTagDecl->getKindName());
6079          else
6080            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6081          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6082
6083          if (SafeToContinue)
6084            Kind = PrevTagDecl->getTagKind();
6085          else {
6086            // Recover by making this an anonymous redefinition.
6087            Name = 0;
6088            Previous.clear();
6089            Invalid = true;
6090          }
6091        }
6092
6093        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6094          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6095
6096          // All conflicts with previous declarations are recovered by
6097          // returning the previous declaration.
6098          if (ScopedEnum != PrevEnum->isScoped()) {
6099            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6100              << PrevEnum->isScoped();
6101            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6102            return PrevTagDecl;
6103          }
6104          else if (EnumUnderlying && PrevEnum->isFixed()) {
6105            QualType T;
6106            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6107                T = TI->getType();
6108            else
6109                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6110
6111            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6112              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6113                   diag::err_enum_redeclare_type_mismatch)
6114                << T
6115                << PrevEnum->getIntegerType();
6116              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6117              return PrevTagDecl;
6118            }
6119          }
6120          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6121            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6122              << PrevEnum->isFixed();
6123            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6124            return PrevTagDecl;
6125          }
6126        }
6127
6128        if (!Invalid) {
6129          // If this is a use, just return the declaration we found.
6130
6131          // FIXME: In the future, return a variant or some other clue
6132          // for the consumer of this Decl to know it doesn't own it.
6133          // For our current ASTs this shouldn't be a problem, but will
6134          // need to be changed with DeclGroups.
6135          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6136              TUK == TUK_Friend)
6137            return PrevTagDecl;
6138
6139          // Diagnose attempts to redefine a tag.
6140          if (TUK == TUK_Definition) {
6141            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6142              // If we're defining a specialization and the previous definition
6143              // is from an implicit instantiation, don't emit an error
6144              // here; we'll catch this in the general case below.
6145              if (!isExplicitSpecialization ||
6146                  !isa<CXXRecordDecl>(Def) ||
6147                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6148                                               == TSK_ExplicitSpecialization) {
6149                Diag(NameLoc, diag::err_redefinition) << Name;
6150                Diag(Def->getLocation(), diag::note_previous_definition);
6151                // If this is a redefinition, recover by making this
6152                // struct be anonymous, which will make any later
6153                // references get the previous definition.
6154                Name = 0;
6155                Previous.clear();
6156                Invalid = true;
6157              }
6158            } else {
6159              // If the type is currently being defined, complain
6160              // about a nested redefinition.
6161              const TagType *Tag
6162                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6163              if (Tag->isBeingDefined()) {
6164                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6165                Diag(PrevTagDecl->getLocation(),
6166                     diag::note_previous_definition);
6167                Name = 0;
6168                Previous.clear();
6169                Invalid = true;
6170              }
6171            }
6172
6173            // Okay, this is definition of a previously declared or referenced
6174            // tag PrevDecl. We're going to create a new Decl for it.
6175          }
6176        }
6177        // If we get here we have (another) forward declaration or we
6178        // have a definition.  Just create a new decl.
6179
6180      } else {
6181        // If we get here, this is a definition of a new tag type in a nested
6182        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6183        // new decl/type.  We set PrevDecl to NULL so that the entities
6184        // have distinct types.
6185        Previous.clear();
6186      }
6187      // If we get here, we're going to create a new Decl. If PrevDecl
6188      // is non-NULL, it's a definition of the tag declared by
6189      // PrevDecl. If it's NULL, we have a new definition.
6190
6191
6192    // Otherwise, PrevDecl is not a tag, but was found with tag
6193    // lookup.  This is only actually possible in C++, where a few
6194    // things like templates still live in the tag namespace.
6195    } else {
6196      assert(getLangOptions().CPlusPlus);
6197
6198      // Use a better diagnostic if an elaborated-type-specifier
6199      // found the wrong kind of type on the first
6200      // (non-redeclaration) lookup.
6201      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6202          !Previous.isForRedeclaration()) {
6203        unsigned Kind = 0;
6204        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6205        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6206        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6207        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6208        Invalid = true;
6209
6210      // Otherwise, only diagnose if the declaration is in scope.
6211      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6212        // do nothing
6213
6214      // Diagnose implicit declarations introduced by elaborated types.
6215      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6216        unsigned Kind = 0;
6217        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6218        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6219        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6220        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6221        Invalid = true;
6222
6223      // Otherwise it's a declaration.  Call out a particularly common
6224      // case here.
6225      } else if (isa<TypedefDecl>(PrevDecl)) {
6226        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6227          << Name
6228          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6229        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6230        Invalid = true;
6231
6232      // Otherwise, diagnose.
6233      } else {
6234        // The tag name clashes with something else in the target scope,
6235        // issue an error and recover by making this tag be anonymous.
6236        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6237        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6238        Name = 0;
6239        Invalid = true;
6240      }
6241
6242      // The existing declaration isn't relevant to us; we're in a
6243      // new scope, so clear out the previous declaration.
6244      Previous.clear();
6245    }
6246  }
6247
6248CreateNewDecl:
6249
6250  TagDecl *PrevDecl = 0;
6251  if (Previous.isSingleResult())
6252    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6253
6254  // If there is an identifier, use the location of the identifier as the
6255  // location of the decl, otherwise use the location of the struct/union
6256  // keyword.
6257  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6258
6259  // Otherwise, create a new declaration. If there is a previous
6260  // declaration of the same entity, the two will be linked via
6261  // PrevDecl.
6262  TagDecl *New;
6263
6264  bool IsForwardReference = false;
6265  if (Kind == TTK_Enum) {
6266    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6267    // enum X { A, B, C } D;    D should chain to X.
6268    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6269                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6270                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6271    // If this is an undefined enum, warn.
6272    if (TUK != TUK_Definition && !Invalid) {
6273      TagDecl *Def;
6274      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6275        // C++0x: 7.2p2: opaque-enum-declaration.
6276        // Conflicts are diagnosed above. Do nothing.
6277      }
6278      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6279        Diag(Loc, diag::ext_forward_ref_enum_def)
6280          << New;
6281        Diag(Def->getLocation(), diag::note_previous_definition);
6282      } else {
6283        unsigned DiagID = diag::ext_forward_ref_enum;
6284        if (getLangOptions().Microsoft)
6285          DiagID = diag::ext_ms_forward_ref_enum;
6286        else if (getLangOptions().CPlusPlus)
6287          DiagID = diag::err_forward_ref_enum;
6288        Diag(Loc, DiagID);
6289
6290        // If this is a forward-declared reference to an enumeration, make a
6291        // note of it; we won't actually be introducing the declaration into
6292        // the declaration context.
6293        if (TUK == TUK_Reference)
6294          IsForwardReference = true;
6295      }
6296    }
6297
6298    if (EnumUnderlying) {
6299      EnumDecl *ED = cast<EnumDecl>(New);
6300      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6301        ED->setIntegerTypeSourceInfo(TI);
6302      else
6303        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6304      ED->setPromotionType(ED->getIntegerType());
6305    }
6306
6307  } else {
6308    // struct/union/class
6309
6310    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6311    // struct X { int A; } D;    D should chain to X.
6312    if (getLangOptions().CPlusPlus) {
6313      // FIXME: Look for a way to use RecordDecl for simple structs.
6314      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6315                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6316
6317      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6318        StdBadAlloc = cast<CXXRecordDecl>(New);
6319    } else
6320      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6321                               cast_or_null<RecordDecl>(PrevDecl));
6322  }
6323
6324  // Maybe add qualifier info.
6325  if (SS.isNotEmpty()) {
6326    if (SS.isSet()) {
6327      NestedNameSpecifier *NNS
6328        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6329      New->setQualifierInfo(NNS, SS.getRange());
6330      if (NumMatchedTemplateParamLists > 0) {
6331        New->setTemplateParameterListsInfo(Context,
6332                                           NumMatchedTemplateParamLists,
6333                    (TemplateParameterList**) TemplateParameterLists.release());
6334      }
6335    }
6336    else
6337      Invalid = true;
6338  }
6339
6340  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6341    // Add alignment attributes if necessary; these attributes are checked when
6342    // the ASTContext lays out the structure.
6343    //
6344    // It is important for implementing the correct semantics that this
6345    // happen here (in act on tag decl). The #pragma pack stack is
6346    // maintained as a result of parser callbacks which can occur at
6347    // many points during the parsing of a struct declaration (because
6348    // the #pragma tokens are effectively skipped over during the
6349    // parsing of the struct).
6350    AddAlignmentAttributesForRecord(RD);
6351  }
6352
6353  // If this is a specialization of a member class (of a class template),
6354  // check the specialization.
6355  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6356    Invalid = true;
6357
6358  if (Invalid)
6359    New->setInvalidDecl();
6360
6361  if (Attr)
6362    ProcessDeclAttributeList(S, New, Attr);
6363
6364  // If we're declaring or defining a tag in function prototype scope
6365  // in C, note that this type can only be used within the function.
6366  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6367    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6368
6369  // Set the lexical context. If the tag has a C++ scope specifier, the
6370  // lexical context will be different from the semantic context.
6371  New->setLexicalDeclContext(CurContext);
6372
6373  // Mark this as a friend decl if applicable.
6374  if (TUK == TUK_Friend)
6375    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6376
6377  // Set the access specifier.
6378  if (!Invalid && SearchDC->isRecord())
6379    SetMemberAccessSpecifier(New, PrevDecl, AS);
6380
6381  if (TUK == TUK_Definition)
6382    New->startDefinition();
6383
6384  // If this has an identifier, add it to the scope stack.
6385  if (TUK == TUK_Friend) {
6386    // We might be replacing an existing declaration in the lookup tables;
6387    // if so, borrow its access specifier.
6388    if (PrevDecl)
6389      New->setAccess(PrevDecl->getAccess());
6390
6391    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6392    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6393    if (Name) // can be null along some error paths
6394      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6395        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6396  } else if (Name) {
6397    S = getNonFieldDeclScope(S);
6398    PushOnScopeChains(New, S, !IsForwardReference);
6399    if (IsForwardReference)
6400      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6401
6402  } else {
6403    CurContext->addDecl(New);
6404  }
6405
6406  // If this is the C FILE type, notify the AST context.
6407  if (IdentifierInfo *II = New->getIdentifier())
6408    if (!New->isInvalidDecl() &&
6409        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6410        II->isStr("FILE"))
6411      Context.setFILEDecl(New);
6412
6413  OwnedDecl = true;
6414  return New;
6415}
6416
6417void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6418  AdjustDeclIfTemplate(TagD);
6419  TagDecl *Tag = cast<TagDecl>(TagD);
6420
6421  // Enter the tag context.
6422  PushDeclContext(S, Tag);
6423}
6424
6425void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6426                                           ClassVirtSpecifiers &CVS,
6427                                           SourceLocation LBraceLoc) {
6428  AdjustDeclIfTemplate(TagD);
6429  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6430
6431  FieldCollector->StartClass();
6432
6433  if (!Record->getIdentifier())
6434    return;
6435
6436  if (CVS.isFinalSpecified())
6437    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6438  if (CVS.isExplicitSpecified())
6439    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6440
6441  // C++ [class]p2:
6442  //   [...] The class-name is also inserted into the scope of the
6443  //   class itself; this is known as the injected-class-name. For
6444  //   purposes of access checking, the injected-class-name is treated
6445  //   as if it were a public member name.
6446  CXXRecordDecl *InjectedClassName
6447    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6448                            CurContext, Record->getLocation(),
6449                            Record->getIdentifier(),
6450                            Record->getTagKeywordLoc(),
6451                            /*PrevDecl=*/0,
6452                            /*DelayTypeCreation=*/true);
6453  Context.getTypeDeclType(InjectedClassName, Record);
6454  InjectedClassName->setImplicit();
6455  InjectedClassName->setAccess(AS_public);
6456  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6457      InjectedClassName->setDescribedClassTemplate(Template);
6458  PushOnScopeChains(InjectedClassName, S);
6459  assert(InjectedClassName->isInjectedClassName() &&
6460         "Broken injected-class-name");
6461}
6462
6463void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6464                                    SourceLocation RBraceLoc) {
6465  AdjustDeclIfTemplate(TagD);
6466  TagDecl *Tag = cast<TagDecl>(TagD);
6467  Tag->setRBraceLoc(RBraceLoc);
6468
6469  if (isa<CXXRecordDecl>(Tag))
6470    FieldCollector->FinishClass();
6471
6472  // Exit this scope of this tag's definition.
6473  PopDeclContext();
6474
6475  // Notify the consumer that we've defined a tag.
6476  Consumer.HandleTagDeclDefinition(Tag);
6477}
6478
6479void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6480  AdjustDeclIfTemplate(TagD);
6481  TagDecl *Tag = cast<TagDecl>(TagD);
6482  Tag->setInvalidDecl();
6483
6484  // We're undoing ActOnTagStartDefinition here, not
6485  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6486  // the FieldCollector.
6487
6488  PopDeclContext();
6489}
6490
6491// Note that FieldName may be null for anonymous bitfields.
6492bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6493                          QualType FieldTy, const Expr *BitWidth,
6494                          bool *ZeroWidth) {
6495  // Default to true; that shouldn't confuse checks for emptiness
6496  if (ZeroWidth)
6497    *ZeroWidth = true;
6498
6499  // C99 6.7.2.1p4 - verify the field type.
6500  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6501  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6502    // Handle incomplete types with specific error.
6503    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6504      return true;
6505    if (FieldName)
6506      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6507        << FieldName << FieldTy << BitWidth->getSourceRange();
6508    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6509      << FieldTy << BitWidth->getSourceRange();
6510  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6511                                             UPPC_BitFieldWidth))
6512    return true;
6513
6514  // If the bit-width is type- or value-dependent, don't try to check
6515  // it now.
6516  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6517    return false;
6518
6519  llvm::APSInt Value;
6520  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6521    return true;
6522
6523  if (Value != 0 && ZeroWidth)
6524    *ZeroWidth = false;
6525
6526  // Zero-width bitfield is ok for anonymous field.
6527  if (Value == 0 && FieldName)
6528    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6529
6530  if (Value.isSigned() && Value.isNegative()) {
6531    if (FieldName)
6532      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6533               << FieldName << Value.toString(10);
6534    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6535      << Value.toString(10);
6536  }
6537
6538  if (!FieldTy->isDependentType()) {
6539    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6540    if (Value.getZExtValue() > TypeSize) {
6541      if (!getLangOptions().CPlusPlus) {
6542        if (FieldName)
6543          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6544            << FieldName << (unsigned)Value.getZExtValue()
6545            << (unsigned)TypeSize;
6546
6547        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6548          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6549      }
6550
6551      if (FieldName)
6552        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6553          << FieldName << (unsigned)Value.getZExtValue()
6554          << (unsigned)TypeSize;
6555      else
6556        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6557          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6558    }
6559  }
6560
6561  return false;
6562}
6563
6564/// ActOnField - Each field of a struct/union/class is passed into this in order
6565/// to create a FieldDecl object for it.
6566Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6567                                 SourceLocation DeclStart,
6568                                 Declarator &D, ExprTy *BitfieldWidth) {
6569  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6570                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6571                               AS_public);
6572  return Res;
6573}
6574
6575/// HandleField - Analyze a field of a C struct or a C++ data member.
6576///
6577FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6578                             SourceLocation DeclStart,
6579                             Declarator &D, Expr *BitWidth,
6580                             AccessSpecifier AS) {
6581  IdentifierInfo *II = D.getIdentifier();
6582  SourceLocation Loc = DeclStart;
6583  if (II) Loc = D.getIdentifierLoc();
6584
6585  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6586  QualType T = TInfo->getType();
6587  if (getLangOptions().CPlusPlus) {
6588    CheckExtraCXXDefaultArguments(D);
6589
6590    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6591                                        UPPC_DataMemberType)) {
6592      D.setInvalidType();
6593      T = Context.IntTy;
6594      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6595    }
6596  }
6597
6598  DiagnoseFunctionSpecifiers(D);
6599
6600  if (D.getDeclSpec().isThreadSpecified())
6601    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6602
6603  // Check to see if this name was declared as a member previously
6604  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6605  LookupName(Previous, S);
6606  assert((Previous.empty() || Previous.isOverloadedResult() ||
6607          Previous.isSingleResult())
6608    && "Lookup of member name should be either overloaded, single or null");
6609
6610  // If the name is overloaded then get any declaration else get the single result
6611  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6612    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6613
6614  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6615    // Maybe we will complain about the shadowed template parameter.
6616    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6617    // Just pretend that we didn't see the previous declaration.
6618    PrevDecl = 0;
6619  }
6620
6621  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6622    PrevDecl = 0;
6623
6624  bool Mutable
6625    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6626  SourceLocation TSSL = D.getSourceRange().getBegin();
6627  FieldDecl *NewFD
6628    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6629                     AS, PrevDecl, &D);
6630
6631  if (NewFD->isInvalidDecl())
6632    Record->setInvalidDecl();
6633
6634  if (NewFD->isInvalidDecl() && PrevDecl) {
6635    // Don't introduce NewFD into scope; there's already something
6636    // with the same name in the same scope.
6637  } else if (II) {
6638    PushOnScopeChains(NewFD, S);
6639  } else
6640    Record->addDecl(NewFD);
6641
6642  return NewFD;
6643}
6644
6645/// \brief Build a new FieldDecl and check its well-formedness.
6646///
6647/// This routine builds a new FieldDecl given the fields name, type,
6648/// record, etc. \p PrevDecl should refer to any previous declaration
6649/// with the same name and in the same scope as the field to be
6650/// created.
6651///
6652/// \returns a new FieldDecl.
6653///
6654/// \todo The Declarator argument is a hack. It will be removed once
6655FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6656                                TypeSourceInfo *TInfo,
6657                                RecordDecl *Record, SourceLocation Loc,
6658                                bool Mutable, Expr *BitWidth,
6659                                SourceLocation TSSL,
6660                                AccessSpecifier AS, NamedDecl *PrevDecl,
6661                                Declarator *D) {
6662  IdentifierInfo *II = Name.getAsIdentifierInfo();
6663  bool InvalidDecl = false;
6664  if (D) InvalidDecl = D->isInvalidType();
6665
6666  // If we receive a broken type, recover by assuming 'int' and
6667  // marking this declaration as invalid.
6668  if (T.isNull()) {
6669    InvalidDecl = true;
6670    T = Context.IntTy;
6671  }
6672
6673  QualType EltTy = Context.getBaseElementType(T);
6674  if (!EltTy->isDependentType() &&
6675      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6676    // Fields of incomplete type force their record to be invalid.
6677    Record->setInvalidDecl();
6678    InvalidDecl = true;
6679  }
6680
6681  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6682  // than a variably modified type.
6683  if (!InvalidDecl && T->isVariablyModifiedType()) {
6684    bool SizeIsNegative;
6685    llvm::APSInt Oversized;
6686    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6687                                                           SizeIsNegative,
6688                                                           Oversized);
6689    if (!FixedTy.isNull()) {
6690      Diag(Loc, diag::warn_illegal_constant_array_size);
6691      T = FixedTy;
6692    } else {
6693      if (SizeIsNegative)
6694        Diag(Loc, diag::err_typecheck_negative_array_size);
6695      else if (Oversized.getBoolValue())
6696        Diag(Loc, diag::err_array_too_large)
6697          << Oversized.toString(10);
6698      else
6699        Diag(Loc, diag::err_typecheck_field_variable_size);
6700      InvalidDecl = true;
6701    }
6702  }
6703
6704  // Fields can not have abstract class types
6705  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6706                                             diag::err_abstract_type_in_decl,
6707                                             AbstractFieldType))
6708    InvalidDecl = true;
6709
6710  bool ZeroWidth = false;
6711  // If this is declared as a bit-field, check the bit-field.
6712  if (!InvalidDecl && BitWidth &&
6713      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6714    InvalidDecl = true;
6715    BitWidth = 0;
6716    ZeroWidth = false;
6717  }
6718
6719  // Check that 'mutable' is consistent with the type of the declaration.
6720  if (!InvalidDecl && Mutable) {
6721    unsigned DiagID = 0;
6722    if (T->isReferenceType())
6723      DiagID = diag::err_mutable_reference;
6724    else if (T.isConstQualified())
6725      DiagID = diag::err_mutable_const;
6726
6727    if (DiagID) {
6728      SourceLocation ErrLoc = Loc;
6729      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6730        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6731      Diag(ErrLoc, DiagID);
6732      Mutable = false;
6733      InvalidDecl = true;
6734    }
6735  }
6736
6737  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6738                                       BitWidth, Mutable);
6739  if (InvalidDecl)
6740    NewFD->setInvalidDecl();
6741
6742  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6743    Diag(Loc, diag::err_duplicate_member) << II;
6744    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6745    NewFD->setInvalidDecl();
6746  }
6747
6748  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6749    if (Record->isUnion()) {
6750      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6751        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6752        if (RDecl->getDefinition()) {
6753          // C++ [class.union]p1: An object of a class with a non-trivial
6754          // constructor, a non-trivial copy constructor, a non-trivial
6755          // destructor, or a non-trivial copy assignment operator
6756          // cannot be a member of a union, nor can an array of such
6757          // objects.
6758          // TODO: C++0x alters this restriction significantly.
6759          if (CheckNontrivialField(NewFD))
6760            NewFD->setInvalidDecl();
6761        }
6762      }
6763
6764      // C++ [class.union]p1: If a union contains a member of reference type,
6765      // the program is ill-formed.
6766      if (EltTy->isReferenceType()) {
6767        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6768          << NewFD->getDeclName() << EltTy;
6769        NewFD->setInvalidDecl();
6770      }
6771    }
6772  }
6773
6774  // FIXME: We need to pass in the attributes given an AST
6775  // representation, not a parser representation.
6776  if (D)
6777    // FIXME: What to pass instead of TUScope?
6778    ProcessDeclAttributes(TUScope, NewFD, *D);
6779
6780  if (T.isObjCGCWeak())
6781    Diag(Loc, diag::warn_attribute_weak_on_field);
6782
6783  NewFD->setAccess(AS);
6784  return NewFD;
6785}
6786
6787bool Sema::CheckNontrivialField(FieldDecl *FD) {
6788  assert(FD);
6789  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6790
6791  if (FD->isInvalidDecl())
6792    return true;
6793
6794  QualType EltTy = Context.getBaseElementType(FD->getType());
6795  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6796    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6797    if (RDecl->getDefinition()) {
6798      // We check for copy constructors before constructors
6799      // because otherwise we'll never get complaints about
6800      // copy constructors.
6801
6802      CXXSpecialMember member = CXXInvalid;
6803      if (!RDecl->hasTrivialCopyConstructor())
6804        member = CXXCopyConstructor;
6805      else if (!RDecl->hasTrivialConstructor())
6806        member = CXXConstructor;
6807      else if (!RDecl->hasTrivialCopyAssignment())
6808        member = CXXCopyAssignment;
6809      else if (!RDecl->hasTrivialDestructor())
6810        member = CXXDestructor;
6811
6812      if (member != CXXInvalid) {
6813        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6814              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6815        DiagnoseNontrivial(RT, member);
6816        return true;
6817      }
6818    }
6819  }
6820
6821  return false;
6822}
6823
6824/// DiagnoseNontrivial - Given that a class has a non-trivial
6825/// special member, figure out why.
6826void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6827  QualType QT(T, 0U);
6828  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6829
6830  // Check whether the member was user-declared.
6831  switch (member) {
6832  case CXXInvalid:
6833    break;
6834
6835  case CXXConstructor:
6836    if (RD->hasUserDeclaredConstructor()) {
6837      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6838      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6839        const FunctionDecl *body = 0;
6840        ci->hasBody(body);
6841        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6842          SourceLocation CtorLoc = ci->getLocation();
6843          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6844          return;
6845        }
6846      }
6847
6848      assert(0 && "found no user-declared constructors");
6849      return;
6850    }
6851    break;
6852
6853  case CXXCopyConstructor:
6854    if (RD->hasUserDeclaredCopyConstructor()) {
6855      SourceLocation CtorLoc =
6856        RD->getCopyConstructor(Context, 0)->getLocation();
6857      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6858      return;
6859    }
6860    break;
6861
6862  case CXXCopyAssignment:
6863    if (RD->hasUserDeclaredCopyAssignment()) {
6864      // FIXME: this should use the location of the copy
6865      // assignment, not the type.
6866      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6867      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6868      return;
6869    }
6870    break;
6871
6872  case CXXDestructor:
6873    if (RD->hasUserDeclaredDestructor()) {
6874      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6875      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6876      return;
6877    }
6878    break;
6879  }
6880
6881  typedef CXXRecordDecl::base_class_iterator base_iter;
6882
6883  // Virtual bases and members inhibit trivial copying/construction,
6884  // but not trivial destruction.
6885  if (member != CXXDestructor) {
6886    // Check for virtual bases.  vbases includes indirect virtual bases,
6887    // so we just iterate through the direct bases.
6888    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6889      if (bi->isVirtual()) {
6890        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6891        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6892        return;
6893      }
6894
6895    // Check for virtual methods.
6896    typedef CXXRecordDecl::method_iterator meth_iter;
6897    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6898         ++mi) {
6899      if (mi->isVirtual()) {
6900        SourceLocation MLoc = mi->getSourceRange().getBegin();
6901        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6902        return;
6903      }
6904    }
6905  }
6906
6907  bool (CXXRecordDecl::*hasTrivial)() const;
6908  switch (member) {
6909  case CXXConstructor:
6910    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6911  case CXXCopyConstructor:
6912    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6913  case CXXCopyAssignment:
6914    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6915  case CXXDestructor:
6916    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6917  default:
6918    assert(0 && "unexpected special member"); return;
6919  }
6920
6921  // Check for nontrivial bases (and recurse).
6922  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6923    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6924    assert(BaseRT && "Don't know how to handle dependent bases");
6925    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6926    if (!(BaseRecTy->*hasTrivial)()) {
6927      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6928      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6929      DiagnoseNontrivial(BaseRT, member);
6930      return;
6931    }
6932  }
6933
6934  // Check for nontrivial members (and recurse).
6935  typedef RecordDecl::field_iterator field_iter;
6936  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6937       ++fi) {
6938    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6939    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6940      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6941
6942      if (!(EltRD->*hasTrivial)()) {
6943        SourceLocation FLoc = (*fi)->getLocation();
6944        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6945        DiagnoseNontrivial(EltRT, member);
6946        return;
6947      }
6948    }
6949  }
6950
6951  assert(0 && "found no explanation for non-trivial member");
6952}
6953
6954/// TranslateIvarVisibility - Translate visibility from a token ID to an
6955///  AST enum value.
6956static ObjCIvarDecl::AccessControl
6957TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6958  switch (ivarVisibility) {
6959  default: assert(0 && "Unknown visitibility kind");
6960  case tok::objc_private: return ObjCIvarDecl::Private;
6961  case tok::objc_public: return ObjCIvarDecl::Public;
6962  case tok::objc_protected: return ObjCIvarDecl::Protected;
6963  case tok::objc_package: return ObjCIvarDecl::Package;
6964  }
6965}
6966
6967/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6968/// in order to create an IvarDecl object for it.
6969Decl *Sema::ActOnIvar(Scope *S,
6970                                SourceLocation DeclStart,
6971                                Decl *IntfDecl,
6972                                Declarator &D, ExprTy *BitfieldWidth,
6973                                tok::ObjCKeywordKind Visibility) {
6974
6975  IdentifierInfo *II = D.getIdentifier();
6976  Expr *BitWidth = (Expr*)BitfieldWidth;
6977  SourceLocation Loc = DeclStart;
6978  if (II) Loc = D.getIdentifierLoc();
6979
6980  // FIXME: Unnamed fields can be handled in various different ways, for
6981  // example, unnamed unions inject all members into the struct namespace!
6982
6983  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6984  QualType T = TInfo->getType();
6985
6986  if (BitWidth) {
6987    // 6.7.2.1p3, 6.7.2.1p4
6988    if (VerifyBitField(Loc, II, T, BitWidth)) {
6989      D.setInvalidType();
6990      BitWidth = 0;
6991    }
6992  } else {
6993    // Not a bitfield.
6994
6995    // validate II.
6996
6997  }
6998  if (T->isReferenceType()) {
6999    Diag(Loc, diag::err_ivar_reference_type);
7000    D.setInvalidType();
7001  }
7002  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7003  // than a variably modified type.
7004  else if (T->isVariablyModifiedType()) {
7005    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7006    D.setInvalidType();
7007  }
7008
7009  // Get the visibility (access control) for this ivar.
7010  ObjCIvarDecl::AccessControl ac =
7011    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7012                                        : ObjCIvarDecl::None;
7013  // Must set ivar's DeclContext to its enclosing interface.
7014  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7015  ObjCContainerDecl *EnclosingContext;
7016  if (ObjCImplementationDecl *IMPDecl =
7017      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7018    if (!LangOpts.ObjCNonFragileABI2) {
7019    // Case of ivar declared in an implementation. Context is that of its class.
7020      EnclosingContext = IMPDecl->getClassInterface();
7021      assert(EnclosingContext && "Implementation has no class interface!");
7022    }
7023    else
7024      EnclosingContext = EnclosingDecl;
7025  } else {
7026    if (ObjCCategoryDecl *CDecl =
7027        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7028      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7029        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7030        return 0;
7031      }
7032    }
7033    EnclosingContext = EnclosingDecl;
7034  }
7035
7036  // Construct the decl.
7037  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7038                                             EnclosingContext, Loc, II, T,
7039                                             TInfo, ac, (Expr *)BitfieldWidth);
7040
7041  if (II) {
7042    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7043                                           ForRedeclaration);
7044    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7045        && !isa<TagDecl>(PrevDecl)) {
7046      Diag(Loc, diag::err_duplicate_member) << II;
7047      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7048      NewID->setInvalidDecl();
7049    }
7050  }
7051
7052  // Process attributes attached to the ivar.
7053  ProcessDeclAttributes(S, NewID, D);
7054
7055  if (D.isInvalidType())
7056    NewID->setInvalidDecl();
7057
7058  if (II) {
7059    // FIXME: When interfaces are DeclContexts, we'll need to add
7060    // these to the interface.
7061    S->AddDecl(NewID);
7062    IdResolver.AddDecl(NewID);
7063  }
7064
7065  return NewID;
7066}
7067
7068/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7069/// class and class extensions. For every class @interface and class
7070/// extension @interface, if the last ivar is a bitfield of any type,
7071/// then add an implicit `char :0` ivar to the end of that interface.
7072void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7073                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7074  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7075    return;
7076
7077  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7078  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7079
7080  if (!Ivar->isBitField())
7081    return;
7082  uint64_t BitFieldSize =
7083    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7084  if (BitFieldSize == 0)
7085    return;
7086  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7087  if (!ID) {
7088    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7089      if (!CD->IsClassExtension())
7090        return;
7091    }
7092    // No need to add this to end of @implementation.
7093    else
7094      return;
7095  }
7096  // All conditions are met. Add a new bitfield to the tail end of ivars.
7097  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7098  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7099
7100  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7101                              DeclLoc, 0,
7102                              Context.CharTy,
7103                              Context.CreateTypeSourceInfo(Context.CharTy),
7104                              ObjCIvarDecl::Private, BW,
7105                              true);
7106  AllIvarDecls.push_back(Ivar);
7107}
7108
7109void Sema::ActOnFields(Scope* S,
7110                       SourceLocation RecLoc, Decl *EnclosingDecl,
7111                       Decl **Fields, unsigned NumFields,
7112                       SourceLocation LBrac, SourceLocation RBrac,
7113                       AttributeList *Attr) {
7114  assert(EnclosingDecl && "missing record or interface decl");
7115
7116  // If the decl this is being inserted into is invalid, then it may be a
7117  // redeclaration or some other bogus case.  Don't try to add fields to it.
7118  if (EnclosingDecl->isInvalidDecl()) {
7119    // FIXME: Deallocate fields?
7120    return;
7121  }
7122
7123
7124  // Verify that all the fields are okay.
7125  unsigned NumNamedMembers = 0;
7126  llvm::SmallVector<FieldDecl*, 32> RecFields;
7127
7128  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7129  for (unsigned i = 0; i != NumFields; ++i) {
7130    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7131
7132    // Get the type for the field.
7133    const Type *FDTy = FD->getType().getTypePtr();
7134
7135    if (!FD->isAnonymousStructOrUnion()) {
7136      // Remember all fields written by the user.
7137      RecFields.push_back(FD);
7138    }
7139
7140    // If the field is already invalid for some reason, don't emit more
7141    // diagnostics about it.
7142    if (FD->isInvalidDecl()) {
7143      EnclosingDecl->setInvalidDecl();
7144      continue;
7145    }
7146
7147    // C99 6.7.2.1p2:
7148    //   A structure or union shall not contain a member with
7149    //   incomplete or function type (hence, a structure shall not
7150    //   contain an instance of itself, but may contain a pointer to
7151    //   an instance of itself), except that the last member of a
7152    //   structure with more than one named member may have incomplete
7153    //   array type; such a structure (and any union containing,
7154    //   possibly recursively, a member that is such a structure)
7155    //   shall not be a member of a structure or an element of an
7156    //   array.
7157    if (FDTy->isFunctionType()) {
7158      // Field declared as a function.
7159      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7160        << FD->getDeclName();
7161      FD->setInvalidDecl();
7162      EnclosingDecl->setInvalidDecl();
7163      continue;
7164    } else if (FDTy->isIncompleteArrayType() && Record &&
7165               ((i == NumFields - 1 && !Record->isUnion()) ||
7166                (getLangOptions().Microsoft &&
7167                 (i == NumFields - 1 || Record->isUnion())))) {
7168      // Flexible array member.
7169      // Microsoft is more permissive regarding flexible array.
7170      // It will accept flexible array in union and also
7171      // as the sole element of a struct/class.
7172      if (getLangOptions().Microsoft) {
7173        if (Record->isUnion())
7174          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7175            << FD->getDeclName();
7176        else if (NumFields == 1)
7177          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7178            << FD->getDeclName() << Record->getTagKind();
7179      } else  if (NumNamedMembers < 1) {
7180        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7181          << FD->getDeclName();
7182        FD->setInvalidDecl();
7183        EnclosingDecl->setInvalidDecl();
7184        continue;
7185      }
7186      if (!FD->getType()->isDependentType() &&
7187          !Context.getBaseElementType(FD->getType())->isPODType()) {
7188        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7189          << FD->getDeclName() << FD->getType();
7190        FD->setInvalidDecl();
7191        EnclosingDecl->setInvalidDecl();
7192        continue;
7193      }
7194      // Okay, we have a legal flexible array member at the end of the struct.
7195      if (Record)
7196        Record->setHasFlexibleArrayMember(true);
7197    } else if (!FDTy->isDependentType() &&
7198               RequireCompleteType(FD->getLocation(), FD->getType(),
7199                                   diag::err_field_incomplete)) {
7200      // Incomplete type
7201      FD->setInvalidDecl();
7202      EnclosingDecl->setInvalidDecl();
7203      continue;
7204    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7205      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7206        // If this is a member of a union, then entire union becomes "flexible".
7207        if (Record && Record->isUnion()) {
7208          Record->setHasFlexibleArrayMember(true);
7209        } else {
7210          // If this is a struct/class and this is not the last element, reject
7211          // it.  Note that GCC supports variable sized arrays in the middle of
7212          // structures.
7213          if (i != NumFields-1)
7214            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7215              << FD->getDeclName() << FD->getType();
7216          else {
7217            // We support flexible arrays at the end of structs in
7218            // other structs as an extension.
7219            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7220              << FD->getDeclName();
7221            if (Record)
7222              Record->setHasFlexibleArrayMember(true);
7223          }
7224        }
7225      }
7226      if (Record && FDTTy->getDecl()->hasObjectMember())
7227        Record->setHasObjectMember(true);
7228    } else if (FDTy->isObjCObjectType()) {
7229      /// A field cannot be an Objective-c object
7230      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7231      FD->setInvalidDecl();
7232      EnclosingDecl->setInvalidDecl();
7233      continue;
7234    } else if (getLangOptions().ObjC1 &&
7235               getLangOptions().getGCMode() != LangOptions::NonGC &&
7236               Record &&
7237               (FD->getType()->isObjCObjectPointerType() ||
7238                FD->getType().isObjCGCStrong()))
7239      Record->setHasObjectMember(true);
7240    else if (Context.getAsArrayType(FD->getType())) {
7241      QualType BaseType = Context.getBaseElementType(FD->getType());
7242      if (Record && BaseType->isRecordType() &&
7243          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7244        Record->setHasObjectMember(true);
7245    }
7246    // Keep track of the number of named members.
7247    if (FD->getIdentifier())
7248      ++NumNamedMembers;
7249  }
7250
7251  // Okay, we successfully defined 'Record'.
7252  if (Record) {
7253    bool Completed = false;
7254    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7255      if (!CXXRecord->isInvalidDecl()) {
7256        // Set access bits correctly on the directly-declared conversions.
7257        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7258        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7259             I != E; ++I)
7260          Convs->setAccess(I, (*I)->getAccess());
7261
7262        if (!CXXRecord->isDependentType()) {
7263          // Add any implicitly-declared members to this class.
7264          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7265
7266          // If we have virtual base classes, we may end up finding multiple
7267          // final overriders for a given virtual function. Check for this
7268          // problem now.
7269          if (CXXRecord->getNumVBases()) {
7270            CXXFinalOverriderMap FinalOverriders;
7271            CXXRecord->getFinalOverriders(FinalOverriders);
7272
7273            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7274                                             MEnd = FinalOverriders.end();
7275                 M != MEnd; ++M) {
7276              for (OverridingMethods::iterator SO = M->second.begin(),
7277                                            SOEnd = M->second.end();
7278                   SO != SOEnd; ++SO) {
7279                assert(SO->second.size() > 0 &&
7280                       "Virtual function without overridding functions?");
7281                if (SO->second.size() == 1)
7282                  continue;
7283
7284                // C++ [class.virtual]p2:
7285                //   In a derived class, if a virtual member function of a base
7286                //   class subobject has more than one final overrider the
7287                //   program is ill-formed.
7288                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7289                  << (NamedDecl *)M->first << Record;
7290                Diag(M->first->getLocation(),
7291                     diag::note_overridden_virtual_function);
7292                for (OverridingMethods::overriding_iterator
7293                          OM = SO->second.begin(),
7294                       OMEnd = SO->second.end();
7295                     OM != OMEnd; ++OM)
7296                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7297                    << (NamedDecl *)M->first << OM->Method->getParent();
7298
7299                Record->setInvalidDecl();
7300              }
7301            }
7302            CXXRecord->completeDefinition(&FinalOverriders);
7303            Completed = true;
7304          }
7305        }
7306      }
7307    }
7308
7309    if (!Completed)
7310      Record->completeDefinition();
7311  } else {
7312    ObjCIvarDecl **ClsFields =
7313      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7314    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7315      ID->setLocEnd(RBrac);
7316      // Add ivar's to class's DeclContext.
7317      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7318        ClsFields[i]->setLexicalDeclContext(ID);
7319        ID->addDecl(ClsFields[i]);
7320      }
7321      // Must enforce the rule that ivars in the base classes may not be
7322      // duplicates.
7323      if (ID->getSuperClass())
7324        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7325    } else if (ObjCImplementationDecl *IMPDecl =
7326                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7327      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7328      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7329        // Ivar declared in @implementation never belongs to the implementation.
7330        // Only it is in implementation's lexical context.
7331        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7332      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7333    } else if (ObjCCategoryDecl *CDecl =
7334                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7335      // case of ivars in class extension; all other cases have been
7336      // reported as errors elsewhere.
7337      // FIXME. Class extension does not have a LocEnd field.
7338      // CDecl->setLocEnd(RBrac);
7339      // Add ivar's to class extension's DeclContext.
7340      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7341        ClsFields[i]->setLexicalDeclContext(CDecl);
7342        CDecl->addDecl(ClsFields[i]);
7343      }
7344    }
7345  }
7346
7347  if (Attr)
7348    ProcessDeclAttributeList(S, Record, Attr);
7349
7350  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7351  // set the visibility of this record.
7352  if (Record && !Record->getDeclContext()->isRecord())
7353    AddPushedVisibilityAttribute(Record);
7354}
7355
7356/// \brief Determine whether the given integral value is representable within
7357/// the given type T.
7358static bool isRepresentableIntegerValue(ASTContext &Context,
7359                                        llvm::APSInt &Value,
7360                                        QualType T) {
7361  assert(T->isIntegralType(Context) && "Integral type required!");
7362  unsigned BitWidth = Context.getIntWidth(T);
7363
7364  if (Value.isUnsigned() || Value.isNonNegative()) {
7365    if (T->isSignedIntegerType())
7366      --BitWidth;
7367    return Value.getActiveBits() <= BitWidth;
7368  }
7369  return Value.getMinSignedBits() <= BitWidth;
7370}
7371
7372// \brief Given an integral type, return the next larger integral type
7373// (or a NULL type of no such type exists).
7374static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7375  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7376  // enum checking below.
7377  assert(T->isIntegralType(Context) && "Integral type required!");
7378  const unsigned NumTypes = 4;
7379  QualType SignedIntegralTypes[NumTypes] = {
7380    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7381  };
7382  QualType UnsignedIntegralTypes[NumTypes] = {
7383    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7384    Context.UnsignedLongLongTy
7385  };
7386
7387  unsigned BitWidth = Context.getTypeSize(T);
7388  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7389                                            : UnsignedIntegralTypes;
7390  for (unsigned I = 0; I != NumTypes; ++I)
7391    if (Context.getTypeSize(Types[I]) > BitWidth)
7392      return Types[I];
7393
7394  return QualType();
7395}
7396
7397EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7398                                          EnumConstantDecl *LastEnumConst,
7399                                          SourceLocation IdLoc,
7400                                          IdentifierInfo *Id,
7401                                          Expr *Val) {
7402  unsigned IntWidth = Context.Target.getIntWidth();
7403  llvm::APSInt EnumVal(IntWidth);
7404  QualType EltTy;
7405
7406  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7407    Val = 0;
7408
7409  if (Val) {
7410    if (Enum->isDependentType() || Val->isTypeDependent())
7411      EltTy = Context.DependentTy;
7412    else {
7413      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7414      SourceLocation ExpLoc;
7415      if (!Val->isValueDependent() &&
7416          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7417        Val = 0;
7418      } else {
7419        if (!getLangOptions().CPlusPlus) {
7420          // C99 6.7.2.2p2:
7421          //   The expression that defines the value of an enumeration constant
7422          //   shall be an integer constant expression that has a value
7423          //   representable as an int.
7424
7425          // Complain if the value is not representable in an int.
7426          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7427            Diag(IdLoc, diag::ext_enum_value_not_int)
7428              << EnumVal.toString(10) << Val->getSourceRange()
7429              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7430          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7431            // Force the type of the expression to 'int'.
7432            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7433          }
7434        }
7435
7436        if (Enum->isFixed()) {
7437          EltTy = Enum->getIntegerType();
7438
7439          // C++0x [dcl.enum]p5:
7440          //   ... if the initializing value of an enumerator cannot be
7441          //   represented by the underlying type, the program is ill-formed.
7442          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7443            if (getLangOptions().Microsoft) {
7444              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7445              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7446            } else
7447              Diag(IdLoc, diag::err_enumerator_too_large)
7448                << EltTy;
7449          } else
7450            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7451        }
7452        else {
7453          // C++0x [dcl.enum]p5:
7454          //   If the underlying type is not fixed, the type of each enumerator
7455          //   is the type of its initializing value:
7456          //     - If an initializer is specified for an enumerator, the
7457          //       initializing value has the same type as the expression.
7458          EltTy = Val->getType();
7459        }
7460      }
7461    }
7462  }
7463
7464  if (!Val) {
7465    if (Enum->isDependentType())
7466      EltTy = Context.DependentTy;
7467    else if (!LastEnumConst) {
7468      // C++0x [dcl.enum]p5:
7469      //   If the underlying type is not fixed, the type of each enumerator
7470      //   is the type of its initializing value:
7471      //     - If no initializer is specified for the first enumerator, the
7472      //       initializing value has an unspecified integral type.
7473      //
7474      // GCC uses 'int' for its unspecified integral type, as does
7475      // C99 6.7.2.2p3.
7476      if (Enum->isFixed()) {
7477        EltTy = Enum->getIntegerType();
7478      }
7479      else {
7480        EltTy = Context.IntTy;
7481      }
7482    } else {
7483      // Assign the last value + 1.
7484      EnumVal = LastEnumConst->getInitVal();
7485      ++EnumVal;
7486      EltTy = LastEnumConst->getType();
7487
7488      // Check for overflow on increment.
7489      if (EnumVal < LastEnumConst->getInitVal()) {
7490        // C++0x [dcl.enum]p5:
7491        //   If the underlying type is not fixed, the type of each enumerator
7492        //   is the type of its initializing value:
7493        //
7494        //     - Otherwise the type of the initializing value is the same as
7495        //       the type of the initializing value of the preceding enumerator
7496        //       unless the incremented value is not representable in that type,
7497        //       in which case the type is an unspecified integral type
7498        //       sufficient to contain the incremented value. If no such type
7499        //       exists, the program is ill-formed.
7500        QualType T = getNextLargerIntegralType(Context, EltTy);
7501        if (T.isNull() || Enum->isFixed()) {
7502          // There is no integral type larger enough to represent this
7503          // value. Complain, then allow the value to wrap around.
7504          EnumVal = LastEnumConst->getInitVal();
7505          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7506          ++EnumVal;
7507          if (Enum->isFixed())
7508            // When the underlying type is fixed, this is ill-formed.
7509            Diag(IdLoc, diag::err_enumerator_wrapped)
7510              << EnumVal.toString(10)
7511              << EltTy;
7512          else
7513            Diag(IdLoc, diag::warn_enumerator_too_large)
7514              << EnumVal.toString(10);
7515        } else {
7516          EltTy = T;
7517        }
7518
7519        // Retrieve the last enumerator's value, extent that type to the
7520        // type that is supposed to be large enough to represent the incremented
7521        // value, then increment.
7522        EnumVal = LastEnumConst->getInitVal();
7523        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7524        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7525        ++EnumVal;
7526
7527        // If we're not in C++, diagnose the overflow of enumerator values,
7528        // which in C99 means that the enumerator value is not representable in
7529        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7530        // permits enumerator values that are representable in some larger
7531        // integral type.
7532        if (!getLangOptions().CPlusPlus && !T.isNull())
7533          Diag(IdLoc, diag::warn_enum_value_overflow);
7534      } else if (!getLangOptions().CPlusPlus &&
7535                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7536        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7537        Diag(IdLoc, diag::ext_enum_value_not_int)
7538          << EnumVal.toString(10) << 1;
7539      }
7540    }
7541  }
7542
7543  if (!EltTy->isDependentType()) {
7544    // Make the enumerator value match the signedness and size of the
7545    // enumerator's type.
7546    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7547    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7548  }
7549
7550  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7551                                  Val, EnumVal);
7552}
7553
7554
7555Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7556                              SourceLocation IdLoc, IdentifierInfo *Id,
7557                              AttributeList *Attr,
7558                              SourceLocation EqualLoc, ExprTy *val) {
7559  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7560  EnumConstantDecl *LastEnumConst =
7561    cast_or_null<EnumConstantDecl>(lastEnumConst);
7562  Expr *Val = static_cast<Expr*>(val);
7563
7564  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7565  // we find one that is.
7566  S = getNonFieldDeclScope(S);
7567
7568  // Verify that there isn't already something declared with this name in this
7569  // scope.
7570  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7571                                         ForRedeclaration);
7572  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7573    // Maybe we will complain about the shadowed template parameter.
7574    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7575    // Just pretend that we didn't see the previous declaration.
7576    PrevDecl = 0;
7577  }
7578
7579  if (PrevDecl) {
7580    // When in C++, we may get a TagDecl with the same name; in this case the
7581    // enum constant will 'hide' the tag.
7582    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7583           "Received TagDecl when not in C++!");
7584    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7585      if (isa<EnumConstantDecl>(PrevDecl))
7586        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7587      else
7588        Diag(IdLoc, diag::err_redefinition) << Id;
7589      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7590      return 0;
7591    }
7592  }
7593
7594  // C++ [class.mem]p13:
7595  //   If T is the name of a class, then each of the following shall have a
7596  //   name different from T:
7597  //     - every enumerator of every member of class T that is an enumerated
7598  //       type
7599  if (CXXRecordDecl *Record
7600                      = dyn_cast<CXXRecordDecl>(
7601                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7602    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7603      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7604
7605  EnumConstantDecl *New =
7606    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7607
7608  if (New) {
7609    // Process attributes.
7610    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7611
7612    // Register this decl in the current scope stack.
7613    New->setAccess(TheEnumDecl->getAccess());
7614    PushOnScopeChains(New, S);
7615  }
7616
7617  return New;
7618}
7619
7620void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7621                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7622                         Decl **Elements, unsigned NumElements,
7623                         Scope *S, AttributeList *Attr) {
7624  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7625  QualType EnumType = Context.getTypeDeclType(Enum);
7626
7627  if (Attr)
7628    ProcessDeclAttributeList(S, Enum, Attr);
7629
7630  if (Enum->isDependentType()) {
7631    for (unsigned i = 0; i != NumElements; ++i) {
7632      EnumConstantDecl *ECD =
7633        cast_or_null<EnumConstantDecl>(Elements[i]);
7634      if (!ECD) continue;
7635
7636      ECD->setType(EnumType);
7637    }
7638
7639    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7640    return;
7641  }
7642
7643  // TODO: If the result value doesn't fit in an int, it must be a long or long
7644  // long value.  ISO C does not support this, but GCC does as an extension,
7645  // emit a warning.
7646  unsigned IntWidth = Context.Target.getIntWidth();
7647  unsigned CharWidth = Context.Target.getCharWidth();
7648  unsigned ShortWidth = Context.Target.getShortWidth();
7649
7650  // Verify that all the values are okay, compute the size of the values, and
7651  // reverse the list.
7652  unsigned NumNegativeBits = 0;
7653  unsigned NumPositiveBits = 0;
7654
7655  // Keep track of whether all elements have type int.
7656  bool AllElementsInt = true;
7657
7658  for (unsigned i = 0; i != NumElements; ++i) {
7659    EnumConstantDecl *ECD =
7660      cast_or_null<EnumConstantDecl>(Elements[i]);
7661    if (!ECD) continue;  // Already issued a diagnostic.
7662
7663    const llvm::APSInt &InitVal = ECD->getInitVal();
7664
7665    // Keep track of the size of positive and negative values.
7666    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7667      NumPositiveBits = std::max(NumPositiveBits,
7668                                 (unsigned)InitVal.getActiveBits());
7669    else
7670      NumNegativeBits = std::max(NumNegativeBits,
7671                                 (unsigned)InitVal.getMinSignedBits());
7672
7673    // Keep track of whether every enum element has type int (very commmon).
7674    if (AllElementsInt)
7675      AllElementsInt = ECD->getType() == Context.IntTy;
7676  }
7677
7678  // Figure out the type that should be used for this enum.
7679  QualType BestType;
7680  unsigned BestWidth;
7681
7682  // C++0x N3000 [conv.prom]p3:
7683  //   An rvalue of an unscoped enumeration type whose underlying
7684  //   type is not fixed can be converted to an rvalue of the first
7685  //   of the following types that can represent all the values of
7686  //   the enumeration: int, unsigned int, long int, unsigned long
7687  //   int, long long int, or unsigned long long int.
7688  // C99 6.4.4.3p2:
7689  //   An identifier declared as an enumeration constant has type int.
7690  // The C99 rule is modified by a gcc extension
7691  QualType BestPromotionType;
7692
7693  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7694  // -fshort-enums is the equivalent to specifying the packed attribute on all
7695  // enum definitions.
7696  if (LangOpts.ShortEnums)
7697    Packed = true;
7698
7699  if (Enum->isFixed()) {
7700    BestType = BestPromotionType = Enum->getIntegerType();
7701    // We don't need to set BestWidth, because BestType is going to be the type
7702    // of the enumerators, but we do anyway because otherwise some compilers
7703    // warn that it might be used uninitialized.
7704    BestWidth = CharWidth;
7705  }
7706  else if (NumNegativeBits) {
7707    // If there is a negative value, figure out the smallest integer type (of
7708    // int/long/longlong) that fits.
7709    // If it's packed, check also if it fits a char or a short.
7710    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7711      BestType = Context.SignedCharTy;
7712      BestWidth = CharWidth;
7713    } else if (Packed && NumNegativeBits <= ShortWidth &&
7714               NumPositiveBits < ShortWidth) {
7715      BestType = Context.ShortTy;
7716      BestWidth = ShortWidth;
7717    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7718      BestType = Context.IntTy;
7719      BestWidth = IntWidth;
7720    } else {
7721      BestWidth = Context.Target.getLongWidth();
7722
7723      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7724        BestType = Context.LongTy;
7725      } else {
7726        BestWidth = Context.Target.getLongLongWidth();
7727
7728        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7729          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7730        BestType = Context.LongLongTy;
7731      }
7732    }
7733    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7734  } else {
7735    // If there is no negative value, figure out the smallest type that fits
7736    // all of the enumerator values.
7737    // If it's packed, check also if it fits a char or a short.
7738    if (Packed && NumPositiveBits <= CharWidth) {
7739      BestType = Context.UnsignedCharTy;
7740      BestPromotionType = Context.IntTy;
7741      BestWidth = CharWidth;
7742    } else if (Packed && NumPositiveBits <= ShortWidth) {
7743      BestType = Context.UnsignedShortTy;
7744      BestPromotionType = Context.IntTy;
7745      BestWidth = ShortWidth;
7746    } else if (NumPositiveBits <= IntWidth) {
7747      BestType = Context.UnsignedIntTy;
7748      BestWidth = IntWidth;
7749      BestPromotionType
7750        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7751                           ? Context.UnsignedIntTy : Context.IntTy;
7752    } else if (NumPositiveBits <=
7753               (BestWidth = Context.Target.getLongWidth())) {
7754      BestType = Context.UnsignedLongTy;
7755      BestPromotionType
7756        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7757                           ? Context.UnsignedLongTy : Context.LongTy;
7758    } else {
7759      BestWidth = Context.Target.getLongLongWidth();
7760      assert(NumPositiveBits <= BestWidth &&
7761             "How could an initializer get larger than ULL?");
7762      BestType = Context.UnsignedLongLongTy;
7763      BestPromotionType
7764        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7765                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7766    }
7767  }
7768
7769  // Loop over all of the enumerator constants, changing their types to match
7770  // the type of the enum if needed.
7771  for (unsigned i = 0; i != NumElements; ++i) {
7772    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7773    if (!ECD) continue;  // Already issued a diagnostic.
7774
7775    // Standard C says the enumerators have int type, but we allow, as an
7776    // extension, the enumerators to be larger than int size.  If each
7777    // enumerator value fits in an int, type it as an int, otherwise type it the
7778    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7779    // that X has type 'int', not 'unsigned'.
7780
7781    // Determine whether the value fits into an int.
7782    llvm::APSInt InitVal = ECD->getInitVal();
7783
7784    // If it fits into an integer type, force it.  Otherwise force it to match
7785    // the enum decl type.
7786    QualType NewTy;
7787    unsigned NewWidth;
7788    bool NewSign;
7789    if (!getLangOptions().CPlusPlus &&
7790        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7791      NewTy = Context.IntTy;
7792      NewWidth = IntWidth;
7793      NewSign = true;
7794    } else if (ECD->getType() == BestType) {
7795      // Already the right type!
7796      if (getLangOptions().CPlusPlus)
7797        // C++ [dcl.enum]p4: Following the closing brace of an
7798        // enum-specifier, each enumerator has the type of its
7799        // enumeration.
7800        ECD->setType(EnumType);
7801      continue;
7802    } else {
7803      NewTy = BestType;
7804      NewWidth = BestWidth;
7805      NewSign = BestType->isSignedIntegerType();
7806    }
7807
7808    // Adjust the APSInt value.
7809    InitVal = InitVal.extOrTrunc(NewWidth);
7810    InitVal.setIsSigned(NewSign);
7811    ECD->setInitVal(InitVal);
7812
7813    // Adjust the Expr initializer and type.
7814    if (ECD->getInitExpr() &&
7815	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7816      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7817                                                CK_IntegralCast,
7818                                                ECD->getInitExpr(),
7819                                                /*base paths*/ 0,
7820                                                VK_RValue));
7821    if (getLangOptions().CPlusPlus)
7822      // C++ [dcl.enum]p4: Following the closing brace of an
7823      // enum-specifier, each enumerator has the type of its
7824      // enumeration.
7825      ECD->setType(EnumType);
7826    else
7827      ECD->setType(NewTy);
7828  }
7829
7830  Enum->completeDefinition(BestType, BestPromotionType,
7831                           NumPositiveBits, NumNegativeBits);
7832}
7833
7834Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7835  StringLiteral *AsmString = cast<StringLiteral>(expr);
7836
7837  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7838                                                   Loc, AsmString);
7839  CurContext->addDecl(New);
7840  return New;
7841}
7842
7843void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7844                             SourceLocation PragmaLoc,
7845                             SourceLocation NameLoc) {
7846  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7847
7848  if (PrevDecl) {
7849    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7850  } else {
7851    (void)WeakUndeclaredIdentifiers.insert(
7852      std::pair<IdentifierInfo*,WeakInfo>
7853        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7854  }
7855}
7856
7857void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7858                                IdentifierInfo* AliasName,
7859                                SourceLocation PragmaLoc,
7860                                SourceLocation NameLoc,
7861                                SourceLocation AliasNameLoc) {
7862  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7863                                    LookupOrdinaryName);
7864  WeakInfo W = WeakInfo(Name, NameLoc);
7865
7866  if (PrevDecl) {
7867    if (!PrevDecl->hasAttr<AliasAttr>())
7868      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7869        DeclApplyPragmaWeak(TUScope, ND, W);
7870  } else {
7871    (void)WeakUndeclaredIdentifiers.insert(
7872      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7873  }
7874}
7875