SemaDecl.cpp revision 375d37c1298def125934bbbebca535c3867a89db
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29
30using namespace clang;
31
32Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
33                               const CXXScopeSpec *SS) {
34  DeclContext *DC = 0;
35  if (SS) {
36    if (SS->isInvalid())
37      return 0;
38    DC = static_cast<DeclContext*>(SS->getScopeRep());
39  }
40  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
41
42  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
43                 isa<ObjCInterfaceDecl>(IIDecl) ||
44                 isa<TagDecl>(IIDecl) ||
45		 isa<TemplateTypeParmDecl>(IIDecl)))
46    return IIDecl;
47  return 0;
48}
49
50DeclContext *Sema::getContainingDC(DeclContext *DC) {
51  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
52    // A C++ out-of-line method will return to the file declaration context.
53    if (MD->isOutOfLineDefinition())
54      return MD->getLexicalDeclContext();
55
56    // A C++ inline method is parsed *after* the topmost class it was declared in
57    // is fully parsed (it's "complete").
58    // The parsing of a C++ inline method happens at the declaration context of
59    // the topmost (non-nested) class it is lexically declared in.
60    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
61    DC = MD->getParent();
62    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
63      DC = RD;
64
65    // Return the declaration context of the topmost class the inline method is
66    // declared in.
67    return DC;
68  }
69
70  if (isa<ObjCMethodDecl>(DC))
71    return Context.getTranslationUnitDecl();
72
73  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
74    return SD->getLexicalDeclContext();
75
76  return DC->getLexicalParent();
77}
78
79void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
80  assert(getContainingDC(DC) == CurContext &&
81      "The next DeclContext should be lexically contained in the current one.");
82  CurContext = DC;
83  S->setEntity(DC);
84}
85
86void Sema::PopDeclContext() {
87  assert(CurContext && "DeclContext imbalance!");
88
89  CurContext = getContainingDC(CurContext);
90}
91
92/// Add this decl to the scope shadowed decl chains.
93void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
94  S->AddDecl(D);
95
96  // C++ [basic.scope]p4:
97  //   -- exactly one declaration shall declare a class name or
98  //   enumeration name that is not a typedef name and the other
99  //   declarations shall all refer to the same object or
100  //   enumerator, or all refer to functions and function templates;
101  //   in this case the class name or enumeration name is hidden.
102  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
103    // We are pushing the name of a tag (enum or class).
104    if (CurContext == TD->getDeclContext()) {
105      // We're pushing the tag into the current context, which might
106      // require some reshuffling in the identifier resolver.
107      IdentifierResolver::iterator
108        I = IdResolver.begin(TD->getIdentifier(), CurContext,
109                            false/*LookInParentCtx*/);
110      if (I != IdResolver.end()) {
111       // There is already a declaration with the same name in the same
112       // scope. It must be found before we find the new declaration,
113       // so swap the order on the shadowed declaration chain.
114       IdResolver.AddShadowedDecl(TD, *I);
115
116       // Add this declaration to the current context.
117       CurContext->addDecl(Context, TD);
118
119       return;
120      }
121    }
122  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
123    // We are pushing the name of a function, which might be an
124    // overloaded name.
125    FunctionDecl *FD = cast<FunctionDecl>(D);
126    Decl *Prev = LookupDecl(FD->getDeclName(), Decl::IDNS_Ordinary, S,
127                           FD->getDeclContext(), false, false);
128    if (Prev && (isa<OverloadedFunctionDecl>(Prev) || isa<FunctionDecl>(Prev))) {
129      // There is already a declaration with the same name in
130      // the same scope. It must be a function or an overloaded
131      // function.
132      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(Prev);
133      if (!Ovl) {
134        // We haven't yet overloaded this function. Take the existing
135        // FunctionDecl and put it into an OverloadedFunctionDecl.
136        Ovl = OverloadedFunctionDecl::Create(Context,
137                                             FD->getDeclContext(),
138                                             FD->getDeclName());
139        Ovl->addOverload(cast<FunctionDecl>(Prev));
140
141        // If there is a name binding for the existing FunctionDecl,
142        // remove it.
143        for (IdentifierResolver::iterator I
144               = IdResolver.begin(FD->getDeclName(), FD->getDeclContext(),
145                                  false/*LookInParentCtx*/),
146               E = IdResolver.end(); I != E; ++I) {
147          if (*I == Prev) {
148            IdResolver.RemoveDecl(*I);
149            S->RemoveDecl(*I);
150            break;
151          }
152        }
153
154        // Add the name binding for the OverloadedFunctionDecl.
155        IdResolver.AddDecl(Ovl);
156
157        // Update the context with the newly-created overloaded
158        // function set.
159        FD->getDeclContext()->insert(Context, Ovl);
160
161       S->AddDecl(Ovl);
162      }
163
164      // We added this function declaration to the scope earlier, but
165      // we don't want it there because it is part of the overloaded
166      // function declaration.
167      S->RemoveDecl(FD);
168
169      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
170      // to its list of overloads.
171      Ovl->addOverload(FD);
172
173      // Add this new function declaration to the declaration context.
174      CurContext->addDecl(Context, FD, false);
175
176      return;
177    }
178  }
179
180  // Add scoped declarations into their context, so that they can be
181  // found later. Declarations without a context won't be inserted
182  // into any context.
183  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
184    CurContext->addDecl(Context, SD);
185
186  IdResolver.AddDecl(D);
187}
188
189void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
190  if (S->decl_empty()) return;
191  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
192	 "Scope shouldn't contain decls!");
193
194  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
195       I != E; ++I) {
196    Decl *TmpD = static_cast<Decl*>(*I);
197    assert(TmpD && "This decl didn't get pushed??");
198
199    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
200    NamedDecl *D = cast<NamedDecl>(TmpD);
201
202    if (!D->getDeclName()) continue;
203
204    // Remove this name from our lexical scope.
205    IdResolver.RemoveDecl(D);
206  }
207}
208
209/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
210/// return 0 if one not found.
211ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
212  // The third "scope" argument is 0 since we aren't enabling lazy built-in
213  // creation from this context.
214  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
215
216  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
217}
218
219/// LookupDecl - Look up the inner-most declaration in the specified
220/// namespace.
221Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
222                       const DeclContext *LookupCtx,
223                       bool enableLazyBuiltinCreation,
224                       bool LookInParent) {
225  if (!Name) return 0;
226  unsigned NS = NSI;
227  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
228    NS |= Decl::IDNS_Tag;
229
230  if (LookupCtx == 0 &&
231      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
232    // Unqualified name lookup in C/Objective-C and name lookup for
233    // labels in C++ is purely lexical, so search in the
234    // declarations attached to the name.
235    assert(!LookupCtx && "Can't perform qualified name lookup here");
236    IdentifierResolver::iterator I
237      = IdResolver.begin(Name, CurContext, LookInParent);
238
239    // Scan up the scope chain looking for a decl that matches this
240    // identifier that is in the appropriate namespace.  This search
241    // should not take long, as shadowing of names is uncommon, and
242    // deep shadowing is extremely uncommon.
243    for (; I != IdResolver.end(); ++I)
244      if ((*I)->getIdentifierNamespace() & NS)
245         return *I;
246  } else if (LookupCtx) {
247    assert(getLangOptions().CPlusPlus && "No qualified name lookup in C");
248
249    // Perform qualified name lookup into the LookupCtx.
250    // FIXME: Will need to look into base classes and such.
251    DeclContext::lookup_const_iterator I, E;
252    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
253      if ((*I)->getIdentifierNamespace() & NS)
254       return *I;
255  } else {
256    // Name lookup for ordinary names and tag names in C++ requires
257    // looking into scopes that aren't strictly lexical, and
258    // therefore we walk through the context as well as walking
259    // through the scopes.
260    IdentifierResolver::iterator
261      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
262      IEnd = IdResolver.end();
263    for (; S; S = S->getParent()) {
264      // Check whether the IdResolver has anything in this scope.
265      // FIXME: The isDeclScope check could be expensive. Can we do better?
266      for (; I != IEnd && S->isDeclScope(*I); ++I)
267        if ((*I)->getIdentifierNamespace() & NS)
268          return *I;
269
270      // If there is an entity associated with this scope, it's a
271      // DeclContext. We might need to perform qualified lookup into
272      // it.
273      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
274      while (Ctx && Ctx->isFunctionOrMethod())
275        Ctx = Ctx->getParent();
276      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
277        // Look for declarations of this name in this scope.
278        DeclContext::lookup_const_iterator I, E;
279        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
280          // FIXME: Cache this result in the IdResolver
281          if ((*I)->getIdentifierNamespace() & NS)
282            return  *I;
283        }
284
285        Ctx = Ctx->getParent();
286      }
287
288      if (!LookInParent)
289        return 0;
290    }
291  }
292
293  // If we didn't find a use of this identifier, and if the identifier
294  // corresponds to a compiler builtin, create the decl object for the builtin
295  // now, injecting it into translation unit scope, and return it.
296  if (NS & Decl::IDNS_Ordinary) {
297    IdentifierInfo *II = Name.getAsIdentifierInfo();
298    if (enableLazyBuiltinCreation && II &&
299        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
300      // If this is a builtin on this (or all) targets, create the decl.
301      if (unsigned BuiltinID = II->getBuiltinID())
302        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
303    }
304    if (getLangOptions().ObjC1 && II) {
305      // @interface and @compatibility_alias introduce typedef-like names.
306      // Unlike typedef's, they can only be introduced at file-scope (and are
307      // therefore not scoped decls). They can, however, be shadowed by
308      // other names in IDNS_Ordinary.
309      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
310      if (IDI != ObjCInterfaceDecls.end())
311        return IDI->second;
312      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
313      if (I != ObjCAliasDecls.end())
314        return I->second->getClassInterface();
315    }
316  }
317  return 0;
318}
319
320void Sema::InitBuiltinVaListType() {
321  if (!Context.getBuiltinVaListType().isNull())
322    return;
323
324  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
325  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
326  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
327  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
328}
329
330/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
331/// lazily create a decl for it.
332ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
333                                      Scope *S) {
334  Builtin::ID BID = (Builtin::ID)bid;
335
336  if (Context.BuiltinInfo.hasVAListUse(BID))
337    InitBuiltinVaListType();
338
339  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
340  FunctionDecl *New = FunctionDecl::Create(Context,
341                                           Context.getTranslationUnitDecl(),
342                                           SourceLocation(), II, R,
343                                           FunctionDecl::Extern, false, 0);
344
345  // Create Decl objects for each parameter, adding them to the
346  // FunctionDecl.
347  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
348    llvm::SmallVector<ParmVarDecl*, 16> Params;
349    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
350      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
351                                           FT->getArgType(i), VarDecl::None, 0,
352                                           0));
353    New->setParams(&Params[0], Params.size());
354  }
355
356
357
358  // TUScope is the translation-unit scope to insert this function into.
359  PushOnScopeChains(New, TUScope);
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
370                           0, Global, /*enableLazyBuiltinCreation=*/false);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
377/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
378/// situation, merging decls or emitting diagnostics as appropriate.
379///
380TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
381  // Allow multiple definitions for ObjC built-in typedefs.
382  // FIXME: Verify the underlying types are equivalent!
383  if (getLangOptions().ObjC1) {
384    const IdentifierInfo *TypeID = New->getIdentifier();
385    switch (TypeID->getLength()) {
386    default: break;
387    case 2:
388      if (!TypeID->isStr("id"))
389        break;
390      Context.setObjCIdType(New);
391      return New;
392    case 5:
393      if (!TypeID->isStr("Class"))
394        break;
395      Context.setObjCClassType(New);
396      return New;
397    case 3:
398      if (!TypeID->isStr("SEL"))
399        break;
400      Context.setObjCSelType(New);
401      return New;
402    case 8:
403      if (!TypeID->isStr("Protocol"))
404        break;
405      Context.setObjCProtoType(New->getUnderlyingType());
406      return New;
407    }
408    // Fall through - the typedef name was not a builtin type.
409  }
410  // Verify the old decl was also a typedef.
411  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
412  if (!Old) {
413    Diag(New->getLocation(), diag::err_redefinition_different_kind)
414      << New->getDeclName();
415    Diag(OldD->getLocation(), diag::note_previous_definition);
416    return New;
417  }
418
419  // If the typedef types are not identical, reject them in all languages and
420  // with any extensions enabled.
421  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
422      Context.getCanonicalType(Old->getUnderlyingType()) !=
423      Context.getCanonicalType(New->getUnderlyingType())) {
424    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
425      << New->getUnderlyingType() << Old->getUnderlyingType();
426    Diag(Old->getLocation(), diag::note_previous_definition);
427    return Old;
428  }
429
430  if (getLangOptions().Microsoft) return New;
431
432  // C++ [dcl.typedef]p2:
433  //   In a given non-class scope, a typedef specifier can be used to
434  //   redefine the name of any type declared in that scope to refer
435  //   to the type to which it already refers.
436  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
437    return New;
438
439  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
440  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
441  // *either* declaration is in a system header. The code below implements
442  // this adhoc compatibility rule. FIXME: The following code will not
443  // work properly when compiling ".i" files (containing preprocessed output).
444  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
445    SourceManager &SrcMgr = Context.getSourceManager();
446    if (SrcMgr.isInSystemHeader(Old->getLocation()))
447      return New;
448    if (SrcMgr.isInSystemHeader(New->getLocation()))
449      return New;
450  }
451
452  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
453  Diag(Old->getLocation(), diag::note_previous_definition);
454  return New;
455}
456
457/// DeclhasAttr - returns true if decl Declaration already has the target
458/// attribute.
459static bool DeclHasAttr(const Decl *decl, const Attr *target) {
460  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
461    if (attr->getKind() == target->getKind())
462      return true;
463
464  return false;
465}
466
467/// MergeAttributes - append attributes from the Old decl to the New one.
468static void MergeAttributes(Decl *New, Decl *Old) {
469  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
470
471  while (attr) {
472     tmp = attr;
473     attr = attr->getNext();
474
475    if (!DeclHasAttr(New, tmp)) {
476       New->addAttr(tmp);
477    } else {
478       tmp->setNext(0);
479       delete(tmp);
480    }
481  }
482
483  Old->invalidateAttrs();
484}
485
486/// MergeFunctionDecl - We just parsed a function 'New' from
487/// declarator D which has the same name and scope as a previous
488/// declaration 'Old'.  Figure out how to resolve this situation,
489/// merging decls or emitting diagnostics as appropriate.
490/// Redeclaration will be set true if this New is a redeclaration OldD.
491///
492/// In C++, New and Old must be declarations that are not
493/// overloaded. Use IsOverload to determine whether New and Old are
494/// overloaded, and to select the Old declaration that New should be
495/// merged with.
496FunctionDecl *
497Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
498  assert(!isa<OverloadedFunctionDecl>(OldD) &&
499         "Cannot merge with an overloaded function declaration");
500
501  Redeclaration = false;
502  // Verify the old decl was also a function.
503  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
504  if (!Old) {
505    Diag(New->getLocation(), diag::err_redefinition_different_kind)
506      << New->getDeclName();
507    Diag(OldD->getLocation(), diag::note_previous_definition);
508    return New;
509  }
510
511  // Determine whether the previous declaration was a definition,
512  // implicit declaration, or a declaration.
513  diag::kind PrevDiag;
514  if (Old->isThisDeclarationADefinition())
515    PrevDiag = diag::note_previous_definition;
516  else if (Old->isImplicit())
517    PrevDiag = diag::note_previous_implicit_declaration;
518  else
519    PrevDiag = diag::note_previous_declaration;
520
521  QualType OldQType = Context.getCanonicalType(Old->getType());
522  QualType NewQType = Context.getCanonicalType(New->getType());
523
524  if (getLangOptions().CPlusPlus) {
525    // (C++98 13.1p2):
526    //   Certain function declarations cannot be overloaded:
527    //     -- Function declarations that differ only in the return type
528    //        cannot be overloaded.
529    QualType OldReturnType
530      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
531    QualType NewReturnType
532      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
533    if (OldReturnType != NewReturnType) {
534      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
535      Diag(Old->getLocation(), PrevDiag);
536      return New;
537    }
538
539    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
540    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
541    if (OldMethod && NewMethod) {
542      //    -- Member function declarations with the same name and the
543      //       same parameter types cannot be overloaded if any of them
544      //       is a static member function declaration.
545      if (OldMethod->isStatic() || NewMethod->isStatic()) {
546        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
547        Diag(Old->getLocation(), PrevDiag);
548        return New;
549      }
550
551      // C++ [class.mem]p1:
552      //   [...] A member shall not be declared twice in the
553      //   member-specification, except that a nested class or member
554      //   class template can be declared and then later defined.
555      if (OldMethod->getLexicalDeclContext() ==
556            NewMethod->getLexicalDeclContext()) {
557        unsigned NewDiag;
558        if (isa<CXXConstructorDecl>(OldMethod))
559          NewDiag = diag::err_constructor_redeclared;
560        else if (isa<CXXDestructorDecl>(NewMethod))
561          NewDiag = diag::err_destructor_redeclared;
562        else if (isa<CXXConversionDecl>(NewMethod))
563          NewDiag = diag::err_conv_function_redeclared;
564        else
565          NewDiag = diag::err_member_redeclared;
566
567        Diag(New->getLocation(), NewDiag);
568        Diag(Old->getLocation(), PrevDiag);
569      }
570    }
571
572    // (C++98 8.3.5p3):
573    //   All declarations for a function shall agree exactly in both the
574    //   return type and the parameter-type-list.
575    if (OldQType == NewQType) {
576      // We have a redeclaration.
577      MergeAttributes(New, Old);
578      Redeclaration = true;
579      return MergeCXXFunctionDecl(New, Old);
580    }
581
582    // Fall through for conflicting redeclarations and redefinitions.
583  }
584
585  // C: Function types need to be compatible, not identical. This handles
586  // duplicate function decls like "void f(int); void f(enum X);" properly.
587  if (!getLangOptions().CPlusPlus &&
588      Context.typesAreCompatible(OldQType, NewQType)) {
589    MergeAttributes(New, Old);
590    Redeclaration = true;
591    return New;
592  }
593
594  // A function that has already been declared has been redeclared or defined
595  // with a different type- show appropriate diagnostic
596
597  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
598  // TODO: This is totally simplistic.  It should handle merging functions
599  // together etc, merging extern int X; int X; ...
600  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
601  Diag(Old->getLocation(), PrevDiag);
602  return New;
603}
604
605/// Predicate for C "tentative" external object definitions (C99 6.9.2).
606static bool isTentativeDefinition(VarDecl *VD) {
607  if (VD->isFileVarDecl())
608    return (!VD->getInit() &&
609            (VD->getStorageClass() == VarDecl::None ||
610             VD->getStorageClass() == VarDecl::Static));
611  return false;
612}
613
614/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
615/// when dealing with C "tentative" external object definitions (C99 6.9.2).
616void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
617  bool VDIsTentative = isTentativeDefinition(VD);
618  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
619
620  for (IdentifierResolver::iterator
621       I = IdResolver.begin(VD->getIdentifier(),
622                            VD->getDeclContext(), false/*LookInParentCtx*/),
623       E = IdResolver.end(); I != E; ++I) {
624    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
625      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
626
627      // Handle the following case:
628      //   int a[10];
629      //   int a[];   - the code below makes sure we set the correct type.
630      //   int a[11]; - this is an error, size isn't 10.
631      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
632          OldDecl->getType()->isConstantArrayType())
633        VD->setType(OldDecl->getType());
634
635      // Check for "tentative" definitions. We can't accomplish this in
636      // MergeVarDecl since the initializer hasn't been attached.
637      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
638        continue;
639
640      // Handle __private_extern__ just like extern.
641      if (OldDecl->getStorageClass() != VarDecl::Extern &&
642          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
643          VD->getStorageClass() != VarDecl::Extern &&
644          VD->getStorageClass() != VarDecl::PrivateExtern) {
645        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
646        Diag(OldDecl->getLocation(), diag::note_previous_definition);
647      }
648    }
649  }
650}
651
652/// MergeVarDecl - We just parsed a variable 'New' which has the same name
653/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
654/// situation, merging decls or emitting diagnostics as appropriate.
655///
656/// Tentative definition rules (C99 6.9.2p2) are checked by
657/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
658/// definitions here, since the initializer hasn't been attached.
659///
660VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
661  // Verify the old decl was also a variable.
662  VarDecl *Old = dyn_cast<VarDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return New;
668  }
669
670  MergeAttributes(New, Old);
671
672  // Verify the types match.
673  QualType OldCType = Context.getCanonicalType(Old->getType());
674  QualType NewCType = Context.getCanonicalType(New->getType());
675  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
676    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
681  if (New->getStorageClass() == VarDecl::Static &&
682      (Old->getStorageClass() == VarDecl::None ||
683       Old->getStorageClass() == VarDecl::Extern)) {
684    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
685    Diag(Old->getLocation(), diag::note_previous_definition);
686    return New;
687  }
688  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
689  if (New->getStorageClass() != VarDecl::Static &&
690      Old->getStorageClass() == VarDecl::Static) {
691    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
692    Diag(Old->getLocation(), diag::note_previous_definition);
693    return New;
694  }
695  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
696  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
697    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
698    Diag(Old->getLocation(), diag::note_previous_definition);
699  }
700  return New;
701}
702
703/// CheckParmsForFunctionDef - Check that the parameters of the given
704/// function are appropriate for the definition of a function. This
705/// takes care of any checks that cannot be performed on the
706/// declaration itself, e.g., that the types of each of the function
707/// parameters are complete.
708bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
709  bool HasInvalidParm = false;
710  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
711    ParmVarDecl *Param = FD->getParamDecl(p);
712
713    // C99 6.7.5.3p4: the parameters in a parameter type list in a
714    // function declarator that is part of a function definition of
715    // that function shall not have incomplete type.
716    if (Param->getType()->isIncompleteType() &&
717        !Param->isInvalidDecl()) {
718      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
719        << Param->getType();
720      Param->setInvalidDecl();
721      HasInvalidParm = true;
722    }
723
724    // C99 6.9.1p5: If the declarator includes a parameter type list, the
725    // declaration of each parameter shall include an identifier.
726    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
727      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
728  }
729
730  return HasInvalidParm;
731}
732
733/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
734/// no declarator (e.g. "struct foo;") is parsed.
735Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
736  // TODO: emit error on 'int;' or 'const enum foo;'.
737  // TODO: emit error on 'typedef int;'
738  // if (!DS.isMissingDeclaratorOk()) Diag(...);
739
740  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
741}
742
743bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
744  // Get the type before calling CheckSingleAssignmentConstraints(), since
745  // it can promote the expression.
746  QualType InitType = Init->getType();
747
748  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
749  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
750                                  InitType, Init, "initializing");
751}
752
753bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
754  const ArrayType *AT = Context.getAsArrayType(DeclT);
755
756  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
757    // C99 6.7.8p14. We have an array of character type with unknown size
758    // being initialized to a string literal.
759    llvm::APSInt ConstVal(32);
760    ConstVal = strLiteral->getByteLength() + 1;
761    // Return a new array type (C99 6.7.8p22).
762    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
763                                         ArrayType::Normal, 0);
764  } else {
765    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
766    // C99 6.7.8p14. We have an array of character type with known size.
767    // FIXME: Avoid truncation for 64-bit length strings.
768    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
769      Diag(strLiteral->getSourceRange().getBegin(),
770           diag::warn_initializer_string_for_char_array_too_long)
771        << strLiteral->getSourceRange();
772  }
773  // Set type from "char *" to "constant array of char".
774  strLiteral->setType(DeclT);
775  // For now, we always return false (meaning success).
776  return false;
777}
778
779StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
780  const ArrayType *AT = Context.getAsArrayType(DeclType);
781  if (AT && AT->getElementType()->isCharType()) {
782    return dyn_cast<StringLiteral>(Init);
783  }
784  return 0;
785}
786
787bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
788                                 SourceLocation InitLoc,
789                                 DeclarationName InitEntity) {
790  // C++ [dcl.init.ref]p1:
791  //   A variable declared to be a T&, that is "reference to type T"
792  //   (8.3.2), shall be initialized by an object, or function, of
793  //   type T or by an object that can be converted into a T.
794  if (DeclType->isReferenceType())
795    return CheckReferenceInit(Init, DeclType);
796
797  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
798  // of unknown size ("[]") or an object type that is not a variable array type.
799  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
800    return Diag(InitLoc,  diag::err_variable_object_no_init)
801      << VAT->getSizeExpr()->getSourceRange();
802
803  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
804  if (!InitList) {
805    // FIXME: Handle wide strings
806    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
807      return CheckStringLiteralInit(strLiteral, DeclType);
808
809    // C++ [dcl.init]p14:
810    //   -- If the destination type is a (possibly cv-qualified) class
811    //      type:
812    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
813      QualType DeclTypeC = Context.getCanonicalType(DeclType);
814      QualType InitTypeC = Context.getCanonicalType(Init->getType());
815
816      //   -- If the initialization is direct-initialization, or if it is
817      //      copy-initialization where the cv-unqualified version of the
818      //      source type is the same class as, or a derived class of, the
819      //      class of the destination, constructors are considered.
820      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
821          IsDerivedFrom(InitTypeC, DeclTypeC)) {
822        CXXConstructorDecl *Constructor
823          = PerformInitializationByConstructor(DeclType, &Init, 1,
824                                               InitLoc, Init->getSourceRange(),
825                                               InitEntity, IK_Copy);
826        return Constructor == 0;
827      }
828
829      //   -- Otherwise (i.e., for the remaining copy-initialization
830      //      cases), user-defined conversion sequences that can
831      //      convert from the source type to the destination type or
832      //      (when a conversion function is used) to a derived class
833      //      thereof are enumerated as described in 13.3.1.4, and the
834      //      best one is chosen through overload resolution
835      //      (13.3). If the conversion cannot be done or is
836      //      ambiguous, the initialization is ill-formed. The
837      //      function selected is called with the initializer
838      //      expression as its argument; if the function is a
839      //      constructor, the call initializes a temporary of the
840      //      destination type.
841      // FIXME: We're pretending to do copy elision here; return to
842      // this when we have ASTs for such things.
843      if (!PerformImplicitConversion(Init, DeclType))
844        return false;
845
846      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
847        << DeclType << InitEntity << "initializing"
848        << Init->getSourceRange();
849    }
850
851    // C99 6.7.8p16.
852    if (DeclType->isArrayType())
853      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
854        << Init->getSourceRange();
855
856    return CheckSingleInitializer(Init, DeclType);
857  } else if (getLangOptions().CPlusPlus) {
858    // C++ [dcl.init]p14:
859    //   [...] If the class is an aggregate (8.5.1), and the initializer
860    //   is a brace-enclosed list, see 8.5.1.
861    //
862    // Note: 8.5.1 is handled below; here, we diagnose the case where
863    // we have an initializer list and a destination type that is not
864    // an aggregate.
865    // FIXME: In C++0x, this is yet another form of initialization.
866    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
867      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
868      if (!ClassDecl->isAggregate())
869        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
870           << DeclType << Init->getSourceRange();
871    }
872  }
873
874  InitListChecker CheckInitList(this, InitList, DeclType);
875  return CheckInitList.HadError();
876}
877
878/// GetNameForDeclarator - Determine the full declaration name for the
879/// given Declarator.
880DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
881  switch (D.getKind()) {
882  case Declarator::DK_Abstract:
883    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
884    return DeclarationName();
885
886  case Declarator::DK_Normal:
887    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
888    return DeclarationName(D.getIdentifier());
889
890  case Declarator::DK_Constructor: {
891    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
892    Ty = Context.getCanonicalType(Ty);
893    return Context.DeclarationNames.getCXXConstructorName(Ty);
894  }
895
896  case Declarator::DK_Destructor: {
897    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
898    Ty = Context.getCanonicalType(Ty);
899    return Context.DeclarationNames.getCXXDestructorName(Ty);
900  }
901
902  case Declarator::DK_Conversion: {
903    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
904    Ty = Context.getCanonicalType(Ty);
905    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
906  }
907
908  case Declarator::DK_Operator:
909    assert(D.getIdentifier() == 0 && "operator names have no identifier");
910    return Context.DeclarationNames.getCXXOperatorName(
911                                                D.getOverloadedOperator());
912  }
913
914  assert(false && "Unknown name kind");
915  return DeclarationName();
916}
917
918/// isNearlyMatchingMemberFunction - Determine whether the C++ member
919/// functions Declaration and Definition are "nearly" matching. This
920/// heuristic is used to improve diagnostics in the case where an
921/// out-of-line member function definition doesn't match any
922/// declaration within the class.
923static bool isNearlyMatchingMemberFunction(ASTContext &Context,
924                                           FunctionDecl *Declaration,
925                                           FunctionDecl *Definition) {
926  if (Declaration->param_size() != Definition->param_size())
927    return false;
928  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
929    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
930    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
931
932    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
933    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
934    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
935      return false;
936  }
937
938  return true;
939}
940
941Sema::DeclTy *
942Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
943                      bool IsFunctionDefinition) {
944  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
945  DeclarationName Name = GetNameForDeclarator(D);
946
947  // All of these full declarators require an identifier.  If it doesn't have
948  // one, the ParsedFreeStandingDeclSpec action should be used.
949  if (!Name) {
950    if (!D.getInvalidType())  // Reject this if we think it is valid.
951      Diag(D.getDeclSpec().getSourceRange().getBegin(),
952           diag::err_declarator_need_ident)
953        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
954    return 0;
955  }
956
957  // The scope passed in may not be a decl scope.  Zip up the scope tree until
958  // we find one that is.
959  while ((S->getFlags() & Scope::DeclScope) == 0 ||
960        (S->getFlags() & Scope::TemplateParamScope) != 0)
961    S = S->getParent();
962
963  DeclContext *DC;
964  Decl *PrevDecl;
965  ScopedDecl *New;
966  bool InvalidDecl = false;
967
968  // See if this is a redefinition of a variable in the same scope.
969  if (!D.getCXXScopeSpec().isSet()) {
970    DC = CurContext;
971    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
972  } else { // Something like "int foo::x;"
973    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
974    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
975
976    // C++ 7.3.1.2p2:
977    // Members (including explicit specializations of templates) of a named
978    // namespace can also be defined outside that namespace by explicit
979    // qualification of the name being defined, provided that the entity being
980    // defined was already declared in the namespace and the definition appears
981    // after the point of declaration in a namespace that encloses the
982    // declarations namespace.
983    //
984    // Note that we only check the context at this point. We don't yet
985    // have enough information to make sure that PrevDecl is actually
986    // the declaration we want to match. For example, given:
987    //
988    //   class X {
989    //     void f();
990    //     void f(float);
991    //   };
992    //
993    //   void X::f(int) { } // ill-formed
994    //
995    // In this case, PrevDecl will point to the overload set
996    // containing the two f's declared in X, but neither of them
997    // matches.
998    if (!CurContext->Encloses(DC)) {
999      // The qualifying scope doesn't enclose the original declaration.
1000      // Emit diagnostic based on current scope.
1001      SourceLocation L = D.getIdentifierLoc();
1002      SourceRange R = D.getCXXScopeSpec().getRange();
1003      if (isa<FunctionDecl>(CurContext)) {
1004        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1005      } else {
1006        Diag(L, diag::err_invalid_declarator_scope)
1007          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1008      }
1009      InvalidDecl = true;
1010    }
1011  }
1012
1013  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1014    // Maybe we will complain about the shadowed template parameter.
1015    InvalidDecl = InvalidDecl
1016      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1017    // Just pretend that we didn't see the previous declaration.
1018    PrevDecl = 0;
1019  }
1020
1021  // In C++, the previous declaration we find might be a tag type
1022  // (class or enum). In this case, the new declaration will hide the
1023  // tag type.
1024  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1025    PrevDecl = 0;
1026
1027  QualType R = GetTypeForDeclarator(D, S);
1028  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1029
1030  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1031    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1032    if (D.getCXXScopeSpec().isSet()) {
1033      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1034        << D.getCXXScopeSpec().getRange();
1035      InvalidDecl = true;
1036      // Pretend we didn't see the scope specifier.
1037      DC = 0;
1038    }
1039
1040    // Check that there are no default arguments (C++ only).
1041    if (getLangOptions().CPlusPlus)
1042      CheckExtraCXXDefaultArguments(D);
1043
1044    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1045    if (!NewTD) return 0;
1046
1047    // Handle attributes prior to checking for duplicates in MergeVarDecl
1048    ProcessDeclAttributes(NewTD, D);
1049    // Merge the decl with the existing one if appropriate. If the decl is
1050    // in an outer scope, it isn't the same thing.
1051    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1052      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1053      if (NewTD == 0) return 0;
1054    }
1055    New = NewTD;
1056    if (S->getFnParent() == 0) {
1057      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1058      // then it shall have block scope.
1059      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1060        if (NewTD->getUnderlyingType()->isVariableArrayType())
1061          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1062        else
1063          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1064
1065        InvalidDecl = true;
1066      }
1067    }
1068  } else if (R.getTypePtr()->isFunctionType()) {
1069    FunctionDecl::StorageClass SC = FunctionDecl::None;
1070    switch (D.getDeclSpec().getStorageClassSpec()) {
1071      default: assert(0 && "Unknown storage class!");
1072      case DeclSpec::SCS_auto:
1073      case DeclSpec::SCS_register:
1074      case DeclSpec::SCS_mutable:
1075        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1076        InvalidDecl = true;
1077        break;
1078      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1079      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1080      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1081      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1082    }
1083
1084    bool isInline = D.getDeclSpec().isInlineSpecified();
1085    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1086    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1087
1088    FunctionDecl *NewFD;
1089    if (D.getKind() == Declarator::DK_Constructor) {
1090      // This is a C++ constructor declaration.
1091      assert(DC->isCXXRecord() &&
1092             "Constructors can only be declared in a member context");
1093
1094      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
1095
1096      // Create the new declaration
1097      NewFD = CXXConstructorDecl::Create(Context,
1098                                         cast<CXXRecordDecl>(DC),
1099                                         D.getIdentifierLoc(), Name, R,
1100                                         isExplicit, isInline,
1101                                         /*isImplicitlyDeclared=*/false);
1102
1103      if (isInvalidDecl)
1104        NewFD->setInvalidDecl();
1105    } else if (D.getKind() == Declarator::DK_Destructor) {
1106      // This is a C++ destructor declaration.
1107      if (DC->isCXXRecord()) {
1108        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
1109
1110        NewFD = CXXDestructorDecl::Create(Context,
1111                                          cast<CXXRecordDecl>(DC),
1112                                          D.getIdentifierLoc(), Name, R,
1113                                          isInline,
1114                                          /*isImplicitlyDeclared=*/false);
1115
1116        if (isInvalidDecl)
1117          NewFD->setInvalidDecl();
1118      } else {
1119        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1120        // Create a FunctionDecl to satisfy the function definition parsing
1121        // code path.
1122        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1123                                     Name, R, SC, isInline, LastDeclarator,
1124                                     // FIXME: Move to DeclGroup...
1125                                   D.getDeclSpec().getSourceRange().getBegin());
1126        NewFD->setInvalidDecl();
1127      }
1128    } else if (D.getKind() == Declarator::DK_Conversion) {
1129      if (!DC->isCXXRecord()) {
1130        Diag(D.getIdentifierLoc(),
1131             diag::err_conv_function_not_member);
1132        return 0;
1133      } else {
1134        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
1135
1136        NewFD = CXXConversionDecl::Create(Context,
1137                                          cast<CXXRecordDecl>(DC),
1138                                          D.getIdentifierLoc(), Name, R,
1139                                          isInline, isExplicit);
1140
1141        if (isInvalidDecl)
1142          NewFD->setInvalidDecl();
1143      }
1144    } else if (DC->isCXXRecord()) {
1145      // This is a C++ method declaration.
1146      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1147                                    D.getIdentifierLoc(), Name, R,
1148                                    (SC == FunctionDecl::Static), isInline,
1149                                    LastDeclarator);
1150    } else {
1151      NewFD = FunctionDecl::Create(Context, DC,
1152                                   D.getIdentifierLoc(),
1153                                   Name, R, SC, isInline, LastDeclarator,
1154                                   // FIXME: Move to DeclGroup...
1155                                   D.getDeclSpec().getSourceRange().getBegin());
1156    }
1157
1158    // Handle attributes.
1159    ProcessDeclAttributes(NewFD, D);
1160
1161    // Set the lexical context. If the declarator has a C++
1162    // scope specifier, the lexical context will be different
1163    // from the semantic context.
1164    NewFD->setLexicalDeclContext(CurContext);
1165
1166    // Handle GNU asm-label extension (encoded as an attribute).
1167    if (Expr *E = (Expr*) D.getAsmLabel()) {
1168      // The parser guarantees this is a string.
1169      StringLiteral *SE = cast<StringLiteral>(E);
1170      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1171                                                  SE->getByteLength())));
1172    }
1173
1174    // Copy the parameter declarations from the declarator D to
1175    // the function declaration NewFD, if they are available.
1176    if (D.getNumTypeObjects() > 0) {
1177      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1178
1179      // Create Decl objects for each parameter, adding them to the
1180      // FunctionDecl.
1181      llvm::SmallVector<ParmVarDecl*, 16> Params;
1182
1183      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1184      // function that takes no arguments, not a function that takes a
1185      // single void argument.
1186      // We let through "const void" here because Sema::GetTypeForDeclarator
1187      // already checks for that case.
1188      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1189          FTI.ArgInfo[0].Param &&
1190          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1191        // empty arg list, don't push any params.
1192        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1193
1194        // In C++, the empty parameter-type-list must be spelled "void"; a
1195        // typedef of void is not permitted.
1196        if (getLangOptions().CPlusPlus &&
1197            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1198          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1199        }
1200      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1201        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1202          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1203      }
1204
1205      NewFD->setParams(&Params[0], Params.size());
1206    } else if (R->getAsTypedefType()) {
1207      // When we're declaring a function with a typedef, as in the
1208      // following example, we'll need to synthesize (unnamed)
1209      // parameters for use in the declaration.
1210      //
1211      // @code
1212      // typedef void fn(int);
1213      // fn f;
1214      // @endcode
1215      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1216      if (!FT) {
1217        // This is a typedef of a function with no prototype, so we
1218        // don't need to do anything.
1219      } else if ((FT->getNumArgs() == 0) ||
1220          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1221           FT->getArgType(0)->isVoidType())) {
1222        // This is a zero-argument function. We don't need to do anything.
1223      } else {
1224        // Synthesize a parameter for each argument type.
1225        llvm::SmallVector<ParmVarDecl*, 16> Params;
1226        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1227             ArgType != FT->arg_type_end(); ++ArgType) {
1228          Params.push_back(ParmVarDecl::Create(Context, DC,
1229                                               SourceLocation(), 0,
1230                                               *ArgType, VarDecl::None,
1231                                               0, 0));
1232        }
1233
1234        NewFD->setParams(&Params[0], Params.size());
1235      }
1236    }
1237
1238    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1239      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1240    else if (isa<CXXDestructorDecl>(NewFD))
1241      cast<CXXRecordDecl>(NewFD->getParent())->setUserDeclaredDestructor(true);
1242    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1243      ActOnConversionDeclarator(Conversion);
1244
1245    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1246    if (NewFD->isOverloadedOperator() &&
1247        CheckOverloadedOperatorDeclaration(NewFD))
1248      NewFD->setInvalidDecl();
1249
1250    // Merge the decl with the existing one if appropriate. Since C functions
1251    // are in a flat namespace, make sure we consider decls in outer scopes.
1252    if (PrevDecl &&
1253        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1254      bool Redeclaration = false;
1255
1256      // If C++, determine whether NewFD is an overload of PrevDecl or
1257      // a declaration that requires merging. If it's an overload,
1258      // there's no more work to do here; we'll just add the new
1259      // function to the scope.
1260      OverloadedFunctionDecl::function_iterator MatchedDecl;
1261      if (!getLangOptions().CPlusPlus ||
1262          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1263        Decl *OldDecl = PrevDecl;
1264
1265        // If PrevDecl was an overloaded function, extract the
1266        // FunctionDecl that matched.
1267        if (isa<OverloadedFunctionDecl>(PrevDecl))
1268          OldDecl = *MatchedDecl;
1269
1270        // NewFD and PrevDecl represent declarations that need to be
1271        // merged.
1272        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1273
1274        if (NewFD == 0) return 0;
1275        if (Redeclaration) {
1276          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1277
1278          if (OldDecl == PrevDecl) {
1279            // Remove the name binding for the previous
1280            // declaration.
1281           if (S->isDeclScope(PrevDecl)) {
1282             IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1283             S->RemoveDecl(PrevDecl);
1284           }
1285
1286           // Introduce the new binding for this declaration.
1287           IdResolver.AddDecl(NewFD);
1288           if (getLangOptions().CPlusPlus && NewFD->getParent())
1289             NewFD->getParent()->insert(Context, NewFD);
1290
1291           // Add the redeclaration to the current scope, since we'll
1292           // be skipping PushOnScopeChains.
1293           S->AddDecl(NewFD);
1294          } else {
1295            // We need to update the OverloadedFunctionDecl with the
1296            // latest declaration of this function, so that name
1297            // lookup will always refer to the latest declaration of
1298            // this function.
1299            *MatchedDecl = NewFD;
1300         }
1301
1302          if (getLangOptions().CPlusPlus) {
1303            // Add this declaration to the current context.
1304            CurContext->addDecl(Context, NewFD, false);
1305
1306            // Check default arguments now that we have merged decls.
1307            CheckCXXDefaultArguments(NewFD);
1308
1309            // An out-of-line member function declaration must also be a
1310            // definition (C++ [dcl.meaning]p1).
1311            if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1312                !InvalidDecl) {
1313              Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1314                << D.getCXXScopeSpec().getRange();
1315              NewFD->setInvalidDecl();
1316            }
1317          }
1318
1319         return NewFD;
1320        }
1321      }
1322
1323      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1324        // The user tried to provide an out-of-line definition for a
1325        // member function, but there was no such member function
1326        // declared (C++ [class.mfct]p2). For example:
1327        //
1328        // class X {
1329        //   void f() const;
1330        // };
1331        //
1332        // void X::f() { } // ill-formed
1333        //
1334        // Complain about this problem, and attempt to suggest close
1335        // matches (e.g., those that differ only in cv-qualifiers and
1336        // whether the parameter types are references).
1337        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1338          << cast<CXXRecordDecl>(DC)->getDeclName()
1339          << D.getCXXScopeSpec().getRange();
1340        InvalidDecl = true;
1341
1342        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1343        if (!PrevDecl) {
1344          // Nothing to suggest.
1345        } else if (OverloadedFunctionDecl *Ovl
1346                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1347          for (OverloadedFunctionDecl::function_iterator
1348                 Func = Ovl->function_begin(),
1349                 FuncEnd = Ovl->function_end();
1350               Func != FuncEnd; ++Func) {
1351            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1352              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1353
1354          }
1355        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1356          // Suggest this no matter how mismatched it is; it's the only
1357          // thing we have.
1358          unsigned diag;
1359          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1360            diag = diag::note_member_def_close_match;
1361          else if (Method->getBody())
1362            diag = diag::note_previous_definition;
1363          else
1364            diag = diag::note_previous_declaration;
1365          Diag(Method->getLocation(), diag);
1366        }
1367
1368        PrevDecl = 0;
1369      }
1370    }
1371    New = NewFD;
1372
1373    if (getLangOptions().CPlusPlus) {
1374      // In C++, check default arguments now that we have merged decls.
1375      CheckCXXDefaultArguments(NewFD);
1376
1377      // An out-of-line member function declaration must also be a
1378      // definition (C++ [dcl.meaning]p1).
1379      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet()) {
1380        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1381          << D.getCXXScopeSpec().getRange();
1382        InvalidDecl = true;
1383      }
1384    }
1385  } else {
1386    // Check that there are no default arguments (C++ only).
1387    if (getLangOptions().CPlusPlus)
1388      CheckExtraCXXDefaultArguments(D);
1389
1390    if (R.getTypePtr()->isObjCInterfaceType()) {
1391      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1392        << D.getIdentifier();
1393      InvalidDecl = true;
1394    }
1395
1396    VarDecl *NewVD;
1397    VarDecl::StorageClass SC;
1398    switch (D.getDeclSpec().getStorageClassSpec()) {
1399    default: assert(0 && "Unknown storage class!");
1400    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1401    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1402    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1403    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1404    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1405    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1406    case DeclSpec::SCS_mutable:
1407      // mutable can only appear on non-static class members, so it's always
1408      // an error here
1409      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1410      InvalidDecl = true;
1411      SC = VarDecl::None;
1412      break;
1413    }
1414
1415    IdentifierInfo *II = Name.getAsIdentifierInfo();
1416    if (!II) {
1417      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1418       << Name.getAsString();
1419      return 0;
1420    }
1421
1422    if (DC->isCXXRecord()) {
1423      // This is a static data member for a C++ class.
1424      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1425                                      D.getIdentifierLoc(), II,
1426                                      R, LastDeclarator);
1427    } else {
1428      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1429      if (S->getFnParent() == 0) {
1430        // C99 6.9p2: The storage-class specifiers auto and register shall not
1431        // appear in the declaration specifiers in an external declaration.
1432        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1433          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1434          InvalidDecl = true;
1435        }
1436      }
1437      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1438                              II, R, SC, LastDeclarator,
1439                              // FIXME: Move to DeclGroup...
1440                              D.getDeclSpec().getSourceRange().getBegin());
1441      NewVD->setThreadSpecified(ThreadSpecified);
1442    }
1443    // Handle attributes prior to checking for duplicates in MergeVarDecl
1444    ProcessDeclAttributes(NewVD, D);
1445
1446    // Handle GNU asm-label extension (encoded as an attribute).
1447    if (Expr *E = (Expr*) D.getAsmLabel()) {
1448      // The parser guarantees this is a string.
1449      StringLiteral *SE = cast<StringLiteral>(E);
1450      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1451                                                  SE->getByteLength())));
1452    }
1453
1454    // Emit an error if an address space was applied to decl with local storage.
1455    // This includes arrays of objects with address space qualifiers, but not
1456    // automatic variables that point to other address spaces.
1457    // ISO/IEC TR 18037 S5.1.2
1458    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1459      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1460      InvalidDecl = true;
1461    }
1462    // Merge the decl with the existing one if appropriate. If the decl is
1463    // in an outer scope, it isn't the same thing.
1464    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1465      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1466        // The user tried to define a non-static data member
1467        // out-of-line (C++ [dcl.meaning]p1).
1468        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1469          << D.getCXXScopeSpec().getRange();
1470        NewVD->Destroy(Context);
1471        return 0;
1472      }
1473
1474      NewVD = MergeVarDecl(NewVD, PrevDecl);
1475      if (NewVD == 0) return 0;
1476
1477      if (D.getCXXScopeSpec().isSet()) {
1478        // No previous declaration in the qualifying scope.
1479        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1480          << Name << D.getCXXScopeSpec().getRange();
1481        InvalidDecl = true;
1482      }
1483    }
1484    New = NewVD;
1485  }
1486
1487  // Set the lexical context. If the declarator has a C++ scope specifier, the
1488  // lexical context will be different from the semantic context.
1489  New->setLexicalDeclContext(CurContext);
1490
1491  // If this has an identifier, add it to the scope stack.
1492  if (Name)
1493    PushOnScopeChains(New, S);
1494  // If any semantic error occurred, mark the decl as invalid.
1495  if (D.getInvalidType() || InvalidDecl)
1496    New->setInvalidDecl();
1497
1498  return New;
1499}
1500
1501void Sema::InitializerElementNotConstant(const Expr *Init) {
1502  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1503    << Init->getSourceRange();
1504}
1505
1506bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1507  switch (Init->getStmtClass()) {
1508  default:
1509    InitializerElementNotConstant(Init);
1510    return true;
1511  case Expr::ParenExprClass: {
1512    const ParenExpr* PE = cast<ParenExpr>(Init);
1513    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1514  }
1515  case Expr::CompoundLiteralExprClass:
1516    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1517  case Expr::DeclRefExprClass: {
1518    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1519    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1520      if (VD->hasGlobalStorage())
1521        return false;
1522      InitializerElementNotConstant(Init);
1523      return true;
1524    }
1525    if (isa<FunctionDecl>(D))
1526      return false;
1527    InitializerElementNotConstant(Init);
1528    return true;
1529  }
1530  case Expr::MemberExprClass: {
1531    const MemberExpr *M = cast<MemberExpr>(Init);
1532    if (M->isArrow())
1533      return CheckAddressConstantExpression(M->getBase());
1534    return CheckAddressConstantExpressionLValue(M->getBase());
1535  }
1536  case Expr::ArraySubscriptExprClass: {
1537    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1538    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1539    return CheckAddressConstantExpression(ASE->getBase()) ||
1540           CheckArithmeticConstantExpression(ASE->getIdx());
1541  }
1542  case Expr::StringLiteralClass:
1543  case Expr::PredefinedExprClass:
1544    return false;
1545  case Expr::UnaryOperatorClass: {
1546    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1547
1548    // C99 6.6p9
1549    if (Exp->getOpcode() == UnaryOperator::Deref)
1550      return CheckAddressConstantExpression(Exp->getSubExpr());
1551
1552    InitializerElementNotConstant(Init);
1553    return true;
1554  }
1555  }
1556}
1557
1558bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1559  switch (Init->getStmtClass()) {
1560  default:
1561    InitializerElementNotConstant(Init);
1562    return true;
1563  case Expr::ParenExprClass:
1564    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1565  case Expr::StringLiteralClass:
1566  case Expr::ObjCStringLiteralClass:
1567    return false;
1568  case Expr::CallExprClass:
1569  case Expr::CXXOperatorCallExprClass:
1570    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1571    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1572           Builtin::BI__builtin___CFStringMakeConstantString)
1573      return false;
1574
1575    InitializerElementNotConstant(Init);
1576    return true;
1577
1578  case Expr::UnaryOperatorClass: {
1579    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1580
1581    // C99 6.6p9
1582    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1583      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1584
1585    if (Exp->getOpcode() == UnaryOperator::Extension)
1586      return CheckAddressConstantExpression(Exp->getSubExpr());
1587
1588    InitializerElementNotConstant(Init);
1589    return true;
1590  }
1591  case Expr::BinaryOperatorClass: {
1592    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1593    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1594
1595    Expr *PExp = Exp->getLHS();
1596    Expr *IExp = Exp->getRHS();
1597    if (IExp->getType()->isPointerType())
1598      std::swap(PExp, IExp);
1599
1600    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1601    return CheckAddressConstantExpression(PExp) ||
1602           CheckArithmeticConstantExpression(IExp);
1603  }
1604  case Expr::ImplicitCastExprClass:
1605  case Expr::CStyleCastExprClass: {
1606    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1607    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1608      // Check for implicit promotion
1609      if (SubExpr->getType()->isFunctionType() ||
1610          SubExpr->getType()->isArrayType())
1611        return CheckAddressConstantExpressionLValue(SubExpr);
1612    }
1613
1614    // Check for pointer->pointer cast
1615    if (SubExpr->getType()->isPointerType())
1616      return CheckAddressConstantExpression(SubExpr);
1617
1618    if (SubExpr->getType()->isIntegralType()) {
1619      // Check for the special-case of a pointer->int->pointer cast;
1620      // this isn't standard, but some code requires it. See
1621      // PR2720 for an example.
1622      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1623        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1624          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1625          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1626          if (IntWidth >= PointerWidth) {
1627            return CheckAddressConstantExpression(SubCast->getSubExpr());
1628          }
1629        }
1630      }
1631    }
1632    if (SubExpr->getType()->isArithmeticType()) {
1633      return CheckArithmeticConstantExpression(SubExpr);
1634    }
1635
1636    InitializerElementNotConstant(Init);
1637    return true;
1638  }
1639  case Expr::ConditionalOperatorClass: {
1640    // FIXME: Should we pedwarn here?
1641    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1642    if (!Exp->getCond()->getType()->isArithmeticType()) {
1643      InitializerElementNotConstant(Init);
1644      return true;
1645    }
1646    if (CheckArithmeticConstantExpression(Exp->getCond()))
1647      return true;
1648    if (Exp->getLHS() &&
1649        CheckAddressConstantExpression(Exp->getLHS()))
1650      return true;
1651    return CheckAddressConstantExpression(Exp->getRHS());
1652  }
1653  case Expr::AddrLabelExprClass:
1654    return false;
1655  }
1656}
1657
1658static const Expr* FindExpressionBaseAddress(const Expr* E);
1659
1660static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1661  switch (E->getStmtClass()) {
1662  default:
1663    return E;
1664  case Expr::ParenExprClass: {
1665    const ParenExpr* PE = cast<ParenExpr>(E);
1666    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1667  }
1668  case Expr::MemberExprClass: {
1669    const MemberExpr *M = cast<MemberExpr>(E);
1670    if (M->isArrow())
1671      return FindExpressionBaseAddress(M->getBase());
1672    return FindExpressionBaseAddressLValue(M->getBase());
1673  }
1674  case Expr::ArraySubscriptExprClass: {
1675    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1676    return FindExpressionBaseAddress(ASE->getBase());
1677  }
1678  case Expr::UnaryOperatorClass: {
1679    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1680
1681    if (Exp->getOpcode() == UnaryOperator::Deref)
1682      return FindExpressionBaseAddress(Exp->getSubExpr());
1683
1684    return E;
1685  }
1686  }
1687}
1688
1689static const Expr* FindExpressionBaseAddress(const Expr* E) {
1690  switch (E->getStmtClass()) {
1691  default:
1692    return E;
1693  case Expr::ParenExprClass: {
1694    const ParenExpr* PE = cast<ParenExpr>(E);
1695    return FindExpressionBaseAddress(PE->getSubExpr());
1696  }
1697  case Expr::UnaryOperatorClass: {
1698    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1699
1700    // C99 6.6p9
1701    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1702      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1703
1704    if (Exp->getOpcode() == UnaryOperator::Extension)
1705      return FindExpressionBaseAddress(Exp->getSubExpr());
1706
1707    return E;
1708  }
1709  case Expr::BinaryOperatorClass: {
1710    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1711
1712    Expr *PExp = Exp->getLHS();
1713    Expr *IExp = Exp->getRHS();
1714    if (IExp->getType()->isPointerType())
1715      std::swap(PExp, IExp);
1716
1717    return FindExpressionBaseAddress(PExp);
1718  }
1719  case Expr::ImplicitCastExprClass: {
1720    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1721
1722    // Check for implicit promotion
1723    if (SubExpr->getType()->isFunctionType() ||
1724        SubExpr->getType()->isArrayType())
1725      return FindExpressionBaseAddressLValue(SubExpr);
1726
1727    // Check for pointer->pointer cast
1728    if (SubExpr->getType()->isPointerType())
1729      return FindExpressionBaseAddress(SubExpr);
1730
1731    // We assume that we have an arithmetic expression here;
1732    // if we don't, we'll figure it out later
1733    return 0;
1734  }
1735  case Expr::CStyleCastExprClass: {
1736    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1737
1738    // Check for pointer->pointer cast
1739    if (SubExpr->getType()->isPointerType())
1740      return FindExpressionBaseAddress(SubExpr);
1741
1742    // We assume that we have an arithmetic expression here;
1743    // if we don't, we'll figure it out later
1744    return 0;
1745  }
1746  }
1747}
1748
1749bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1750  switch (Init->getStmtClass()) {
1751  default:
1752    InitializerElementNotConstant(Init);
1753    return true;
1754  case Expr::ParenExprClass: {
1755    const ParenExpr* PE = cast<ParenExpr>(Init);
1756    return CheckArithmeticConstantExpression(PE->getSubExpr());
1757  }
1758  case Expr::FloatingLiteralClass:
1759  case Expr::IntegerLiteralClass:
1760  case Expr::CharacterLiteralClass:
1761  case Expr::ImaginaryLiteralClass:
1762  case Expr::TypesCompatibleExprClass:
1763  case Expr::CXXBoolLiteralExprClass:
1764    return false;
1765  case Expr::CallExprClass:
1766  case Expr::CXXOperatorCallExprClass: {
1767    const CallExpr *CE = cast<CallExpr>(Init);
1768
1769    // Allow any constant foldable calls to builtins.
1770    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1771      return false;
1772
1773    InitializerElementNotConstant(Init);
1774    return true;
1775  }
1776  case Expr::DeclRefExprClass: {
1777    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1778    if (isa<EnumConstantDecl>(D))
1779      return false;
1780    InitializerElementNotConstant(Init);
1781    return true;
1782  }
1783  case Expr::CompoundLiteralExprClass:
1784    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1785    // but vectors are allowed to be magic.
1786    if (Init->getType()->isVectorType())
1787      return false;
1788    InitializerElementNotConstant(Init);
1789    return true;
1790  case Expr::UnaryOperatorClass: {
1791    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1792
1793    switch (Exp->getOpcode()) {
1794    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1795    // See C99 6.6p3.
1796    default:
1797      InitializerElementNotConstant(Init);
1798      return true;
1799    case UnaryOperator::OffsetOf:
1800      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1801        return false;
1802      InitializerElementNotConstant(Init);
1803      return true;
1804    case UnaryOperator::Extension:
1805    case UnaryOperator::LNot:
1806    case UnaryOperator::Plus:
1807    case UnaryOperator::Minus:
1808    case UnaryOperator::Not:
1809      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1810    }
1811  }
1812  case Expr::SizeOfAlignOfExprClass: {
1813    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1814    // Special check for void types, which are allowed as an extension
1815    if (Exp->getTypeOfArgument()->isVoidType())
1816      return false;
1817    // alignof always evaluates to a constant.
1818    // FIXME: is sizeof(int[3.0]) a constant expression?
1819    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1820      InitializerElementNotConstant(Init);
1821      return true;
1822    }
1823    return false;
1824  }
1825  case Expr::BinaryOperatorClass: {
1826    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1827
1828    if (Exp->getLHS()->getType()->isArithmeticType() &&
1829        Exp->getRHS()->getType()->isArithmeticType()) {
1830      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1831             CheckArithmeticConstantExpression(Exp->getRHS());
1832    }
1833
1834    if (Exp->getLHS()->getType()->isPointerType() &&
1835        Exp->getRHS()->getType()->isPointerType()) {
1836      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1837      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1838
1839      // Only allow a null (constant integer) base; we could
1840      // allow some additional cases if necessary, but this
1841      // is sufficient to cover offsetof-like constructs.
1842      if (!LHSBase && !RHSBase) {
1843        return CheckAddressConstantExpression(Exp->getLHS()) ||
1844               CheckAddressConstantExpression(Exp->getRHS());
1845      }
1846    }
1847
1848    InitializerElementNotConstant(Init);
1849    return true;
1850  }
1851  case Expr::ImplicitCastExprClass:
1852  case Expr::CStyleCastExprClass: {
1853    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1854    if (SubExpr->getType()->isArithmeticType())
1855      return CheckArithmeticConstantExpression(SubExpr);
1856
1857    if (SubExpr->getType()->isPointerType()) {
1858      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1859      // If the pointer has a null base, this is an offsetof-like construct
1860      if (!Base)
1861        return CheckAddressConstantExpression(SubExpr);
1862    }
1863
1864    InitializerElementNotConstant(Init);
1865    return true;
1866  }
1867  case Expr::ConditionalOperatorClass: {
1868    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1869
1870    // If GNU extensions are disabled, we require all operands to be arithmetic
1871    // constant expressions.
1872    if (getLangOptions().NoExtensions) {
1873      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1874          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1875             CheckArithmeticConstantExpression(Exp->getRHS());
1876    }
1877
1878    // Otherwise, we have to emulate some of the behavior of fold here.
1879    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1880    // because it can constant fold things away.  To retain compatibility with
1881    // GCC code, we see if we can fold the condition to a constant (which we
1882    // should always be able to do in theory).  If so, we only require the
1883    // specified arm of the conditional to be a constant.  This is a horrible
1884    // hack, but is require by real world code that uses __builtin_constant_p.
1885    APValue Val;
1886    if (!Exp->getCond()->Evaluate(Val, Context)) {
1887      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1888      // won't be able to either.  Use it to emit the diagnostic though.
1889      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1890      assert(Res && "Evaluate couldn't evaluate this constant?");
1891      return Res;
1892    }
1893
1894    // Verify that the side following the condition is also a constant.
1895    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1896    if (Val.getInt() == 0)
1897      std::swap(TrueSide, FalseSide);
1898
1899    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1900      return true;
1901
1902    // Okay, the evaluated side evaluates to a constant, so we accept this.
1903    // Check to see if the other side is obviously not a constant.  If so,
1904    // emit a warning that this is a GNU extension.
1905    if (FalseSide && !FalseSide->isEvaluatable(Context))
1906      Diag(Init->getExprLoc(),
1907           diag::ext_typecheck_expression_not_constant_but_accepted)
1908        << FalseSide->getSourceRange();
1909    return false;
1910  }
1911  }
1912}
1913
1914bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1915  Expr::EvalResult Result;
1916
1917  Init = Init->IgnoreParens();
1918
1919  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1920    return false;
1921
1922  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1923  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1924    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1925
1926  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1927    return CheckForConstantInitializer(e->getInitializer(), DclT);
1928
1929  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1930    unsigned numInits = Exp->getNumInits();
1931    for (unsigned i = 0; i < numInits; i++) {
1932      // FIXME: Need to get the type of the declaration for C++,
1933      // because it could be a reference?
1934      if (CheckForConstantInitializer(Exp->getInit(i),
1935                                      Exp->getInit(i)->getType()))
1936        return true;
1937    }
1938    return false;
1939  }
1940
1941  // FIXME: We can probably remove some of this code below, now that
1942  // Expr::Evaluate is doing the heavy lifting for scalars.
1943
1944  if (Init->isNullPointerConstant(Context))
1945    return false;
1946  if (Init->getType()->isArithmeticType()) {
1947    QualType InitTy = Context.getCanonicalType(Init->getType())
1948                             .getUnqualifiedType();
1949    if (InitTy == Context.BoolTy) {
1950      // Special handling for pointers implicitly cast to bool;
1951      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1952      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1953        Expr* SubE = ICE->getSubExpr();
1954        if (SubE->getType()->isPointerType() ||
1955            SubE->getType()->isArrayType() ||
1956            SubE->getType()->isFunctionType()) {
1957          return CheckAddressConstantExpression(Init);
1958        }
1959      }
1960    } else if (InitTy->isIntegralType()) {
1961      Expr* SubE = 0;
1962      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1963        SubE = CE->getSubExpr();
1964      // Special check for pointer cast to int; we allow as an extension
1965      // an address constant cast to an integer if the integer
1966      // is of an appropriate width (this sort of code is apparently used
1967      // in some places).
1968      // FIXME: Add pedwarn?
1969      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1970      if (SubE && (SubE->getType()->isPointerType() ||
1971                   SubE->getType()->isArrayType() ||
1972                   SubE->getType()->isFunctionType())) {
1973        unsigned IntWidth = Context.getTypeSize(Init->getType());
1974        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1975        if (IntWidth >= PointerWidth)
1976          return CheckAddressConstantExpression(Init);
1977      }
1978    }
1979
1980    return CheckArithmeticConstantExpression(Init);
1981  }
1982
1983  if (Init->getType()->isPointerType())
1984    return CheckAddressConstantExpression(Init);
1985
1986  // An array type at the top level that isn't an init-list must
1987  // be a string literal
1988  if (Init->getType()->isArrayType())
1989    return false;
1990
1991  if (Init->getType()->isFunctionType())
1992    return false;
1993
1994  // Allow block exprs at top level.
1995  if (Init->getType()->isBlockPointerType())
1996    return false;
1997
1998  InitializerElementNotConstant(Init);
1999  return true;
2000}
2001
2002void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2003  Decl *RealDecl = static_cast<Decl *>(dcl);
2004  Expr *Init = static_cast<Expr *>(init.release());
2005  assert(Init && "missing initializer");
2006
2007  // If there is no declaration, there was an error parsing it.  Just ignore
2008  // the initializer.
2009  if (RealDecl == 0) {
2010    delete Init;
2011    return;
2012  }
2013
2014  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2015  if (!VDecl) {
2016    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2017         diag::err_illegal_initializer);
2018    RealDecl->setInvalidDecl();
2019    return;
2020  }
2021  // Get the decls type and save a reference for later, since
2022  // CheckInitializerTypes may change it.
2023  QualType DclT = VDecl->getType(), SavT = DclT;
2024  if (VDecl->isBlockVarDecl()) {
2025    VarDecl::StorageClass SC = VDecl->getStorageClass();
2026    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2027      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2028      VDecl->setInvalidDecl();
2029    } else if (!VDecl->isInvalidDecl()) {
2030      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2031                                VDecl->getDeclName()))
2032        VDecl->setInvalidDecl();
2033
2034      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2035      if (!getLangOptions().CPlusPlus) {
2036        if (SC == VarDecl::Static) // C99 6.7.8p4.
2037          CheckForConstantInitializer(Init, DclT);
2038      }
2039    }
2040  } else if (VDecl->isFileVarDecl()) {
2041    if (VDecl->getStorageClass() == VarDecl::Extern)
2042      Diag(VDecl->getLocation(), diag::warn_extern_init);
2043    if (!VDecl->isInvalidDecl())
2044      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2045                                VDecl->getDeclName()))
2046        VDecl->setInvalidDecl();
2047
2048    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2049    if (!getLangOptions().CPlusPlus) {
2050      // C99 6.7.8p4. All file scoped initializers need to be constant.
2051      CheckForConstantInitializer(Init, DclT);
2052    }
2053  }
2054  // If the type changed, it means we had an incomplete type that was
2055  // completed by the initializer. For example:
2056  //   int ary[] = { 1, 3, 5 };
2057  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2058  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2059    VDecl->setType(DclT);
2060    Init->setType(DclT);
2061  }
2062
2063  // Attach the initializer to the decl.
2064  VDecl->setInit(Init);
2065  return;
2066}
2067
2068void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2069  Decl *RealDecl = static_cast<Decl *>(dcl);
2070
2071  // If there is no declaration, there was an error parsing it. Just ignore it.
2072  if (RealDecl == 0)
2073    return;
2074
2075  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2076    QualType Type = Var->getType();
2077    // C++ [dcl.init.ref]p3:
2078    //   The initializer can be omitted for a reference only in a
2079    //   parameter declaration (8.3.5), in the declaration of a
2080    //   function return type, in the declaration of a class member
2081    //   within its class declaration (9.2), and where the extern
2082    //   specifier is explicitly used.
2083    if (Type->isReferenceType() &&
2084        Var->getStorageClass() != VarDecl::Extern &&
2085        Var->getStorageClass() != VarDecl::PrivateExtern) {
2086      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2087        << Var->getDeclName()
2088        << SourceRange(Var->getLocation(), Var->getLocation());
2089      Var->setInvalidDecl();
2090      return;
2091    }
2092
2093    // C++ [dcl.init]p9:
2094    //
2095    //   If no initializer is specified for an object, and the object
2096    //   is of (possibly cv-qualified) non-POD class type (or array
2097    //   thereof), the object shall be default-initialized; if the
2098    //   object is of const-qualified type, the underlying class type
2099    //   shall have a user-declared default constructor.
2100    if (getLangOptions().CPlusPlus) {
2101      QualType InitType = Type;
2102      if (const ArrayType *Array = Context.getAsArrayType(Type))
2103        InitType = Array->getElementType();
2104      if (Var->getStorageClass() != VarDecl::Extern &&
2105          Var->getStorageClass() != VarDecl::PrivateExtern &&
2106          InitType->isRecordType()) {
2107        const CXXConstructorDecl *Constructor
2108          = PerformInitializationByConstructor(InitType, 0, 0,
2109                                               Var->getLocation(),
2110                                               SourceRange(Var->getLocation(),
2111                                                           Var->getLocation()),
2112                                               Var->getDeclName(),
2113                                               IK_Default);
2114        if (!Constructor)
2115          Var->setInvalidDecl();
2116      }
2117    }
2118
2119#if 0
2120    // FIXME: Temporarily disabled because we are not properly parsing
2121    // linkage specifications on declarations, e.g.,
2122    //
2123    //   extern "C" const CGPoint CGPointerZero;
2124    //
2125    // C++ [dcl.init]p9:
2126    //
2127    //     If no initializer is specified for an object, and the
2128    //     object is of (possibly cv-qualified) non-POD class type (or
2129    //     array thereof), the object shall be default-initialized; if
2130    //     the object is of const-qualified type, the underlying class
2131    //     type shall have a user-declared default
2132    //     constructor. Otherwise, if no initializer is specified for
2133    //     an object, the object and its subobjects, if any, have an
2134    //     indeterminate initial value; if the object or any of its
2135    //     subobjects are of const-qualified type, the program is
2136    //     ill-formed.
2137    //
2138    // This isn't technically an error in C, so we don't diagnose it.
2139    //
2140    // FIXME: Actually perform the POD/user-defined default
2141    // constructor check.
2142    if (getLangOptions().CPlusPlus &&
2143        Context.getCanonicalType(Type).isConstQualified() &&
2144        Var->getStorageClass() != VarDecl::Extern)
2145      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2146        << Var->getName()
2147        << SourceRange(Var->getLocation(), Var->getLocation());
2148#endif
2149  }
2150}
2151
2152/// The declarators are chained together backwards, reverse the list.
2153Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2154  // Often we have single declarators, handle them quickly.
2155  Decl *GroupDecl = static_cast<Decl*>(group);
2156  if (GroupDecl == 0)
2157    return 0;
2158
2159  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2160  ScopedDecl *NewGroup = 0;
2161  if (Group->getNextDeclarator() == 0)
2162    NewGroup = Group;
2163  else { // reverse the list.
2164    while (Group) {
2165      ScopedDecl *Next = Group->getNextDeclarator();
2166      Group->setNextDeclarator(NewGroup);
2167      NewGroup = Group;
2168      Group = Next;
2169    }
2170  }
2171  // Perform semantic analysis that depends on having fully processed both
2172  // the declarator and initializer.
2173  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2174    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2175    if (!IDecl)
2176      continue;
2177    QualType T = IDecl->getType();
2178
2179    if (T->isVariableArrayType()) {
2180      const VariableArrayType *VAT =
2181        cast<VariableArrayType>(T.getUnqualifiedType());
2182
2183      // FIXME: This won't give the correct result for
2184      // int a[10][n];
2185      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2186      if (IDecl->isFileVarDecl()) {
2187        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2188          SizeRange;
2189
2190        IDecl->setInvalidDecl();
2191      } else {
2192        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2193        // static storage duration, it shall not have a variable length array.
2194        if (IDecl->getStorageClass() == VarDecl::Static) {
2195          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2196            << SizeRange;
2197          IDecl->setInvalidDecl();
2198        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2199          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2200            << SizeRange;
2201          IDecl->setInvalidDecl();
2202        }
2203      }
2204    } else if (T->isVariablyModifiedType()) {
2205      if (IDecl->isFileVarDecl()) {
2206        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2207        IDecl->setInvalidDecl();
2208      } else {
2209        if (IDecl->getStorageClass() == VarDecl::Extern) {
2210          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2211          IDecl->setInvalidDecl();
2212        }
2213      }
2214    }
2215
2216    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2217    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2218    if (IDecl->isBlockVarDecl() &&
2219        IDecl->getStorageClass() != VarDecl::Extern) {
2220      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2221        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2222        IDecl->setInvalidDecl();
2223      }
2224    }
2225    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2226    // object that has file scope without an initializer, and without a
2227    // storage-class specifier or with the storage-class specifier "static",
2228    // constitutes a tentative definition. Note: A tentative definition with
2229    // external linkage is valid (C99 6.2.2p5).
2230    if (isTentativeDefinition(IDecl)) {
2231      if (T->isIncompleteArrayType()) {
2232        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2233        // array to be completed. Don't issue a diagnostic.
2234      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2235        // C99 6.9.2p3: If the declaration of an identifier for an object is
2236        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2237        // declared type shall not be an incomplete type.
2238        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2239        IDecl->setInvalidDecl();
2240      }
2241    }
2242    if (IDecl->isFileVarDecl())
2243      CheckForFileScopedRedefinitions(S, IDecl);
2244  }
2245  return NewGroup;
2246}
2247
2248/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2249/// to introduce parameters into function prototype scope.
2250Sema::DeclTy *
2251Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2252  const DeclSpec &DS = D.getDeclSpec();
2253
2254  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2255  VarDecl::StorageClass StorageClass = VarDecl::None;
2256  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2257    StorageClass = VarDecl::Register;
2258  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2259    Diag(DS.getStorageClassSpecLoc(),
2260         diag::err_invalid_storage_class_in_func_decl);
2261    D.getMutableDeclSpec().ClearStorageClassSpecs();
2262  }
2263  if (DS.isThreadSpecified()) {
2264    Diag(DS.getThreadSpecLoc(),
2265         diag::err_invalid_storage_class_in_func_decl);
2266    D.getMutableDeclSpec().ClearStorageClassSpecs();
2267  }
2268
2269  // Check that there are no default arguments inside the type of this
2270  // parameter (C++ only).
2271  if (getLangOptions().CPlusPlus)
2272    CheckExtraCXXDefaultArguments(D);
2273
2274  // In this context, we *do not* check D.getInvalidType(). If the declarator
2275  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2276  // though it will not reflect the user specified type.
2277  QualType parmDeclType = GetTypeForDeclarator(D, S);
2278
2279  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2280
2281  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2282  // Can this happen for params?  We already checked that they don't conflict
2283  // among each other.  Here they can only shadow globals, which is ok.
2284  IdentifierInfo *II = D.getIdentifier();
2285  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2286    if (PrevDecl->isTemplateParameter()) {
2287      // Maybe we will complain about the shadowed template parameter.
2288      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2289      // Just pretend that we didn't see the previous declaration.
2290      PrevDecl = 0;
2291    } else if (S->isDeclScope(PrevDecl)) {
2292      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2293
2294      // Recover by removing the name
2295      II = 0;
2296      D.SetIdentifier(0, D.getIdentifierLoc());
2297    }
2298  }
2299
2300  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2301  // Doing the promotion here has a win and a loss. The win is the type for
2302  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2303  // code generator). The loss is the orginal type isn't preserved. For example:
2304  //
2305  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2306  //    int blockvardecl[5];
2307  //    sizeof(parmvardecl);  // size == 4
2308  //    sizeof(blockvardecl); // size == 20
2309  // }
2310  //
2311  // For expressions, all implicit conversions are captured using the
2312  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2313  //
2314  // FIXME: If a source translation tool needs to see the original type, then
2315  // we need to consider storing both types (in ParmVarDecl)...
2316  //
2317  if (parmDeclType->isArrayType()) {
2318    // int x[restrict 4] ->  int *restrict
2319    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2320  } else if (parmDeclType->isFunctionType())
2321    parmDeclType = Context.getPointerType(parmDeclType);
2322
2323  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2324                                         D.getIdentifierLoc(), II,
2325                                         parmDeclType, StorageClass,
2326                                         0, 0);
2327
2328  if (D.getInvalidType())
2329    New->setInvalidDecl();
2330
2331  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2332  if (D.getCXXScopeSpec().isSet()) {
2333    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2334      << D.getCXXScopeSpec().getRange();
2335    New->setInvalidDecl();
2336  }
2337
2338  // Add the parameter declaration into this scope.
2339  S->AddDecl(New);
2340  if (II)
2341    IdResolver.AddDecl(New);
2342
2343  ProcessDeclAttributes(New, D);
2344  return New;
2345
2346}
2347
2348Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2349  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2350  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2351         "Not a function declarator!");
2352  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2353
2354  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2355  // for a K&R function.
2356  if (!FTI.hasPrototype) {
2357    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2358      if (FTI.ArgInfo[i].Param == 0) {
2359        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2360          << FTI.ArgInfo[i].Ident;
2361        // Implicitly declare the argument as type 'int' for lack of a better
2362        // type.
2363        DeclSpec DS;
2364        const char* PrevSpec; // unused
2365        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2366                           PrevSpec);
2367        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2368        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2369        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2370      }
2371    }
2372  } else {
2373    // FIXME: Diagnose arguments without names in C.
2374  }
2375
2376  Scope *ParentScope = FnBodyScope->getParent();
2377
2378  return ActOnStartOfFunctionDef(FnBodyScope,
2379                                 ActOnDeclarator(ParentScope, D, 0,
2380                                                 /*IsFunctionDefinition=*/true));
2381}
2382
2383Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2384  Decl *decl = static_cast<Decl*>(D);
2385  FunctionDecl *FD = cast<FunctionDecl>(decl);
2386
2387  // See if this is a redefinition.
2388  const FunctionDecl *Definition;
2389  if (FD->getBody(Definition)) {
2390    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2391    Diag(Definition->getLocation(), diag::note_previous_definition);
2392  }
2393
2394  PushDeclContext(FnBodyScope, FD);
2395
2396  // Check the validity of our function parameters
2397  CheckParmsForFunctionDef(FD);
2398
2399  // Introduce our parameters into the function scope
2400  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2401    ParmVarDecl *Param = FD->getParamDecl(p);
2402    // If this has an identifier, add it to the scope stack.
2403    if (Param->getIdentifier())
2404      PushOnScopeChains(Param, FnBodyScope);
2405  }
2406
2407  return FD;
2408}
2409
2410Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2411  Decl *dcl = static_cast<Decl *>(D);
2412  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2413  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2414    FD->setBody(Body);
2415    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2416  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2417    MD->setBody((Stmt*)Body);
2418  } else
2419    return 0;
2420  PopDeclContext();
2421  // Verify and clean out per-function state.
2422
2423  // Check goto/label use.
2424  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2425       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2426    // Verify that we have no forward references left.  If so, there was a goto
2427    // or address of a label taken, but no definition of it.  Label fwd
2428    // definitions are indicated with a null substmt.
2429    if (I->second->getSubStmt() == 0) {
2430      LabelStmt *L = I->second;
2431      // Emit error.
2432      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2433
2434      // At this point, we have gotos that use the bogus label.  Stitch it into
2435      // the function body so that they aren't leaked and that the AST is well
2436      // formed.
2437      if (Body) {
2438        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2439        cast<CompoundStmt>(Body)->push_back(L);
2440      } else {
2441        // The whole function wasn't parsed correctly, just delete this.
2442        delete L;
2443      }
2444    }
2445  }
2446  LabelMap.clear();
2447
2448  return D;
2449}
2450
2451/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2452/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2453ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2454                                           IdentifierInfo &II, Scope *S) {
2455  // Extension in C99.  Legal in C90, but warn about it.
2456  if (getLangOptions().C99)
2457    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2458  else
2459    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2460
2461  // FIXME: handle stuff like:
2462  // void foo() { extern float X(); }
2463  // void bar() { X(); }  <-- implicit decl for X in another scope.
2464
2465  // Set a Declarator for the implicit definition: int foo();
2466  const char *Dummy;
2467  DeclSpec DS;
2468  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2469  Error = Error; // Silence warning.
2470  assert(!Error && "Error setting up implicit decl!");
2471  Declarator D(DS, Declarator::BlockContext);
2472  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2473  D.SetIdentifier(&II, Loc);
2474
2475  // Insert this function into translation-unit scope.
2476
2477  DeclContext *PrevDC = CurContext;
2478  CurContext = Context.getTranslationUnitDecl();
2479
2480  FunctionDecl *FD =
2481    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2482  FD->setImplicit();
2483
2484  CurContext = PrevDC;
2485
2486  return FD;
2487}
2488
2489
2490TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2491                                    ScopedDecl *LastDeclarator) {
2492  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2493  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2494
2495  // Scope manipulation handled by caller.
2496  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2497                                           D.getIdentifierLoc(),
2498                                           D.getIdentifier(),
2499                                           T, LastDeclarator);
2500  if (D.getInvalidType())
2501    NewTD->setInvalidDecl();
2502  return NewTD;
2503}
2504
2505/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2506/// former case, Name will be non-null.  In the later case, Name will be null.
2507/// TagType indicates what kind of tag this is. TK indicates whether this is a
2508/// reference/declaration/definition of a tag.
2509Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2510                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2511                             IdentifierInfo *Name, SourceLocation NameLoc,
2512                             AttributeList *Attr) {
2513  // If this is not a definition, it must have a name.
2514  assert((Name != 0 || TK == TK_Definition) &&
2515         "Nameless record must be a definition!");
2516
2517  TagDecl::TagKind Kind;
2518  switch (TagType) {
2519  default: assert(0 && "Unknown tag type!");
2520  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2521  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2522  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2523  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2524  }
2525
2526  DeclContext *DC = CurContext;
2527  ScopedDecl *PrevDecl = 0;
2528
2529  if (Name && SS.isNotEmpty()) {
2530    // We have a nested-name tag ('struct foo::bar').
2531
2532    // Check for invalid 'foo::'.
2533    if (SS.isInvalid()) {
2534      Name = 0;
2535      goto CreateNewDecl;
2536    }
2537
2538    DC = static_cast<DeclContext*>(SS.getScopeRep());
2539    // Look-up name inside 'foo::'.
2540    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2541
2542    // A tag 'foo::bar' must already exist.
2543    if (PrevDecl == 0) {
2544      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2545      Name = 0;
2546      goto CreateNewDecl;
2547    }
2548  } else {
2549    // If this is a named struct, check to see if there was a previous forward
2550    // declaration or definition.
2551    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2552    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2553  }
2554
2555  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2556    // Maybe we will complain about the shadowed template parameter.
2557    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2558    // Just pretend that we didn't see the previous declaration.
2559    PrevDecl = 0;
2560  }
2561
2562  if (PrevDecl) {
2563    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2564            "unexpected Decl type");
2565    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2566      // If this is a use of a previous tag, or if the tag is already declared
2567      // in the same scope (so that the definition/declaration completes or
2568      // rementions the tag), reuse the decl.
2569      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2570        // Make sure that this wasn't declared as an enum and now used as a
2571        // struct or something similar.
2572        if (PrevTagDecl->getTagKind() != Kind) {
2573          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2574          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2575          // Recover by making this an anonymous redefinition.
2576          Name = 0;
2577          PrevDecl = 0;
2578        } else {
2579          // If this is a use, just return the declaration we found.
2580
2581          // FIXME: In the future, return a variant or some other clue
2582          // for the consumer of this Decl to know it doesn't own it.
2583          // For our current ASTs this shouldn't be a problem, but will
2584          // need to be changed with DeclGroups.
2585          if (TK == TK_Reference)
2586            return PrevDecl;
2587
2588          // Diagnose attempts to redefine a tag.
2589          if (TK == TK_Definition) {
2590            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2591              Diag(NameLoc, diag::err_redefinition) << Name;
2592              Diag(Def->getLocation(), diag::note_previous_definition);
2593              // If this is a redefinition, recover by making this struct be
2594              // anonymous, which will make any later references get the previous
2595              // definition.
2596              Name = 0;
2597              PrevDecl = 0;
2598            }
2599            // Okay, this is definition of a previously declared or referenced
2600            // tag PrevDecl. We're going to create a new Decl for it.
2601          }
2602        }
2603        // If we get here we have (another) forward declaration or we
2604        // have a definition.  Just create a new decl.
2605      } else {
2606        // If we get here, this is a definition of a new tag type in a nested
2607        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2608        // new decl/type.  We set PrevDecl to NULL so that the entities
2609        // have distinct types.
2610        PrevDecl = 0;
2611      }
2612      // If we get here, we're going to create a new Decl. If PrevDecl
2613      // is non-NULL, it's a definition of the tag declared by
2614      // PrevDecl. If it's NULL, we have a new definition.
2615    } else {
2616      // PrevDecl is a namespace.
2617      if (isDeclInScope(PrevDecl, DC, S)) {
2618        // The tag name clashes with a namespace name, issue an error and
2619        // recover by making this tag be anonymous.
2620        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2621        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2622        Name = 0;
2623        PrevDecl = 0;
2624      } else {
2625        // The existing declaration isn't relevant to us; we're in a
2626        // new scope, so clear out the previous declaration.
2627        PrevDecl = 0;
2628      }
2629    }
2630  }
2631
2632CreateNewDecl:
2633
2634  // If there is an identifier, use the location of the identifier as the
2635  // location of the decl, otherwise use the location of the struct/union
2636  // keyword.
2637  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2638
2639  // Otherwise, create a new declaration. If there is a previous
2640  // declaration of the same entity, the two will be linked via
2641  // PrevDecl.
2642  TagDecl *New;
2643  if (Kind == TagDecl::TK_enum) {
2644    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2645    // enum X { A, B, C } D;    D should chain to X.
2646    New = EnumDecl::Create(Context, DC, Loc, Name,
2647                           cast_or_null<EnumDecl>(PrevDecl));
2648    // If this is an undefined enum, warn.
2649    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2650  } else {
2651    // struct/union/class
2652
2653    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2654    // struct X { int A; } D;    D should chain to X.
2655    if (getLangOptions().CPlusPlus)
2656      // FIXME: Look for a way to use RecordDecl for simple structs.
2657      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2658                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2659    else
2660      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2661                               cast_or_null<RecordDecl>(PrevDecl));
2662  }
2663
2664  if (Kind != TagDecl::TK_enum) {
2665    // Handle #pragma pack: if the #pragma pack stack has non-default
2666    // alignment, make up a packed attribute for this decl. These
2667    // attributes are checked when the ASTContext lays out the
2668    // structure.
2669    //
2670    // It is important for implementing the correct semantics that this
2671    // happen here (in act on tag decl). The #pragma pack stack is
2672    // maintained as a result of parser callbacks which can occur at
2673    // many points during the parsing of a struct declaration (because
2674    // the #pragma tokens are effectively skipped over during the
2675    // parsing of the struct).
2676    if (unsigned Alignment = PackContext.getAlignment())
2677      New->addAttr(new PackedAttr(Alignment * 8));
2678  }
2679
2680  if (Attr)
2681    ProcessDeclAttributeList(New, Attr);
2682
2683  // Set the lexical context. If the tag has a C++ scope specifier, the
2684  // lexical context will be different from the semantic context.
2685  New->setLexicalDeclContext(CurContext);
2686
2687  // If this has an identifier, add it to the scope stack.
2688  if (Name) {
2689    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2690    // we find one that is.
2691    while ((S->getFlags() & Scope::DeclScope) == 0)
2692      S = S->getParent();
2693
2694    // Add it to the decl chain.
2695    PushOnScopeChains(New, S);
2696  }
2697
2698  return New;
2699}
2700
2701
2702/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2703/// types into constant array types in certain situations which would otherwise
2704/// be errors (for GCC compatibility).
2705static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2706                                                    ASTContext &Context) {
2707  // This method tries to turn a variable array into a constant
2708  // array even when the size isn't an ICE.  This is necessary
2709  // for compatibility with code that depends on gcc's buggy
2710  // constant expression folding, like struct {char x[(int)(char*)2];}
2711  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2712  if (!VLATy) return QualType();
2713
2714  APValue Result;
2715  if (!VLATy->getSizeExpr() ||
2716      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2717    return QualType();
2718
2719  assert(Result.isInt() && "Size expressions must be integers!");
2720  llvm::APSInt &Res = Result.getInt();
2721  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2722    return Context.getConstantArrayType(VLATy->getElementType(),
2723                                        Res, ArrayType::Normal, 0);
2724  return QualType();
2725}
2726
2727bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2728                          QualType FieldTy, const Expr *BitWidth) {
2729  // FIXME: 6.7.2.1p4 - verify the field type.
2730
2731  llvm::APSInt Value;
2732  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2733    return true;
2734
2735  // Zero-width bitfield is ok for anonymous field.
2736  if (Value == 0 && FieldName)
2737    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2738
2739  if (Value.isNegative())
2740    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2741
2742  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2743  // FIXME: We won't need the 0 size once we check that the field type is valid.
2744  if (TypeSize && Value.getZExtValue() > TypeSize)
2745    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2746       << FieldName << (unsigned)TypeSize;
2747
2748  return false;
2749}
2750
2751/// ActOnField - Each field of a struct/union/class is passed into this in order
2752/// to create a FieldDecl object for it.
2753Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2754                               SourceLocation DeclStart,
2755                               Declarator &D, ExprTy *BitfieldWidth) {
2756  IdentifierInfo *II = D.getIdentifier();
2757  Expr *BitWidth = (Expr*)BitfieldWidth;
2758  SourceLocation Loc = DeclStart;
2759  RecordDecl *Record = (RecordDecl *)TagD;
2760  if (II) Loc = D.getIdentifierLoc();
2761
2762  // FIXME: Unnamed fields can be handled in various different ways, for
2763  // example, unnamed unions inject all members into the struct namespace!
2764
2765  QualType T = GetTypeForDeclarator(D, S);
2766  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2767  bool InvalidDecl = false;
2768
2769  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2770  // than a variably modified type.
2771  if (T->isVariablyModifiedType()) {
2772    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2773    if (!FixedTy.isNull()) {
2774      Diag(Loc, diag::warn_illegal_constant_array_size);
2775      T = FixedTy;
2776    } else {
2777      Diag(Loc, diag::err_typecheck_field_variable_size);
2778      T = Context.IntTy;
2779      InvalidDecl = true;
2780    }
2781  }
2782
2783  if (BitWidth) {
2784    if (VerifyBitField(Loc, II, T, BitWidth))
2785      InvalidDecl = true;
2786  } else {
2787    // Not a bitfield.
2788
2789    // validate II.
2790
2791  }
2792
2793  // FIXME: Chain fielddecls together.
2794  FieldDecl *NewFD;
2795
2796  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2797  // other way to determine the current RecordDecl.
2798  NewFD = FieldDecl::Create(Context, Record,
2799                            Loc, II, T, BitWidth,
2800                            D.getDeclSpec().getStorageClassSpec() ==
2801                              DeclSpec::SCS_mutable,
2802                            /*PrevDecl=*/0);
2803
2804  if (getLangOptions().CPlusPlus)
2805    CheckExtraCXXDefaultArguments(D);
2806
2807  ProcessDeclAttributes(NewFD, D);
2808
2809  if (D.getInvalidType() || InvalidDecl)
2810    NewFD->setInvalidDecl();
2811
2812  if (II && getLangOptions().CPlusPlus)
2813    PushOnScopeChains(NewFD, S);
2814  else
2815    Record->addDecl(Context, NewFD);
2816
2817  return NewFD;
2818}
2819
2820/// TranslateIvarVisibility - Translate visibility from a token ID to an
2821///  AST enum value.
2822static ObjCIvarDecl::AccessControl
2823TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2824  switch (ivarVisibility) {
2825  default: assert(0 && "Unknown visitibility kind");
2826  case tok::objc_private: return ObjCIvarDecl::Private;
2827  case tok::objc_public: return ObjCIvarDecl::Public;
2828  case tok::objc_protected: return ObjCIvarDecl::Protected;
2829  case tok::objc_package: return ObjCIvarDecl::Package;
2830  }
2831}
2832
2833/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2834/// in order to create an IvarDecl object for it.
2835Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2836                              SourceLocation DeclStart,
2837                              Declarator &D, ExprTy *BitfieldWidth,
2838                              tok::ObjCKeywordKind Visibility) {
2839  IdentifierInfo *II = D.getIdentifier();
2840  Expr *BitWidth = (Expr*)BitfieldWidth;
2841  SourceLocation Loc = DeclStart;
2842  if (II) Loc = D.getIdentifierLoc();
2843
2844  // FIXME: Unnamed fields can be handled in various different ways, for
2845  // example, unnamed unions inject all members into the struct namespace!
2846
2847  QualType T = GetTypeForDeclarator(D, S);
2848  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2849  bool InvalidDecl = false;
2850
2851  if (BitWidth) {
2852    // TODO: Validate.
2853    //printf("WARNING: BITFIELDS IGNORED!\n");
2854
2855    // 6.7.2.1p3
2856    // 6.7.2.1p4
2857
2858  } else {
2859    // Not a bitfield.
2860
2861    // validate II.
2862
2863  }
2864
2865  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2866  // than a variably modified type.
2867  if (T->isVariablyModifiedType()) {
2868    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2869    InvalidDecl = true;
2870  }
2871
2872  // Get the visibility (access control) for this ivar.
2873  ObjCIvarDecl::AccessControl ac =
2874    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2875                                        : ObjCIvarDecl::None;
2876
2877  // Construct the decl.
2878  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2879                                             (Expr *)BitfieldWidth);
2880
2881  // Process attributes attached to the ivar.
2882  ProcessDeclAttributes(NewID, D);
2883
2884  if (D.getInvalidType() || InvalidDecl)
2885    NewID->setInvalidDecl();
2886
2887  return NewID;
2888}
2889
2890void Sema::ActOnFields(Scope* S,
2891                       SourceLocation RecLoc, DeclTy *RecDecl,
2892                       DeclTy **Fields, unsigned NumFields,
2893                       SourceLocation LBrac, SourceLocation RBrac,
2894                       AttributeList *Attr) {
2895  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2896  assert(EnclosingDecl && "missing record or interface decl");
2897  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2898
2899  if (Record)
2900    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2901      // Diagnose code like:
2902      //     struct S { struct S {} X; };
2903      // We discover this when we complete the outer S.  Reject and ignore the
2904      // outer S.
2905      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2906        << DefRecord->getDeclName();
2907      Diag(RecLoc, diag::note_previous_definition);
2908      Record->setInvalidDecl();
2909      return;
2910    }
2911
2912  // Verify that all the fields are okay.
2913  unsigned NumNamedMembers = 0;
2914  llvm::SmallVector<FieldDecl*, 32> RecFields;
2915  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2916
2917  for (unsigned i = 0; i != NumFields; ++i) {
2918
2919    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2920    assert(FD && "missing field decl");
2921
2922    // Remember all fields.
2923    RecFields.push_back(FD);
2924
2925    // Get the type for the field.
2926    Type *FDTy = FD->getType().getTypePtr();
2927
2928    // C99 6.7.2.1p2 - A field may not be a function type.
2929    if (FDTy->isFunctionType()) {
2930      Diag(FD->getLocation(), diag::err_field_declared_as_function)
2931        << FD->getDeclName();
2932      FD->setInvalidDecl();
2933      EnclosingDecl->setInvalidDecl();
2934      continue;
2935    }
2936    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2937    if (FDTy->isIncompleteType()) {
2938      if (!Record) {  // Incomplete ivar type is always an error.
2939        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2940        FD->setInvalidDecl();
2941        EnclosingDecl->setInvalidDecl();
2942        continue;
2943      }
2944      if (i != NumFields-1 ||                   // ... that the last member ...
2945          !Record->isStruct() ||  // ... of a structure ...
2946          !FDTy->isArrayType()) {         //... may have incomplete array type.
2947        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2948        FD->setInvalidDecl();
2949        EnclosingDecl->setInvalidDecl();
2950        continue;
2951      }
2952      if (NumNamedMembers < 1) {  //... must have more than named member ...
2953        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
2954          << FD->getDeclName();
2955        FD->setInvalidDecl();
2956        EnclosingDecl->setInvalidDecl();
2957        continue;
2958      }
2959      // Okay, we have a legal flexible array member at the end of the struct.
2960      if (Record)
2961        Record->setHasFlexibleArrayMember(true);
2962    }
2963    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2964    /// field of another structure or the element of an array.
2965    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2966      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2967        // If this is a member of a union, then entire union becomes "flexible".
2968        if (Record && Record->isUnion()) {
2969          Record->setHasFlexibleArrayMember(true);
2970        } else {
2971          // If this is a struct/class and this is not the last element, reject
2972          // it.  Note that GCC supports variable sized arrays in the middle of
2973          // structures.
2974          if (i != NumFields-1) {
2975            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
2976              << FD->getDeclName();
2977            FD->setInvalidDecl();
2978            EnclosingDecl->setInvalidDecl();
2979            continue;
2980          }
2981          // We support flexible arrays at the end of structs in other structs
2982          // as an extension.
2983          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
2984            << FD->getDeclName();
2985          if (Record)
2986            Record->setHasFlexibleArrayMember(true);
2987        }
2988      }
2989    }
2990    /// A field cannot be an Objective-c object
2991    if (FDTy->isObjCInterfaceType()) {
2992      Diag(FD->getLocation(), diag::err_statically_allocated_object)
2993        << FD->getDeclName();
2994      FD->setInvalidDecl();
2995      EnclosingDecl->setInvalidDecl();
2996      continue;
2997    }
2998    // Keep track of the number of named members.
2999    if (IdentifierInfo *II = FD->getIdentifier()) {
3000      // Detect duplicate member names.
3001      if (!FieldIDs.insert(II)) {
3002        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3003        // Find the previous decl.
3004        SourceLocation PrevLoc;
3005        for (unsigned i = 0; ; ++i) {
3006          assert(i != RecFields.size() && "Didn't find previous def!");
3007          if (RecFields[i]->getIdentifier() == II) {
3008            PrevLoc = RecFields[i]->getLocation();
3009            break;
3010          }
3011        }
3012        Diag(PrevLoc, diag::note_previous_definition);
3013        FD->setInvalidDecl();
3014        EnclosingDecl->setInvalidDecl();
3015        continue;
3016      }
3017      ++NumNamedMembers;
3018    }
3019  }
3020
3021  // Okay, we successfully defined 'Record'.
3022  if (Record) {
3023    Record->completeDefinition(Context);
3024    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
3025    // Sema::ActOnFinishCXXClassDef.
3026    if (!isa<CXXRecordDecl>(Record))
3027      Consumer.HandleTagDeclDefinition(Record);
3028  } else {
3029    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3030    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3031      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3032      // Must enforce the rule that ivars in the base classes may not be
3033      // duplicates.
3034      if (ID->getSuperClass()) {
3035        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3036             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3037          ObjCIvarDecl* Ivar = (*IVI);
3038          IdentifierInfo *II = Ivar->getIdentifier();
3039          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3040          if (prevIvar) {
3041            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3042            Diag(prevIvar->getLocation(), diag::note_previous_definition);
3043          }
3044        }
3045      }
3046    }
3047    else if (ObjCImplementationDecl *IMPDecl =
3048               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3049      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3050      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3051      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3052    }
3053  }
3054
3055  if (Attr)
3056    ProcessDeclAttributeList(Record, Attr);
3057}
3058
3059Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3060                                      DeclTy *lastEnumConst,
3061                                      SourceLocation IdLoc, IdentifierInfo *Id,
3062                                      SourceLocation EqualLoc, ExprTy *val) {
3063  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3064  EnumConstantDecl *LastEnumConst =
3065    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3066  Expr *Val = static_cast<Expr*>(val);
3067
3068  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3069  // we find one that is.
3070  while ((S->getFlags() & Scope::DeclScope) == 0)
3071    S = S->getParent();
3072
3073  // Verify that there isn't already something declared with this name in this
3074  // scope.
3075  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3076  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3077    // Maybe we will complain about the shadowed template parameter.
3078    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3079    // Just pretend that we didn't see the previous declaration.
3080    PrevDecl = 0;
3081  }
3082
3083  if (PrevDecl) {
3084    // When in C++, we may get a TagDecl with the same name; in this case the
3085    // enum constant will 'hide' the tag.
3086    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3087           "Received TagDecl when not in C++!");
3088    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3089      if (isa<EnumConstantDecl>(PrevDecl))
3090        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3091      else
3092        Diag(IdLoc, diag::err_redefinition) << Id;
3093      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3094      delete Val;
3095      return 0;
3096    }
3097  }
3098
3099  llvm::APSInt EnumVal(32);
3100  QualType EltTy;
3101  if (Val) {
3102    // Make sure to promote the operand type to int.
3103    UsualUnaryConversions(Val);
3104
3105    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3106    SourceLocation ExpLoc;
3107    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3108      delete Val;
3109      Val = 0;  // Just forget about it.
3110    } else {
3111      EltTy = Val->getType();
3112    }
3113  }
3114
3115  if (!Val) {
3116    if (LastEnumConst) {
3117      // Assign the last value + 1.
3118      EnumVal = LastEnumConst->getInitVal();
3119      ++EnumVal;
3120
3121      // Check for overflow on increment.
3122      if (EnumVal < LastEnumConst->getInitVal())
3123        Diag(IdLoc, diag::warn_enum_value_overflow);
3124
3125      EltTy = LastEnumConst->getType();
3126    } else {
3127      // First value, set to zero.
3128      EltTy = Context.IntTy;
3129      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3130    }
3131  }
3132
3133  EnumConstantDecl *New =
3134    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3135                             Val, EnumVal,
3136                             LastEnumConst);
3137
3138  // Register this decl in the current scope stack.
3139  PushOnScopeChains(New, S);
3140
3141  // Add this enumerator into the enum itself.
3142  // FIXME: This means that the enumerator is stored in two
3143  // DeclContexts. This is not a long-term solution.
3144  New->setLexicalDeclContext(TheEnumDecl);
3145  TheEnumDecl->addDecl(Context, New, true);
3146  return New;
3147}
3148
3149// FIXME: For consistency with ActOnFields(), we should have the parser
3150// pass in the source location for the left/right braces.
3151void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3152                         DeclTy **Elements, unsigned NumElements) {
3153  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3154
3155  if (Enum) {
3156    if (EnumDecl *Def = cast_or_null<EnumDecl>(Enum->getDefinition(Context))) {
3157      // Diagnose code like:
3158      //   enum e0 {
3159      //     E0 = sizeof(enum e0 { E1 })
3160      //   };
3161      Diag(Def->getLocation(), diag::err_nested_redefinition)
3162        << Enum->getDeclName();
3163      Diag(Enum->getLocation(), diag::note_previous_definition);
3164      Enum->setInvalidDecl();
3165      return;
3166    }
3167  }
3168  // TODO: If the result value doesn't fit in an int, it must be a long or long
3169  // long value.  ISO C does not support this, but GCC does as an extension,
3170  // emit a warning.
3171  unsigned IntWidth = Context.Target.getIntWidth();
3172
3173  // Verify that all the values are okay, compute the size of the values, and
3174  // reverse the list.
3175  unsigned NumNegativeBits = 0;
3176  unsigned NumPositiveBits = 0;
3177
3178  // Keep track of whether all elements have type int.
3179  bool AllElementsInt = true;
3180
3181  QualType EnumType = Context.getTypeDeclType(Enum);
3182  EnumConstantDecl *EltList = 0;
3183  for (unsigned i = 0; i != NumElements; ++i) {
3184    EnumConstantDecl *ECD =
3185      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3186    if (!ECD) continue;  // Already issued a diagnostic.
3187
3188    // If the enum value doesn't fit in an int, emit an extension warning.
3189    const llvm::APSInt &InitVal = ECD->getInitVal();
3190    assert(InitVal.getBitWidth() >= IntWidth &&
3191           "Should have promoted value to int");
3192    if (InitVal.getBitWidth() > IntWidth) {
3193      llvm::APSInt V(InitVal);
3194      V.trunc(IntWidth);
3195      V.extend(InitVal.getBitWidth());
3196      if (V != InitVal)
3197        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3198          << InitVal.toString(10);
3199    }
3200
3201    // Keep track of the size of positive and negative values.
3202    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3203      NumPositiveBits = std::max(NumPositiveBits,
3204                                 (unsigned)InitVal.getActiveBits());
3205    else
3206      NumNegativeBits = std::max(NumNegativeBits,
3207                                 (unsigned)InitVal.getMinSignedBits());
3208
3209    // Keep track of whether every enum element has type int (very commmon).
3210    if (AllElementsInt)
3211      AllElementsInt = ECD->getType() == Context.IntTy;
3212
3213    ECD->setNextDeclarator(EltList);
3214    EltList = ECD;
3215  }
3216
3217  // Figure out the type that should be used for this enum.
3218  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3219  QualType BestType;
3220  unsigned BestWidth;
3221
3222  if (NumNegativeBits) {
3223    // If there is a negative value, figure out the smallest integer type (of
3224    // int/long/longlong) that fits.
3225    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3226      BestType = Context.IntTy;
3227      BestWidth = IntWidth;
3228    } else {
3229      BestWidth = Context.Target.getLongWidth();
3230
3231      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3232        BestType = Context.LongTy;
3233      else {
3234        BestWidth = Context.Target.getLongLongWidth();
3235
3236        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3237          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3238        BestType = Context.LongLongTy;
3239      }
3240    }
3241  } else {
3242    // If there is no negative value, figure out which of uint, ulong, ulonglong
3243    // fits.
3244    if (NumPositiveBits <= IntWidth) {
3245      BestType = Context.UnsignedIntTy;
3246      BestWidth = IntWidth;
3247    } else if (NumPositiveBits <=
3248               (BestWidth = Context.Target.getLongWidth())) {
3249      BestType = Context.UnsignedLongTy;
3250    } else {
3251      BestWidth = Context.Target.getLongLongWidth();
3252      assert(NumPositiveBits <= BestWidth &&
3253             "How could an initializer get larger than ULL?");
3254      BestType = Context.UnsignedLongLongTy;
3255    }
3256  }
3257
3258  // Loop over all of the enumerator constants, changing their types to match
3259  // the type of the enum if needed.
3260  for (unsigned i = 0; i != NumElements; ++i) {
3261    EnumConstantDecl *ECD =
3262      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3263    if (!ECD) continue;  // Already issued a diagnostic.
3264
3265    // Standard C says the enumerators have int type, but we allow, as an
3266    // extension, the enumerators to be larger than int size.  If each
3267    // enumerator value fits in an int, type it as an int, otherwise type it the
3268    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3269    // that X has type 'int', not 'unsigned'.
3270    if (ECD->getType() == Context.IntTy) {
3271      // Make sure the init value is signed.
3272      llvm::APSInt IV = ECD->getInitVal();
3273      IV.setIsSigned(true);
3274      ECD->setInitVal(IV);
3275
3276      if (getLangOptions().CPlusPlus)
3277        // C++ [dcl.enum]p4: Following the closing brace of an
3278        // enum-specifier, each enumerator has the type of its
3279        // enumeration.
3280        ECD->setType(EnumType);
3281      continue;  // Already int type.
3282    }
3283
3284    // Determine whether the value fits into an int.
3285    llvm::APSInt InitVal = ECD->getInitVal();
3286    bool FitsInInt;
3287    if (InitVal.isUnsigned() || !InitVal.isNegative())
3288      FitsInInt = InitVal.getActiveBits() < IntWidth;
3289    else
3290      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3291
3292    // If it fits into an integer type, force it.  Otherwise force it to match
3293    // the enum decl type.
3294    QualType NewTy;
3295    unsigned NewWidth;
3296    bool NewSign;
3297    if (FitsInInt) {
3298      NewTy = Context.IntTy;
3299      NewWidth = IntWidth;
3300      NewSign = true;
3301    } else if (ECD->getType() == BestType) {
3302      // Already the right type!
3303      if (getLangOptions().CPlusPlus)
3304        // C++ [dcl.enum]p4: Following the closing brace of an
3305        // enum-specifier, each enumerator has the type of its
3306        // enumeration.
3307        ECD->setType(EnumType);
3308      continue;
3309    } else {
3310      NewTy = BestType;
3311      NewWidth = BestWidth;
3312      NewSign = BestType->isSignedIntegerType();
3313    }
3314
3315    // Adjust the APSInt value.
3316    InitVal.extOrTrunc(NewWidth);
3317    InitVal.setIsSigned(NewSign);
3318    ECD->setInitVal(InitVal);
3319
3320    // Adjust the Expr initializer and type.
3321    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3322                                          /*isLvalue=*/false));
3323    if (getLangOptions().CPlusPlus)
3324      // C++ [dcl.enum]p4: Following the closing brace of an
3325      // enum-specifier, each enumerator has the type of its
3326      // enumeration.
3327      ECD->setType(EnumType);
3328    else
3329      ECD->setType(NewTy);
3330  }
3331
3332  Enum->completeDefinition(Context, BestType);
3333  Consumer.HandleTagDeclDefinition(Enum);
3334}
3335
3336Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3337                                          ExprArg expr) {
3338  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3339
3340  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3341}
3342
3343
3344void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3345                           ExprTy *alignment, SourceLocation PragmaLoc,
3346                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3347  Expr *Alignment = static_cast<Expr *>(alignment);
3348
3349  // If specified then alignment must be a "small" power of two.
3350  unsigned AlignmentVal = 0;
3351  if (Alignment) {
3352    llvm::APSInt Val;
3353    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3354        !Val.isPowerOf2() ||
3355        Val.getZExtValue() > 16) {
3356      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3357      delete Alignment;
3358      return; // Ignore
3359    }
3360
3361    AlignmentVal = (unsigned) Val.getZExtValue();
3362  }
3363
3364  switch (Kind) {
3365  case Action::PPK_Default: // pack([n])
3366    PackContext.setAlignment(AlignmentVal);
3367    break;
3368
3369  case Action::PPK_Show: // pack(show)
3370    // Show the current alignment, making sure to show the right value
3371    // for the default.
3372    AlignmentVal = PackContext.getAlignment();
3373    // FIXME: This should come from the target.
3374    if (AlignmentVal == 0)
3375      AlignmentVal = 8;
3376    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3377    break;
3378
3379  case Action::PPK_Push: // pack(push [, id] [, [n])
3380    PackContext.push(Name);
3381    // Set the new alignment if specified.
3382    if (Alignment)
3383      PackContext.setAlignment(AlignmentVal);
3384    break;
3385
3386  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3387    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3388    // "#pragma pack(pop, identifier, n) is undefined"
3389    if (Alignment && Name)
3390      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3391
3392    // Do the pop.
3393    if (!PackContext.pop(Name)) {
3394      // If a name was specified then failure indicates the name
3395      // wasn't found. Otherwise failure indicates the stack was
3396      // empty.
3397      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3398        << (Name ? "no record matching name" : "stack empty");
3399
3400      // FIXME: Warn about popping named records as MSVC does.
3401    } else {
3402      // Pop succeeded, set the new alignment if specified.
3403      if (Alignment)
3404        PackContext.setAlignment(AlignmentVal);
3405    }
3406    break;
3407
3408  default:
3409    assert(0 && "Invalid #pragma pack kind.");
3410  }
3411}
3412
3413bool PragmaPackStack::pop(IdentifierInfo *Name) {
3414  if (Stack.empty())
3415    return false;
3416
3417  // If name is empty just pop top.
3418  if (!Name) {
3419    Alignment = Stack.back().first;
3420    Stack.pop_back();
3421    return true;
3422  }
3423
3424  // Otherwise, find the named record.
3425  for (unsigned i = Stack.size(); i != 0; ) {
3426    --i;
3427    if (Stack[i].second == Name) {
3428      // Found it, pop up to and including this record.
3429      Alignment = Stack[i].first;
3430      Stack.erase(Stack.begin() + i, Stack.end());
3431      return true;
3432    }
3433  }
3434
3435  return false;
3436}
3437