SemaDecl.cpp revision 37c765a5ccf69fb9a467c8499675ae568811afe3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  Result.clear(Sema::LookupTagName);
522  SemaRef.LookupParsedName(Result, S, &SS);
523  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
558    if (SemaRef.LookupParsedName(R, S, &SS)) {
559      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
560           I != IEnd; ++I)
561        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
562          << Name << TagName;
563    }
564    return true;
565  }
566
567  Result.clear(Sema::LookupOrdinaryName);
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692
693        // Update the name, so that the caller has the new name.
694        Name = Corrected.getCorrectionAsIdentifierInfo();
695
696        // Typo correction corrected to a keyword.
697        if (Corrected.isKeyword())
698          return Corrected.getCorrectionAsIdentifierInfo();
699
700        // Also update the LookupResult...
701        // FIXME: This should probably go away at some point
702        Result.clear();
703        Result.setLookupName(Corrected.getCorrection());
704        if (FirstDecl) {
705          Result.addDecl(FirstDecl);
706          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707            << CorrectedQuotedStr;
708        }
709
710        // If we found an Objective-C instance variable, let
711        // LookupInObjCMethod build the appropriate expression to
712        // reference the ivar.
713        // FIXME: This is a gross hack.
714        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715          Result.clear();
716          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717          return E;
718        }
719
720        goto Corrected;
721      }
722    }
723
724    // We failed to correct; just fall through and let the parser deal with it.
725    Result.suppressDiagnostics();
726    return NameClassification::Unknown();
727
728  case LookupResult::NotFoundInCurrentInstantiation: {
729    // We performed name lookup into the current instantiation, and there were
730    // dependent bases, so we treat this result the same way as any other
731    // dependent nested-name-specifier.
732
733    // C++ [temp.res]p2:
734    //   A name used in a template declaration or definition and that is
735    //   dependent on a template-parameter is assumed not to name a type
736    //   unless the applicable name lookup finds a type name or the name is
737    //   qualified by the keyword typename.
738    //
739    // FIXME: If the next token is '<', we might want to ask the parser to
740    // perform some heroics to see if we actually have a
741    // template-argument-list, which would indicate a missing 'template'
742    // keyword here.
743    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744                                      NameInfo, IsAddressOfOperand,
745                                      /*TemplateArgs=*/0);
746  }
747
748  case LookupResult::Found:
749  case LookupResult::FoundOverloaded:
750  case LookupResult::FoundUnresolvedValue:
751    break;
752
753  case LookupResult::Ambiguous:
754    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755        hasAnyAcceptableTemplateNames(Result)) {
756      // C++ [temp.local]p3:
757      //   A lookup that finds an injected-class-name (10.2) can result in an
758      //   ambiguity in certain cases (for example, if it is found in more than
759      //   one base class). If all of the injected-class-names that are found
760      //   refer to specializations of the same class template, and if the name
761      //   is followed by a template-argument-list, the reference refers to the
762      //   class template itself and not a specialization thereof, and is not
763      //   ambiguous.
764      //
765      // This filtering can make an ambiguous result into an unambiguous one,
766      // so try again after filtering out template names.
767      FilterAcceptableTemplateNames(Result);
768      if (!Result.isAmbiguous()) {
769        IsFilteredTemplateName = true;
770        break;
771      }
772    }
773
774    // Diagnose the ambiguity and return an error.
775    return NameClassification::Error();
776  }
777
778  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780    // C++ [temp.names]p3:
781    //   After name lookup (3.4) finds that a name is a template-name or that
782    //   an operator-function-id or a literal- operator-id refers to a set of
783    //   overloaded functions any member of which is a function template if
784    //   this is followed by a <, the < is always taken as the delimiter of a
785    //   template-argument-list and never as the less-than operator.
786    if (!IsFilteredTemplateName)
787      FilterAcceptableTemplateNames(Result);
788
789    if (!Result.empty()) {
790      bool IsFunctionTemplate;
791      TemplateName Template;
792      if (Result.end() - Result.begin() > 1) {
793        IsFunctionTemplate = true;
794        Template = Context.getOverloadedTemplateName(Result.begin(),
795                                                     Result.end());
796      } else {
797        TemplateDecl *TD
798          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800
801        if (SS.isSet() && !SS.isInvalid())
802          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803                                                    /*TemplateKeyword=*/false,
804                                                      TD);
805        else
806          Template = TemplateName(TD);
807      }
808
809      if (IsFunctionTemplate) {
810        // Function templates always go through overload resolution, at which
811        // point we'll perform the various checks (e.g., accessibility) we need
812        // to based on which function we selected.
813        Result.suppressDiagnostics();
814
815        return NameClassification::FunctionTemplate(Template);
816      }
817
818      return NameClassification::TypeTemplate(Template);
819    }
820  }
821
822  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824    DiagnoseUseOfDecl(Type, NameLoc);
825    QualType T = Context.getTypeDeclType(Type);
826    if (SS.isNotEmpty())
827      return buildNestedType(*this, SS, T, NameLoc);
828    return ParsedType::make(T);
829  }
830
831  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832  if (!Class) {
833    // FIXME: It's unfortunate that we don't have a Type node for handling this.
834    if (ObjCCompatibleAliasDecl *Alias
835                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836      Class = Alias->getClassInterface();
837  }
838
839  if (Class) {
840    DiagnoseUseOfDecl(Class, NameLoc);
841
842    if (NextToken.is(tok::period)) {
843      // Interface. <something> is parsed as a property reference expression.
844      // Just return "unknown" as a fall-through for now.
845      Result.suppressDiagnostics();
846      return NameClassification::Unknown();
847    }
848
849    QualType T = Context.getObjCInterfaceType(Class);
850    return ParsedType::make(T);
851  }
852
853  // We can have a type template here if we're classifying a template argument.
854  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855    return NameClassification::TypeTemplate(
856        TemplateName(cast<TemplateDecl>(FirstDecl)));
857
858  // Check for a tag type hidden by a non-type decl in a few cases where it
859  // seems likely a type is wanted instead of the non-type that was found.
860  if (!getLangOpts().ObjC1) {
861    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862    if ((NextToken.is(tok::identifier) ||
863         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865      FirstDecl = (*Result.begin())->getUnderlyingDecl();
866      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
867        DiagnoseUseOfDecl(Type, NameLoc);
868        QualType T = Context.getTypeDeclType(Type);
869        if (SS.isNotEmpty())
870          return buildNestedType(*this, SS, T, NameLoc);
871        return ParsedType::make(T);
872      }
873    }
874  }
875
876  if (FirstDecl->isCXXClassMember())
877    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
878
879  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
880  return BuildDeclarationNameExpr(SS, Result, ADL);
881}
882
883// Determines the context to return to after temporarily entering a
884// context.  This depends in an unnecessarily complicated way on the
885// exact ordering of callbacks from the parser.
886DeclContext *Sema::getContainingDC(DeclContext *DC) {
887
888  // Functions defined inline within classes aren't parsed until we've
889  // finished parsing the top-level class, so the top-level class is
890  // the context we'll need to return to.
891  if (isa<FunctionDecl>(DC)) {
892    DC = DC->getLexicalParent();
893
894    // A function not defined within a class will always return to its
895    // lexical context.
896    if (!isa<CXXRecordDecl>(DC))
897      return DC;
898
899    // A C++ inline method/friend is parsed *after* the topmost class
900    // it was declared in is fully parsed ("complete");  the topmost
901    // class is the context we need to return to.
902    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
903      DC = RD;
904
905    // Return the declaration context of the topmost class the inline method is
906    // declared in.
907    return DC;
908  }
909
910  return DC->getLexicalParent();
911}
912
913void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
914  assert(getContainingDC(DC) == CurContext &&
915      "The next DeclContext should be lexically contained in the current one.");
916  CurContext = DC;
917  S->setEntity(DC);
918}
919
920void Sema::PopDeclContext() {
921  assert(CurContext && "DeclContext imbalance!");
922
923  CurContext = getContainingDC(CurContext);
924  assert(CurContext && "Popped translation unit!");
925}
926
927/// EnterDeclaratorContext - Used when we must lookup names in the context
928/// of a declarator's nested name specifier.
929///
930void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
931  // C++0x [basic.lookup.unqual]p13:
932  //   A name used in the definition of a static data member of class
933  //   X (after the qualified-id of the static member) is looked up as
934  //   if the name was used in a member function of X.
935  // C++0x [basic.lookup.unqual]p14:
936  //   If a variable member of a namespace is defined outside of the
937  //   scope of its namespace then any name used in the definition of
938  //   the variable member (after the declarator-id) is looked up as
939  //   if the definition of the variable member occurred in its
940  //   namespace.
941  // Both of these imply that we should push a scope whose context
942  // is the semantic context of the declaration.  We can't use
943  // PushDeclContext here because that context is not necessarily
944  // lexically contained in the current context.  Fortunately,
945  // the containing scope should have the appropriate information.
946
947  assert(!S->getEntity() && "scope already has entity");
948
949#ifndef NDEBUG
950  Scope *Ancestor = S->getParent();
951  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
952  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
953#endif
954
955  CurContext = DC;
956  S->setEntity(DC);
957}
958
959void Sema::ExitDeclaratorContext(Scope *S) {
960  assert(S->getEntity() == CurContext && "Context imbalance!");
961
962  // Switch back to the lexical context.  The safety of this is
963  // enforced by an assert in EnterDeclaratorContext.
964  Scope *Ancestor = S->getParent();
965  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
966  CurContext = (DeclContext*) Ancestor->getEntity();
967
968  // We don't need to do anything with the scope, which is going to
969  // disappear.
970}
971
972
973void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
974  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
975  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
976    // We assume that the caller has already called
977    // ActOnReenterTemplateScope
978    FD = TFD->getTemplatedDecl();
979  }
980  if (!FD)
981    return;
982
983  // Same implementation as PushDeclContext, but enters the context
984  // from the lexical parent, rather than the top-level class.
985  assert(CurContext == FD->getLexicalParent() &&
986    "The next DeclContext should be lexically contained in the current one.");
987  CurContext = FD;
988  S->setEntity(CurContext);
989
990  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
991    ParmVarDecl *Param = FD->getParamDecl(P);
992    // If the parameter has an identifier, then add it to the scope
993    if (Param->getIdentifier()) {
994      S->AddDecl(Param);
995      IdResolver.AddDecl(Param);
996    }
997  }
998}
999
1000
1001void Sema::ActOnExitFunctionContext() {
1002  // Same implementation as PopDeclContext, but returns to the lexical parent,
1003  // rather than the top-level class.
1004  assert(CurContext && "DeclContext imbalance!");
1005  CurContext = CurContext->getLexicalParent();
1006  assert(CurContext && "Popped translation unit!");
1007}
1008
1009
1010/// \brief Determine whether we allow overloading of the function
1011/// PrevDecl with another declaration.
1012///
1013/// This routine determines whether overloading is possible, not
1014/// whether some new function is actually an overload. It will return
1015/// true in C++ (where we can always provide overloads) or, as an
1016/// extension, in C when the previous function is already an
1017/// overloaded function declaration or has the "overloadable"
1018/// attribute.
1019static bool AllowOverloadingOfFunction(LookupResult &Previous,
1020                                       ASTContext &Context) {
1021  if (Context.getLangOpts().CPlusPlus)
1022    return true;
1023
1024  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1025    return true;
1026
1027  return (Previous.getResultKind() == LookupResult::Found
1028          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1029}
1030
1031/// Add this decl to the scope shadowed decl chains.
1032void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1033  // Move up the scope chain until we find the nearest enclosing
1034  // non-transparent context. The declaration will be introduced into this
1035  // scope.
1036  while (S->getEntity() &&
1037         ((DeclContext *)S->getEntity())->isTransparentContext())
1038    S = S->getParent();
1039
1040  // Add scoped declarations into their context, so that they can be
1041  // found later. Declarations without a context won't be inserted
1042  // into any context.
1043  if (AddToContext)
1044    CurContext->addDecl(D);
1045
1046  // Out-of-line definitions shouldn't be pushed into scope in C++.
1047  // Out-of-line variable and function definitions shouldn't even in C.
1048  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1049      D->isOutOfLine() &&
1050      !D->getDeclContext()->getRedeclContext()->Equals(
1051        D->getLexicalDeclContext()->getRedeclContext()))
1052    return;
1053
1054  // Template instantiations should also not be pushed into scope.
1055  if (isa<FunctionDecl>(D) &&
1056      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1057    return;
1058
1059  // If this replaces anything in the current scope,
1060  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1061                               IEnd = IdResolver.end();
1062  for (; I != IEnd; ++I) {
1063    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1064      S->RemoveDecl(*I);
1065      IdResolver.RemoveDecl(*I);
1066
1067      // Should only need to replace one decl.
1068      break;
1069    }
1070  }
1071
1072  S->AddDecl(D);
1073
1074  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1075    // Implicitly-generated labels may end up getting generated in an order that
1076    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1077    // the label at the appropriate place in the identifier chain.
1078    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1079      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1080      if (IDC == CurContext) {
1081        if (!S->isDeclScope(*I))
1082          continue;
1083      } else if (IDC->Encloses(CurContext))
1084        break;
1085    }
1086
1087    IdResolver.InsertDeclAfter(I, D);
1088  } else {
1089    IdResolver.AddDecl(D);
1090  }
1091}
1092
1093void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1094  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1095    TUScope->AddDecl(D);
1096}
1097
1098bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1099                         bool ExplicitInstantiationOrSpecialization) {
1100  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1101                                  ExplicitInstantiationOrSpecialization);
1102}
1103
1104Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1105  DeclContext *TargetDC = DC->getPrimaryContext();
1106  do {
1107    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1108      if (ScopeDC->getPrimaryContext() == TargetDC)
1109        return S;
1110  } while ((S = S->getParent()));
1111
1112  return 0;
1113}
1114
1115static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1116                                            DeclContext*,
1117                                            ASTContext&);
1118
1119/// Filters out lookup results that don't fall within the given scope
1120/// as determined by isDeclInScope.
1121void Sema::FilterLookupForScope(LookupResult &R,
1122                                DeclContext *Ctx, Scope *S,
1123                                bool ConsiderLinkage,
1124                                bool ExplicitInstantiationOrSpecialization) {
1125  LookupResult::Filter F = R.makeFilter();
1126  while (F.hasNext()) {
1127    NamedDecl *D = F.next();
1128
1129    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1130      continue;
1131
1132    if (ConsiderLinkage &&
1133        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1134      continue;
1135
1136    F.erase();
1137  }
1138
1139  F.done();
1140}
1141
1142static bool isUsingDecl(NamedDecl *D) {
1143  return isa<UsingShadowDecl>(D) ||
1144         isa<UnresolvedUsingTypenameDecl>(D) ||
1145         isa<UnresolvedUsingValueDecl>(D);
1146}
1147
1148/// Removes using shadow declarations from the lookup results.
1149static void RemoveUsingDecls(LookupResult &R) {
1150  LookupResult::Filter F = R.makeFilter();
1151  while (F.hasNext())
1152    if (isUsingDecl(F.next()))
1153      F.erase();
1154
1155  F.done();
1156}
1157
1158/// \brief Check for this common pattern:
1159/// @code
1160/// class S {
1161///   S(const S&); // DO NOT IMPLEMENT
1162///   void operator=(const S&); // DO NOT IMPLEMENT
1163/// };
1164/// @endcode
1165static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1166  // FIXME: Should check for private access too but access is set after we get
1167  // the decl here.
1168  if (D->doesThisDeclarationHaveABody())
1169    return false;
1170
1171  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1172    return CD->isCopyConstructor();
1173  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1174    return Method->isCopyAssignmentOperator();
1175  return false;
1176}
1177
1178bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1179  assert(D);
1180
1181  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1182    return false;
1183
1184  // Ignore class templates.
1185  if (D->getDeclContext()->isDependentContext() ||
1186      D->getLexicalDeclContext()->isDependentContext())
1187    return false;
1188
1189  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1190    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1191      return false;
1192
1193    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1194      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1195        return false;
1196    } else {
1197      // 'static inline' functions are used in headers; don't warn.
1198      if (FD->getStorageClass() == SC_Static &&
1199          FD->isInlineSpecified())
1200        return false;
1201    }
1202
1203    if (FD->doesThisDeclarationHaveABody() &&
1204        Context.DeclMustBeEmitted(FD))
1205      return false;
1206  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1207    if (!VD->isFileVarDecl() ||
1208        VD->getType().isConstant(Context) ||
1209        Context.DeclMustBeEmitted(VD))
1210      return false;
1211
1212    if (VD->isStaticDataMember() &&
1213        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1214      return false;
1215
1216  } else {
1217    return false;
1218  }
1219
1220  // Only warn for unused decls internal to the translation unit.
1221  if (D->getLinkage() == ExternalLinkage)
1222    return false;
1223
1224  return true;
1225}
1226
1227void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1228  if (!D)
1229    return;
1230
1231  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1232    const FunctionDecl *First = FD->getFirstDeclaration();
1233    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1234      return; // First should already be in the vector.
1235  }
1236
1237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1238    const VarDecl *First = VD->getFirstDeclaration();
1239    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1240      return; // First should already be in the vector.
1241  }
1242
1243  if (ShouldWarnIfUnusedFileScopedDecl(D))
1244    UnusedFileScopedDecls.push_back(D);
1245}
1246
1247static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1248  if (D->isInvalidDecl())
1249    return false;
1250
1251  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1252    return false;
1253
1254  if (isa<LabelDecl>(D))
1255    return true;
1256
1257  // White-list anything that isn't a local variable.
1258  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1259      !D->getDeclContext()->isFunctionOrMethod())
1260    return false;
1261
1262  // Types of valid local variables should be complete, so this should succeed.
1263  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1264
1265    // White-list anything with an __attribute__((unused)) type.
1266    QualType Ty = VD->getType();
1267
1268    // Only look at the outermost level of typedef.
1269    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1270      if (TT->getDecl()->hasAttr<UnusedAttr>())
1271        return false;
1272    }
1273
1274    // If we failed to complete the type for some reason, or if the type is
1275    // dependent, don't diagnose the variable.
1276    if (Ty->isIncompleteType() || Ty->isDependentType())
1277      return false;
1278
1279    if (const TagType *TT = Ty->getAs<TagType>()) {
1280      const TagDecl *Tag = TT->getDecl();
1281      if (Tag->hasAttr<UnusedAttr>())
1282        return false;
1283
1284      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1285        if (!RD->hasTrivialDestructor())
1286          return false;
1287
1288        if (const Expr *Init = VD->getInit()) {
1289          const CXXConstructExpr *Construct =
1290            dyn_cast<CXXConstructExpr>(Init);
1291          if (Construct && !Construct->isElidable()) {
1292            CXXConstructorDecl *CD = Construct->getConstructor();
1293            if (!CD->isTrivial())
1294              return false;
1295          }
1296        }
1297      }
1298    }
1299
1300    // TODO: __attribute__((unused)) templates?
1301  }
1302
1303  return true;
1304}
1305
1306static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1307                                     FixItHint &Hint) {
1308  if (isa<LabelDecl>(D)) {
1309    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1310                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1311    if (AfterColon.isInvalid())
1312      return;
1313    Hint = FixItHint::CreateRemoval(CharSourceRange::
1314                                    getCharRange(D->getLocStart(), AfterColon));
1315  }
1316  return;
1317}
1318
1319/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1320/// unless they are marked attr(unused).
1321void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1322  FixItHint Hint;
1323  if (!ShouldDiagnoseUnusedDecl(D))
1324    return;
1325
1326  GenerateFixForUnusedDecl(D, Context, Hint);
1327
1328  unsigned DiagID;
1329  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1330    DiagID = diag::warn_unused_exception_param;
1331  else if (isa<LabelDecl>(D))
1332    DiagID = diag::warn_unused_label;
1333  else
1334    DiagID = diag::warn_unused_variable;
1335
1336  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1337}
1338
1339static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1340  // Verify that we have no forward references left.  If so, there was a goto
1341  // or address of a label taken, but no definition of it.  Label fwd
1342  // definitions are indicated with a null substmt.
1343  if (L->getStmt() == 0)
1344    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1345}
1346
1347void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1348  if (S->decl_empty()) return;
1349  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1350         "Scope shouldn't contain decls!");
1351
1352  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1353       I != E; ++I) {
1354    Decl *TmpD = (*I);
1355    assert(TmpD && "This decl didn't get pushed??");
1356
1357    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1358    NamedDecl *D = cast<NamedDecl>(TmpD);
1359
1360    if (!D->getDeclName()) continue;
1361
1362    // Diagnose unused variables in this scope.
1363    if (!S->hasErrorOccurred())
1364      DiagnoseUnusedDecl(D);
1365
1366    // If this was a forward reference to a label, verify it was defined.
1367    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1368      CheckPoppedLabel(LD, *this);
1369
1370    // Remove this name from our lexical scope.
1371    IdResolver.RemoveDecl(D);
1372  }
1373}
1374
1375void Sema::ActOnStartFunctionDeclarator() {
1376  ++InFunctionDeclarator;
1377}
1378
1379void Sema::ActOnEndFunctionDeclarator() {
1380  assert(InFunctionDeclarator);
1381  --InFunctionDeclarator;
1382}
1383
1384/// \brief Look for an Objective-C class in the translation unit.
1385///
1386/// \param Id The name of the Objective-C class we're looking for. If
1387/// typo-correction fixes this name, the Id will be updated
1388/// to the fixed name.
1389///
1390/// \param IdLoc The location of the name in the translation unit.
1391///
1392/// \param DoTypoCorrection If true, this routine will attempt typo correction
1393/// if there is no class with the given name.
1394///
1395/// \returns The declaration of the named Objective-C class, or NULL if the
1396/// class could not be found.
1397ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1398                                              SourceLocation IdLoc,
1399                                              bool DoTypoCorrection) {
1400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1401  // creation from this context.
1402  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1403
1404  if (!IDecl && DoTypoCorrection) {
1405    // Perform typo correction at the given location, but only if we
1406    // find an Objective-C class name.
1407    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1408    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1409                                       LookupOrdinaryName, TUScope, NULL,
1410                                       Validator)) {
1411      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1412      Diag(IdLoc, diag::err_undef_interface_suggest)
1413        << Id << IDecl->getDeclName()
1414        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1415      Diag(IDecl->getLocation(), diag::note_previous_decl)
1416        << IDecl->getDeclName();
1417
1418      Id = IDecl->getIdentifier();
1419    }
1420  }
1421  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1422  // This routine must always return a class definition, if any.
1423  if (Def && Def->getDefinition())
1424      Def = Def->getDefinition();
1425  return Def;
1426}
1427
1428/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1429/// from S, where a non-field would be declared. This routine copes
1430/// with the difference between C and C++ scoping rules in structs and
1431/// unions. For example, the following code is well-formed in C but
1432/// ill-formed in C++:
1433/// @code
1434/// struct S6 {
1435///   enum { BAR } e;
1436/// };
1437///
1438/// void test_S6() {
1439///   struct S6 a;
1440///   a.e = BAR;
1441/// }
1442/// @endcode
1443/// For the declaration of BAR, this routine will return a different
1444/// scope. The scope S will be the scope of the unnamed enumeration
1445/// within S6. In C++, this routine will return the scope associated
1446/// with S6, because the enumeration's scope is a transparent
1447/// context but structures can contain non-field names. In C, this
1448/// routine will return the translation unit scope, since the
1449/// enumeration's scope is a transparent context and structures cannot
1450/// contain non-field names.
1451Scope *Sema::getNonFieldDeclScope(Scope *S) {
1452  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1453         (S->getEntity() &&
1454          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1455         (S->isClassScope() && !getLangOpts().CPlusPlus))
1456    S = S->getParent();
1457  return S;
1458}
1459
1460/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1461/// file scope.  lazily create a decl for it. ForRedeclaration is true
1462/// if we're creating this built-in in anticipation of redeclaring the
1463/// built-in.
1464NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1465                                     Scope *S, bool ForRedeclaration,
1466                                     SourceLocation Loc) {
1467  Builtin::ID BID = (Builtin::ID)bid;
1468
1469  ASTContext::GetBuiltinTypeError Error;
1470  QualType R = Context.GetBuiltinType(BID, Error);
1471  switch (Error) {
1472  case ASTContext::GE_None:
1473    // Okay
1474    break;
1475
1476  case ASTContext::GE_Missing_stdio:
1477    if (ForRedeclaration)
1478      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1479        << Context.BuiltinInfo.GetName(BID);
1480    return 0;
1481
1482  case ASTContext::GE_Missing_setjmp:
1483    if (ForRedeclaration)
1484      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1485        << Context.BuiltinInfo.GetName(BID);
1486    return 0;
1487
1488  case ASTContext::GE_Missing_ucontext:
1489    if (ForRedeclaration)
1490      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1491        << Context.BuiltinInfo.GetName(BID);
1492    return 0;
1493  }
1494
1495  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1496    Diag(Loc, diag::ext_implicit_lib_function_decl)
1497      << Context.BuiltinInfo.GetName(BID)
1498      << R;
1499    if (Context.BuiltinInfo.getHeaderName(BID) &&
1500        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1501          != DiagnosticsEngine::Ignored)
1502      Diag(Loc, diag::note_please_include_header)
1503        << Context.BuiltinInfo.getHeaderName(BID)
1504        << Context.BuiltinInfo.GetName(BID);
1505  }
1506
1507  FunctionDecl *New = FunctionDecl::Create(Context,
1508                                           Context.getTranslationUnitDecl(),
1509                                           Loc, Loc, II, R, /*TInfo=*/0,
1510                                           SC_Extern,
1511                                           SC_None, false,
1512                                           /*hasPrototype=*/true);
1513  New->setImplicit();
1514
1515  // Create Decl objects for each parameter, adding them to the
1516  // FunctionDecl.
1517  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1518    SmallVector<ParmVarDecl*, 16> Params;
1519    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1520      ParmVarDecl *parm =
1521        ParmVarDecl::Create(Context, New, SourceLocation(),
1522                            SourceLocation(), 0,
1523                            FT->getArgType(i), /*TInfo=*/0,
1524                            SC_None, SC_None, 0);
1525      parm->setScopeInfo(0, i);
1526      Params.push_back(parm);
1527    }
1528    New->setParams(Params);
1529  }
1530
1531  AddKnownFunctionAttributes(New);
1532
1533  // TUScope is the translation-unit scope to insert this function into.
1534  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1535  // relate Scopes to DeclContexts, and probably eliminate CurContext
1536  // entirely, but we're not there yet.
1537  DeclContext *SavedContext = CurContext;
1538  CurContext = Context.getTranslationUnitDecl();
1539  PushOnScopeChains(New, TUScope);
1540  CurContext = SavedContext;
1541  return New;
1542}
1543
1544bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1545  QualType OldType;
1546  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1547    OldType = OldTypedef->getUnderlyingType();
1548  else
1549    OldType = Context.getTypeDeclType(Old);
1550  QualType NewType = New->getUnderlyingType();
1551
1552  if (NewType->isVariablyModifiedType()) {
1553    // Must not redefine a typedef with a variably-modified type.
1554    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1555    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1556      << Kind << NewType;
1557    if (Old->getLocation().isValid())
1558      Diag(Old->getLocation(), diag::note_previous_definition);
1559    New->setInvalidDecl();
1560    return true;
1561  }
1562
1563  if (OldType != NewType &&
1564      !OldType->isDependentType() &&
1565      !NewType->isDependentType() &&
1566      !Context.hasSameType(OldType, NewType)) {
1567    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1568    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1569      << Kind << NewType << OldType;
1570    if (Old->getLocation().isValid())
1571      Diag(Old->getLocation(), diag::note_previous_definition);
1572    New->setInvalidDecl();
1573    return true;
1574  }
1575  return false;
1576}
1577
1578/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1579/// same name and scope as a previous declaration 'Old'.  Figure out
1580/// how to resolve this situation, merging decls or emitting
1581/// diagnostics as appropriate. If there was an error, set New to be invalid.
1582///
1583void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1584  // If the new decl is known invalid already, don't bother doing any
1585  // merging checks.
1586  if (New->isInvalidDecl()) return;
1587
1588  // Allow multiple definitions for ObjC built-in typedefs.
1589  // FIXME: Verify the underlying types are equivalent!
1590  if (getLangOpts().ObjC1) {
1591    const IdentifierInfo *TypeID = New->getIdentifier();
1592    switch (TypeID->getLength()) {
1593    default: break;
1594    case 2:
1595      {
1596        if (!TypeID->isStr("id"))
1597          break;
1598        QualType T = New->getUnderlyingType();
1599        if (!T->isPointerType())
1600          break;
1601        if (!T->isVoidPointerType()) {
1602          QualType PT = T->getAs<PointerType>()->getPointeeType();
1603          if (!PT->isStructureType())
1604            break;
1605        }
1606        Context.setObjCIdRedefinitionType(T);
1607        // Install the built-in type for 'id', ignoring the current definition.
1608        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1609        return;
1610      }
1611    case 5:
1612      if (!TypeID->isStr("Class"))
1613        break;
1614      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1615      // Install the built-in type for 'Class', ignoring the current definition.
1616      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1617      return;
1618    case 3:
1619      if (!TypeID->isStr("SEL"))
1620        break;
1621      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1622      // Install the built-in type for 'SEL', ignoring the current definition.
1623      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1624      return;
1625    }
1626    // Fall through - the typedef name was not a builtin type.
1627  }
1628
1629  // Verify the old decl was also a type.
1630  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1631  if (!Old) {
1632    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1633      << New->getDeclName();
1634
1635    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1636    if (OldD->getLocation().isValid())
1637      Diag(OldD->getLocation(), diag::note_previous_definition);
1638
1639    return New->setInvalidDecl();
1640  }
1641
1642  // If the old declaration is invalid, just give up here.
1643  if (Old->isInvalidDecl())
1644    return New->setInvalidDecl();
1645
1646  // If the typedef types are not identical, reject them in all languages and
1647  // with any extensions enabled.
1648  if (isIncompatibleTypedef(Old, New))
1649    return;
1650
1651  // The types match.  Link up the redeclaration chain if the old
1652  // declaration was a typedef.
1653  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1654    New->setPreviousDeclaration(Typedef);
1655
1656  if (getLangOpts().MicrosoftExt)
1657    return;
1658
1659  if (getLangOpts().CPlusPlus) {
1660    // C++ [dcl.typedef]p2:
1661    //   In a given non-class scope, a typedef specifier can be used to
1662    //   redefine the name of any type declared in that scope to refer
1663    //   to the type to which it already refers.
1664    if (!isa<CXXRecordDecl>(CurContext))
1665      return;
1666
1667    // C++0x [dcl.typedef]p4:
1668    //   In a given class scope, a typedef specifier can be used to redefine
1669    //   any class-name declared in that scope that is not also a typedef-name
1670    //   to refer to the type to which it already refers.
1671    //
1672    // This wording came in via DR424, which was a correction to the
1673    // wording in DR56, which accidentally banned code like:
1674    //
1675    //   struct S {
1676    //     typedef struct A { } A;
1677    //   };
1678    //
1679    // in the C++03 standard. We implement the C++0x semantics, which
1680    // allow the above but disallow
1681    //
1682    //   struct S {
1683    //     typedef int I;
1684    //     typedef int I;
1685    //   };
1686    //
1687    // since that was the intent of DR56.
1688    if (!isa<TypedefNameDecl>(Old))
1689      return;
1690
1691    Diag(New->getLocation(), diag::err_redefinition)
1692      << New->getDeclName();
1693    Diag(Old->getLocation(), diag::note_previous_definition);
1694    return New->setInvalidDecl();
1695  }
1696
1697  // Modules always permit redefinition of typedefs, as does C11.
1698  if (getLangOpts().Modules || getLangOpts().C11)
1699    return;
1700
1701  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1702  // is normally mapped to an error, but can be controlled with
1703  // -Wtypedef-redefinition.  If either the original or the redefinition is
1704  // in a system header, don't emit this for compatibility with GCC.
1705  if (getDiagnostics().getSuppressSystemWarnings() &&
1706      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1707       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1708    return;
1709
1710  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1711    << New->getDeclName();
1712  Diag(Old->getLocation(), diag::note_previous_definition);
1713  return;
1714}
1715
1716/// DeclhasAttr - returns true if decl Declaration already has the target
1717/// attribute.
1718static bool
1719DeclHasAttr(const Decl *D, const Attr *A) {
1720  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1721  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1722  // responsible for making sure they are consistent.
1723  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1724  if (AA)
1725    return false;
1726
1727  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1728  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1729  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1730    if ((*i)->getKind() == A->getKind()) {
1731      if (Ann) {
1732        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1733          return true;
1734        continue;
1735      }
1736      // FIXME: Don't hardcode this check
1737      if (OA && isa<OwnershipAttr>(*i))
1738        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1739      return true;
1740    }
1741
1742  return false;
1743}
1744
1745bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1746  InheritableAttr *NewAttr = NULL;
1747  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1748    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1749                                    AA->getIntroduced(), AA->getDeprecated(),
1750                                    AA->getObsoleted(), AA->getUnavailable(),
1751                                    AA->getMessage());
1752  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1753    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1754  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1755    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1756  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1757    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1758  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1759    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1760                              FA->getFormatIdx(), FA->getFirstArg());
1761  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1762    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1763  else if (!DeclHasAttr(D, Attr))
1764    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1765
1766  if (NewAttr) {
1767    NewAttr->setInherited(true);
1768    D->addAttr(NewAttr);
1769    return true;
1770  }
1771
1772  return false;
1773}
1774
1775static const Decl *getDefinition(const Decl *D) {
1776  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1777    return TD->getDefinition();
1778  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1779    return VD->getDefinition();
1780  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1781    const FunctionDecl* Def;
1782    if (FD->hasBody(Def))
1783      return Def;
1784  }
1785  return NULL;
1786}
1787
1788static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1789  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1790       I != E; ++I) {
1791    Attr *Attribute = *I;
1792    if (Attribute->getKind() == Kind)
1793      return true;
1794  }
1795  return false;
1796}
1797
1798/// checkNewAttributesAfterDef - If we already have a definition, check that
1799/// there are no new attributes in this declaration.
1800static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1801  if (!New->hasAttrs())
1802    return;
1803
1804  const Decl *Def = getDefinition(Old);
1805  if (!Def || Def == New)
1806    return;
1807
1808  AttrVec &NewAttributes = New->getAttrs();
1809  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1810    const Attr *NewAttribute = NewAttributes[I];
1811    if (hasAttribute(Def, NewAttribute->getKind())) {
1812      ++I;
1813      continue; // regular attr merging will take care of validating this.
1814    }
1815    S.Diag(NewAttribute->getLocation(),
1816           diag::warn_attribute_precede_definition);
1817    S.Diag(Def->getLocation(), diag::note_previous_definition);
1818    NewAttributes.erase(NewAttributes.begin() + I);
1819    --E;
1820  }
1821}
1822
1823/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1824void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1825                               bool MergeDeprecation) {
1826  // attributes declared post-definition are currently ignored
1827  checkNewAttributesAfterDef(*this, New, Old);
1828
1829  if (!Old->hasAttrs())
1830    return;
1831
1832  bool foundAny = New->hasAttrs();
1833
1834  // Ensure that any moving of objects within the allocated map is done before
1835  // we process them.
1836  if (!foundAny) New->setAttrs(AttrVec());
1837
1838  for (specific_attr_iterator<InheritableAttr>
1839         i = Old->specific_attr_begin<InheritableAttr>(),
1840         e = Old->specific_attr_end<InheritableAttr>();
1841       i != e; ++i) {
1842    // Ignore deprecated/unavailable/availability attributes if requested.
1843    if (!MergeDeprecation &&
1844        (isa<DeprecatedAttr>(*i) ||
1845         isa<UnavailableAttr>(*i) ||
1846         isa<AvailabilityAttr>(*i)))
1847      continue;
1848
1849    if (mergeDeclAttribute(New, *i))
1850      foundAny = true;
1851  }
1852
1853  if (!foundAny) New->dropAttrs();
1854}
1855
1856/// mergeParamDeclAttributes - Copy attributes from the old parameter
1857/// to the new one.
1858static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1859                                     const ParmVarDecl *oldDecl,
1860                                     ASTContext &C) {
1861  if (!oldDecl->hasAttrs())
1862    return;
1863
1864  bool foundAny = newDecl->hasAttrs();
1865
1866  // Ensure that any moving of objects within the allocated map is
1867  // done before we process them.
1868  if (!foundAny) newDecl->setAttrs(AttrVec());
1869
1870  for (specific_attr_iterator<InheritableParamAttr>
1871       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1872       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1873    if (!DeclHasAttr(newDecl, *i)) {
1874      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1875      newAttr->setInherited(true);
1876      newDecl->addAttr(newAttr);
1877      foundAny = true;
1878    }
1879  }
1880
1881  if (!foundAny) newDecl->dropAttrs();
1882}
1883
1884namespace {
1885
1886/// Used in MergeFunctionDecl to keep track of function parameters in
1887/// C.
1888struct GNUCompatibleParamWarning {
1889  ParmVarDecl *OldParm;
1890  ParmVarDecl *NewParm;
1891  QualType PromotedType;
1892};
1893
1894}
1895
1896/// getSpecialMember - get the special member enum for a method.
1897Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1898  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1899    if (Ctor->isDefaultConstructor())
1900      return Sema::CXXDefaultConstructor;
1901
1902    if (Ctor->isCopyConstructor())
1903      return Sema::CXXCopyConstructor;
1904
1905    if (Ctor->isMoveConstructor())
1906      return Sema::CXXMoveConstructor;
1907  } else if (isa<CXXDestructorDecl>(MD)) {
1908    return Sema::CXXDestructor;
1909  } else if (MD->isCopyAssignmentOperator()) {
1910    return Sema::CXXCopyAssignment;
1911  } else if (MD->isMoveAssignmentOperator()) {
1912    return Sema::CXXMoveAssignment;
1913  }
1914
1915  return Sema::CXXInvalid;
1916}
1917
1918/// canRedefineFunction - checks if a function can be redefined. Currently,
1919/// only extern inline functions can be redefined, and even then only in
1920/// GNU89 mode.
1921static bool canRedefineFunction(const FunctionDecl *FD,
1922                                const LangOptions& LangOpts) {
1923  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1924          !LangOpts.CPlusPlus &&
1925          FD->isInlineSpecified() &&
1926          FD->getStorageClass() == SC_Extern);
1927}
1928
1929/// Is the given calling convention the ABI default for the given
1930/// declaration?
1931static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1932  CallingConv ABIDefaultCC;
1933  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1934    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1935  } else {
1936    // Free C function or a static method.
1937    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1938  }
1939  return ABIDefaultCC == CC;
1940}
1941
1942/// MergeFunctionDecl - We just parsed a function 'New' from
1943/// declarator D which has the same name and scope as a previous
1944/// declaration 'Old'.  Figure out how to resolve this situation,
1945/// merging decls or emitting diagnostics as appropriate.
1946///
1947/// In C++, New and Old must be declarations that are not
1948/// overloaded. Use IsOverload to determine whether New and Old are
1949/// overloaded, and to select the Old declaration that New should be
1950/// merged with.
1951///
1952/// Returns true if there was an error, false otherwise.
1953bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1954  // Verify the old decl was also a function.
1955  FunctionDecl *Old = 0;
1956  if (FunctionTemplateDecl *OldFunctionTemplate
1957        = dyn_cast<FunctionTemplateDecl>(OldD))
1958    Old = OldFunctionTemplate->getTemplatedDecl();
1959  else
1960    Old = dyn_cast<FunctionDecl>(OldD);
1961  if (!Old) {
1962    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1963      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1964      Diag(Shadow->getTargetDecl()->getLocation(),
1965           diag::note_using_decl_target);
1966      Diag(Shadow->getUsingDecl()->getLocation(),
1967           diag::note_using_decl) << 0;
1968      return true;
1969    }
1970
1971    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1972      << New->getDeclName();
1973    Diag(OldD->getLocation(), diag::note_previous_definition);
1974    return true;
1975  }
1976
1977  // Determine whether the previous declaration was a definition,
1978  // implicit declaration, or a declaration.
1979  diag::kind PrevDiag;
1980  if (Old->isThisDeclarationADefinition())
1981    PrevDiag = diag::note_previous_definition;
1982  else if (Old->isImplicit())
1983    PrevDiag = diag::note_previous_implicit_declaration;
1984  else
1985    PrevDiag = diag::note_previous_declaration;
1986
1987  QualType OldQType = Context.getCanonicalType(Old->getType());
1988  QualType NewQType = Context.getCanonicalType(New->getType());
1989
1990  // Don't complain about this if we're in GNU89 mode and the old function
1991  // is an extern inline function.
1992  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1993      New->getStorageClass() == SC_Static &&
1994      Old->getStorageClass() != SC_Static &&
1995      !canRedefineFunction(Old, getLangOpts())) {
1996    if (getLangOpts().MicrosoftExt) {
1997      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1998      Diag(Old->getLocation(), PrevDiag);
1999    } else {
2000      Diag(New->getLocation(), diag::err_static_non_static) << New;
2001      Diag(Old->getLocation(), PrevDiag);
2002      return true;
2003    }
2004  }
2005
2006  // If a function is first declared with a calling convention, but is
2007  // later declared or defined without one, the second decl assumes the
2008  // calling convention of the first.
2009  //
2010  // It's OK if a function is first declared without a calling convention,
2011  // but is later declared or defined with the default calling convention.
2012  //
2013  // For the new decl, we have to look at the NON-canonical type to tell the
2014  // difference between a function that really doesn't have a calling
2015  // convention and one that is declared cdecl. That's because in
2016  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2017  // because it is the default calling convention.
2018  //
2019  // Note also that we DO NOT return at this point, because we still have
2020  // other tests to run.
2021  const FunctionType *OldType = cast<FunctionType>(OldQType);
2022  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2023  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2024  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2025  bool RequiresAdjustment = false;
2026  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2027    // Fast path: nothing to do.
2028
2029  // Inherit the CC from the previous declaration if it was specified
2030  // there but not here.
2031  } else if (NewTypeInfo.getCC() == CC_Default) {
2032    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2033    RequiresAdjustment = true;
2034
2035  // Don't complain about mismatches when the default CC is
2036  // effectively the same as the explict one.
2037  } else if (OldTypeInfo.getCC() == CC_Default &&
2038             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2039    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2040    RequiresAdjustment = true;
2041
2042  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2043                                     NewTypeInfo.getCC())) {
2044    // Calling conventions really aren't compatible, so complain.
2045    Diag(New->getLocation(), diag::err_cconv_change)
2046      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2047      << (OldTypeInfo.getCC() == CC_Default)
2048      << (OldTypeInfo.getCC() == CC_Default ? "" :
2049          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2050    Diag(Old->getLocation(), diag::note_previous_declaration);
2051    return true;
2052  }
2053
2054  // FIXME: diagnose the other way around?
2055  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2056    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2057    RequiresAdjustment = true;
2058  }
2059
2060  // Merge regparm attribute.
2061  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2062      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2063    if (NewTypeInfo.getHasRegParm()) {
2064      Diag(New->getLocation(), diag::err_regparm_mismatch)
2065        << NewType->getRegParmType()
2066        << OldType->getRegParmType();
2067      Diag(Old->getLocation(), diag::note_previous_declaration);
2068      return true;
2069    }
2070
2071    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2072    RequiresAdjustment = true;
2073  }
2074
2075  // Merge ns_returns_retained attribute.
2076  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2077    if (NewTypeInfo.getProducesResult()) {
2078      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2079      Diag(Old->getLocation(), diag::note_previous_declaration);
2080      return true;
2081    }
2082
2083    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2084    RequiresAdjustment = true;
2085  }
2086
2087  if (RequiresAdjustment) {
2088    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2089    New->setType(QualType(NewType, 0));
2090    NewQType = Context.getCanonicalType(New->getType());
2091  }
2092
2093  if (getLangOpts().CPlusPlus) {
2094    // (C++98 13.1p2):
2095    //   Certain function declarations cannot be overloaded:
2096    //     -- Function declarations that differ only in the return type
2097    //        cannot be overloaded.
2098    QualType OldReturnType = OldType->getResultType();
2099    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2100    QualType ResQT;
2101    if (OldReturnType != NewReturnType) {
2102      if (NewReturnType->isObjCObjectPointerType()
2103          && OldReturnType->isObjCObjectPointerType())
2104        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2105      if (ResQT.isNull()) {
2106        if (New->isCXXClassMember() && New->isOutOfLine())
2107          Diag(New->getLocation(),
2108               diag::err_member_def_does_not_match_ret_type) << New;
2109        else
2110          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2111        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2112        return true;
2113      }
2114      else
2115        NewQType = ResQT;
2116    }
2117
2118    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2119    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2120    if (OldMethod && NewMethod) {
2121      // Preserve triviality.
2122      NewMethod->setTrivial(OldMethod->isTrivial());
2123
2124      // MSVC allows explicit template specialization at class scope:
2125      // 2 CXMethodDecls referring to the same function will be injected.
2126      // We don't want a redeclartion error.
2127      bool IsClassScopeExplicitSpecialization =
2128                              OldMethod->isFunctionTemplateSpecialization() &&
2129                              NewMethod->isFunctionTemplateSpecialization();
2130      bool isFriend = NewMethod->getFriendObjectKind();
2131
2132      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2133          !IsClassScopeExplicitSpecialization) {
2134        //    -- Member function declarations with the same name and the
2135        //       same parameter types cannot be overloaded if any of them
2136        //       is a static member function declaration.
2137        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2138          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2139          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2140          return true;
2141        }
2142
2143        // C++ [class.mem]p1:
2144        //   [...] A member shall not be declared twice in the
2145        //   member-specification, except that a nested class or member
2146        //   class template can be declared and then later defined.
2147        if (ActiveTemplateInstantiations.empty()) {
2148          unsigned NewDiag;
2149          if (isa<CXXConstructorDecl>(OldMethod))
2150            NewDiag = diag::err_constructor_redeclared;
2151          else if (isa<CXXDestructorDecl>(NewMethod))
2152            NewDiag = diag::err_destructor_redeclared;
2153          else if (isa<CXXConversionDecl>(NewMethod))
2154            NewDiag = diag::err_conv_function_redeclared;
2155          else
2156            NewDiag = diag::err_member_redeclared;
2157
2158          Diag(New->getLocation(), NewDiag);
2159        } else {
2160          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2161            << New << New->getType();
2162        }
2163        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2164
2165      // Complain if this is an explicit declaration of a special
2166      // member that was initially declared implicitly.
2167      //
2168      // As an exception, it's okay to befriend such methods in order
2169      // to permit the implicit constructor/destructor/operator calls.
2170      } else if (OldMethod->isImplicit()) {
2171        if (isFriend) {
2172          NewMethod->setImplicit();
2173        } else {
2174          Diag(NewMethod->getLocation(),
2175               diag::err_definition_of_implicitly_declared_member)
2176            << New << getSpecialMember(OldMethod);
2177          return true;
2178        }
2179      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2180        Diag(NewMethod->getLocation(),
2181             diag::err_definition_of_explicitly_defaulted_member)
2182          << getSpecialMember(OldMethod);
2183        return true;
2184      }
2185    }
2186
2187    // (C++98 8.3.5p3):
2188    //   All declarations for a function shall agree exactly in both the
2189    //   return type and the parameter-type-list.
2190    // We also want to respect all the extended bits except noreturn.
2191
2192    // noreturn should now match unless the old type info didn't have it.
2193    QualType OldQTypeForComparison = OldQType;
2194    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2195      assert(OldQType == QualType(OldType, 0));
2196      const FunctionType *OldTypeForComparison
2197        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2198      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2199      assert(OldQTypeForComparison.isCanonical());
2200    }
2201
2202    if (OldQTypeForComparison == NewQType)
2203      return MergeCompatibleFunctionDecls(New, Old, S);
2204
2205    // Fall through for conflicting redeclarations and redefinitions.
2206  }
2207
2208  // C: Function types need to be compatible, not identical. This handles
2209  // duplicate function decls like "void f(int); void f(enum X);" properly.
2210  if (!getLangOpts().CPlusPlus &&
2211      Context.typesAreCompatible(OldQType, NewQType)) {
2212    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2213    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2214    const FunctionProtoType *OldProto = 0;
2215    if (isa<FunctionNoProtoType>(NewFuncType) &&
2216        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2217      // The old declaration provided a function prototype, but the
2218      // new declaration does not. Merge in the prototype.
2219      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2220      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2221                                                 OldProto->arg_type_end());
2222      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2223                                         ParamTypes.data(), ParamTypes.size(),
2224                                         OldProto->getExtProtoInfo());
2225      New->setType(NewQType);
2226      New->setHasInheritedPrototype();
2227
2228      // Synthesize a parameter for each argument type.
2229      SmallVector<ParmVarDecl*, 16> Params;
2230      for (FunctionProtoType::arg_type_iterator
2231             ParamType = OldProto->arg_type_begin(),
2232             ParamEnd = OldProto->arg_type_end();
2233           ParamType != ParamEnd; ++ParamType) {
2234        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2235                                                 SourceLocation(),
2236                                                 SourceLocation(), 0,
2237                                                 *ParamType, /*TInfo=*/0,
2238                                                 SC_None, SC_None,
2239                                                 0);
2240        Param->setScopeInfo(0, Params.size());
2241        Param->setImplicit();
2242        Params.push_back(Param);
2243      }
2244
2245      New->setParams(Params);
2246    }
2247
2248    return MergeCompatibleFunctionDecls(New, Old, S);
2249  }
2250
2251  // GNU C permits a K&R definition to follow a prototype declaration
2252  // if the declared types of the parameters in the K&R definition
2253  // match the types in the prototype declaration, even when the
2254  // promoted types of the parameters from the K&R definition differ
2255  // from the types in the prototype. GCC then keeps the types from
2256  // the prototype.
2257  //
2258  // If a variadic prototype is followed by a non-variadic K&R definition,
2259  // the K&R definition becomes variadic.  This is sort of an edge case, but
2260  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2261  // C99 6.9.1p8.
2262  if (!getLangOpts().CPlusPlus &&
2263      Old->hasPrototype() && !New->hasPrototype() &&
2264      New->getType()->getAs<FunctionProtoType>() &&
2265      Old->getNumParams() == New->getNumParams()) {
2266    SmallVector<QualType, 16> ArgTypes;
2267    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2268    const FunctionProtoType *OldProto
2269      = Old->getType()->getAs<FunctionProtoType>();
2270    const FunctionProtoType *NewProto
2271      = New->getType()->getAs<FunctionProtoType>();
2272
2273    // Determine whether this is the GNU C extension.
2274    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2275                                               NewProto->getResultType());
2276    bool LooseCompatible = !MergedReturn.isNull();
2277    for (unsigned Idx = 0, End = Old->getNumParams();
2278         LooseCompatible && Idx != End; ++Idx) {
2279      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2280      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2281      if (Context.typesAreCompatible(OldParm->getType(),
2282                                     NewProto->getArgType(Idx))) {
2283        ArgTypes.push_back(NewParm->getType());
2284      } else if (Context.typesAreCompatible(OldParm->getType(),
2285                                            NewParm->getType(),
2286                                            /*CompareUnqualified=*/true)) {
2287        GNUCompatibleParamWarning Warn
2288          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2289        Warnings.push_back(Warn);
2290        ArgTypes.push_back(NewParm->getType());
2291      } else
2292        LooseCompatible = false;
2293    }
2294
2295    if (LooseCompatible) {
2296      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2297        Diag(Warnings[Warn].NewParm->getLocation(),
2298             diag::ext_param_promoted_not_compatible_with_prototype)
2299          << Warnings[Warn].PromotedType
2300          << Warnings[Warn].OldParm->getType();
2301        if (Warnings[Warn].OldParm->getLocation().isValid())
2302          Diag(Warnings[Warn].OldParm->getLocation(),
2303               diag::note_previous_declaration);
2304      }
2305
2306      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2307                                           ArgTypes.size(),
2308                                           OldProto->getExtProtoInfo()));
2309      return MergeCompatibleFunctionDecls(New, Old, S);
2310    }
2311
2312    // Fall through to diagnose conflicting types.
2313  }
2314
2315  // A function that has already been declared has been redeclared or defined
2316  // with a different type- show appropriate diagnostic
2317  if (unsigned BuiltinID = Old->getBuiltinID()) {
2318    // The user has declared a builtin function with an incompatible
2319    // signature.
2320    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2321      // The function the user is redeclaring is a library-defined
2322      // function like 'malloc' or 'printf'. Warn about the
2323      // redeclaration, then pretend that we don't know about this
2324      // library built-in.
2325      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2326      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2327        << Old << Old->getType();
2328      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2329      Old->setInvalidDecl();
2330      return false;
2331    }
2332
2333    PrevDiag = diag::note_previous_builtin_declaration;
2334  }
2335
2336  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2337  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2338  return true;
2339}
2340
2341/// \brief Completes the merge of two function declarations that are
2342/// known to be compatible.
2343///
2344/// This routine handles the merging of attributes and other
2345/// properties of function declarations form the old declaration to
2346/// the new declaration, once we know that New is in fact a
2347/// redeclaration of Old.
2348///
2349/// \returns false
2350bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2351                                        Scope *S) {
2352  // Merge the attributes
2353  mergeDeclAttributes(New, Old);
2354
2355  // Merge the storage class.
2356  if (Old->getStorageClass() != SC_Extern &&
2357      Old->getStorageClass() != SC_None)
2358    New->setStorageClass(Old->getStorageClass());
2359
2360  // Merge "pure" flag.
2361  if (Old->isPure())
2362    New->setPure();
2363
2364  // Merge attributes from the parameters.  These can mismatch with K&R
2365  // declarations.
2366  if (New->getNumParams() == Old->getNumParams())
2367    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2368      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2369                               Context);
2370
2371  if (getLangOpts().CPlusPlus)
2372    return MergeCXXFunctionDecl(New, Old, S);
2373
2374  return false;
2375}
2376
2377
2378void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2379                                ObjCMethodDecl *oldMethod) {
2380
2381  // Merge the attributes, including deprecated/unavailable
2382  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2383
2384  // Merge attributes from the parameters.
2385  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2386                                       oe = oldMethod->param_end();
2387  for (ObjCMethodDecl::param_iterator
2388         ni = newMethod->param_begin(), ne = newMethod->param_end();
2389       ni != ne && oi != oe; ++ni, ++oi)
2390    mergeParamDeclAttributes(*ni, *oi, Context);
2391
2392  CheckObjCMethodOverride(newMethod, oldMethod, true);
2393}
2394
2395/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2396/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2397/// emitting diagnostics as appropriate.
2398///
2399/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2400/// to here in AddInitializerToDecl. We can't check them before the initializer
2401/// is attached.
2402void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2403  if (New->isInvalidDecl() || Old->isInvalidDecl())
2404    return;
2405
2406  QualType MergedT;
2407  if (getLangOpts().CPlusPlus) {
2408    AutoType *AT = New->getType()->getContainedAutoType();
2409    if (AT && !AT->isDeduced()) {
2410      // We don't know what the new type is until the initializer is attached.
2411      return;
2412    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2413      // These could still be something that needs exception specs checked.
2414      return MergeVarDeclExceptionSpecs(New, Old);
2415    }
2416    // C++ [basic.link]p10:
2417    //   [...] the types specified by all declarations referring to a given
2418    //   object or function shall be identical, except that declarations for an
2419    //   array object can specify array types that differ by the presence or
2420    //   absence of a major array bound (8.3.4).
2421    else if (Old->getType()->isIncompleteArrayType() &&
2422             New->getType()->isArrayType()) {
2423      CanQual<ArrayType> OldArray
2424        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2425      CanQual<ArrayType> NewArray
2426        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2427      if (OldArray->getElementType() == NewArray->getElementType())
2428        MergedT = New->getType();
2429    } else if (Old->getType()->isArrayType() &&
2430             New->getType()->isIncompleteArrayType()) {
2431      CanQual<ArrayType> OldArray
2432        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2433      CanQual<ArrayType> NewArray
2434        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2435      if (OldArray->getElementType() == NewArray->getElementType())
2436        MergedT = Old->getType();
2437    } else if (New->getType()->isObjCObjectPointerType()
2438               && Old->getType()->isObjCObjectPointerType()) {
2439        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2440                                                        Old->getType());
2441    }
2442  } else {
2443    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2444  }
2445  if (MergedT.isNull()) {
2446    Diag(New->getLocation(), diag::err_redefinition_different_type)
2447      << New->getDeclName();
2448    Diag(Old->getLocation(), diag::note_previous_definition);
2449    return New->setInvalidDecl();
2450  }
2451  New->setType(MergedT);
2452}
2453
2454/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2455/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2456/// situation, merging decls or emitting diagnostics as appropriate.
2457///
2458/// Tentative definition rules (C99 6.9.2p2) are checked by
2459/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2460/// definitions here, since the initializer hasn't been attached.
2461///
2462void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2463  // If the new decl is already invalid, don't do any other checking.
2464  if (New->isInvalidDecl())
2465    return;
2466
2467  // Verify the old decl was also a variable.
2468  VarDecl *Old = 0;
2469  if (!Previous.isSingleResult() ||
2470      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2471    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2472      << New->getDeclName();
2473    Diag(Previous.getRepresentativeDecl()->getLocation(),
2474         diag::note_previous_definition);
2475    return New->setInvalidDecl();
2476  }
2477
2478  // C++ [class.mem]p1:
2479  //   A member shall not be declared twice in the member-specification [...]
2480  //
2481  // Here, we need only consider static data members.
2482  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2483    Diag(New->getLocation(), diag::err_duplicate_member)
2484      << New->getIdentifier();
2485    Diag(Old->getLocation(), diag::note_previous_declaration);
2486    New->setInvalidDecl();
2487  }
2488
2489  mergeDeclAttributes(New, Old);
2490  // Warn if an already-declared variable is made a weak_import in a subsequent
2491  // declaration
2492  if (New->getAttr<WeakImportAttr>() &&
2493      Old->getStorageClass() == SC_None &&
2494      !Old->getAttr<WeakImportAttr>()) {
2495    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2496    Diag(Old->getLocation(), diag::note_previous_definition);
2497    // Remove weak_import attribute on new declaration.
2498    New->dropAttr<WeakImportAttr>();
2499  }
2500
2501  // Merge the types.
2502  MergeVarDeclTypes(New, Old);
2503  if (New->isInvalidDecl())
2504    return;
2505
2506  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2507  if (New->getStorageClass() == SC_Static &&
2508      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2509    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2510    Diag(Old->getLocation(), diag::note_previous_definition);
2511    return New->setInvalidDecl();
2512  }
2513  // C99 6.2.2p4:
2514  //   For an identifier declared with the storage-class specifier
2515  //   extern in a scope in which a prior declaration of that
2516  //   identifier is visible,23) if the prior declaration specifies
2517  //   internal or external linkage, the linkage of the identifier at
2518  //   the later declaration is the same as the linkage specified at
2519  //   the prior declaration. If no prior declaration is visible, or
2520  //   if the prior declaration specifies no linkage, then the
2521  //   identifier has external linkage.
2522  if (New->hasExternalStorage() && Old->hasLinkage())
2523    /* Okay */;
2524  else if (New->getStorageClass() != SC_Static &&
2525           Old->getStorageClass() == SC_Static) {
2526    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2527    Diag(Old->getLocation(), diag::note_previous_definition);
2528    return New->setInvalidDecl();
2529  }
2530
2531  // Check if extern is followed by non-extern and vice-versa.
2532  if (New->hasExternalStorage() &&
2533      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2534    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2535    Diag(Old->getLocation(), diag::note_previous_definition);
2536    return New->setInvalidDecl();
2537  }
2538  if (Old->hasExternalStorage() &&
2539      !New->hasLinkage() && New->isLocalVarDecl()) {
2540    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2541    Diag(Old->getLocation(), diag::note_previous_definition);
2542    return New->setInvalidDecl();
2543  }
2544
2545  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2546
2547  // FIXME: The test for external storage here seems wrong? We still
2548  // need to check for mismatches.
2549  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2550      // Don't complain about out-of-line definitions of static members.
2551      !(Old->getLexicalDeclContext()->isRecord() &&
2552        !New->getLexicalDeclContext()->isRecord())) {
2553    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555    return New->setInvalidDecl();
2556  }
2557
2558  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2559    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2560    Diag(Old->getLocation(), diag::note_previous_definition);
2561  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2562    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2563    Diag(Old->getLocation(), diag::note_previous_definition);
2564  }
2565
2566  // C++ doesn't have tentative definitions, so go right ahead and check here.
2567  const VarDecl *Def;
2568  if (getLangOpts().CPlusPlus &&
2569      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2570      (Def = Old->getDefinition())) {
2571    Diag(New->getLocation(), diag::err_redefinition)
2572      << New->getDeclName();
2573    Diag(Def->getLocation(), diag::note_previous_definition);
2574    New->setInvalidDecl();
2575    return;
2576  }
2577  // c99 6.2.2 P4.
2578  // For an identifier declared with the storage-class specifier extern in a
2579  // scope in which a prior declaration of that identifier is visible, if
2580  // the prior declaration specifies internal or external linkage, the linkage
2581  // of the identifier at the later declaration is the same as the linkage
2582  // specified at the prior declaration.
2583  // FIXME. revisit this code.
2584  if (New->hasExternalStorage() &&
2585      Old->getLinkage() == InternalLinkage &&
2586      New->getDeclContext() == Old->getDeclContext())
2587    New->setStorageClass(Old->getStorageClass());
2588
2589  // Keep a chain of previous declarations.
2590  New->setPreviousDeclaration(Old);
2591
2592  // Inherit access appropriately.
2593  New->setAccess(Old->getAccess());
2594}
2595
2596/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2597/// no declarator (e.g. "struct foo;") is parsed.
2598Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2599                                       DeclSpec &DS) {
2600  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2601}
2602
2603/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2604/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2605/// parameters to cope with template friend declarations.
2606Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2607                                       DeclSpec &DS,
2608                                       MultiTemplateParamsArg TemplateParams) {
2609  Decl *TagD = 0;
2610  TagDecl *Tag = 0;
2611  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2612      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2613      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2614      DS.getTypeSpecType() == DeclSpec::TST_union ||
2615      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2616    TagD = DS.getRepAsDecl();
2617
2618    if (!TagD) // We probably had an error
2619      return 0;
2620
2621    // Note that the above type specs guarantee that the
2622    // type rep is a Decl, whereas in many of the others
2623    // it's a Type.
2624    if (isa<TagDecl>(TagD))
2625      Tag = cast<TagDecl>(TagD);
2626    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2627      Tag = CTD->getTemplatedDecl();
2628  }
2629
2630  if (Tag) {
2631    Tag->setFreeStanding();
2632    if (Tag->isInvalidDecl())
2633      return Tag;
2634  }
2635
2636  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2637    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2638    // or incomplete types shall not be restrict-qualified."
2639    if (TypeQuals & DeclSpec::TQ_restrict)
2640      Diag(DS.getRestrictSpecLoc(),
2641           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2642           << DS.getSourceRange();
2643  }
2644
2645  if (DS.isConstexprSpecified()) {
2646    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2647    // and definitions of functions and variables.
2648    if (Tag)
2649      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2650        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2651            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2652            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2653            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2654    else
2655      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2656    // Don't emit warnings after this error.
2657    return TagD;
2658  }
2659
2660  if (DS.isFriendSpecified()) {
2661    // If we're dealing with a decl but not a TagDecl, assume that
2662    // whatever routines created it handled the friendship aspect.
2663    if (TagD && !Tag)
2664      return 0;
2665    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2666  }
2667
2668  // Track whether we warned about the fact that there aren't any
2669  // declarators.
2670  bool emittedWarning = false;
2671
2672  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2673    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2674        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2675      if (getLangOpts().CPlusPlus ||
2676          Record->getDeclContext()->isRecord())
2677        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2678
2679      Diag(DS.getLocStart(), diag::ext_no_declarators)
2680        << DS.getSourceRange();
2681      emittedWarning = true;
2682    }
2683  }
2684
2685  // Check for Microsoft C extension: anonymous struct.
2686  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2687      CurContext->isRecord() &&
2688      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2689    // Handle 2 kinds of anonymous struct:
2690    //   struct STRUCT;
2691    // and
2692    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2693    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2694    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2695        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2696         DS.getRepAsType().get()->isStructureType())) {
2697      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2698        << DS.getSourceRange();
2699      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2700    }
2701  }
2702
2703  if (getLangOpts().CPlusPlus &&
2704      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2705    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2706      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2707          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2708        Diag(Enum->getLocation(), diag::ext_no_declarators)
2709          << DS.getSourceRange();
2710        emittedWarning = true;
2711      }
2712
2713  // Skip all the checks below if we have a type error.
2714  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2715
2716  if (!DS.isMissingDeclaratorOk()) {
2717    // Warn about typedefs of enums without names, since this is an
2718    // extension in both Microsoft and GNU.
2719    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2720        Tag && isa<EnumDecl>(Tag)) {
2721      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2722        << DS.getSourceRange();
2723      return Tag;
2724    }
2725
2726    Diag(DS.getLocStart(), diag::ext_no_declarators)
2727      << DS.getSourceRange();
2728    emittedWarning = true;
2729  }
2730
2731  // We're going to complain about a bunch of spurious specifiers;
2732  // only do this if we're declaring a tag, because otherwise we
2733  // should be getting diag::ext_no_declarators.
2734  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2735    return TagD;
2736
2737  // Note that a linkage-specification sets a storage class, but
2738  // 'extern "C" struct foo;' is actually valid and not theoretically
2739  // useless.
2740  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2741    if (!DS.isExternInLinkageSpec())
2742      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2743        << DeclSpec::getSpecifierName(scs);
2744
2745  if (DS.isThreadSpecified())
2746    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2747  if (DS.getTypeQualifiers()) {
2748    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2749      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2750    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2751      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2752    // Restrict is covered above.
2753  }
2754  if (DS.isInlineSpecified())
2755    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2756  if (DS.isVirtualSpecified())
2757    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2758  if (DS.isExplicitSpecified())
2759    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2760
2761  if (DS.isModulePrivateSpecified() &&
2762      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2763    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2764      << Tag->getTagKind()
2765      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2766
2767  // Warn about ignored type attributes, for example:
2768  // __attribute__((aligned)) struct A;
2769  // Attributes should be placed after tag to apply to type declaration.
2770  if (!DS.getAttributes().empty()) {
2771    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2772    if (TypeSpecType == DeclSpec::TST_class ||
2773        TypeSpecType == DeclSpec::TST_struct ||
2774        TypeSpecType == DeclSpec::TST_interface ||
2775        TypeSpecType == DeclSpec::TST_union ||
2776        TypeSpecType == DeclSpec::TST_enum) {
2777      AttributeList* attrs = DS.getAttributes().getList();
2778      while (attrs) {
2779        Diag(attrs->getScopeLoc(),
2780             diag::warn_declspec_attribute_ignored)
2781        << attrs->getName()
2782        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2783            TypeSpecType == DeclSpec::TST_struct ? 1 :
2784            TypeSpecType == DeclSpec::TST_union ? 2 :
2785            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2786        attrs = attrs->getNext();
2787      }
2788    }
2789  }
2790
2791  ActOnDocumentableDecl(TagD);
2792
2793  return TagD;
2794}
2795
2796/// We are trying to inject an anonymous member into the given scope;
2797/// check if there's an existing declaration that can't be overloaded.
2798///
2799/// \return true if this is a forbidden redeclaration
2800static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2801                                         Scope *S,
2802                                         DeclContext *Owner,
2803                                         DeclarationName Name,
2804                                         SourceLocation NameLoc,
2805                                         unsigned diagnostic) {
2806  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2807                 Sema::ForRedeclaration);
2808  if (!SemaRef.LookupName(R, S)) return false;
2809
2810  if (R.getAsSingle<TagDecl>())
2811    return false;
2812
2813  // Pick a representative declaration.
2814  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2815  assert(PrevDecl && "Expected a non-null Decl");
2816
2817  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2818    return false;
2819
2820  SemaRef.Diag(NameLoc, diagnostic) << Name;
2821  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2822
2823  return true;
2824}
2825
2826/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2827/// anonymous struct or union AnonRecord into the owning context Owner
2828/// and scope S. This routine will be invoked just after we realize
2829/// that an unnamed union or struct is actually an anonymous union or
2830/// struct, e.g.,
2831///
2832/// @code
2833/// union {
2834///   int i;
2835///   float f;
2836/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2837///    // f into the surrounding scope.x
2838/// @endcode
2839///
2840/// This routine is recursive, injecting the names of nested anonymous
2841/// structs/unions into the owning context and scope as well.
2842static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2843                                                DeclContext *Owner,
2844                                                RecordDecl *AnonRecord,
2845                                                AccessSpecifier AS,
2846                              SmallVector<NamedDecl*, 2> &Chaining,
2847                                                      bool MSAnonStruct) {
2848  unsigned diagKind
2849    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2850                            : diag::err_anonymous_struct_member_redecl;
2851
2852  bool Invalid = false;
2853
2854  // Look every FieldDecl and IndirectFieldDecl with a name.
2855  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2856                               DEnd = AnonRecord->decls_end();
2857       D != DEnd; ++D) {
2858    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2859        cast<NamedDecl>(*D)->getDeclName()) {
2860      ValueDecl *VD = cast<ValueDecl>(*D);
2861      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2862                                       VD->getLocation(), diagKind)) {
2863        // C++ [class.union]p2:
2864        //   The names of the members of an anonymous union shall be
2865        //   distinct from the names of any other entity in the
2866        //   scope in which the anonymous union is declared.
2867        Invalid = true;
2868      } else {
2869        // C++ [class.union]p2:
2870        //   For the purpose of name lookup, after the anonymous union
2871        //   definition, the members of the anonymous union are
2872        //   considered to have been defined in the scope in which the
2873        //   anonymous union is declared.
2874        unsigned OldChainingSize = Chaining.size();
2875        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2876          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2877               PE = IF->chain_end(); PI != PE; ++PI)
2878            Chaining.push_back(*PI);
2879        else
2880          Chaining.push_back(VD);
2881
2882        assert(Chaining.size() >= 2);
2883        NamedDecl **NamedChain =
2884          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2885        for (unsigned i = 0; i < Chaining.size(); i++)
2886          NamedChain[i] = Chaining[i];
2887
2888        IndirectFieldDecl* IndirectField =
2889          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2890                                    VD->getIdentifier(), VD->getType(),
2891                                    NamedChain, Chaining.size());
2892
2893        IndirectField->setAccess(AS);
2894        IndirectField->setImplicit();
2895        SemaRef.PushOnScopeChains(IndirectField, S);
2896
2897        // That includes picking up the appropriate access specifier.
2898        if (AS != AS_none) IndirectField->setAccess(AS);
2899
2900        Chaining.resize(OldChainingSize);
2901      }
2902    }
2903  }
2904
2905  return Invalid;
2906}
2907
2908/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2909/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2910/// illegal input values are mapped to SC_None.
2911static StorageClass
2912StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2913  switch (StorageClassSpec) {
2914  case DeclSpec::SCS_unspecified:    return SC_None;
2915  case DeclSpec::SCS_extern:         return SC_Extern;
2916  case DeclSpec::SCS_static:         return SC_Static;
2917  case DeclSpec::SCS_auto:           return SC_Auto;
2918  case DeclSpec::SCS_register:       return SC_Register;
2919  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2920    // Illegal SCSs map to None: error reporting is up to the caller.
2921  case DeclSpec::SCS_mutable:        // Fall through.
2922  case DeclSpec::SCS_typedef:        return SC_None;
2923  }
2924  llvm_unreachable("unknown storage class specifier");
2925}
2926
2927/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2928/// a StorageClass. Any error reporting is up to the caller:
2929/// illegal input values are mapped to SC_None.
2930static StorageClass
2931StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2932  switch (StorageClassSpec) {
2933  case DeclSpec::SCS_unspecified:    return SC_None;
2934  case DeclSpec::SCS_extern:         return SC_Extern;
2935  case DeclSpec::SCS_static:         return SC_Static;
2936  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2937    // Illegal SCSs map to None: error reporting is up to the caller.
2938  case DeclSpec::SCS_auto:           // Fall through.
2939  case DeclSpec::SCS_mutable:        // Fall through.
2940  case DeclSpec::SCS_register:       // Fall through.
2941  case DeclSpec::SCS_typedef:        return SC_None;
2942  }
2943  llvm_unreachable("unknown storage class specifier");
2944}
2945
2946/// BuildAnonymousStructOrUnion - Handle the declaration of an
2947/// anonymous structure or union. Anonymous unions are a C++ feature
2948/// (C++ [class.union]) and a C11 feature; anonymous structures
2949/// are a C11 feature and GNU C++ extension.
2950Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2951                                             AccessSpecifier AS,
2952                                             RecordDecl *Record) {
2953  DeclContext *Owner = Record->getDeclContext();
2954
2955  // Diagnose whether this anonymous struct/union is an extension.
2956  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2957    Diag(Record->getLocation(), diag::ext_anonymous_union);
2958  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2959    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2960  else if (!Record->isUnion() && !getLangOpts().C11)
2961    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2962
2963  // C and C++ require different kinds of checks for anonymous
2964  // structs/unions.
2965  bool Invalid = false;
2966  if (getLangOpts().CPlusPlus) {
2967    const char* PrevSpec = 0;
2968    unsigned DiagID;
2969    if (Record->isUnion()) {
2970      // C++ [class.union]p6:
2971      //   Anonymous unions declared in a named namespace or in the
2972      //   global namespace shall be declared static.
2973      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2974          (isa<TranslationUnitDecl>(Owner) ||
2975           (isa<NamespaceDecl>(Owner) &&
2976            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2977        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2978          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2979
2980        // Recover by adding 'static'.
2981        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2982                               PrevSpec, DiagID);
2983      }
2984      // C++ [class.union]p6:
2985      //   A storage class is not allowed in a declaration of an
2986      //   anonymous union in a class scope.
2987      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2988               isa<RecordDecl>(Owner)) {
2989        Diag(DS.getStorageClassSpecLoc(),
2990             diag::err_anonymous_union_with_storage_spec)
2991          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2992
2993        // Recover by removing the storage specifier.
2994        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2995                               SourceLocation(),
2996                               PrevSpec, DiagID);
2997      }
2998    }
2999
3000    // Ignore const/volatile/restrict qualifiers.
3001    if (DS.getTypeQualifiers()) {
3002      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3003        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3004          << Record->isUnion() << 0
3005          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3006      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3007        Diag(DS.getVolatileSpecLoc(),
3008             diag::ext_anonymous_struct_union_qualified)
3009          << Record->isUnion() << 1
3010          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3011      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3012        Diag(DS.getRestrictSpecLoc(),
3013             diag::ext_anonymous_struct_union_qualified)
3014          << Record->isUnion() << 2
3015          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3016
3017      DS.ClearTypeQualifiers();
3018    }
3019
3020    // C++ [class.union]p2:
3021    //   The member-specification of an anonymous union shall only
3022    //   define non-static data members. [Note: nested types and
3023    //   functions cannot be declared within an anonymous union. ]
3024    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3025                                 MemEnd = Record->decls_end();
3026         Mem != MemEnd; ++Mem) {
3027      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3028        // C++ [class.union]p3:
3029        //   An anonymous union shall not have private or protected
3030        //   members (clause 11).
3031        assert(FD->getAccess() != AS_none);
3032        if (FD->getAccess() != AS_public) {
3033          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3034            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3035          Invalid = true;
3036        }
3037
3038        // C++ [class.union]p1
3039        //   An object of a class with a non-trivial constructor, a non-trivial
3040        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3041        //   assignment operator cannot be a member of a union, nor can an
3042        //   array of such objects.
3043        if (CheckNontrivialField(FD))
3044          Invalid = true;
3045      } else if ((*Mem)->isImplicit()) {
3046        // Any implicit members are fine.
3047      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3048        // This is a type that showed up in an
3049        // elaborated-type-specifier inside the anonymous struct or
3050        // union, but which actually declares a type outside of the
3051        // anonymous struct or union. It's okay.
3052      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3053        if (!MemRecord->isAnonymousStructOrUnion() &&
3054            MemRecord->getDeclName()) {
3055          // Visual C++ allows type definition in anonymous struct or union.
3056          if (getLangOpts().MicrosoftExt)
3057            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3058              << (int)Record->isUnion();
3059          else {
3060            // This is a nested type declaration.
3061            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3062              << (int)Record->isUnion();
3063            Invalid = true;
3064          }
3065        }
3066      } else if (isa<AccessSpecDecl>(*Mem)) {
3067        // Any access specifier is fine.
3068      } else {
3069        // We have something that isn't a non-static data
3070        // member. Complain about it.
3071        unsigned DK = diag::err_anonymous_record_bad_member;
3072        if (isa<TypeDecl>(*Mem))
3073          DK = diag::err_anonymous_record_with_type;
3074        else if (isa<FunctionDecl>(*Mem))
3075          DK = diag::err_anonymous_record_with_function;
3076        else if (isa<VarDecl>(*Mem))
3077          DK = diag::err_anonymous_record_with_static;
3078
3079        // Visual C++ allows type definition in anonymous struct or union.
3080        if (getLangOpts().MicrosoftExt &&
3081            DK == diag::err_anonymous_record_with_type)
3082          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3083            << (int)Record->isUnion();
3084        else {
3085          Diag((*Mem)->getLocation(), DK)
3086              << (int)Record->isUnion();
3087          Invalid = true;
3088        }
3089      }
3090    }
3091  }
3092
3093  if (!Record->isUnion() && !Owner->isRecord()) {
3094    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3095      << (int)getLangOpts().CPlusPlus;
3096    Invalid = true;
3097  }
3098
3099  // Mock up a declarator.
3100  Declarator Dc(DS, Declarator::MemberContext);
3101  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3102  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3103
3104  // Create a declaration for this anonymous struct/union.
3105  NamedDecl *Anon = 0;
3106  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3107    Anon = FieldDecl::Create(Context, OwningClass,
3108                             DS.getLocStart(),
3109                             Record->getLocation(),
3110                             /*IdentifierInfo=*/0,
3111                             Context.getTypeDeclType(Record),
3112                             TInfo,
3113                             /*BitWidth=*/0, /*Mutable=*/false,
3114                             /*InitStyle=*/ICIS_NoInit);
3115    Anon->setAccess(AS);
3116    if (getLangOpts().CPlusPlus)
3117      FieldCollector->Add(cast<FieldDecl>(Anon));
3118  } else {
3119    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3120    assert(SCSpec != DeclSpec::SCS_typedef &&
3121           "Parser allowed 'typedef' as storage class VarDecl.");
3122    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3123    if (SCSpec == DeclSpec::SCS_mutable) {
3124      // mutable can only appear on non-static class members, so it's always
3125      // an error here
3126      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3127      Invalid = true;
3128      SC = SC_None;
3129    }
3130    SCSpec = DS.getStorageClassSpecAsWritten();
3131    VarDecl::StorageClass SCAsWritten
3132      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3133
3134    Anon = VarDecl::Create(Context, Owner,
3135                           DS.getLocStart(),
3136                           Record->getLocation(), /*IdentifierInfo=*/0,
3137                           Context.getTypeDeclType(Record),
3138                           TInfo, SC, SCAsWritten);
3139
3140    // Default-initialize the implicit variable. This initialization will be
3141    // trivial in almost all cases, except if a union member has an in-class
3142    // initializer:
3143    //   union { int n = 0; };
3144    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3145  }
3146  Anon->setImplicit();
3147
3148  // Add the anonymous struct/union object to the current
3149  // context. We'll be referencing this object when we refer to one of
3150  // its members.
3151  Owner->addDecl(Anon);
3152
3153  // Inject the members of the anonymous struct/union into the owning
3154  // context and into the identifier resolver chain for name lookup
3155  // purposes.
3156  SmallVector<NamedDecl*, 2> Chain;
3157  Chain.push_back(Anon);
3158
3159  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3160                                          Chain, false))
3161    Invalid = true;
3162
3163  // Mark this as an anonymous struct/union type. Note that we do not
3164  // do this until after we have already checked and injected the
3165  // members of this anonymous struct/union type, because otherwise
3166  // the members could be injected twice: once by DeclContext when it
3167  // builds its lookup table, and once by
3168  // InjectAnonymousStructOrUnionMembers.
3169  Record->setAnonymousStructOrUnion(true);
3170
3171  if (Invalid)
3172    Anon->setInvalidDecl();
3173
3174  return Anon;
3175}
3176
3177/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3178/// Microsoft C anonymous structure.
3179/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3180/// Example:
3181///
3182/// struct A { int a; };
3183/// struct B { struct A; int b; };
3184///
3185/// void foo() {
3186///   B var;
3187///   var.a = 3;
3188/// }
3189///
3190Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3191                                           RecordDecl *Record) {
3192
3193  // If there is no Record, get the record via the typedef.
3194  if (!Record)
3195    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3196
3197  // Mock up a declarator.
3198  Declarator Dc(DS, Declarator::TypeNameContext);
3199  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3200  assert(TInfo && "couldn't build declarator info for anonymous struct");
3201
3202  // Create a declaration for this anonymous struct.
3203  NamedDecl* Anon = FieldDecl::Create(Context,
3204                             cast<RecordDecl>(CurContext),
3205                             DS.getLocStart(),
3206                             DS.getLocStart(),
3207                             /*IdentifierInfo=*/0,
3208                             Context.getTypeDeclType(Record),
3209                             TInfo,
3210                             /*BitWidth=*/0, /*Mutable=*/false,
3211                             /*InitStyle=*/ICIS_NoInit);
3212  Anon->setImplicit();
3213
3214  // Add the anonymous struct object to the current context.
3215  CurContext->addDecl(Anon);
3216
3217  // Inject the members of the anonymous struct into the current
3218  // context and into the identifier resolver chain for name lookup
3219  // purposes.
3220  SmallVector<NamedDecl*, 2> Chain;
3221  Chain.push_back(Anon);
3222
3223  RecordDecl *RecordDef = Record->getDefinition();
3224  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3225                                                        RecordDef, AS_none,
3226                                                        Chain, true))
3227    Anon->setInvalidDecl();
3228
3229  return Anon;
3230}
3231
3232/// GetNameForDeclarator - Determine the full declaration name for the
3233/// given Declarator.
3234DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3235  return GetNameFromUnqualifiedId(D.getName());
3236}
3237
3238/// \brief Retrieves the declaration name from a parsed unqualified-id.
3239DeclarationNameInfo
3240Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3241  DeclarationNameInfo NameInfo;
3242  NameInfo.setLoc(Name.StartLocation);
3243
3244  switch (Name.getKind()) {
3245
3246  case UnqualifiedId::IK_ImplicitSelfParam:
3247  case UnqualifiedId::IK_Identifier:
3248    NameInfo.setName(Name.Identifier);
3249    NameInfo.setLoc(Name.StartLocation);
3250    return NameInfo;
3251
3252  case UnqualifiedId::IK_OperatorFunctionId:
3253    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3254                                           Name.OperatorFunctionId.Operator));
3255    NameInfo.setLoc(Name.StartLocation);
3256    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3257      = Name.OperatorFunctionId.SymbolLocations[0];
3258    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3259      = Name.EndLocation.getRawEncoding();
3260    return NameInfo;
3261
3262  case UnqualifiedId::IK_LiteralOperatorId:
3263    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3264                                                           Name.Identifier));
3265    NameInfo.setLoc(Name.StartLocation);
3266    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3267    return NameInfo;
3268
3269  case UnqualifiedId::IK_ConversionFunctionId: {
3270    TypeSourceInfo *TInfo;
3271    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3272    if (Ty.isNull())
3273      return DeclarationNameInfo();
3274    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3275                                               Context.getCanonicalType(Ty)));
3276    NameInfo.setLoc(Name.StartLocation);
3277    NameInfo.setNamedTypeInfo(TInfo);
3278    return NameInfo;
3279  }
3280
3281  case UnqualifiedId::IK_ConstructorName: {
3282    TypeSourceInfo *TInfo;
3283    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3284    if (Ty.isNull())
3285      return DeclarationNameInfo();
3286    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3287                                              Context.getCanonicalType(Ty)));
3288    NameInfo.setLoc(Name.StartLocation);
3289    NameInfo.setNamedTypeInfo(TInfo);
3290    return NameInfo;
3291  }
3292
3293  case UnqualifiedId::IK_ConstructorTemplateId: {
3294    // In well-formed code, we can only have a constructor
3295    // template-id that refers to the current context, so go there
3296    // to find the actual type being constructed.
3297    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3298    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3299      return DeclarationNameInfo();
3300
3301    // Determine the type of the class being constructed.
3302    QualType CurClassType = Context.getTypeDeclType(CurClass);
3303
3304    // FIXME: Check two things: that the template-id names the same type as
3305    // CurClassType, and that the template-id does not occur when the name
3306    // was qualified.
3307
3308    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3309                                    Context.getCanonicalType(CurClassType)));
3310    NameInfo.setLoc(Name.StartLocation);
3311    // FIXME: should we retrieve TypeSourceInfo?
3312    NameInfo.setNamedTypeInfo(0);
3313    return NameInfo;
3314  }
3315
3316  case UnqualifiedId::IK_DestructorName: {
3317    TypeSourceInfo *TInfo;
3318    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3319    if (Ty.isNull())
3320      return DeclarationNameInfo();
3321    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3322                                              Context.getCanonicalType(Ty)));
3323    NameInfo.setLoc(Name.StartLocation);
3324    NameInfo.setNamedTypeInfo(TInfo);
3325    return NameInfo;
3326  }
3327
3328  case UnqualifiedId::IK_TemplateId: {
3329    TemplateName TName = Name.TemplateId->Template.get();
3330    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3331    return Context.getNameForTemplate(TName, TNameLoc);
3332  }
3333
3334  } // switch (Name.getKind())
3335
3336  llvm_unreachable("Unknown name kind");
3337}
3338
3339static QualType getCoreType(QualType Ty) {
3340  do {
3341    if (Ty->isPointerType() || Ty->isReferenceType())
3342      Ty = Ty->getPointeeType();
3343    else if (Ty->isArrayType())
3344      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3345    else
3346      return Ty.withoutLocalFastQualifiers();
3347  } while (true);
3348}
3349
3350/// hasSimilarParameters - Determine whether the C++ functions Declaration
3351/// and Definition have "nearly" matching parameters. This heuristic is
3352/// used to improve diagnostics in the case where an out-of-line function
3353/// definition doesn't match any declaration within the class or namespace.
3354/// Also sets Params to the list of indices to the parameters that differ
3355/// between the declaration and the definition. If hasSimilarParameters
3356/// returns true and Params is empty, then all of the parameters match.
3357static bool hasSimilarParameters(ASTContext &Context,
3358                                     FunctionDecl *Declaration,
3359                                     FunctionDecl *Definition,
3360                                     llvm::SmallVectorImpl<unsigned> &Params) {
3361  Params.clear();
3362  if (Declaration->param_size() != Definition->param_size())
3363    return false;
3364  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3365    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3366    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3367
3368    // The parameter types are identical
3369    if (Context.hasSameType(DefParamTy, DeclParamTy))
3370      continue;
3371
3372    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3373    QualType DefParamBaseTy = getCoreType(DefParamTy);
3374    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3375    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3376
3377    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3378        (DeclTyName && DeclTyName == DefTyName))
3379      Params.push_back(Idx);
3380    else  // The two parameters aren't even close
3381      return false;
3382  }
3383
3384  return true;
3385}
3386
3387/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3388/// declarator needs to be rebuilt in the current instantiation.
3389/// Any bits of declarator which appear before the name are valid for
3390/// consideration here.  That's specifically the type in the decl spec
3391/// and the base type in any member-pointer chunks.
3392static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3393                                                    DeclarationName Name) {
3394  // The types we specifically need to rebuild are:
3395  //   - typenames, typeofs, and decltypes
3396  //   - types which will become injected class names
3397  // Of course, we also need to rebuild any type referencing such a
3398  // type.  It's safest to just say "dependent", but we call out a
3399  // few cases here.
3400
3401  DeclSpec &DS = D.getMutableDeclSpec();
3402  switch (DS.getTypeSpecType()) {
3403  case DeclSpec::TST_typename:
3404  case DeclSpec::TST_typeofType:
3405  case DeclSpec::TST_decltype:
3406  case DeclSpec::TST_underlyingType:
3407  case DeclSpec::TST_atomic: {
3408    // Grab the type from the parser.
3409    TypeSourceInfo *TSI = 0;
3410    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3411    if (T.isNull() || !T->isDependentType()) break;
3412
3413    // Make sure there's a type source info.  This isn't really much
3414    // of a waste; most dependent types should have type source info
3415    // attached already.
3416    if (!TSI)
3417      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3418
3419    // Rebuild the type in the current instantiation.
3420    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3421    if (!TSI) return true;
3422
3423    // Store the new type back in the decl spec.
3424    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3425    DS.UpdateTypeRep(LocType);
3426    break;
3427  }
3428
3429  case DeclSpec::TST_typeofExpr: {
3430    Expr *E = DS.getRepAsExpr();
3431    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3432    if (Result.isInvalid()) return true;
3433    DS.UpdateExprRep(Result.get());
3434    break;
3435  }
3436
3437  default:
3438    // Nothing to do for these decl specs.
3439    break;
3440  }
3441
3442  // It doesn't matter what order we do this in.
3443  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3444    DeclaratorChunk &Chunk = D.getTypeObject(I);
3445
3446    // The only type information in the declarator which can come
3447    // before the declaration name is the base type of a member
3448    // pointer.
3449    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3450      continue;
3451
3452    // Rebuild the scope specifier in-place.
3453    CXXScopeSpec &SS = Chunk.Mem.Scope();
3454    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3455      return true;
3456  }
3457
3458  return false;
3459}
3460
3461Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3462  D.setFunctionDefinitionKind(FDK_Declaration);
3463  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3464
3465  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3466      Dcl && Dcl->getDeclContext()->isFileContext())
3467    Dcl->setTopLevelDeclInObjCContainer();
3468
3469  return Dcl;
3470}
3471
3472/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3473///   If T is the name of a class, then each of the following shall have a
3474///   name different from T:
3475///     - every static data member of class T;
3476///     - every member function of class T
3477///     - every member of class T that is itself a type;
3478/// \returns true if the declaration name violates these rules.
3479bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3480                                   DeclarationNameInfo NameInfo) {
3481  DeclarationName Name = NameInfo.getName();
3482
3483  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3484    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3485      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3486      return true;
3487    }
3488
3489  return false;
3490}
3491
3492/// \brief Diagnose a declaration whose declarator-id has the given
3493/// nested-name-specifier.
3494///
3495/// \param SS The nested-name-specifier of the declarator-id.
3496///
3497/// \param DC The declaration context to which the nested-name-specifier
3498/// resolves.
3499///
3500/// \param Name The name of the entity being declared.
3501///
3502/// \param Loc The location of the name of the entity being declared.
3503///
3504/// \returns true if we cannot safely recover from this error, false otherwise.
3505bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3506                                        DeclarationName Name,
3507                                      SourceLocation Loc) {
3508  DeclContext *Cur = CurContext;
3509  while (isa<LinkageSpecDecl>(Cur))
3510    Cur = Cur->getParent();
3511
3512  // C++ [dcl.meaning]p1:
3513  //   A declarator-id shall not be qualified except for the definition
3514  //   of a member function (9.3) or static data member (9.4) outside of
3515  //   its class, the definition or explicit instantiation of a function
3516  //   or variable member of a namespace outside of its namespace, or the
3517  //   definition of an explicit specialization outside of its namespace,
3518  //   or the declaration of a friend function that is a member of
3519  //   another class or namespace (11.3). [...]
3520
3521  // The user provided a superfluous scope specifier that refers back to the
3522  // class or namespaces in which the entity is already declared.
3523  //
3524  // class X {
3525  //   void X::f();
3526  // };
3527  if (Cur->Equals(DC)) {
3528    Diag(Loc, diag::warn_member_extra_qualification)
3529      << Name << FixItHint::CreateRemoval(SS.getRange());
3530    SS.clear();
3531    return false;
3532  }
3533
3534  // Check whether the qualifying scope encloses the scope of the original
3535  // declaration.
3536  if (!Cur->Encloses(DC)) {
3537    if (Cur->isRecord())
3538      Diag(Loc, diag::err_member_qualification)
3539        << Name << SS.getRange();
3540    else if (isa<TranslationUnitDecl>(DC))
3541      Diag(Loc, diag::err_invalid_declarator_global_scope)
3542        << Name << SS.getRange();
3543    else if (isa<FunctionDecl>(Cur))
3544      Diag(Loc, diag::err_invalid_declarator_in_function)
3545        << Name << SS.getRange();
3546    else
3547      Diag(Loc, diag::err_invalid_declarator_scope)
3548      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3549
3550    return true;
3551  }
3552
3553  if (Cur->isRecord()) {
3554    // Cannot qualify members within a class.
3555    Diag(Loc, diag::err_member_qualification)
3556      << Name << SS.getRange();
3557    SS.clear();
3558
3559    // C++ constructors and destructors with incorrect scopes can break
3560    // our AST invariants by having the wrong underlying types. If
3561    // that's the case, then drop this declaration entirely.
3562    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3563         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3564        !Context.hasSameType(Name.getCXXNameType(),
3565                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3566      return true;
3567
3568    return false;
3569  }
3570
3571  // C++11 [dcl.meaning]p1:
3572  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3573  //   not begin with a decltype-specifer"
3574  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3575  while (SpecLoc.getPrefix())
3576    SpecLoc = SpecLoc.getPrefix();
3577  if (dyn_cast_or_null<DecltypeType>(
3578        SpecLoc.getNestedNameSpecifier()->getAsType()))
3579    Diag(Loc, diag::err_decltype_in_declarator)
3580      << SpecLoc.getTypeLoc().getSourceRange();
3581
3582  return false;
3583}
3584
3585Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3586                             MultiTemplateParamsArg TemplateParamLists) {
3587  // TODO: consider using NameInfo for diagnostic.
3588  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3589  DeclarationName Name = NameInfo.getName();
3590
3591  // All of these full declarators require an identifier.  If it doesn't have
3592  // one, the ParsedFreeStandingDeclSpec action should be used.
3593  if (!Name) {
3594    if (!D.isInvalidType())  // Reject this if we think it is valid.
3595      Diag(D.getDeclSpec().getLocStart(),
3596           diag::err_declarator_need_ident)
3597        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3598    return 0;
3599  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3600    return 0;
3601
3602  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3603  // we find one that is.
3604  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3605         (S->getFlags() & Scope::TemplateParamScope) != 0)
3606    S = S->getParent();
3607
3608  DeclContext *DC = CurContext;
3609  if (D.getCXXScopeSpec().isInvalid())
3610    D.setInvalidType();
3611  else if (D.getCXXScopeSpec().isSet()) {
3612    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3613                                        UPPC_DeclarationQualifier))
3614      return 0;
3615
3616    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3617    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3618    if (!DC) {
3619      // If we could not compute the declaration context, it's because the
3620      // declaration context is dependent but does not refer to a class,
3621      // class template, or class template partial specialization. Complain
3622      // and return early, to avoid the coming semantic disaster.
3623      Diag(D.getIdentifierLoc(),
3624           diag::err_template_qualified_declarator_no_match)
3625        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3626        << D.getCXXScopeSpec().getRange();
3627      return 0;
3628    }
3629    bool IsDependentContext = DC->isDependentContext();
3630
3631    if (!IsDependentContext &&
3632        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3633      return 0;
3634
3635    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3636      Diag(D.getIdentifierLoc(),
3637           diag::err_member_def_undefined_record)
3638        << Name << DC << D.getCXXScopeSpec().getRange();
3639      D.setInvalidType();
3640    } else if (!D.getDeclSpec().isFriendSpecified()) {
3641      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3642                                      Name, D.getIdentifierLoc())) {
3643        if (DC->isRecord())
3644          return 0;
3645
3646        D.setInvalidType();
3647      }
3648    }
3649
3650    // Check whether we need to rebuild the type of the given
3651    // declaration in the current instantiation.
3652    if (EnteringContext && IsDependentContext &&
3653        TemplateParamLists.size() != 0) {
3654      ContextRAII SavedContext(*this, DC);
3655      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3656        D.setInvalidType();
3657    }
3658  }
3659
3660  if (DiagnoseClassNameShadow(DC, NameInfo))
3661    // If this is a typedef, we'll end up spewing multiple diagnostics.
3662    // Just return early; it's safer.
3663    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3664      return 0;
3665
3666  NamedDecl *New;
3667
3668  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3669  QualType R = TInfo->getType();
3670
3671  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3672                                      UPPC_DeclarationType))
3673    D.setInvalidType();
3674
3675  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3676                        ForRedeclaration);
3677
3678  // See if this is a redefinition of a variable in the same scope.
3679  if (!D.getCXXScopeSpec().isSet()) {
3680    bool IsLinkageLookup = false;
3681
3682    // If the declaration we're planning to build will be a function
3683    // or object with linkage, then look for another declaration with
3684    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3685    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3686      /* Do nothing*/;
3687    else if (R->isFunctionType()) {
3688      if (CurContext->isFunctionOrMethod() ||
3689          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3690        IsLinkageLookup = true;
3691    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3692      IsLinkageLookup = true;
3693    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3694             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3695      IsLinkageLookup = true;
3696
3697    if (IsLinkageLookup)
3698      Previous.clear(LookupRedeclarationWithLinkage);
3699
3700    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3701  } else { // Something like "int foo::x;"
3702    LookupQualifiedName(Previous, DC);
3703
3704    // C++ [dcl.meaning]p1:
3705    //   When the declarator-id is qualified, the declaration shall refer to a
3706    //  previously declared member of the class or namespace to which the
3707    //  qualifier refers (or, in the case of a namespace, of an element of the
3708    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3709    //  thereof; [...]
3710    //
3711    // Note that we already checked the context above, and that we do not have
3712    // enough information to make sure that Previous contains the declaration
3713    // we want to match. For example, given:
3714    //
3715    //   class X {
3716    //     void f();
3717    //     void f(float);
3718    //   };
3719    //
3720    //   void X::f(int) { } // ill-formed
3721    //
3722    // In this case, Previous will point to the overload set
3723    // containing the two f's declared in X, but neither of them
3724    // matches.
3725
3726    // C++ [dcl.meaning]p1:
3727    //   [...] the member shall not merely have been introduced by a
3728    //   using-declaration in the scope of the class or namespace nominated by
3729    //   the nested-name-specifier of the declarator-id.
3730    RemoveUsingDecls(Previous);
3731  }
3732
3733  if (Previous.isSingleResult() &&
3734      Previous.getFoundDecl()->isTemplateParameter()) {
3735    // Maybe we will complain about the shadowed template parameter.
3736    if (!D.isInvalidType())
3737      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3738                                      Previous.getFoundDecl());
3739
3740    // Just pretend that we didn't see the previous declaration.
3741    Previous.clear();
3742  }
3743
3744  // In C++, the previous declaration we find might be a tag type
3745  // (class or enum). In this case, the new declaration will hide the
3746  // tag type. Note that this does does not apply if we're declaring a
3747  // typedef (C++ [dcl.typedef]p4).
3748  if (Previous.isSingleTagDecl() &&
3749      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3750    Previous.clear();
3751
3752  bool AddToScope = true;
3753  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3754    if (TemplateParamLists.size()) {
3755      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3756      return 0;
3757    }
3758
3759    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3760  } else if (R->isFunctionType()) {
3761    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3762                                  TemplateParamLists,
3763                                  AddToScope);
3764  } else {
3765    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3766                                  TemplateParamLists);
3767  }
3768
3769  if (New == 0)
3770    return 0;
3771
3772  // If this has an identifier and is not an invalid redeclaration or
3773  // function template specialization, add it to the scope stack.
3774  if (New->getDeclName() && AddToScope &&
3775       !(D.isRedeclaration() && New->isInvalidDecl()))
3776    PushOnScopeChains(New, S);
3777
3778  return New;
3779}
3780
3781/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3782/// types into constant array types in certain situations which would otherwise
3783/// be errors (for GCC compatibility).
3784static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3785                                                    ASTContext &Context,
3786                                                    bool &SizeIsNegative,
3787                                                    llvm::APSInt &Oversized) {
3788  // This method tries to turn a variable array into a constant
3789  // array even when the size isn't an ICE.  This is necessary
3790  // for compatibility with code that depends on gcc's buggy
3791  // constant expression folding, like struct {char x[(int)(char*)2];}
3792  SizeIsNegative = false;
3793  Oversized = 0;
3794
3795  if (T->isDependentType())
3796    return QualType();
3797
3798  QualifierCollector Qs;
3799  const Type *Ty = Qs.strip(T);
3800
3801  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3802    QualType Pointee = PTy->getPointeeType();
3803    QualType FixedType =
3804        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3805                                            Oversized);
3806    if (FixedType.isNull()) return FixedType;
3807    FixedType = Context.getPointerType(FixedType);
3808    return Qs.apply(Context, FixedType);
3809  }
3810  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3811    QualType Inner = PTy->getInnerType();
3812    QualType FixedType =
3813        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3814                                            Oversized);
3815    if (FixedType.isNull()) return FixedType;
3816    FixedType = Context.getParenType(FixedType);
3817    return Qs.apply(Context, FixedType);
3818  }
3819
3820  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3821  if (!VLATy)
3822    return QualType();
3823  // FIXME: We should probably handle this case
3824  if (VLATy->getElementType()->isVariablyModifiedType())
3825    return QualType();
3826
3827  llvm::APSInt Res;
3828  if (!VLATy->getSizeExpr() ||
3829      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3830    return QualType();
3831
3832  // Check whether the array size is negative.
3833  if (Res.isSigned() && Res.isNegative()) {
3834    SizeIsNegative = true;
3835    return QualType();
3836  }
3837
3838  // Check whether the array is too large to be addressed.
3839  unsigned ActiveSizeBits
3840    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3841                                              Res);
3842  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3843    Oversized = Res;
3844    return QualType();
3845  }
3846
3847  return Context.getConstantArrayType(VLATy->getElementType(),
3848                                      Res, ArrayType::Normal, 0);
3849}
3850
3851/// \brief Register the given locally-scoped external C declaration so
3852/// that it can be found later for redeclarations
3853void
3854Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3855                                       const LookupResult &Previous,
3856                                       Scope *S) {
3857  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3858         "Decl is not a locally-scoped decl!");
3859  // Note that we have a locally-scoped external with this name.
3860  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3861
3862  if (!Previous.isSingleResult())
3863    return;
3864
3865  NamedDecl *PrevDecl = Previous.getFoundDecl();
3866
3867  // If there was a previous declaration of this variable, it may be
3868  // in our identifier chain. Update the identifier chain with the new
3869  // declaration.
3870  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3871    // The previous declaration was found on the identifer resolver
3872    // chain, so remove it from its scope.
3873
3874    if (S->isDeclScope(PrevDecl)) {
3875      // Special case for redeclarations in the SAME scope.
3876      // Because this declaration is going to be added to the identifier chain
3877      // later, we should temporarily take it OFF the chain.
3878      IdResolver.RemoveDecl(ND);
3879
3880    } else {
3881      // Find the scope for the original declaration.
3882      while (S && !S->isDeclScope(PrevDecl))
3883        S = S->getParent();
3884    }
3885
3886    if (S)
3887      S->RemoveDecl(PrevDecl);
3888  }
3889}
3890
3891llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3892Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3893  if (ExternalSource) {
3894    // Load locally-scoped external decls from the external source.
3895    SmallVector<NamedDecl *, 4> Decls;
3896    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3897    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3898      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3899        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3900      if (Pos == LocallyScopedExternalDecls.end())
3901        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3902    }
3903  }
3904
3905  return LocallyScopedExternalDecls.find(Name);
3906}
3907
3908/// \brief Diagnose function specifiers on a declaration of an identifier that
3909/// does not identify a function.
3910void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3911  // FIXME: We should probably indicate the identifier in question to avoid
3912  // confusion for constructs like "inline int a(), b;"
3913  if (D.getDeclSpec().isInlineSpecified())
3914    Diag(D.getDeclSpec().getInlineSpecLoc(),
3915         diag::err_inline_non_function);
3916
3917  if (D.getDeclSpec().isVirtualSpecified())
3918    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3919         diag::err_virtual_non_function);
3920
3921  if (D.getDeclSpec().isExplicitSpecified())
3922    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3923         diag::err_explicit_non_function);
3924}
3925
3926NamedDecl*
3927Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3928                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3929  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3930  if (D.getCXXScopeSpec().isSet()) {
3931    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3932      << D.getCXXScopeSpec().getRange();
3933    D.setInvalidType();
3934    // Pretend we didn't see the scope specifier.
3935    DC = CurContext;
3936    Previous.clear();
3937  }
3938
3939  if (getLangOpts().CPlusPlus) {
3940    // Check that there are no default arguments (C++ only).
3941    CheckExtraCXXDefaultArguments(D);
3942  }
3943
3944  DiagnoseFunctionSpecifiers(D);
3945
3946  if (D.getDeclSpec().isThreadSpecified())
3947    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3948  if (D.getDeclSpec().isConstexprSpecified())
3949    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3950      << 1;
3951
3952  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3953    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3954      << D.getName().getSourceRange();
3955    return 0;
3956  }
3957
3958  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3959  if (!NewTD) return 0;
3960
3961  // Handle attributes prior to checking for duplicates in MergeVarDecl
3962  ProcessDeclAttributes(S, NewTD, D);
3963
3964  CheckTypedefForVariablyModifiedType(S, NewTD);
3965
3966  bool Redeclaration = D.isRedeclaration();
3967  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3968  D.setRedeclaration(Redeclaration);
3969  return ND;
3970}
3971
3972void
3973Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3974  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3975  // then it shall have block scope.
3976  // Note that variably modified types must be fixed before merging the decl so
3977  // that redeclarations will match.
3978  QualType T = NewTD->getUnderlyingType();
3979  if (T->isVariablyModifiedType()) {
3980    getCurFunction()->setHasBranchProtectedScope();
3981
3982    if (S->getFnParent() == 0) {
3983      bool SizeIsNegative;
3984      llvm::APSInt Oversized;
3985      QualType FixedTy =
3986          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3987                                              Oversized);
3988      if (!FixedTy.isNull()) {
3989        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3990        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3991      } else {
3992        if (SizeIsNegative)
3993          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3994        else if (T->isVariableArrayType())
3995          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3996        else if (Oversized.getBoolValue())
3997          Diag(NewTD->getLocation(), diag::err_array_too_large)
3998            << Oversized.toString(10);
3999        else
4000          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4001        NewTD->setInvalidDecl();
4002      }
4003    }
4004  }
4005}
4006
4007
4008/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4009/// declares a typedef-name, either using the 'typedef' type specifier or via
4010/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4011NamedDecl*
4012Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4013                           LookupResult &Previous, bool &Redeclaration) {
4014  // Merge the decl with the existing one if appropriate. If the decl is
4015  // in an outer scope, it isn't the same thing.
4016  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4017                       /*ExplicitInstantiationOrSpecialization=*/false);
4018  if (!Previous.empty()) {
4019    Redeclaration = true;
4020    MergeTypedefNameDecl(NewTD, Previous);
4021  }
4022
4023  // If this is the C FILE type, notify the AST context.
4024  if (IdentifierInfo *II = NewTD->getIdentifier())
4025    if (!NewTD->isInvalidDecl() &&
4026        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4027      if (II->isStr("FILE"))
4028        Context.setFILEDecl(NewTD);
4029      else if (II->isStr("jmp_buf"))
4030        Context.setjmp_bufDecl(NewTD);
4031      else if (II->isStr("sigjmp_buf"))
4032        Context.setsigjmp_bufDecl(NewTD);
4033      else if (II->isStr("ucontext_t"))
4034        Context.setucontext_tDecl(NewTD);
4035    }
4036
4037  return NewTD;
4038}
4039
4040/// \brief Determines whether the given declaration is an out-of-scope
4041/// previous declaration.
4042///
4043/// This routine should be invoked when name lookup has found a
4044/// previous declaration (PrevDecl) that is not in the scope where a
4045/// new declaration by the same name is being introduced. If the new
4046/// declaration occurs in a local scope, previous declarations with
4047/// linkage may still be considered previous declarations (C99
4048/// 6.2.2p4-5, C++ [basic.link]p6).
4049///
4050/// \param PrevDecl the previous declaration found by name
4051/// lookup
4052///
4053/// \param DC the context in which the new declaration is being
4054/// declared.
4055///
4056/// \returns true if PrevDecl is an out-of-scope previous declaration
4057/// for a new delcaration with the same name.
4058static bool
4059isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4060                                ASTContext &Context) {
4061  if (!PrevDecl)
4062    return false;
4063
4064  if (!PrevDecl->hasLinkage())
4065    return false;
4066
4067  if (Context.getLangOpts().CPlusPlus) {
4068    // C++ [basic.link]p6:
4069    //   If there is a visible declaration of an entity with linkage
4070    //   having the same name and type, ignoring entities declared
4071    //   outside the innermost enclosing namespace scope, the block
4072    //   scope declaration declares that same entity and receives the
4073    //   linkage of the previous declaration.
4074    DeclContext *OuterContext = DC->getRedeclContext();
4075    if (!OuterContext->isFunctionOrMethod())
4076      // This rule only applies to block-scope declarations.
4077      return false;
4078
4079    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4080    if (PrevOuterContext->isRecord())
4081      // We found a member function: ignore it.
4082      return false;
4083
4084    // Find the innermost enclosing namespace for the new and
4085    // previous declarations.
4086    OuterContext = OuterContext->getEnclosingNamespaceContext();
4087    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4088
4089    // The previous declaration is in a different namespace, so it
4090    // isn't the same function.
4091    if (!OuterContext->Equals(PrevOuterContext))
4092      return false;
4093  }
4094
4095  return true;
4096}
4097
4098static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4099  CXXScopeSpec &SS = D.getCXXScopeSpec();
4100  if (!SS.isSet()) return;
4101  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4102}
4103
4104bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4105  QualType type = decl->getType();
4106  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4107  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4108    // Various kinds of declaration aren't allowed to be __autoreleasing.
4109    unsigned kind = -1U;
4110    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4111      if (var->hasAttr<BlocksAttr>())
4112        kind = 0; // __block
4113      else if (!var->hasLocalStorage())
4114        kind = 1; // global
4115    } else if (isa<ObjCIvarDecl>(decl)) {
4116      kind = 3; // ivar
4117    } else if (isa<FieldDecl>(decl)) {
4118      kind = 2; // field
4119    }
4120
4121    if (kind != -1U) {
4122      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4123        << kind;
4124    }
4125  } else if (lifetime == Qualifiers::OCL_None) {
4126    // Try to infer lifetime.
4127    if (!type->isObjCLifetimeType())
4128      return false;
4129
4130    lifetime = type->getObjCARCImplicitLifetime();
4131    type = Context.getLifetimeQualifiedType(type, lifetime);
4132    decl->setType(type);
4133  }
4134
4135  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4136    // Thread-local variables cannot have lifetime.
4137    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4138        var->isThreadSpecified()) {
4139      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4140        << var->getType();
4141      return true;
4142    }
4143  }
4144
4145  return false;
4146}
4147
4148NamedDecl*
4149Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4150                              TypeSourceInfo *TInfo, LookupResult &Previous,
4151                              MultiTemplateParamsArg TemplateParamLists) {
4152  QualType R = TInfo->getType();
4153  DeclarationName Name = GetNameForDeclarator(D).getName();
4154
4155  // Check that there are no default arguments (C++ only).
4156  if (getLangOpts().CPlusPlus)
4157    CheckExtraCXXDefaultArguments(D);
4158
4159  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4160  assert(SCSpec != DeclSpec::SCS_typedef &&
4161         "Parser allowed 'typedef' as storage class VarDecl.");
4162  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4163  if (SCSpec == DeclSpec::SCS_mutable) {
4164    // mutable can only appear on non-static class members, so it's always
4165    // an error here
4166    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4167    D.setInvalidType();
4168    SC = SC_None;
4169  }
4170  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4171  VarDecl::StorageClass SCAsWritten
4172    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4173
4174  IdentifierInfo *II = Name.getAsIdentifierInfo();
4175  if (!II) {
4176    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4177      << Name;
4178    return 0;
4179  }
4180
4181  DiagnoseFunctionSpecifiers(D);
4182
4183  if (!DC->isRecord() && S->getFnParent() == 0) {
4184    // C99 6.9p2: The storage-class specifiers auto and register shall not
4185    // appear in the declaration specifiers in an external declaration.
4186    if (SC == SC_Auto || SC == SC_Register) {
4187
4188      // If this is a register variable with an asm label specified, then this
4189      // is a GNU extension.
4190      if (SC == SC_Register && D.getAsmLabel())
4191        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4192      else
4193        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4194      D.setInvalidType();
4195    }
4196  }
4197
4198  if (getLangOpts().OpenCL) {
4199    // Set up the special work-group-local storage class for variables in the
4200    // OpenCL __local address space.
4201    if (R.getAddressSpace() == LangAS::opencl_local)
4202      SC = SC_OpenCLWorkGroupLocal;
4203  }
4204
4205  bool isExplicitSpecialization = false;
4206  VarDecl *NewVD;
4207  if (!getLangOpts().CPlusPlus) {
4208    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4209                            D.getIdentifierLoc(), II,
4210                            R, TInfo, SC, SCAsWritten);
4211
4212    if (D.isInvalidType())
4213      NewVD->setInvalidDecl();
4214  } else {
4215    if (DC->isRecord() && !CurContext->isRecord()) {
4216      // This is an out-of-line definition of a static data member.
4217      if (SC == SC_Static) {
4218        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4219             diag::err_static_out_of_line)
4220          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4221      } else if (SC == SC_None)
4222        SC = SC_Static;
4223    }
4224    if (SC == SC_Static && CurContext->isRecord()) {
4225      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4226        if (RD->isLocalClass())
4227          Diag(D.getIdentifierLoc(),
4228               diag::err_static_data_member_not_allowed_in_local_class)
4229            << Name << RD->getDeclName();
4230
4231        // C++98 [class.union]p1: If a union contains a static data member,
4232        // the program is ill-formed. C++11 drops this restriction.
4233        if (RD->isUnion())
4234          Diag(D.getIdentifierLoc(),
4235               getLangOpts().CPlusPlus0x
4236                 ? diag::warn_cxx98_compat_static_data_member_in_union
4237                 : diag::ext_static_data_member_in_union) << Name;
4238        // We conservatively disallow static data members in anonymous structs.
4239        else if (!RD->getDeclName())
4240          Diag(D.getIdentifierLoc(),
4241               diag::err_static_data_member_not_allowed_in_anon_struct)
4242            << Name << RD->isUnion();
4243      }
4244    }
4245
4246    // Match up the template parameter lists with the scope specifier, then
4247    // determine whether we have a template or a template specialization.
4248    isExplicitSpecialization = false;
4249    bool Invalid = false;
4250    if (TemplateParameterList *TemplateParams
4251        = MatchTemplateParametersToScopeSpecifier(
4252                                  D.getDeclSpec().getLocStart(),
4253                                                  D.getIdentifierLoc(),
4254                                                  D.getCXXScopeSpec(),
4255                                                  TemplateParamLists.data(),
4256                                                  TemplateParamLists.size(),
4257                                                  /*never a friend*/ false,
4258                                                  isExplicitSpecialization,
4259                                                  Invalid)) {
4260      if (TemplateParams->size() > 0) {
4261        // There is no such thing as a variable template.
4262        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4263          << II
4264          << SourceRange(TemplateParams->getTemplateLoc(),
4265                         TemplateParams->getRAngleLoc());
4266        return 0;
4267      } else {
4268        // There is an extraneous 'template<>' for this variable. Complain
4269        // about it, but allow the declaration of the variable.
4270        Diag(TemplateParams->getTemplateLoc(),
4271             diag::err_template_variable_noparams)
4272          << II
4273          << SourceRange(TemplateParams->getTemplateLoc(),
4274                         TemplateParams->getRAngleLoc());
4275      }
4276    }
4277
4278    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4279                            D.getIdentifierLoc(), II,
4280                            R, TInfo, SC, SCAsWritten);
4281
4282    // If this decl has an auto type in need of deduction, make a note of the
4283    // Decl so we can diagnose uses of it in its own initializer.
4284    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4285        R->getContainedAutoType())
4286      ParsingInitForAutoVars.insert(NewVD);
4287
4288    if (D.isInvalidType() || Invalid)
4289      NewVD->setInvalidDecl();
4290
4291    SetNestedNameSpecifier(NewVD, D);
4292
4293    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4294      NewVD->setTemplateParameterListsInfo(Context,
4295                                           TemplateParamLists.size(),
4296                                           TemplateParamLists.data());
4297    }
4298
4299    if (D.getDeclSpec().isConstexprSpecified())
4300      NewVD->setConstexpr(true);
4301  }
4302
4303  // Set the lexical context. If the declarator has a C++ scope specifier, the
4304  // lexical context will be different from the semantic context.
4305  NewVD->setLexicalDeclContext(CurContext);
4306
4307  if (D.getDeclSpec().isThreadSpecified()) {
4308    if (NewVD->hasLocalStorage())
4309      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4310    else if (!Context.getTargetInfo().isTLSSupported())
4311      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4312    else
4313      NewVD->setThreadSpecified(true);
4314  }
4315
4316  if (D.getDeclSpec().isModulePrivateSpecified()) {
4317    if (isExplicitSpecialization)
4318      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4319        << 2
4320        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4321    else if (NewVD->hasLocalStorage())
4322      Diag(NewVD->getLocation(), diag::err_module_private_local)
4323        << 0 << NewVD->getDeclName()
4324        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4325        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4326    else
4327      NewVD->setModulePrivate();
4328  }
4329
4330  // Handle attributes prior to checking for duplicates in MergeVarDecl
4331  ProcessDeclAttributes(S, NewVD, D);
4332
4333  if (getLangOpts().CUDA) {
4334    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4335    // storage [duration]."
4336    if (SC == SC_None && S->getFnParent() != 0 &&
4337       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4338      NewVD->setStorageClass(SC_Static);
4339  }
4340
4341  // In auto-retain/release, infer strong retension for variables of
4342  // retainable type.
4343  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4344    NewVD->setInvalidDecl();
4345
4346  // Handle GNU asm-label extension (encoded as an attribute).
4347  if (Expr *E = (Expr*)D.getAsmLabel()) {
4348    // The parser guarantees this is a string.
4349    StringLiteral *SE = cast<StringLiteral>(E);
4350    StringRef Label = SE->getString();
4351    if (S->getFnParent() != 0) {
4352      switch (SC) {
4353      case SC_None:
4354      case SC_Auto:
4355        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4356        break;
4357      case SC_Register:
4358        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4359          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4360        break;
4361      case SC_Static:
4362      case SC_Extern:
4363      case SC_PrivateExtern:
4364      case SC_OpenCLWorkGroupLocal:
4365        break;
4366      }
4367    }
4368
4369    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4370                                                Context, Label));
4371  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4372    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4373      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4374    if (I != ExtnameUndeclaredIdentifiers.end()) {
4375      NewVD->addAttr(I->second);
4376      ExtnameUndeclaredIdentifiers.erase(I);
4377    }
4378  }
4379
4380  // Diagnose shadowed variables before filtering for scope.
4381  if (!D.getCXXScopeSpec().isSet())
4382    CheckShadow(S, NewVD, Previous);
4383
4384  // Don't consider existing declarations that are in a different
4385  // scope and are out-of-semantic-context declarations (if the new
4386  // declaration has linkage).
4387  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4388                       isExplicitSpecialization);
4389
4390  if (!getLangOpts().CPlusPlus) {
4391    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4392  } else {
4393    // Merge the decl with the existing one if appropriate.
4394    if (!Previous.empty()) {
4395      if (Previous.isSingleResult() &&
4396          isa<FieldDecl>(Previous.getFoundDecl()) &&
4397          D.getCXXScopeSpec().isSet()) {
4398        // The user tried to define a non-static data member
4399        // out-of-line (C++ [dcl.meaning]p1).
4400        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4401          << D.getCXXScopeSpec().getRange();
4402        Previous.clear();
4403        NewVD->setInvalidDecl();
4404      }
4405    } else if (D.getCXXScopeSpec().isSet()) {
4406      // No previous declaration in the qualifying scope.
4407      Diag(D.getIdentifierLoc(), diag::err_no_member)
4408        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4409        << D.getCXXScopeSpec().getRange();
4410      NewVD->setInvalidDecl();
4411    }
4412
4413    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4414
4415    // This is an explicit specialization of a static data member. Check it.
4416    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4417        CheckMemberSpecialization(NewVD, Previous))
4418      NewVD->setInvalidDecl();
4419  }
4420
4421  // If this is a locally-scoped extern C variable, update the map of
4422  // such variables.
4423  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4424      !NewVD->isInvalidDecl())
4425    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4426
4427  // If there's a #pragma GCC visibility in scope, and this isn't a class
4428  // member, set the visibility of this variable.
4429  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4430    AddPushedVisibilityAttribute(NewVD);
4431
4432  MarkUnusedFileScopedDecl(NewVD);
4433
4434  return NewVD;
4435}
4436
4437/// \brief Diagnose variable or built-in function shadowing.  Implements
4438/// -Wshadow.
4439///
4440/// This method is called whenever a VarDecl is added to a "useful"
4441/// scope.
4442///
4443/// \param S the scope in which the shadowing name is being declared
4444/// \param R the lookup of the name
4445///
4446void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4447  // Return if warning is ignored.
4448  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4449        DiagnosticsEngine::Ignored)
4450    return;
4451
4452  // Don't diagnose declarations at file scope.
4453  if (D->hasGlobalStorage())
4454    return;
4455
4456  DeclContext *NewDC = D->getDeclContext();
4457
4458  // Only diagnose if we're shadowing an unambiguous field or variable.
4459  if (R.getResultKind() != LookupResult::Found)
4460    return;
4461
4462  NamedDecl* ShadowedDecl = R.getFoundDecl();
4463  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4464    return;
4465
4466  // Fields are not shadowed by variables in C++ static methods.
4467  if (isa<FieldDecl>(ShadowedDecl))
4468    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4469      if (MD->isStatic())
4470        return;
4471
4472  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4473    if (shadowedVar->isExternC()) {
4474      // For shadowing external vars, make sure that we point to the global
4475      // declaration, not a locally scoped extern declaration.
4476      for (VarDecl::redecl_iterator
4477             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4478           I != E; ++I)
4479        if (I->isFileVarDecl()) {
4480          ShadowedDecl = *I;
4481          break;
4482        }
4483    }
4484
4485  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4486
4487  // Only warn about certain kinds of shadowing for class members.
4488  if (NewDC && NewDC->isRecord()) {
4489    // In particular, don't warn about shadowing non-class members.
4490    if (!OldDC->isRecord())
4491      return;
4492
4493    // TODO: should we warn about static data members shadowing
4494    // static data members from base classes?
4495
4496    // TODO: don't diagnose for inaccessible shadowed members.
4497    // This is hard to do perfectly because we might friend the
4498    // shadowing context, but that's just a false negative.
4499  }
4500
4501  // Determine what kind of declaration we're shadowing.
4502  unsigned Kind;
4503  if (isa<RecordDecl>(OldDC)) {
4504    if (isa<FieldDecl>(ShadowedDecl))
4505      Kind = 3; // field
4506    else
4507      Kind = 2; // static data member
4508  } else if (OldDC->isFileContext())
4509    Kind = 1; // global
4510  else
4511    Kind = 0; // local
4512
4513  DeclarationName Name = R.getLookupName();
4514
4515  // Emit warning and note.
4516  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4517  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4518}
4519
4520/// \brief Check -Wshadow without the advantage of a previous lookup.
4521void Sema::CheckShadow(Scope *S, VarDecl *D) {
4522  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4523        DiagnosticsEngine::Ignored)
4524    return;
4525
4526  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4527                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4528  LookupName(R, S);
4529  CheckShadow(S, D, R);
4530}
4531
4532/// \brief Perform semantic checking on a newly-created variable
4533/// declaration.
4534///
4535/// This routine performs all of the type-checking required for a
4536/// variable declaration once it has been built. It is used both to
4537/// check variables after they have been parsed and their declarators
4538/// have been translated into a declaration, and to check variables
4539/// that have been instantiated from a template.
4540///
4541/// Sets NewVD->isInvalidDecl() if an error was encountered.
4542///
4543/// Returns true if the variable declaration is a redeclaration.
4544bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4545                                    LookupResult &Previous) {
4546  // If the decl is already known invalid, don't check it.
4547  if (NewVD->isInvalidDecl())
4548    return false;
4549
4550  QualType T = NewVD->getType();
4551
4552  if (T->isObjCObjectType()) {
4553    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4554      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4555    T = Context.getObjCObjectPointerType(T);
4556    NewVD->setType(T);
4557  }
4558
4559  // Emit an error if an address space was applied to decl with local storage.
4560  // This includes arrays of objects with address space qualifiers, but not
4561  // automatic variables that point to other address spaces.
4562  // ISO/IEC TR 18037 S5.1.2
4563  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4564    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4565    NewVD->setInvalidDecl();
4566    return false;
4567  }
4568
4569  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4570  // scope.
4571  if ((getLangOpts().OpenCLVersion >= 120)
4572      && NewVD->isStaticLocal()) {
4573    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4574    NewVD->setInvalidDecl();
4575    return false;
4576  }
4577
4578  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4579      && !NewVD->hasAttr<BlocksAttr>()) {
4580    if (getLangOpts().getGC() != LangOptions::NonGC)
4581      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4582    else
4583      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4584  }
4585
4586  bool isVM = T->isVariablyModifiedType();
4587  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4588      NewVD->hasAttr<BlocksAttr>())
4589    getCurFunction()->setHasBranchProtectedScope();
4590
4591  if ((isVM && NewVD->hasLinkage()) ||
4592      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4593    bool SizeIsNegative;
4594    llvm::APSInt Oversized;
4595    QualType FixedTy =
4596        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4597                                            Oversized);
4598
4599    if (FixedTy.isNull() && T->isVariableArrayType()) {
4600      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4601      // FIXME: This won't give the correct result for
4602      // int a[10][n];
4603      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4604
4605      if (NewVD->isFileVarDecl())
4606        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4607        << SizeRange;
4608      else if (NewVD->getStorageClass() == SC_Static)
4609        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4610        << SizeRange;
4611      else
4612        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4613        << SizeRange;
4614      NewVD->setInvalidDecl();
4615      return false;
4616    }
4617
4618    if (FixedTy.isNull()) {
4619      if (NewVD->isFileVarDecl())
4620        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4621      else
4622        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4623      NewVD->setInvalidDecl();
4624      return false;
4625    }
4626
4627    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4628    NewVD->setType(FixedTy);
4629  }
4630
4631  if (Previous.empty() && NewVD->isExternC()) {
4632    // Since we did not find anything by this name and we're declaring
4633    // an extern "C" variable, look for a non-visible extern "C"
4634    // declaration with the same name.
4635    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4636      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4637    if (Pos != LocallyScopedExternalDecls.end())
4638      Previous.addDecl(Pos->second);
4639  }
4640
4641  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4642    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4643      << T;
4644    NewVD->setInvalidDecl();
4645    return false;
4646  }
4647
4648  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4649    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4650    NewVD->setInvalidDecl();
4651    return false;
4652  }
4653
4654  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4655    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4656    NewVD->setInvalidDecl();
4657    return false;
4658  }
4659
4660  if (NewVD->isConstexpr() && !T->isDependentType() &&
4661      RequireLiteralType(NewVD->getLocation(), T,
4662                         diag::err_constexpr_var_non_literal)) {
4663    NewVD->setInvalidDecl();
4664    return false;
4665  }
4666
4667  if (!Previous.empty()) {
4668    MergeVarDecl(NewVD, Previous);
4669    return true;
4670  }
4671  return false;
4672}
4673
4674/// \brief Data used with FindOverriddenMethod
4675struct FindOverriddenMethodData {
4676  Sema *S;
4677  CXXMethodDecl *Method;
4678};
4679
4680/// \brief Member lookup function that determines whether a given C++
4681/// method overrides a method in a base class, to be used with
4682/// CXXRecordDecl::lookupInBases().
4683static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4684                                 CXXBasePath &Path,
4685                                 void *UserData) {
4686  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4687
4688  FindOverriddenMethodData *Data
4689    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4690
4691  DeclarationName Name = Data->Method->getDeclName();
4692
4693  // FIXME: Do we care about other names here too?
4694  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4695    // We really want to find the base class destructor here.
4696    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4697    CanQualType CT = Data->S->Context.getCanonicalType(T);
4698
4699    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4700  }
4701
4702  for (Path.Decls = BaseRecord->lookup(Name);
4703       Path.Decls.first != Path.Decls.second;
4704       ++Path.Decls.first) {
4705    NamedDecl *D = *Path.Decls.first;
4706    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4707      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4708        return true;
4709    }
4710  }
4711
4712  return false;
4713}
4714
4715/// AddOverriddenMethods - See if a method overrides any in the base classes,
4716/// and if so, check that it's a valid override and remember it.
4717bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4718  // Look for virtual methods in base classes that this method might override.
4719  CXXBasePaths Paths;
4720  FindOverriddenMethodData Data;
4721  Data.Method = MD;
4722  Data.S = this;
4723  bool AddedAny = false;
4724  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4725    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4726         E = Paths.found_decls_end(); I != E; ++I) {
4727      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4728        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4729        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4730            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4731            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4732          AddedAny = true;
4733        }
4734      }
4735    }
4736  }
4737
4738  return AddedAny;
4739}
4740
4741namespace {
4742  // Struct for holding all of the extra arguments needed by
4743  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4744  struct ActOnFDArgs {
4745    Scope *S;
4746    Declarator &D;
4747    MultiTemplateParamsArg TemplateParamLists;
4748    bool AddToScope;
4749  };
4750}
4751
4752namespace {
4753
4754// Callback to only accept typo corrections that have a non-zero edit distance.
4755// Also only accept corrections that have the same parent decl.
4756class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4757 public:
4758  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4759                            CXXRecordDecl *Parent)
4760      : Context(Context), OriginalFD(TypoFD),
4761        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4762
4763  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4764    if (candidate.getEditDistance() == 0)
4765      return false;
4766
4767    llvm::SmallVector<unsigned, 1> MismatchedParams;
4768    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4769                                          CDeclEnd = candidate.end();
4770         CDecl != CDeclEnd; ++CDecl) {
4771      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4772
4773      if (FD && !FD->hasBody() &&
4774          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4775        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4776          CXXRecordDecl *Parent = MD->getParent();
4777          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4778            return true;
4779        } else if (!ExpectedParent) {
4780          return true;
4781        }
4782      }
4783    }
4784
4785    return false;
4786  }
4787
4788 private:
4789  ASTContext &Context;
4790  FunctionDecl *OriginalFD;
4791  CXXRecordDecl *ExpectedParent;
4792};
4793
4794}
4795
4796/// \brief Generate diagnostics for an invalid function redeclaration.
4797///
4798/// This routine handles generating the diagnostic messages for an invalid
4799/// function redeclaration, including finding possible similar declarations
4800/// or performing typo correction if there are no previous declarations with
4801/// the same name.
4802///
4803/// Returns a NamedDecl iff typo correction was performed and substituting in
4804/// the new declaration name does not cause new errors.
4805static NamedDecl* DiagnoseInvalidRedeclaration(
4806    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4807    ActOnFDArgs &ExtraArgs) {
4808  NamedDecl *Result = NULL;
4809  DeclarationName Name = NewFD->getDeclName();
4810  DeclContext *NewDC = NewFD->getDeclContext();
4811  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4812                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4813  llvm::SmallVector<unsigned, 1> MismatchedParams;
4814  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4815  TypoCorrection Correction;
4816  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4817                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4818  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4819                                  : diag::err_member_def_does_not_match;
4820
4821  NewFD->setInvalidDecl();
4822  SemaRef.LookupQualifiedName(Prev, NewDC);
4823  assert(!Prev.isAmbiguous() &&
4824         "Cannot have an ambiguity in previous-declaration lookup");
4825  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4826  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4827                                      MD ? MD->getParent() : 0);
4828  if (!Prev.empty()) {
4829    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4830         Func != FuncEnd; ++Func) {
4831      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4832      if (FD &&
4833          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4834        // Add 1 to the index so that 0 can mean the mismatch didn't
4835        // involve a parameter
4836        unsigned ParamNum =
4837            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4838        NearMatches.push_back(std::make_pair(FD, ParamNum));
4839      }
4840    }
4841  // If the qualified name lookup yielded nothing, try typo correction
4842  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4843                                         Prev.getLookupKind(), 0, 0,
4844                                         Validator, NewDC))) {
4845    // Trap errors.
4846    Sema::SFINAETrap Trap(SemaRef);
4847
4848    // Set up everything for the call to ActOnFunctionDeclarator
4849    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4850                              ExtraArgs.D.getIdentifierLoc());
4851    Previous.clear();
4852    Previous.setLookupName(Correction.getCorrection());
4853    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4854                                    CDeclEnd = Correction.end();
4855         CDecl != CDeclEnd; ++CDecl) {
4856      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4857      if (FD && !FD->hasBody() &&
4858          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4859        Previous.addDecl(FD);
4860      }
4861    }
4862    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4863    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4864    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4865    // eliminate the need for the parameter pack ExtraArgs.
4866    Result = SemaRef.ActOnFunctionDeclarator(
4867        ExtraArgs.S, ExtraArgs.D,
4868        Correction.getCorrectionDecl()->getDeclContext(),
4869        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4870        ExtraArgs.AddToScope);
4871    if (Trap.hasErrorOccurred()) {
4872      // Pretend the typo correction never occurred
4873      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4874                                ExtraArgs.D.getIdentifierLoc());
4875      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4876      Previous.clear();
4877      Previous.setLookupName(Name);
4878      Result = NULL;
4879    } else {
4880      for (LookupResult::iterator Func = Previous.begin(),
4881                               FuncEnd = Previous.end();
4882           Func != FuncEnd; ++Func) {
4883        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4884          NearMatches.push_back(std::make_pair(FD, 0));
4885      }
4886    }
4887    if (NearMatches.empty()) {
4888      // Ignore the correction if it didn't yield any close FunctionDecl matches
4889      Correction = TypoCorrection();
4890    } else {
4891      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4892                             : diag::err_member_def_does_not_match_suggest;
4893    }
4894  }
4895
4896  if (Correction) {
4897    SourceRange FixItLoc(NewFD->getLocation());
4898    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4899    if (Correction.getCorrectionSpecifier() && SS.isValid())
4900      FixItLoc.setBegin(SS.getBeginLoc());
4901    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4902        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4903        << FixItHint::CreateReplacement(
4904            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4905  } else {
4906    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4907        << Name << NewDC << NewFD->getLocation();
4908  }
4909
4910  bool NewFDisConst = false;
4911  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4912    NewFDisConst = NewMD->isConst();
4913
4914  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4915       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4916       NearMatch != NearMatchEnd; ++NearMatch) {
4917    FunctionDecl *FD = NearMatch->first;
4918    bool FDisConst = false;
4919    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4920      FDisConst = MD->isConst();
4921
4922    if (unsigned Idx = NearMatch->second) {
4923      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4924      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4925      if (Loc.isInvalid()) Loc = FD->getLocation();
4926      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4927          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4928    } else if (Correction) {
4929      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4930          << Correction.getQuoted(SemaRef.getLangOpts());
4931    } else if (FDisConst != NewFDisConst) {
4932      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4933          << NewFDisConst << FD->getSourceRange().getEnd();
4934    } else
4935      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4936  }
4937  return Result;
4938}
4939
4940static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4941                                                          Declarator &D) {
4942  switch (D.getDeclSpec().getStorageClassSpec()) {
4943  default: llvm_unreachable("Unknown storage class!");
4944  case DeclSpec::SCS_auto:
4945  case DeclSpec::SCS_register:
4946  case DeclSpec::SCS_mutable:
4947    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4948                 diag::err_typecheck_sclass_func);
4949    D.setInvalidType();
4950    break;
4951  case DeclSpec::SCS_unspecified: break;
4952  case DeclSpec::SCS_extern: return SC_Extern;
4953  case DeclSpec::SCS_static: {
4954    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4955      // C99 6.7.1p5:
4956      //   The declaration of an identifier for a function that has
4957      //   block scope shall have no explicit storage-class specifier
4958      //   other than extern
4959      // See also (C++ [dcl.stc]p4).
4960      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4961                   diag::err_static_block_func);
4962      break;
4963    } else
4964      return SC_Static;
4965  }
4966  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4967  }
4968
4969  // No explicit storage class has already been returned
4970  return SC_None;
4971}
4972
4973static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4974                                           DeclContext *DC, QualType &R,
4975                                           TypeSourceInfo *TInfo,
4976                                           FunctionDecl::StorageClass SC,
4977                                           bool &IsVirtualOkay) {
4978  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4979  DeclarationName Name = NameInfo.getName();
4980
4981  FunctionDecl *NewFD = 0;
4982  bool isInline = D.getDeclSpec().isInlineSpecified();
4983  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4984  FunctionDecl::StorageClass SCAsWritten
4985    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4986
4987  if (!SemaRef.getLangOpts().CPlusPlus) {
4988    // Determine whether the function was written with a
4989    // prototype. This true when:
4990    //   - there is a prototype in the declarator, or
4991    //   - the type R of the function is some kind of typedef or other reference
4992    //     to a type name (which eventually refers to a function type).
4993    bool HasPrototype =
4994      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4995      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4996
4997    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4998                                 D.getLocStart(), NameInfo, R,
4999                                 TInfo, SC, SCAsWritten, isInline,
5000                                 HasPrototype);
5001    if (D.isInvalidType())
5002      NewFD->setInvalidDecl();
5003
5004    // Set the lexical context.
5005    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5006
5007    return NewFD;
5008  }
5009
5010  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5011  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5012
5013  // Check that the return type is not an abstract class type.
5014  // For record types, this is done by the AbstractClassUsageDiagnoser once
5015  // the class has been completely parsed.
5016  if (!DC->isRecord() &&
5017      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5018                                     R->getAs<FunctionType>()->getResultType(),
5019                                     diag::err_abstract_type_in_decl,
5020                                     SemaRef.AbstractReturnType))
5021    D.setInvalidType();
5022
5023  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5024    // This is a C++ constructor declaration.
5025    assert(DC->isRecord() &&
5026           "Constructors can only be declared in a member context");
5027
5028    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5029    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5030                                      D.getLocStart(), NameInfo,
5031                                      R, TInfo, isExplicit, isInline,
5032                                      /*isImplicitlyDeclared=*/false,
5033                                      isConstexpr);
5034
5035  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5036    // This is a C++ destructor declaration.
5037    if (DC->isRecord()) {
5038      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5039      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5040      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5041                                        SemaRef.Context, Record,
5042                                        D.getLocStart(),
5043                                        NameInfo, R, TInfo, isInline,
5044                                        /*isImplicitlyDeclared=*/false);
5045
5046      // If the class is complete, then we now create the implicit exception
5047      // specification. If the class is incomplete or dependent, we can't do
5048      // it yet.
5049      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5050          Record->getDefinition() && !Record->isBeingDefined() &&
5051          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5052        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5053      }
5054
5055      IsVirtualOkay = true;
5056      return NewDD;
5057
5058    } else {
5059      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5060      D.setInvalidType();
5061
5062      // Create a FunctionDecl to satisfy the function definition parsing
5063      // code path.
5064      return FunctionDecl::Create(SemaRef.Context, DC,
5065                                  D.getLocStart(),
5066                                  D.getIdentifierLoc(), Name, R, TInfo,
5067                                  SC, SCAsWritten, isInline,
5068                                  /*hasPrototype=*/true, isConstexpr);
5069    }
5070
5071  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5072    if (!DC->isRecord()) {
5073      SemaRef.Diag(D.getIdentifierLoc(),
5074           diag::err_conv_function_not_member);
5075      return 0;
5076    }
5077
5078    SemaRef.CheckConversionDeclarator(D, R, SC);
5079    IsVirtualOkay = true;
5080    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5081                                     D.getLocStart(), NameInfo,
5082                                     R, TInfo, isInline, isExplicit,
5083                                     isConstexpr, SourceLocation());
5084
5085  } else if (DC->isRecord()) {
5086    // If the name of the function is the same as the name of the record,
5087    // then this must be an invalid constructor that has a return type.
5088    // (The parser checks for a return type and makes the declarator a
5089    // constructor if it has no return type).
5090    if (Name.getAsIdentifierInfo() &&
5091        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5092      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5093        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5094        << SourceRange(D.getIdentifierLoc());
5095      return 0;
5096    }
5097
5098    bool isStatic = SC == SC_Static;
5099
5100    // [class.free]p1:
5101    // Any allocation function for a class T is a static member
5102    // (even if not explicitly declared static).
5103    if (Name.getCXXOverloadedOperator() == OO_New ||
5104        Name.getCXXOverloadedOperator() == OO_Array_New)
5105      isStatic = true;
5106
5107    // [class.free]p6 Any deallocation function for a class X is a static member
5108    // (even if not explicitly declared static).
5109    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5110        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5111      isStatic = true;
5112
5113    IsVirtualOkay = !isStatic;
5114
5115    // This is a C++ method declaration.
5116    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5117                                 D.getLocStart(), NameInfo, R,
5118                                 TInfo, isStatic, SCAsWritten, isInline,
5119                                 isConstexpr, SourceLocation());
5120
5121  } else {
5122    // Determine whether the function was written with a
5123    // prototype. This true when:
5124    //   - we're in C++ (where every function has a prototype),
5125    return FunctionDecl::Create(SemaRef.Context, DC,
5126                                D.getLocStart(),
5127                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5128                                true/*HasPrototype*/, isConstexpr);
5129  }
5130}
5131
5132NamedDecl*
5133Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5134                              TypeSourceInfo *TInfo, LookupResult &Previous,
5135                              MultiTemplateParamsArg TemplateParamLists,
5136                              bool &AddToScope) {
5137  QualType R = TInfo->getType();
5138
5139  assert(R.getTypePtr()->isFunctionType());
5140
5141  // TODO: consider using NameInfo for diagnostic.
5142  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5143  DeclarationName Name = NameInfo.getName();
5144  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5145
5146  if (D.getDeclSpec().isThreadSpecified())
5147    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5148
5149  // Do not allow returning a objc interface by-value.
5150  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5151    Diag(D.getIdentifierLoc(),
5152         diag::err_object_cannot_be_passed_returned_by_value) << 0
5153    << R->getAs<FunctionType>()->getResultType()
5154    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5155
5156    QualType T = R->getAs<FunctionType>()->getResultType();
5157    T = Context.getObjCObjectPointerType(T);
5158    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5159      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5160      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5161                                  FPT->getNumArgs(), EPI);
5162    }
5163    else if (isa<FunctionNoProtoType>(R))
5164      R = Context.getFunctionNoProtoType(T);
5165  }
5166
5167  bool isFriend = false;
5168  FunctionTemplateDecl *FunctionTemplate = 0;
5169  bool isExplicitSpecialization = false;
5170  bool isFunctionTemplateSpecialization = false;
5171
5172  bool isDependentClassScopeExplicitSpecialization = false;
5173  bool HasExplicitTemplateArgs = false;
5174  TemplateArgumentListInfo TemplateArgs;
5175
5176  bool isVirtualOkay = false;
5177
5178  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5179                                              isVirtualOkay);
5180  if (!NewFD) return 0;
5181
5182  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5183    NewFD->setTopLevelDeclInObjCContainer();
5184
5185  if (getLangOpts().CPlusPlus) {
5186    bool isInline = D.getDeclSpec().isInlineSpecified();
5187    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5188    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5189    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5190    isFriend = D.getDeclSpec().isFriendSpecified();
5191    if (isFriend && !isInline && D.isFunctionDefinition()) {
5192      // C++ [class.friend]p5
5193      //   A function can be defined in a friend declaration of a
5194      //   class . . . . Such a function is implicitly inline.
5195      NewFD->setImplicitlyInline();
5196    }
5197
5198    // if this is a method defined in an __interface, set pure
5199    // (isVirtual will already return true)
5200    if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
5201        NewFD->getDeclContext())) {
5202      if (Parent->getTagKind() == TTK_Interface)
5203        NewFD->setPure(true);
5204    }
5205
5206    SetNestedNameSpecifier(NewFD, D);
5207    isExplicitSpecialization = false;
5208    isFunctionTemplateSpecialization = false;
5209    if (D.isInvalidType())
5210      NewFD->setInvalidDecl();
5211
5212    // Set the lexical context. If the declarator has a C++
5213    // scope specifier, or is the object of a friend declaration, the
5214    // lexical context will be different from the semantic context.
5215    NewFD->setLexicalDeclContext(CurContext);
5216
5217    // Match up the template parameter lists with the scope specifier, then
5218    // determine whether we have a template or a template specialization.
5219    bool Invalid = false;
5220    if (TemplateParameterList *TemplateParams
5221          = MatchTemplateParametersToScopeSpecifier(
5222                                  D.getDeclSpec().getLocStart(),
5223                                  D.getIdentifierLoc(),
5224                                  D.getCXXScopeSpec(),
5225                                  TemplateParamLists.data(),
5226                                  TemplateParamLists.size(),
5227                                  isFriend,
5228                                  isExplicitSpecialization,
5229                                  Invalid)) {
5230      if (TemplateParams->size() > 0) {
5231        // This is a function template
5232
5233        // Check that we can declare a template here.
5234        if (CheckTemplateDeclScope(S, TemplateParams))
5235          return 0;
5236
5237        // A destructor cannot be a template.
5238        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5239          Diag(NewFD->getLocation(), diag::err_destructor_template);
5240          return 0;
5241        }
5242
5243        // If we're adding a template to a dependent context, we may need to
5244        // rebuilding some of the types used within the template parameter list,
5245        // now that we know what the current instantiation is.
5246        if (DC->isDependentContext()) {
5247          ContextRAII SavedContext(*this, DC);
5248          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5249            Invalid = true;
5250        }
5251
5252
5253        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5254                                                        NewFD->getLocation(),
5255                                                        Name, TemplateParams,
5256                                                        NewFD);
5257        FunctionTemplate->setLexicalDeclContext(CurContext);
5258        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5259
5260        // For source fidelity, store the other template param lists.
5261        if (TemplateParamLists.size() > 1) {
5262          NewFD->setTemplateParameterListsInfo(Context,
5263                                               TemplateParamLists.size() - 1,
5264                                               TemplateParamLists.data());
5265        }
5266      } else {
5267        // This is a function template specialization.
5268        isFunctionTemplateSpecialization = true;
5269        // For source fidelity, store all the template param lists.
5270        NewFD->setTemplateParameterListsInfo(Context,
5271                                             TemplateParamLists.size(),
5272                                             TemplateParamLists.data());
5273
5274        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5275        if (isFriend) {
5276          // We want to remove the "template<>", found here.
5277          SourceRange RemoveRange = TemplateParams->getSourceRange();
5278
5279          // If we remove the template<> and the name is not a
5280          // template-id, we're actually silently creating a problem:
5281          // the friend declaration will refer to an untemplated decl,
5282          // and clearly the user wants a template specialization.  So
5283          // we need to insert '<>' after the name.
5284          SourceLocation InsertLoc;
5285          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5286            InsertLoc = D.getName().getSourceRange().getEnd();
5287            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5288          }
5289
5290          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5291            << Name << RemoveRange
5292            << FixItHint::CreateRemoval(RemoveRange)
5293            << FixItHint::CreateInsertion(InsertLoc, "<>");
5294        }
5295      }
5296    }
5297    else {
5298      // All template param lists were matched against the scope specifier:
5299      // this is NOT (an explicit specialization of) a template.
5300      if (TemplateParamLists.size() > 0)
5301        // For source fidelity, store all the template param lists.
5302        NewFD->setTemplateParameterListsInfo(Context,
5303                                             TemplateParamLists.size(),
5304                                             TemplateParamLists.data());
5305    }
5306
5307    if (Invalid) {
5308      NewFD->setInvalidDecl();
5309      if (FunctionTemplate)
5310        FunctionTemplate->setInvalidDecl();
5311    }
5312
5313    // C++ [dcl.fct.spec]p5:
5314    //   The virtual specifier shall only be used in declarations of
5315    //   nonstatic class member functions that appear within a
5316    //   member-specification of a class declaration; see 10.3.
5317    //
5318    if (isVirtual && !NewFD->isInvalidDecl()) {
5319      if (!isVirtualOkay) {
5320        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5321             diag::err_virtual_non_function);
5322      } else if (!CurContext->isRecord()) {
5323        // 'virtual' was specified outside of the class.
5324        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5325             diag::err_virtual_out_of_class)
5326          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5327      } else if (NewFD->getDescribedFunctionTemplate()) {
5328        // C++ [temp.mem]p3:
5329        //  A member function template shall not be virtual.
5330        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5331             diag::err_virtual_member_function_template)
5332          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5333      } else {
5334        // Okay: Add virtual to the method.
5335        NewFD->setVirtualAsWritten(true);
5336      }
5337    }
5338
5339    // C++ [dcl.fct.spec]p3:
5340    //  The inline specifier shall not appear on a block scope function
5341    //  declaration.
5342    if (isInline && !NewFD->isInvalidDecl()) {
5343      if (CurContext->isFunctionOrMethod()) {
5344        // 'inline' is not allowed on block scope function declaration.
5345        Diag(D.getDeclSpec().getInlineSpecLoc(),
5346             diag::err_inline_declaration_block_scope) << Name
5347          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5348      }
5349    }
5350
5351    // C++ [dcl.fct.spec]p6:
5352    //  The explicit specifier shall be used only in the declaration of a
5353    //  constructor or conversion function within its class definition;
5354    //  see 12.3.1 and 12.3.2.
5355    if (isExplicit && !NewFD->isInvalidDecl()) {
5356      if (!CurContext->isRecord()) {
5357        // 'explicit' was specified outside of the class.
5358        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5359             diag::err_explicit_out_of_class)
5360          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5361      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5362                 !isa<CXXConversionDecl>(NewFD)) {
5363        // 'explicit' was specified on a function that wasn't a constructor
5364        // or conversion function.
5365        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5366             diag::err_explicit_non_ctor_or_conv_function)
5367          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5368      }
5369    }
5370
5371    if (isConstexpr) {
5372      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5373      // are implicitly inline.
5374      NewFD->setImplicitlyInline();
5375
5376      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5377      // be either constructors or to return a literal type. Therefore,
5378      // destructors cannot be declared constexpr.
5379      if (isa<CXXDestructorDecl>(NewFD))
5380        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5381    }
5382
5383    // If __module_private__ was specified, mark the function accordingly.
5384    if (D.getDeclSpec().isModulePrivateSpecified()) {
5385      if (isFunctionTemplateSpecialization) {
5386        SourceLocation ModulePrivateLoc
5387          = D.getDeclSpec().getModulePrivateSpecLoc();
5388        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5389          << 0
5390          << FixItHint::CreateRemoval(ModulePrivateLoc);
5391      } else {
5392        NewFD->setModulePrivate();
5393        if (FunctionTemplate)
5394          FunctionTemplate->setModulePrivate();
5395      }
5396    }
5397
5398    if (isFriend) {
5399      // For now, claim that the objects have no previous declaration.
5400      if (FunctionTemplate) {
5401        FunctionTemplate->setObjectOfFriendDecl(false);
5402        FunctionTemplate->setAccess(AS_public);
5403      }
5404      NewFD->setObjectOfFriendDecl(false);
5405      NewFD->setAccess(AS_public);
5406    }
5407
5408    // If a function is defined as defaulted or deleted, mark it as such now.
5409    switch (D.getFunctionDefinitionKind()) {
5410      case FDK_Declaration:
5411      case FDK_Definition:
5412        break;
5413
5414      case FDK_Defaulted:
5415        NewFD->setDefaulted();
5416        break;
5417
5418      case FDK_Deleted:
5419        NewFD->setDeletedAsWritten();
5420        break;
5421    }
5422
5423    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5424        D.isFunctionDefinition()) {
5425      // C++ [class.mfct]p2:
5426      //   A member function may be defined (8.4) in its class definition, in
5427      //   which case it is an inline member function (7.1.2)
5428      NewFD->setImplicitlyInline();
5429    }
5430
5431    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5432        !CurContext->isRecord()) {
5433      // C++ [class.static]p1:
5434      //   A data or function member of a class may be declared static
5435      //   in a class definition, in which case it is a static member of
5436      //   the class.
5437
5438      // Complain about the 'static' specifier if it's on an out-of-line
5439      // member function definition.
5440      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5441           diag::err_static_out_of_line)
5442        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5443    }
5444  }
5445
5446  // Filter out previous declarations that don't match the scope.
5447  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5448                       isExplicitSpecialization ||
5449                       isFunctionTemplateSpecialization);
5450
5451  // Handle GNU asm-label extension (encoded as an attribute).
5452  if (Expr *E = (Expr*) D.getAsmLabel()) {
5453    // The parser guarantees this is a string.
5454    StringLiteral *SE = cast<StringLiteral>(E);
5455    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5456                                                SE->getString()));
5457  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5458    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5459      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5460    if (I != ExtnameUndeclaredIdentifiers.end()) {
5461      NewFD->addAttr(I->second);
5462      ExtnameUndeclaredIdentifiers.erase(I);
5463    }
5464  }
5465
5466  // Copy the parameter declarations from the declarator D to the function
5467  // declaration NewFD, if they are available.  First scavenge them into Params.
5468  SmallVector<ParmVarDecl*, 16> Params;
5469  if (D.isFunctionDeclarator()) {
5470    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5471
5472    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5473    // function that takes no arguments, not a function that takes a
5474    // single void argument.
5475    // We let through "const void" here because Sema::GetTypeForDeclarator
5476    // already checks for that case.
5477    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5478        FTI.ArgInfo[0].Param &&
5479        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5480      // Empty arg list, don't push any params.
5481      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5482
5483      // In C++, the empty parameter-type-list must be spelled "void"; a
5484      // typedef of void is not permitted.
5485      if (getLangOpts().CPlusPlus &&
5486          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5487        bool IsTypeAlias = false;
5488        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5489          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5490        else if (const TemplateSpecializationType *TST =
5491                   Param->getType()->getAs<TemplateSpecializationType>())
5492          IsTypeAlias = TST->isTypeAlias();
5493        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5494          << IsTypeAlias;
5495      }
5496    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5497      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5498        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5499        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5500        Param->setDeclContext(NewFD);
5501        Params.push_back(Param);
5502
5503        if (Param->isInvalidDecl())
5504          NewFD->setInvalidDecl();
5505      }
5506    }
5507
5508  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5509    // When we're declaring a function with a typedef, typeof, etc as in the
5510    // following example, we'll need to synthesize (unnamed)
5511    // parameters for use in the declaration.
5512    //
5513    // @code
5514    // typedef void fn(int);
5515    // fn f;
5516    // @endcode
5517
5518    // Synthesize a parameter for each argument type.
5519    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5520         AE = FT->arg_type_end(); AI != AE; ++AI) {
5521      ParmVarDecl *Param =
5522        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5523      Param->setScopeInfo(0, Params.size());
5524      Params.push_back(Param);
5525    }
5526  } else {
5527    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5528           "Should not need args for typedef of non-prototype fn");
5529  }
5530
5531  // Finally, we know we have the right number of parameters, install them.
5532  NewFD->setParams(Params);
5533
5534  // Find all anonymous symbols defined during the declaration of this function
5535  // and add to NewFD. This lets us track decls such 'enum Y' in:
5536  //
5537  //   void f(enum Y {AA} x) {}
5538  //
5539  // which would otherwise incorrectly end up in the translation unit scope.
5540  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5541  DeclsInPrototypeScope.clear();
5542
5543  // Process the non-inheritable attributes on this declaration.
5544  ProcessDeclAttributes(S, NewFD, D,
5545                        /*NonInheritable=*/true, /*Inheritable=*/false);
5546
5547  // Functions returning a variably modified type violate C99 6.7.5.2p2
5548  // because all functions have linkage.
5549  if (!NewFD->isInvalidDecl() &&
5550      NewFD->getResultType()->isVariablyModifiedType()) {
5551    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5552    NewFD->setInvalidDecl();
5553  }
5554
5555  // Handle attributes.
5556  ProcessDeclAttributes(S, NewFD, D,
5557                        /*NonInheritable=*/false, /*Inheritable=*/true);
5558
5559  if (!getLangOpts().CPlusPlus) {
5560    // Perform semantic checking on the function declaration.
5561    bool isExplicitSpecialization=false;
5562    if (!NewFD->isInvalidDecl()) {
5563      if (NewFD->isMain())
5564        CheckMain(NewFD, D.getDeclSpec());
5565      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5566                                                  isExplicitSpecialization));
5567    }
5568    // Make graceful recovery from an invalid redeclaration.
5569    else if (!Previous.empty())
5570           D.setRedeclaration(true);
5571    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5572            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5573           "previous declaration set still overloaded");
5574  } else {
5575    // If the declarator is a template-id, translate the parser's template
5576    // argument list into our AST format.
5577    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5578      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5579      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5580      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5581      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5582                                         TemplateId->NumArgs);
5583      translateTemplateArguments(TemplateArgsPtr,
5584                                 TemplateArgs);
5585
5586      HasExplicitTemplateArgs = true;
5587
5588      if (NewFD->isInvalidDecl()) {
5589        HasExplicitTemplateArgs = false;
5590      } else if (FunctionTemplate) {
5591        // Function template with explicit template arguments.
5592        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5593          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5594
5595        HasExplicitTemplateArgs = false;
5596      } else if (!isFunctionTemplateSpecialization &&
5597                 !D.getDeclSpec().isFriendSpecified()) {
5598        // We have encountered something that the user meant to be a
5599        // specialization (because it has explicitly-specified template
5600        // arguments) but that was not introduced with a "template<>" (or had
5601        // too few of them).
5602        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5603          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5604          << FixItHint::CreateInsertion(
5605                                    D.getDeclSpec().getLocStart(),
5606                                        "template<> ");
5607        isFunctionTemplateSpecialization = true;
5608      } else {
5609        // "friend void foo<>(int);" is an implicit specialization decl.
5610        isFunctionTemplateSpecialization = true;
5611      }
5612    } else if (isFriend && isFunctionTemplateSpecialization) {
5613      // This combination is only possible in a recovery case;  the user
5614      // wrote something like:
5615      //   template <> friend void foo(int);
5616      // which we're recovering from as if the user had written:
5617      //   friend void foo<>(int);
5618      // Go ahead and fake up a template id.
5619      HasExplicitTemplateArgs = true;
5620        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5621      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5622    }
5623
5624    // If it's a friend (and only if it's a friend), it's possible
5625    // that either the specialized function type or the specialized
5626    // template is dependent, and therefore matching will fail.  In
5627    // this case, don't check the specialization yet.
5628    bool InstantiationDependent = false;
5629    if (isFunctionTemplateSpecialization && isFriend &&
5630        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5631         TemplateSpecializationType::anyDependentTemplateArguments(
5632            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5633            InstantiationDependent))) {
5634      assert(HasExplicitTemplateArgs &&
5635             "friend function specialization without template args");
5636      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5637                                                       Previous))
5638        NewFD->setInvalidDecl();
5639    } else if (isFunctionTemplateSpecialization) {
5640      if (CurContext->isDependentContext() && CurContext->isRecord()
5641          && !isFriend) {
5642        isDependentClassScopeExplicitSpecialization = true;
5643        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5644          diag::ext_function_specialization_in_class :
5645          diag::err_function_specialization_in_class)
5646          << NewFD->getDeclName();
5647      } else if (CheckFunctionTemplateSpecialization(NewFD,
5648                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5649                                                     Previous))
5650        NewFD->setInvalidDecl();
5651
5652      // C++ [dcl.stc]p1:
5653      //   A storage-class-specifier shall not be specified in an explicit
5654      //   specialization (14.7.3)
5655      if (SC != SC_None) {
5656        if (SC != NewFD->getStorageClass())
5657          Diag(NewFD->getLocation(),
5658               diag::err_explicit_specialization_inconsistent_storage_class)
5659            << SC
5660            << FixItHint::CreateRemoval(
5661                                      D.getDeclSpec().getStorageClassSpecLoc());
5662
5663        else
5664          Diag(NewFD->getLocation(),
5665               diag::ext_explicit_specialization_storage_class)
5666            << FixItHint::CreateRemoval(
5667                                      D.getDeclSpec().getStorageClassSpecLoc());
5668      }
5669
5670    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5671      if (CheckMemberSpecialization(NewFD, Previous))
5672          NewFD->setInvalidDecl();
5673    }
5674
5675    // Perform semantic checking on the function declaration.
5676    if (!isDependentClassScopeExplicitSpecialization) {
5677      if (NewFD->isInvalidDecl()) {
5678        // If this is a class member, mark the class invalid immediately.
5679        // This avoids some consistency errors later.
5680        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5681          methodDecl->getParent()->setInvalidDecl();
5682      } else {
5683        if (NewFD->isMain())
5684          CheckMain(NewFD, D.getDeclSpec());
5685        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5686                                                    isExplicitSpecialization));
5687      }
5688    }
5689
5690    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5691            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5692           "previous declaration set still overloaded");
5693
5694    NamedDecl *PrincipalDecl = (FunctionTemplate
5695                                ? cast<NamedDecl>(FunctionTemplate)
5696                                : NewFD);
5697
5698    if (isFriend && D.isRedeclaration()) {
5699      AccessSpecifier Access = AS_public;
5700      if (!NewFD->isInvalidDecl())
5701        Access = NewFD->getPreviousDecl()->getAccess();
5702
5703      NewFD->setAccess(Access);
5704      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5705
5706      PrincipalDecl->setObjectOfFriendDecl(true);
5707    }
5708
5709    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5710        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5711      PrincipalDecl->setNonMemberOperator();
5712
5713    // If we have a function template, check the template parameter
5714    // list. This will check and merge default template arguments.
5715    if (FunctionTemplate) {
5716      FunctionTemplateDecl *PrevTemplate =
5717                                     FunctionTemplate->getPreviousDecl();
5718      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5719                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5720                            D.getDeclSpec().isFriendSpecified()
5721                              ? (D.isFunctionDefinition()
5722                                   ? TPC_FriendFunctionTemplateDefinition
5723                                   : TPC_FriendFunctionTemplate)
5724                              : (D.getCXXScopeSpec().isSet() &&
5725                                 DC && DC->isRecord() &&
5726                                 DC->isDependentContext())
5727                                  ? TPC_ClassTemplateMember
5728                                  : TPC_FunctionTemplate);
5729    }
5730
5731    if (NewFD->isInvalidDecl()) {
5732      // Ignore all the rest of this.
5733    } else if (!D.isRedeclaration()) {
5734      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5735                                       AddToScope };
5736      // Fake up an access specifier if it's supposed to be a class member.
5737      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5738        NewFD->setAccess(AS_public);
5739
5740      // Qualified decls generally require a previous declaration.
5741      if (D.getCXXScopeSpec().isSet()) {
5742        // ...with the major exception of templated-scope or
5743        // dependent-scope friend declarations.
5744
5745        // TODO: we currently also suppress this check in dependent
5746        // contexts because (1) the parameter depth will be off when
5747        // matching friend templates and (2) we might actually be
5748        // selecting a friend based on a dependent factor.  But there
5749        // are situations where these conditions don't apply and we
5750        // can actually do this check immediately.
5751        if (isFriend &&
5752            (TemplateParamLists.size() ||
5753             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5754             CurContext->isDependentContext())) {
5755          // ignore these
5756        } else {
5757          // The user tried to provide an out-of-line definition for a
5758          // function that is a member of a class or namespace, but there
5759          // was no such member function declared (C++ [class.mfct]p2,
5760          // C++ [namespace.memdef]p2). For example:
5761          //
5762          // class X {
5763          //   void f() const;
5764          // };
5765          //
5766          // void X::f() { } // ill-formed
5767          //
5768          // Complain about this problem, and attempt to suggest close
5769          // matches (e.g., those that differ only in cv-qualifiers and
5770          // whether the parameter types are references).
5771
5772          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5773                                                               NewFD,
5774                                                               ExtraArgs)) {
5775            AddToScope = ExtraArgs.AddToScope;
5776            return Result;
5777          }
5778        }
5779
5780        // Unqualified local friend declarations are required to resolve
5781        // to something.
5782      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5783        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5784                                                             NewFD,
5785                                                             ExtraArgs)) {
5786          AddToScope = ExtraArgs.AddToScope;
5787          return Result;
5788        }
5789      }
5790
5791    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5792               !isFriend && !isFunctionTemplateSpecialization &&
5793               !isExplicitSpecialization) {
5794      // An out-of-line member function declaration must also be a
5795      // definition (C++ [dcl.meaning]p1).
5796      // Note that this is not the case for explicit specializations of
5797      // function templates or member functions of class templates, per
5798      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5799      // extension for compatibility with old SWIG code which likes to
5800      // generate them.
5801      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5802        << D.getCXXScopeSpec().getRange();
5803    }
5804  }
5805
5806  AddKnownFunctionAttributes(NewFD);
5807
5808  if (NewFD->hasAttr<OverloadableAttr>() &&
5809      !NewFD->getType()->getAs<FunctionProtoType>()) {
5810    Diag(NewFD->getLocation(),
5811         diag::err_attribute_overloadable_no_prototype)
5812      << NewFD;
5813
5814    // Turn this into a variadic function with no parameters.
5815    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5816    FunctionProtoType::ExtProtoInfo EPI;
5817    EPI.Variadic = true;
5818    EPI.ExtInfo = FT->getExtInfo();
5819
5820    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5821    NewFD->setType(R);
5822  }
5823
5824  // If there's a #pragma GCC visibility in scope, and this isn't a class
5825  // member, set the visibility of this function.
5826  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5827    AddPushedVisibilityAttribute(NewFD);
5828
5829  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5830  // marking the function.
5831  AddCFAuditedAttribute(NewFD);
5832
5833  // If this is a locally-scoped extern C function, update the
5834  // map of such names.
5835  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5836      && !NewFD->isInvalidDecl())
5837    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5838
5839  // Set this FunctionDecl's range up to the right paren.
5840  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5841
5842  if (getLangOpts().CPlusPlus) {
5843    if (FunctionTemplate) {
5844      if (NewFD->isInvalidDecl())
5845        FunctionTemplate->setInvalidDecl();
5846      return FunctionTemplate;
5847    }
5848  }
5849
5850  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5851  if ((getLangOpts().OpenCLVersion >= 120)
5852      && NewFD->hasAttr<OpenCLKernelAttr>()
5853      && (SC == SC_Static)) {
5854    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5855    D.setInvalidType();
5856  }
5857
5858  MarkUnusedFileScopedDecl(NewFD);
5859
5860  if (getLangOpts().CUDA)
5861    if (IdentifierInfo *II = NewFD->getIdentifier())
5862      if (!NewFD->isInvalidDecl() &&
5863          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5864        if (II->isStr("cudaConfigureCall")) {
5865          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5866            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5867
5868          Context.setcudaConfigureCallDecl(NewFD);
5869        }
5870      }
5871
5872  // Here we have an function template explicit specialization at class scope.
5873  // The actually specialization will be postponed to template instatiation
5874  // time via the ClassScopeFunctionSpecializationDecl node.
5875  if (isDependentClassScopeExplicitSpecialization) {
5876    ClassScopeFunctionSpecializationDecl *NewSpec =
5877                         ClassScopeFunctionSpecializationDecl::Create(
5878                                Context, CurContext, SourceLocation(),
5879                                cast<CXXMethodDecl>(NewFD),
5880                                HasExplicitTemplateArgs, TemplateArgs);
5881    CurContext->addDecl(NewSpec);
5882    AddToScope = false;
5883  }
5884
5885  return NewFD;
5886}
5887
5888/// \brief Perform semantic checking of a new function declaration.
5889///
5890/// Performs semantic analysis of the new function declaration
5891/// NewFD. This routine performs all semantic checking that does not
5892/// require the actual declarator involved in the declaration, and is
5893/// used both for the declaration of functions as they are parsed
5894/// (called via ActOnDeclarator) and for the declaration of functions
5895/// that have been instantiated via C++ template instantiation (called
5896/// via InstantiateDecl).
5897///
5898/// \param IsExplicitSpecialization whether this new function declaration is
5899/// an explicit specialization of the previous declaration.
5900///
5901/// This sets NewFD->isInvalidDecl() to true if there was an error.
5902///
5903/// \returns true if the function declaration is a redeclaration.
5904bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5905                                    LookupResult &Previous,
5906                                    bool IsExplicitSpecialization) {
5907  assert(!NewFD->getResultType()->isVariablyModifiedType()
5908         && "Variably modified return types are not handled here");
5909
5910  // Check for a previous declaration of this name.
5911  if (Previous.empty() && NewFD->isExternC()) {
5912    // Since we did not find anything by this name and we're declaring
5913    // an extern "C" function, look for a non-visible extern "C"
5914    // declaration with the same name.
5915    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5916      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5917    if (Pos != LocallyScopedExternalDecls.end())
5918      Previous.addDecl(Pos->second);
5919  }
5920
5921  bool Redeclaration = false;
5922
5923  // Merge or overload the declaration with an existing declaration of
5924  // the same name, if appropriate.
5925  if (!Previous.empty()) {
5926    // Determine whether NewFD is an overload of PrevDecl or
5927    // a declaration that requires merging. If it's an overload,
5928    // there's no more work to do here; we'll just add the new
5929    // function to the scope.
5930
5931    NamedDecl *OldDecl = 0;
5932    if (!AllowOverloadingOfFunction(Previous, Context)) {
5933      Redeclaration = true;
5934      OldDecl = Previous.getFoundDecl();
5935    } else {
5936      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5937                            /*NewIsUsingDecl*/ false)) {
5938      case Ovl_Match:
5939        Redeclaration = true;
5940        break;
5941
5942      case Ovl_NonFunction:
5943        Redeclaration = true;
5944        break;
5945
5946      case Ovl_Overload:
5947        Redeclaration = false;
5948        break;
5949      }
5950
5951      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5952        // If a function name is overloadable in C, then every function
5953        // with that name must be marked "overloadable".
5954        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5955          << Redeclaration << NewFD;
5956        NamedDecl *OverloadedDecl = 0;
5957        if (Redeclaration)
5958          OverloadedDecl = OldDecl;
5959        else if (!Previous.empty())
5960          OverloadedDecl = Previous.getRepresentativeDecl();
5961        if (OverloadedDecl)
5962          Diag(OverloadedDecl->getLocation(),
5963               diag::note_attribute_overloadable_prev_overload);
5964        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5965                                                        Context));
5966      }
5967    }
5968
5969    if (Redeclaration) {
5970      // NewFD and OldDecl represent declarations that need to be
5971      // merged.
5972      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5973        NewFD->setInvalidDecl();
5974        return Redeclaration;
5975      }
5976
5977      Previous.clear();
5978      Previous.addDecl(OldDecl);
5979
5980      if (FunctionTemplateDecl *OldTemplateDecl
5981                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5982        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5983        FunctionTemplateDecl *NewTemplateDecl
5984          = NewFD->getDescribedFunctionTemplate();
5985        assert(NewTemplateDecl && "Template/non-template mismatch");
5986        if (CXXMethodDecl *Method
5987              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5988          Method->setAccess(OldTemplateDecl->getAccess());
5989          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5990        }
5991
5992        // If this is an explicit specialization of a member that is a function
5993        // template, mark it as a member specialization.
5994        if (IsExplicitSpecialization &&
5995            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5996          NewTemplateDecl->setMemberSpecialization();
5997          assert(OldTemplateDecl->isMemberSpecialization());
5998        }
5999
6000      } else {
6001        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6002          NewFD->setAccess(OldDecl->getAccess());
6003        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6004      }
6005    }
6006  }
6007
6008  // Semantic checking for this function declaration (in isolation).
6009  if (getLangOpts().CPlusPlus) {
6010    // C++-specific checks.
6011    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6012      CheckConstructor(Constructor);
6013    } else if (CXXDestructorDecl *Destructor =
6014                dyn_cast<CXXDestructorDecl>(NewFD)) {
6015      CXXRecordDecl *Record = Destructor->getParent();
6016      QualType ClassType = Context.getTypeDeclType(Record);
6017
6018      // FIXME: Shouldn't we be able to perform this check even when the class
6019      // type is dependent? Both gcc and edg can handle that.
6020      if (!ClassType->isDependentType()) {
6021        DeclarationName Name
6022          = Context.DeclarationNames.getCXXDestructorName(
6023                                        Context.getCanonicalType(ClassType));
6024        if (NewFD->getDeclName() != Name) {
6025          Diag(NewFD->getLocation(), diag::err_destructor_name);
6026          NewFD->setInvalidDecl();
6027          return Redeclaration;
6028        }
6029      }
6030    } else if (CXXConversionDecl *Conversion
6031               = dyn_cast<CXXConversionDecl>(NewFD)) {
6032      ActOnConversionDeclarator(Conversion);
6033    }
6034
6035    // Find any virtual functions that this function overrides.
6036    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6037      if (!Method->isFunctionTemplateSpecialization() &&
6038          !Method->getDescribedFunctionTemplate()) {
6039        if (AddOverriddenMethods(Method->getParent(), Method)) {
6040          // If the function was marked as "static", we have a problem.
6041          if (NewFD->getStorageClass() == SC_Static) {
6042            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6043              << NewFD->getDeclName();
6044            for (CXXMethodDecl::method_iterator
6045                      Overridden = Method->begin_overridden_methods(),
6046                   OverriddenEnd = Method->end_overridden_methods();
6047                 Overridden != OverriddenEnd;
6048                 ++Overridden) {
6049              Diag((*Overridden)->getLocation(),
6050                   diag::note_overridden_virtual_function);
6051            }
6052          }
6053        }
6054      }
6055
6056      if (Method->isStatic())
6057        checkThisInStaticMemberFunctionType(Method);
6058    }
6059
6060    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6061    if (NewFD->isOverloadedOperator() &&
6062        CheckOverloadedOperatorDeclaration(NewFD)) {
6063      NewFD->setInvalidDecl();
6064      return Redeclaration;
6065    }
6066
6067    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6068    if (NewFD->getLiteralIdentifier() &&
6069        CheckLiteralOperatorDeclaration(NewFD)) {
6070      NewFD->setInvalidDecl();
6071      return Redeclaration;
6072    }
6073
6074    // In C++, check default arguments now that we have merged decls. Unless
6075    // the lexical context is the class, because in this case this is done
6076    // during delayed parsing anyway.
6077    if (!CurContext->isRecord())
6078      CheckCXXDefaultArguments(NewFD);
6079
6080    // If this function declares a builtin function, check the type of this
6081    // declaration against the expected type for the builtin.
6082    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6083      ASTContext::GetBuiltinTypeError Error;
6084      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6085      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6086        // The type of this function differs from the type of the builtin,
6087        // so forget about the builtin entirely.
6088        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6089      }
6090    }
6091
6092    // If this function is declared as being extern "C", then check to see if
6093    // the function returns a UDT (class, struct, or union type) that is not C
6094    // compatible, and if it does, warn the user.
6095    if (NewFD->isExternC()) {
6096      QualType R = NewFD->getResultType();
6097      if (R->isIncompleteType() && !R->isVoidType())
6098        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6099            << NewFD << R;
6100      else if (!R.isPODType(Context) && !R->isVoidType() &&
6101               !R->isObjCObjectPointerType())
6102        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6103    }
6104  }
6105  return Redeclaration;
6106}
6107
6108void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6109  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6110  //   static or constexpr is ill-formed.
6111  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6112  //   shall not appear in a declaration of main.
6113  // static main is not an error under C99, but we should warn about it.
6114  if (FD->getStorageClass() == SC_Static)
6115    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6116         ? diag::err_static_main : diag::warn_static_main)
6117      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6118  if (FD->isInlineSpecified())
6119    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6120      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6121  if (FD->isConstexpr()) {
6122    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6123      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6124    FD->setConstexpr(false);
6125  }
6126
6127  QualType T = FD->getType();
6128  assert(T->isFunctionType() && "function decl is not of function type");
6129  const FunctionType* FT = T->castAs<FunctionType>();
6130
6131  // All the standards say that main() should should return 'int'.
6132  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6133    // In C and C++, main magically returns 0 if you fall off the end;
6134    // set the flag which tells us that.
6135    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6136    FD->setHasImplicitReturnZero(true);
6137
6138  // In C with GNU extensions we allow main() to have non-integer return
6139  // type, but we should warn about the extension, and we disable the
6140  // implicit-return-zero rule.
6141  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6142    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6143
6144  // Otherwise, this is just a flat-out error.
6145  } else {
6146    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6147    FD->setInvalidDecl(true);
6148  }
6149
6150  // Treat protoless main() as nullary.
6151  if (isa<FunctionNoProtoType>(FT)) return;
6152
6153  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6154  unsigned nparams = FTP->getNumArgs();
6155  assert(FD->getNumParams() == nparams);
6156
6157  bool HasExtraParameters = (nparams > 3);
6158
6159  // Darwin passes an undocumented fourth argument of type char**.  If
6160  // other platforms start sprouting these, the logic below will start
6161  // getting shifty.
6162  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6163    HasExtraParameters = false;
6164
6165  if (HasExtraParameters) {
6166    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6167    FD->setInvalidDecl(true);
6168    nparams = 3;
6169  }
6170
6171  // FIXME: a lot of the following diagnostics would be improved
6172  // if we had some location information about types.
6173
6174  QualType CharPP =
6175    Context.getPointerType(Context.getPointerType(Context.CharTy));
6176  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6177
6178  for (unsigned i = 0; i < nparams; ++i) {
6179    QualType AT = FTP->getArgType(i);
6180
6181    bool mismatch = true;
6182
6183    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6184      mismatch = false;
6185    else if (Expected[i] == CharPP) {
6186      // As an extension, the following forms are okay:
6187      //   char const **
6188      //   char const * const *
6189      //   char * const *
6190
6191      QualifierCollector qs;
6192      const PointerType* PT;
6193      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6194          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6195          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6196        qs.removeConst();
6197        mismatch = !qs.empty();
6198      }
6199    }
6200
6201    if (mismatch) {
6202      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6203      // TODO: suggest replacing given type with expected type
6204      FD->setInvalidDecl(true);
6205    }
6206  }
6207
6208  if (nparams == 1 && !FD->isInvalidDecl()) {
6209    Diag(FD->getLocation(), diag::warn_main_one_arg);
6210  }
6211
6212  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6213    Diag(FD->getLocation(), diag::err_main_template_decl);
6214    FD->setInvalidDecl();
6215  }
6216}
6217
6218bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6219  // FIXME: Need strict checking.  In C89, we need to check for
6220  // any assignment, increment, decrement, function-calls, or
6221  // commas outside of a sizeof.  In C99, it's the same list,
6222  // except that the aforementioned are allowed in unevaluated
6223  // expressions.  Everything else falls under the
6224  // "may accept other forms of constant expressions" exception.
6225  // (We never end up here for C++, so the constant expression
6226  // rules there don't matter.)
6227  if (Init->isConstantInitializer(Context, false))
6228    return false;
6229  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6230    << Init->getSourceRange();
6231  return true;
6232}
6233
6234namespace {
6235  // Visits an initialization expression to see if OrigDecl is evaluated in
6236  // its own initialization and throws a warning if it does.
6237  class SelfReferenceChecker
6238      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6239    Sema &S;
6240    Decl *OrigDecl;
6241    bool isRecordType;
6242    bool isPODType;
6243    bool isReferenceType;
6244
6245  public:
6246    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6247
6248    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6249                                                    S(S), OrigDecl(OrigDecl) {
6250      isPODType = false;
6251      isRecordType = false;
6252      isReferenceType = false;
6253      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6254        isPODType = VD->getType().isPODType(S.Context);
6255        isRecordType = VD->getType()->isRecordType();
6256        isReferenceType = VD->getType()->isReferenceType();
6257      }
6258    }
6259
6260    // Sometimes, the expression passed in lacks the casts that are used
6261    // to determine which DeclRefExpr's to check.  Assume that the casts
6262    // are present and continue visiting the expression.
6263    void HandleExpr(Expr *E) {
6264      // Skip checking T a = a where T is not a record or reference type.
6265      // Doing so is a way to silence uninitialized warnings.
6266      if (isRecordType || isReferenceType)
6267        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6268          HandleDeclRefExpr(DRE);
6269
6270      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6271        HandleValue(CO->getTrueExpr());
6272        HandleValue(CO->getFalseExpr());
6273      }
6274
6275      Visit(E);
6276    }
6277
6278    // For most expressions, the cast is directly above the DeclRefExpr.
6279    // For conditional operators, the cast can be outside the conditional
6280    // operator if both expressions are DeclRefExpr's.
6281    void HandleValue(Expr *E) {
6282      E = E->IgnoreParenImpCasts();
6283      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6284        HandleDeclRefExpr(DRE);
6285        return;
6286      }
6287
6288      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6289        HandleValue(CO->getTrueExpr());
6290        HandleValue(CO->getFalseExpr());
6291      }
6292    }
6293
6294    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6295      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6296          (isRecordType && E->getCastKind() == CK_NoOp))
6297        HandleValue(E->getSubExpr());
6298
6299      Inherited::VisitImplicitCastExpr(E);
6300    }
6301
6302    void VisitMemberExpr(MemberExpr *E) {
6303      // Don't warn on arrays since they can be treated as pointers.
6304      if (E->getType()->canDecayToPointerType()) return;
6305
6306      ValueDecl *VD = E->getMemberDecl();
6307      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6308      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6309        if (DeclRefExpr *DRE
6310              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6311          HandleDeclRefExpr(DRE);
6312          return;
6313        }
6314
6315      Inherited::VisitMemberExpr(E);
6316    }
6317
6318    void VisitUnaryOperator(UnaryOperator *E) {
6319      // For POD record types, addresses of its own members are well-defined.
6320      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6321          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6322      Inherited::VisitUnaryOperator(E);
6323    }
6324
6325    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6326
6327    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6328      Decl* ReferenceDecl = DRE->getDecl();
6329      if (OrigDecl != ReferenceDecl) return;
6330      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6331                          Sema::NotForRedeclaration);
6332      unsigned diag = isReferenceType
6333          ? diag::warn_uninit_self_reference_in_reference_init
6334          : diag::warn_uninit_self_reference_in_init;
6335      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6336                            S.PDiag(diag)
6337                              << Result.getLookupName()
6338                              << OrigDecl->getLocation()
6339                              << DRE->getSourceRange());
6340    }
6341  };
6342}
6343
6344/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6345void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6346  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6347}
6348
6349/// AddInitializerToDecl - Adds the initializer Init to the
6350/// declaration dcl. If DirectInit is true, this is C++ direct
6351/// initialization rather than copy initialization.
6352void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6353                                bool DirectInit, bool TypeMayContainAuto) {
6354  // If there is no declaration, there was an error parsing it.  Just ignore
6355  // the initializer.
6356  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6357    return;
6358
6359  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6360    // With declarators parsed the way they are, the parser cannot
6361    // distinguish between a normal initializer and a pure-specifier.
6362    // Thus this grotesque test.
6363    IntegerLiteral *IL;
6364    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6365        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6366      CheckPureMethod(Method, Init->getSourceRange());
6367    else {
6368      Diag(Method->getLocation(), diag::err_member_function_initialization)
6369        << Method->getDeclName() << Init->getSourceRange();
6370      Method->setInvalidDecl();
6371    }
6372    return;
6373  }
6374
6375  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6376  if (!VDecl) {
6377    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6378    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6379    RealDecl->setInvalidDecl();
6380    return;
6381  }
6382
6383  // Check for self-references within variable initializers.
6384  // Variables declared within a function/method body (except for references)
6385  // are handled by a dataflow analysis.
6386  // Record types initialized by initializer list are handled here.
6387  // Initialization by constructors are handled in TryConstructorInitialization.
6388  if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6389      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6390    CheckSelfReference(RealDecl, Init);
6391
6392  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6393
6394  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6395  AutoType *Auto = 0;
6396  if (TypeMayContainAuto &&
6397      (Auto = VDecl->getType()->getContainedAutoType()) &&
6398      !Auto->isDeduced()) {
6399    Expr *DeduceInit = Init;
6400    // Initializer could be a C++ direct-initializer. Deduction only works if it
6401    // contains exactly one expression.
6402    if (CXXDirectInit) {
6403      if (CXXDirectInit->getNumExprs() == 0) {
6404        // It isn't possible to write this directly, but it is possible to
6405        // end up in this situation with "auto x(some_pack...);"
6406        Diag(CXXDirectInit->getLocStart(),
6407             diag::err_auto_var_init_no_expression)
6408          << VDecl->getDeclName() << VDecl->getType()
6409          << VDecl->getSourceRange();
6410        RealDecl->setInvalidDecl();
6411        return;
6412      } else if (CXXDirectInit->getNumExprs() > 1) {
6413        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6414             diag::err_auto_var_init_multiple_expressions)
6415          << VDecl->getDeclName() << VDecl->getType()
6416          << VDecl->getSourceRange();
6417        RealDecl->setInvalidDecl();
6418        return;
6419      } else {
6420        DeduceInit = CXXDirectInit->getExpr(0);
6421      }
6422    }
6423    TypeSourceInfo *DeducedType = 0;
6424    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6425            DAR_Failed)
6426      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6427    if (!DeducedType) {
6428      RealDecl->setInvalidDecl();
6429      return;
6430    }
6431    VDecl->setTypeSourceInfo(DeducedType);
6432    VDecl->setType(DeducedType->getType());
6433    VDecl->ClearLinkageCache();
6434
6435    // In ARC, infer lifetime.
6436    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6437      VDecl->setInvalidDecl();
6438
6439    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6440    // 'id' instead of a specific object type prevents most of our usual checks.
6441    // We only want to warn outside of template instantiations, though:
6442    // inside a template, the 'id' could have come from a parameter.
6443    if (ActiveTemplateInstantiations.empty() &&
6444        DeducedType->getType()->isObjCIdType()) {
6445      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6446      Diag(Loc, diag::warn_auto_var_is_id)
6447        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6448    }
6449
6450    // If this is a redeclaration, check that the type we just deduced matches
6451    // the previously declared type.
6452    if (VarDecl *Old = VDecl->getPreviousDecl())
6453      MergeVarDeclTypes(VDecl, Old);
6454  }
6455
6456  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6457    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6458    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6459    VDecl->setInvalidDecl();
6460    return;
6461  }
6462
6463  if (!VDecl->getType()->isDependentType()) {
6464    // A definition must end up with a complete type, which means it must be
6465    // complete with the restriction that an array type might be completed by
6466    // the initializer; note that later code assumes this restriction.
6467    QualType BaseDeclType = VDecl->getType();
6468    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6469      BaseDeclType = Array->getElementType();
6470    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6471                            diag::err_typecheck_decl_incomplete_type)) {
6472      RealDecl->setInvalidDecl();
6473      return;
6474    }
6475
6476    // The variable can not have an abstract class type.
6477    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6478                               diag::err_abstract_type_in_decl,
6479                               AbstractVariableType))
6480      VDecl->setInvalidDecl();
6481  }
6482
6483  const VarDecl *Def;
6484  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6485    Diag(VDecl->getLocation(), diag::err_redefinition)
6486      << VDecl->getDeclName();
6487    Diag(Def->getLocation(), diag::note_previous_definition);
6488    VDecl->setInvalidDecl();
6489    return;
6490  }
6491
6492  const VarDecl* PrevInit = 0;
6493  if (getLangOpts().CPlusPlus) {
6494    // C++ [class.static.data]p4
6495    //   If a static data member is of const integral or const
6496    //   enumeration type, its declaration in the class definition can
6497    //   specify a constant-initializer which shall be an integral
6498    //   constant expression (5.19). In that case, the member can appear
6499    //   in integral constant expressions. The member shall still be
6500    //   defined in a namespace scope if it is used in the program and the
6501    //   namespace scope definition shall not contain an initializer.
6502    //
6503    // We already performed a redefinition check above, but for static
6504    // data members we also need to check whether there was an in-class
6505    // declaration with an initializer.
6506    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6507      Diag(VDecl->getLocation(), diag::err_redefinition)
6508        << VDecl->getDeclName();
6509      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6510      return;
6511    }
6512
6513    if (VDecl->hasLocalStorage())
6514      getCurFunction()->setHasBranchProtectedScope();
6515
6516    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6517      VDecl->setInvalidDecl();
6518      return;
6519    }
6520  }
6521
6522  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6523  // a kernel function cannot be initialized."
6524  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6525    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6526    VDecl->setInvalidDecl();
6527    return;
6528  }
6529
6530  // Get the decls type and save a reference for later, since
6531  // CheckInitializerTypes may change it.
6532  QualType DclT = VDecl->getType(), SavT = DclT;
6533
6534  // Top-level message sends default to 'id' when we're in a debugger
6535  // and we are assigning it to a variable of 'id' type.
6536  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6537    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6538      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6539      if (Result.isInvalid()) {
6540        VDecl->setInvalidDecl();
6541        return;
6542      }
6543      Init = Result.take();
6544    }
6545
6546  // Perform the initialization.
6547  if (!VDecl->isInvalidDecl()) {
6548    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6549    InitializationKind Kind
6550      = DirectInit ?
6551          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6552                                                           Init->getLocStart(),
6553                                                           Init->getLocEnd())
6554                        : InitializationKind::CreateDirectList(
6555                                                          VDecl->getLocation())
6556                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6557                                                    Init->getLocStart());
6558
6559    Expr **Args = &Init;
6560    unsigned NumArgs = 1;
6561    if (CXXDirectInit) {
6562      Args = CXXDirectInit->getExprs();
6563      NumArgs = CXXDirectInit->getNumExprs();
6564    }
6565    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6566    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6567                                        MultiExprArg(Args, NumArgs), &DclT);
6568    if (Result.isInvalid()) {
6569      VDecl->setInvalidDecl();
6570      return;
6571    }
6572
6573    Init = Result.takeAs<Expr>();
6574  }
6575
6576  // If the type changed, it means we had an incomplete type that was
6577  // completed by the initializer. For example:
6578  //   int ary[] = { 1, 3, 5 };
6579  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6580  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6581    VDecl->setType(DclT);
6582
6583  // Check any implicit conversions within the expression.
6584  CheckImplicitConversions(Init, VDecl->getLocation());
6585
6586  if (!VDecl->isInvalidDecl())
6587    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6588
6589  Init = MaybeCreateExprWithCleanups(Init);
6590  // Attach the initializer to the decl.
6591  VDecl->setInit(Init);
6592
6593  if (VDecl->isLocalVarDecl()) {
6594    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6595    // static storage duration shall be constant expressions or string literals.
6596    // C++ does not have this restriction.
6597    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6598        VDecl->getStorageClass() == SC_Static)
6599      CheckForConstantInitializer(Init, DclT);
6600  } else if (VDecl->isStaticDataMember() &&
6601             VDecl->getLexicalDeclContext()->isRecord()) {
6602    // This is an in-class initialization for a static data member, e.g.,
6603    //
6604    // struct S {
6605    //   static const int value = 17;
6606    // };
6607
6608    // C++ [class.mem]p4:
6609    //   A member-declarator can contain a constant-initializer only
6610    //   if it declares a static member (9.4) of const integral or
6611    //   const enumeration type, see 9.4.2.
6612    //
6613    // C++11 [class.static.data]p3:
6614    //   If a non-volatile const static data member is of integral or
6615    //   enumeration type, its declaration in the class definition can
6616    //   specify a brace-or-equal-initializer in which every initalizer-clause
6617    //   that is an assignment-expression is a constant expression. A static
6618    //   data member of literal type can be declared in the class definition
6619    //   with the constexpr specifier; if so, its declaration shall specify a
6620    //   brace-or-equal-initializer in which every initializer-clause that is
6621    //   an assignment-expression is a constant expression.
6622
6623    // Do nothing on dependent types.
6624    if (DclT->isDependentType()) {
6625
6626    // Allow any 'static constexpr' members, whether or not they are of literal
6627    // type. We separately check that every constexpr variable is of literal
6628    // type.
6629    } else if (VDecl->isConstexpr()) {
6630
6631    // Require constness.
6632    } else if (!DclT.isConstQualified()) {
6633      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6634        << Init->getSourceRange();
6635      VDecl->setInvalidDecl();
6636
6637    // We allow integer constant expressions in all cases.
6638    } else if (DclT->isIntegralOrEnumerationType()) {
6639      // Check whether the expression is a constant expression.
6640      SourceLocation Loc;
6641      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6642        // In C++11, a non-constexpr const static data member with an
6643        // in-class initializer cannot be volatile.
6644        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6645      else if (Init->isValueDependent())
6646        ; // Nothing to check.
6647      else if (Init->isIntegerConstantExpr(Context, &Loc))
6648        ; // Ok, it's an ICE!
6649      else if (Init->isEvaluatable(Context)) {
6650        // If we can constant fold the initializer through heroics, accept it,
6651        // but report this as a use of an extension for -pedantic.
6652        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6653          << Init->getSourceRange();
6654      } else {
6655        // Otherwise, this is some crazy unknown case.  Report the issue at the
6656        // location provided by the isIntegerConstantExpr failed check.
6657        Diag(Loc, diag::err_in_class_initializer_non_constant)
6658          << Init->getSourceRange();
6659        VDecl->setInvalidDecl();
6660      }
6661
6662    // We allow foldable floating-point constants as an extension.
6663    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6664      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6665        << DclT << Init->getSourceRange();
6666      if (getLangOpts().CPlusPlus0x)
6667        Diag(VDecl->getLocation(),
6668             diag::note_in_class_initializer_float_type_constexpr)
6669          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6670
6671      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6672        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6673          << Init->getSourceRange();
6674        VDecl->setInvalidDecl();
6675      }
6676
6677    // Suggest adding 'constexpr' in C++11 for literal types.
6678    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6679      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6680        << DclT << Init->getSourceRange()
6681        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6682      VDecl->setConstexpr(true);
6683
6684    } else {
6685      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6686        << DclT << Init->getSourceRange();
6687      VDecl->setInvalidDecl();
6688    }
6689  } else if (VDecl->isFileVarDecl()) {
6690    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6691        (!getLangOpts().CPlusPlus ||
6692         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6693      Diag(VDecl->getLocation(), diag::warn_extern_init);
6694
6695    // C99 6.7.8p4. All file scoped initializers need to be constant.
6696    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6697      CheckForConstantInitializer(Init, DclT);
6698  }
6699
6700  // We will represent direct-initialization similarly to copy-initialization:
6701  //    int x(1);  -as-> int x = 1;
6702  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6703  //
6704  // Clients that want to distinguish between the two forms, can check for
6705  // direct initializer using VarDecl::getInitStyle().
6706  // A major benefit is that clients that don't particularly care about which
6707  // exactly form was it (like the CodeGen) can handle both cases without
6708  // special case code.
6709
6710  // C++ 8.5p11:
6711  // The form of initialization (using parentheses or '=') is generally
6712  // insignificant, but does matter when the entity being initialized has a
6713  // class type.
6714  if (CXXDirectInit) {
6715    assert(DirectInit && "Call-style initializer must be direct init.");
6716    VDecl->setInitStyle(VarDecl::CallInit);
6717  } else if (DirectInit) {
6718    // This must be list-initialization. No other way is direct-initialization.
6719    VDecl->setInitStyle(VarDecl::ListInit);
6720  }
6721
6722  CheckCompleteVariableDeclaration(VDecl);
6723}
6724
6725/// ActOnInitializerError - Given that there was an error parsing an
6726/// initializer for the given declaration, try to return to some form
6727/// of sanity.
6728void Sema::ActOnInitializerError(Decl *D) {
6729  // Our main concern here is re-establishing invariants like "a
6730  // variable's type is either dependent or complete".
6731  if (!D || D->isInvalidDecl()) return;
6732
6733  VarDecl *VD = dyn_cast<VarDecl>(D);
6734  if (!VD) return;
6735
6736  // Auto types are meaningless if we can't make sense of the initializer.
6737  if (ParsingInitForAutoVars.count(D)) {
6738    D->setInvalidDecl();
6739    return;
6740  }
6741
6742  QualType Ty = VD->getType();
6743  if (Ty->isDependentType()) return;
6744
6745  // Require a complete type.
6746  if (RequireCompleteType(VD->getLocation(),
6747                          Context.getBaseElementType(Ty),
6748                          diag::err_typecheck_decl_incomplete_type)) {
6749    VD->setInvalidDecl();
6750    return;
6751  }
6752
6753  // Require an abstract type.
6754  if (RequireNonAbstractType(VD->getLocation(), Ty,
6755                             diag::err_abstract_type_in_decl,
6756                             AbstractVariableType)) {
6757    VD->setInvalidDecl();
6758    return;
6759  }
6760
6761  // Don't bother complaining about constructors or destructors,
6762  // though.
6763}
6764
6765void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6766                                  bool TypeMayContainAuto) {
6767  // If there is no declaration, there was an error parsing it. Just ignore it.
6768  if (RealDecl == 0)
6769    return;
6770
6771  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6772    QualType Type = Var->getType();
6773
6774    // C++11 [dcl.spec.auto]p3
6775    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6776      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6777        << Var->getDeclName() << Type;
6778      Var->setInvalidDecl();
6779      return;
6780    }
6781
6782    // C++11 [class.static.data]p3: A static data member can be declared with
6783    // the constexpr specifier; if so, its declaration shall specify
6784    // a brace-or-equal-initializer.
6785    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6786    // the definition of a variable [...] or the declaration of a static data
6787    // member.
6788    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6789      if (Var->isStaticDataMember())
6790        Diag(Var->getLocation(),
6791             diag::err_constexpr_static_mem_var_requires_init)
6792          << Var->getDeclName();
6793      else
6794        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6795      Var->setInvalidDecl();
6796      return;
6797    }
6798
6799    switch (Var->isThisDeclarationADefinition()) {
6800    case VarDecl::Definition:
6801      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6802        break;
6803
6804      // We have an out-of-line definition of a static data member
6805      // that has an in-class initializer, so we type-check this like
6806      // a declaration.
6807      //
6808      // Fall through
6809
6810    case VarDecl::DeclarationOnly:
6811      // It's only a declaration.
6812
6813      // Block scope. C99 6.7p7: If an identifier for an object is
6814      // declared with no linkage (C99 6.2.2p6), the type for the
6815      // object shall be complete.
6816      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6817          !Var->getLinkage() && !Var->isInvalidDecl() &&
6818          RequireCompleteType(Var->getLocation(), Type,
6819                              diag::err_typecheck_decl_incomplete_type))
6820        Var->setInvalidDecl();
6821
6822      // Make sure that the type is not abstract.
6823      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6824          RequireNonAbstractType(Var->getLocation(), Type,
6825                                 diag::err_abstract_type_in_decl,
6826                                 AbstractVariableType))
6827        Var->setInvalidDecl();
6828      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6829          Var->getStorageClass() == SC_PrivateExtern) {
6830        Diag(Var->getLocation(), diag::warn_private_extern);
6831        Diag(Var->getLocation(), diag::note_private_extern);
6832      }
6833
6834      return;
6835
6836    case VarDecl::TentativeDefinition:
6837      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6838      // object that has file scope without an initializer, and without a
6839      // storage-class specifier or with the storage-class specifier "static",
6840      // constitutes a tentative definition. Note: A tentative definition with
6841      // external linkage is valid (C99 6.2.2p5).
6842      if (!Var->isInvalidDecl()) {
6843        if (const IncompleteArrayType *ArrayT
6844                                    = Context.getAsIncompleteArrayType(Type)) {
6845          if (RequireCompleteType(Var->getLocation(),
6846                                  ArrayT->getElementType(),
6847                                  diag::err_illegal_decl_array_incomplete_type))
6848            Var->setInvalidDecl();
6849        } else if (Var->getStorageClass() == SC_Static) {
6850          // C99 6.9.2p3: If the declaration of an identifier for an object is
6851          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6852          // declared type shall not be an incomplete type.
6853          // NOTE: code such as the following
6854          //     static struct s;
6855          //     struct s { int a; };
6856          // is accepted by gcc. Hence here we issue a warning instead of
6857          // an error and we do not invalidate the static declaration.
6858          // NOTE: to avoid multiple warnings, only check the first declaration.
6859          if (Var->getPreviousDecl() == 0)
6860            RequireCompleteType(Var->getLocation(), Type,
6861                                diag::ext_typecheck_decl_incomplete_type);
6862        }
6863      }
6864
6865      // Record the tentative definition; we're done.
6866      if (!Var->isInvalidDecl())
6867        TentativeDefinitions.push_back(Var);
6868      return;
6869    }
6870
6871    // Provide a specific diagnostic for uninitialized variable
6872    // definitions with incomplete array type.
6873    if (Type->isIncompleteArrayType()) {
6874      Diag(Var->getLocation(),
6875           diag::err_typecheck_incomplete_array_needs_initializer);
6876      Var->setInvalidDecl();
6877      return;
6878    }
6879
6880    // Provide a specific diagnostic for uninitialized variable
6881    // definitions with reference type.
6882    if (Type->isReferenceType()) {
6883      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6884        << Var->getDeclName()
6885        << SourceRange(Var->getLocation(), Var->getLocation());
6886      Var->setInvalidDecl();
6887      return;
6888    }
6889
6890    // Do not attempt to type-check the default initializer for a
6891    // variable with dependent type.
6892    if (Type->isDependentType())
6893      return;
6894
6895    if (Var->isInvalidDecl())
6896      return;
6897
6898    if (RequireCompleteType(Var->getLocation(),
6899                            Context.getBaseElementType(Type),
6900                            diag::err_typecheck_decl_incomplete_type)) {
6901      Var->setInvalidDecl();
6902      return;
6903    }
6904
6905    // The variable can not have an abstract class type.
6906    if (RequireNonAbstractType(Var->getLocation(), Type,
6907                               diag::err_abstract_type_in_decl,
6908                               AbstractVariableType)) {
6909      Var->setInvalidDecl();
6910      return;
6911    }
6912
6913    // Check for jumps past the implicit initializer.  C++0x
6914    // clarifies that this applies to a "variable with automatic
6915    // storage duration", not a "local variable".
6916    // C++11 [stmt.dcl]p3
6917    //   A program that jumps from a point where a variable with automatic
6918    //   storage duration is not in scope to a point where it is in scope is
6919    //   ill-formed unless the variable has scalar type, class type with a
6920    //   trivial default constructor and a trivial destructor, a cv-qualified
6921    //   version of one of these types, or an array of one of the preceding
6922    //   types and is declared without an initializer.
6923    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6924      if (const RecordType *Record
6925            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6926        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6927        // Mark the function for further checking even if the looser rules of
6928        // C++11 do not require such checks, so that we can diagnose
6929        // incompatibilities with C++98.
6930        if (!CXXRecord->isPOD())
6931          getCurFunction()->setHasBranchProtectedScope();
6932      }
6933    }
6934
6935    // C++03 [dcl.init]p9:
6936    //   If no initializer is specified for an object, and the
6937    //   object is of (possibly cv-qualified) non-POD class type (or
6938    //   array thereof), the object shall be default-initialized; if
6939    //   the object is of const-qualified type, the underlying class
6940    //   type shall have a user-declared default
6941    //   constructor. Otherwise, if no initializer is specified for
6942    //   a non- static object, the object and its subobjects, if
6943    //   any, have an indeterminate initial value); if the object
6944    //   or any of its subobjects are of const-qualified type, the
6945    //   program is ill-formed.
6946    // C++0x [dcl.init]p11:
6947    //   If no initializer is specified for an object, the object is
6948    //   default-initialized; [...].
6949    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6950    InitializationKind Kind
6951      = InitializationKind::CreateDefault(Var->getLocation());
6952
6953    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6954    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6955    if (Init.isInvalid())
6956      Var->setInvalidDecl();
6957    else if (Init.get()) {
6958      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6959      // This is important for template substitution.
6960      Var->setInitStyle(VarDecl::CallInit);
6961    }
6962
6963    CheckCompleteVariableDeclaration(Var);
6964  }
6965}
6966
6967void Sema::ActOnCXXForRangeDecl(Decl *D) {
6968  VarDecl *VD = dyn_cast<VarDecl>(D);
6969  if (!VD) {
6970    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6971    D->setInvalidDecl();
6972    return;
6973  }
6974
6975  VD->setCXXForRangeDecl(true);
6976
6977  // for-range-declaration cannot be given a storage class specifier.
6978  int Error = -1;
6979  switch (VD->getStorageClassAsWritten()) {
6980  case SC_None:
6981    break;
6982  case SC_Extern:
6983    Error = 0;
6984    break;
6985  case SC_Static:
6986    Error = 1;
6987    break;
6988  case SC_PrivateExtern:
6989    Error = 2;
6990    break;
6991  case SC_Auto:
6992    Error = 3;
6993    break;
6994  case SC_Register:
6995    Error = 4;
6996    break;
6997  case SC_OpenCLWorkGroupLocal:
6998    llvm_unreachable("Unexpected storage class");
6999  }
7000  if (VD->isConstexpr())
7001    Error = 5;
7002  if (Error != -1) {
7003    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7004      << VD->getDeclName() << Error;
7005    D->setInvalidDecl();
7006  }
7007}
7008
7009void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7010  if (var->isInvalidDecl()) return;
7011
7012  // In ARC, don't allow jumps past the implicit initialization of a
7013  // local retaining variable.
7014  if (getLangOpts().ObjCAutoRefCount &&
7015      var->hasLocalStorage()) {
7016    switch (var->getType().getObjCLifetime()) {
7017    case Qualifiers::OCL_None:
7018    case Qualifiers::OCL_ExplicitNone:
7019    case Qualifiers::OCL_Autoreleasing:
7020      break;
7021
7022    case Qualifiers::OCL_Weak:
7023    case Qualifiers::OCL_Strong:
7024      getCurFunction()->setHasBranchProtectedScope();
7025      break;
7026    }
7027  }
7028
7029  // All the following checks are C++ only.
7030  if (!getLangOpts().CPlusPlus) return;
7031
7032  QualType baseType = Context.getBaseElementType(var->getType());
7033  if (baseType->isDependentType()) return;
7034
7035  // __block variables might require us to capture a copy-initializer.
7036  if (var->hasAttr<BlocksAttr>()) {
7037    // It's currently invalid to ever have a __block variable with an
7038    // array type; should we diagnose that here?
7039
7040    // Regardless, we don't want to ignore array nesting when
7041    // constructing this copy.
7042    QualType type = var->getType();
7043
7044    if (type->isStructureOrClassType()) {
7045      SourceLocation poi = var->getLocation();
7046      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7047      ExprResult result =
7048        PerformCopyInitialization(
7049                        InitializedEntity::InitializeBlock(poi, type, false),
7050                                  poi, Owned(varRef));
7051      if (!result.isInvalid()) {
7052        result = MaybeCreateExprWithCleanups(result);
7053        Expr *init = result.takeAs<Expr>();
7054        Context.setBlockVarCopyInits(var, init);
7055      }
7056    }
7057  }
7058
7059  Expr *Init = var->getInit();
7060  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7061
7062  if (!var->getDeclContext()->isDependentContext() && Init) {
7063    if (IsGlobal && !var->isConstexpr() &&
7064        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7065                                            var->getLocation())
7066          != DiagnosticsEngine::Ignored &&
7067        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7068      Diag(var->getLocation(), diag::warn_global_constructor)
7069        << Init->getSourceRange();
7070
7071    if (var->isConstexpr()) {
7072      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7073      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7074        SourceLocation DiagLoc = var->getLocation();
7075        // If the note doesn't add any useful information other than a source
7076        // location, fold it into the primary diagnostic.
7077        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7078              diag::note_invalid_subexpr_in_const_expr) {
7079          DiagLoc = Notes[0].first;
7080          Notes.clear();
7081        }
7082        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7083          << var << Init->getSourceRange();
7084        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7085          Diag(Notes[I].first, Notes[I].second);
7086      }
7087    } else if (var->isUsableInConstantExpressions(Context)) {
7088      // Check whether the initializer of a const variable of integral or
7089      // enumeration type is an ICE now, since we can't tell whether it was
7090      // initialized by a constant expression if we check later.
7091      var->checkInitIsICE();
7092    }
7093  }
7094
7095  // Require the destructor.
7096  if (const RecordType *recordType = baseType->getAs<RecordType>())
7097    FinalizeVarWithDestructor(var, recordType);
7098}
7099
7100/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7101/// any semantic actions necessary after any initializer has been attached.
7102void
7103Sema::FinalizeDeclaration(Decl *ThisDecl) {
7104  // Note that we are no longer parsing the initializer for this declaration.
7105  ParsingInitForAutoVars.erase(ThisDecl);
7106
7107  // Now we have parsed the initializer and can update the table of magic
7108  // tag values.
7109  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7110    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7111    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7112      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7113               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7114               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7115           I != E; ++I) {
7116        const Expr *MagicValueExpr = VD->getInit();
7117        if (!MagicValueExpr) {
7118          continue;
7119        }
7120        llvm::APSInt MagicValueInt;
7121        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7122          Diag(I->getRange().getBegin(),
7123               diag::err_type_tag_for_datatype_not_ice)
7124            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7125          continue;
7126        }
7127        if (MagicValueInt.getActiveBits() > 64) {
7128          Diag(I->getRange().getBegin(),
7129               diag::err_type_tag_for_datatype_too_large)
7130            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7131          continue;
7132        }
7133        uint64_t MagicValue = MagicValueInt.getZExtValue();
7134        RegisterTypeTagForDatatype(I->getArgumentKind(),
7135                                   MagicValue,
7136                                   I->getMatchingCType(),
7137                                   I->getLayoutCompatible(),
7138                                   I->getMustBeNull());
7139      }
7140    }
7141  }
7142}
7143
7144Sema::DeclGroupPtrTy
7145Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7146                              Decl **Group, unsigned NumDecls) {
7147  SmallVector<Decl*, 8> Decls;
7148
7149  if (DS.isTypeSpecOwned())
7150    Decls.push_back(DS.getRepAsDecl());
7151
7152  for (unsigned i = 0; i != NumDecls; ++i)
7153    if (Decl *D = Group[i])
7154      Decls.push_back(D);
7155
7156  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7157                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7158}
7159
7160/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7161/// group, performing any necessary semantic checking.
7162Sema::DeclGroupPtrTy
7163Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7164                           bool TypeMayContainAuto) {
7165  // C++0x [dcl.spec.auto]p7:
7166  //   If the type deduced for the template parameter U is not the same in each
7167  //   deduction, the program is ill-formed.
7168  // FIXME: When initializer-list support is added, a distinction is needed
7169  // between the deduced type U and the deduced type which 'auto' stands for.
7170  //   auto a = 0, b = { 1, 2, 3 };
7171  // is legal because the deduced type U is 'int' in both cases.
7172  if (TypeMayContainAuto && NumDecls > 1) {
7173    QualType Deduced;
7174    CanQualType DeducedCanon;
7175    VarDecl *DeducedDecl = 0;
7176    for (unsigned i = 0; i != NumDecls; ++i) {
7177      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7178        AutoType *AT = D->getType()->getContainedAutoType();
7179        // Don't reissue diagnostics when instantiating a template.
7180        if (AT && D->isInvalidDecl())
7181          break;
7182        if (AT && AT->isDeduced()) {
7183          QualType U = AT->getDeducedType();
7184          CanQualType UCanon = Context.getCanonicalType(U);
7185          if (Deduced.isNull()) {
7186            Deduced = U;
7187            DeducedCanon = UCanon;
7188            DeducedDecl = D;
7189          } else if (DeducedCanon != UCanon) {
7190            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7191                 diag::err_auto_different_deductions)
7192              << Deduced << DeducedDecl->getDeclName()
7193              << U << D->getDeclName()
7194              << DeducedDecl->getInit()->getSourceRange()
7195              << D->getInit()->getSourceRange();
7196            D->setInvalidDecl();
7197            break;
7198          }
7199        }
7200      }
7201    }
7202  }
7203
7204  ActOnDocumentableDecls(Group, NumDecls);
7205
7206  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7207}
7208
7209void Sema::ActOnDocumentableDecl(Decl *D) {
7210  ActOnDocumentableDecls(&D, 1);
7211}
7212
7213void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7214  // Don't parse the comment if Doxygen diagnostics are ignored.
7215  if (NumDecls == 0 || !Group[0])
7216   return;
7217
7218  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7219                               Group[0]->getLocation())
7220        == DiagnosticsEngine::Ignored)
7221    return;
7222
7223  if (NumDecls >= 2) {
7224    // This is a decl group.  Normally it will contain only declarations
7225    // procuded from declarator list.  But in case we have any definitions or
7226    // additional declaration references:
7227    //   'typedef struct S {} S;'
7228    //   'typedef struct S *S;'
7229    //   'struct S *pS;'
7230    // FinalizeDeclaratorGroup adds these as separate declarations.
7231    Decl *MaybeTagDecl = Group[0];
7232    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7233      Group++;
7234      NumDecls--;
7235    }
7236  }
7237
7238  // See if there are any new comments that are not attached to a decl.
7239  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7240  if (!Comments.empty() &&
7241      !Comments.back()->isAttached()) {
7242    // There is at least one comment that not attached to a decl.
7243    // Maybe it should be attached to one of these decls?
7244    //
7245    // Note that this way we pick up not only comments that precede the
7246    // declaration, but also comments that *follow* the declaration -- thanks to
7247    // the lookahead in the lexer: we've consumed the semicolon and looked
7248    // ahead through comments.
7249    for (unsigned i = 0; i != NumDecls; ++i)
7250      Context.getCommentForDecl(Group[i]);
7251  }
7252}
7253
7254/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7255/// to introduce parameters into function prototype scope.
7256Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7257  const DeclSpec &DS = D.getDeclSpec();
7258
7259  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7260  // C++03 [dcl.stc]p2 also permits 'auto'.
7261  VarDecl::StorageClass StorageClass = SC_None;
7262  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7263  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7264    StorageClass = SC_Register;
7265    StorageClassAsWritten = SC_Register;
7266  } else if (getLangOpts().CPlusPlus &&
7267             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7268    StorageClass = SC_Auto;
7269    StorageClassAsWritten = SC_Auto;
7270  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7271    Diag(DS.getStorageClassSpecLoc(),
7272         diag::err_invalid_storage_class_in_func_decl);
7273    D.getMutableDeclSpec().ClearStorageClassSpecs();
7274  }
7275
7276  if (D.getDeclSpec().isThreadSpecified())
7277    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7278  if (D.getDeclSpec().isConstexprSpecified())
7279    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7280      << 0;
7281
7282  DiagnoseFunctionSpecifiers(D);
7283
7284  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7285  QualType parmDeclType = TInfo->getType();
7286
7287  if (getLangOpts().CPlusPlus) {
7288    // Check that there are no default arguments inside the type of this
7289    // parameter.
7290    CheckExtraCXXDefaultArguments(D);
7291
7292    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7293    if (D.getCXXScopeSpec().isSet()) {
7294      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7295        << D.getCXXScopeSpec().getRange();
7296      D.getCXXScopeSpec().clear();
7297    }
7298  }
7299
7300  // Ensure we have a valid name
7301  IdentifierInfo *II = 0;
7302  if (D.hasName()) {
7303    II = D.getIdentifier();
7304    if (!II) {
7305      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7306        << GetNameForDeclarator(D).getName().getAsString();
7307      D.setInvalidType(true);
7308    }
7309  }
7310
7311  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7312  if (II) {
7313    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7314                   ForRedeclaration);
7315    LookupName(R, S);
7316    if (R.isSingleResult()) {
7317      NamedDecl *PrevDecl = R.getFoundDecl();
7318      if (PrevDecl->isTemplateParameter()) {
7319        // Maybe we will complain about the shadowed template parameter.
7320        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7321        // Just pretend that we didn't see the previous declaration.
7322        PrevDecl = 0;
7323      } else if (S->isDeclScope(PrevDecl)) {
7324        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7325        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7326
7327        // Recover by removing the name
7328        II = 0;
7329        D.SetIdentifier(0, D.getIdentifierLoc());
7330        D.setInvalidType(true);
7331      }
7332    }
7333  }
7334
7335  // Temporarily put parameter variables in the translation unit, not
7336  // the enclosing context.  This prevents them from accidentally
7337  // looking like class members in C++.
7338  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7339                                    D.getLocStart(),
7340                                    D.getIdentifierLoc(), II,
7341                                    parmDeclType, TInfo,
7342                                    StorageClass, StorageClassAsWritten);
7343
7344  if (D.isInvalidType())
7345    New->setInvalidDecl();
7346
7347  assert(S->isFunctionPrototypeScope());
7348  assert(S->getFunctionPrototypeDepth() >= 1);
7349  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7350                    S->getNextFunctionPrototypeIndex());
7351
7352  // Add the parameter declaration into this scope.
7353  S->AddDecl(New);
7354  if (II)
7355    IdResolver.AddDecl(New);
7356
7357  ProcessDeclAttributes(S, New, D);
7358
7359  if (D.getDeclSpec().isModulePrivateSpecified())
7360    Diag(New->getLocation(), diag::err_module_private_local)
7361      << 1 << New->getDeclName()
7362      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7363      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7364
7365  if (New->hasAttr<BlocksAttr>()) {
7366    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7367  }
7368  return New;
7369}
7370
7371/// \brief Synthesizes a variable for a parameter arising from a
7372/// typedef.
7373ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7374                                              SourceLocation Loc,
7375                                              QualType T) {
7376  /* FIXME: setting StartLoc == Loc.
7377     Would it be worth to modify callers so as to provide proper source
7378     location for the unnamed parameters, embedding the parameter's type? */
7379  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7380                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7381                                           SC_None, SC_None, 0);
7382  Param->setImplicit();
7383  return Param;
7384}
7385
7386void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7387                                    ParmVarDecl * const *ParamEnd) {
7388  // Don't diagnose unused-parameter errors in template instantiations; we
7389  // will already have done so in the template itself.
7390  if (!ActiveTemplateInstantiations.empty())
7391    return;
7392
7393  for (; Param != ParamEnd; ++Param) {
7394    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7395        !(*Param)->hasAttr<UnusedAttr>()) {
7396      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7397        << (*Param)->getDeclName();
7398    }
7399  }
7400}
7401
7402void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7403                                                  ParmVarDecl * const *ParamEnd,
7404                                                  QualType ReturnTy,
7405                                                  NamedDecl *D) {
7406  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7407    return;
7408
7409  // Warn if the return value is pass-by-value and larger than the specified
7410  // threshold.
7411  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7412    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7413    if (Size > LangOpts.NumLargeByValueCopy)
7414      Diag(D->getLocation(), diag::warn_return_value_size)
7415          << D->getDeclName() << Size;
7416  }
7417
7418  // Warn if any parameter is pass-by-value and larger than the specified
7419  // threshold.
7420  for (; Param != ParamEnd; ++Param) {
7421    QualType T = (*Param)->getType();
7422    if (T->isDependentType() || !T.isPODType(Context))
7423      continue;
7424    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7425    if (Size > LangOpts.NumLargeByValueCopy)
7426      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7427          << (*Param)->getDeclName() << Size;
7428  }
7429}
7430
7431ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7432                                  SourceLocation NameLoc, IdentifierInfo *Name,
7433                                  QualType T, TypeSourceInfo *TSInfo,
7434                                  VarDecl::StorageClass StorageClass,
7435                                  VarDecl::StorageClass StorageClassAsWritten) {
7436  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7437  if (getLangOpts().ObjCAutoRefCount &&
7438      T.getObjCLifetime() == Qualifiers::OCL_None &&
7439      T->isObjCLifetimeType()) {
7440
7441    Qualifiers::ObjCLifetime lifetime;
7442
7443    // Special cases for arrays:
7444    //   - if it's const, use __unsafe_unretained
7445    //   - otherwise, it's an error
7446    if (T->isArrayType()) {
7447      if (!T.isConstQualified()) {
7448        DelayedDiagnostics.add(
7449            sema::DelayedDiagnostic::makeForbiddenType(
7450            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7451      }
7452      lifetime = Qualifiers::OCL_ExplicitNone;
7453    } else {
7454      lifetime = T->getObjCARCImplicitLifetime();
7455    }
7456    T = Context.getLifetimeQualifiedType(T, lifetime);
7457  }
7458
7459  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7460                                         Context.getAdjustedParameterType(T),
7461                                         TSInfo,
7462                                         StorageClass, StorageClassAsWritten,
7463                                         0);
7464
7465  // Parameters can not be abstract class types.
7466  // For record types, this is done by the AbstractClassUsageDiagnoser once
7467  // the class has been completely parsed.
7468  if (!CurContext->isRecord() &&
7469      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7470                             AbstractParamType))
7471    New->setInvalidDecl();
7472
7473  // Parameter declarators cannot be interface types. All ObjC objects are
7474  // passed by reference.
7475  if (T->isObjCObjectType()) {
7476    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7477    Diag(NameLoc,
7478         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7479      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7480    T = Context.getObjCObjectPointerType(T);
7481    New->setType(T);
7482  }
7483
7484  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7485  // duration shall not be qualified by an address-space qualifier."
7486  // Since all parameters have automatic store duration, they can not have
7487  // an address space.
7488  if (T.getAddressSpace() != 0) {
7489    Diag(NameLoc, diag::err_arg_with_address_space);
7490    New->setInvalidDecl();
7491  }
7492
7493  return New;
7494}
7495
7496void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7497                                           SourceLocation LocAfterDecls) {
7498  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7499
7500  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7501  // for a K&R function.
7502  if (!FTI.hasPrototype) {
7503    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7504      --i;
7505      if (FTI.ArgInfo[i].Param == 0) {
7506        SmallString<256> Code;
7507        llvm::raw_svector_ostream(Code) << "  int "
7508                                        << FTI.ArgInfo[i].Ident->getName()
7509                                        << ";\n";
7510        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7511          << FTI.ArgInfo[i].Ident
7512          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7513
7514        // Implicitly declare the argument as type 'int' for lack of a better
7515        // type.
7516        AttributeFactory attrs;
7517        DeclSpec DS(attrs);
7518        const char* PrevSpec; // unused
7519        unsigned DiagID; // unused
7520        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7521                           PrevSpec, DiagID);
7522        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7523        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7524        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7525      }
7526    }
7527  }
7528}
7529
7530Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7531  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7532  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7533  Scope *ParentScope = FnBodyScope->getParent();
7534
7535  D.setFunctionDefinitionKind(FDK_Definition);
7536  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7537  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7538}
7539
7540static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7541  // Don't warn about invalid declarations.
7542  if (FD->isInvalidDecl())
7543    return false;
7544
7545  // Or declarations that aren't global.
7546  if (!FD->isGlobal())
7547    return false;
7548
7549  // Don't warn about C++ member functions.
7550  if (isa<CXXMethodDecl>(FD))
7551    return false;
7552
7553  // Don't warn about 'main'.
7554  if (FD->isMain())
7555    return false;
7556
7557  // Don't warn about inline functions.
7558  if (FD->isInlined())
7559    return false;
7560
7561  // Don't warn about function templates.
7562  if (FD->getDescribedFunctionTemplate())
7563    return false;
7564
7565  // Don't warn about function template specializations.
7566  if (FD->isFunctionTemplateSpecialization())
7567    return false;
7568
7569  // Don't warn for OpenCL kernels.
7570  if (FD->hasAttr<OpenCLKernelAttr>())
7571    return false;
7572
7573  bool MissingPrototype = true;
7574  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7575       Prev; Prev = Prev->getPreviousDecl()) {
7576    // Ignore any declarations that occur in function or method
7577    // scope, because they aren't visible from the header.
7578    if (Prev->getDeclContext()->isFunctionOrMethod())
7579      continue;
7580
7581    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7582    break;
7583  }
7584
7585  return MissingPrototype;
7586}
7587
7588void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7589  // Don't complain if we're in GNU89 mode and the previous definition
7590  // was an extern inline function.
7591  const FunctionDecl *Definition;
7592  if (FD->isDefined(Definition) &&
7593      !canRedefineFunction(Definition, getLangOpts())) {
7594    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7595        Definition->getStorageClass() == SC_Extern)
7596      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7597        << FD->getDeclName() << getLangOpts().CPlusPlus;
7598    else
7599      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7600    Diag(Definition->getLocation(), diag::note_previous_definition);
7601    FD->setInvalidDecl();
7602  }
7603}
7604
7605Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7606  // Clear the last template instantiation error context.
7607  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7608
7609  if (!D)
7610    return D;
7611  FunctionDecl *FD = 0;
7612
7613  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7614    FD = FunTmpl->getTemplatedDecl();
7615  else
7616    FD = cast<FunctionDecl>(D);
7617
7618  // Enter a new function scope
7619  PushFunctionScope();
7620
7621  // See if this is a redefinition.
7622  if (!FD->isLateTemplateParsed())
7623    CheckForFunctionRedefinition(FD);
7624
7625  // Builtin functions cannot be defined.
7626  if (unsigned BuiltinID = FD->getBuiltinID()) {
7627    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7628      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7629      FD->setInvalidDecl();
7630    }
7631  }
7632
7633  // The return type of a function definition must be complete
7634  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7635  QualType ResultType = FD->getResultType();
7636  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7637      !FD->isInvalidDecl() &&
7638      RequireCompleteType(FD->getLocation(), ResultType,
7639                          diag::err_func_def_incomplete_result))
7640    FD->setInvalidDecl();
7641
7642  // GNU warning -Wmissing-prototypes:
7643  //   Warn if a global function is defined without a previous
7644  //   prototype declaration. This warning is issued even if the
7645  //   definition itself provides a prototype. The aim is to detect
7646  //   global functions that fail to be declared in header files.
7647  if (ShouldWarnAboutMissingPrototype(FD))
7648    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7649
7650  if (FnBodyScope)
7651    PushDeclContext(FnBodyScope, FD);
7652
7653  // Check the validity of our function parameters
7654  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7655                           /*CheckParameterNames=*/true);
7656
7657  // Introduce our parameters into the function scope
7658  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7659    ParmVarDecl *Param = FD->getParamDecl(p);
7660    Param->setOwningFunction(FD);
7661
7662    // If this has an identifier, add it to the scope stack.
7663    if (Param->getIdentifier() && FnBodyScope) {
7664      CheckShadow(FnBodyScope, Param);
7665
7666      PushOnScopeChains(Param, FnBodyScope);
7667    }
7668  }
7669
7670  // If we had any tags defined in the function prototype,
7671  // introduce them into the function scope.
7672  if (FnBodyScope) {
7673    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7674           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7675      NamedDecl *D = *I;
7676
7677      // Some of these decls (like enums) may have been pinned to the translation unit
7678      // for lack of a real context earlier. If so, remove from the translation unit
7679      // and reattach to the current context.
7680      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7681        // Is the decl actually in the context?
7682        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7683               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7684          if (*DI == D) {
7685            Context.getTranslationUnitDecl()->removeDecl(D);
7686            break;
7687          }
7688        }
7689        // Either way, reassign the lexical decl context to our FunctionDecl.
7690        D->setLexicalDeclContext(CurContext);
7691      }
7692
7693      // If the decl has a non-null name, make accessible in the current scope.
7694      if (!D->getName().empty())
7695        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7696
7697      // Similarly, dive into enums and fish their constants out, making them
7698      // accessible in this scope.
7699      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7700        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7701               EE = ED->enumerator_end(); EI != EE; ++EI)
7702          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7703      }
7704    }
7705  }
7706
7707  // Ensure that the function's exception specification is instantiated.
7708  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7709    ResolveExceptionSpec(D->getLocation(), FPT);
7710
7711  // Checking attributes of current function definition
7712  // dllimport attribute.
7713  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7714  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7715    // dllimport attribute cannot be directly applied to definition.
7716    // Microsoft accepts dllimport for functions defined within class scope.
7717    if (!DA->isInherited() &&
7718        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7719      Diag(FD->getLocation(),
7720           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7721        << "dllimport";
7722      FD->setInvalidDecl();
7723      return FD;
7724    }
7725
7726    // Visual C++ appears to not think this is an issue, so only issue
7727    // a warning when Microsoft extensions are disabled.
7728    if (!LangOpts.MicrosoftExt) {
7729      // If a symbol previously declared dllimport is later defined, the
7730      // attribute is ignored in subsequent references, and a warning is
7731      // emitted.
7732      Diag(FD->getLocation(),
7733           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7734        << FD->getName() << "dllimport";
7735    }
7736  }
7737  // We want to attach documentation to original Decl (which might be
7738  // a function template).
7739  ActOnDocumentableDecl(D);
7740  return FD;
7741}
7742
7743/// \brief Given the set of return statements within a function body,
7744/// compute the variables that are subject to the named return value
7745/// optimization.
7746///
7747/// Each of the variables that is subject to the named return value
7748/// optimization will be marked as NRVO variables in the AST, and any
7749/// return statement that has a marked NRVO variable as its NRVO candidate can
7750/// use the named return value optimization.
7751///
7752/// This function applies a very simplistic algorithm for NRVO: if every return
7753/// statement in the function has the same NRVO candidate, that candidate is
7754/// the NRVO variable.
7755///
7756/// FIXME: Employ a smarter algorithm that accounts for multiple return
7757/// statements and the lifetimes of the NRVO candidates. We should be able to
7758/// find a maximal set of NRVO variables.
7759void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7760  ReturnStmt **Returns = Scope->Returns.data();
7761
7762  const VarDecl *NRVOCandidate = 0;
7763  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7764    if (!Returns[I]->getNRVOCandidate())
7765      return;
7766
7767    if (!NRVOCandidate)
7768      NRVOCandidate = Returns[I]->getNRVOCandidate();
7769    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7770      return;
7771  }
7772
7773  if (NRVOCandidate)
7774    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7775}
7776
7777Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7778  return ActOnFinishFunctionBody(D, BodyArg, false);
7779}
7780
7781Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7782                                    bool IsInstantiation) {
7783  FunctionDecl *FD = 0;
7784  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7785  if (FunTmpl)
7786    FD = FunTmpl->getTemplatedDecl();
7787  else
7788    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7789
7790  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7791  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7792
7793  if (FD) {
7794    FD->setBody(Body);
7795
7796    // If the function implicitly returns zero (like 'main') or is naked,
7797    // don't complain about missing return statements.
7798    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7799      WP.disableCheckFallThrough();
7800
7801    // MSVC permits the use of pure specifier (=0) on function definition,
7802    // defined at class scope, warn about this non standard construct.
7803    if (getLangOpts().MicrosoftExt && FD->isPure())
7804      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7805
7806    if (!FD->isInvalidDecl()) {
7807      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7808      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7809                                             FD->getResultType(), FD);
7810
7811      // If this is a constructor, we need a vtable.
7812      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7813        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7814
7815      // Try to apply the named return value optimization. We have to check
7816      // if we can do this here because lambdas keep return statements around
7817      // to deduce an implicit return type.
7818      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7819          !FD->isDependentContext())
7820        computeNRVO(Body, getCurFunction());
7821    }
7822
7823    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7824           "Function parsing confused");
7825  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7826    assert(MD == getCurMethodDecl() && "Method parsing confused");
7827    MD->setBody(Body);
7828    if (!MD->isInvalidDecl()) {
7829      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7830      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7831                                             MD->getResultType(), MD);
7832
7833      if (Body)
7834        computeNRVO(Body, getCurFunction());
7835    }
7836    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7837      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7838      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7839    }
7840    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7841      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7842      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7843    }
7844  } else {
7845    return 0;
7846  }
7847
7848  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7849         "This should only be set for ObjC methods, which should have been "
7850         "handled in the block above.");
7851  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7852         "This should only be set for ObjC methods, which should have been "
7853         "handled in the block above.");
7854
7855  // Verify and clean out per-function state.
7856  if (Body) {
7857    // C++ constructors that have function-try-blocks can't have return
7858    // statements in the handlers of that block. (C++ [except.handle]p14)
7859    // Verify this.
7860    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7861      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7862
7863    // Verify that gotos and switch cases don't jump into scopes illegally.
7864    if (getCurFunction()->NeedsScopeChecking() &&
7865        !dcl->isInvalidDecl() &&
7866        !hasAnyUnrecoverableErrorsInThisFunction() &&
7867        !PP.isCodeCompletionEnabled())
7868      DiagnoseInvalidJumps(Body);
7869
7870    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7871      if (!Destructor->getParent()->isDependentType())
7872        CheckDestructor(Destructor);
7873
7874      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7875                                             Destructor->getParent());
7876    }
7877
7878    // If any errors have occurred, clear out any temporaries that may have
7879    // been leftover. This ensures that these temporaries won't be picked up for
7880    // deletion in some later function.
7881    if (PP.getDiagnostics().hasErrorOccurred() ||
7882        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7883      DiscardCleanupsInEvaluationContext();
7884    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7885      // Since the body is valid, issue any analysis-based warnings that are
7886      // enabled.
7887      ActivePolicy = &WP;
7888    }
7889
7890    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7891        (!CheckConstexprFunctionDecl(FD) ||
7892         !CheckConstexprFunctionBody(FD, Body)))
7893      FD->setInvalidDecl();
7894
7895    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7896    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7897    assert(MaybeODRUseExprs.empty() &&
7898           "Leftover expressions for odr-use checking");
7899  }
7900
7901  if (!IsInstantiation)
7902    PopDeclContext();
7903
7904  PopFunctionScopeInfo(ActivePolicy, dcl);
7905
7906  // If any errors have occurred, clear out any temporaries that may have
7907  // been leftover. This ensures that these temporaries won't be picked up for
7908  // deletion in some later function.
7909  if (getDiagnostics().hasErrorOccurred()) {
7910    DiscardCleanupsInEvaluationContext();
7911  }
7912
7913  return dcl;
7914}
7915
7916
7917/// When we finish delayed parsing of an attribute, we must attach it to the
7918/// relevant Decl.
7919void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7920                                       ParsedAttributes &Attrs) {
7921  // Always attach attributes to the underlying decl.
7922  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7923    D = TD->getTemplatedDecl();
7924  ProcessDeclAttributeList(S, D, Attrs.getList());
7925
7926  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7927    if (Method->isStatic())
7928      checkThisInStaticMemberFunctionAttributes(Method);
7929}
7930
7931
7932/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7933/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7934NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7935                                          IdentifierInfo &II, Scope *S) {
7936  // Before we produce a declaration for an implicitly defined
7937  // function, see whether there was a locally-scoped declaration of
7938  // this name as a function or variable. If so, use that
7939  // (non-visible) declaration, and complain about it.
7940  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7941    = findLocallyScopedExternalDecl(&II);
7942  if (Pos != LocallyScopedExternalDecls.end()) {
7943    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7944    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7945    return Pos->second;
7946  }
7947
7948  // Extension in C99.  Legal in C90, but warn about it.
7949  unsigned diag_id;
7950  if (II.getName().startswith("__builtin_"))
7951    diag_id = diag::warn_builtin_unknown;
7952  else if (getLangOpts().C99)
7953    diag_id = diag::ext_implicit_function_decl;
7954  else
7955    diag_id = diag::warn_implicit_function_decl;
7956  Diag(Loc, diag_id) << &II;
7957
7958  // Because typo correction is expensive, only do it if the implicit
7959  // function declaration is going to be treated as an error.
7960  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7961    TypoCorrection Corrected;
7962    DeclFilterCCC<FunctionDecl> Validator;
7963    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7964                                      LookupOrdinaryName, S, 0, Validator))) {
7965      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7966      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7967      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7968
7969      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7970          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7971
7972      if (Func->getLocation().isValid()
7973          && !II.getName().startswith("__builtin_"))
7974        Diag(Func->getLocation(), diag::note_previous_decl)
7975            << CorrectedQuotedStr;
7976    }
7977  }
7978
7979  // Set a Declarator for the implicit definition: int foo();
7980  const char *Dummy;
7981  AttributeFactory attrFactory;
7982  DeclSpec DS(attrFactory);
7983  unsigned DiagID;
7984  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7985  (void)Error; // Silence warning.
7986  assert(!Error && "Error setting up implicit decl!");
7987  Declarator D(DS, Declarator::BlockContext);
7988  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7989                                             SourceLocation(), 0, 0, 0, true,
7990                                             SourceLocation(), SourceLocation(),
7991                                             SourceLocation(), SourceLocation(),
7992                                             EST_None, SourceLocation(),
7993                                             0, 0, 0, 0, Loc, Loc, D),
7994                DS.getAttributes(),
7995                SourceLocation());
7996  D.SetIdentifier(&II, Loc);
7997
7998  // Insert this function into translation-unit scope.
7999
8000  DeclContext *PrevDC = CurContext;
8001  CurContext = Context.getTranslationUnitDecl();
8002
8003  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8004  FD->setImplicit();
8005
8006  CurContext = PrevDC;
8007
8008  AddKnownFunctionAttributes(FD);
8009
8010  return FD;
8011}
8012
8013/// \brief Adds any function attributes that we know a priori based on
8014/// the declaration of this function.
8015///
8016/// These attributes can apply both to implicitly-declared builtins
8017/// (like __builtin___printf_chk) or to library-declared functions
8018/// like NSLog or printf.
8019///
8020/// We need to check for duplicate attributes both here and where user-written
8021/// attributes are applied to declarations.
8022void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8023  if (FD->isInvalidDecl())
8024    return;
8025
8026  // If this is a built-in function, map its builtin attributes to
8027  // actual attributes.
8028  if (unsigned BuiltinID = FD->getBuiltinID()) {
8029    // Handle printf-formatting attributes.
8030    unsigned FormatIdx;
8031    bool HasVAListArg;
8032    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8033      if (!FD->getAttr<FormatAttr>()) {
8034        const char *fmt = "printf";
8035        unsigned int NumParams = FD->getNumParams();
8036        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8037            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8038          fmt = "NSString";
8039        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8040                                               fmt, FormatIdx+1,
8041                                               HasVAListArg ? 0 : FormatIdx+2));
8042      }
8043    }
8044    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8045                                             HasVAListArg)) {
8046     if (!FD->getAttr<FormatAttr>())
8047       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8048                                              "scanf", FormatIdx+1,
8049                                              HasVAListArg ? 0 : FormatIdx+2));
8050    }
8051
8052    // Mark const if we don't care about errno and that is the only
8053    // thing preventing the function from being const. This allows
8054    // IRgen to use LLVM intrinsics for such functions.
8055    if (!getLangOpts().MathErrno &&
8056        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8057      if (!FD->getAttr<ConstAttr>())
8058        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8059    }
8060
8061    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8062        !FD->getAttr<ReturnsTwiceAttr>())
8063      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8064    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8065      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8066    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8067      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8068  }
8069
8070  IdentifierInfo *Name = FD->getIdentifier();
8071  if (!Name)
8072    return;
8073  if ((!getLangOpts().CPlusPlus &&
8074       FD->getDeclContext()->isTranslationUnit()) ||
8075      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8076       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8077       LinkageSpecDecl::lang_c)) {
8078    // Okay: this could be a libc/libm/Objective-C function we know
8079    // about.
8080  } else
8081    return;
8082
8083  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8084    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8085    // target-specific builtins, perhaps?
8086    if (!FD->getAttr<FormatAttr>())
8087      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8088                                             "printf", 2,
8089                                             Name->isStr("vasprintf") ? 0 : 3));
8090  }
8091
8092  if (Name->isStr("__CFStringMakeConstantString")) {
8093    // We already have a __builtin___CFStringMakeConstantString,
8094    // but builds that use -fno-constant-cfstrings don't go through that.
8095    if (!FD->getAttr<FormatArgAttr>())
8096      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8097  }
8098}
8099
8100TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8101                                    TypeSourceInfo *TInfo) {
8102  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8103  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8104
8105  if (!TInfo) {
8106    assert(D.isInvalidType() && "no declarator info for valid type");
8107    TInfo = Context.getTrivialTypeSourceInfo(T);
8108  }
8109
8110  // Scope manipulation handled by caller.
8111  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8112                                           D.getLocStart(),
8113                                           D.getIdentifierLoc(),
8114                                           D.getIdentifier(),
8115                                           TInfo);
8116
8117  // Bail out immediately if we have an invalid declaration.
8118  if (D.isInvalidType()) {
8119    NewTD->setInvalidDecl();
8120    return NewTD;
8121  }
8122
8123  if (D.getDeclSpec().isModulePrivateSpecified()) {
8124    if (CurContext->isFunctionOrMethod())
8125      Diag(NewTD->getLocation(), diag::err_module_private_local)
8126        << 2 << NewTD->getDeclName()
8127        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8128        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8129    else
8130      NewTD->setModulePrivate();
8131  }
8132
8133  // C++ [dcl.typedef]p8:
8134  //   If the typedef declaration defines an unnamed class (or
8135  //   enum), the first typedef-name declared by the declaration
8136  //   to be that class type (or enum type) is used to denote the
8137  //   class type (or enum type) for linkage purposes only.
8138  // We need to check whether the type was declared in the declaration.
8139  switch (D.getDeclSpec().getTypeSpecType()) {
8140  case TST_enum:
8141  case TST_struct:
8142  case TST_interface:
8143  case TST_union:
8144  case TST_class: {
8145    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8146
8147    // Do nothing if the tag is not anonymous or already has an
8148    // associated typedef (from an earlier typedef in this decl group).
8149    if (tagFromDeclSpec->getIdentifier()) break;
8150    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8151
8152    // A well-formed anonymous tag must always be a TUK_Definition.
8153    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8154
8155    // The type must match the tag exactly;  no qualifiers allowed.
8156    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8157      break;
8158
8159    // Otherwise, set this is the anon-decl typedef for the tag.
8160    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8161    break;
8162  }
8163
8164  default:
8165    break;
8166  }
8167
8168  return NewTD;
8169}
8170
8171
8172/// \brief Check that this is a valid underlying type for an enum declaration.
8173bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8174  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8175  QualType T = TI->getType();
8176
8177  if (T->isDependentType() || T->isIntegralType(Context))
8178    return false;
8179
8180  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8181  return true;
8182}
8183
8184/// Check whether this is a valid redeclaration of a previous enumeration.
8185/// \return true if the redeclaration was invalid.
8186bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8187                                  QualType EnumUnderlyingTy,
8188                                  const EnumDecl *Prev) {
8189  bool IsFixed = !EnumUnderlyingTy.isNull();
8190
8191  if (IsScoped != Prev->isScoped()) {
8192    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8193      << Prev->isScoped();
8194    Diag(Prev->getLocation(), diag::note_previous_use);
8195    return true;
8196  }
8197
8198  if (IsFixed && Prev->isFixed()) {
8199    if (!EnumUnderlyingTy->isDependentType() &&
8200        !Prev->getIntegerType()->isDependentType() &&
8201        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8202                                        Prev->getIntegerType())) {
8203      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8204        << EnumUnderlyingTy << Prev->getIntegerType();
8205      Diag(Prev->getLocation(), diag::note_previous_use);
8206      return true;
8207    }
8208  } else if (IsFixed != Prev->isFixed()) {
8209    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8210      << Prev->isFixed();
8211    Diag(Prev->getLocation(), diag::note_previous_use);
8212    return true;
8213  }
8214
8215  return false;
8216}
8217
8218/// \brief Get diagnostic %select index for tag kind for
8219/// redeclaration diagnostic message.
8220/// WARNING: Indexes apply to particular diagnostics only!
8221///
8222/// \returns diagnostic %select index.
8223static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8224  switch (Tag) {
8225  case TTK_Struct: return 0;
8226  case TTK_Interface: return 1;
8227  case TTK_Class:  return 2;
8228  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8229  }
8230}
8231
8232/// \brief Determine if tag kind is a class-key compatible with
8233/// class for redeclaration (class, struct, or __interface).
8234///
8235/// \returns true iff the tag kind is compatible.
8236static bool isClassCompatTagKind(TagTypeKind Tag)
8237{
8238  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8239}
8240
8241/// \brief Determine whether a tag with a given kind is acceptable
8242/// as a redeclaration of the given tag declaration.
8243///
8244/// \returns true if the new tag kind is acceptable, false otherwise.
8245bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8246                                        TagTypeKind NewTag, bool isDefinition,
8247                                        SourceLocation NewTagLoc,
8248                                        const IdentifierInfo &Name) {
8249  // C++ [dcl.type.elab]p3:
8250  //   The class-key or enum keyword present in the
8251  //   elaborated-type-specifier shall agree in kind with the
8252  //   declaration to which the name in the elaborated-type-specifier
8253  //   refers. This rule also applies to the form of
8254  //   elaborated-type-specifier that declares a class-name or
8255  //   friend class since it can be construed as referring to the
8256  //   definition of the class. Thus, in any
8257  //   elaborated-type-specifier, the enum keyword shall be used to
8258  //   refer to an enumeration (7.2), the union class-key shall be
8259  //   used to refer to a union (clause 9), and either the class or
8260  //   struct class-key shall be used to refer to a class (clause 9)
8261  //   declared using the class or struct class-key.
8262  TagTypeKind OldTag = Previous->getTagKind();
8263  if (!isDefinition || !isClassCompatTagKind(NewTag))
8264    if (OldTag == NewTag)
8265      return true;
8266
8267  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8268    // Warn about the struct/class tag mismatch.
8269    bool isTemplate = false;
8270    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8271      isTemplate = Record->getDescribedClassTemplate();
8272
8273    if (!ActiveTemplateInstantiations.empty()) {
8274      // In a template instantiation, do not offer fix-its for tag mismatches
8275      // since they usually mess up the template instead of fixing the problem.
8276      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8277        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8278        << getRedeclDiagFromTagKind(OldTag);
8279      return true;
8280    }
8281
8282    if (isDefinition) {
8283      // On definitions, check previous tags and issue a fix-it for each
8284      // one that doesn't match the current tag.
8285      if (Previous->getDefinition()) {
8286        // Don't suggest fix-its for redefinitions.
8287        return true;
8288      }
8289
8290      bool previousMismatch = false;
8291      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8292           E(Previous->redecls_end()); I != E; ++I) {
8293        if (I->getTagKind() != NewTag) {
8294          if (!previousMismatch) {
8295            previousMismatch = true;
8296            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8297              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8298              << getRedeclDiagFromTagKind(I->getTagKind());
8299          }
8300          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8301            << getRedeclDiagFromTagKind(NewTag)
8302            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8303                 TypeWithKeyword::getTagTypeKindName(NewTag));
8304        }
8305      }
8306      return true;
8307    }
8308
8309    // Check for a previous definition.  If current tag and definition
8310    // are same type, do nothing.  If no definition, but disagree with
8311    // with previous tag type, give a warning, but no fix-it.
8312    const TagDecl *Redecl = Previous->getDefinition() ?
8313                            Previous->getDefinition() : Previous;
8314    if (Redecl->getTagKind() == NewTag) {
8315      return true;
8316    }
8317
8318    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8319      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8320      << getRedeclDiagFromTagKind(OldTag);
8321    Diag(Redecl->getLocation(), diag::note_previous_use);
8322
8323    // If there is a previous defintion, suggest a fix-it.
8324    if (Previous->getDefinition()) {
8325        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8326          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8327          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8328               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8329    }
8330
8331    return true;
8332  }
8333  return false;
8334}
8335
8336/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8337/// former case, Name will be non-null.  In the later case, Name will be null.
8338/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8339/// reference/declaration/definition of a tag.
8340Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8341                     SourceLocation KWLoc, CXXScopeSpec &SS,
8342                     IdentifierInfo *Name, SourceLocation NameLoc,
8343                     AttributeList *Attr, AccessSpecifier AS,
8344                     SourceLocation ModulePrivateLoc,
8345                     MultiTemplateParamsArg TemplateParameterLists,
8346                     bool &OwnedDecl, bool &IsDependent,
8347                     SourceLocation ScopedEnumKWLoc,
8348                     bool ScopedEnumUsesClassTag,
8349                     TypeResult UnderlyingType) {
8350  // If this is not a definition, it must have a name.
8351  IdentifierInfo *OrigName = Name;
8352  assert((Name != 0 || TUK == TUK_Definition) &&
8353         "Nameless record must be a definition!");
8354  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8355
8356  OwnedDecl = false;
8357  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8358  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8359
8360  // FIXME: Check explicit specializations more carefully.
8361  bool isExplicitSpecialization = false;
8362  bool Invalid = false;
8363
8364  // We only need to do this matching if we have template parameters
8365  // or a scope specifier, which also conveniently avoids this work
8366  // for non-C++ cases.
8367  if (TemplateParameterLists.size() > 0 ||
8368      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8369    if (TemplateParameterList *TemplateParams
8370          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8371                                                TemplateParameterLists.data(),
8372                                                TemplateParameterLists.size(),
8373                                                    TUK == TUK_Friend,
8374                                                    isExplicitSpecialization,
8375                                                    Invalid)) {
8376      if (TemplateParams->size() > 0) {
8377        // This is a declaration or definition of a class template (which may
8378        // be a member of another template).
8379
8380        if (Invalid)
8381          return 0;
8382
8383        OwnedDecl = false;
8384        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8385                                               SS, Name, NameLoc, Attr,
8386                                               TemplateParams, AS,
8387                                               ModulePrivateLoc,
8388                                               TemplateParameterLists.size()-1,
8389                                               TemplateParameterLists.data());
8390        return Result.get();
8391      } else {
8392        // The "template<>" header is extraneous.
8393        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8394          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8395        isExplicitSpecialization = true;
8396      }
8397    }
8398  }
8399
8400  // Figure out the underlying type if this a enum declaration. We need to do
8401  // this early, because it's needed to detect if this is an incompatible
8402  // redeclaration.
8403  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8404
8405  if (Kind == TTK_Enum) {
8406    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8407      // No underlying type explicitly specified, or we failed to parse the
8408      // type, default to int.
8409      EnumUnderlying = Context.IntTy.getTypePtr();
8410    else if (UnderlyingType.get()) {
8411      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8412      // integral type; any cv-qualification is ignored.
8413      TypeSourceInfo *TI = 0;
8414      GetTypeFromParser(UnderlyingType.get(), &TI);
8415      EnumUnderlying = TI;
8416
8417      if (CheckEnumUnderlyingType(TI))
8418        // Recover by falling back to int.
8419        EnumUnderlying = Context.IntTy.getTypePtr();
8420
8421      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8422                                          UPPC_FixedUnderlyingType))
8423        EnumUnderlying = Context.IntTy.getTypePtr();
8424
8425    } else if (getLangOpts().MicrosoftMode)
8426      // Microsoft enums are always of int type.
8427      EnumUnderlying = Context.IntTy.getTypePtr();
8428  }
8429
8430  DeclContext *SearchDC = CurContext;
8431  DeclContext *DC = CurContext;
8432  bool isStdBadAlloc = false;
8433
8434  RedeclarationKind Redecl = ForRedeclaration;
8435  if (TUK == TUK_Friend || TUK == TUK_Reference)
8436    Redecl = NotForRedeclaration;
8437
8438  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8439
8440  if (Name && SS.isNotEmpty()) {
8441    // We have a nested-name tag ('struct foo::bar').
8442
8443    // Check for invalid 'foo::'.
8444    if (SS.isInvalid()) {
8445      Name = 0;
8446      goto CreateNewDecl;
8447    }
8448
8449    // If this is a friend or a reference to a class in a dependent
8450    // context, don't try to make a decl for it.
8451    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8452      DC = computeDeclContext(SS, false);
8453      if (!DC) {
8454        IsDependent = true;
8455        return 0;
8456      }
8457    } else {
8458      DC = computeDeclContext(SS, true);
8459      if (!DC) {
8460        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8461          << SS.getRange();
8462        return 0;
8463      }
8464    }
8465
8466    if (RequireCompleteDeclContext(SS, DC))
8467      return 0;
8468
8469    SearchDC = DC;
8470    // Look-up name inside 'foo::'.
8471    LookupQualifiedName(Previous, DC);
8472
8473    if (Previous.isAmbiguous())
8474      return 0;
8475
8476    if (Previous.empty()) {
8477      // Name lookup did not find anything. However, if the
8478      // nested-name-specifier refers to the current instantiation,
8479      // and that current instantiation has any dependent base
8480      // classes, we might find something at instantiation time: treat
8481      // this as a dependent elaborated-type-specifier.
8482      // But this only makes any sense for reference-like lookups.
8483      if (Previous.wasNotFoundInCurrentInstantiation() &&
8484          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8485        IsDependent = true;
8486        return 0;
8487      }
8488
8489      // A tag 'foo::bar' must already exist.
8490      Diag(NameLoc, diag::err_not_tag_in_scope)
8491        << Kind << Name << DC << SS.getRange();
8492      Name = 0;
8493      Invalid = true;
8494      goto CreateNewDecl;
8495    }
8496  } else if (Name) {
8497    // If this is a named struct, check to see if there was a previous forward
8498    // declaration or definition.
8499    // FIXME: We're looking into outer scopes here, even when we
8500    // shouldn't be. Doing so can result in ambiguities that we
8501    // shouldn't be diagnosing.
8502    LookupName(Previous, S);
8503
8504    if (Previous.isAmbiguous() &&
8505        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8506      LookupResult::Filter F = Previous.makeFilter();
8507      while (F.hasNext()) {
8508        NamedDecl *ND = F.next();
8509        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8510          F.erase();
8511      }
8512      F.done();
8513    }
8514
8515    // Note:  there used to be some attempt at recovery here.
8516    if (Previous.isAmbiguous())
8517      return 0;
8518
8519    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8520      // FIXME: This makes sure that we ignore the contexts associated
8521      // with C structs, unions, and enums when looking for a matching
8522      // tag declaration or definition. See the similar lookup tweak
8523      // in Sema::LookupName; is there a better way to deal with this?
8524      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8525        SearchDC = SearchDC->getParent();
8526    }
8527  } else if (S->isFunctionPrototypeScope()) {
8528    // If this is an enum declaration in function prototype scope, set its
8529    // initial context to the translation unit.
8530    // FIXME: [citation needed]
8531    SearchDC = Context.getTranslationUnitDecl();
8532  }
8533
8534  if (Previous.isSingleResult() &&
8535      Previous.getFoundDecl()->isTemplateParameter()) {
8536    // Maybe we will complain about the shadowed template parameter.
8537    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8538    // Just pretend that we didn't see the previous declaration.
8539    Previous.clear();
8540  }
8541
8542  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8543      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8544    // This is a declaration of or a reference to "std::bad_alloc".
8545    isStdBadAlloc = true;
8546
8547    if (Previous.empty() && StdBadAlloc) {
8548      // std::bad_alloc has been implicitly declared (but made invisible to
8549      // name lookup). Fill in this implicit declaration as the previous
8550      // declaration, so that the declarations get chained appropriately.
8551      Previous.addDecl(getStdBadAlloc());
8552    }
8553  }
8554
8555  // If we didn't find a previous declaration, and this is a reference
8556  // (or friend reference), move to the correct scope.  In C++, we
8557  // also need to do a redeclaration lookup there, just in case
8558  // there's a shadow friend decl.
8559  if (Name && Previous.empty() &&
8560      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8561    if (Invalid) goto CreateNewDecl;
8562    assert(SS.isEmpty());
8563
8564    if (TUK == TUK_Reference) {
8565      // C++ [basic.scope.pdecl]p5:
8566      //   -- for an elaborated-type-specifier of the form
8567      //
8568      //          class-key identifier
8569      //
8570      //      if the elaborated-type-specifier is used in the
8571      //      decl-specifier-seq or parameter-declaration-clause of a
8572      //      function defined in namespace scope, the identifier is
8573      //      declared as a class-name in the namespace that contains
8574      //      the declaration; otherwise, except as a friend
8575      //      declaration, the identifier is declared in the smallest
8576      //      non-class, non-function-prototype scope that contains the
8577      //      declaration.
8578      //
8579      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8580      // C structs and unions.
8581      //
8582      // It is an error in C++ to declare (rather than define) an enum
8583      // type, including via an elaborated type specifier.  We'll
8584      // diagnose that later; for now, declare the enum in the same
8585      // scope as we would have picked for any other tag type.
8586      //
8587      // GNU C also supports this behavior as part of its incomplete
8588      // enum types extension, while GNU C++ does not.
8589      //
8590      // Find the context where we'll be declaring the tag.
8591      // FIXME: We would like to maintain the current DeclContext as the
8592      // lexical context,
8593      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8594        SearchDC = SearchDC->getParent();
8595
8596      // Find the scope where we'll be declaring the tag.
8597      while (S->isClassScope() ||
8598             (getLangOpts().CPlusPlus &&
8599              S->isFunctionPrototypeScope()) ||
8600             ((S->getFlags() & Scope::DeclScope) == 0) ||
8601             (S->getEntity() &&
8602              ((DeclContext *)S->getEntity())->isTransparentContext()))
8603        S = S->getParent();
8604    } else {
8605      assert(TUK == TUK_Friend);
8606      // C++ [namespace.memdef]p3:
8607      //   If a friend declaration in a non-local class first declares a
8608      //   class or function, the friend class or function is a member of
8609      //   the innermost enclosing namespace.
8610      SearchDC = SearchDC->getEnclosingNamespaceContext();
8611    }
8612
8613    // In C++, we need to do a redeclaration lookup to properly
8614    // diagnose some problems.
8615    if (getLangOpts().CPlusPlus) {
8616      Previous.setRedeclarationKind(ForRedeclaration);
8617      LookupQualifiedName(Previous, SearchDC);
8618    }
8619  }
8620
8621  if (!Previous.empty()) {
8622    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8623
8624    // It's okay to have a tag decl in the same scope as a typedef
8625    // which hides a tag decl in the same scope.  Finding this
8626    // insanity with a redeclaration lookup can only actually happen
8627    // in C++.
8628    //
8629    // This is also okay for elaborated-type-specifiers, which is
8630    // technically forbidden by the current standard but which is
8631    // okay according to the likely resolution of an open issue;
8632    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8633    if (getLangOpts().CPlusPlus) {
8634      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8635        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8636          TagDecl *Tag = TT->getDecl();
8637          if (Tag->getDeclName() == Name &&
8638              Tag->getDeclContext()->getRedeclContext()
8639                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8640            PrevDecl = Tag;
8641            Previous.clear();
8642            Previous.addDecl(Tag);
8643            Previous.resolveKind();
8644          }
8645        }
8646      }
8647    }
8648
8649    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8650      // If this is a use of a previous tag, or if the tag is already declared
8651      // in the same scope (so that the definition/declaration completes or
8652      // rementions the tag), reuse the decl.
8653      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8654          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8655        // Make sure that this wasn't declared as an enum and now used as a
8656        // struct or something similar.
8657        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8658                                          TUK == TUK_Definition, KWLoc,
8659                                          *Name)) {
8660          bool SafeToContinue
8661            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8662               Kind != TTK_Enum);
8663          if (SafeToContinue)
8664            Diag(KWLoc, diag::err_use_with_wrong_tag)
8665              << Name
8666              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8667                                              PrevTagDecl->getKindName());
8668          else
8669            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8670          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8671
8672          if (SafeToContinue)
8673            Kind = PrevTagDecl->getTagKind();
8674          else {
8675            // Recover by making this an anonymous redefinition.
8676            Name = 0;
8677            Previous.clear();
8678            Invalid = true;
8679          }
8680        }
8681
8682        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8683          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8684
8685          // If this is an elaborated-type-specifier for a scoped enumeration,
8686          // the 'class' keyword is not necessary and not permitted.
8687          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8688            if (ScopedEnum)
8689              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8690                << PrevEnum->isScoped()
8691                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8692            return PrevTagDecl;
8693          }
8694
8695          QualType EnumUnderlyingTy;
8696          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8697            EnumUnderlyingTy = TI->getType();
8698          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8699            EnumUnderlyingTy = QualType(T, 0);
8700
8701          // All conflicts with previous declarations are recovered by
8702          // returning the previous declaration, unless this is a definition,
8703          // in which case we want the caller to bail out.
8704          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8705                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8706            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8707        }
8708
8709        if (!Invalid) {
8710          // If this is a use, just return the declaration we found.
8711
8712          // FIXME: In the future, return a variant or some other clue
8713          // for the consumer of this Decl to know it doesn't own it.
8714          // For our current ASTs this shouldn't be a problem, but will
8715          // need to be changed with DeclGroups.
8716          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8717               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8718            return PrevTagDecl;
8719
8720          // Diagnose attempts to redefine a tag.
8721          if (TUK == TUK_Definition) {
8722            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8723              // If we're defining a specialization and the previous definition
8724              // is from an implicit instantiation, don't emit an error
8725              // here; we'll catch this in the general case below.
8726              bool IsExplicitSpecializationAfterInstantiation = false;
8727              if (isExplicitSpecialization) {
8728                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8729                  IsExplicitSpecializationAfterInstantiation =
8730                    RD->getTemplateSpecializationKind() !=
8731                    TSK_ExplicitSpecialization;
8732                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8733                  IsExplicitSpecializationAfterInstantiation =
8734                    ED->getTemplateSpecializationKind() !=
8735                    TSK_ExplicitSpecialization;
8736              }
8737
8738              if (!IsExplicitSpecializationAfterInstantiation) {
8739                // A redeclaration in function prototype scope in C isn't
8740                // visible elsewhere, so merely issue a warning.
8741                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8742                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8743                else
8744                  Diag(NameLoc, diag::err_redefinition) << Name;
8745                Diag(Def->getLocation(), diag::note_previous_definition);
8746                // If this is a redefinition, recover by making this
8747                // struct be anonymous, which will make any later
8748                // references get the previous definition.
8749                Name = 0;
8750                Previous.clear();
8751                Invalid = true;
8752              }
8753            } else {
8754              // If the type is currently being defined, complain
8755              // about a nested redefinition.
8756              const TagType *Tag
8757                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8758              if (Tag->isBeingDefined()) {
8759                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8760                Diag(PrevTagDecl->getLocation(),
8761                     diag::note_previous_definition);
8762                Name = 0;
8763                Previous.clear();
8764                Invalid = true;
8765              }
8766            }
8767
8768            // Okay, this is definition of a previously declared or referenced
8769            // tag PrevDecl. We're going to create a new Decl for it.
8770          }
8771        }
8772        // If we get here we have (another) forward declaration or we
8773        // have a definition.  Just create a new decl.
8774
8775      } else {
8776        // If we get here, this is a definition of a new tag type in a nested
8777        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8778        // new decl/type.  We set PrevDecl to NULL so that the entities
8779        // have distinct types.
8780        Previous.clear();
8781      }
8782      // If we get here, we're going to create a new Decl. If PrevDecl
8783      // is non-NULL, it's a definition of the tag declared by
8784      // PrevDecl. If it's NULL, we have a new definition.
8785
8786
8787    // Otherwise, PrevDecl is not a tag, but was found with tag
8788    // lookup.  This is only actually possible in C++, where a few
8789    // things like templates still live in the tag namespace.
8790    } else {
8791      // Use a better diagnostic if an elaborated-type-specifier
8792      // found the wrong kind of type on the first
8793      // (non-redeclaration) lookup.
8794      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8795          !Previous.isForRedeclaration()) {
8796        unsigned Kind = 0;
8797        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8798        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8799        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8800        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8801        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8802        Invalid = true;
8803
8804      // Otherwise, only diagnose if the declaration is in scope.
8805      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8806                                isExplicitSpecialization)) {
8807        // do nothing
8808
8809      // Diagnose implicit declarations introduced by elaborated types.
8810      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8811        unsigned Kind = 0;
8812        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8813        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8814        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8815        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8816        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8817        Invalid = true;
8818
8819      // Otherwise it's a declaration.  Call out a particularly common
8820      // case here.
8821      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8822        unsigned Kind = 0;
8823        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8824        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8825          << Name << Kind << TND->getUnderlyingType();
8826        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8827        Invalid = true;
8828
8829      // Otherwise, diagnose.
8830      } else {
8831        // The tag name clashes with something else in the target scope,
8832        // issue an error and recover by making this tag be anonymous.
8833        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8834        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8835        Name = 0;
8836        Invalid = true;
8837      }
8838
8839      // The existing declaration isn't relevant to us; we're in a
8840      // new scope, so clear out the previous declaration.
8841      Previous.clear();
8842    }
8843  }
8844
8845CreateNewDecl:
8846
8847  TagDecl *PrevDecl = 0;
8848  if (Previous.isSingleResult())
8849    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8850
8851  // If there is an identifier, use the location of the identifier as the
8852  // location of the decl, otherwise use the location of the struct/union
8853  // keyword.
8854  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8855
8856  // Otherwise, create a new declaration. If there is a previous
8857  // declaration of the same entity, the two will be linked via
8858  // PrevDecl.
8859  TagDecl *New;
8860
8861  bool IsForwardReference = false;
8862  if (Kind == TTK_Enum) {
8863    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8864    // enum X { A, B, C } D;    D should chain to X.
8865    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8866                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8867                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8868    // If this is an undefined enum, warn.
8869    if (TUK != TUK_Definition && !Invalid) {
8870      TagDecl *Def;
8871      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8872        // C++0x: 7.2p2: opaque-enum-declaration.
8873        // Conflicts are diagnosed above. Do nothing.
8874      }
8875      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8876        Diag(Loc, diag::ext_forward_ref_enum_def)
8877          << New;
8878        Diag(Def->getLocation(), diag::note_previous_definition);
8879      } else {
8880        unsigned DiagID = diag::ext_forward_ref_enum;
8881        if (getLangOpts().MicrosoftMode)
8882          DiagID = diag::ext_ms_forward_ref_enum;
8883        else if (getLangOpts().CPlusPlus)
8884          DiagID = diag::err_forward_ref_enum;
8885        Diag(Loc, DiagID);
8886
8887        // If this is a forward-declared reference to an enumeration, make a
8888        // note of it; we won't actually be introducing the declaration into
8889        // the declaration context.
8890        if (TUK == TUK_Reference)
8891          IsForwardReference = true;
8892      }
8893    }
8894
8895    if (EnumUnderlying) {
8896      EnumDecl *ED = cast<EnumDecl>(New);
8897      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8898        ED->setIntegerTypeSourceInfo(TI);
8899      else
8900        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8901      ED->setPromotionType(ED->getIntegerType());
8902    }
8903
8904  } else {
8905    // struct/union/class
8906
8907    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8908    // struct X { int A; } D;    D should chain to X.
8909    if (getLangOpts().CPlusPlus) {
8910      // FIXME: Look for a way to use RecordDecl for simple structs.
8911      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8912                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8913
8914      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8915        StdBadAlloc = cast<CXXRecordDecl>(New);
8916    } else
8917      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8918                               cast_or_null<RecordDecl>(PrevDecl));
8919  }
8920
8921  // Maybe add qualifier info.
8922  if (SS.isNotEmpty()) {
8923    if (SS.isSet()) {
8924      // If this is either a declaration or a definition, check the
8925      // nested-name-specifier against the current context. We don't do this
8926      // for explicit specializations, because they have similar checking
8927      // (with more specific diagnostics) in the call to
8928      // CheckMemberSpecialization, below.
8929      if (!isExplicitSpecialization &&
8930          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8931          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8932        Invalid = true;
8933
8934      New->setQualifierInfo(SS.getWithLocInContext(Context));
8935      if (TemplateParameterLists.size() > 0) {
8936        New->setTemplateParameterListsInfo(Context,
8937                                           TemplateParameterLists.size(),
8938                                           TemplateParameterLists.data());
8939      }
8940    }
8941    else
8942      Invalid = true;
8943  }
8944
8945  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8946    // Add alignment attributes if necessary; these attributes are checked when
8947    // the ASTContext lays out the structure.
8948    //
8949    // It is important for implementing the correct semantics that this
8950    // happen here (in act on tag decl). The #pragma pack stack is
8951    // maintained as a result of parser callbacks which can occur at
8952    // many points during the parsing of a struct declaration (because
8953    // the #pragma tokens are effectively skipped over during the
8954    // parsing of the struct).
8955    if (TUK == TUK_Definition) {
8956      AddAlignmentAttributesForRecord(RD);
8957      AddMsStructLayoutForRecord(RD);
8958    }
8959  }
8960
8961  if (ModulePrivateLoc.isValid()) {
8962    if (isExplicitSpecialization)
8963      Diag(New->getLocation(), diag::err_module_private_specialization)
8964        << 2
8965        << FixItHint::CreateRemoval(ModulePrivateLoc);
8966    // __module_private__ does not apply to local classes. However, we only
8967    // diagnose this as an error when the declaration specifiers are
8968    // freestanding. Here, we just ignore the __module_private__.
8969    else if (!SearchDC->isFunctionOrMethod())
8970      New->setModulePrivate();
8971  }
8972
8973  // If this is a specialization of a member class (of a class template),
8974  // check the specialization.
8975  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8976    Invalid = true;
8977
8978  if (Invalid)
8979    New->setInvalidDecl();
8980
8981  if (Attr)
8982    ProcessDeclAttributeList(S, New, Attr);
8983
8984  // If we're declaring or defining a tag in function prototype scope
8985  // in C, note that this type can only be used within the function.
8986  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8987    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8988
8989  // Set the lexical context. If the tag has a C++ scope specifier, the
8990  // lexical context will be different from the semantic context.
8991  New->setLexicalDeclContext(CurContext);
8992
8993  // Mark this as a friend decl if applicable.
8994  // In Microsoft mode, a friend declaration also acts as a forward
8995  // declaration so we always pass true to setObjectOfFriendDecl to make
8996  // the tag name visible.
8997  if (TUK == TUK_Friend)
8998    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8999                               getLangOpts().MicrosoftExt);
9000
9001  // Set the access specifier.
9002  if (!Invalid && SearchDC->isRecord())
9003    SetMemberAccessSpecifier(New, PrevDecl, AS);
9004
9005  if (TUK == TUK_Definition)
9006    New->startDefinition();
9007
9008  // If this has an identifier, add it to the scope stack.
9009  if (TUK == TUK_Friend) {
9010    // We might be replacing an existing declaration in the lookup tables;
9011    // if so, borrow its access specifier.
9012    if (PrevDecl)
9013      New->setAccess(PrevDecl->getAccess());
9014
9015    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9016    DC->makeDeclVisibleInContext(New);
9017    if (Name) // can be null along some error paths
9018      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9019        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9020  } else if (Name) {
9021    S = getNonFieldDeclScope(S);
9022    PushOnScopeChains(New, S, !IsForwardReference);
9023    if (IsForwardReference)
9024      SearchDC->makeDeclVisibleInContext(New);
9025
9026  } else {
9027    CurContext->addDecl(New);
9028  }
9029
9030  // If this is the C FILE type, notify the AST context.
9031  if (IdentifierInfo *II = New->getIdentifier())
9032    if (!New->isInvalidDecl() &&
9033        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9034        II->isStr("FILE"))
9035      Context.setFILEDecl(New);
9036
9037  // If we were in function prototype scope (and not in C++ mode), add this
9038  // tag to the list of decls to inject into the function definition scope.
9039  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9040      InFunctionDeclarator && Name)
9041    DeclsInPrototypeScope.push_back(New);
9042
9043  if (PrevDecl)
9044    mergeDeclAttributes(New, PrevDecl);
9045
9046  // If there's a #pragma GCC visibility in scope, set the visibility of this
9047  // record.
9048  AddPushedVisibilityAttribute(New);
9049
9050  OwnedDecl = true;
9051  return New;
9052}
9053
9054void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9055  AdjustDeclIfTemplate(TagD);
9056  TagDecl *Tag = cast<TagDecl>(TagD);
9057
9058  // Enter the tag context.
9059  PushDeclContext(S, Tag);
9060
9061  ActOnDocumentableDecl(TagD);
9062
9063  // If there's a #pragma GCC visibility in scope, set the visibility of this
9064  // record.
9065  AddPushedVisibilityAttribute(Tag);
9066}
9067
9068Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9069  assert(isa<ObjCContainerDecl>(IDecl) &&
9070         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9071  DeclContext *OCD = cast<DeclContext>(IDecl);
9072  assert(getContainingDC(OCD) == CurContext &&
9073      "The next DeclContext should be lexically contained in the current one.");
9074  CurContext = OCD;
9075  return IDecl;
9076}
9077
9078void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9079                                           SourceLocation FinalLoc,
9080                                           SourceLocation LBraceLoc) {
9081  AdjustDeclIfTemplate(TagD);
9082  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9083
9084  FieldCollector->StartClass();
9085
9086  if (!Record->getIdentifier())
9087    return;
9088
9089  if (FinalLoc.isValid())
9090    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9091
9092  // C++ [class]p2:
9093  //   [...] The class-name is also inserted into the scope of the
9094  //   class itself; this is known as the injected-class-name. For
9095  //   purposes of access checking, the injected-class-name is treated
9096  //   as if it were a public member name.
9097  CXXRecordDecl *InjectedClassName
9098    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9099                            Record->getLocStart(), Record->getLocation(),
9100                            Record->getIdentifier(),
9101                            /*PrevDecl=*/0,
9102                            /*DelayTypeCreation=*/true);
9103  Context.getTypeDeclType(InjectedClassName, Record);
9104  InjectedClassName->setImplicit();
9105  InjectedClassName->setAccess(AS_public);
9106  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9107      InjectedClassName->setDescribedClassTemplate(Template);
9108  PushOnScopeChains(InjectedClassName, S);
9109  assert(InjectedClassName->isInjectedClassName() &&
9110         "Broken injected-class-name");
9111}
9112
9113void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9114                                    SourceLocation RBraceLoc) {
9115  AdjustDeclIfTemplate(TagD);
9116  TagDecl *Tag = cast<TagDecl>(TagD);
9117  Tag->setRBraceLoc(RBraceLoc);
9118
9119  // Make sure we "complete" the definition even it is invalid.
9120  if (Tag->isBeingDefined()) {
9121    assert(Tag->isInvalidDecl() && "We should already have completed it");
9122    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9123      RD->completeDefinition();
9124  }
9125
9126  if (isa<CXXRecordDecl>(Tag))
9127    FieldCollector->FinishClass();
9128
9129  // Exit this scope of this tag's definition.
9130  PopDeclContext();
9131
9132  // Notify the consumer that we've defined a tag.
9133  Consumer.HandleTagDeclDefinition(Tag);
9134}
9135
9136void Sema::ActOnObjCContainerFinishDefinition() {
9137  // Exit this scope of this interface definition.
9138  PopDeclContext();
9139}
9140
9141void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9142  assert(DC == CurContext && "Mismatch of container contexts");
9143  OriginalLexicalContext = DC;
9144  ActOnObjCContainerFinishDefinition();
9145}
9146
9147void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9148  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9149  OriginalLexicalContext = 0;
9150}
9151
9152void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9153  AdjustDeclIfTemplate(TagD);
9154  TagDecl *Tag = cast<TagDecl>(TagD);
9155  Tag->setInvalidDecl();
9156
9157  // Make sure we "complete" the definition even it is invalid.
9158  if (Tag->isBeingDefined()) {
9159    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9160      RD->completeDefinition();
9161  }
9162
9163  // We're undoing ActOnTagStartDefinition here, not
9164  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9165  // the FieldCollector.
9166
9167  PopDeclContext();
9168}
9169
9170// Note that FieldName may be null for anonymous bitfields.
9171ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9172                                IdentifierInfo *FieldName,
9173                                QualType FieldTy, Expr *BitWidth,
9174                                bool *ZeroWidth) {
9175  // Default to true; that shouldn't confuse checks for emptiness
9176  if (ZeroWidth)
9177    *ZeroWidth = true;
9178
9179  // C99 6.7.2.1p4 - verify the field type.
9180  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9181  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9182    // Handle incomplete types with specific error.
9183    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9184      return ExprError();
9185    if (FieldName)
9186      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9187        << FieldName << FieldTy << BitWidth->getSourceRange();
9188    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9189      << FieldTy << BitWidth->getSourceRange();
9190  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9191                                             UPPC_BitFieldWidth))
9192    return ExprError();
9193
9194  // If the bit-width is type- or value-dependent, don't try to check
9195  // it now.
9196  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9197    return Owned(BitWidth);
9198
9199  llvm::APSInt Value;
9200  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9201  if (ICE.isInvalid())
9202    return ICE;
9203  BitWidth = ICE.take();
9204
9205  if (Value != 0 && ZeroWidth)
9206    *ZeroWidth = false;
9207
9208  // Zero-width bitfield is ok for anonymous field.
9209  if (Value == 0 && FieldName)
9210    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9211
9212  if (Value.isSigned() && Value.isNegative()) {
9213    if (FieldName)
9214      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9215               << FieldName << Value.toString(10);
9216    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9217      << Value.toString(10);
9218  }
9219
9220  if (!FieldTy->isDependentType()) {
9221    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9222    if (Value.getZExtValue() > TypeSize) {
9223      if (!getLangOpts().CPlusPlus) {
9224        if (FieldName)
9225          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9226            << FieldName << (unsigned)Value.getZExtValue()
9227            << (unsigned)TypeSize;
9228
9229        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9230          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9231      }
9232
9233      if (FieldName)
9234        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9235          << FieldName << (unsigned)Value.getZExtValue()
9236          << (unsigned)TypeSize;
9237      else
9238        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9239          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9240    }
9241  }
9242
9243  return Owned(BitWidth);
9244}
9245
9246/// ActOnField - Each field of a C struct/union is passed into this in order
9247/// to create a FieldDecl object for it.
9248Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9249                       Declarator &D, Expr *BitfieldWidth) {
9250  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9251                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9252                               /*InitStyle=*/ICIS_NoInit, AS_public);
9253  return Res;
9254}
9255
9256/// HandleField - Analyze a field of a C struct or a C++ data member.
9257///
9258FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9259                             SourceLocation DeclStart,
9260                             Declarator &D, Expr *BitWidth,
9261                             InClassInitStyle InitStyle,
9262                             AccessSpecifier AS) {
9263  IdentifierInfo *II = D.getIdentifier();
9264  SourceLocation Loc = DeclStart;
9265  if (II) Loc = D.getIdentifierLoc();
9266
9267  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9268  QualType T = TInfo->getType();
9269  if (getLangOpts().CPlusPlus) {
9270    CheckExtraCXXDefaultArguments(D);
9271
9272    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9273                                        UPPC_DataMemberType)) {
9274      D.setInvalidType();
9275      T = Context.IntTy;
9276      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9277    }
9278  }
9279
9280  DiagnoseFunctionSpecifiers(D);
9281
9282  if (D.getDeclSpec().isThreadSpecified())
9283    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9284  if (D.getDeclSpec().isConstexprSpecified())
9285    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9286      << 2;
9287
9288  // Check to see if this name was declared as a member previously
9289  NamedDecl *PrevDecl = 0;
9290  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9291  LookupName(Previous, S);
9292  switch (Previous.getResultKind()) {
9293    case LookupResult::Found:
9294    case LookupResult::FoundUnresolvedValue:
9295      PrevDecl = Previous.getAsSingle<NamedDecl>();
9296      break;
9297
9298    case LookupResult::FoundOverloaded:
9299      PrevDecl = Previous.getRepresentativeDecl();
9300      break;
9301
9302    case LookupResult::NotFound:
9303    case LookupResult::NotFoundInCurrentInstantiation:
9304    case LookupResult::Ambiguous:
9305      break;
9306  }
9307  Previous.suppressDiagnostics();
9308
9309  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9310    // Maybe we will complain about the shadowed template parameter.
9311    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9312    // Just pretend that we didn't see the previous declaration.
9313    PrevDecl = 0;
9314  }
9315
9316  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9317    PrevDecl = 0;
9318
9319  bool Mutable
9320    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9321  SourceLocation TSSL = D.getLocStart();
9322  FieldDecl *NewFD
9323    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9324                     TSSL, AS, PrevDecl, &D);
9325
9326  if (NewFD->isInvalidDecl())
9327    Record->setInvalidDecl();
9328
9329  if (D.getDeclSpec().isModulePrivateSpecified())
9330    NewFD->setModulePrivate();
9331
9332  if (NewFD->isInvalidDecl() && PrevDecl) {
9333    // Don't introduce NewFD into scope; there's already something
9334    // with the same name in the same scope.
9335  } else if (II) {
9336    PushOnScopeChains(NewFD, S);
9337  } else
9338    Record->addDecl(NewFD);
9339
9340  return NewFD;
9341}
9342
9343/// \brief Build a new FieldDecl and check its well-formedness.
9344///
9345/// This routine builds a new FieldDecl given the fields name, type,
9346/// record, etc. \p PrevDecl should refer to any previous declaration
9347/// with the same name and in the same scope as the field to be
9348/// created.
9349///
9350/// \returns a new FieldDecl.
9351///
9352/// \todo The Declarator argument is a hack. It will be removed once
9353FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9354                                TypeSourceInfo *TInfo,
9355                                RecordDecl *Record, SourceLocation Loc,
9356                                bool Mutable, Expr *BitWidth,
9357                                InClassInitStyle InitStyle,
9358                                SourceLocation TSSL,
9359                                AccessSpecifier AS, NamedDecl *PrevDecl,
9360                                Declarator *D) {
9361  IdentifierInfo *II = Name.getAsIdentifierInfo();
9362  bool InvalidDecl = false;
9363  if (D) InvalidDecl = D->isInvalidType();
9364
9365  // If we receive a broken type, recover by assuming 'int' and
9366  // marking this declaration as invalid.
9367  if (T.isNull()) {
9368    InvalidDecl = true;
9369    T = Context.IntTy;
9370  }
9371
9372  QualType EltTy = Context.getBaseElementType(T);
9373  if (!EltTy->isDependentType()) {
9374    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9375      // Fields of incomplete type force their record to be invalid.
9376      Record->setInvalidDecl();
9377      InvalidDecl = true;
9378    } else {
9379      NamedDecl *Def;
9380      EltTy->isIncompleteType(&Def);
9381      if (Def && Def->isInvalidDecl()) {
9382        Record->setInvalidDecl();
9383        InvalidDecl = true;
9384      }
9385    }
9386  }
9387
9388  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9389  // than a variably modified type.
9390  if (!InvalidDecl && T->isVariablyModifiedType()) {
9391    bool SizeIsNegative;
9392    llvm::APSInt Oversized;
9393    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9394                                                           SizeIsNegative,
9395                                                           Oversized);
9396    if (!FixedTy.isNull()) {
9397      Diag(Loc, diag::warn_illegal_constant_array_size);
9398      T = FixedTy;
9399    } else {
9400      if (SizeIsNegative)
9401        Diag(Loc, diag::err_typecheck_negative_array_size);
9402      else if (Oversized.getBoolValue())
9403        Diag(Loc, diag::err_array_too_large)
9404          << Oversized.toString(10);
9405      else
9406        Diag(Loc, diag::err_typecheck_field_variable_size);
9407      InvalidDecl = true;
9408    }
9409  }
9410
9411  // Fields can not have abstract class types
9412  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9413                                             diag::err_abstract_type_in_decl,
9414                                             AbstractFieldType))
9415    InvalidDecl = true;
9416
9417  bool ZeroWidth = false;
9418  // If this is declared as a bit-field, check the bit-field.
9419  if (!InvalidDecl && BitWidth) {
9420    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9421    if (!BitWidth) {
9422      InvalidDecl = true;
9423      BitWidth = 0;
9424      ZeroWidth = false;
9425    }
9426  }
9427
9428  // Check that 'mutable' is consistent with the type of the declaration.
9429  if (!InvalidDecl && Mutable) {
9430    unsigned DiagID = 0;
9431    if (T->isReferenceType())
9432      DiagID = diag::err_mutable_reference;
9433    else if (T.isConstQualified())
9434      DiagID = diag::err_mutable_const;
9435
9436    if (DiagID) {
9437      SourceLocation ErrLoc = Loc;
9438      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9439        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9440      Diag(ErrLoc, DiagID);
9441      Mutable = false;
9442      InvalidDecl = true;
9443    }
9444  }
9445
9446  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9447                                       BitWidth, Mutable, InitStyle);
9448  if (InvalidDecl)
9449    NewFD->setInvalidDecl();
9450
9451  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9452    Diag(Loc, diag::err_duplicate_member) << II;
9453    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9454    NewFD->setInvalidDecl();
9455  }
9456
9457  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9458    if (Record->isUnion()) {
9459      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9460        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9461        if (RDecl->getDefinition()) {
9462          // C++ [class.union]p1: An object of a class with a non-trivial
9463          // constructor, a non-trivial copy constructor, a non-trivial
9464          // destructor, or a non-trivial copy assignment operator
9465          // cannot be a member of a union, nor can an array of such
9466          // objects.
9467          if (CheckNontrivialField(NewFD))
9468            NewFD->setInvalidDecl();
9469        }
9470      }
9471
9472      // C++ [class.union]p1: If a union contains a member of reference type,
9473      // the program is ill-formed.
9474      if (EltTy->isReferenceType()) {
9475        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9476          << NewFD->getDeclName() << EltTy;
9477        NewFD->setInvalidDecl();
9478      }
9479    }
9480  }
9481
9482  // FIXME: We need to pass in the attributes given an AST
9483  // representation, not a parser representation.
9484  if (D)
9485    // FIXME: What to pass instead of TUScope?
9486    ProcessDeclAttributes(TUScope, NewFD, *D);
9487
9488  // In auto-retain/release, infer strong retension for fields of
9489  // retainable type.
9490  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9491    NewFD->setInvalidDecl();
9492
9493  if (T.isObjCGCWeak())
9494    Diag(Loc, diag::warn_attribute_weak_on_field);
9495
9496  NewFD->setAccess(AS);
9497  return NewFD;
9498}
9499
9500bool Sema::CheckNontrivialField(FieldDecl *FD) {
9501  assert(FD);
9502  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9503
9504  if (FD->isInvalidDecl())
9505    return true;
9506
9507  QualType EltTy = Context.getBaseElementType(FD->getType());
9508  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9509    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9510    if (RDecl->getDefinition()) {
9511      // We check for copy constructors before constructors
9512      // because otherwise we'll never get complaints about
9513      // copy constructors.
9514
9515      CXXSpecialMember member = CXXInvalid;
9516      if (!RDecl->hasTrivialCopyConstructor())
9517        member = CXXCopyConstructor;
9518      else if (!RDecl->hasTrivialDefaultConstructor())
9519        member = CXXDefaultConstructor;
9520      else if (!RDecl->hasTrivialCopyAssignment())
9521        member = CXXCopyAssignment;
9522      else if (!RDecl->hasTrivialDestructor())
9523        member = CXXDestructor;
9524
9525      if (member != CXXInvalid) {
9526        if (!getLangOpts().CPlusPlus0x &&
9527            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9528          // Objective-C++ ARC: it is an error to have a non-trivial field of
9529          // a union. However, system headers in Objective-C programs
9530          // occasionally have Objective-C lifetime objects within unions,
9531          // and rather than cause the program to fail, we make those
9532          // members unavailable.
9533          SourceLocation Loc = FD->getLocation();
9534          if (getSourceManager().isInSystemHeader(Loc)) {
9535            if (!FD->hasAttr<UnavailableAttr>())
9536              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9537                                  "this system field has retaining ownership"));
9538            return false;
9539          }
9540        }
9541
9542        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9543               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9544               diag::err_illegal_union_or_anon_struct_member)
9545          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9546        DiagnoseNontrivial(RT, member);
9547        return !getLangOpts().CPlusPlus0x;
9548      }
9549    }
9550  }
9551
9552  return false;
9553}
9554
9555/// If the given constructor is user-declared, produce a diagnostic explaining
9556/// that it makes the class non-trivial.
9557static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9558                                               CXXConstructorDecl *CD,
9559                                               Sema::CXXSpecialMember CSM) {
9560  if (CD->isImplicit())
9561    return false;
9562
9563  SourceLocation CtorLoc = CD->getLocation();
9564  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9565  return true;
9566}
9567
9568/// DiagnoseNontrivial - Given that a class has a non-trivial
9569/// special member, figure out why.
9570void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9571  QualType QT(T, 0U);
9572  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9573
9574  // Check whether the member was user-declared.
9575  switch (member) {
9576  case CXXInvalid:
9577    break;
9578
9579  case CXXDefaultConstructor:
9580    if (RD->hasUserDeclaredConstructor()) {
9581      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9582      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9583        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9584          return;
9585
9586      // No user-delcared constructors; look for constructor templates.
9587      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9588          tmpl_iter;
9589      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9590           TI != TE; ++TI) {
9591        CXXConstructorDecl *CD =
9592            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9593        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9594          return;
9595      }
9596    }
9597    break;
9598
9599  case CXXCopyConstructor:
9600    if (RD->hasUserDeclaredCopyConstructor()) {
9601      SourceLocation CtorLoc =
9602        RD->getCopyConstructor(0)->getLocation();
9603      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9604      return;
9605    }
9606    break;
9607
9608  case CXXMoveConstructor:
9609    if (RD->hasUserDeclaredMoveConstructor()) {
9610      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9611      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9612      return;
9613    }
9614    break;
9615
9616  case CXXCopyAssignment:
9617    if (RD->hasUserDeclaredCopyAssignment()) {
9618      SourceLocation AssignLoc =
9619        RD->getCopyAssignmentOperator(0)->getLocation();
9620      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9621      return;
9622    }
9623    break;
9624
9625  case CXXMoveAssignment:
9626    if (RD->hasUserDeclaredMoveAssignment()) {
9627      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9628      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9629      return;
9630    }
9631    break;
9632
9633  case CXXDestructor:
9634    if (RD->hasUserDeclaredDestructor()) {
9635      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9636      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9637      return;
9638    }
9639    break;
9640  }
9641
9642  typedef CXXRecordDecl::base_class_iterator base_iter;
9643
9644  // Virtual bases and members inhibit trivial copying/construction,
9645  // but not trivial destruction.
9646  if (member != CXXDestructor) {
9647    // Check for virtual bases.  vbases includes indirect virtual bases,
9648    // so we just iterate through the direct bases.
9649    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9650      if (bi->isVirtual()) {
9651        SourceLocation BaseLoc = bi->getLocStart();
9652        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9653        return;
9654      }
9655
9656    // Check for virtual methods.
9657    typedef CXXRecordDecl::method_iterator meth_iter;
9658    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9659         ++mi) {
9660      if (mi->isVirtual()) {
9661        SourceLocation MLoc = mi->getLocStart();
9662        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9663        return;
9664      }
9665    }
9666  }
9667
9668  bool (CXXRecordDecl::*hasTrivial)() const;
9669  switch (member) {
9670  case CXXDefaultConstructor:
9671    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9672  case CXXCopyConstructor:
9673    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9674  case CXXCopyAssignment:
9675    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9676  case CXXDestructor:
9677    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9678  default:
9679    llvm_unreachable("unexpected special member");
9680  }
9681
9682  // Check for nontrivial bases (and recurse).
9683  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9684    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9685    assert(BaseRT && "Don't know how to handle dependent bases");
9686    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9687    if (!(BaseRecTy->*hasTrivial)()) {
9688      SourceLocation BaseLoc = bi->getLocStart();
9689      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9690      DiagnoseNontrivial(BaseRT, member);
9691      return;
9692    }
9693  }
9694
9695  // Check for nontrivial members (and recurse).
9696  typedef RecordDecl::field_iterator field_iter;
9697  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9698       ++fi) {
9699    QualType EltTy = Context.getBaseElementType(fi->getType());
9700    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9701      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9702
9703      if (!(EltRD->*hasTrivial)()) {
9704        SourceLocation FLoc = fi->getLocation();
9705        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9706        DiagnoseNontrivial(EltRT, member);
9707        return;
9708      }
9709    }
9710
9711    if (EltTy->isObjCLifetimeType()) {
9712      switch (EltTy.getObjCLifetime()) {
9713      case Qualifiers::OCL_None:
9714      case Qualifiers::OCL_ExplicitNone:
9715        break;
9716
9717      case Qualifiers::OCL_Autoreleasing:
9718      case Qualifiers::OCL_Weak:
9719      case Qualifiers::OCL_Strong:
9720        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9721          << QT << EltTy.getObjCLifetime();
9722        return;
9723      }
9724    }
9725  }
9726
9727  llvm_unreachable("found no explanation for non-trivial member");
9728}
9729
9730/// TranslateIvarVisibility - Translate visibility from a token ID to an
9731///  AST enum value.
9732static ObjCIvarDecl::AccessControl
9733TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9734  switch (ivarVisibility) {
9735  default: llvm_unreachable("Unknown visitibility kind");
9736  case tok::objc_private: return ObjCIvarDecl::Private;
9737  case tok::objc_public: return ObjCIvarDecl::Public;
9738  case tok::objc_protected: return ObjCIvarDecl::Protected;
9739  case tok::objc_package: return ObjCIvarDecl::Package;
9740  }
9741}
9742
9743/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9744/// in order to create an IvarDecl object for it.
9745Decl *Sema::ActOnIvar(Scope *S,
9746                                SourceLocation DeclStart,
9747                                Declarator &D, Expr *BitfieldWidth,
9748                                tok::ObjCKeywordKind Visibility) {
9749
9750  IdentifierInfo *II = D.getIdentifier();
9751  Expr *BitWidth = (Expr*)BitfieldWidth;
9752  SourceLocation Loc = DeclStart;
9753  if (II) Loc = D.getIdentifierLoc();
9754
9755  // FIXME: Unnamed fields can be handled in various different ways, for
9756  // example, unnamed unions inject all members into the struct namespace!
9757
9758  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9759  QualType T = TInfo->getType();
9760
9761  if (BitWidth) {
9762    // 6.7.2.1p3, 6.7.2.1p4
9763    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9764    if (!BitWidth)
9765      D.setInvalidType();
9766  } else {
9767    // Not a bitfield.
9768
9769    // validate II.
9770
9771  }
9772  if (T->isReferenceType()) {
9773    Diag(Loc, diag::err_ivar_reference_type);
9774    D.setInvalidType();
9775  }
9776  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9777  // than a variably modified type.
9778  else if (T->isVariablyModifiedType()) {
9779    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9780    D.setInvalidType();
9781  }
9782
9783  // Get the visibility (access control) for this ivar.
9784  ObjCIvarDecl::AccessControl ac =
9785    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9786                                        : ObjCIvarDecl::None;
9787  // Must set ivar's DeclContext to its enclosing interface.
9788  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9789  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9790    return 0;
9791  ObjCContainerDecl *EnclosingContext;
9792  if (ObjCImplementationDecl *IMPDecl =
9793      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9794    if (LangOpts.ObjCRuntime.isFragile()) {
9795    // Case of ivar declared in an implementation. Context is that of its class.
9796      EnclosingContext = IMPDecl->getClassInterface();
9797      assert(EnclosingContext && "Implementation has no class interface!");
9798    }
9799    else
9800      EnclosingContext = EnclosingDecl;
9801  } else {
9802    if (ObjCCategoryDecl *CDecl =
9803        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9804      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9805        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9806        return 0;
9807      }
9808    }
9809    EnclosingContext = EnclosingDecl;
9810  }
9811
9812  // Construct the decl.
9813  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9814                                             DeclStart, Loc, II, T,
9815                                             TInfo, ac, (Expr *)BitfieldWidth);
9816
9817  if (II) {
9818    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9819                                           ForRedeclaration);
9820    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9821        && !isa<TagDecl>(PrevDecl)) {
9822      Diag(Loc, diag::err_duplicate_member) << II;
9823      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9824      NewID->setInvalidDecl();
9825    }
9826  }
9827
9828  // Process attributes attached to the ivar.
9829  ProcessDeclAttributes(S, NewID, D);
9830
9831  if (D.isInvalidType())
9832    NewID->setInvalidDecl();
9833
9834  // In ARC, infer 'retaining' for ivars of retainable type.
9835  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9836    NewID->setInvalidDecl();
9837
9838  if (D.getDeclSpec().isModulePrivateSpecified())
9839    NewID->setModulePrivate();
9840
9841  if (II) {
9842    // FIXME: When interfaces are DeclContexts, we'll need to add
9843    // these to the interface.
9844    S->AddDecl(NewID);
9845    IdResolver.AddDecl(NewID);
9846  }
9847
9848  if (LangOpts.ObjCRuntime.isNonFragile() &&
9849      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9850    Diag(Loc, diag::warn_ivars_in_interface);
9851
9852  return NewID;
9853}
9854
9855/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9856/// class and class extensions. For every class @interface and class
9857/// extension @interface, if the last ivar is a bitfield of any type,
9858/// then add an implicit `char :0` ivar to the end of that interface.
9859void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9860                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9861  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9862    return;
9863
9864  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9865  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9866
9867  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9868    return;
9869  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9870  if (!ID) {
9871    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9872      if (!CD->IsClassExtension())
9873        return;
9874    }
9875    // No need to add this to end of @implementation.
9876    else
9877      return;
9878  }
9879  // All conditions are met. Add a new bitfield to the tail end of ivars.
9880  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9881  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9882
9883  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9884                              DeclLoc, DeclLoc, 0,
9885                              Context.CharTy,
9886                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9887                                                               DeclLoc),
9888                              ObjCIvarDecl::Private, BW,
9889                              true);
9890  AllIvarDecls.push_back(Ivar);
9891}
9892
9893void Sema::ActOnFields(Scope* S,
9894                       SourceLocation RecLoc, Decl *EnclosingDecl,
9895                       llvm::ArrayRef<Decl *> Fields,
9896                       SourceLocation LBrac, SourceLocation RBrac,
9897                       AttributeList *Attr) {
9898  assert(EnclosingDecl && "missing record or interface decl");
9899
9900  // If this is an Objective-C @implementation or category and we have
9901  // new fields here we should reset the layout of the interface since
9902  // it will now change.
9903  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9904    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9905    switch (DC->getKind()) {
9906    default: break;
9907    case Decl::ObjCCategory:
9908      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9909      break;
9910    case Decl::ObjCImplementation:
9911      Context.
9912        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9913      break;
9914    }
9915  }
9916
9917  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9918
9919  // Start counting up the number of named members; make sure to include
9920  // members of anonymous structs and unions in the total.
9921  unsigned NumNamedMembers = 0;
9922  if (Record) {
9923    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9924                                   e = Record->decls_end(); i != e; i++) {
9925      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9926        if (IFD->getDeclName())
9927          ++NumNamedMembers;
9928    }
9929  }
9930
9931  // Verify that all the fields are okay.
9932  SmallVector<FieldDecl*, 32> RecFields;
9933
9934  bool ARCErrReported = false;
9935  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9936       i != end; ++i) {
9937    FieldDecl *FD = cast<FieldDecl>(*i);
9938
9939    // Get the type for the field.
9940    const Type *FDTy = FD->getType().getTypePtr();
9941
9942    if (!FD->isAnonymousStructOrUnion()) {
9943      // Remember all fields written by the user.
9944      RecFields.push_back(FD);
9945    }
9946
9947    // If the field is already invalid for some reason, don't emit more
9948    // diagnostics about it.
9949    if (FD->isInvalidDecl()) {
9950      EnclosingDecl->setInvalidDecl();
9951      continue;
9952    }
9953
9954    // C99 6.7.2.1p2:
9955    //   A structure or union shall not contain a member with
9956    //   incomplete or function type (hence, a structure shall not
9957    //   contain an instance of itself, but may contain a pointer to
9958    //   an instance of itself), except that the last member of a
9959    //   structure with more than one named member may have incomplete
9960    //   array type; such a structure (and any union containing,
9961    //   possibly recursively, a member that is such a structure)
9962    //   shall not be a member of a structure or an element of an
9963    //   array.
9964    if (FDTy->isFunctionType()) {
9965      // Field declared as a function.
9966      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9967        << FD->getDeclName();
9968      FD->setInvalidDecl();
9969      EnclosingDecl->setInvalidDecl();
9970      continue;
9971    } else if (FDTy->isIncompleteArrayType() && Record &&
9972               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9973                ((getLangOpts().MicrosoftExt ||
9974                  getLangOpts().CPlusPlus) &&
9975                 (i + 1 == Fields.end() || Record->isUnion())))) {
9976      // Flexible array member.
9977      // Microsoft and g++ is more permissive regarding flexible array.
9978      // It will accept flexible array in union and also
9979      // as the sole element of a struct/class.
9980      if (getLangOpts().MicrosoftExt) {
9981        if (Record->isUnion())
9982          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9983            << FD->getDeclName();
9984        else if (Fields.size() == 1)
9985          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9986            << FD->getDeclName() << Record->getTagKind();
9987      } else if (getLangOpts().CPlusPlus) {
9988        if (Record->isUnion())
9989          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9990            << FD->getDeclName();
9991        else if (Fields.size() == 1)
9992          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9993            << FD->getDeclName() << Record->getTagKind();
9994      } else if (!getLangOpts().C99) {
9995      if (Record->isUnion())
9996        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9997          << FD->getDeclName();
9998      else
9999        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10000          << FD->getDeclName() << Record->getTagKind();
10001      } else if (NumNamedMembers < 1) {
10002        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10003          << FD->getDeclName();
10004        FD->setInvalidDecl();
10005        EnclosingDecl->setInvalidDecl();
10006        continue;
10007      }
10008      if (!FD->getType()->isDependentType() &&
10009          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10010        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10011          << FD->getDeclName() << FD->getType();
10012        FD->setInvalidDecl();
10013        EnclosingDecl->setInvalidDecl();
10014        continue;
10015      }
10016      // Okay, we have a legal flexible array member at the end of the struct.
10017      if (Record)
10018        Record->setHasFlexibleArrayMember(true);
10019    } else if (!FDTy->isDependentType() &&
10020               RequireCompleteType(FD->getLocation(), FD->getType(),
10021                                   diag::err_field_incomplete)) {
10022      // Incomplete type
10023      FD->setInvalidDecl();
10024      EnclosingDecl->setInvalidDecl();
10025      continue;
10026    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10027      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10028        // If this is a member of a union, then entire union becomes "flexible".
10029        if (Record && Record->isUnion()) {
10030          Record->setHasFlexibleArrayMember(true);
10031        } else {
10032          // If this is a struct/class and this is not the last element, reject
10033          // it.  Note that GCC supports variable sized arrays in the middle of
10034          // structures.
10035          if (i + 1 != Fields.end())
10036            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10037              << FD->getDeclName() << FD->getType();
10038          else {
10039            // We support flexible arrays at the end of structs in
10040            // other structs as an extension.
10041            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10042              << FD->getDeclName();
10043            if (Record)
10044              Record->setHasFlexibleArrayMember(true);
10045          }
10046        }
10047      }
10048      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10049          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10050                                 diag::err_abstract_type_in_decl,
10051                                 AbstractIvarType)) {
10052        // Ivars can not have abstract class types
10053        FD->setInvalidDecl();
10054      }
10055      if (Record && FDTTy->getDecl()->hasObjectMember())
10056        Record->setHasObjectMember(true);
10057    } else if (FDTy->isObjCObjectType()) {
10058      /// A field cannot be an Objective-c object
10059      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10060        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10061      QualType T = Context.getObjCObjectPointerType(FD->getType());
10062      FD->setType(T);
10063    } else if (!getLangOpts().CPlusPlus) {
10064      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10065        // It's an error in ARC if a field has lifetime.
10066        // We don't want to report this in a system header, though,
10067        // so we just make the field unavailable.
10068        // FIXME: that's really not sufficient; we need to make the type
10069        // itself invalid to, say, initialize or copy.
10070        QualType T = FD->getType();
10071        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10072        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10073          SourceLocation loc = FD->getLocation();
10074          if (getSourceManager().isInSystemHeader(loc)) {
10075            if (!FD->hasAttr<UnavailableAttr>()) {
10076              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10077                                "this system field has retaining ownership"));
10078            }
10079          } else {
10080            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10081              << T->isBlockPointerType();
10082          }
10083          ARCErrReported = true;
10084        }
10085      }
10086      else if (getLangOpts().ObjC1 &&
10087               getLangOpts().getGC() != LangOptions::NonGC &&
10088               Record && !Record->hasObjectMember()) {
10089        if (FD->getType()->isObjCObjectPointerType() ||
10090            FD->getType().isObjCGCStrong())
10091          Record->setHasObjectMember(true);
10092        else if (Context.getAsArrayType(FD->getType())) {
10093          QualType BaseType = Context.getBaseElementType(FD->getType());
10094          if (BaseType->isRecordType() &&
10095              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10096            Record->setHasObjectMember(true);
10097          else if (BaseType->isObjCObjectPointerType() ||
10098                   BaseType.isObjCGCStrong())
10099                 Record->setHasObjectMember(true);
10100        }
10101      }
10102    }
10103    // Keep track of the number of named members.
10104    if (FD->getIdentifier())
10105      ++NumNamedMembers;
10106  }
10107
10108  // Okay, we successfully defined 'Record'.
10109  if (Record) {
10110    bool Completed = false;
10111    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10112      if (!CXXRecord->isInvalidDecl()) {
10113        // Set access bits correctly on the directly-declared conversions.
10114        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10115        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10116             I != E; ++I)
10117          Convs->setAccess(I, (*I)->getAccess());
10118
10119        if (!CXXRecord->isDependentType()) {
10120          // Objective-C Automatic Reference Counting:
10121          //   If a class has a non-static data member of Objective-C pointer
10122          //   type (or array thereof), it is a non-POD type and its
10123          //   default constructor (if any), copy constructor, copy assignment
10124          //   operator, and destructor are non-trivial.
10125          //
10126          // This rule is also handled by CXXRecordDecl::completeDefinition().
10127          // However, here we check whether this particular class is only
10128          // non-POD because of the presence of an Objective-C pointer member.
10129          // If so, objects of this type cannot be shared between code compiled
10130          // with ARC and code compiled with manual retain/release.
10131          if (getLangOpts().ObjCAutoRefCount &&
10132              CXXRecord->hasObjectMember() &&
10133              CXXRecord->getLinkage() == ExternalLinkage) {
10134            if (CXXRecord->isPOD()) {
10135              Diag(CXXRecord->getLocation(),
10136                   diag::warn_arc_non_pod_class_with_object_member)
10137               << CXXRecord;
10138            } else {
10139              // FIXME: Fix-Its would be nice here, but finding a good location
10140              // for them is going to be tricky.
10141              if (CXXRecord->hasTrivialCopyConstructor())
10142                Diag(CXXRecord->getLocation(),
10143                     diag::warn_arc_trivial_member_function_with_object_member)
10144                  << CXXRecord << 0;
10145              if (CXXRecord->hasTrivialCopyAssignment())
10146                Diag(CXXRecord->getLocation(),
10147                     diag::warn_arc_trivial_member_function_with_object_member)
10148                << CXXRecord << 1;
10149              if (CXXRecord->hasTrivialDestructor())
10150                Diag(CXXRecord->getLocation(),
10151                     diag::warn_arc_trivial_member_function_with_object_member)
10152                << CXXRecord << 2;
10153            }
10154          }
10155
10156          // Adjust user-defined destructor exception spec.
10157          if (getLangOpts().CPlusPlus0x &&
10158              CXXRecord->hasUserDeclaredDestructor())
10159            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10160
10161          // Add any implicitly-declared members to this class.
10162          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10163
10164          // If we have virtual base classes, we may end up finding multiple
10165          // final overriders for a given virtual function. Check for this
10166          // problem now.
10167          if (CXXRecord->getNumVBases()) {
10168            CXXFinalOverriderMap FinalOverriders;
10169            CXXRecord->getFinalOverriders(FinalOverriders);
10170
10171            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10172                                             MEnd = FinalOverriders.end();
10173                 M != MEnd; ++M) {
10174              for (OverridingMethods::iterator SO = M->second.begin(),
10175                                            SOEnd = M->second.end();
10176                   SO != SOEnd; ++SO) {
10177                assert(SO->second.size() > 0 &&
10178                       "Virtual function without overridding functions?");
10179                if (SO->second.size() == 1)
10180                  continue;
10181
10182                // C++ [class.virtual]p2:
10183                //   In a derived class, if a virtual member function of a base
10184                //   class subobject has more than one final overrider the
10185                //   program is ill-formed.
10186                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10187                  << (NamedDecl *)M->first << Record;
10188                Diag(M->first->getLocation(),
10189                     diag::note_overridden_virtual_function);
10190                for (OverridingMethods::overriding_iterator
10191                          OM = SO->second.begin(),
10192                       OMEnd = SO->second.end();
10193                     OM != OMEnd; ++OM)
10194                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10195                    << (NamedDecl *)M->first << OM->Method->getParent();
10196
10197                Record->setInvalidDecl();
10198              }
10199            }
10200            CXXRecord->completeDefinition(&FinalOverriders);
10201            Completed = true;
10202          }
10203        }
10204      }
10205    }
10206
10207    if (!Completed)
10208      Record->completeDefinition();
10209
10210  } else {
10211    ObjCIvarDecl **ClsFields =
10212      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10213    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10214      ID->setEndOfDefinitionLoc(RBrac);
10215      // Add ivar's to class's DeclContext.
10216      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10217        ClsFields[i]->setLexicalDeclContext(ID);
10218        ID->addDecl(ClsFields[i]);
10219      }
10220      // Must enforce the rule that ivars in the base classes may not be
10221      // duplicates.
10222      if (ID->getSuperClass())
10223        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10224    } else if (ObjCImplementationDecl *IMPDecl =
10225                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10226      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10227      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10228        // Ivar declared in @implementation never belongs to the implementation.
10229        // Only it is in implementation's lexical context.
10230        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10231      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10232      IMPDecl->setIvarLBraceLoc(LBrac);
10233      IMPDecl->setIvarRBraceLoc(RBrac);
10234    } else if (ObjCCategoryDecl *CDecl =
10235                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10236      // case of ivars in class extension; all other cases have been
10237      // reported as errors elsewhere.
10238      // FIXME. Class extension does not have a LocEnd field.
10239      // CDecl->setLocEnd(RBrac);
10240      // Add ivar's to class extension's DeclContext.
10241      // Diagnose redeclaration of private ivars.
10242      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10243      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10244        if (IDecl) {
10245          if (const ObjCIvarDecl *ClsIvar =
10246              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10247            Diag(ClsFields[i]->getLocation(),
10248                 diag::err_duplicate_ivar_declaration);
10249            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10250            continue;
10251          }
10252          for (const ObjCCategoryDecl *ClsExtDecl =
10253                IDecl->getFirstClassExtension();
10254               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10255            if (const ObjCIvarDecl *ClsExtIvar =
10256                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10257              Diag(ClsFields[i]->getLocation(),
10258                   diag::err_duplicate_ivar_declaration);
10259              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10260              continue;
10261            }
10262          }
10263        }
10264        ClsFields[i]->setLexicalDeclContext(CDecl);
10265        CDecl->addDecl(ClsFields[i]);
10266      }
10267      CDecl->setIvarLBraceLoc(LBrac);
10268      CDecl->setIvarRBraceLoc(RBrac);
10269    }
10270  }
10271
10272  if (Attr)
10273    ProcessDeclAttributeList(S, Record, Attr);
10274}
10275
10276/// \brief Determine whether the given integral value is representable within
10277/// the given type T.
10278static bool isRepresentableIntegerValue(ASTContext &Context,
10279                                        llvm::APSInt &Value,
10280                                        QualType T) {
10281  assert(T->isIntegralType(Context) && "Integral type required!");
10282  unsigned BitWidth = Context.getIntWidth(T);
10283
10284  if (Value.isUnsigned() || Value.isNonNegative()) {
10285    if (T->isSignedIntegerOrEnumerationType())
10286      --BitWidth;
10287    return Value.getActiveBits() <= BitWidth;
10288  }
10289  return Value.getMinSignedBits() <= BitWidth;
10290}
10291
10292// \brief Given an integral type, return the next larger integral type
10293// (or a NULL type of no such type exists).
10294static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10295  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10296  // enum checking below.
10297  assert(T->isIntegralType(Context) && "Integral type required!");
10298  const unsigned NumTypes = 4;
10299  QualType SignedIntegralTypes[NumTypes] = {
10300    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10301  };
10302  QualType UnsignedIntegralTypes[NumTypes] = {
10303    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10304    Context.UnsignedLongLongTy
10305  };
10306
10307  unsigned BitWidth = Context.getTypeSize(T);
10308  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10309                                                        : UnsignedIntegralTypes;
10310  for (unsigned I = 0; I != NumTypes; ++I)
10311    if (Context.getTypeSize(Types[I]) > BitWidth)
10312      return Types[I];
10313
10314  return QualType();
10315}
10316
10317EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10318                                          EnumConstantDecl *LastEnumConst,
10319                                          SourceLocation IdLoc,
10320                                          IdentifierInfo *Id,
10321                                          Expr *Val) {
10322  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10323  llvm::APSInt EnumVal(IntWidth);
10324  QualType EltTy;
10325
10326  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10327    Val = 0;
10328
10329  if (Val)
10330    Val = DefaultLvalueConversion(Val).take();
10331
10332  if (Val) {
10333    if (Enum->isDependentType() || Val->isTypeDependent())
10334      EltTy = Context.DependentTy;
10335    else {
10336      SourceLocation ExpLoc;
10337      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10338          !getLangOpts().MicrosoftMode) {
10339        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10340        // constant-expression in the enumerator-definition shall be a converted
10341        // constant expression of the underlying type.
10342        EltTy = Enum->getIntegerType();
10343        ExprResult Converted =
10344          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10345                                           CCEK_Enumerator);
10346        if (Converted.isInvalid())
10347          Val = 0;
10348        else
10349          Val = Converted.take();
10350      } else if (!Val->isValueDependent() &&
10351                 !(Val = VerifyIntegerConstantExpression(Val,
10352                                                         &EnumVal).take())) {
10353        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10354      } else {
10355        if (Enum->isFixed()) {
10356          EltTy = Enum->getIntegerType();
10357
10358          // In Obj-C and Microsoft mode, require the enumeration value to be
10359          // representable in the underlying type of the enumeration. In C++11,
10360          // we perform a non-narrowing conversion as part of converted constant
10361          // expression checking.
10362          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10363            if (getLangOpts().MicrosoftMode) {
10364              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10365              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10366            } else
10367              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10368          } else
10369            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10370        } else if (getLangOpts().CPlusPlus) {
10371          // C++11 [dcl.enum]p5:
10372          //   If the underlying type is not fixed, the type of each enumerator
10373          //   is the type of its initializing value:
10374          //     - If an initializer is specified for an enumerator, the
10375          //       initializing value has the same type as the expression.
10376          EltTy = Val->getType();
10377        } else {
10378          // C99 6.7.2.2p2:
10379          //   The expression that defines the value of an enumeration constant
10380          //   shall be an integer constant expression that has a value
10381          //   representable as an int.
10382
10383          // Complain if the value is not representable in an int.
10384          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10385            Diag(IdLoc, diag::ext_enum_value_not_int)
10386              << EnumVal.toString(10) << Val->getSourceRange()
10387              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10388          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10389            // Force the type of the expression to 'int'.
10390            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10391          }
10392          EltTy = Val->getType();
10393        }
10394      }
10395    }
10396  }
10397
10398  if (!Val) {
10399    if (Enum->isDependentType())
10400      EltTy = Context.DependentTy;
10401    else if (!LastEnumConst) {
10402      // C++0x [dcl.enum]p5:
10403      //   If the underlying type is not fixed, the type of each enumerator
10404      //   is the type of its initializing value:
10405      //     - If no initializer is specified for the first enumerator, the
10406      //       initializing value has an unspecified integral type.
10407      //
10408      // GCC uses 'int' for its unspecified integral type, as does
10409      // C99 6.7.2.2p3.
10410      if (Enum->isFixed()) {
10411        EltTy = Enum->getIntegerType();
10412      }
10413      else {
10414        EltTy = Context.IntTy;
10415      }
10416    } else {
10417      // Assign the last value + 1.
10418      EnumVal = LastEnumConst->getInitVal();
10419      ++EnumVal;
10420      EltTy = LastEnumConst->getType();
10421
10422      // Check for overflow on increment.
10423      if (EnumVal < LastEnumConst->getInitVal()) {
10424        // C++0x [dcl.enum]p5:
10425        //   If the underlying type is not fixed, the type of each enumerator
10426        //   is the type of its initializing value:
10427        //
10428        //     - Otherwise the type of the initializing value is the same as
10429        //       the type of the initializing value of the preceding enumerator
10430        //       unless the incremented value is not representable in that type,
10431        //       in which case the type is an unspecified integral type
10432        //       sufficient to contain the incremented value. If no such type
10433        //       exists, the program is ill-formed.
10434        QualType T = getNextLargerIntegralType(Context, EltTy);
10435        if (T.isNull() || Enum->isFixed()) {
10436          // There is no integral type larger enough to represent this
10437          // value. Complain, then allow the value to wrap around.
10438          EnumVal = LastEnumConst->getInitVal();
10439          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10440          ++EnumVal;
10441          if (Enum->isFixed())
10442            // When the underlying type is fixed, this is ill-formed.
10443            Diag(IdLoc, diag::err_enumerator_wrapped)
10444              << EnumVal.toString(10)
10445              << EltTy;
10446          else
10447            Diag(IdLoc, diag::warn_enumerator_too_large)
10448              << EnumVal.toString(10);
10449        } else {
10450          EltTy = T;
10451        }
10452
10453        // Retrieve the last enumerator's value, extent that type to the
10454        // type that is supposed to be large enough to represent the incremented
10455        // value, then increment.
10456        EnumVal = LastEnumConst->getInitVal();
10457        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10458        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10459        ++EnumVal;
10460
10461        // If we're not in C++, diagnose the overflow of enumerator values,
10462        // which in C99 means that the enumerator value is not representable in
10463        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10464        // permits enumerator values that are representable in some larger
10465        // integral type.
10466        if (!getLangOpts().CPlusPlus && !T.isNull())
10467          Diag(IdLoc, diag::warn_enum_value_overflow);
10468      } else if (!getLangOpts().CPlusPlus &&
10469                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10470        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10471        Diag(IdLoc, diag::ext_enum_value_not_int)
10472          << EnumVal.toString(10) << 1;
10473      }
10474    }
10475  }
10476
10477  if (!EltTy->isDependentType()) {
10478    // Make the enumerator value match the signedness and size of the
10479    // enumerator's type.
10480    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10481    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10482  }
10483
10484  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10485                                  Val, EnumVal);
10486}
10487
10488
10489Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10490                              SourceLocation IdLoc, IdentifierInfo *Id,
10491                              AttributeList *Attr,
10492                              SourceLocation EqualLoc, Expr *Val) {
10493  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10494  EnumConstantDecl *LastEnumConst =
10495    cast_or_null<EnumConstantDecl>(lastEnumConst);
10496
10497  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10498  // we find one that is.
10499  S = getNonFieldDeclScope(S);
10500
10501  // Verify that there isn't already something declared with this name in this
10502  // scope.
10503  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10504                                         ForRedeclaration);
10505  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10506    // Maybe we will complain about the shadowed template parameter.
10507    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10508    // Just pretend that we didn't see the previous declaration.
10509    PrevDecl = 0;
10510  }
10511
10512  if (PrevDecl) {
10513    // When in C++, we may get a TagDecl with the same name; in this case the
10514    // enum constant will 'hide' the tag.
10515    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10516           "Received TagDecl when not in C++!");
10517    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10518      if (isa<EnumConstantDecl>(PrevDecl))
10519        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10520      else
10521        Diag(IdLoc, diag::err_redefinition) << Id;
10522      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10523      return 0;
10524    }
10525  }
10526
10527  // C++ [class.mem]p15:
10528  // If T is the name of a class, then each of the following shall have a name
10529  // different from T:
10530  // - every enumerator of every member of class T that is an unscoped
10531  // enumerated type
10532  if (CXXRecordDecl *Record
10533                      = dyn_cast<CXXRecordDecl>(
10534                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10535    if (!TheEnumDecl->isScoped() &&
10536        Record->getIdentifier() && Record->getIdentifier() == Id)
10537      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10538
10539  EnumConstantDecl *New =
10540    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10541
10542  if (New) {
10543    // Process attributes.
10544    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10545
10546    // Register this decl in the current scope stack.
10547    New->setAccess(TheEnumDecl->getAccess());
10548    PushOnScopeChains(New, S);
10549  }
10550
10551  ActOnDocumentableDecl(New);
10552
10553  return New;
10554}
10555
10556// Emits a warning if every element in the enum is the same value and if
10557// every element is initialized with a integer or boolean literal.
10558static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10559                                     unsigned NumElements, EnumDecl *Enum,
10560                                     QualType EnumType) {
10561  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10562                                 Enum->getLocation()) ==
10563      DiagnosticsEngine::Ignored)
10564    return;
10565
10566  if (NumElements < 2)
10567    return;
10568
10569  if (!Enum->getIdentifier())
10570    return;
10571
10572  llvm::APSInt FirstVal;
10573
10574  for (unsigned i = 0; i != NumElements; ++i) {
10575    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10576    if (!ECD)
10577      return;
10578
10579    Expr *InitExpr = ECD->getInitExpr();
10580    if (!InitExpr)
10581      return;
10582    InitExpr = InitExpr->IgnoreImpCasts();
10583    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10584      return;
10585
10586    if (i == 0) {
10587      FirstVal = ECD->getInitVal();
10588      continue;
10589    }
10590
10591    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10592      return;
10593  }
10594
10595  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10596      << EnumType << FirstVal.toString(10)
10597      << Enum->getSourceRange();
10598
10599  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10600                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10601
10602  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10603    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10604                                    Next->getName());
10605}
10606
10607// Returns true when the enum initial expression does not trigger the
10608// duplicate enum warning.  A few common cases are exempted as follows:
10609// Element2 = Element1
10610// Element2 = Element1 + 1
10611// Element2 = Element1 - 1
10612// Where Element2 and Element1 are from the same enum.
10613static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10614  Expr *InitExpr = ECD->getInitExpr();
10615  if (!InitExpr)
10616    return true;
10617  InitExpr = InitExpr->IgnoreImpCasts();
10618
10619  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10620    if (!BO->isAdditiveOp())
10621      return true;
10622    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10623    if (!IL)
10624      return true;
10625    if (IL->getValue() != 1)
10626      return true;
10627
10628    InitExpr = BO->getLHS();
10629  }
10630
10631  // This checks if the elements are from the same enum.
10632  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10633  if (!DRE)
10634    return true;
10635
10636  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10637  if (!EnumConstant)
10638    return true;
10639
10640  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10641      Enum)
10642    return true;
10643
10644  return false;
10645}
10646
10647struct DupKey {
10648  int64_t val;
10649  bool isTombstoneOrEmptyKey;
10650  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10651    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10652};
10653
10654static DupKey GetDupKey(const llvm::APSInt& Val) {
10655  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10656                false);
10657}
10658
10659struct DenseMapInfoDupKey {
10660  static DupKey getEmptyKey() { return DupKey(0, true); }
10661  static DupKey getTombstoneKey() { return DupKey(1, true); }
10662  static unsigned getHashValue(const DupKey Key) {
10663    return (unsigned)(Key.val * 37);
10664  }
10665  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10666    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10667           LHS.val == RHS.val;
10668  }
10669};
10670
10671// Emits a warning when an element is implicitly set a value that
10672// a previous element has already been set to.
10673static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10674                                        unsigned NumElements, EnumDecl *Enum,
10675                                        QualType EnumType) {
10676  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10677                                 Enum->getLocation()) ==
10678      DiagnosticsEngine::Ignored)
10679    return;
10680  // Avoid anonymous enums
10681  if (!Enum->getIdentifier())
10682    return;
10683
10684  // Only check for small enums.
10685  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10686    return;
10687
10688  typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10689  typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10690
10691  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10692  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10693          ValueToVectorMap;
10694
10695  DuplicatesVector DupVector;
10696  ValueToVectorMap EnumMap;
10697
10698  // Populate the EnumMap with all values represented by enum constants without
10699  // an initialier.
10700  for (unsigned i = 0; i < NumElements; ++i) {
10701    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10702
10703    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10704    // this constant.  Skip this enum since it may be ill-formed.
10705    if (!ECD) {
10706      return;
10707    }
10708
10709    if (ECD->getInitExpr())
10710      continue;
10711
10712    DupKey Key = GetDupKey(ECD->getInitVal());
10713    DeclOrVector &Entry = EnumMap[Key];
10714
10715    // First time encountering this value.
10716    if (Entry.isNull())
10717      Entry = ECD;
10718  }
10719
10720  // Create vectors for any values that has duplicates.
10721  for (unsigned i = 0; i < NumElements; ++i) {
10722    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10723    if (!ValidDuplicateEnum(ECD, Enum))
10724      continue;
10725
10726    DupKey Key = GetDupKey(ECD->getInitVal());
10727
10728    DeclOrVector& Entry = EnumMap[Key];
10729    if (Entry.isNull())
10730      continue;
10731
10732    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10733      // Ensure constants are different.
10734      if (D == ECD)
10735        continue;
10736
10737      // Create new vector and push values onto it.
10738      ECDVector *Vec = new ECDVector();
10739      Vec->push_back(D);
10740      Vec->push_back(ECD);
10741
10742      // Update entry to point to the duplicates vector.
10743      Entry = Vec;
10744
10745      // Store the vector somewhere we can consult later for quick emission of
10746      // diagnostics.
10747      DupVector.push_back(Vec);
10748      continue;
10749    }
10750
10751    ECDVector *Vec = Entry.get<ECDVector*>();
10752    // Make sure constants are not added more than once.
10753    if (*Vec->begin() == ECD)
10754      continue;
10755
10756    Vec->push_back(ECD);
10757  }
10758
10759  // Emit diagnostics.
10760  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10761                                  DupVectorEnd = DupVector.end();
10762       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10763    ECDVector *Vec = *DupVectorIter;
10764    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10765
10766    // Emit warning for one enum constant.
10767    ECDVector::iterator I = Vec->begin();
10768    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10769      << (*I)->getName() << (*I)->getInitVal().toString(10)
10770      << (*I)->getSourceRange();
10771    ++I;
10772
10773    // Emit one note for each of the remaining enum constants with
10774    // the same value.
10775    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10776      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10777        << (*I)->getName() << (*I)->getInitVal().toString(10)
10778        << (*I)->getSourceRange();
10779    delete Vec;
10780  }
10781}
10782
10783void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10784                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10785                         Decl **Elements, unsigned NumElements,
10786                         Scope *S, AttributeList *Attr) {
10787  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10788  QualType EnumType = Context.getTypeDeclType(Enum);
10789
10790  if (Attr)
10791    ProcessDeclAttributeList(S, Enum, Attr);
10792
10793  if (Enum->isDependentType()) {
10794    for (unsigned i = 0; i != NumElements; ++i) {
10795      EnumConstantDecl *ECD =
10796        cast_or_null<EnumConstantDecl>(Elements[i]);
10797      if (!ECD) continue;
10798
10799      ECD->setType(EnumType);
10800    }
10801
10802    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10803    return;
10804  }
10805
10806  // TODO: If the result value doesn't fit in an int, it must be a long or long
10807  // long value.  ISO C does not support this, but GCC does as an extension,
10808  // emit a warning.
10809  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10810  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10811  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10812
10813  // Verify that all the values are okay, compute the size of the values, and
10814  // reverse the list.
10815  unsigned NumNegativeBits = 0;
10816  unsigned NumPositiveBits = 0;
10817
10818  // Keep track of whether all elements have type int.
10819  bool AllElementsInt = true;
10820
10821  for (unsigned i = 0; i != NumElements; ++i) {
10822    EnumConstantDecl *ECD =
10823      cast_or_null<EnumConstantDecl>(Elements[i]);
10824    if (!ECD) continue;  // Already issued a diagnostic.
10825
10826    const llvm::APSInt &InitVal = ECD->getInitVal();
10827
10828    // Keep track of the size of positive and negative values.
10829    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10830      NumPositiveBits = std::max(NumPositiveBits,
10831                                 (unsigned)InitVal.getActiveBits());
10832    else
10833      NumNegativeBits = std::max(NumNegativeBits,
10834                                 (unsigned)InitVal.getMinSignedBits());
10835
10836    // Keep track of whether every enum element has type int (very commmon).
10837    if (AllElementsInt)
10838      AllElementsInt = ECD->getType() == Context.IntTy;
10839  }
10840
10841  // Figure out the type that should be used for this enum.
10842  QualType BestType;
10843  unsigned BestWidth;
10844
10845  // C++0x N3000 [conv.prom]p3:
10846  //   An rvalue of an unscoped enumeration type whose underlying
10847  //   type is not fixed can be converted to an rvalue of the first
10848  //   of the following types that can represent all the values of
10849  //   the enumeration: int, unsigned int, long int, unsigned long
10850  //   int, long long int, or unsigned long long int.
10851  // C99 6.4.4.3p2:
10852  //   An identifier declared as an enumeration constant has type int.
10853  // The C99 rule is modified by a gcc extension
10854  QualType BestPromotionType;
10855
10856  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10857  // -fshort-enums is the equivalent to specifying the packed attribute on all
10858  // enum definitions.
10859  if (LangOpts.ShortEnums)
10860    Packed = true;
10861
10862  if (Enum->isFixed()) {
10863    BestType = Enum->getIntegerType();
10864    if (BestType->isPromotableIntegerType())
10865      BestPromotionType = Context.getPromotedIntegerType(BestType);
10866    else
10867      BestPromotionType = BestType;
10868    // We don't need to set BestWidth, because BestType is going to be the type
10869    // of the enumerators, but we do anyway because otherwise some compilers
10870    // warn that it might be used uninitialized.
10871    BestWidth = CharWidth;
10872  }
10873  else if (NumNegativeBits) {
10874    // If there is a negative value, figure out the smallest integer type (of
10875    // int/long/longlong) that fits.
10876    // If it's packed, check also if it fits a char or a short.
10877    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10878      BestType = Context.SignedCharTy;
10879      BestWidth = CharWidth;
10880    } else if (Packed && NumNegativeBits <= ShortWidth &&
10881               NumPositiveBits < ShortWidth) {
10882      BestType = Context.ShortTy;
10883      BestWidth = ShortWidth;
10884    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10885      BestType = Context.IntTy;
10886      BestWidth = IntWidth;
10887    } else {
10888      BestWidth = Context.getTargetInfo().getLongWidth();
10889
10890      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10891        BestType = Context.LongTy;
10892      } else {
10893        BestWidth = Context.getTargetInfo().getLongLongWidth();
10894
10895        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10896          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10897        BestType = Context.LongLongTy;
10898      }
10899    }
10900    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10901  } else {
10902    // If there is no negative value, figure out the smallest type that fits
10903    // all of the enumerator values.
10904    // If it's packed, check also if it fits a char or a short.
10905    if (Packed && NumPositiveBits <= CharWidth) {
10906      BestType = Context.UnsignedCharTy;
10907      BestPromotionType = Context.IntTy;
10908      BestWidth = CharWidth;
10909    } else if (Packed && NumPositiveBits <= ShortWidth) {
10910      BestType = Context.UnsignedShortTy;
10911      BestPromotionType = Context.IntTy;
10912      BestWidth = ShortWidth;
10913    } else if (NumPositiveBits <= IntWidth) {
10914      BestType = Context.UnsignedIntTy;
10915      BestWidth = IntWidth;
10916      BestPromotionType
10917        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10918                           ? Context.UnsignedIntTy : Context.IntTy;
10919    } else if (NumPositiveBits <=
10920               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10921      BestType = Context.UnsignedLongTy;
10922      BestPromotionType
10923        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10924                           ? Context.UnsignedLongTy : Context.LongTy;
10925    } else {
10926      BestWidth = Context.getTargetInfo().getLongLongWidth();
10927      assert(NumPositiveBits <= BestWidth &&
10928             "How could an initializer get larger than ULL?");
10929      BestType = Context.UnsignedLongLongTy;
10930      BestPromotionType
10931        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10932                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10933    }
10934  }
10935
10936  // Loop over all of the enumerator constants, changing their types to match
10937  // the type of the enum if needed.
10938  for (unsigned i = 0; i != NumElements; ++i) {
10939    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10940    if (!ECD) continue;  // Already issued a diagnostic.
10941
10942    // Standard C says the enumerators have int type, but we allow, as an
10943    // extension, the enumerators to be larger than int size.  If each
10944    // enumerator value fits in an int, type it as an int, otherwise type it the
10945    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10946    // that X has type 'int', not 'unsigned'.
10947
10948    // Determine whether the value fits into an int.
10949    llvm::APSInt InitVal = ECD->getInitVal();
10950
10951    // If it fits into an integer type, force it.  Otherwise force it to match
10952    // the enum decl type.
10953    QualType NewTy;
10954    unsigned NewWidth;
10955    bool NewSign;
10956    if (!getLangOpts().CPlusPlus &&
10957        !Enum->isFixed() &&
10958        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10959      NewTy = Context.IntTy;
10960      NewWidth = IntWidth;
10961      NewSign = true;
10962    } else if (ECD->getType() == BestType) {
10963      // Already the right type!
10964      if (getLangOpts().CPlusPlus)
10965        // C++ [dcl.enum]p4: Following the closing brace of an
10966        // enum-specifier, each enumerator has the type of its
10967        // enumeration.
10968        ECD->setType(EnumType);
10969      continue;
10970    } else {
10971      NewTy = BestType;
10972      NewWidth = BestWidth;
10973      NewSign = BestType->isSignedIntegerOrEnumerationType();
10974    }
10975
10976    // Adjust the APSInt value.
10977    InitVal = InitVal.extOrTrunc(NewWidth);
10978    InitVal.setIsSigned(NewSign);
10979    ECD->setInitVal(InitVal);
10980
10981    // Adjust the Expr initializer and type.
10982    if (ECD->getInitExpr() &&
10983        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10984      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10985                                                CK_IntegralCast,
10986                                                ECD->getInitExpr(),
10987                                                /*base paths*/ 0,
10988                                                VK_RValue));
10989    if (getLangOpts().CPlusPlus)
10990      // C++ [dcl.enum]p4: Following the closing brace of an
10991      // enum-specifier, each enumerator has the type of its
10992      // enumeration.
10993      ECD->setType(EnumType);
10994    else
10995      ECD->setType(NewTy);
10996  }
10997
10998  Enum->completeDefinition(BestType, BestPromotionType,
10999                           NumPositiveBits, NumNegativeBits);
11000
11001  // If we're declaring a function, ensure this decl isn't forgotten about -
11002  // it needs to go into the function scope.
11003  if (InFunctionDeclarator)
11004    DeclsInPrototypeScope.push_back(Enum);
11005
11006  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
11007  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11008}
11009
11010Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11011                                  SourceLocation StartLoc,
11012                                  SourceLocation EndLoc) {
11013  StringLiteral *AsmString = cast<StringLiteral>(expr);
11014
11015  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11016                                                   AsmString, StartLoc,
11017                                                   EndLoc);
11018  CurContext->addDecl(New);
11019  return New;
11020}
11021
11022DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11023                                   SourceLocation ImportLoc,
11024                                   ModuleIdPath Path) {
11025  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11026                                                Module::AllVisible,
11027                                                /*IsIncludeDirective=*/false);
11028  if (!Mod)
11029    return true;
11030
11031  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11032  Module *ModCheck = Mod;
11033  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11034    // If we've run out of module parents, just drop the remaining identifiers.
11035    // We need the length to be consistent.
11036    if (!ModCheck)
11037      break;
11038    ModCheck = ModCheck->Parent;
11039
11040    IdentifierLocs.push_back(Path[I].second);
11041  }
11042
11043  ImportDecl *Import = ImportDecl::Create(Context,
11044                                          Context.getTranslationUnitDecl(),
11045                                          AtLoc.isValid()? AtLoc : ImportLoc,
11046                                          Mod, IdentifierLocs);
11047  Context.getTranslationUnitDecl()->addDecl(Import);
11048  return Import;
11049}
11050
11051void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11052                                      IdentifierInfo* AliasName,
11053                                      SourceLocation PragmaLoc,
11054                                      SourceLocation NameLoc,
11055                                      SourceLocation AliasNameLoc) {
11056  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11057                                    LookupOrdinaryName);
11058  AsmLabelAttr *Attr =
11059     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11060
11061  if (PrevDecl)
11062    PrevDecl->addAttr(Attr);
11063  else
11064    (void)ExtnameUndeclaredIdentifiers.insert(
11065      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11066}
11067
11068void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11069                             SourceLocation PragmaLoc,
11070                             SourceLocation NameLoc) {
11071  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11072
11073  if (PrevDecl) {
11074    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11075  } else {
11076    (void)WeakUndeclaredIdentifiers.insert(
11077      std::pair<IdentifierInfo*,WeakInfo>
11078        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11079  }
11080}
11081
11082void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11083                                IdentifierInfo* AliasName,
11084                                SourceLocation PragmaLoc,
11085                                SourceLocation NameLoc,
11086                                SourceLocation AliasNameLoc) {
11087  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11088                                    LookupOrdinaryName);
11089  WeakInfo W = WeakInfo(Name, NameLoc);
11090
11091  if (PrevDecl) {
11092    if (!PrevDecl->hasAttr<AliasAttr>())
11093      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11094        DeclApplyPragmaWeak(TUScope, ND, W);
11095  } else {
11096    (void)WeakUndeclaredIdentifiers.insert(
11097      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11098  }
11099}
11100
11101Decl *Sema::getObjCDeclContext() const {
11102  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11103}
11104
11105AvailabilityResult Sema::getCurContextAvailability() const {
11106  const Decl *D = cast<Decl>(getCurLexicalContext());
11107  // A category implicitly has the availability of the interface.
11108  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
11109    D = CatD->getClassInterface();
11110
11111  return D->getAvailability();
11112}
11113