SemaDecl.cpp revision 37e849ad80731ac1b2ad1c64e73bced27802bd8b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
426                                        CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet()) {
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
435                                          CorrectedStr);
436      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
437        bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
438                                II->getName().equals(CorrectedStr);
439        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
440            << II << DC << droppedSpecifier << CorrectedQuotedStr
441            << SS->getRange()
442            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
443                                            CorrectedStr);
444      }
445      else {
446        llvm_unreachable("could not have corrected a typo here");
447      }
448
449      Diag(Result->getLocation(), diag::note_previous_decl)
450        << CorrectedQuotedStr;
451
452      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
453                                  false, false, ParsedType(),
454                                  /*IsCtorOrDtorName=*/false,
455                                  /*NonTrivialTypeSourceInfo=*/true);
456    }
457    return true;
458  }
459
460  if (getLangOpts().CPlusPlus) {
461    // See if II is a class template that the user forgot to pass arguments to.
462    UnqualifiedId Name;
463    Name.setIdentifier(II, IILoc);
464    CXXScopeSpec EmptySS;
465    TemplateTy TemplateResult;
466    bool MemberOfUnknownSpecialization;
467    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
468                       Name, ParsedType(), true, TemplateResult,
469                       MemberOfUnknownSpecialization) == TNK_Type_template) {
470      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
471      Diag(IILoc, diag::err_template_missing_args) << TplName;
472      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
473        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
474          << TplDecl->getTemplateParameters()->getSourceRange();
475      }
476      return true;
477    }
478  }
479
480  // FIXME: Should we move the logic that tries to recover from a missing tag
481  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
482
483  if (!SS || (!SS->isSet() && !SS->isInvalid()))
484    Diag(IILoc, diag::err_unknown_typename) << II;
485  else if (DeclContext *DC = computeDeclContext(*SS, false))
486    Diag(IILoc, diag::err_typename_nested_not_found)
487      << II << DC << SS->getRange();
488  else if (isDependentScopeSpecifier(*SS)) {
489    unsigned DiagID = diag::err_typename_missing;
490    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
491      DiagID = diag::warn_typename_missing;
492
493    Diag(SS->getRange().getBegin(), DiagID)
494      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
495      << SourceRange(SS->getRange().getBegin(), IILoc)
496      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
497    SuggestedType = ActOnTypenameType(S, SourceLocation(),
498                                      *SS, *II, IILoc).get();
499  } else {
500    assert(SS && SS->isInvalid() &&
501           "Invalid scope specifier has already been diagnosed");
502  }
503
504  return true;
505}
506
507/// \brief Determine whether the given result set contains either a type name
508/// or
509static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
510  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
511                       NextToken.is(tok::less);
512
513  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
514    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
515      return true;
516
517    if (CheckTemplate && isa<TemplateDecl>(*I))
518      return true;
519  }
520
521  return false;
522}
523
524static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
525                                    Scope *S, CXXScopeSpec &SS,
526                                    IdentifierInfo *&Name,
527                                    SourceLocation NameLoc) {
528  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
529  SemaRef.LookupParsedName(R, S, &SS);
530  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
531    const char *TagName = 0;
532    const char *FixItTagName = 0;
533    switch (Tag->getTagKind()) {
534      case TTK_Class:
535        TagName = "class";
536        FixItTagName = "class ";
537        break;
538
539      case TTK_Enum:
540        TagName = "enum";
541        FixItTagName = "enum ";
542        break;
543
544      case TTK_Struct:
545        TagName = "struct";
546        FixItTagName = "struct ";
547        break;
548
549      case TTK_Interface:
550        TagName = "__interface";
551        FixItTagName = "__interface ";
552        break;
553
554      case TTK_Union:
555        TagName = "union";
556        FixItTagName = "union ";
557        break;
558    }
559
560    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
561      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
562      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
563
564    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
565         I != IEnd; ++I)
566      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
567        << Name << TagName;
568
569    // Replace lookup results with just the tag decl.
570    Result.clear(Sema::LookupTagName);
571    SemaRef.LookupParsedName(Result, S, &SS);
572    return true;
573  }
574
575  return false;
576}
577
578/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
579static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
580                                  QualType T, SourceLocation NameLoc) {
581  ASTContext &Context = S.Context;
582
583  TypeLocBuilder Builder;
584  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
585
586  T = S.getElaboratedType(ETK_None, SS, T);
587  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
588  ElabTL.setElaboratedKeywordLoc(SourceLocation());
589  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
590  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
591}
592
593Sema::NameClassification Sema::ClassifyName(Scope *S,
594                                            CXXScopeSpec &SS,
595                                            IdentifierInfo *&Name,
596                                            SourceLocation NameLoc,
597                                            const Token &NextToken,
598                                            bool IsAddressOfOperand,
599                                            CorrectionCandidateCallback *CCC) {
600  DeclarationNameInfo NameInfo(Name, NameLoc);
601  ObjCMethodDecl *CurMethod = getCurMethodDecl();
602
603  if (NextToken.is(tok::coloncolon)) {
604    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
605                                QualType(), false, SS, 0, false);
606
607  }
608
609  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
610  LookupParsedName(Result, S, &SS, !CurMethod);
611
612  // Perform lookup for Objective-C instance variables (including automatically
613  // synthesized instance variables), if we're in an Objective-C method.
614  // FIXME: This lookup really, really needs to be folded in to the normal
615  // unqualified lookup mechanism.
616  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
617    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
618    if (E.get() || E.isInvalid())
619      return E;
620  }
621
622  bool SecondTry = false;
623  bool IsFilteredTemplateName = false;
624
625Corrected:
626  switch (Result.getResultKind()) {
627  case LookupResult::NotFound:
628    // If an unqualified-id is followed by a '(', then we have a function
629    // call.
630    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
631      // In C++, this is an ADL-only call.
632      // FIXME: Reference?
633      if (getLangOpts().CPlusPlus)
634        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
635
636      // C90 6.3.2.2:
637      //   If the expression that precedes the parenthesized argument list in a
638      //   function call consists solely of an identifier, and if no
639      //   declaration is visible for this identifier, the identifier is
640      //   implicitly declared exactly as if, in the innermost block containing
641      //   the function call, the declaration
642      //
643      //     extern int identifier ();
644      //
645      //   appeared.
646      //
647      // We also allow this in C99 as an extension.
648      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
649        Result.addDecl(D);
650        Result.resolveKind();
651        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
652      }
653    }
654
655    // In C, we first see whether there is a tag type by the same name, in
656    // which case it's likely that the user just forget to write "enum",
657    // "struct", or "union".
658    if (!getLangOpts().CPlusPlus && !SecondTry &&
659        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
660      break;
661    }
662
663    // Perform typo correction to determine if there is another name that is
664    // close to this name.
665    if (!SecondTry && CCC) {
666      SecondTry = true;
667      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
668                                                 Result.getLookupKind(), S,
669                                                 &SS, *CCC)) {
670        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
671        unsigned QualifiedDiag = diag::err_no_member_suggest;
672        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
673        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
674
675        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
676        NamedDecl *UnderlyingFirstDecl
677          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
678        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
679            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
680          UnqualifiedDiag = diag::err_no_template_suggest;
681          QualifiedDiag = diag::err_no_member_template_suggest;
682        } else if (UnderlyingFirstDecl &&
683                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
684                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
685                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
686          UnqualifiedDiag = diag::err_unknown_typename_suggest;
687          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
688        }
689
690        if (SS.isEmpty()) {
691          Diag(NameLoc, UnqualifiedDiag)
692            << Name << CorrectedQuotedStr
693            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
694        } else {// FIXME: is this even reachable? Test it.
695          bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                  Name->getName().equals(CorrectedStr);
697          Diag(NameLoc, QualifiedDiag)
698            << Name << computeDeclContext(SS, false) << droppedSpecifier
699            << CorrectedQuotedStr << SS.getRange()
700            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
701                                            CorrectedStr);
702        }
703
704        // Update the name, so that the caller has the new name.
705        Name = Corrected.getCorrectionAsIdentifierInfo();
706
707        // Typo correction corrected to a keyword.
708        if (Corrected.isKeyword())
709          return Corrected.getCorrectionAsIdentifierInfo();
710
711        // Also update the LookupResult...
712        // FIXME: This should probably go away at some point
713        Result.clear();
714        Result.setLookupName(Corrected.getCorrection());
715        if (FirstDecl) {
716          Result.addDecl(FirstDecl);
717          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
718            << CorrectedQuotedStr;
719        }
720
721        // If we found an Objective-C instance variable, let
722        // LookupInObjCMethod build the appropriate expression to
723        // reference the ivar.
724        // FIXME: This is a gross hack.
725        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
726          Result.clear();
727          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
728          return E;
729        }
730
731        goto Corrected;
732      }
733    }
734
735    // We failed to correct; just fall through and let the parser deal with it.
736    Result.suppressDiagnostics();
737    return NameClassification::Unknown();
738
739  case LookupResult::NotFoundInCurrentInstantiation: {
740    // We performed name lookup into the current instantiation, and there were
741    // dependent bases, so we treat this result the same way as any other
742    // dependent nested-name-specifier.
743
744    // C++ [temp.res]p2:
745    //   A name used in a template declaration or definition and that is
746    //   dependent on a template-parameter is assumed not to name a type
747    //   unless the applicable name lookup finds a type name or the name is
748    //   qualified by the keyword typename.
749    //
750    // FIXME: If the next token is '<', we might want to ask the parser to
751    // perform some heroics to see if we actually have a
752    // template-argument-list, which would indicate a missing 'template'
753    // keyword here.
754    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
755                                      NameInfo, IsAddressOfOperand,
756                                      /*TemplateArgs=*/0);
757  }
758
759  case LookupResult::Found:
760  case LookupResult::FoundOverloaded:
761  case LookupResult::FoundUnresolvedValue:
762    break;
763
764  case LookupResult::Ambiguous:
765    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
766        hasAnyAcceptableTemplateNames(Result)) {
767      // C++ [temp.local]p3:
768      //   A lookup that finds an injected-class-name (10.2) can result in an
769      //   ambiguity in certain cases (for example, if it is found in more than
770      //   one base class). If all of the injected-class-names that are found
771      //   refer to specializations of the same class template, and if the name
772      //   is followed by a template-argument-list, the reference refers to the
773      //   class template itself and not a specialization thereof, and is not
774      //   ambiguous.
775      //
776      // This filtering can make an ambiguous result into an unambiguous one,
777      // so try again after filtering out template names.
778      FilterAcceptableTemplateNames(Result);
779      if (!Result.isAmbiguous()) {
780        IsFilteredTemplateName = true;
781        break;
782      }
783    }
784
785    // Diagnose the ambiguity and return an error.
786    return NameClassification::Error();
787  }
788
789  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
790      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
791    // C++ [temp.names]p3:
792    //   After name lookup (3.4) finds that a name is a template-name or that
793    //   an operator-function-id or a literal- operator-id refers to a set of
794    //   overloaded functions any member of which is a function template if
795    //   this is followed by a <, the < is always taken as the delimiter of a
796    //   template-argument-list and never as the less-than operator.
797    if (!IsFilteredTemplateName)
798      FilterAcceptableTemplateNames(Result);
799
800    if (!Result.empty()) {
801      bool IsFunctionTemplate;
802      bool IsVarTemplate;
803      TemplateName Template;
804      if (Result.end() - Result.begin() > 1) {
805        IsFunctionTemplate = true;
806        Template = Context.getOverloadedTemplateName(Result.begin(),
807                                                     Result.end());
808      } else {
809        TemplateDecl *TD
810          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
811        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
812        IsVarTemplate = isa<VarTemplateDecl>(TD);
813
814        if (SS.isSet() && !SS.isInvalid())
815          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
816                                                    /*TemplateKeyword=*/false,
817                                                      TD);
818        else
819          Template = TemplateName(TD);
820      }
821
822      if (IsFunctionTemplate) {
823        // Function templates always go through overload resolution, at which
824        // point we'll perform the various checks (e.g., accessibility) we need
825        // to based on which function we selected.
826        Result.suppressDiagnostics();
827
828        return NameClassification::FunctionTemplate(Template);
829      }
830
831      return IsVarTemplate ? NameClassification::VarTemplate(Template)
832                           : NameClassification::TypeTemplate(Template);
833    }
834  }
835
836  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
837  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
838    DiagnoseUseOfDecl(Type, NameLoc);
839    QualType T = Context.getTypeDeclType(Type);
840    if (SS.isNotEmpty())
841      return buildNestedType(*this, SS, T, NameLoc);
842    return ParsedType::make(T);
843  }
844
845  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
846  if (!Class) {
847    // FIXME: It's unfortunate that we don't have a Type node for handling this.
848    if (ObjCCompatibleAliasDecl *Alias
849                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
850      Class = Alias->getClassInterface();
851  }
852
853  if (Class) {
854    DiagnoseUseOfDecl(Class, NameLoc);
855
856    if (NextToken.is(tok::period)) {
857      // Interface. <something> is parsed as a property reference expression.
858      // Just return "unknown" as a fall-through for now.
859      Result.suppressDiagnostics();
860      return NameClassification::Unknown();
861    }
862
863    QualType T = Context.getObjCInterfaceType(Class);
864    return ParsedType::make(T);
865  }
866
867  // We can have a type template here if we're classifying a template argument.
868  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
869    return NameClassification::TypeTemplate(
870        TemplateName(cast<TemplateDecl>(FirstDecl)));
871
872  // Check for a tag type hidden by a non-type decl in a few cases where it
873  // seems likely a type is wanted instead of the non-type that was found.
874  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
875  if ((NextToken.is(tok::identifier) ||
876       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
877      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
878    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
879    DiagnoseUseOfDecl(Type, NameLoc);
880    QualType T = Context.getTypeDeclType(Type);
881    if (SS.isNotEmpty())
882      return buildNestedType(*this, SS, T, NameLoc);
883    return ParsedType::make(T);
884  }
885
886  if (FirstDecl->isCXXClassMember())
887    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
888
889  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
890  return BuildDeclarationNameExpr(SS, Result, ADL);
891}
892
893// Determines the context to return to after temporarily entering a
894// context.  This depends in an unnecessarily complicated way on the
895// exact ordering of callbacks from the parser.
896DeclContext *Sema::getContainingDC(DeclContext *DC) {
897
898  // Functions defined inline within classes aren't parsed until we've
899  // finished parsing the top-level class, so the top-level class is
900  // the context we'll need to return to.
901  if (isa<FunctionDecl>(DC)) {
902    DC = DC->getLexicalParent();
903
904    // A function not defined within a class will always return to its
905    // lexical context.
906    if (!isa<CXXRecordDecl>(DC))
907      return DC;
908
909    // A C++ inline method/friend is parsed *after* the topmost class
910    // it was declared in is fully parsed ("complete");  the topmost
911    // class is the context we need to return to.
912    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
913      DC = RD;
914
915    // Return the declaration context of the topmost class the inline method is
916    // declared in.
917    return DC;
918  }
919
920  return DC->getLexicalParent();
921}
922
923void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
924  assert(getContainingDC(DC) == CurContext &&
925      "The next DeclContext should be lexically contained in the current one.");
926  CurContext = DC;
927  S->setEntity(DC);
928}
929
930void Sema::PopDeclContext() {
931  assert(CurContext && "DeclContext imbalance!");
932
933  CurContext = getContainingDC(CurContext);
934  assert(CurContext && "Popped translation unit!");
935}
936
937/// EnterDeclaratorContext - Used when we must lookup names in the context
938/// of a declarator's nested name specifier.
939///
940void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
941  // C++0x [basic.lookup.unqual]p13:
942  //   A name used in the definition of a static data member of class
943  //   X (after the qualified-id of the static member) is looked up as
944  //   if the name was used in a member function of X.
945  // C++0x [basic.lookup.unqual]p14:
946  //   If a variable member of a namespace is defined outside of the
947  //   scope of its namespace then any name used in the definition of
948  //   the variable member (after the declarator-id) is looked up as
949  //   if the definition of the variable member occurred in its
950  //   namespace.
951  // Both of these imply that we should push a scope whose context
952  // is the semantic context of the declaration.  We can't use
953  // PushDeclContext here because that context is not necessarily
954  // lexically contained in the current context.  Fortunately,
955  // the containing scope should have the appropriate information.
956
957  assert(!S->getEntity() && "scope already has entity");
958
959#ifndef NDEBUG
960  Scope *Ancestor = S->getParent();
961  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
962  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
963#endif
964
965  CurContext = DC;
966  S->setEntity(DC);
967}
968
969void Sema::ExitDeclaratorContext(Scope *S) {
970  assert(S->getEntity() == CurContext && "Context imbalance!");
971
972  // Switch back to the lexical context.  The safety of this is
973  // enforced by an assert in EnterDeclaratorContext.
974  Scope *Ancestor = S->getParent();
975  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
976  CurContext = (DeclContext*) Ancestor->getEntity();
977
978  // We don't need to do anything with the scope, which is going to
979  // disappear.
980}
981
982
983void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
984  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
985  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
986    // We assume that the caller has already called
987    // ActOnReenterTemplateScope
988    FD = TFD->getTemplatedDecl();
989  }
990  if (!FD)
991    return;
992
993  // Same implementation as PushDeclContext, but enters the context
994  // from the lexical parent, rather than the top-level class.
995  assert(CurContext == FD->getLexicalParent() &&
996    "The next DeclContext should be lexically contained in the current one.");
997  CurContext = FD;
998  S->setEntity(CurContext);
999
1000  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1001    ParmVarDecl *Param = FD->getParamDecl(P);
1002    // If the parameter has an identifier, then add it to the scope
1003    if (Param->getIdentifier()) {
1004      S->AddDecl(Param);
1005      IdResolver.AddDecl(Param);
1006    }
1007  }
1008}
1009
1010
1011void Sema::ActOnExitFunctionContext() {
1012  // Same implementation as PopDeclContext, but returns to the lexical parent,
1013  // rather than the top-level class.
1014  assert(CurContext && "DeclContext imbalance!");
1015  CurContext = CurContext->getLexicalParent();
1016  assert(CurContext && "Popped translation unit!");
1017}
1018
1019
1020/// \brief Determine whether we allow overloading of the function
1021/// PrevDecl with another declaration.
1022///
1023/// This routine determines whether overloading is possible, not
1024/// whether some new function is actually an overload. It will return
1025/// true in C++ (where we can always provide overloads) or, as an
1026/// extension, in C when the previous function is already an
1027/// overloaded function declaration or has the "overloadable"
1028/// attribute.
1029static bool AllowOverloadingOfFunction(LookupResult &Previous,
1030                                       ASTContext &Context) {
1031  if (Context.getLangOpts().CPlusPlus)
1032    return true;
1033
1034  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1035    return true;
1036
1037  return (Previous.getResultKind() == LookupResult::Found
1038          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1039}
1040
1041/// Add this decl to the scope shadowed decl chains.
1042void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1043  // Move up the scope chain until we find the nearest enclosing
1044  // non-transparent context. The declaration will be introduced into this
1045  // scope.
1046  while (S->getEntity() &&
1047         ((DeclContext *)S->getEntity())->isTransparentContext())
1048    S = S->getParent();
1049
1050  // Add scoped declarations into their context, so that they can be
1051  // found later. Declarations without a context won't be inserted
1052  // into any context.
1053  if (AddToContext)
1054    CurContext->addDecl(D);
1055
1056  // Out-of-line definitions shouldn't be pushed into scope in C++.
1057  // Out-of-line variable and function definitions shouldn't even in C.
1058  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1059      D->isOutOfLine() &&
1060      !D->getDeclContext()->getRedeclContext()->Equals(
1061        D->getLexicalDeclContext()->getRedeclContext()))
1062    return;
1063
1064  // Template instantiations should also not be pushed into scope.
1065  if (isa<FunctionDecl>(D) &&
1066      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1067    return;
1068
1069  // If this replaces anything in the current scope,
1070  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1071                               IEnd = IdResolver.end();
1072  for (; I != IEnd; ++I) {
1073    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1074      S->RemoveDecl(*I);
1075      IdResolver.RemoveDecl(*I);
1076
1077      // Should only need to replace one decl.
1078      break;
1079    }
1080  }
1081
1082  S->AddDecl(D);
1083
1084  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1085    // Implicitly-generated labels may end up getting generated in an order that
1086    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1087    // the label at the appropriate place in the identifier chain.
1088    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1089      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1090      if (IDC == CurContext) {
1091        if (!S->isDeclScope(*I))
1092          continue;
1093      } else if (IDC->Encloses(CurContext))
1094        break;
1095    }
1096
1097    IdResolver.InsertDeclAfter(I, D);
1098  } else {
1099    IdResolver.AddDecl(D);
1100  }
1101}
1102
1103void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1104  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1105    TUScope->AddDecl(D);
1106}
1107
1108bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1109                         bool ExplicitInstantiationOrSpecialization) {
1110  return IdResolver.isDeclInScope(D, Ctx, S,
1111                                  ExplicitInstantiationOrSpecialization);
1112}
1113
1114Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1115  DeclContext *TargetDC = DC->getPrimaryContext();
1116  do {
1117    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1118      if (ScopeDC->getPrimaryContext() == TargetDC)
1119        return S;
1120  } while ((S = S->getParent()));
1121
1122  return 0;
1123}
1124
1125static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1126                                            DeclContext*,
1127                                            ASTContext&);
1128
1129/// Filters out lookup results that don't fall within the given scope
1130/// as determined by isDeclInScope.
1131void Sema::FilterLookupForScope(LookupResult &R,
1132                                DeclContext *Ctx, Scope *S,
1133                                bool ConsiderLinkage,
1134                                bool ExplicitInstantiationOrSpecialization) {
1135  LookupResult::Filter F = R.makeFilter();
1136  while (F.hasNext()) {
1137    NamedDecl *D = F.next();
1138
1139    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1140      continue;
1141
1142    if (ConsiderLinkage &&
1143        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1144      continue;
1145
1146    F.erase();
1147  }
1148
1149  F.done();
1150}
1151
1152static bool isUsingDecl(NamedDecl *D) {
1153  return isa<UsingShadowDecl>(D) ||
1154         isa<UnresolvedUsingTypenameDecl>(D) ||
1155         isa<UnresolvedUsingValueDecl>(D);
1156}
1157
1158/// Removes using shadow declarations from the lookup results.
1159static void RemoveUsingDecls(LookupResult &R) {
1160  LookupResult::Filter F = R.makeFilter();
1161  while (F.hasNext())
1162    if (isUsingDecl(F.next()))
1163      F.erase();
1164
1165  F.done();
1166}
1167
1168/// \brief Check for this common pattern:
1169/// @code
1170/// class S {
1171///   S(const S&); // DO NOT IMPLEMENT
1172///   void operator=(const S&); // DO NOT IMPLEMENT
1173/// };
1174/// @endcode
1175static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1176  // FIXME: Should check for private access too but access is set after we get
1177  // the decl here.
1178  if (D->doesThisDeclarationHaveABody())
1179    return false;
1180
1181  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1182    return CD->isCopyConstructor();
1183  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1184    return Method->isCopyAssignmentOperator();
1185  return false;
1186}
1187
1188// We need this to handle
1189//
1190// typedef struct {
1191//   void *foo() { return 0; }
1192// } A;
1193//
1194// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1195// for example. If 'A', foo will have external linkage. If we have '*A',
1196// foo will have no linkage. Since we can't know untill we get to the end
1197// of the typedef, this function finds out if D might have non external linkage.
1198// Callers should verify at the end of the TU if it D has external linkage or
1199// not.
1200bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1201  const DeclContext *DC = D->getDeclContext();
1202  while (!DC->isTranslationUnit()) {
1203    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1204      if (!RD->hasNameForLinkage())
1205        return true;
1206    }
1207    DC = DC->getParent();
1208  }
1209
1210  return !D->isExternallyVisible();
1211}
1212
1213bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1214  assert(D);
1215
1216  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1217    return false;
1218
1219  // Ignore class templates.
1220  if (D->getDeclContext()->isDependentContext() ||
1221      D->getLexicalDeclContext()->isDependentContext())
1222    return false;
1223
1224  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1225    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1226      return false;
1227
1228    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1229      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1230        return false;
1231    } else {
1232      // 'static inline' functions are used in headers; don't warn.
1233      // Make sure we get the storage class from the canonical declaration,
1234      // since otherwise we will get spurious warnings on specialized
1235      // static template functions.
1236      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1237          FD->isInlineSpecified())
1238        return false;
1239    }
1240
1241    if (FD->doesThisDeclarationHaveABody() &&
1242        Context.DeclMustBeEmitted(FD))
1243      return false;
1244  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1245    // Don't warn on variables of const-qualified or reference type, since their
1246    // values can be used even if though they're not odr-used, and because const
1247    // qualified variables can appear in headers in contexts where they're not
1248    // intended to be used.
1249    // FIXME: Use more principled rules for these exemptions.
1250    if (!VD->isFileVarDecl() ||
1251        VD->getType().isConstQualified() ||
1252        VD->getType()->isReferenceType() ||
1253        Context.DeclMustBeEmitted(VD))
1254      return false;
1255
1256    if (VD->isStaticDataMember() &&
1257        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1258      return false;
1259
1260  } else {
1261    return false;
1262  }
1263
1264  // Only warn for unused decls internal to the translation unit.
1265  return mightHaveNonExternalLinkage(D);
1266}
1267
1268void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1269  if (!D)
1270    return;
1271
1272  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1273    const FunctionDecl *First = FD->getFirstDeclaration();
1274    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1275      return; // First should already be in the vector.
1276  }
1277
1278  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1279    const VarDecl *First = VD->getFirstDeclaration();
1280    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1281      return; // First should already be in the vector.
1282  }
1283
1284  if (ShouldWarnIfUnusedFileScopedDecl(D))
1285    UnusedFileScopedDecls.push_back(D);
1286}
1287
1288static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1289  if (D->isInvalidDecl())
1290    return false;
1291
1292  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1293    return false;
1294
1295  if (isa<LabelDecl>(D))
1296    return true;
1297
1298  // White-list anything that isn't a local variable.
1299  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1300      !D->getDeclContext()->isFunctionOrMethod())
1301    return false;
1302
1303  // Types of valid local variables should be complete, so this should succeed.
1304  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1305
1306    // White-list anything with an __attribute__((unused)) type.
1307    QualType Ty = VD->getType();
1308
1309    // Only look at the outermost level of typedef.
1310    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1311      if (TT->getDecl()->hasAttr<UnusedAttr>())
1312        return false;
1313    }
1314
1315    // If we failed to complete the type for some reason, or if the type is
1316    // dependent, don't diagnose the variable.
1317    if (Ty->isIncompleteType() || Ty->isDependentType())
1318      return false;
1319
1320    if (const TagType *TT = Ty->getAs<TagType>()) {
1321      const TagDecl *Tag = TT->getDecl();
1322      if (Tag->hasAttr<UnusedAttr>())
1323        return false;
1324
1325      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1326        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1327          return false;
1328
1329        if (const Expr *Init = VD->getInit()) {
1330          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1331            Init = Cleanups->getSubExpr();
1332          const CXXConstructExpr *Construct =
1333            dyn_cast<CXXConstructExpr>(Init);
1334          if (Construct && !Construct->isElidable()) {
1335            CXXConstructorDecl *CD = Construct->getConstructor();
1336            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1337              return false;
1338          }
1339        }
1340      }
1341    }
1342
1343    // TODO: __attribute__((unused)) templates?
1344  }
1345
1346  return true;
1347}
1348
1349static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1350                                     FixItHint &Hint) {
1351  if (isa<LabelDecl>(D)) {
1352    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1353                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1354    if (AfterColon.isInvalid())
1355      return;
1356    Hint = FixItHint::CreateRemoval(CharSourceRange::
1357                                    getCharRange(D->getLocStart(), AfterColon));
1358  }
1359  return;
1360}
1361
1362/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1363/// unless they are marked attr(unused).
1364void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1365  FixItHint Hint;
1366  if (!ShouldDiagnoseUnusedDecl(D))
1367    return;
1368
1369  GenerateFixForUnusedDecl(D, Context, Hint);
1370
1371  unsigned DiagID;
1372  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1373    DiagID = diag::warn_unused_exception_param;
1374  else if (isa<LabelDecl>(D))
1375    DiagID = diag::warn_unused_label;
1376  else
1377    DiagID = diag::warn_unused_variable;
1378
1379  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1380}
1381
1382static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1383  // Verify that we have no forward references left.  If so, there was a goto
1384  // or address of a label taken, but no definition of it.  Label fwd
1385  // definitions are indicated with a null substmt.
1386  if (L->getStmt() == 0)
1387    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1388}
1389
1390void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1391  if (S->decl_empty()) return;
1392  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1393         "Scope shouldn't contain decls!");
1394
1395  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1396       I != E; ++I) {
1397    Decl *TmpD = (*I);
1398    assert(TmpD && "This decl didn't get pushed??");
1399
1400    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1401    NamedDecl *D = cast<NamedDecl>(TmpD);
1402
1403    if (!D->getDeclName()) continue;
1404
1405    // Diagnose unused variables in this scope.
1406    if (!S->hasUnrecoverableErrorOccurred())
1407      DiagnoseUnusedDecl(D);
1408
1409    // If this was a forward reference to a label, verify it was defined.
1410    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1411      CheckPoppedLabel(LD, *this);
1412
1413    // Remove this name from our lexical scope.
1414    IdResolver.RemoveDecl(D);
1415  }
1416}
1417
1418void Sema::ActOnStartFunctionDeclarator() {
1419  ++InFunctionDeclarator;
1420}
1421
1422void Sema::ActOnEndFunctionDeclarator() {
1423  assert(InFunctionDeclarator);
1424  --InFunctionDeclarator;
1425}
1426
1427/// \brief Look for an Objective-C class in the translation unit.
1428///
1429/// \param Id The name of the Objective-C class we're looking for. If
1430/// typo-correction fixes this name, the Id will be updated
1431/// to the fixed name.
1432///
1433/// \param IdLoc The location of the name in the translation unit.
1434///
1435/// \param DoTypoCorrection If true, this routine will attempt typo correction
1436/// if there is no class with the given name.
1437///
1438/// \returns The declaration of the named Objective-C class, or NULL if the
1439/// class could not be found.
1440ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1441                                              SourceLocation IdLoc,
1442                                              bool DoTypoCorrection) {
1443  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1444  // creation from this context.
1445  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1446
1447  if (!IDecl && DoTypoCorrection) {
1448    // Perform typo correction at the given location, but only if we
1449    // find an Objective-C class name.
1450    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1451    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1452                                       LookupOrdinaryName, TUScope, NULL,
1453                                       Validator)) {
1454      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1455      Diag(IdLoc, diag::err_undef_interface_suggest)
1456        << Id << IDecl->getDeclName()
1457        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1458      Diag(IDecl->getLocation(), diag::note_previous_decl)
1459        << IDecl->getDeclName();
1460
1461      Id = IDecl->getIdentifier();
1462    }
1463  }
1464  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1465  // This routine must always return a class definition, if any.
1466  if (Def && Def->getDefinition())
1467      Def = Def->getDefinition();
1468  return Def;
1469}
1470
1471/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1472/// from S, where a non-field would be declared. This routine copes
1473/// with the difference between C and C++ scoping rules in structs and
1474/// unions. For example, the following code is well-formed in C but
1475/// ill-formed in C++:
1476/// @code
1477/// struct S6 {
1478///   enum { BAR } e;
1479/// };
1480///
1481/// void test_S6() {
1482///   struct S6 a;
1483///   a.e = BAR;
1484/// }
1485/// @endcode
1486/// For the declaration of BAR, this routine will return a different
1487/// scope. The scope S will be the scope of the unnamed enumeration
1488/// within S6. In C++, this routine will return the scope associated
1489/// with S6, because the enumeration's scope is a transparent
1490/// context but structures can contain non-field names. In C, this
1491/// routine will return the translation unit scope, since the
1492/// enumeration's scope is a transparent context and structures cannot
1493/// contain non-field names.
1494Scope *Sema::getNonFieldDeclScope(Scope *S) {
1495  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1496         (S->getEntity() &&
1497          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1498         (S->isClassScope() && !getLangOpts().CPlusPlus))
1499    S = S->getParent();
1500  return S;
1501}
1502
1503/// \brief Looks up the declaration of "struct objc_super" and
1504/// saves it for later use in building builtin declaration of
1505/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1506/// pre-existing declaration exists no action takes place.
1507static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1508                                        IdentifierInfo *II) {
1509  if (!II->isStr("objc_msgSendSuper"))
1510    return;
1511  ASTContext &Context = ThisSema.Context;
1512
1513  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1514                      SourceLocation(), Sema::LookupTagName);
1515  ThisSema.LookupName(Result, S);
1516  if (Result.getResultKind() == LookupResult::Found)
1517    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1518      Context.setObjCSuperType(Context.getTagDeclType(TD));
1519}
1520
1521/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1522/// file scope.  lazily create a decl for it. ForRedeclaration is true
1523/// if we're creating this built-in in anticipation of redeclaring the
1524/// built-in.
1525NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1526                                     Scope *S, bool ForRedeclaration,
1527                                     SourceLocation Loc) {
1528  LookupPredefedObjCSuperType(*this, S, II);
1529
1530  Builtin::ID BID = (Builtin::ID)bid;
1531
1532  ASTContext::GetBuiltinTypeError Error;
1533  QualType R = Context.GetBuiltinType(BID, Error);
1534  switch (Error) {
1535  case ASTContext::GE_None:
1536    // Okay
1537    break;
1538
1539  case ASTContext::GE_Missing_stdio:
1540    if (ForRedeclaration)
1541      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1542        << Context.BuiltinInfo.GetName(BID);
1543    return 0;
1544
1545  case ASTContext::GE_Missing_setjmp:
1546    if (ForRedeclaration)
1547      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1548        << Context.BuiltinInfo.GetName(BID);
1549    return 0;
1550
1551  case ASTContext::GE_Missing_ucontext:
1552    if (ForRedeclaration)
1553      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1554        << Context.BuiltinInfo.GetName(BID);
1555    return 0;
1556  }
1557
1558  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1559    Diag(Loc, diag::ext_implicit_lib_function_decl)
1560      << Context.BuiltinInfo.GetName(BID)
1561      << R;
1562    if (Context.BuiltinInfo.getHeaderName(BID) &&
1563        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1564          != DiagnosticsEngine::Ignored)
1565      Diag(Loc, diag::note_please_include_header)
1566        << Context.BuiltinInfo.getHeaderName(BID)
1567        << Context.BuiltinInfo.GetName(BID);
1568  }
1569
1570  FunctionDecl *New = FunctionDecl::Create(Context,
1571                                           Context.getTranslationUnitDecl(),
1572                                           Loc, Loc, II, R, /*TInfo=*/0,
1573                                           SC_Extern,
1574                                           false,
1575                                           /*hasPrototype=*/true);
1576  New->setImplicit();
1577
1578  // Create Decl objects for each parameter, adding them to the
1579  // FunctionDecl.
1580  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1581    SmallVector<ParmVarDecl*, 16> Params;
1582    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1583      ParmVarDecl *parm =
1584        ParmVarDecl::Create(Context, New, SourceLocation(),
1585                            SourceLocation(), 0,
1586                            FT->getArgType(i), /*TInfo=*/0,
1587                            SC_None, 0);
1588      parm->setScopeInfo(0, i);
1589      Params.push_back(parm);
1590    }
1591    New->setParams(Params);
1592  }
1593
1594  AddKnownFunctionAttributes(New);
1595
1596  // TUScope is the translation-unit scope to insert this function into.
1597  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1598  // relate Scopes to DeclContexts, and probably eliminate CurContext
1599  // entirely, but we're not there yet.
1600  DeclContext *SavedContext = CurContext;
1601  CurContext = Context.getTranslationUnitDecl();
1602  PushOnScopeChains(New, TUScope);
1603  CurContext = SavedContext;
1604  return New;
1605}
1606
1607/// \brief Filter out any previous declarations that the given declaration
1608/// should not consider because they are not permitted to conflict, e.g.,
1609/// because they come from hidden sub-modules and do not refer to the same
1610/// entity.
1611static void filterNonConflictingPreviousDecls(ASTContext &context,
1612                                              NamedDecl *decl,
1613                                              LookupResult &previous){
1614  // This is only interesting when modules are enabled.
1615  if (!context.getLangOpts().Modules)
1616    return;
1617
1618  // Empty sets are uninteresting.
1619  if (previous.empty())
1620    return;
1621
1622  LookupResult::Filter filter = previous.makeFilter();
1623  while (filter.hasNext()) {
1624    NamedDecl *old = filter.next();
1625
1626    // Non-hidden declarations are never ignored.
1627    if (!old->isHidden())
1628      continue;
1629
1630    if (!old->isExternallyVisible())
1631      filter.erase();
1632  }
1633
1634  filter.done();
1635}
1636
1637bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1638  QualType OldType;
1639  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1640    OldType = OldTypedef->getUnderlyingType();
1641  else
1642    OldType = Context.getTypeDeclType(Old);
1643  QualType NewType = New->getUnderlyingType();
1644
1645  if (NewType->isVariablyModifiedType()) {
1646    // Must not redefine a typedef with a variably-modified type.
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1649      << Kind << NewType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655
1656  if (OldType != NewType &&
1657      !OldType->isDependentType() &&
1658      !NewType->isDependentType() &&
1659      !Context.hasSameType(OldType, NewType)) {
1660    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1661    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1662      << Kind << NewType << OldType;
1663    if (Old->getLocation().isValid())
1664      Diag(Old->getLocation(), diag::note_previous_definition);
1665    New->setInvalidDecl();
1666    return true;
1667  }
1668  return false;
1669}
1670
1671/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1672/// same name and scope as a previous declaration 'Old'.  Figure out
1673/// how to resolve this situation, merging decls or emitting
1674/// diagnostics as appropriate. If there was an error, set New to be invalid.
1675///
1676void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1677  // If the new decl is known invalid already, don't bother doing any
1678  // merging checks.
1679  if (New->isInvalidDecl()) return;
1680
1681  // Allow multiple definitions for ObjC built-in typedefs.
1682  // FIXME: Verify the underlying types are equivalent!
1683  if (getLangOpts().ObjC1) {
1684    const IdentifierInfo *TypeID = New->getIdentifier();
1685    switch (TypeID->getLength()) {
1686    default: break;
1687    case 2:
1688      {
1689        if (!TypeID->isStr("id"))
1690          break;
1691        QualType T = New->getUnderlyingType();
1692        if (!T->isPointerType())
1693          break;
1694        if (!T->isVoidPointerType()) {
1695          QualType PT = T->getAs<PointerType>()->getPointeeType();
1696          if (!PT->isStructureType())
1697            break;
1698        }
1699        Context.setObjCIdRedefinitionType(T);
1700        // Install the built-in type for 'id', ignoring the current definition.
1701        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1702        return;
1703      }
1704    case 5:
1705      if (!TypeID->isStr("Class"))
1706        break;
1707      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1708      // Install the built-in type for 'Class', ignoring the current definition.
1709      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1710      return;
1711    case 3:
1712      if (!TypeID->isStr("SEL"))
1713        break;
1714      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1715      // Install the built-in type for 'SEL', ignoring the current definition.
1716      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1717      return;
1718    }
1719    // Fall through - the typedef name was not a builtin type.
1720  }
1721
1722  // Verify the old decl was also a type.
1723  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1724  if (!Old) {
1725    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1726      << New->getDeclName();
1727
1728    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1729    if (OldD->getLocation().isValid())
1730      Diag(OldD->getLocation(), diag::note_previous_definition);
1731
1732    return New->setInvalidDecl();
1733  }
1734
1735  // If the old declaration is invalid, just give up here.
1736  if (Old->isInvalidDecl())
1737    return New->setInvalidDecl();
1738
1739  // If the typedef types are not identical, reject them in all languages and
1740  // with any extensions enabled.
1741  if (isIncompatibleTypedef(Old, New))
1742    return;
1743
1744  // The types match.  Link up the redeclaration chain if the old
1745  // declaration was a typedef.
1746  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1747    New->setPreviousDeclaration(Typedef);
1748
1749  mergeDeclAttributes(New, Old);
1750
1751  if (getLangOpts().MicrosoftExt)
1752    return;
1753
1754  if (getLangOpts().CPlusPlus) {
1755    // C++ [dcl.typedef]p2:
1756    //   In a given non-class scope, a typedef specifier can be used to
1757    //   redefine the name of any type declared in that scope to refer
1758    //   to the type to which it already refers.
1759    if (!isa<CXXRecordDecl>(CurContext))
1760      return;
1761
1762    // C++0x [dcl.typedef]p4:
1763    //   In a given class scope, a typedef specifier can be used to redefine
1764    //   any class-name declared in that scope that is not also a typedef-name
1765    //   to refer to the type to which it already refers.
1766    //
1767    // This wording came in via DR424, which was a correction to the
1768    // wording in DR56, which accidentally banned code like:
1769    //
1770    //   struct S {
1771    //     typedef struct A { } A;
1772    //   };
1773    //
1774    // in the C++03 standard. We implement the C++0x semantics, which
1775    // allow the above but disallow
1776    //
1777    //   struct S {
1778    //     typedef int I;
1779    //     typedef int I;
1780    //   };
1781    //
1782    // since that was the intent of DR56.
1783    if (!isa<TypedefNameDecl>(Old))
1784      return;
1785
1786    Diag(New->getLocation(), diag::err_redefinition)
1787      << New->getDeclName();
1788    Diag(Old->getLocation(), diag::note_previous_definition);
1789    return New->setInvalidDecl();
1790  }
1791
1792  // Modules always permit redefinition of typedefs, as does C11.
1793  if (getLangOpts().Modules || getLangOpts().C11)
1794    return;
1795
1796  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1797  // is normally mapped to an error, but can be controlled with
1798  // -Wtypedef-redefinition.  If either the original or the redefinition is
1799  // in a system header, don't emit this for compatibility with GCC.
1800  if (getDiagnostics().getSuppressSystemWarnings() &&
1801      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1802       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1803    return;
1804
1805  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1806    << New->getDeclName();
1807  Diag(Old->getLocation(), diag::note_previous_definition);
1808  return;
1809}
1810
1811/// DeclhasAttr - returns true if decl Declaration already has the target
1812/// attribute.
1813static bool
1814DeclHasAttr(const Decl *D, const Attr *A) {
1815  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1816  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1817  // responsible for making sure they are consistent.
1818  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1819  if (AA)
1820    return false;
1821
1822  // The following thread safety attributes can also be duplicated.
1823  switch (A->getKind()) {
1824    case attr::ExclusiveLocksRequired:
1825    case attr::SharedLocksRequired:
1826    case attr::LocksExcluded:
1827    case attr::ExclusiveLockFunction:
1828    case attr::SharedLockFunction:
1829    case attr::UnlockFunction:
1830    case attr::ExclusiveTrylockFunction:
1831    case attr::SharedTrylockFunction:
1832    case attr::GuardedBy:
1833    case attr::PtGuardedBy:
1834    case attr::AcquiredBefore:
1835    case attr::AcquiredAfter:
1836      return false;
1837    default:
1838      ;
1839  }
1840
1841  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1842  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1843  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1844    if ((*i)->getKind() == A->getKind()) {
1845      if (Ann) {
1846        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1847          return true;
1848        continue;
1849      }
1850      // FIXME: Don't hardcode this check
1851      if (OA && isa<OwnershipAttr>(*i))
1852        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1853      return true;
1854    }
1855
1856  return false;
1857}
1858
1859static bool isAttributeTargetADefinition(Decl *D) {
1860  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1861    return VD->isThisDeclarationADefinition();
1862  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1863    return TD->isCompleteDefinition() || TD->isBeingDefined();
1864  return true;
1865}
1866
1867/// Merge alignment attributes from \p Old to \p New, taking into account the
1868/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1869///
1870/// \return \c true if any attributes were added to \p New.
1871static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1872  // Look for alignas attributes on Old, and pick out whichever attribute
1873  // specifies the strictest alignment requirement.
1874  AlignedAttr *OldAlignasAttr = 0;
1875  AlignedAttr *OldStrictestAlignAttr = 0;
1876  unsigned OldAlign = 0;
1877  for (specific_attr_iterator<AlignedAttr>
1878         I = Old->specific_attr_begin<AlignedAttr>(),
1879         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1880    // FIXME: We have no way of representing inherited dependent alignments
1881    // in a case like:
1882    //   template<int A, int B> struct alignas(A) X;
1883    //   template<int A, int B> struct alignas(B) X {};
1884    // For now, we just ignore any alignas attributes which are not on the
1885    // definition in such a case.
1886    if (I->isAlignmentDependent())
1887      return false;
1888
1889    if (I->isAlignas())
1890      OldAlignasAttr = *I;
1891
1892    unsigned Align = I->getAlignment(S.Context);
1893    if (Align > OldAlign) {
1894      OldAlign = Align;
1895      OldStrictestAlignAttr = *I;
1896    }
1897  }
1898
1899  // Look for alignas attributes on New.
1900  AlignedAttr *NewAlignasAttr = 0;
1901  unsigned NewAlign = 0;
1902  for (specific_attr_iterator<AlignedAttr>
1903         I = New->specific_attr_begin<AlignedAttr>(),
1904         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1905    if (I->isAlignmentDependent())
1906      return false;
1907
1908    if (I->isAlignas())
1909      NewAlignasAttr = *I;
1910
1911    unsigned Align = I->getAlignment(S.Context);
1912    if (Align > NewAlign)
1913      NewAlign = Align;
1914  }
1915
1916  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1917    // Both declarations have 'alignas' attributes. We require them to match.
1918    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1919    // fall short. (If two declarations both have alignas, they must both match
1920    // every definition, and so must match each other if there is a definition.)
1921
1922    // If either declaration only contains 'alignas(0)' specifiers, then it
1923    // specifies the natural alignment for the type.
1924    if (OldAlign == 0 || NewAlign == 0) {
1925      QualType Ty;
1926      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1927        Ty = VD->getType();
1928      else
1929        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1930
1931      if (OldAlign == 0)
1932        OldAlign = S.Context.getTypeAlign(Ty);
1933      if (NewAlign == 0)
1934        NewAlign = S.Context.getTypeAlign(Ty);
1935    }
1936
1937    if (OldAlign != NewAlign) {
1938      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1939        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1940        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1941      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1942    }
1943  }
1944
1945  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1946    // C++11 [dcl.align]p6:
1947    //   if any declaration of an entity has an alignment-specifier,
1948    //   every defining declaration of that entity shall specify an
1949    //   equivalent alignment.
1950    // C11 6.7.5/7:
1951    //   If the definition of an object does not have an alignment
1952    //   specifier, any other declaration of that object shall also
1953    //   have no alignment specifier.
1954    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1955      << OldAlignasAttr->isC11();
1956    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1957      << OldAlignasAttr->isC11();
1958  }
1959
1960  bool AnyAdded = false;
1961
1962  // Ensure we have an attribute representing the strictest alignment.
1963  if (OldAlign > NewAlign) {
1964    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1965    Clone->setInherited(true);
1966    New->addAttr(Clone);
1967    AnyAdded = true;
1968  }
1969
1970  // Ensure we have an alignas attribute if the old declaration had one.
1971  if (OldAlignasAttr && !NewAlignasAttr &&
1972      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1973    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1974    Clone->setInherited(true);
1975    New->addAttr(Clone);
1976    AnyAdded = true;
1977  }
1978
1979  return AnyAdded;
1980}
1981
1982static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1983                               bool Override) {
1984  InheritableAttr *NewAttr = NULL;
1985  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1986  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1987    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1988                                      AA->getIntroduced(), AA->getDeprecated(),
1989                                      AA->getObsoleted(), AA->getUnavailable(),
1990                                      AA->getMessage(), Override,
1991                                      AttrSpellingListIndex);
1992  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1993    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994                                    AttrSpellingListIndex);
1995  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1996    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1997                                        AttrSpellingListIndex);
1998  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1999    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2000                                   AttrSpellingListIndex);
2001  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
2002    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2003                                   AttrSpellingListIndex);
2004  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2005    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2006                                FA->getFormatIdx(), FA->getFirstArg(),
2007                                AttrSpellingListIndex);
2008  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2009    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2010                                 AttrSpellingListIndex);
2011  else if (isa<AlignedAttr>(Attr))
2012    // AlignedAttrs are handled separately, because we need to handle all
2013    // such attributes on a declaration at the same time.
2014    NewAttr = 0;
2015  else if (!DeclHasAttr(D, Attr))
2016    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2017
2018  if (NewAttr) {
2019    NewAttr->setInherited(true);
2020    D->addAttr(NewAttr);
2021    return true;
2022  }
2023
2024  return false;
2025}
2026
2027static const Decl *getDefinition(const Decl *D) {
2028  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2029    return TD->getDefinition();
2030  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2031    return VD->getDefinition();
2032  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2033    const FunctionDecl* Def;
2034    if (FD->hasBody(Def))
2035      return Def;
2036  }
2037  return NULL;
2038}
2039
2040static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2041  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2042       I != E; ++I) {
2043    Attr *Attribute = *I;
2044    if (Attribute->getKind() == Kind)
2045      return true;
2046  }
2047  return false;
2048}
2049
2050/// checkNewAttributesAfterDef - If we already have a definition, check that
2051/// there are no new attributes in this declaration.
2052static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2053  if (!New->hasAttrs())
2054    return;
2055
2056  const Decl *Def = getDefinition(Old);
2057  if (!Def || Def == New)
2058    return;
2059
2060  AttrVec &NewAttributes = New->getAttrs();
2061  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2062    const Attr *NewAttribute = NewAttributes[I];
2063    if (hasAttribute(Def, NewAttribute->getKind())) {
2064      ++I;
2065      continue; // regular attr merging will take care of validating this.
2066    }
2067
2068    if (isa<C11NoReturnAttr>(NewAttribute)) {
2069      // C's _Noreturn is allowed to be added to a function after it is defined.
2070      ++I;
2071      continue;
2072    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2073      if (AA->isAlignas()) {
2074        // C++11 [dcl.align]p6:
2075        //   if any declaration of an entity has an alignment-specifier,
2076        //   every defining declaration of that entity shall specify an
2077        //   equivalent alignment.
2078        // C11 6.7.5/7:
2079        //   If the definition of an object does not have an alignment
2080        //   specifier, any other declaration of that object shall also
2081        //   have no alignment specifier.
2082        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2083          << AA->isC11();
2084        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2085          << AA->isC11();
2086        NewAttributes.erase(NewAttributes.begin() + I);
2087        --E;
2088        continue;
2089      }
2090    }
2091
2092    S.Diag(NewAttribute->getLocation(),
2093           diag::warn_attribute_precede_definition);
2094    S.Diag(Def->getLocation(), diag::note_previous_definition);
2095    NewAttributes.erase(NewAttributes.begin() + I);
2096    --E;
2097  }
2098}
2099
2100/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2101void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2102                               AvailabilityMergeKind AMK) {
2103  if (!Old->hasAttrs() && !New->hasAttrs())
2104    return;
2105
2106  // attributes declared post-definition are currently ignored
2107  checkNewAttributesAfterDef(*this, New, Old);
2108
2109  if (!Old->hasAttrs())
2110    return;
2111
2112  bool foundAny = New->hasAttrs();
2113
2114  // Ensure that any moving of objects within the allocated map is done before
2115  // we process them.
2116  if (!foundAny) New->setAttrs(AttrVec());
2117
2118  for (specific_attr_iterator<InheritableAttr>
2119         i = Old->specific_attr_begin<InheritableAttr>(),
2120         e = Old->specific_attr_end<InheritableAttr>();
2121       i != e; ++i) {
2122    bool Override = false;
2123    // Ignore deprecated/unavailable/availability attributes if requested.
2124    if (isa<DeprecatedAttr>(*i) ||
2125        isa<UnavailableAttr>(*i) ||
2126        isa<AvailabilityAttr>(*i)) {
2127      switch (AMK) {
2128      case AMK_None:
2129        continue;
2130
2131      case AMK_Redeclaration:
2132        break;
2133
2134      case AMK_Override:
2135        Override = true;
2136        break;
2137      }
2138    }
2139
2140    if (mergeDeclAttribute(*this, New, *i, Override))
2141      foundAny = true;
2142  }
2143
2144  if (mergeAlignedAttrs(*this, New, Old))
2145    foundAny = true;
2146
2147  if (!foundAny) New->dropAttrs();
2148}
2149
2150/// mergeParamDeclAttributes - Copy attributes from the old parameter
2151/// to the new one.
2152static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2153                                     const ParmVarDecl *oldDecl,
2154                                     Sema &S) {
2155  // C++11 [dcl.attr.depend]p2:
2156  //   The first declaration of a function shall specify the
2157  //   carries_dependency attribute for its declarator-id if any declaration
2158  //   of the function specifies the carries_dependency attribute.
2159  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2160      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2161    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2162           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2163    // Find the first declaration of the parameter.
2164    // FIXME: Should we build redeclaration chains for function parameters?
2165    const FunctionDecl *FirstFD =
2166      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2167    const ParmVarDecl *FirstVD =
2168      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2169    S.Diag(FirstVD->getLocation(),
2170           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2171  }
2172
2173  if (!oldDecl->hasAttrs())
2174    return;
2175
2176  bool foundAny = newDecl->hasAttrs();
2177
2178  // Ensure that any moving of objects within the allocated map is
2179  // done before we process them.
2180  if (!foundAny) newDecl->setAttrs(AttrVec());
2181
2182  for (specific_attr_iterator<InheritableParamAttr>
2183       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2184       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2185    if (!DeclHasAttr(newDecl, *i)) {
2186      InheritableAttr *newAttr =
2187        cast<InheritableParamAttr>((*i)->clone(S.Context));
2188      newAttr->setInherited(true);
2189      newDecl->addAttr(newAttr);
2190      foundAny = true;
2191    }
2192  }
2193
2194  if (!foundAny) newDecl->dropAttrs();
2195}
2196
2197namespace {
2198
2199/// Used in MergeFunctionDecl to keep track of function parameters in
2200/// C.
2201struct GNUCompatibleParamWarning {
2202  ParmVarDecl *OldParm;
2203  ParmVarDecl *NewParm;
2204  QualType PromotedType;
2205};
2206
2207}
2208
2209/// getSpecialMember - get the special member enum for a method.
2210Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2211  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2212    if (Ctor->isDefaultConstructor())
2213      return Sema::CXXDefaultConstructor;
2214
2215    if (Ctor->isCopyConstructor())
2216      return Sema::CXXCopyConstructor;
2217
2218    if (Ctor->isMoveConstructor())
2219      return Sema::CXXMoveConstructor;
2220  } else if (isa<CXXDestructorDecl>(MD)) {
2221    return Sema::CXXDestructor;
2222  } else if (MD->isCopyAssignmentOperator()) {
2223    return Sema::CXXCopyAssignment;
2224  } else if (MD->isMoveAssignmentOperator()) {
2225    return Sema::CXXMoveAssignment;
2226  }
2227
2228  return Sema::CXXInvalid;
2229}
2230
2231/// canRedefineFunction - checks if a function can be redefined. Currently,
2232/// only extern inline functions can be redefined, and even then only in
2233/// GNU89 mode.
2234static bool canRedefineFunction(const FunctionDecl *FD,
2235                                const LangOptions& LangOpts) {
2236  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2237          !LangOpts.CPlusPlus &&
2238          FD->isInlineSpecified() &&
2239          FD->getStorageClass() == SC_Extern);
2240}
2241
2242/// Is the given calling convention the ABI default for the given
2243/// declaration?
2244static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2245  CallingConv ABIDefaultCC;
2246  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2247    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2248  } else {
2249    // Free C function or a static method.
2250    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2251  }
2252  return ABIDefaultCC == CC;
2253}
2254
2255template <typename T>
2256static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2257  const DeclContext *DC = Old->getDeclContext();
2258  if (DC->isRecord())
2259    return false;
2260
2261  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2262  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2263    return true;
2264  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2265    return true;
2266  return false;
2267}
2268
2269/// MergeFunctionDecl - We just parsed a function 'New' from
2270/// declarator D which has the same name and scope as a previous
2271/// declaration 'Old'.  Figure out how to resolve this situation,
2272/// merging decls or emitting diagnostics as appropriate.
2273///
2274/// In C++, New and Old must be declarations that are not
2275/// overloaded. Use IsOverload to determine whether New and Old are
2276/// overloaded, and to select the Old declaration that New should be
2277/// merged with.
2278///
2279/// Returns true if there was an error, false otherwise.
2280bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
2281                             bool MergeTypeWithOld) {
2282  // Verify the old decl was also a function.
2283  FunctionDecl *Old = 0;
2284  if (FunctionTemplateDecl *OldFunctionTemplate
2285        = dyn_cast<FunctionTemplateDecl>(OldD))
2286    Old = OldFunctionTemplate->getTemplatedDecl();
2287  else
2288    Old = dyn_cast<FunctionDecl>(OldD);
2289  if (!Old) {
2290    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2291      if (New->getFriendObjectKind()) {
2292        Diag(New->getLocation(), diag::err_using_decl_friend);
2293        Diag(Shadow->getTargetDecl()->getLocation(),
2294             diag::note_using_decl_target);
2295        Diag(Shadow->getUsingDecl()->getLocation(),
2296             diag::note_using_decl) << 0;
2297        return true;
2298      }
2299
2300      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2301      Diag(Shadow->getTargetDecl()->getLocation(),
2302           diag::note_using_decl_target);
2303      Diag(Shadow->getUsingDecl()->getLocation(),
2304           diag::note_using_decl) << 0;
2305      return true;
2306    }
2307
2308    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2309      << New->getDeclName();
2310    Diag(OldD->getLocation(), diag::note_previous_definition);
2311    return true;
2312  }
2313
2314  // If the old declaration is invalid, just give up here.
2315  if (Old->isInvalidDecl())
2316    return true;
2317
2318  // Determine whether the previous declaration was a definition,
2319  // implicit declaration, or a declaration.
2320  diag::kind PrevDiag;
2321  if (Old->isThisDeclarationADefinition())
2322    PrevDiag = diag::note_previous_definition;
2323  else if (Old->isImplicit())
2324    PrevDiag = diag::note_previous_implicit_declaration;
2325  else
2326    PrevDiag = diag::note_previous_declaration;
2327
2328  QualType OldQType = Context.getCanonicalType(Old->getType());
2329  QualType NewQType = Context.getCanonicalType(New->getType());
2330
2331  // Don't complain about this if we're in GNU89 mode and the old function
2332  // is an extern inline function.
2333  // Don't complain about specializations. They are not supposed to have
2334  // storage classes.
2335  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2336      New->getStorageClass() == SC_Static &&
2337      Old->hasExternalFormalLinkage() &&
2338      !New->getTemplateSpecializationInfo() &&
2339      !canRedefineFunction(Old, getLangOpts())) {
2340    if (getLangOpts().MicrosoftExt) {
2341      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2342      Diag(Old->getLocation(), PrevDiag);
2343    } else {
2344      Diag(New->getLocation(), diag::err_static_non_static) << New;
2345      Diag(Old->getLocation(), PrevDiag);
2346      return true;
2347    }
2348  }
2349
2350  // If a function is first declared with a calling convention, but is
2351  // later declared or defined without one, the second decl assumes the
2352  // calling convention of the first.
2353  //
2354  // It's OK if a function is first declared without a calling convention,
2355  // but is later declared or defined with the default calling convention.
2356  //
2357  // For the new decl, we have to look at the NON-canonical type to tell the
2358  // difference between a function that really doesn't have a calling
2359  // convention and one that is declared cdecl. That's because in
2360  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2361  // because it is the default calling convention.
2362  //
2363  // Note also that we DO NOT return at this point, because we still have
2364  // other tests to run.
2365  const FunctionType *OldType = cast<FunctionType>(OldQType);
2366  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2367  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2368  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2369  bool RequiresAdjustment = false;
2370  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2371    // Fast path: nothing to do.
2372
2373  // Inherit the CC from the previous declaration if it was specified
2374  // there but not here.
2375  } else if (NewTypeInfo.getCC() == CC_Default) {
2376    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2377    RequiresAdjustment = true;
2378
2379  // Don't complain about mismatches when the default CC is
2380  // effectively the same as the explict one. Only Old decl contains correct
2381  // information about storage class of CXXMethod.
2382  } else if (OldTypeInfo.getCC() == CC_Default &&
2383             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2384    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2385    RequiresAdjustment = true;
2386
2387  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2388                                     NewTypeInfo.getCC())) {
2389    // Calling conventions really aren't compatible, so complain.
2390    Diag(New->getLocation(), diag::err_cconv_change)
2391      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2392      << (OldTypeInfo.getCC() == CC_Default)
2393      << (OldTypeInfo.getCC() == CC_Default ? "" :
2394          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2395    Diag(Old->getLocation(), diag::note_previous_declaration);
2396    return true;
2397  }
2398
2399  // FIXME: diagnose the other way around?
2400  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2401    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2402    RequiresAdjustment = true;
2403  }
2404
2405  // Merge regparm attribute.
2406  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2407      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2408    if (NewTypeInfo.getHasRegParm()) {
2409      Diag(New->getLocation(), diag::err_regparm_mismatch)
2410        << NewType->getRegParmType()
2411        << OldType->getRegParmType();
2412      Diag(Old->getLocation(), diag::note_previous_declaration);
2413      return true;
2414    }
2415
2416    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2417    RequiresAdjustment = true;
2418  }
2419
2420  // Merge ns_returns_retained attribute.
2421  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2422    if (NewTypeInfo.getProducesResult()) {
2423      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2424      Diag(Old->getLocation(), diag::note_previous_declaration);
2425      return true;
2426    }
2427
2428    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2429    RequiresAdjustment = true;
2430  }
2431
2432  if (RequiresAdjustment) {
2433    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2434    New->setType(QualType(NewType, 0));
2435    NewQType = Context.getCanonicalType(New->getType());
2436  }
2437
2438  // If this redeclaration makes the function inline, we may need to add it to
2439  // UndefinedButUsed.
2440  if (!Old->isInlined() && New->isInlined() &&
2441      !New->hasAttr<GNUInlineAttr>() &&
2442      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2443      Old->isUsed(false) &&
2444      !Old->isDefined() && !New->isThisDeclarationADefinition())
2445    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2446                                           SourceLocation()));
2447
2448  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2449  // about it.
2450  if (New->hasAttr<GNUInlineAttr>() &&
2451      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2452    UndefinedButUsed.erase(Old->getCanonicalDecl());
2453  }
2454
2455  if (getLangOpts().CPlusPlus) {
2456    // (C++98 13.1p2):
2457    //   Certain function declarations cannot be overloaded:
2458    //     -- Function declarations that differ only in the return type
2459    //        cannot be overloaded.
2460
2461    // Go back to the type source info to compare the declared return types,
2462    // per C++1y [dcl.type.auto]p13:
2463    //   Redeclarations or specializations of a function or function template
2464    //   with a declared return type that uses a placeholder type shall also
2465    //   use that placeholder, not a deduced type.
2466    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2467      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2468      : OldType)->getResultType();
2469    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2470      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2471      : NewType)->getResultType();
2472    QualType ResQT;
2473    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2474      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2475          OldDeclaredReturnType->isObjCObjectPointerType())
2476        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2477      if (ResQT.isNull()) {
2478        if (New->isCXXClassMember() && New->isOutOfLine())
2479          Diag(New->getLocation(),
2480               diag::err_member_def_does_not_match_ret_type) << New;
2481        else
2482          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2483        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2484        return true;
2485      }
2486      else
2487        NewQType = ResQT;
2488    }
2489
2490    QualType OldReturnType = OldType->getResultType();
2491    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2492    if (OldReturnType != NewReturnType) {
2493      // If this function has a deduced return type and has already been
2494      // defined, copy the deduced value from the old declaration.
2495      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2496      if (OldAT && OldAT->isDeduced()) {
2497        New->setType(
2498            SubstAutoType(New->getType(),
2499                          OldAT->isDependentType() ? Context.DependentTy
2500                                                   : OldAT->getDeducedType()));
2501        NewQType = Context.getCanonicalType(
2502            SubstAutoType(NewQType,
2503                          OldAT->isDependentType() ? Context.DependentTy
2504                                                   : OldAT->getDeducedType()));
2505      }
2506    }
2507
2508    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2509    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2510    if (OldMethod && NewMethod) {
2511      // Preserve triviality.
2512      NewMethod->setTrivial(OldMethod->isTrivial());
2513
2514      // MSVC allows explicit template specialization at class scope:
2515      // 2 CXMethodDecls referring to the same function will be injected.
2516      // We don't want a redeclartion error.
2517      bool IsClassScopeExplicitSpecialization =
2518                              OldMethod->isFunctionTemplateSpecialization() &&
2519                              NewMethod->isFunctionTemplateSpecialization();
2520      bool isFriend = NewMethod->getFriendObjectKind();
2521
2522      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2523          !IsClassScopeExplicitSpecialization) {
2524        //    -- Member function declarations with the same name and the
2525        //       same parameter types cannot be overloaded if any of them
2526        //       is a static member function declaration.
2527        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2528          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2529          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2530          return true;
2531        }
2532
2533        // C++ [class.mem]p1:
2534        //   [...] A member shall not be declared twice in the
2535        //   member-specification, except that a nested class or member
2536        //   class template can be declared and then later defined.
2537        if (ActiveTemplateInstantiations.empty()) {
2538          unsigned NewDiag;
2539          if (isa<CXXConstructorDecl>(OldMethod))
2540            NewDiag = diag::err_constructor_redeclared;
2541          else if (isa<CXXDestructorDecl>(NewMethod))
2542            NewDiag = diag::err_destructor_redeclared;
2543          else if (isa<CXXConversionDecl>(NewMethod))
2544            NewDiag = diag::err_conv_function_redeclared;
2545          else
2546            NewDiag = diag::err_member_redeclared;
2547
2548          Diag(New->getLocation(), NewDiag);
2549        } else {
2550          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2551            << New << New->getType();
2552        }
2553        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2554
2555      // Complain if this is an explicit declaration of a special
2556      // member that was initially declared implicitly.
2557      //
2558      // As an exception, it's okay to befriend such methods in order
2559      // to permit the implicit constructor/destructor/operator calls.
2560      } else if (OldMethod->isImplicit()) {
2561        if (isFriend) {
2562          NewMethod->setImplicit();
2563        } else {
2564          Diag(NewMethod->getLocation(),
2565               diag::err_definition_of_implicitly_declared_member)
2566            << New << getSpecialMember(OldMethod);
2567          return true;
2568        }
2569      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2570        Diag(NewMethod->getLocation(),
2571             diag::err_definition_of_explicitly_defaulted_member)
2572          << getSpecialMember(OldMethod);
2573        return true;
2574      }
2575    }
2576
2577    // C++11 [dcl.attr.noreturn]p1:
2578    //   The first declaration of a function shall specify the noreturn
2579    //   attribute if any declaration of that function specifies the noreturn
2580    //   attribute.
2581    if (New->hasAttr<CXX11NoReturnAttr>() &&
2582        !Old->hasAttr<CXX11NoReturnAttr>()) {
2583      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2584           diag::err_noreturn_missing_on_first_decl);
2585      Diag(Old->getFirstDeclaration()->getLocation(),
2586           diag::note_noreturn_missing_first_decl);
2587    }
2588
2589    // C++11 [dcl.attr.depend]p2:
2590    //   The first declaration of a function shall specify the
2591    //   carries_dependency attribute for its declarator-id if any declaration
2592    //   of the function specifies the carries_dependency attribute.
2593    if (New->hasAttr<CarriesDependencyAttr>() &&
2594        !Old->hasAttr<CarriesDependencyAttr>()) {
2595      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2596           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2597      Diag(Old->getFirstDeclaration()->getLocation(),
2598           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2599    }
2600
2601    // (C++98 8.3.5p3):
2602    //   All declarations for a function shall agree exactly in both the
2603    //   return type and the parameter-type-list.
2604    // We also want to respect all the extended bits except noreturn.
2605
2606    // noreturn should now match unless the old type info didn't have it.
2607    QualType OldQTypeForComparison = OldQType;
2608    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2609      assert(OldQType == QualType(OldType, 0));
2610      const FunctionType *OldTypeForComparison
2611        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2612      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2613      assert(OldQTypeForComparison.isCanonical());
2614    }
2615
2616    if (haveIncompatibleLanguageLinkages(Old, New)) {
2617      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2618      Diag(Old->getLocation(), PrevDiag);
2619      return true;
2620    }
2621
2622    if (OldQTypeForComparison == NewQType)
2623      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2624
2625    // Fall through for conflicting redeclarations and redefinitions.
2626  }
2627
2628  // C: Function types need to be compatible, not identical. This handles
2629  // duplicate function decls like "void f(int); void f(enum X);" properly.
2630  if (!getLangOpts().CPlusPlus &&
2631      Context.typesAreCompatible(OldQType, NewQType)) {
2632    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2633    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2634    const FunctionProtoType *OldProto = 0;
2635    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2636        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2637      // The old declaration provided a function prototype, but the
2638      // new declaration does not. Merge in the prototype.
2639      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2640      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2641                                                 OldProto->arg_type_end());
2642      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2643                                         ParamTypes,
2644                                         OldProto->getExtProtoInfo());
2645      New->setType(NewQType);
2646      New->setHasInheritedPrototype();
2647
2648      // Synthesize a parameter for each argument type.
2649      SmallVector<ParmVarDecl*, 16> Params;
2650      for (FunctionProtoType::arg_type_iterator
2651             ParamType = OldProto->arg_type_begin(),
2652             ParamEnd = OldProto->arg_type_end();
2653           ParamType != ParamEnd; ++ParamType) {
2654        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2655                                                 SourceLocation(),
2656                                                 SourceLocation(), 0,
2657                                                 *ParamType, /*TInfo=*/0,
2658                                                 SC_None,
2659                                                 0);
2660        Param->setScopeInfo(0, Params.size());
2661        Param->setImplicit();
2662        Params.push_back(Param);
2663      }
2664
2665      New->setParams(Params);
2666    }
2667
2668    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2669  }
2670
2671  // GNU C permits a K&R definition to follow a prototype declaration
2672  // if the declared types of the parameters in the K&R definition
2673  // match the types in the prototype declaration, even when the
2674  // promoted types of the parameters from the K&R definition differ
2675  // from the types in the prototype. GCC then keeps the types from
2676  // the prototype.
2677  //
2678  // If a variadic prototype is followed by a non-variadic K&R definition,
2679  // the K&R definition becomes variadic.  This is sort of an edge case, but
2680  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2681  // C99 6.9.1p8.
2682  if (!getLangOpts().CPlusPlus &&
2683      Old->hasPrototype() && !New->hasPrototype() &&
2684      New->getType()->getAs<FunctionProtoType>() &&
2685      Old->getNumParams() == New->getNumParams()) {
2686    SmallVector<QualType, 16> ArgTypes;
2687    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2688    const FunctionProtoType *OldProto
2689      = Old->getType()->getAs<FunctionProtoType>();
2690    const FunctionProtoType *NewProto
2691      = New->getType()->getAs<FunctionProtoType>();
2692
2693    // Determine whether this is the GNU C extension.
2694    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2695                                               NewProto->getResultType());
2696    bool LooseCompatible = !MergedReturn.isNull();
2697    for (unsigned Idx = 0, End = Old->getNumParams();
2698         LooseCompatible && Idx != End; ++Idx) {
2699      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2700      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2701      if (Context.typesAreCompatible(OldParm->getType(),
2702                                     NewProto->getArgType(Idx))) {
2703        ArgTypes.push_back(NewParm->getType());
2704      } else if (Context.typesAreCompatible(OldParm->getType(),
2705                                            NewParm->getType(),
2706                                            /*CompareUnqualified=*/true)) {
2707        GNUCompatibleParamWarning Warn
2708          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2709        Warnings.push_back(Warn);
2710        ArgTypes.push_back(NewParm->getType());
2711      } else
2712        LooseCompatible = false;
2713    }
2714
2715    if (LooseCompatible) {
2716      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2717        Diag(Warnings[Warn].NewParm->getLocation(),
2718             diag::ext_param_promoted_not_compatible_with_prototype)
2719          << Warnings[Warn].PromotedType
2720          << Warnings[Warn].OldParm->getType();
2721        if (Warnings[Warn].OldParm->getLocation().isValid())
2722          Diag(Warnings[Warn].OldParm->getLocation(),
2723               diag::note_previous_declaration);
2724      }
2725
2726      if (MergeTypeWithOld)
2727        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2728                                             OldProto->getExtProtoInfo()));
2729      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2730    }
2731
2732    // Fall through to diagnose conflicting types.
2733  }
2734
2735  // A function that has already been declared has been redeclared or
2736  // defined with a different type; show an appropriate diagnostic.
2737
2738  // If the previous declaration was an implicitly-generated builtin
2739  // declaration, then at the very least we should use a specialized note.
2740  unsigned BuiltinID;
2741  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2742    // If it's actually a library-defined builtin function like 'malloc'
2743    // or 'printf', just warn about the incompatible redeclaration.
2744    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2745      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2746      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2747        << Old << Old->getType();
2748
2749      // If this is a global redeclaration, just forget hereafter
2750      // about the "builtin-ness" of the function.
2751      //
2752      // Doing this for local extern declarations is problematic.  If
2753      // the builtin declaration remains visible, a second invalid
2754      // local declaration will produce a hard error; if it doesn't
2755      // remain visible, a single bogus local redeclaration (which is
2756      // actually only a warning) could break all the downstream code.
2757      if (!New->getDeclContext()->isFunctionOrMethod())
2758        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2759
2760      return false;
2761    }
2762
2763    PrevDiag = diag::note_previous_builtin_declaration;
2764  }
2765
2766  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2767  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2768  return true;
2769}
2770
2771/// \brief Completes the merge of two function declarations that are
2772/// known to be compatible.
2773///
2774/// This routine handles the merging of attributes and other
2775/// properties of function declarations form the old declaration to
2776/// the new declaration, once we know that New is in fact a
2777/// redeclaration of Old.
2778///
2779/// \returns false
2780bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2781                                        Scope *S, bool MergeTypeWithOld) {
2782  // Merge the attributes
2783  mergeDeclAttributes(New, Old);
2784
2785  // Merge "pure" flag.
2786  if (Old->isPure())
2787    New->setPure();
2788
2789  // Merge "used" flag.
2790  if (Old->isUsed(false))
2791    New->setUsed();
2792
2793  // Merge attributes from the parameters.  These can mismatch with K&R
2794  // declarations.
2795  if (New->getNumParams() == Old->getNumParams())
2796    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2797      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2798                               *this);
2799
2800  if (getLangOpts().CPlusPlus)
2801    return MergeCXXFunctionDecl(New, Old, S);
2802
2803  // Merge the function types so the we get the composite types for the return
2804  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2805  // was visible.
2806  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2807  if (!Merged.isNull() && MergeTypeWithOld)
2808    New->setType(Merged);
2809
2810  return false;
2811}
2812
2813
2814void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2815                                ObjCMethodDecl *oldMethod) {
2816
2817  // Merge the attributes, including deprecated/unavailable
2818  AvailabilityMergeKind MergeKind =
2819    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2820                                                   : AMK_Override;
2821  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2822
2823  // Merge attributes from the parameters.
2824  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2825                                       oe = oldMethod->param_end();
2826  for (ObjCMethodDecl::param_iterator
2827         ni = newMethod->param_begin(), ne = newMethod->param_end();
2828       ni != ne && oi != oe; ++ni, ++oi)
2829    mergeParamDeclAttributes(*ni, *oi, *this);
2830
2831  CheckObjCMethodOverride(newMethod, oldMethod);
2832}
2833
2834/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2835/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2836/// emitting diagnostics as appropriate.
2837///
2838/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2839/// to here in AddInitializerToDecl. We can't check them before the initializer
2840/// is attached.
2841void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2842                             bool MergeTypeWithOld) {
2843  if (New->isInvalidDecl() || Old->isInvalidDecl())
2844    return;
2845
2846  QualType MergedT;
2847  if (getLangOpts().CPlusPlus) {
2848    if (New->getType()->isUndeducedType()) {
2849      // We don't know what the new type is until the initializer is attached.
2850      return;
2851    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2852      // These could still be something that needs exception specs checked.
2853      return MergeVarDeclExceptionSpecs(New, Old);
2854    }
2855    // C++ [basic.link]p10:
2856    //   [...] the types specified by all declarations referring to a given
2857    //   object or function shall be identical, except that declarations for an
2858    //   array object can specify array types that differ by the presence or
2859    //   absence of a major array bound (8.3.4).
2860    else if (Old->getType()->isIncompleteArrayType() &&
2861             New->getType()->isArrayType()) {
2862      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2863      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2864      if (Context.hasSameType(OldArray->getElementType(),
2865                              NewArray->getElementType()))
2866        MergedT = New->getType();
2867    } else if (Old->getType()->isArrayType() &&
2868             New->getType()->isIncompleteArrayType()) {
2869      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2870      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2871      if (Context.hasSameType(OldArray->getElementType(),
2872                              NewArray->getElementType()))
2873        MergedT = Old->getType();
2874    } else if (New->getType()->isObjCObjectPointerType()
2875               && Old->getType()->isObjCObjectPointerType()) {
2876        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2877                                                        Old->getType());
2878    }
2879  } else {
2880    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2881  }
2882  if (MergedT.isNull()) {
2883    // It's OK if we couldn't merge types if either type is dependent, for a
2884    // block-scope variable. In other cases (static data members of class
2885    // templates, variable templates, ...), we require the types to be
2886    // equivalent.
2887    // FIXME: The C++ standard doesn't say anything about this.
2888    if ((New->getType()->isDependentType() ||
2889         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
2890      // If the old type was dependent, we can't merge with it, so the new type
2891      // becomes dependent for now. We'll reproduce the original type when we
2892      // instantiate the TypeSourceInfo for the variable.
2893      if (!New->getType()->isDependentType() && MergeTypeWithOld)
2894        New->setType(Context.DependentTy);
2895      return;
2896    }
2897
2898    // FIXME: Even if this merging succeeds, some other non-visible declaration
2899    // of this variable might have an incompatible type. For instance:
2900    //
2901    //   extern int arr[];
2902    //   void f() { extern int arr[2]; }
2903    //   void g() { extern int arr[3]; }
2904    //
2905    // Neither C nor C++ requires a diagnostic for this, but we should still try
2906    // to diagnose it.
2907    Diag(New->getLocation(), diag::err_redefinition_different_type)
2908      << New->getDeclName() << New->getType() << Old->getType();
2909    Diag(Old->getLocation(), diag::note_previous_definition);
2910    return New->setInvalidDecl();
2911  }
2912
2913  // Don't actually update the type on the new declaration if the old
2914  // declaration was a extern declaration in a different scope.
2915  if (MergeTypeWithOld)
2916    New->setType(MergedT);
2917}
2918
2919/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2920/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2921/// situation, merging decls or emitting diagnostics as appropriate.
2922///
2923/// Tentative definition rules (C99 6.9.2p2) are checked by
2924/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2925/// definitions here, since the initializer hasn't been attached.
2926///
2927void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2928                        bool IsVariableTemplate, bool MergeTypeWithPrevious) {
2929  // If the new decl is already invalid, don't do any other checking.
2930  if (New->isInvalidDecl())
2931    return;
2932
2933  // Verify the old decl was also a variable or variable template.
2934  VarDecl *Old = 0;
2935  if (Previous.isSingleResult() &&
2936      (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2937    if (IsVariableTemplate)
2938      Old = Old->getDescribedVarTemplate() ? Old : 0;
2939    else
2940      Old = Old->getDescribedVarTemplate() ? 0 : Old;
2941  }
2942  if (!Old) {
2943    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2944      << New->getDeclName();
2945    Diag(Previous.getRepresentativeDecl()->getLocation(),
2946         diag::note_previous_definition);
2947    return New->setInvalidDecl();
2948  }
2949
2950  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2951    return;
2952
2953  // C++ [class.mem]p1:
2954  //   A member shall not be declared twice in the member-specification [...]
2955  //
2956  // Here, we need only consider static data members.
2957  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2958    Diag(New->getLocation(), diag::err_duplicate_member)
2959      << New->getIdentifier();
2960    Diag(Old->getLocation(), diag::note_previous_declaration);
2961    New->setInvalidDecl();
2962  }
2963
2964  mergeDeclAttributes(New, Old);
2965  // Warn if an already-declared variable is made a weak_import in a subsequent
2966  // declaration
2967  if (New->getAttr<WeakImportAttr>() &&
2968      Old->getStorageClass() == SC_None &&
2969      !Old->getAttr<WeakImportAttr>()) {
2970    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2971    Diag(Old->getLocation(), diag::note_previous_definition);
2972    // Remove weak_import attribute on new declaration.
2973    New->dropAttr<WeakImportAttr>();
2974  }
2975
2976  // Merge the types.
2977  MergeVarDeclTypes(New, Old, MergeTypeWithPrevious);
2978  if (New->isInvalidDecl())
2979    return;
2980
2981  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2982  if (New->getStorageClass() == SC_Static &&
2983      !New->isStaticDataMember() &&
2984      Old->hasExternalFormalLinkage()) {
2985    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2986    Diag(Old->getLocation(), diag::note_previous_definition);
2987    return New->setInvalidDecl();
2988  }
2989  // C99 6.2.2p4:
2990  //   For an identifier declared with the storage-class specifier
2991  //   extern in a scope in which a prior declaration of that
2992  //   identifier is visible,23) if the prior declaration specifies
2993  //   internal or external linkage, the linkage of the identifier at
2994  //   the later declaration is the same as the linkage specified at
2995  //   the prior declaration. If no prior declaration is visible, or
2996  //   if the prior declaration specifies no linkage, then the
2997  //   identifier has external linkage.
2998  if (New->hasExternalStorage() && Old->hasLinkage())
2999    /* Okay */;
3000  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3001           !New->isStaticDataMember() &&
3002           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3003    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3004    Diag(Old->getLocation(), diag::note_previous_definition);
3005    return New->setInvalidDecl();
3006  }
3007
3008  // Check if extern is followed by non-extern and vice-versa.
3009  if (New->hasExternalStorage() &&
3010      !Old->hasLinkage() && Old->isLocalVarDecl()) {
3011    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3012    Diag(Old->getLocation(), diag::note_previous_definition);
3013    return New->setInvalidDecl();
3014  }
3015  if (Old->hasLinkage() && New->isLocalVarDecl() &&
3016      !New->hasExternalStorage()) {
3017    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3018    Diag(Old->getLocation(), diag::note_previous_definition);
3019    return New->setInvalidDecl();
3020  }
3021
3022  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3023
3024  // FIXME: The test for external storage here seems wrong? We still
3025  // need to check for mismatches.
3026  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3027      // Don't complain about out-of-line definitions of static members.
3028      !(Old->getLexicalDeclContext()->isRecord() &&
3029        !New->getLexicalDeclContext()->isRecord())) {
3030    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3031    Diag(Old->getLocation(), diag::note_previous_definition);
3032    return New->setInvalidDecl();
3033  }
3034
3035  if (New->getTLSKind() != Old->getTLSKind()) {
3036    if (!Old->getTLSKind()) {
3037      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3038      Diag(Old->getLocation(), diag::note_previous_declaration);
3039    } else if (!New->getTLSKind()) {
3040      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3041      Diag(Old->getLocation(), diag::note_previous_declaration);
3042    } else {
3043      // Do not allow redeclaration to change the variable between requiring
3044      // static and dynamic initialization.
3045      // FIXME: GCC allows this, but uses the TLS keyword on the first
3046      // declaration to determine the kind. Do we need to be compatible here?
3047      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3048        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3049      Diag(Old->getLocation(), diag::note_previous_declaration);
3050    }
3051  }
3052
3053  // C++ doesn't have tentative definitions, so go right ahead and check here.
3054  const VarDecl *Def;
3055  if (getLangOpts().CPlusPlus &&
3056      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3057      (Def = Old->getDefinition())) {
3058    Diag(New->getLocation(), diag::err_redefinition) << New;
3059    Diag(Def->getLocation(), diag::note_previous_definition);
3060    New->setInvalidDecl();
3061    return;
3062  }
3063
3064  if (haveIncompatibleLanguageLinkages(Old, New)) {
3065    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3066    Diag(Old->getLocation(), diag::note_previous_definition);
3067    New->setInvalidDecl();
3068    return;
3069  }
3070
3071  // Merge "used" flag.
3072  if (Old->isUsed(false))
3073    New->setUsed();
3074
3075  // Keep a chain of previous declarations.
3076  New->setPreviousDeclaration(Old);
3077
3078  // Inherit access appropriately.
3079  New->setAccess(Old->getAccess());
3080}
3081
3082/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3083/// no declarator (e.g. "struct foo;") is parsed.
3084Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3085                                       DeclSpec &DS) {
3086  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3087}
3088
3089static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3090  if (isa<CXXRecordDecl>(Tag->getParent())) {
3091    // If this tag is the direct child of a class, number it if
3092    // it is anonymous.
3093    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3094      return;
3095    MangleNumberingContext &MCtx =
3096        S.Context.getManglingNumberContext(Tag->getParent());
3097    S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3098    return;
3099  }
3100
3101  // If this tag isn't a direct child of a class, number it if it is local.
3102  Decl *ManglingContextDecl;
3103  if (MangleNumberingContext *MCtx =
3104          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3105                                          ManglingContextDecl)) {
3106    S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3107  }
3108}
3109
3110/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3111/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3112/// parameters to cope with template friend declarations.
3113Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3114                                       DeclSpec &DS,
3115                                       MultiTemplateParamsArg TemplateParams,
3116                                       bool IsExplicitInstantiation) {
3117  Decl *TagD = 0;
3118  TagDecl *Tag = 0;
3119  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3120      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3121      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3122      DS.getTypeSpecType() == DeclSpec::TST_union ||
3123      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3124    TagD = DS.getRepAsDecl();
3125
3126    if (!TagD) // We probably had an error
3127      return 0;
3128
3129    // Note that the above type specs guarantee that the
3130    // type rep is a Decl, whereas in many of the others
3131    // it's a Type.
3132    if (isa<TagDecl>(TagD))
3133      Tag = cast<TagDecl>(TagD);
3134    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3135      Tag = CTD->getTemplatedDecl();
3136  }
3137
3138  if (Tag) {
3139    HandleTagNumbering(*this, Tag);
3140    Tag->setFreeStanding();
3141    if (Tag->isInvalidDecl())
3142      return Tag;
3143  }
3144
3145  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3146    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3147    // or incomplete types shall not be restrict-qualified."
3148    if (TypeQuals & DeclSpec::TQ_restrict)
3149      Diag(DS.getRestrictSpecLoc(),
3150           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3151           << DS.getSourceRange();
3152  }
3153
3154  if (DS.isConstexprSpecified()) {
3155    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3156    // and definitions of functions and variables.
3157    if (Tag)
3158      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3159        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3160            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3161            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3162            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3163    else
3164      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3165    // Don't emit warnings after this error.
3166    return TagD;
3167  }
3168
3169  DiagnoseFunctionSpecifiers(DS);
3170
3171  if (DS.isFriendSpecified()) {
3172    // If we're dealing with a decl but not a TagDecl, assume that
3173    // whatever routines created it handled the friendship aspect.
3174    if (TagD && !Tag)
3175      return 0;
3176    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3177  }
3178
3179  CXXScopeSpec &SS = DS.getTypeSpecScope();
3180  bool IsExplicitSpecialization =
3181    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3182  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3183      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3184    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3185    // nested-name-specifier unless it is an explicit instantiation
3186    // or an explicit specialization.
3187    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3188    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3189      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3190          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3191          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3192          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3193      << SS.getRange();
3194    return 0;
3195  }
3196
3197  // Track whether this decl-specifier declares anything.
3198  bool DeclaresAnything = true;
3199
3200  // Handle anonymous struct definitions.
3201  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3202    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3203        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3204      if (getLangOpts().CPlusPlus ||
3205          Record->getDeclContext()->isRecord())
3206        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3207
3208      DeclaresAnything = false;
3209    }
3210  }
3211
3212  // Check for Microsoft C extension: anonymous struct member.
3213  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3214      CurContext->isRecord() &&
3215      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3216    // Handle 2 kinds of anonymous struct:
3217    //   struct STRUCT;
3218    // and
3219    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3220    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3221    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3222        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3223         DS.getRepAsType().get()->isStructureType())) {
3224      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3225        << DS.getSourceRange();
3226      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3227    }
3228  }
3229
3230  // Skip all the checks below if we have a type error.
3231  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3232      (TagD && TagD->isInvalidDecl()))
3233    return TagD;
3234
3235  if (getLangOpts().CPlusPlus &&
3236      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3237    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3238      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3239          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3240        DeclaresAnything = false;
3241
3242  if (!DS.isMissingDeclaratorOk()) {
3243    // Customize diagnostic for a typedef missing a name.
3244    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3245      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3246        << DS.getSourceRange();
3247    else
3248      DeclaresAnything = false;
3249  }
3250
3251  if (DS.isModulePrivateSpecified() &&
3252      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3253    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3254      << Tag->getTagKind()
3255      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3256
3257  ActOnDocumentableDecl(TagD);
3258
3259  // C 6.7/2:
3260  //   A declaration [...] shall declare at least a declarator [...], a tag,
3261  //   or the members of an enumeration.
3262  // C++ [dcl.dcl]p3:
3263  //   [If there are no declarators], and except for the declaration of an
3264  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3265  //   names into the program, or shall redeclare a name introduced by a
3266  //   previous declaration.
3267  if (!DeclaresAnything) {
3268    // In C, we allow this as a (popular) extension / bug. Don't bother
3269    // producing further diagnostics for redundant qualifiers after this.
3270    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3271    return TagD;
3272  }
3273
3274  // C++ [dcl.stc]p1:
3275  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3276  //   init-declarator-list of the declaration shall not be empty.
3277  // C++ [dcl.fct.spec]p1:
3278  //   If a cv-qualifier appears in a decl-specifier-seq, the
3279  //   init-declarator-list of the declaration shall not be empty.
3280  //
3281  // Spurious qualifiers here appear to be valid in C.
3282  unsigned DiagID = diag::warn_standalone_specifier;
3283  if (getLangOpts().CPlusPlus)
3284    DiagID = diag::ext_standalone_specifier;
3285
3286  // Note that a linkage-specification sets a storage class, but
3287  // 'extern "C" struct foo;' is actually valid and not theoretically
3288  // useless.
3289  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3290    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3291      Diag(DS.getStorageClassSpecLoc(), DiagID)
3292        << DeclSpec::getSpecifierName(SCS);
3293
3294  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3295    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3296      << DeclSpec::getSpecifierName(TSCS);
3297  if (DS.getTypeQualifiers()) {
3298    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3299      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3300    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3301      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3302    // Restrict is covered above.
3303    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3304      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3305  }
3306
3307  // Warn about ignored type attributes, for example:
3308  // __attribute__((aligned)) struct A;
3309  // Attributes should be placed after tag to apply to type declaration.
3310  if (!DS.getAttributes().empty()) {
3311    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3312    if (TypeSpecType == DeclSpec::TST_class ||
3313        TypeSpecType == DeclSpec::TST_struct ||
3314        TypeSpecType == DeclSpec::TST_interface ||
3315        TypeSpecType == DeclSpec::TST_union ||
3316        TypeSpecType == DeclSpec::TST_enum) {
3317      AttributeList* attrs = DS.getAttributes().getList();
3318      while (attrs) {
3319        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3320        << attrs->getName()
3321        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3322            TypeSpecType == DeclSpec::TST_struct ? 1 :
3323            TypeSpecType == DeclSpec::TST_union ? 2 :
3324            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3325        attrs = attrs->getNext();
3326      }
3327    }
3328  }
3329
3330  return TagD;
3331}
3332
3333/// We are trying to inject an anonymous member into the given scope;
3334/// check if there's an existing declaration that can't be overloaded.
3335///
3336/// \return true if this is a forbidden redeclaration
3337static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3338                                         Scope *S,
3339                                         DeclContext *Owner,
3340                                         DeclarationName Name,
3341                                         SourceLocation NameLoc,
3342                                         unsigned diagnostic) {
3343  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3344                 Sema::ForRedeclaration);
3345  if (!SemaRef.LookupName(R, S)) return false;
3346
3347  if (R.getAsSingle<TagDecl>())
3348    return false;
3349
3350  // Pick a representative declaration.
3351  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3352  assert(PrevDecl && "Expected a non-null Decl");
3353
3354  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3355    return false;
3356
3357  SemaRef.Diag(NameLoc, diagnostic) << Name;
3358  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3359
3360  return true;
3361}
3362
3363/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3364/// anonymous struct or union AnonRecord into the owning context Owner
3365/// and scope S. This routine will be invoked just after we realize
3366/// that an unnamed union or struct is actually an anonymous union or
3367/// struct, e.g.,
3368///
3369/// @code
3370/// union {
3371///   int i;
3372///   float f;
3373/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3374///    // f into the surrounding scope.x
3375/// @endcode
3376///
3377/// This routine is recursive, injecting the names of nested anonymous
3378/// structs/unions into the owning context and scope as well.
3379static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3380                                         DeclContext *Owner,
3381                                         RecordDecl *AnonRecord,
3382                                         AccessSpecifier AS,
3383                                         SmallVectorImpl<NamedDecl *> &Chaining,
3384                                         bool MSAnonStruct) {
3385  unsigned diagKind
3386    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3387                            : diag::err_anonymous_struct_member_redecl;
3388
3389  bool Invalid = false;
3390
3391  // Look every FieldDecl and IndirectFieldDecl with a name.
3392  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3393                               DEnd = AnonRecord->decls_end();
3394       D != DEnd; ++D) {
3395    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3396        cast<NamedDecl>(*D)->getDeclName()) {
3397      ValueDecl *VD = cast<ValueDecl>(*D);
3398      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3399                                       VD->getLocation(), diagKind)) {
3400        // C++ [class.union]p2:
3401        //   The names of the members of an anonymous union shall be
3402        //   distinct from the names of any other entity in the
3403        //   scope in which the anonymous union is declared.
3404        Invalid = true;
3405      } else {
3406        // C++ [class.union]p2:
3407        //   For the purpose of name lookup, after the anonymous union
3408        //   definition, the members of the anonymous union are
3409        //   considered to have been defined in the scope in which the
3410        //   anonymous union is declared.
3411        unsigned OldChainingSize = Chaining.size();
3412        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3413          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3414               PE = IF->chain_end(); PI != PE; ++PI)
3415            Chaining.push_back(*PI);
3416        else
3417          Chaining.push_back(VD);
3418
3419        assert(Chaining.size() >= 2);
3420        NamedDecl **NamedChain =
3421          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3422        for (unsigned i = 0; i < Chaining.size(); i++)
3423          NamedChain[i] = Chaining[i];
3424
3425        IndirectFieldDecl* IndirectField =
3426          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3427                                    VD->getIdentifier(), VD->getType(),
3428                                    NamedChain, Chaining.size());
3429
3430        IndirectField->setAccess(AS);
3431        IndirectField->setImplicit();
3432        SemaRef.PushOnScopeChains(IndirectField, S);
3433
3434        // That includes picking up the appropriate access specifier.
3435        if (AS != AS_none) IndirectField->setAccess(AS);
3436
3437        Chaining.resize(OldChainingSize);
3438      }
3439    }
3440  }
3441
3442  return Invalid;
3443}
3444
3445/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3446/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3447/// illegal input values are mapped to SC_None.
3448static StorageClass
3449StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3450  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3451  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3452         "Parser allowed 'typedef' as storage class VarDecl.");
3453  switch (StorageClassSpec) {
3454  case DeclSpec::SCS_unspecified:    return SC_None;
3455  case DeclSpec::SCS_extern:
3456    if (DS.isExternInLinkageSpec())
3457      return SC_None;
3458    return SC_Extern;
3459  case DeclSpec::SCS_static:         return SC_Static;
3460  case DeclSpec::SCS_auto:           return SC_Auto;
3461  case DeclSpec::SCS_register:       return SC_Register;
3462  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3463    // Illegal SCSs map to None: error reporting is up to the caller.
3464  case DeclSpec::SCS_mutable:        // Fall through.
3465  case DeclSpec::SCS_typedef:        return SC_None;
3466  }
3467  llvm_unreachable("unknown storage class specifier");
3468}
3469
3470/// BuildAnonymousStructOrUnion - Handle the declaration of an
3471/// anonymous structure or union. Anonymous unions are a C++ feature
3472/// (C++ [class.union]) and a C11 feature; anonymous structures
3473/// are a C11 feature and GNU C++ extension.
3474Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3475                                             AccessSpecifier AS,
3476                                             RecordDecl *Record) {
3477  DeclContext *Owner = Record->getDeclContext();
3478
3479  // Diagnose whether this anonymous struct/union is an extension.
3480  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3481    Diag(Record->getLocation(), diag::ext_anonymous_union);
3482  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3483    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3484  else if (!Record->isUnion() && !getLangOpts().C11)
3485    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3486
3487  // C and C++ require different kinds of checks for anonymous
3488  // structs/unions.
3489  bool Invalid = false;
3490  if (getLangOpts().CPlusPlus) {
3491    const char* PrevSpec = 0;
3492    unsigned DiagID;
3493    if (Record->isUnion()) {
3494      // C++ [class.union]p6:
3495      //   Anonymous unions declared in a named namespace or in the
3496      //   global namespace shall be declared static.
3497      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3498          (isa<TranslationUnitDecl>(Owner) ||
3499           (isa<NamespaceDecl>(Owner) &&
3500            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3501        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3502          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3503
3504        // Recover by adding 'static'.
3505        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3506                               PrevSpec, DiagID);
3507      }
3508      // C++ [class.union]p6:
3509      //   A storage class is not allowed in a declaration of an
3510      //   anonymous union in a class scope.
3511      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3512               isa<RecordDecl>(Owner)) {
3513        Diag(DS.getStorageClassSpecLoc(),
3514             diag::err_anonymous_union_with_storage_spec)
3515          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3516
3517        // Recover by removing the storage specifier.
3518        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3519                               SourceLocation(),
3520                               PrevSpec, DiagID);
3521      }
3522    }
3523
3524    // Ignore const/volatile/restrict qualifiers.
3525    if (DS.getTypeQualifiers()) {
3526      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3527        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3528          << Record->isUnion() << "const"
3529          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3530      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3531        Diag(DS.getVolatileSpecLoc(),
3532             diag::ext_anonymous_struct_union_qualified)
3533          << Record->isUnion() << "volatile"
3534          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3535      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3536        Diag(DS.getRestrictSpecLoc(),
3537             diag::ext_anonymous_struct_union_qualified)
3538          << Record->isUnion() << "restrict"
3539          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3540      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3541        Diag(DS.getAtomicSpecLoc(),
3542             diag::ext_anonymous_struct_union_qualified)
3543          << Record->isUnion() << "_Atomic"
3544          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3545
3546      DS.ClearTypeQualifiers();
3547    }
3548
3549    // C++ [class.union]p2:
3550    //   The member-specification of an anonymous union shall only
3551    //   define non-static data members. [Note: nested types and
3552    //   functions cannot be declared within an anonymous union. ]
3553    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3554                                 MemEnd = Record->decls_end();
3555         Mem != MemEnd; ++Mem) {
3556      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3557        // C++ [class.union]p3:
3558        //   An anonymous union shall not have private or protected
3559        //   members (clause 11).
3560        assert(FD->getAccess() != AS_none);
3561        if (FD->getAccess() != AS_public) {
3562          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3563            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3564          Invalid = true;
3565        }
3566
3567        // C++ [class.union]p1
3568        //   An object of a class with a non-trivial constructor, a non-trivial
3569        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3570        //   assignment operator cannot be a member of a union, nor can an
3571        //   array of such objects.
3572        if (CheckNontrivialField(FD))
3573          Invalid = true;
3574      } else if ((*Mem)->isImplicit()) {
3575        // Any implicit members are fine.
3576      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3577        // This is a type that showed up in an
3578        // elaborated-type-specifier inside the anonymous struct or
3579        // union, but which actually declares a type outside of the
3580        // anonymous struct or union. It's okay.
3581      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3582        if (!MemRecord->isAnonymousStructOrUnion() &&
3583            MemRecord->getDeclName()) {
3584          // Visual C++ allows type definition in anonymous struct or union.
3585          if (getLangOpts().MicrosoftExt)
3586            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3587              << (int)Record->isUnion();
3588          else {
3589            // This is a nested type declaration.
3590            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3591              << (int)Record->isUnion();
3592            Invalid = true;
3593          }
3594        } else {
3595          // This is an anonymous type definition within another anonymous type.
3596          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3597          // not part of standard C++.
3598          Diag(MemRecord->getLocation(),
3599               diag::ext_anonymous_record_with_anonymous_type)
3600            << (int)Record->isUnion();
3601        }
3602      } else if (isa<AccessSpecDecl>(*Mem)) {
3603        // Any access specifier is fine.
3604      } else {
3605        // We have something that isn't a non-static data
3606        // member. Complain about it.
3607        unsigned DK = diag::err_anonymous_record_bad_member;
3608        if (isa<TypeDecl>(*Mem))
3609          DK = diag::err_anonymous_record_with_type;
3610        else if (isa<FunctionDecl>(*Mem))
3611          DK = diag::err_anonymous_record_with_function;
3612        else if (isa<VarDecl>(*Mem))
3613          DK = diag::err_anonymous_record_with_static;
3614
3615        // Visual C++ allows type definition in anonymous struct or union.
3616        if (getLangOpts().MicrosoftExt &&
3617            DK == diag::err_anonymous_record_with_type)
3618          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3619            << (int)Record->isUnion();
3620        else {
3621          Diag((*Mem)->getLocation(), DK)
3622              << (int)Record->isUnion();
3623          Invalid = true;
3624        }
3625      }
3626    }
3627  }
3628
3629  if (!Record->isUnion() && !Owner->isRecord()) {
3630    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3631      << (int)getLangOpts().CPlusPlus;
3632    Invalid = true;
3633  }
3634
3635  // Mock up a declarator.
3636  Declarator Dc(DS, Declarator::MemberContext);
3637  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3638  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3639
3640  // Create a declaration for this anonymous struct/union.
3641  NamedDecl *Anon = 0;
3642  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3643    Anon = FieldDecl::Create(Context, OwningClass,
3644                             DS.getLocStart(),
3645                             Record->getLocation(),
3646                             /*IdentifierInfo=*/0,
3647                             Context.getTypeDeclType(Record),
3648                             TInfo,
3649                             /*BitWidth=*/0, /*Mutable=*/false,
3650                             /*InitStyle=*/ICIS_NoInit);
3651    Anon->setAccess(AS);
3652    if (getLangOpts().CPlusPlus)
3653      FieldCollector->Add(cast<FieldDecl>(Anon));
3654  } else {
3655    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3656    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3657    if (SCSpec == DeclSpec::SCS_mutable) {
3658      // mutable can only appear on non-static class members, so it's always
3659      // an error here
3660      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3661      Invalid = true;
3662      SC = SC_None;
3663    }
3664
3665    Anon = VarDecl::Create(Context, Owner,
3666                           DS.getLocStart(),
3667                           Record->getLocation(), /*IdentifierInfo=*/0,
3668                           Context.getTypeDeclType(Record),
3669                           TInfo, SC);
3670
3671    // Default-initialize the implicit variable. This initialization will be
3672    // trivial in almost all cases, except if a union member has an in-class
3673    // initializer:
3674    //   union { int n = 0; };
3675    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3676  }
3677  Anon->setImplicit();
3678
3679  // Add the anonymous struct/union object to the current
3680  // context. We'll be referencing this object when we refer to one of
3681  // its members.
3682  Owner->addDecl(Anon);
3683
3684  // Inject the members of the anonymous struct/union into the owning
3685  // context and into the identifier resolver chain for name lookup
3686  // purposes.
3687  SmallVector<NamedDecl*, 2> Chain;
3688  Chain.push_back(Anon);
3689
3690  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3691                                          Chain, false))
3692    Invalid = true;
3693
3694  // Mark this as an anonymous struct/union type. Note that we do not
3695  // do this until after we have already checked and injected the
3696  // members of this anonymous struct/union type, because otherwise
3697  // the members could be injected twice: once by DeclContext when it
3698  // builds its lookup table, and once by
3699  // InjectAnonymousStructOrUnionMembers.
3700  Record->setAnonymousStructOrUnion(true);
3701
3702  if (Invalid)
3703    Anon->setInvalidDecl();
3704
3705  return Anon;
3706}
3707
3708/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3709/// Microsoft C anonymous structure.
3710/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3711/// Example:
3712///
3713/// struct A { int a; };
3714/// struct B { struct A; int b; };
3715///
3716/// void foo() {
3717///   B var;
3718///   var.a = 3;
3719/// }
3720///
3721Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3722                                           RecordDecl *Record) {
3723
3724  // If there is no Record, get the record via the typedef.
3725  if (!Record)
3726    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3727
3728  // Mock up a declarator.
3729  Declarator Dc(DS, Declarator::TypeNameContext);
3730  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3731  assert(TInfo && "couldn't build declarator info for anonymous struct");
3732
3733  // Create a declaration for this anonymous struct.
3734  NamedDecl* Anon = FieldDecl::Create(Context,
3735                             cast<RecordDecl>(CurContext),
3736                             DS.getLocStart(),
3737                             DS.getLocStart(),
3738                             /*IdentifierInfo=*/0,
3739                             Context.getTypeDeclType(Record),
3740                             TInfo,
3741                             /*BitWidth=*/0, /*Mutable=*/false,
3742                             /*InitStyle=*/ICIS_NoInit);
3743  Anon->setImplicit();
3744
3745  // Add the anonymous struct object to the current context.
3746  CurContext->addDecl(Anon);
3747
3748  // Inject the members of the anonymous struct into the current
3749  // context and into the identifier resolver chain for name lookup
3750  // purposes.
3751  SmallVector<NamedDecl*, 2> Chain;
3752  Chain.push_back(Anon);
3753
3754  RecordDecl *RecordDef = Record->getDefinition();
3755  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3756                                                        RecordDef, AS_none,
3757                                                        Chain, true))
3758    Anon->setInvalidDecl();
3759
3760  return Anon;
3761}
3762
3763/// GetNameForDeclarator - Determine the full declaration name for the
3764/// given Declarator.
3765DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3766  return GetNameFromUnqualifiedId(D.getName());
3767}
3768
3769/// \brief Retrieves the declaration name from a parsed unqualified-id.
3770DeclarationNameInfo
3771Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3772  DeclarationNameInfo NameInfo;
3773  NameInfo.setLoc(Name.StartLocation);
3774
3775  switch (Name.getKind()) {
3776
3777  case UnqualifiedId::IK_ImplicitSelfParam:
3778  case UnqualifiedId::IK_Identifier:
3779    NameInfo.setName(Name.Identifier);
3780    NameInfo.setLoc(Name.StartLocation);
3781    return NameInfo;
3782
3783  case UnqualifiedId::IK_OperatorFunctionId:
3784    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3785                                           Name.OperatorFunctionId.Operator));
3786    NameInfo.setLoc(Name.StartLocation);
3787    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3788      = Name.OperatorFunctionId.SymbolLocations[0];
3789    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3790      = Name.EndLocation.getRawEncoding();
3791    return NameInfo;
3792
3793  case UnqualifiedId::IK_LiteralOperatorId:
3794    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3795                                                           Name.Identifier));
3796    NameInfo.setLoc(Name.StartLocation);
3797    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3798    return NameInfo;
3799
3800  case UnqualifiedId::IK_ConversionFunctionId: {
3801    TypeSourceInfo *TInfo;
3802    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3803    if (Ty.isNull())
3804      return DeclarationNameInfo();
3805    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3806                                               Context.getCanonicalType(Ty)));
3807    NameInfo.setLoc(Name.StartLocation);
3808    NameInfo.setNamedTypeInfo(TInfo);
3809    return NameInfo;
3810  }
3811
3812  case UnqualifiedId::IK_ConstructorName: {
3813    TypeSourceInfo *TInfo;
3814    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3815    if (Ty.isNull())
3816      return DeclarationNameInfo();
3817    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3818                                              Context.getCanonicalType(Ty)));
3819    NameInfo.setLoc(Name.StartLocation);
3820    NameInfo.setNamedTypeInfo(TInfo);
3821    return NameInfo;
3822  }
3823
3824  case UnqualifiedId::IK_ConstructorTemplateId: {
3825    // In well-formed code, we can only have a constructor
3826    // template-id that refers to the current context, so go there
3827    // to find the actual type being constructed.
3828    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3829    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3830      return DeclarationNameInfo();
3831
3832    // Determine the type of the class being constructed.
3833    QualType CurClassType = Context.getTypeDeclType(CurClass);
3834
3835    // FIXME: Check two things: that the template-id names the same type as
3836    // CurClassType, and that the template-id does not occur when the name
3837    // was qualified.
3838
3839    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3840                                    Context.getCanonicalType(CurClassType)));
3841    NameInfo.setLoc(Name.StartLocation);
3842    // FIXME: should we retrieve TypeSourceInfo?
3843    NameInfo.setNamedTypeInfo(0);
3844    return NameInfo;
3845  }
3846
3847  case UnqualifiedId::IK_DestructorName: {
3848    TypeSourceInfo *TInfo;
3849    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3850    if (Ty.isNull())
3851      return DeclarationNameInfo();
3852    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3853                                              Context.getCanonicalType(Ty)));
3854    NameInfo.setLoc(Name.StartLocation);
3855    NameInfo.setNamedTypeInfo(TInfo);
3856    return NameInfo;
3857  }
3858
3859  case UnqualifiedId::IK_TemplateId: {
3860    TemplateName TName = Name.TemplateId->Template.get();
3861    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3862    return Context.getNameForTemplate(TName, TNameLoc);
3863  }
3864
3865  } // switch (Name.getKind())
3866
3867  llvm_unreachable("Unknown name kind");
3868}
3869
3870static QualType getCoreType(QualType Ty) {
3871  do {
3872    if (Ty->isPointerType() || Ty->isReferenceType())
3873      Ty = Ty->getPointeeType();
3874    else if (Ty->isArrayType())
3875      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3876    else
3877      return Ty.withoutLocalFastQualifiers();
3878  } while (true);
3879}
3880
3881/// hasSimilarParameters - Determine whether the C++ functions Declaration
3882/// and Definition have "nearly" matching parameters. This heuristic is
3883/// used to improve diagnostics in the case where an out-of-line function
3884/// definition doesn't match any declaration within the class or namespace.
3885/// Also sets Params to the list of indices to the parameters that differ
3886/// between the declaration and the definition. If hasSimilarParameters
3887/// returns true and Params is empty, then all of the parameters match.
3888static bool hasSimilarParameters(ASTContext &Context,
3889                                     FunctionDecl *Declaration,
3890                                     FunctionDecl *Definition,
3891                                     SmallVectorImpl<unsigned> &Params) {
3892  Params.clear();
3893  if (Declaration->param_size() != Definition->param_size())
3894    return false;
3895  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3896    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3897    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3898
3899    // The parameter types are identical
3900    if (Context.hasSameType(DefParamTy, DeclParamTy))
3901      continue;
3902
3903    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3904    QualType DefParamBaseTy = getCoreType(DefParamTy);
3905    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3906    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3907
3908    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3909        (DeclTyName && DeclTyName == DefTyName))
3910      Params.push_back(Idx);
3911    else  // The two parameters aren't even close
3912      return false;
3913  }
3914
3915  return true;
3916}
3917
3918/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3919/// declarator needs to be rebuilt in the current instantiation.
3920/// Any bits of declarator which appear before the name are valid for
3921/// consideration here.  That's specifically the type in the decl spec
3922/// and the base type in any member-pointer chunks.
3923static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3924                                                    DeclarationName Name) {
3925  // The types we specifically need to rebuild are:
3926  //   - typenames, typeofs, and decltypes
3927  //   - types which will become injected class names
3928  // Of course, we also need to rebuild any type referencing such a
3929  // type.  It's safest to just say "dependent", but we call out a
3930  // few cases here.
3931
3932  DeclSpec &DS = D.getMutableDeclSpec();
3933  switch (DS.getTypeSpecType()) {
3934  case DeclSpec::TST_typename:
3935  case DeclSpec::TST_typeofType:
3936  case DeclSpec::TST_underlyingType:
3937  case DeclSpec::TST_atomic: {
3938    // Grab the type from the parser.
3939    TypeSourceInfo *TSI = 0;
3940    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3941    if (T.isNull() || !T->isDependentType()) break;
3942
3943    // Make sure there's a type source info.  This isn't really much
3944    // of a waste; most dependent types should have type source info
3945    // attached already.
3946    if (!TSI)
3947      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3948
3949    // Rebuild the type in the current instantiation.
3950    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3951    if (!TSI) return true;
3952
3953    // Store the new type back in the decl spec.
3954    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3955    DS.UpdateTypeRep(LocType);
3956    break;
3957  }
3958
3959  case DeclSpec::TST_decltype:
3960  case DeclSpec::TST_typeofExpr: {
3961    Expr *E = DS.getRepAsExpr();
3962    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3963    if (Result.isInvalid()) return true;
3964    DS.UpdateExprRep(Result.get());
3965    break;
3966  }
3967
3968  default:
3969    // Nothing to do for these decl specs.
3970    break;
3971  }
3972
3973  // It doesn't matter what order we do this in.
3974  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3975    DeclaratorChunk &Chunk = D.getTypeObject(I);
3976
3977    // The only type information in the declarator which can come
3978    // before the declaration name is the base type of a member
3979    // pointer.
3980    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3981      continue;
3982
3983    // Rebuild the scope specifier in-place.
3984    CXXScopeSpec &SS = Chunk.Mem.Scope();
3985    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3986      return true;
3987  }
3988
3989  return false;
3990}
3991
3992Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3993  D.setFunctionDefinitionKind(FDK_Declaration);
3994  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3995
3996  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3997      Dcl && Dcl->getDeclContext()->isFileContext())
3998    Dcl->setTopLevelDeclInObjCContainer();
3999
4000  return Dcl;
4001}
4002
4003/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4004///   If T is the name of a class, then each of the following shall have a
4005///   name different from T:
4006///     - every static data member of class T;
4007///     - every member function of class T
4008///     - every member of class T that is itself a type;
4009/// \returns true if the declaration name violates these rules.
4010bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4011                                   DeclarationNameInfo NameInfo) {
4012  DeclarationName Name = NameInfo.getName();
4013
4014  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4015    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4016      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4017      return true;
4018    }
4019
4020  return false;
4021}
4022
4023/// \brief Diagnose a declaration whose declarator-id has the given
4024/// nested-name-specifier.
4025///
4026/// \param SS The nested-name-specifier of the declarator-id.
4027///
4028/// \param DC The declaration context to which the nested-name-specifier
4029/// resolves.
4030///
4031/// \param Name The name of the entity being declared.
4032///
4033/// \param Loc The location of the name of the entity being declared.
4034///
4035/// \returns true if we cannot safely recover from this error, false otherwise.
4036bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4037                                        DeclarationName Name,
4038                                      SourceLocation Loc) {
4039  DeclContext *Cur = CurContext;
4040  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4041    Cur = Cur->getParent();
4042
4043  // C++ [dcl.meaning]p1:
4044  //   A declarator-id shall not be qualified except for the definition
4045  //   of a member function (9.3) or static data member (9.4) outside of
4046  //   its class, the definition or explicit instantiation of a function
4047  //   or variable member of a namespace outside of its namespace, or the
4048  //   definition of an explicit specialization outside of its namespace,
4049  //   or the declaration of a friend function that is a member of
4050  //   another class or namespace (11.3). [...]
4051
4052  // The user provided a superfluous scope specifier that refers back to the
4053  // class or namespaces in which the entity is already declared.
4054  //
4055  // class X {
4056  //   void X::f();
4057  // };
4058  if (Cur->Equals(DC)) {
4059    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4060                                   : diag::err_member_extra_qualification)
4061      << Name << FixItHint::CreateRemoval(SS.getRange());
4062    SS.clear();
4063    return false;
4064  }
4065
4066  // Check whether the qualifying scope encloses the scope of the original
4067  // declaration.
4068  if (!Cur->Encloses(DC)) {
4069    if (Cur->isRecord())
4070      Diag(Loc, diag::err_member_qualification)
4071        << Name << SS.getRange();
4072    else if (isa<TranslationUnitDecl>(DC))
4073      Diag(Loc, diag::err_invalid_declarator_global_scope)
4074        << Name << SS.getRange();
4075    else if (isa<FunctionDecl>(Cur))
4076      Diag(Loc, diag::err_invalid_declarator_in_function)
4077        << Name << SS.getRange();
4078    else if (isa<BlockDecl>(Cur))
4079      Diag(Loc, diag::err_invalid_declarator_in_block)
4080        << Name << SS.getRange();
4081    else
4082      Diag(Loc, diag::err_invalid_declarator_scope)
4083      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4084
4085    return true;
4086  }
4087
4088  if (Cur->isRecord()) {
4089    // Cannot qualify members within a class.
4090    Diag(Loc, diag::err_member_qualification)
4091      << Name << SS.getRange();
4092    SS.clear();
4093
4094    // C++ constructors and destructors with incorrect scopes can break
4095    // our AST invariants by having the wrong underlying types. If
4096    // that's the case, then drop this declaration entirely.
4097    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4098         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4099        !Context.hasSameType(Name.getCXXNameType(),
4100                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4101      return true;
4102
4103    return false;
4104  }
4105
4106  // C++11 [dcl.meaning]p1:
4107  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4108  //   not begin with a decltype-specifer"
4109  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4110  while (SpecLoc.getPrefix())
4111    SpecLoc = SpecLoc.getPrefix();
4112  if (dyn_cast_or_null<DecltypeType>(
4113        SpecLoc.getNestedNameSpecifier()->getAsType()))
4114    Diag(Loc, diag::err_decltype_in_declarator)
4115      << SpecLoc.getTypeLoc().getSourceRange();
4116
4117  return false;
4118}
4119
4120NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4121                                  MultiTemplateParamsArg TemplateParamLists) {
4122  // TODO: consider using NameInfo for diagnostic.
4123  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4124  DeclarationName Name = NameInfo.getName();
4125
4126  // All of these full declarators require an identifier.  If it doesn't have
4127  // one, the ParsedFreeStandingDeclSpec action should be used.
4128  if (!Name) {
4129    if (!D.isInvalidType())  // Reject this if we think it is valid.
4130      Diag(D.getDeclSpec().getLocStart(),
4131           diag::err_declarator_need_ident)
4132        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4133    return 0;
4134  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4135    return 0;
4136
4137  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4138  // we find one that is.
4139  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4140         (S->getFlags() & Scope::TemplateParamScope) != 0)
4141    S = S->getParent();
4142
4143  DeclContext *DC = CurContext;
4144  if (D.getCXXScopeSpec().isInvalid())
4145    D.setInvalidType();
4146  else if (D.getCXXScopeSpec().isSet()) {
4147    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4148                                        UPPC_DeclarationQualifier))
4149      return 0;
4150
4151    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4152    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4153    if (!DC) {
4154      // If we could not compute the declaration context, it's because the
4155      // declaration context is dependent but does not refer to a class,
4156      // class template, or class template partial specialization. Complain
4157      // and return early, to avoid the coming semantic disaster.
4158      Diag(D.getIdentifierLoc(),
4159           diag::err_template_qualified_declarator_no_match)
4160        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4161        << D.getCXXScopeSpec().getRange();
4162      return 0;
4163    }
4164    bool IsDependentContext = DC->isDependentContext();
4165
4166    if (!IsDependentContext &&
4167        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4168      return 0;
4169
4170    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4171      Diag(D.getIdentifierLoc(),
4172           diag::err_member_def_undefined_record)
4173        << Name << DC << D.getCXXScopeSpec().getRange();
4174      D.setInvalidType();
4175    } else if (!D.getDeclSpec().isFriendSpecified()) {
4176      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4177                                      Name, D.getIdentifierLoc())) {
4178        if (DC->isRecord())
4179          return 0;
4180
4181        D.setInvalidType();
4182      }
4183    }
4184
4185    // Check whether we need to rebuild the type of the given
4186    // declaration in the current instantiation.
4187    if (EnteringContext && IsDependentContext &&
4188        TemplateParamLists.size() != 0) {
4189      ContextRAII SavedContext(*this, DC);
4190      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4191        D.setInvalidType();
4192    }
4193  }
4194
4195  if (DiagnoseClassNameShadow(DC, NameInfo))
4196    // If this is a typedef, we'll end up spewing multiple diagnostics.
4197    // Just return early; it's safer.
4198    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4199      return 0;
4200
4201  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4202  QualType R = TInfo->getType();
4203
4204  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4205                                      UPPC_DeclarationType))
4206    D.setInvalidType();
4207
4208  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4209                        ForRedeclaration);
4210
4211  // See if this is a redefinition of a variable in the same scope.
4212  if (!D.getCXXScopeSpec().isSet()) {
4213    bool IsLinkageLookup = false;
4214    bool CreateBuiltins = false;
4215
4216    // If the declaration we're planning to build will be a function
4217    // or object with linkage, then look for another declaration with
4218    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4219    //
4220    // If the declaration we're planning to build will be declared with
4221    // external linkage in the translation unit, create any builtin with
4222    // the same name.
4223    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4224      /* Do nothing*/;
4225    else if (CurContext->isFunctionOrMethod() &&
4226             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4227              R->isFunctionType())) {
4228      IsLinkageLookup = true;
4229      CreateBuiltins =
4230          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4231    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4232               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4233      CreateBuiltins = true;
4234
4235    if (IsLinkageLookup)
4236      Previous.clear(LookupRedeclarationWithLinkage);
4237
4238    LookupName(Previous, S, CreateBuiltins);
4239  } else { // Something like "int foo::x;"
4240    LookupQualifiedName(Previous, DC);
4241
4242    // C++ [dcl.meaning]p1:
4243    //   When the declarator-id is qualified, the declaration shall refer to a
4244    //  previously declared member of the class or namespace to which the
4245    //  qualifier refers (or, in the case of a namespace, of an element of the
4246    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4247    //  thereof; [...]
4248    //
4249    // Note that we already checked the context above, and that we do not have
4250    // enough information to make sure that Previous contains the declaration
4251    // we want to match. For example, given:
4252    //
4253    //   class X {
4254    //     void f();
4255    //     void f(float);
4256    //   };
4257    //
4258    //   void X::f(int) { } // ill-formed
4259    //
4260    // In this case, Previous will point to the overload set
4261    // containing the two f's declared in X, but neither of them
4262    // matches.
4263
4264    // C++ [dcl.meaning]p1:
4265    //   [...] the member shall not merely have been introduced by a
4266    //   using-declaration in the scope of the class or namespace nominated by
4267    //   the nested-name-specifier of the declarator-id.
4268    RemoveUsingDecls(Previous);
4269  }
4270
4271  if (Previous.isSingleResult() &&
4272      Previous.getFoundDecl()->isTemplateParameter()) {
4273    // Maybe we will complain about the shadowed template parameter.
4274    if (!D.isInvalidType())
4275      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4276                                      Previous.getFoundDecl());
4277
4278    // Just pretend that we didn't see the previous declaration.
4279    Previous.clear();
4280  }
4281
4282  // In C++, the previous declaration we find might be a tag type
4283  // (class or enum). In this case, the new declaration will hide the
4284  // tag type. Note that this does does not apply if we're declaring a
4285  // typedef (C++ [dcl.typedef]p4).
4286  if (Previous.isSingleTagDecl() &&
4287      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4288    Previous.clear();
4289
4290  // Check that there are no default arguments other than in the parameters
4291  // of a function declaration (C++ only).
4292  if (getLangOpts().CPlusPlus)
4293    CheckExtraCXXDefaultArguments(D);
4294
4295  NamedDecl *New;
4296
4297  bool AddToScope = true;
4298  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4299    if (TemplateParamLists.size()) {
4300      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4301      return 0;
4302    }
4303
4304    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4305  } else if (R->isFunctionType()) {
4306    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4307                                  TemplateParamLists,
4308                                  AddToScope);
4309  } else {
4310    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4311                                  AddToScope);
4312  }
4313
4314  if (New == 0)
4315    return 0;
4316
4317  // If this has an identifier and is not an invalid redeclaration or
4318  // function template specialization, add it to the scope stack.
4319  if (New->getDeclName() && AddToScope &&
4320       !(D.isRedeclaration() && New->isInvalidDecl()))
4321    PushOnScopeChains(New, S);
4322
4323  return New;
4324}
4325
4326/// Helper method to turn variable array types into constant array
4327/// types in certain situations which would otherwise be errors (for
4328/// GCC compatibility).
4329static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4330                                                    ASTContext &Context,
4331                                                    bool &SizeIsNegative,
4332                                                    llvm::APSInt &Oversized) {
4333  // This method tries to turn a variable array into a constant
4334  // array even when the size isn't an ICE.  This is necessary
4335  // for compatibility with code that depends on gcc's buggy
4336  // constant expression folding, like struct {char x[(int)(char*)2];}
4337  SizeIsNegative = false;
4338  Oversized = 0;
4339
4340  if (T->isDependentType())
4341    return QualType();
4342
4343  QualifierCollector Qs;
4344  const Type *Ty = Qs.strip(T);
4345
4346  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4347    QualType Pointee = PTy->getPointeeType();
4348    QualType FixedType =
4349        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4350                                            Oversized);
4351    if (FixedType.isNull()) return FixedType;
4352    FixedType = Context.getPointerType(FixedType);
4353    return Qs.apply(Context, FixedType);
4354  }
4355  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4356    QualType Inner = PTy->getInnerType();
4357    QualType FixedType =
4358        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4359                                            Oversized);
4360    if (FixedType.isNull()) return FixedType;
4361    FixedType = Context.getParenType(FixedType);
4362    return Qs.apply(Context, FixedType);
4363  }
4364
4365  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4366  if (!VLATy)
4367    return QualType();
4368  // FIXME: We should probably handle this case
4369  if (VLATy->getElementType()->isVariablyModifiedType())
4370    return QualType();
4371
4372  llvm::APSInt Res;
4373  if (!VLATy->getSizeExpr() ||
4374      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4375    return QualType();
4376
4377  // Check whether the array size is negative.
4378  if (Res.isSigned() && Res.isNegative()) {
4379    SizeIsNegative = true;
4380    return QualType();
4381  }
4382
4383  // Check whether the array is too large to be addressed.
4384  unsigned ActiveSizeBits
4385    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4386                                              Res);
4387  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4388    Oversized = Res;
4389    return QualType();
4390  }
4391
4392  return Context.getConstantArrayType(VLATy->getElementType(),
4393                                      Res, ArrayType::Normal, 0);
4394}
4395
4396static void
4397FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4398  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4399    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4400    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4401                                      DstPTL.getPointeeLoc());
4402    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4403    return;
4404  }
4405  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4406    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4407    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4408                                      DstPTL.getInnerLoc());
4409    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4410    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4411    return;
4412  }
4413  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4414  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4415  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4416  TypeLoc DstElemTL = DstATL.getElementLoc();
4417  DstElemTL.initializeFullCopy(SrcElemTL);
4418  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4419  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4420  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4421}
4422
4423/// Helper method to turn variable array types into constant array
4424/// types in certain situations which would otherwise be errors (for
4425/// GCC compatibility).
4426static TypeSourceInfo*
4427TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4428                                              ASTContext &Context,
4429                                              bool &SizeIsNegative,
4430                                              llvm::APSInt &Oversized) {
4431  QualType FixedTy
4432    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4433                                          SizeIsNegative, Oversized);
4434  if (FixedTy.isNull())
4435    return 0;
4436  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4437  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4438                                    FixedTInfo->getTypeLoc());
4439  return FixedTInfo;
4440}
4441
4442/// \brief Register the given locally-scoped extern "C" declaration so
4443/// that it can be found later for redeclarations. We include any extern "C"
4444/// declaration that is not visible in the translation unit here, not just
4445/// function-scope declarations.
4446void
4447Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4448  if (!getLangOpts().CPlusPlus &&
4449      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4450    // Don't need to track declarations in the TU in C.
4451    return;
4452
4453  // Note that we have a locally-scoped external with this name.
4454  // FIXME: There can be multiple such declarations if they are functions marked
4455  // __attribute__((overloadable)) declared in function scope in C.
4456  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4457}
4458
4459NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4460  if (ExternalSource) {
4461    // Load locally-scoped external decls from the external source.
4462    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4463    SmallVector<NamedDecl *, 4> Decls;
4464    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4465    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4466      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4467        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4468      if (Pos == LocallyScopedExternCDecls.end())
4469        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4470    }
4471  }
4472
4473  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4474  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4475}
4476
4477/// \brief Diagnose function specifiers on a declaration of an identifier that
4478/// does not identify a function.
4479void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4480  // FIXME: We should probably indicate the identifier in question to avoid
4481  // confusion for constructs like "inline int a(), b;"
4482  if (DS.isInlineSpecified())
4483    Diag(DS.getInlineSpecLoc(),
4484         diag::err_inline_non_function);
4485
4486  if (DS.isVirtualSpecified())
4487    Diag(DS.getVirtualSpecLoc(),
4488         diag::err_virtual_non_function);
4489
4490  if (DS.isExplicitSpecified())
4491    Diag(DS.getExplicitSpecLoc(),
4492         diag::err_explicit_non_function);
4493
4494  if (DS.isNoreturnSpecified())
4495    Diag(DS.getNoreturnSpecLoc(),
4496         diag::err_noreturn_non_function);
4497}
4498
4499NamedDecl*
4500Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4501                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4502  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4503  if (D.getCXXScopeSpec().isSet()) {
4504    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4505      << D.getCXXScopeSpec().getRange();
4506    D.setInvalidType();
4507    // Pretend we didn't see the scope specifier.
4508    DC = CurContext;
4509    Previous.clear();
4510  }
4511
4512  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4513
4514  if (D.getDeclSpec().isConstexprSpecified())
4515    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4516      << 1;
4517
4518  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4519    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4520      << D.getName().getSourceRange();
4521    return 0;
4522  }
4523
4524  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4525  if (!NewTD) return 0;
4526
4527  // Handle attributes prior to checking for duplicates in MergeVarDecl
4528  ProcessDeclAttributes(S, NewTD, D);
4529
4530  CheckTypedefForVariablyModifiedType(S, NewTD);
4531
4532  bool Redeclaration = D.isRedeclaration();
4533  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4534  D.setRedeclaration(Redeclaration);
4535  return ND;
4536}
4537
4538void
4539Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4540  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4541  // then it shall have block scope.
4542  // Note that variably modified types must be fixed before merging the decl so
4543  // that redeclarations will match.
4544  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4545  QualType T = TInfo->getType();
4546  if (T->isVariablyModifiedType()) {
4547    getCurFunction()->setHasBranchProtectedScope();
4548
4549    if (S->getFnParent() == 0) {
4550      bool SizeIsNegative;
4551      llvm::APSInt Oversized;
4552      TypeSourceInfo *FixedTInfo =
4553        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4554                                                      SizeIsNegative,
4555                                                      Oversized);
4556      if (FixedTInfo) {
4557        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4558        NewTD->setTypeSourceInfo(FixedTInfo);
4559      } else {
4560        if (SizeIsNegative)
4561          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4562        else if (T->isVariableArrayType())
4563          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4564        else if (Oversized.getBoolValue())
4565          Diag(NewTD->getLocation(), diag::err_array_too_large)
4566            << Oversized.toString(10);
4567        else
4568          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4569        NewTD->setInvalidDecl();
4570      }
4571    }
4572  }
4573}
4574
4575
4576/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4577/// declares a typedef-name, either using the 'typedef' type specifier or via
4578/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4579NamedDecl*
4580Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4581                           LookupResult &Previous, bool &Redeclaration) {
4582  // Merge the decl with the existing one if appropriate. If the decl is
4583  // in an outer scope, it isn't the same thing.
4584  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4585                       /*ExplicitInstantiationOrSpecialization=*/false);
4586  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4587  if (!Previous.empty()) {
4588    Redeclaration = true;
4589    MergeTypedefNameDecl(NewTD, Previous);
4590  }
4591
4592  // If this is the C FILE type, notify the AST context.
4593  if (IdentifierInfo *II = NewTD->getIdentifier())
4594    if (!NewTD->isInvalidDecl() &&
4595        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4596      if (II->isStr("FILE"))
4597        Context.setFILEDecl(NewTD);
4598      else if (II->isStr("jmp_buf"))
4599        Context.setjmp_bufDecl(NewTD);
4600      else if (II->isStr("sigjmp_buf"))
4601        Context.setsigjmp_bufDecl(NewTD);
4602      else if (II->isStr("ucontext_t"))
4603        Context.setucontext_tDecl(NewTD);
4604    }
4605
4606  return NewTD;
4607}
4608
4609/// \brief Determines whether the given declaration is an out-of-scope
4610/// previous declaration.
4611///
4612/// This routine should be invoked when name lookup has found a
4613/// previous declaration (PrevDecl) that is not in the scope where a
4614/// new declaration by the same name is being introduced. If the new
4615/// declaration occurs in a local scope, previous declarations with
4616/// linkage may still be considered previous declarations (C99
4617/// 6.2.2p4-5, C++ [basic.link]p6).
4618///
4619/// \param PrevDecl the previous declaration found by name
4620/// lookup
4621///
4622/// \param DC the context in which the new declaration is being
4623/// declared.
4624///
4625/// \returns true if PrevDecl is an out-of-scope previous declaration
4626/// for a new delcaration with the same name.
4627static bool
4628isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4629                                ASTContext &Context) {
4630  if (!PrevDecl)
4631    return false;
4632
4633  if (!PrevDecl->hasLinkage())
4634    return false;
4635
4636  if (Context.getLangOpts().CPlusPlus) {
4637    // C++ [basic.link]p6:
4638    //   If there is a visible declaration of an entity with linkage
4639    //   having the same name and type, ignoring entities declared
4640    //   outside the innermost enclosing namespace scope, the block
4641    //   scope declaration declares that same entity and receives the
4642    //   linkage of the previous declaration.
4643    DeclContext *OuterContext = DC->getRedeclContext();
4644    if (!OuterContext->isFunctionOrMethod())
4645      // This rule only applies to block-scope declarations.
4646      return false;
4647
4648    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4649    if (PrevOuterContext->isRecord())
4650      // We found a member function: ignore it.
4651      return false;
4652
4653    // Find the innermost enclosing namespace for the new and
4654    // previous declarations.
4655    OuterContext = OuterContext->getEnclosingNamespaceContext();
4656    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4657
4658    // The previous declaration is in a different namespace, so it
4659    // isn't the same function.
4660    if (!OuterContext->Equals(PrevOuterContext))
4661      return false;
4662  }
4663
4664  return true;
4665}
4666
4667static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4668  CXXScopeSpec &SS = D.getCXXScopeSpec();
4669  if (!SS.isSet()) return;
4670  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4671}
4672
4673bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4674  QualType type = decl->getType();
4675  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4676  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4677    // Various kinds of declaration aren't allowed to be __autoreleasing.
4678    unsigned kind = -1U;
4679    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4680      if (var->hasAttr<BlocksAttr>())
4681        kind = 0; // __block
4682      else if (!var->hasLocalStorage())
4683        kind = 1; // global
4684    } else if (isa<ObjCIvarDecl>(decl)) {
4685      kind = 3; // ivar
4686    } else if (isa<FieldDecl>(decl)) {
4687      kind = 2; // field
4688    }
4689
4690    if (kind != -1U) {
4691      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4692        << kind;
4693    }
4694  } else if (lifetime == Qualifiers::OCL_None) {
4695    // Try to infer lifetime.
4696    if (!type->isObjCLifetimeType())
4697      return false;
4698
4699    lifetime = type->getObjCARCImplicitLifetime();
4700    type = Context.getLifetimeQualifiedType(type, lifetime);
4701    decl->setType(type);
4702  }
4703
4704  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4705    // Thread-local variables cannot have lifetime.
4706    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4707        var->getTLSKind()) {
4708      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4709        << var->getType();
4710      return true;
4711    }
4712  }
4713
4714  return false;
4715}
4716
4717static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4718  // 'weak' only applies to declarations with external linkage.
4719  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4720    if (!ND.isExternallyVisible()) {
4721      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4722      ND.dropAttr<WeakAttr>();
4723    }
4724  }
4725  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4726    if (ND.isExternallyVisible()) {
4727      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4728      ND.dropAttr<WeakRefAttr>();
4729    }
4730  }
4731
4732  // 'selectany' only applies to externally visible varable declarations.
4733  // It does not apply to functions.
4734  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4735    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4736      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4737      ND.dropAttr<SelectAnyAttr>();
4738    }
4739  }
4740}
4741
4742/// Given that we are within the definition of the given function,
4743/// will that definition behave like C99's 'inline', where the
4744/// definition is discarded except for optimization purposes?
4745static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4746  // Try to avoid calling GetGVALinkageForFunction.
4747
4748  // All cases of this require the 'inline' keyword.
4749  if (!FD->isInlined()) return false;
4750
4751  // This is only possible in C++ with the gnu_inline attribute.
4752  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4753    return false;
4754
4755  // Okay, go ahead and call the relatively-more-expensive function.
4756
4757#ifndef NDEBUG
4758  // AST quite reasonably asserts that it's working on a function
4759  // definition.  We don't really have a way to tell it that we're
4760  // currently defining the function, so just lie to it in +Asserts
4761  // builds.  This is an awful hack.
4762  FD->setLazyBody(1);
4763#endif
4764
4765  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4766
4767#ifndef NDEBUG
4768  FD->setLazyBody(0);
4769#endif
4770
4771  return isC99Inline;
4772}
4773
4774/// Determine whether a variable is extern "C" prior to attaching
4775/// an initializer. We can't just call isExternC() here, because that
4776/// will also compute and cache whether the declaration is externally
4777/// visible, which might change when we attach the initializer.
4778///
4779/// This can only be used if the declaration is known to not be a
4780/// redeclaration of an internal linkage declaration.
4781///
4782/// For instance:
4783///
4784///   auto x = []{};
4785///
4786/// Attaching the initializer here makes this declaration not externally
4787/// visible, because its type has internal linkage.
4788///
4789/// FIXME: This is a hack.
4790template<typename T>
4791static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4792  if (S.getLangOpts().CPlusPlus) {
4793    // In C++, the overloadable attribute negates the effects of extern "C".
4794    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4795      return false;
4796  }
4797  return D->isExternC();
4798}
4799
4800static bool shouldConsiderLinkage(const VarDecl *VD) {
4801  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4802  if (DC->isFunctionOrMethod())
4803    return VD->hasExternalStorage();
4804  if (DC->isFileContext())
4805    return true;
4806  if (DC->isRecord())
4807    return false;
4808  llvm_unreachable("Unexpected context");
4809}
4810
4811static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4812  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4813  if (DC->isFileContext() || DC->isFunctionOrMethod())
4814    return true;
4815  if (DC->isRecord())
4816    return false;
4817  llvm_unreachable("Unexpected context");
4818}
4819
4820bool Sema::HandleVariableRedeclaration(Decl *D, CXXScopeSpec &SS) {
4821  // If this is a redeclaration of a variable template or a forward
4822  // declaration of a variable template partial specialization
4823  // with nested name specifier, complain.
4824
4825  if (D && SS.isNotEmpty() &&
4826      (isa<VarTemplateDecl>(D) ||
4827       isa<VarTemplatePartialSpecializationDecl>(D))) {
4828    Diag(SS.getBeginLoc(), diag::err_forward_var_nested_name_specifier)
4829      << isa<VarTemplatePartialSpecializationDecl>(D) << SS.getRange();
4830    return true;
4831  }
4832  return false;
4833}
4834
4835NamedDecl *
4836Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4837                              TypeSourceInfo *TInfo, LookupResult &Previous,
4838                              MultiTemplateParamsArg TemplateParamLists,
4839                              bool &AddToScope) {
4840  QualType R = TInfo->getType();
4841  DeclarationName Name = GetNameForDeclarator(D).getName();
4842
4843  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4844  VarDecl::StorageClass SC =
4845    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4846
4847  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4848    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4849    // half array type (unless the cl_khr_fp16 extension is enabled).
4850    if (Context.getBaseElementType(R)->isHalfType()) {
4851      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4852      D.setInvalidType();
4853    }
4854  }
4855
4856  if (SCSpec == DeclSpec::SCS_mutable) {
4857    // mutable can only appear on non-static class members, so it's always
4858    // an error here
4859    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4860    D.setInvalidType();
4861    SC = SC_None;
4862  }
4863
4864  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4865      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4866                              D.getDeclSpec().getStorageClassSpecLoc())) {
4867    // In C++11, the 'register' storage class specifier is deprecated.
4868    // Suppress the warning in system macros, it's used in macros in some
4869    // popular C system headers, such as in glibc's htonl() macro.
4870    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4871         diag::warn_deprecated_register)
4872      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4873  }
4874
4875  IdentifierInfo *II = Name.getAsIdentifierInfo();
4876  if (!II) {
4877    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4878      << Name;
4879    return 0;
4880  }
4881
4882  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4883
4884  if (!DC->isRecord() && S->getFnParent() == 0) {
4885    // C99 6.9p2: The storage-class specifiers auto and register shall not
4886    // appear in the declaration specifiers in an external declaration.
4887    if (SC == SC_Auto || SC == SC_Register) {
4888      // If this is a register variable with an asm label specified, then this
4889      // is a GNU extension.
4890      if (SC == SC_Register && D.getAsmLabel())
4891        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4892      else
4893        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4894      D.setInvalidType();
4895    }
4896  }
4897
4898  if (getLangOpts().OpenCL) {
4899    // Set up the special work-group-local storage class for variables in the
4900    // OpenCL __local address space.
4901    if (R.getAddressSpace() == LangAS::opencl_local) {
4902      SC = SC_OpenCLWorkGroupLocal;
4903    }
4904
4905    // OpenCL v1.2 s6.9.b p4:
4906    // The sampler type cannot be used with the __local and __global address
4907    // space qualifiers.
4908    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4909      R.getAddressSpace() == LangAS::opencl_global)) {
4910      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4911    }
4912
4913    // OpenCL 1.2 spec, p6.9 r:
4914    // The event type cannot be used to declare a program scope variable.
4915    // The event type cannot be used with the __local, __constant and __global
4916    // address space qualifiers.
4917    if (R->isEventT()) {
4918      if (S->getParent() == 0) {
4919        Diag(D.getLocStart(), diag::err_event_t_global_var);
4920        D.setInvalidType();
4921      }
4922
4923      if (R.getAddressSpace()) {
4924        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4925        D.setInvalidType();
4926      }
4927    }
4928  }
4929
4930  bool IsExplicitSpecialization = false;
4931  bool IsVariableTemplateSpecialization = false;
4932  bool IsPartialSpecialization = false;
4933  bool IsVariableTemplate = false;
4934  bool Invalid = false; // TODO: Can we remove this (error-prone)?
4935  TemplateParameterList *TemplateParams = 0;
4936  VarTemplateDecl *PrevVarTemplate = 0;
4937  VarDecl *NewVD;
4938  if (!getLangOpts().CPlusPlus) {
4939    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4940                            D.getIdentifierLoc(), II,
4941                            R, TInfo, SC);
4942
4943    if (D.isInvalidType())
4944      NewVD->setInvalidDecl();
4945  } else {
4946    if (DC->isRecord() && !CurContext->isRecord()) {
4947      // This is an out-of-line definition of a static data member.
4948      switch (SC) {
4949      case SC_None:
4950        break;
4951      case SC_Static:
4952        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4953             diag::err_static_out_of_line)
4954          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4955        break;
4956      case SC_Auto:
4957      case SC_Register:
4958      case SC_Extern:
4959        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4960        // to names of variables declared in a block or to function parameters.
4961        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4962        // of class members
4963
4964        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4965             diag::err_storage_class_for_static_member)
4966          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4967        break;
4968      case SC_PrivateExtern:
4969        llvm_unreachable("C storage class in c++!");
4970      case SC_OpenCLWorkGroupLocal:
4971        llvm_unreachable("OpenCL storage class in c++!");
4972      }
4973    }
4974
4975    if (SC == SC_Static && CurContext->isRecord()) {
4976      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4977        if (RD->isLocalClass())
4978          Diag(D.getIdentifierLoc(),
4979               diag::err_static_data_member_not_allowed_in_local_class)
4980            << Name << RD->getDeclName();
4981
4982        // C++98 [class.union]p1: If a union contains a static data member,
4983        // the program is ill-formed. C++11 drops this restriction.
4984        if (RD->isUnion())
4985          Diag(D.getIdentifierLoc(),
4986               getLangOpts().CPlusPlus11
4987                 ? diag::warn_cxx98_compat_static_data_member_in_union
4988                 : diag::ext_static_data_member_in_union) << Name;
4989        // We conservatively disallow static data members in anonymous structs.
4990        else if (!RD->getDeclName())
4991          Diag(D.getIdentifierLoc(),
4992               diag::err_static_data_member_not_allowed_in_anon_struct)
4993            << Name << RD->isUnion();
4994      }
4995    }
4996
4997    NamedDecl *PrevDecl = 0;
4998    if (Previous.begin() != Previous.end())
4999      PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5000    PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
5001
5002    // Match up the template parameter lists with the scope specifier, then
5003    // determine whether we have a template or a template specialization.
5004    TemplateParams = MatchTemplateParametersToScopeSpecifier(
5005        D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5006        D.getCXXScopeSpec(), TemplateParamLists,
5007        /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5008    if (TemplateParams) {
5009      if (!TemplateParams->size() &&
5010          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5011        // There is an extraneous 'template<>' for this variable. Complain
5012        // about it, but allow the declaration of the variable.
5013        Diag(TemplateParams->getTemplateLoc(),
5014             diag::err_template_variable_noparams)
5015          << II
5016          << SourceRange(TemplateParams->getTemplateLoc(),
5017                         TemplateParams->getRAngleLoc());
5018      } else {
5019        // Only C++1y supports variable templates (N3651).
5020        Diag(D.getIdentifierLoc(),
5021             getLangOpts().CPlusPlus1y
5022                 ? diag::warn_cxx11_compat_variable_template
5023                 : diag::ext_variable_template);
5024
5025        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5026          // This is an explicit specialization or a partial specialization.
5027          // Check that we can declare a specialization here
5028
5029          IsVariableTemplateSpecialization = true;
5030          IsPartialSpecialization = TemplateParams->size() > 0;
5031
5032        } else { // if (TemplateParams->size() > 0)
5033          // This is a template declaration.
5034          IsVariableTemplate = true;
5035
5036          // Check that we can declare a template here.
5037          if (CheckTemplateDeclScope(S, TemplateParams))
5038            return 0;
5039
5040          // If there is a previous declaration with the same name, check
5041          // whether this is a valid redeclaration.
5042          if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
5043            PrevDecl = PrevVarTemplate = 0;
5044
5045          if (PrevVarTemplate) {
5046            // Ensure that the template parameter lists are compatible.
5047            if (!TemplateParameterListsAreEqual(
5048                    TemplateParams, PrevVarTemplate->getTemplateParameters(),
5049                    /*Complain=*/true, TPL_TemplateMatch))
5050              return 0;
5051          } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5052            // Maybe we will complain about the shadowed template parameter.
5053            DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5054
5055            // Just pretend that we didn't see the previous declaration.
5056            PrevDecl = 0;
5057          } else if (PrevDecl) {
5058            // C++ [temp]p5:
5059            // ... a template name declared in namespace scope or in class
5060            // scope shall be unique in that scope.
5061            Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5062                << Name;
5063            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5064            return 0;
5065          }
5066
5067          // Check the template parameter list of this declaration, possibly
5068          // merging in the template parameter list from the previous variable
5069          // template declaration.
5070          if (CheckTemplateParameterList(
5071                  TemplateParams,
5072                  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5073                                  : 0,
5074                  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5075                   DC->isDependentContext())
5076                      ? TPC_ClassTemplateMember
5077                      : TPC_VarTemplate))
5078            Invalid = true;
5079
5080          if (D.getCXXScopeSpec().isSet()) {
5081            // If the name of the template was qualified, we must be defining
5082            // the template out-of-line.
5083            if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5084                !PrevVarTemplate) {
5085              Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
5086                  << Name << DC << /*IsDefinition*/true
5087                  << D.getCXXScopeSpec().getRange();
5088              Invalid = true;
5089            }
5090          }
5091        }
5092      }
5093    } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5094      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5095
5096      // We have encountered something that the user meant to be a
5097      // specialization (because it has explicitly-specified template
5098      // arguments) but that was not introduced with a "template<>" (or had
5099      // too few of them).
5100      // FIXME: Differentiate between attempts for explicit instantiations
5101      // (starting with "template") and the rest.
5102      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5103          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5104          << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5105                                        "template<> ");
5106      IsVariableTemplateSpecialization = true;
5107    }
5108
5109    if (IsVariableTemplateSpecialization) {
5110      if (!PrevVarTemplate) {
5111        Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5112            << IsPartialSpecialization;
5113        return 0;
5114      }
5115
5116      SourceLocation TemplateKWLoc =
5117          TemplateParamLists.size() > 0
5118              ? TemplateParamLists[0]->getTemplateLoc()
5119              : SourceLocation();
5120      DeclResult Res = ActOnVarTemplateSpecialization(
5121          S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5122          IsPartialSpecialization);
5123      if (Res.isInvalid())
5124        return 0;
5125      NewVD = cast<VarDecl>(Res.get());
5126      AddToScope = false;
5127    } else
5128      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5129                              D.getIdentifierLoc(), II, R, TInfo, SC);
5130
5131    // If this decl has an auto type in need of deduction, make a note of the
5132    // Decl so we can diagnose uses of it in its own initializer.
5133    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5134      ParsingInitForAutoVars.insert(NewVD);
5135
5136    if (D.isInvalidType() || Invalid)
5137      NewVD->setInvalidDecl();
5138
5139    SetNestedNameSpecifier(NewVD, D);
5140
5141    // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5142    if (TemplateParams && TemplateParamLists.size() > 1 &&
5143        (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5144      NewVD->setTemplateParameterListsInfo(
5145          Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5146    } else if (IsVariableTemplateSpecialization ||
5147               (!TemplateParams && TemplateParamLists.size() > 0 &&
5148                (D.getCXXScopeSpec().isSet()))) {
5149      NewVD->setTemplateParameterListsInfo(Context,
5150                                           TemplateParamLists.size(),
5151                                           TemplateParamLists.data());
5152    }
5153
5154    if (D.getDeclSpec().isConstexprSpecified())
5155      NewVD->setConstexpr(true);
5156  }
5157
5158  // Set the lexical context. If the declarator has a C++ scope specifier, the
5159  // lexical context will be different from the semantic context.
5160  NewVD->setLexicalDeclContext(CurContext);
5161
5162  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5163    if (NewVD->hasLocalStorage()) {
5164      // C++11 [dcl.stc]p4:
5165      //   When thread_local is applied to a variable of block scope the
5166      //   storage-class-specifier static is implied if it does not appear
5167      //   explicitly.
5168      // Core issue: 'static' is not implied if the variable is declared
5169      //   'extern'.
5170      if (SCSpec == DeclSpec::SCS_unspecified &&
5171          TSCS == DeclSpec::TSCS_thread_local &&
5172          DC->isFunctionOrMethod())
5173        NewVD->setTSCSpec(TSCS);
5174      else
5175        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5176             diag::err_thread_non_global)
5177          << DeclSpec::getSpecifierName(TSCS);
5178    } else if (!Context.getTargetInfo().isTLSSupported())
5179      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5180           diag::err_thread_unsupported);
5181    else
5182      NewVD->setTSCSpec(TSCS);
5183  }
5184
5185  // C99 6.7.4p3
5186  //   An inline definition of a function with external linkage shall
5187  //   not contain a definition of a modifiable object with static or
5188  //   thread storage duration...
5189  // We only apply this when the function is required to be defined
5190  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5191  // that a local variable with thread storage duration still has to
5192  // be marked 'static'.  Also note that it's possible to get these
5193  // semantics in C++ using __attribute__((gnu_inline)).
5194  if (SC == SC_Static && S->getFnParent() != 0 &&
5195      !NewVD->getType().isConstQualified()) {
5196    FunctionDecl *CurFD = getCurFunctionDecl();
5197    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5198      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5199           diag::warn_static_local_in_extern_inline);
5200      MaybeSuggestAddingStaticToDecl(CurFD);
5201    }
5202  }
5203
5204  if (D.getDeclSpec().isModulePrivateSpecified()) {
5205    if (IsVariableTemplateSpecialization)
5206      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5207          << (IsPartialSpecialization ? 1 : 0)
5208          << FixItHint::CreateRemoval(
5209                 D.getDeclSpec().getModulePrivateSpecLoc());
5210    else if (IsExplicitSpecialization)
5211      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5212        << 2
5213        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5214    else if (NewVD->hasLocalStorage())
5215      Diag(NewVD->getLocation(), diag::err_module_private_local)
5216        << 0 << NewVD->getDeclName()
5217        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5218        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5219    else
5220      NewVD->setModulePrivate();
5221  }
5222
5223  // Handle attributes prior to checking for duplicates in MergeVarDecl
5224  ProcessDeclAttributes(S, NewVD, D);
5225
5226  if (NewVD->hasAttrs())
5227    CheckAlignasUnderalignment(NewVD);
5228
5229  if (getLangOpts().CUDA) {
5230    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5231    // storage [duration]."
5232    if (SC == SC_None && S->getFnParent() != 0 &&
5233        (NewVD->hasAttr<CUDASharedAttr>() ||
5234         NewVD->hasAttr<CUDAConstantAttr>())) {
5235      NewVD->setStorageClass(SC_Static);
5236    }
5237  }
5238
5239  // In auto-retain/release, infer strong retension for variables of
5240  // retainable type.
5241  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5242    NewVD->setInvalidDecl();
5243
5244  // Handle GNU asm-label extension (encoded as an attribute).
5245  if (Expr *E = (Expr*)D.getAsmLabel()) {
5246    // The parser guarantees this is a string.
5247    StringLiteral *SE = cast<StringLiteral>(E);
5248    StringRef Label = SE->getString();
5249    if (S->getFnParent() != 0) {
5250      switch (SC) {
5251      case SC_None:
5252      case SC_Auto:
5253        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5254        break;
5255      case SC_Register:
5256        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5257          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5258        break;
5259      case SC_Static:
5260      case SC_Extern:
5261      case SC_PrivateExtern:
5262      case SC_OpenCLWorkGroupLocal:
5263        break;
5264      }
5265    }
5266
5267    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5268                                                Context, Label));
5269  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5270    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5271      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5272    if (I != ExtnameUndeclaredIdentifiers.end()) {
5273      NewVD->addAttr(I->second);
5274      ExtnameUndeclaredIdentifiers.erase(I);
5275    }
5276  }
5277
5278  // Diagnose shadowed variables before filtering for scope.
5279  // FIXME: Special treatment for static variable template members (?).
5280  if (!D.getCXXScopeSpec().isSet())
5281    CheckShadow(S, NewVD, Previous);
5282
5283  // Don't consider existing declarations that are in a different
5284  // scope and are out-of-semantic-context declarations (if the new
5285  // declaration has linkage).
5286  FilterLookupForScope(
5287      Previous, DC, S, shouldConsiderLinkage(NewVD),
5288      IsExplicitSpecialization || IsVariableTemplateSpecialization);
5289
5290  // Check whether the previous declaration is in the same block scope. This
5291  // affects whether we merge types with it, per C++11 [dcl.array]p3.
5292  if (getLangOpts().CPlusPlus &&
5293      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5294    NewVD->setPreviousDeclInSameBlockScope(
5295        Previous.isSingleResult() && !Previous.isShadowed() &&
5296        isDeclInScope(Previous.getFoundDecl(), DC, S, false));
5297
5298  if (!getLangOpts().CPlusPlus) {
5299    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5300  } else {
5301    // Merge the decl with the existing one if appropriate.
5302    if (!Previous.empty()) {
5303      if (Previous.isSingleResult() &&
5304          isa<FieldDecl>(Previous.getFoundDecl()) &&
5305          D.getCXXScopeSpec().isSet()) {
5306        // The user tried to define a non-static data member
5307        // out-of-line (C++ [dcl.meaning]p1).
5308        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5309          << D.getCXXScopeSpec().getRange();
5310        Previous.clear();
5311        NewVD->setInvalidDecl();
5312      }
5313    } else if (D.getCXXScopeSpec().isSet()) {
5314      // No previous declaration in the qualifying scope.
5315      Diag(D.getIdentifierLoc(), diag::err_no_member)
5316        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5317        << D.getCXXScopeSpec().getRange();
5318      NewVD->setInvalidDecl();
5319    }
5320
5321    if (!IsVariableTemplateSpecialization) {
5322      if (PrevVarTemplate) {
5323        LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5324                              LookupOrdinaryName, ForRedeclaration);
5325        PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5326        D.setRedeclaration(
5327            CheckVariableDeclaration(NewVD, PrevDecl, IsVariableTemplate));
5328      } else
5329        D.setRedeclaration(
5330            CheckVariableDeclaration(NewVD, Previous, IsVariableTemplate));
5331    }
5332
5333    // This is an explicit specialization of a static data member. Check it.
5334    // FIXME: Special treatment for static variable template members (?).
5335    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5336        CheckMemberSpecialization(NewVD, Previous))
5337      NewVD->setInvalidDecl();
5338  }
5339
5340  ProcessPragmaWeak(S, NewVD);
5341  checkAttributesAfterMerging(*this, *NewVD);
5342
5343  // If this is the first declaration of an extern C variable, update
5344  // the map of such variables.
5345  if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5346      isIncompleteDeclExternC(*this, NewVD))
5347    RegisterLocallyScopedExternCDecl(NewVD, S);
5348
5349  if (NewVD->isStaticLocal()) {
5350    Decl *ManglingContextDecl;
5351    if (MangleNumberingContext *MCtx =
5352            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5353                                          ManglingContextDecl)) {
5354      Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5355    }
5356  }
5357
5358  // If this is not a variable template, return it now.
5359  if (!IsVariableTemplate)
5360    return NewVD;
5361
5362  // If this is supposed to be a variable template, create it as such.
5363  VarTemplateDecl *NewTemplate =
5364      VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5365                              TemplateParams, NewVD, PrevVarTemplate);
5366  NewVD->setDescribedVarTemplate(NewTemplate);
5367
5368  if (D.getDeclSpec().isModulePrivateSpecified())
5369    NewTemplate->setModulePrivate();
5370
5371  // If we are providing an explicit specialization of a static variable
5372  // template, make a note of that.
5373  if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5374    NewTemplate->setMemberSpecialization();
5375
5376  // Set the lexical context of this template
5377  NewTemplate->setLexicalDeclContext(CurContext);
5378  if (NewVD->isStaticDataMember() && NewVD->isOutOfLine())
5379    NewTemplate->setAccess(NewVD->getAccess());
5380
5381  if (PrevVarTemplate)
5382    mergeDeclAttributes(NewVD, PrevVarTemplate->getTemplatedDecl());
5383
5384  AddPushedVisibilityAttribute(NewVD);
5385
5386  PushOnScopeChains(NewTemplate, S);
5387  AddToScope = false;
5388
5389  if (Invalid) {
5390    NewTemplate->setInvalidDecl();
5391    NewVD->setInvalidDecl();
5392  }
5393
5394  ActOnDocumentableDecl(NewTemplate);
5395
5396  return NewTemplate;
5397}
5398
5399/// \brief Diagnose variable or built-in function shadowing.  Implements
5400/// -Wshadow.
5401///
5402/// This method is called whenever a VarDecl is added to a "useful"
5403/// scope.
5404///
5405/// \param S the scope in which the shadowing name is being declared
5406/// \param R the lookup of the name
5407///
5408void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5409  // Return if warning is ignored.
5410  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5411        DiagnosticsEngine::Ignored)
5412    return;
5413
5414  // Don't diagnose declarations at file scope.
5415  if (D->hasGlobalStorage())
5416    return;
5417
5418  DeclContext *NewDC = D->getDeclContext();
5419
5420  // Only diagnose if we're shadowing an unambiguous field or variable.
5421  if (R.getResultKind() != LookupResult::Found)
5422    return;
5423
5424  NamedDecl* ShadowedDecl = R.getFoundDecl();
5425  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5426    return;
5427
5428  // Fields are not shadowed by variables in C++ static methods.
5429  if (isa<FieldDecl>(ShadowedDecl))
5430    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5431      if (MD->isStatic())
5432        return;
5433
5434  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5435    if (shadowedVar->isExternC()) {
5436      // For shadowing external vars, make sure that we point to the global
5437      // declaration, not a locally scoped extern declaration.
5438      for (VarDecl::redecl_iterator
5439             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5440           I != E; ++I)
5441        if (I->isFileVarDecl()) {
5442          ShadowedDecl = *I;
5443          break;
5444        }
5445    }
5446
5447  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5448
5449  // Only warn about certain kinds of shadowing for class members.
5450  if (NewDC && NewDC->isRecord()) {
5451    // In particular, don't warn about shadowing non-class members.
5452    if (!OldDC->isRecord())
5453      return;
5454
5455    // TODO: should we warn about static data members shadowing
5456    // static data members from base classes?
5457
5458    // TODO: don't diagnose for inaccessible shadowed members.
5459    // This is hard to do perfectly because we might friend the
5460    // shadowing context, but that's just a false negative.
5461  }
5462
5463  // Determine what kind of declaration we're shadowing.
5464  unsigned Kind;
5465  if (isa<RecordDecl>(OldDC)) {
5466    if (isa<FieldDecl>(ShadowedDecl))
5467      Kind = 3; // field
5468    else
5469      Kind = 2; // static data member
5470  } else if (OldDC->isFileContext())
5471    Kind = 1; // global
5472  else
5473    Kind = 0; // local
5474
5475  DeclarationName Name = R.getLookupName();
5476
5477  // Emit warning and note.
5478  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5479  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5480}
5481
5482/// \brief Check -Wshadow without the advantage of a previous lookup.
5483void Sema::CheckShadow(Scope *S, VarDecl *D) {
5484  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5485        DiagnosticsEngine::Ignored)
5486    return;
5487
5488  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5489                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5490  LookupName(R, S);
5491  CheckShadow(S, D, R);
5492}
5493
5494/// Check for conflict between this global or extern "C" declaration and
5495/// previous global or extern "C" declarations. This is only used in C++.
5496template<typename T>
5497static bool checkGlobalOrExternCConflict(
5498    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5499  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5500  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5501
5502  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5503    // The common case: this global doesn't conflict with any extern "C"
5504    // declaration.
5505    return false;
5506  }
5507
5508  if (Prev) {
5509    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5510      // Both the old and new declarations have C language linkage. This is a
5511      // redeclaration.
5512      Previous.clear();
5513      Previous.addDecl(Prev);
5514      return true;
5515    }
5516
5517    // This is a global, non-extern "C" declaration, and there is a previous
5518    // non-global extern "C" declaration. Diagnose if this is a variable
5519    // declaration.
5520    if (!isa<VarDecl>(ND))
5521      return false;
5522  } else {
5523    // The declaration is extern "C". Check for any declaration in the
5524    // translation unit which might conflict.
5525    if (IsGlobal) {
5526      // We have already performed the lookup into the translation unit.
5527      IsGlobal = false;
5528      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5529           I != E; ++I) {
5530        if (isa<VarDecl>(*I)) {
5531          Prev = *I;
5532          break;
5533        }
5534      }
5535    } else {
5536      DeclContext::lookup_result R =
5537          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5538      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5539           I != E; ++I) {
5540        if (isa<VarDecl>(*I)) {
5541          Prev = *I;
5542          break;
5543        }
5544        // FIXME: If we have any other entity with this name in global scope,
5545        // the declaration is ill-formed, but that is a defect: it breaks the
5546        // 'stat' hack, for instance. Only variables can have mangled name
5547        // clashes with extern "C" declarations, so only they deserve a
5548        // diagnostic.
5549      }
5550    }
5551
5552    if (!Prev)
5553      return false;
5554  }
5555
5556  // Use the first declaration's location to ensure we point at something which
5557  // is lexically inside an extern "C" linkage-spec.
5558  assert(Prev && "should have found a previous declaration to diagnose");
5559  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5560    Prev = FD->getFirstDeclaration();
5561  else
5562    Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5563
5564  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5565    << IsGlobal << ND;
5566  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5567    << IsGlobal;
5568  return false;
5569}
5570
5571/// Apply special rules for handling extern "C" declarations. Returns \c true
5572/// if we have found that this is a redeclaration of some prior entity.
5573///
5574/// Per C++ [dcl.link]p6:
5575///   Two declarations [for a function or variable] with C language linkage
5576///   with the same name that appear in different scopes refer to the same
5577///   [entity]. An entity with C language linkage shall not be declared with
5578///   the same name as an entity in global scope.
5579template<typename T>
5580static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5581                                                  LookupResult &Previous) {
5582  if (!S.getLangOpts().CPlusPlus) {
5583    // In C, when declaring a global variable, look for a corresponding 'extern'
5584    // variable declared in function scope.
5585    //
5586    // FIXME: The corresponding case in C++ does not work.  We should instead
5587    // set the semantic DC for an extern local variable to be the innermost
5588    // enclosing namespace, and ensure they are only found by redeclaration
5589    // lookup.
5590    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5591      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5592        Previous.clear();
5593        Previous.addDecl(Prev);
5594        return true;
5595      }
5596    }
5597    return false;
5598  }
5599
5600  // A declaration in the translation unit can conflict with an extern "C"
5601  // declaration.
5602  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5603    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5604
5605  // An extern "C" declaration can conflict with a declaration in the
5606  // translation unit or can be a redeclaration of an extern "C" declaration
5607  // in another scope.
5608  if (isIncompleteDeclExternC(S,ND))
5609    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5610
5611  // Neither global nor extern "C": nothing to do.
5612  return false;
5613}
5614
5615void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5616  // If the decl is already known invalid, don't check it.
5617  if (NewVD->isInvalidDecl())
5618    return;
5619
5620  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5621  QualType T = TInfo->getType();
5622
5623  // Defer checking an 'auto' type until its initializer is attached.
5624  if (T->isUndeducedType())
5625    return;
5626
5627  if (T->isObjCObjectType()) {
5628    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5629      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5630    T = Context.getObjCObjectPointerType(T);
5631    NewVD->setType(T);
5632  }
5633
5634  // Emit an error if an address space was applied to decl with local storage.
5635  // This includes arrays of objects with address space qualifiers, but not
5636  // automatic variables that point to other address spaces.
5637  // ISO/IEC TR 18037 S5.1.2
5638  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5639    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5640    NewVD->setInvalidDecl();
5641    return;
5642  }
5643
5644  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5645  // __constant address space.
5646  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5647      && T.getAddressSpace() != LangAS::opencl_constant
5648      && !T->isSamplerT()){
5649    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5650    NewVD->setInvalidDecl();
5651    return;
5652  }
5653
5654  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5655  // scope.
5656  if ((getLangOpts().OpenCLVersion >= 120)
5657      && NewVD->isStaticLocal()) {
5658    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5659    NewVD->setInvalidDecl();
5660    return;
5661  }
5662
5663  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5664      && !NewVD->hasAttr<BlocksAttr>()) {
5665    if (getLangOpts().getGC() != LangOptions::NonGC)
5666      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5667    else {
5668      assert(!getLangOpts().ObjCAutoRefCount);
5669      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5670    }
5671  }
5672
5673  bool isVM = T->isVariablyModifiedType();
5674  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5675      NewVD->hasAttr<BlocksAttr>())
5676    getCurFunction()->setHasBranchProtectedScope();
5677
5678  if ((isVM && NewVD->hasLinkage()) ||
5679      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5680    bool SizeIsNegative;
5681    llvm::APSInt Oversized;
5682    TypeSourceInfo *FixedTInfo =
5683      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5684                                                    SizeIsNegative, Oversized);
5685    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5686      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5687      // FIXME: This won't give the correct result for
5688      // int a[10][n];
5689      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5690
5691      if (NewVD->isFileVarDecl())
5692        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5693        << SizeRange;
5694      else if (NewVD->isStaticLocal())
5695        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5696        << SizeRange;
5697      else
5698        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5699        << SizeRange;
5700      NewVD->setInvalidDecl();
5701      return;
5702    }
5703
5704    if (FixedTInfo == 0) {
5705      if (NewVD->isFileVarDecl())
5706        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5707      else
5708        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5709      NewVD->setInvalidDecl();
5710      return;
5711    }
5712
5713    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5714    NewVD->setType(FixedTInfo->getType());
5715    NewVD->setTypeSourceInfo(FixedTInfo);
5716  }
5717
5718  if (T->isVoidType()) {
5719    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5720    //                    of objects and functions.
5721    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5722      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5723        << T;
5724      NewVD->setInvalidDecl();
5725      return;
5726    }
5727  }
5728
5729  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5730    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5731    NewVD->setInvalidDecl();
5732    return;
5733  }
5734
5735  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5736    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5737    NewVD->setInvalidDecl();
5738    return;
5739  }
5740
5741  if (NewVD->isConstexpr() && !T->isDependentType() &&
5742      RequireLiteralType(NewVD->getLocation(), T,
5743                         diag::err_constexpr_var_non_literal)) {
5744    // Can't perform this check until the type is deduced.
5745    NewVD->setInvalidDecl();
5746    return;
5747  }
5748}
5749
5750/// \brief Perform semantic checking on a newly-created variable
5751/// declaration.
5752///
5753/// This routine performs all of the type-checking required for a
5754/// variable declaration once it has been built. It is used both to
5755/// check variables after they have been parsed and their declarators
5756/// have been translated into a declaration, and to check variables
5757/// that have been instantiated from a template.
5758///
5759/// Sets NewVD->isInvalidDecl() if an error was encountered.
5760///
5761/// Returns true if the variable declaration is a redeclaration.
5762bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5763                                    LookupResult &Previous,
5764                                    bool IsVariableTemplate) {
5765  CheckVariableDeclarationType(NewVD);
5766
5767  // If the decl is already known invalid, don't check it.
5768  if (NewVD->isInvalidDecl())
5769    return false;
5770
5771  // If we did not find anything by this name, look for a non-visible
5772  // extern "C" declaration with the same name.
5773  //
5774  // The actual standards text here is:
5775  //
5776  // C++11 [basic.link]p6:
5777  //   The name of a function declared in block scope and the name
5778  //   of a variable declared by a block scope extern declaration
5779  //   have linkage. If there is a visible declaration of an entity
5780  //   with linkage having the same name and type, ignoring entities
5781  //   declared outside the innermost enclosing namespace scope, the
5782  //   block scope declaration declares that same entity and
5783  //   receives the linkage of the previous declaration.
5784  //
5785  // C++11 [dcl.array]p3:
5786  //   If there is a preceding declaration of the entity in the same
5787  //   scope in which the bound was specified, an omitted array bound
5788  //   is taken to be the same as in that earlier declaration.
5789  //
5790  // C11 6.2.7p4:
5791  //   For an identifier with internal or external linkage declared
5792  //   in a scope in which a prior declaration of that identifier is
5793  //   visible, if the prior declaration specifies internal or
5794  //   external linkage, the type of the identifier at the later
5795  //   declaration becomes the composite type.
5796  //
5797  // The most important point here is that we're not allowed to
5798  // update our understanding of the type according to declarations
5799  // not in scope (in C++) or not visible (in C).
5800  bool MergeTypeWithPrevious;
5801  if (Previous.empty() &&
5802      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
5803    MergeTypeWithPrevious = false;
5804  else
5805    MergeTypeWithPrevious =
5806        !Previous.isShadowed() &&
5807        (!getLangOpts().CPlusPlus || NewVD->isPreviousDeclInSameBlockScope() ||
5808         !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
5809
5810  // Filter out any non-conflicting previous declarations.
5811  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5812
5813  if (!Previous.empty()) {
5814    MergeVarDecl(NewVD, Previous, IsVariableTemplate, MergeTypeWithPrevious);
5815    return true;
5816  }
5817  return false;
5818}
5819
5820/// \brief Data used with FindOverriddenMethod
5821struct FindOverriddenMethodData {
5822  Sema *S;
5823  CXXMethodDecl *Method;
5824};
5825
5826/// \brief Member lookup function that determines whether a given C++
5827/// method overrides a method in a base class, to be used with
5828/// CXXRecordDecl::lookupInBases().
5829static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5830                                 CXXBasePath &Path,
5831                                 void *UserData) {
5832  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5833
5834  FindOverriddenMethodData *Data
5835    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5836
5837  DeclarationName Name = Data->Method->getDeclName();
5838
5839  // FIXME: Do we care about other names here too?
5840  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5841    // We really want to find the base class destructor here.
5842    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5843    CanQualType CT = Data->S->Context.getCanonicalType(T);
5844
5845    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5846  }
5847
5848  for (Path.Decls = BaseRecord->lookup(Name);
5849       !Path.Decls.empty();
5850       Path.Decls = Path.Decls.slice(1)) {
5851    NamedDecl *D = Path.Decls.front();
5852    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5853      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5854        return true;
5855    }
5856  }
5857
5858  return false;
5859}
5860
5861namespace {
5862  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5863}
5864/// \brief Report an error regarding overriding, along with any relevant
5865/// overriden methods.
5866///
5867/// \param DiagID the primary error to report.
5868/// \param MD the overriding method.
5869/// \param OEK which overrides to include as notes.
5870static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5871                            OverrideErrorKind OEK = OEK_All) {
5872  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5873  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5874                                      E = MD->end_overridden_methods();
5875       I != E; ++I) {
5876    // This check (& the OEK parameter) could be replaced by a predicate, but
5877    // without lambdas that would be overkill. This is still nicer than writing
5878    // out the diag loop 3 times.
5879    if ((OEK == OEK_All) ||
5880        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5881        (OEK == OEK_Deleted && (*I)->isDeleted()))
5882      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5883  }
5884}
5885
5886/// AddOverriddenMethods - See if a method overrides any in the base classes,
5887/// and if so, check that it's a valid override and remember it.
5888bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5889  // Look for virtual methods in base classes that this method might override.
5890  CXXBasePaths Paths;
5891  FindOverriddenMethodData Data;
5892  Data.Method = MD;
5893  Data.S = this;
5894  bool hasDeletedOverridenMethods = false;
5895  bool hasNonDeletedOverridenMethods = false;
5896  bool AddedAny = false;
5897  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5898    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5899         E = Paths.found_decls_end(); I != E; ++I) {
5900      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5901        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5902        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5903            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5904            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5905            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5906          hasDeletedOverridenMethods |= OldMD->isDeleted();
5907          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5908          AddedAny = true;
5909        }
5910      }
5911    }
5912  }
5913
5914  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5915    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5916  }
5917  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5918    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5919  }
5920
5921  return AddedAny;
5922}
5923
5924namespace {
5925  // Struct for holding all of the extra arguments needed by
5926  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5927  struct ActOnFDArgs {
5928    Scope *S;
5929    Declarator &D;
5930    MultiTemplateParamsArg TemplateParamLists;
5931    bool AddToScope;
5932  };
5933}
5934
5935namespace {
5936
5937// Callback to only accept typo corrections that have a non-zero edit distance.
5938// Also only accept corrections that have the same parent decl.
5939class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5940 public:
5941  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5942                            CXXRecordDecl *Parent)
5943      : Context(Context), OriginalFD(TypoFD),
5944        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5945
5946  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5947    if (candidate.getEditDistance() == 0)
5948      return false;
5949
5950    SmallVector<unsigned, 1> MismatchedParams;
5951    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5952                                          CDeclEnd = candidate.end();
5953         CDecl != CDeclEnd; ++CDecl) {
5954      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5955
5956      if (FD && !FD->hasBody() &&
5957          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5958        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5959          CXXRecordDecl *Parent = MD->getParent();
5960          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5961            return true;
5962        } else if (!ExpectedParent) {
5963          return true;
5964        }
5965      }
5966    }
5967
5968    return false;
5969  }
5970
5971 private:
5972  ASTContext &Context;
5973  FunctionDecl *OriginalFD;
5974  CXXRecordDecl *ExpectedParent;
5975};
5976
5977}
5978
5979/// \brief Generate diagnostics for an invalid function redeclaration.
5980///
5981/// This routine handles generating the diagnostic messages for an invalid
5982/// function redeclaration, including finding possible similar declarations
5983/// or performing typo correction if there are no previous declarations with
5984/// the same name.
5985///
5986/// Returns a NamedDecl iff typo correction was performed and substituting in
5987/// the new declaration name does not cause new errors.
5988static NamedDecl *DiagnoseInvalidRedeclaration(
5989    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5990    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
5991  NamedDecl *Result = NULL;
5992  DeclarationName Name = NewFD->getDeclName();
5993  DeclContext *NewDC = NewFD->getDeclContext();
5994  SmallVector<unsigned, 1> MismatchedParams;
5995  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5996  TypoCorrection Correction;
5997  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
5998                                   : diag::err_member_decl_does_not_match;
5999  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6000                    IsLocalFriend ? Sema::LookupLocalFriendName
6001                                  : Sema::LookupOrdinaryName,
6002                    Sema::ForRedeclaration);
6003
6004  NewFD->setInvalidDecl();
6005  if (IsLocalFriend)
6006    SemaRef.LookupName(Prev, S);
6007  else
6008    SemaRef.LookupQualifiedName(Prev, NewDC);
6009  assert(!Prev.isAmbiguous() &&
6010         "Cannot have an ambiguity in previous-declaration lookup");
6011  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6012  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6013                                      MD ? MD->getParent() : 0);
6014  if (!Prev.empty()) {
6015    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6016         Func != FuncEnd; ++Func) {
6017      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6018      if (FD &&
6019          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6020        // Add 1 to the index so that 0 can mean the mismatch didn't
6021        // involve a parameter
6022        unsigned ParamNum =
6023            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6024        NearMatches.push_back(std::make_pair(FD, ParamNum));
6025      }
6026    }
6027  // If the qualified name lookup yielded nothing, try typo correction
6028  } else if ((Correction = SemaRef.CorrectTypo(
6029                 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 0,
6030                 Validator, IsLocalFriend ? 0 : NewDC))) {
6031    // Trap errors.
6032    Sema::SFINAETrap Trap(SemaRef);
6033
6034    // Set up everything for the call to ActOnFunctionDeclarator
6035    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6036                              ExtraArgs.D.getIdentifierLoc());
6037    Previous.clear();
6038    Previous.setLookupName(Correction.getCorrection());
6039    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6040                                    CDeclEnd = Correction.end();
6041         CDecl != CDeclEnd; ++CDecl) {
6042      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6043      if (FD && !FD->hasBody() &&
6044          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6045        Previous.addDecl(FD);
6046      }
6047    }
6048    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6049    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6050    // pieces need to verify the typo-corrected C++ declaraction and hopefully
6051    // eliminate the need for the parameter pack ExtraArgs.
6052    Result = SemaRef.ActOnFunctionDeclarator(
6053        ExtraArgs.S, ExtraArgs.D,
6054        Correction.getCorrectionDecl()->getDeclContext(),
6055        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6056        ExtraArgs.AddToScope);
6057    if (Trap.hasErrorOccurred()) {
6058      // Pretend the typo correction never occurred
6059      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6060                                ExtraArgs.D.getIdentifierLoc());
6061      ExtraArgs.D.setRedeclaration(wasRedeclaration);
6062      Previous.clear();
6063      Previous.setLookupName(Name);
6064      Result = NULL;
6065    } else {
6066      for (LookupResult::iterator Func = Previous.begin(),
6067                               FuncEnd = Previous.end();
6068           Func != FuncEnd; ++Func) {
6069        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
6070          NearMatches.push_back(std::make_pair(FD, 0));
6071      }
6072    }
6073    if (NearMatches.empty()) {
6074      // Ignore the correction if it didn't yield any close FunctionDecl matches
6075      Correction = TypoCorrection();
6076    } else {
6077      DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend_suggest
6078                              : diag::err_member_decl_does_not_match_suggest;
6079    }
6080  }
6081
6082  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6083  if (Correction) {
6084    // FIXME: use Correction.getCorrectionRange() instead of computing the range
6085    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
6086    // turn causes the correction to fully qualify the name. If we fix
6087    // CorrectTypo to minimally qualify then this change should be good.
6088    SourceRange FixItLoc(NewFD->getLocation());
6089    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
6090    if (Correction.getCorrectionSpecifier() && SS.isValid())
6091      FixItLoc.setBegin(SS.getBeginLoc());
6092    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
6093        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
6094        << IsDefinition
6095        << FixItHint::CreateReplacement(
6096            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
6097  } else {
6098    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6099        << Name << NewDC << IsDefinition << NewFD->getLocation();
6100  }
6101
6102  bool NewFDisConst = false;
6103  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6104    NewFDisConst = NewMD->isConst();
6105
6106  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6107       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6108       NearMatch != NearMatchEnd; ++NearMatch) {
6109    FunctionDecl *FD = NearMatch->first;
6110    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6111    bool FDisConst = MD && MD->isConst();
6112    bool IsMember = MD || !IsLocalFriend;
6113
6114    if (unsigned Idx = NearMatch->second) {
6115      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6116      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6117      if (Loc.isInvalid()) Loc = FD->getLocation();
6118      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6119                                 : diag::note_local_decl_close_param_match)
6120        << Idx << FDParam->getType()
6121        << NewFD->getParamDecl(Idx - 1)->getType();
6122    } else if (Correction) {
6123      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
6124          << Correction.getQuoted(SemaRef.getLangOpts());
6125    } else if (FDisConst != NewFDisConst) {
6126      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6127          << NewFDisConst << FD->getSourceRange().getEnd();
6128    } else
6129      SemaRef.Diag(FD->getLocation(),
6130                   IsMember ? diag::note_member_def_close_match
6131                            : diag::note_local_decl_close_match);
6132  }
6133  return Result;
6134}
6135
6136static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6137                                                          Declarator &D) {
6138  switch (D.getDeclSpec().getStorageClassSpec()) {
6139  default: llvm_unreachable("Unknown storage class!");
6140  case DeclSpec::SCS_auto:
6141  case DeclSpec::SCS_register:
6142  case DeclSpec::SCS_mutable:
6143    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6144                 diag::err_typecheck_sclass_func);
6145    D.setInvalidType();
6146    break;
6147  case DeclSpec::SCS_unspecified: break;
6148  case DeclSpec::SCS_extern:
6149    if (D.getDeclSpec().isExternInLinkageSpec())
6150      return SC_None;
6151    return SC_Extern;
6152  case DeclSpec::SCS_static: {
6153    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6154      // C99 6.7.1p5:
6155      //   The declaration of an identifier for a function that has
6156      //   block scope shall have no explicit storage-class specifier
6157      //   other than extern
6158      // See also (C++ [dcl.stc]p4).
6159      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6160                   diag::err_static_block_func);
6161      break;
6162    } else
6163      return SC_Static;
6164  }
6165  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6166  }
6167
6168  // No explicit storage class has already been returned
6169  return SC_None;
6170}
6171
6172static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6173                                           DeclContext *DC, QualType &R,
6174                                           TypeSourceInfo *TInfo,
6175                                           FunctionDecl::StorageClass SC,
6176                                           bool &IsVirtualOkay) {
6177  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6178  DeclarationName Name = NameInfo.getName();
6179
6180  FunctionDecl *NewFD = 0;
6181  bool isInline = D.getDeclSpec().isInlineSpecified();
6182
6183  if (!SemaRef.getLangOpts().CPlusPlus) {
6184    // Determine whether the function was written with a
6185    // prototype. This true when:
6186    //   - there is a prototype in the declarator, or
6187    //   - the type R of the function is some kind of typedef or other reference
6188    //     to a type name (which eventually refers to a function type).
6189    bool HasPrototype =
6190      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6191      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6192
6193    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6194                                 D.getLocStart(), NameInfo, R,
6195                                 TInfo, SC, isInline,
6196                                 HasPrototype, false);
6197    if (D.isInvalidType())
6198      NewFD->setInvalidDecl();
6199
6200    // Set the lexical context.
6201    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6202
6203    return NewFD;
6204  }
6205
6206  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6207  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6208
6209  // Check that the return type is not an abstract class type.
6210  // For record types, this is done by the AbstractClassUsageDiagnoser once
6211  // the class has been completely parsed.
6212  if (!DC->isRecord() &&
6213      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6214                                     R->getAs<FunctionType>()->getResultType(),
6215                                     diag::err_abstract_type_in_decl,
6216                                     SemaRef.AbstractReturnType))
6217    D.setInvalidType();
6218
6219  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6220    // This is a C++ constructor declaration.
6221    assert(DC->isRecord() &&
6222           "Constructors can only be declared in a member context");
6223
6224    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6225    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6226                                      D.getLocStart(), NameInfo,
6227                                      R, TInfo, isExplicit, isInline,
6228                                      /*isImplicitlyDeclared=*/false,
6229                                      isConstexpr);
6230
6231  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6232    // This is a C++ destructor declaration.
6233    if (DC->isRecord()) {
6234      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6235      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6236      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6237                                        SemaRef.Context, Record,
6238                                        D.getLocStart(),
6239                                        NameInfo, R, TInfo, isInline,
6240                                        /*isImplicitlyDeclared=*/false);
6241
6242      // If the class is complete, then we now create the implicit exception
6243      // specification. If the class is incomplete or dependent, we can't do
6244      // it yet.
6245      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6246          Record->getDefinition() && !Record->isBeingDefined() &&
6247          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6248        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6249      }
6250
6251      // The Microsoft ABI requires that we perform the destructor body
6252      // checks (i.e. operator delete() lookup) at every declaration, as
6253      // any translation unit may need to emit a deleting destructor.
6254      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6255          !Record->isDependentType() && Record->getDefinition() &&
6256          !Record->isBeingDefined()) {
6257        SemaRef.CheckDestructor(NewDD);
6258      }
6259
6260      IsVirtualOkay = true;
6261      return NewDD;
6262
6263    } else {
6264      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6265      D.setInvalidType();
6266
6267      // Create a FunctionDecl to satisfy the function definition parsing
6268      // code path.
6269      return FunctionDecl::Create(SemaRef.Context, DC,
6270                                  D.getLocStart(),
6271                                  D.getIdentifierLoc(), Name, R, TInfo,
6272                                  SC, isInline,
6273                                  /*hasPrototype=*/true, isConstexpr);
6274    }
6275
6276  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6277    if (!DC->isRecord()) {
6278      SemaRef.Diag(D.getIdentifierLoc(),
6279           diag::err_conv_function_not_member);
6280      return 0;
6281    }
6282
6283    SemaRef.CheckConversionDeclarator(D, R, SC);
6284    IsVirtualOkay = true;
6285    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6286                                     D.getLocStart(), NameInfo,
6287                                     R, TInfo, isInline, isExplicit,
6288                                     isConstexpr, SourceLocation());
6289
6290  } else if (DC->isRecord()) {
6291    // If the name of the function is the same as the name of the record,
6292    // then this must be an invalid constructor that has a return type.
6293    // (The parser checks for a return type and makes the declarator a
6294    // constructor if it has no return type).
6295    if (Name.getAsIdentifierInfo() &&
6296        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6297      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6298        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6299        << SourceRange(D.getIdentifierLoc());
6300      return 0;
6301    }
6302
6303    // This is a C++ method declaration.
6304    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6305                                               cast<CXXRecordDecl>(DC),
6306                                               D.getLocStart(), NameInfo, R,
6307                                               TInfo, SC, isInline,
6308                                               isConstexpr, SourceLocation());
6309    IsVirtualOkay = !Ret->isStatic();
6310    return Ret;
6311  } else {
6312    // Determine whether the function was written with a
6313    // prototype. This true when:
6314    //   - we're in C++ (where every function has a prototype),
6315    return FunctionDecl::Create(SemaRef.Context, DC,
6316                                D.getLocStart(),
6317                                NameInfo, R, TInfo, SC, isInline,
6318                                true/*HasPrototype*/, isConstexpr);
6319  }
6320}
6321
6322void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6323  // In C++, the empty parameter-type-list must be spelled "void"; a
6324  // typedef of void is not permitted.
6325  if (getLangOpts().CPlusPlus &&
6326      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6327    bool IsTypeAlias = false;
6328    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6329      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6330    else if (const TemplateSpecializationType *TST =
6331               Param->getType()->getAs<TemplateSpecializationType>())
6332      IsTypeAlias = TST->isTypeAlias();
6333    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6334      << IsTypeAlias;
6335  }
6336}
6337
6338enum OpenCLParamType {
6339  ValidKernelParam,
6340  PtrPtrKernelParam,
6341  PtrKernelParam,
6342  InvalidKernelParam,
6343  RecordKernelParam
6344};
6345
6346static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6347  if (PT->isPointerType()) {
6348    QualType PointeeType = PT->getPointeeType();
6349    return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6350  }
6351
6352  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6353  // be used as builtin types.
6354
6355  if (PT->isImageType())
6356    return PtrKernelParam;
6357
6358  if (PT->isBooleanType())
6359    return InvalidKernelParam;
6360
6361  if (PT->isEventT())
6362    return InvalidKernelParam;
6363
6364  if (PT->isHalfType())
6365    return InvalidKernelParam;
6366
6367  if (PT->isRecordType())
6368    return RecordKernelParam;
6369
6370  return ValidKernelParam;
6371}
6372
6373static void checkIsValidOpenCLKernelParameter(
6374  Sema &S,
6375  Declarator &D,
6376  ParmVarDecl *Param,
6377  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6378  QualType PT = Param->getType();
6379
6380  // Cache the valid types we encounter to avoid rechecking structs that are
6381  // used again
6382  if (ValidTypes.count(PT.getTypePtr()))
6383    return;
6384
6385  switch (getOpenCLKernelParameterType(PT)) {
6386  case PtrPtrKernelParam:
6387    // OpenCL v1.2 s6.9.a:
6388    // A kernel function argument cannot be declared as a
6389    // pointer to a pointer type.
6390    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6391    D.setInvalidType();
6392    return;
6393
6394    // OpenCL v1.2 s6.9.k:
6395    // Arguments to kernel functions in a program cannot be declared with the
6396    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6397    // uintptr_t or a struct and/or union that contain fields declared to be
6398    // one of these built-in scalar types.
6399
6400  case InvalidKernelParam:
6401    // OpenCL v1.2 s6.8 n:
6402    // A kernel function argument cannot be declared
6403    // of event_t type.
6404    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6405    D.setInvalidType();
6406    return;
6407
6408  case PtrKernelParam:
6409  case ValidKernelParam:
6410    ValidTypes.insert(PT.getTypePtr());
6411    return;
6412
6413  case RecordKernelParam:
6414    break;
6415  }
6416
6417  // Track nested structs we will inspect
6418  SmallVector<const Decl *, 4> VisitStack;
6419
6420  // Track where we are in the nested structs. Items will migrate from
6421  // VisitStack to HistoryStack as we do the DFS for bad field.
6422  SmallVector<const FieldDecl *, 4> HistoryStack;
6423  HistoryStack.push_back((const FieldDecl *) 0);
6424
6425  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6426  VisitStack.push_back(PD);
6427
6428  assert(VisitStack.back() && "First decl null?");
6429
6430  do {
6431    const Decl *Next = VisitStack.pop_back_val();
6432    if (!Next) {
6433      assert(!HistoryStack.empty());
6434      // Found a marker, we have gone up a level
6435      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6436        ValidTypes.insert(Hist->getType().getTypePtr());
6437
6438      continue;
6439    }
6440
6441    // Adds everything except the original parameter declaration (which is not a
6442    // field itself) to the history stack.
6443    const RecordDecl *RD;
6444    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6445      HistoryStack.push_back(Field);
6446      RD = Field->getType()->castAs<RecordType>()->getDecl();
6447    } else {
6448      RD = cast<RecordDecl>(Next);
6449    }
6450
6451    // Add a null marker so we know when we've gone back up a level
6452    VisitStack.push_back((const Decl *) 0);
6453
6454    for (RecordDecl::field_iterator I = RD->field_begin(),
6455           E = RD->field_end(); I != E; ++I) {
6456      const FieldDecl *FD = *I;
6457      QualType QT = FD->getType();
6458
6459      if (ValidTypes.count(QT.getTypePtr()))
6460        continue;
6461
6462      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6463      if (ParamType == ValidKernelParam)
6464        continue;
6465
6466      if (ParamType == RecordKernelParam) {
6467        VisitStack.push_back(FD);
6468        continue;
6469      }
6470
6471      // OpenCL v1.2 s6.9.p:
6472      // Arguments to kernel functions that are declared to be a struct or union
6473      // do not allow OpenCL objects to be passed as elements of the struct or
6474      // union.
6475      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6476        S.Diag(Param->getLocation(),
6477               diag::err_record_with_pointers_kernel_param)
6478          << PT->isUnionType()
6479          << PT;
6480      } else {
6481        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6482      }
6483
6484      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6485        << PD->getDeclName();
6486
6487      // We have an error, now let's go back up through history and show where
6488      // the offending field came from
6489      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6490             E = HistoryStack.end(); I != E; ++I) {
6491        const FieldDecl *OuterField = *I;
6492        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6493          << OuterField->getType();
6494      }
6495
6496      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6497        << QT->isPointerType()
6498        << QT;
6499      D.setInvalidType();
6500      return;
6501    }
6502  } while (!VisitStack.empty());
6503}
6504
6505NamedDecl*
6506Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6507                              TypeSourceInfo *TInfo, LookupResult &Previous,
6508                              MultiTemplateParamsArg TemplateParamLists,
6509                              bool &AddToScope) {
6510  QualType R = TInfo->getType();
6511
6512  assert(R.getTypePtr()->isFunctionType());
6513
6514  // TODO: consider using NameInfo for diagnostic.
6515  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6516  DeclarationName Name = NameInfo.getName();
6517  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6518
6519  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6520    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6521         diag::err_invalid_thread)
6522      << DeclSpec::getSpecifierName(TSCS);
6523
6524  bool isFriend = false;
6525  FunctionTemplateDecl *FunctionTemplate = 0;
6526  bool isExplicitSpecialization = false;
6527  bool isFunctionTemplateSpecialization = false;
6528
6529  bool isDependentClassScopeExplicitSpecialization = false;
6530  bool HasExplicitTemplateArgs = false;
6531  TemplateArgumentListInfo TemplateArgs;
6532
6533  bool isVirtualOkay = false;
6534
6535  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6536                                              isVirtualOkay);
6537  if (!NewFD) return 0;
6538
6539  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6540    NewFD->setTopLevelDeclInObjCContainer();
6541
6542  if (getLangOpts().CPlusPlus) {
6543    bool isInline = D.getDeclSpec().isInlineSpecified();
6544    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6545    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6546    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6547    isFriend = D.getDeclSpec().isFriendSpecified();
6548    if (isFriend && !isInline && D.isFunctionDefinition()) {
6549      // C++ [class.friend]p5
6550      //   A function can be defined in a friend declaration of a
6551      //   class . . . . Such a function is implicitly inline.
6552      NewFD->setImplicitlyInline();
6553    }
6554
6555    // If this is a method defined in an __interface, and is not a constructor
6556    // or an overloaded operator, then set the pure flag (isVirtual will already
6557    // return true).
6558    if (const CXXRecordDecl *Parent =
6559          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6560      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6561        NewFD->setPure(true);
6562    }
6563
6564    SetNestedNameSpecifier(NewFD, D);
6565    isExplicitSpecialization = false;
6566    isFunctionTemplateSpecialization = false;
6567    if (D.isInvalidType())
6568      NewFD->setInvalidDecl();
6569
6570    // Set the lexical context. If the declarator has a C++
6571    // scope specifier, or is the object of a friend declaration, the
6572    // lexical context will be different from the semantic context.
6573    NewFD->setLexicalDeclContext(CurContext);
6574
6575    // Match up the template parameter lists with the scope specifier, then
6576    // determine whether we have a template or a template specialization.
6577    bool Invalid = false;
6578    if (TemplateParameterList *TemplateParams =
6579            MatchTemplateParametersToScopeSpecifier(
6580                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6581                D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6582                isExplicitSpecialization, Invalid)) {
6583      if (TemplateParams->size() > 0) {
6584        // This is a function template
6585
6586        // Check that we can declare a template here.
6587        if (CheckTemplateDeclScope(S, TemplateParams))
6588          return 0;
6589
6590        // A destructor cannot be a template.
6591        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6592          Diag(NewFD->getLocation(), diag::err_destructor_template);
6593          return 0;
6594        }
6595
6596        // If we're adding a template to a dependent context, we may need to
6597        // rebuilding some of the types used within the template parameter list,
6598        // now that we know what the current instantiation is.
6599        if (DC->isDependentContext()) {
6600          ContextRAII SavedContext(*this, DC);
6601          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6602            Invalid = true;
6603        }
6604
6605
6606        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6607                                                        NewFD->getLocation(),
6608                                                        Name, TemplateParams,
6609                                                        NewFD);
6610        FunctionTemplate->setLexicalDeclContext(CurContext);
6611        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6612
6613        // For source fidelity, store the other template param lists.
6614        if (TemplateParamLists.size() > 1) {
6615          NewFD->setTemplateParameterListsInfo(Context,
6616                                               TemplateParamLists.size() - 1,
6617                                               TemplateParamLists.data());
6618        }
6619      } else {
6620        // This is a function template specialization.
6621        isFunctionTemplateSpecialization = true;
6622        // For source fidelity, store all the template param lists.
6623        NewFD->setTemplateParameterListsInfo(Context,
6624                                             TemplateParamLists.size(),
6625                                             TemplateParamLists.data());
6626
6627        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6628        if (isFriend) {
6629          // We want to remove the "template<>", found here.
6630          SourceRange RemoveRange = TemplateParams->getSourceRange();
6631
6632          // If we remove the template<> and the name is not a
6633          // template-id, we're actually silently creating a problem:
6634          // the friend declaration will refer to an untemplated decl,
6635          // and clearly the user wants a template specialization.  So
6636          // we need to insert '<>' after the name.
6637          SourceLocation InsertLoc;
6638          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6639            InsertLoc = D.getName().getSourceRange().getEnd();
6640            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6641          }
6642
6643          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6644            << Name << RemoveRange
6645            << FixItHint::CreateRemoval(RemoveRange)
6646            << FixItHint::CreateInsertion(InsertLoc, "<>");
6647        }
6648      }
6649    }
6650    else {
6651      // All template param lists were matched against the scope specifier:
6652      // this is NOT (an explicit specialization of) a template.
6653      if (TemplateParamLists.size() > 0)
6654        // For source fidelity, store all the template param lists.
6655        NewFD->setTemplateParameterListsInfo(Context,
6656                                             TemplateParamLists.size(),
6657                                             TemplateParamLists.data());
6658    }
6659
6660    if (Invalid) {
6661      NewFD->setInvalidDecl();
6662      if (FunctionTemplate)
6663        FunctionTemplate->setInvalidDecl();
6664    }
6665
6666    // C++ [dcl.fct.spec]p5:
6667    //   The virtual specifier shall only be used in declarations of
6668    //   nonstatic class member functions that appear within a
6669    //   member-specification of a class declaration; see 10.3.
6670    //
6671    if (isVirtual && !NewFD->isInvalidDecl()) {
6672      if (!isVirtualOkay) {
6673        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6674             diag::err_virtual_non_function);
6675      } else if (!CurContext->isRecord()) {
6676        // 'virtual' was specified outside of the class.
6677        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6678             diag::err_virtual_out_of_class)
6679          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6680      } else if (NewFD->getDescribedFunctionTemplate()) {
6681        // C++ [temp.mem]p3:
6682        //  A member function template shall not be virtual.
6683        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6684             diag::err_virtual_member_function_template)
6685          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6686      } else {
6687        // Okay: Add virtual to the method.
6688        NewFD->setVirtualAsWritten(true);
6689      }
6690
6691      if (getLangOpts().CPlusPlus1y &&
6692          NewFD->getResultType()->isUndeducedType())
6693        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6694    }
6695
6696    if (getLangOpts().CPlusPlus1y && NewFD->isDependentContext() &&
6697        NewFD->getResultType()->isUndeducedType()) {
6698      // If the function template is referenced directly (for instance, as a
6699      // member of the current instantiation), pretend it has a dependent type.
6700      // This is not really justified by the standard, but is the only sane
6701      // thing to do.
6702      const FunctionProtoType *FPT =
6703          NewFD->getType()->castAs<FunctionProtoType>();
6704      QualType Result = SubstAutoType(FPT->getResultType(),
6705                                       Context.DependentTy);
6706      NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
6707                                             FPT->getExtProtoInfo()));
6708    }
6709
6710    // C++ [dcl.fct.spec]p3:
6711    //  The inline specifier shall not appear on a block scope function
6712    //  declaration.
6713    if (isInline && !NewFD->isInvalidDecl()) {
6714      if (CurContext->isFunctionOrMethod()) {
6715        // 'inline' is not allowed on block scope function declaration.
6716        Diag(D.getDeclSpec().getInlineSpecLoc(),
6717             diag::err_inline_declaration_block_scope) << Name
6718          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6719      }
6720    }
6721
6722    // C++ [dcl.fct.spec]p6:
6723    //  The explicit specifier shall be used only in the declaration of a
6724    //  constructor or conversion function within its class definition;
6725    //  see 12.3.1 and 12.3.2.
6726    if (isExplicit && !NewFD->isInvalidDecl()) {
6727      if (!CurContext->isRecord()) {
6728        // 'explicit' was specified outside of the class.
6729        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6730             diag::err_explicit_out_of_class)
6731          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6732      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6733                 !isa<CXXConversionDecl>(NewFD)) {
6734        // 'explicit' was specified on a function that wasn't a constructor
6735        // or conversion function.
6736        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6737             diag::err_explicit_non_ctor_or_conv_function)
6738          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6739      }
6740    }
6741
6742    if (isConstexpr) {
6743      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6744      // are implicitly inline.
6745      NewFD->setImplicitlyInline();
6746
6747      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6748      // be either constructors or to return a literal type. Therefore,
6749      // destructors cannot be declared constexpr.
6750      if (isa<CXXDestructorDecl>(NewFD))
6751        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6752    }
6753
6754    // If __module_private__ was specified, mark the function accordingly.
6755    if (D.getDeclSpec().isModulePrivateSpecified()) {
6756      if (isFunctionTemplateSpecialization) {
6757        SourceLocation ModulePrivateLoc
6758          = D.getDeclSpec().getModulePrivateSpecLoc();
6759        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6760          << 0
6761          << FixItHint::CreateRemoval(ModulePrivateLoc);
6762      } else {
6763        NewFD->setModulePrivate();
6764        if (FunctionTemplate)
6765          FunctionTemplate->setModulePrivate();
6766      }
6767    }
6768
6769    if (isFriend) {
6770      if (FunctionTemplate) {
6771        FunctionTemplate->setObjectOfFriendDecl();
6772        FunctionTemplate->setAccess(AS_public);
6773      }
6774      NewFD->setObjectOfFriendDecl();
6775      NewFD->setAccess(AS_public);
6776    }
6777
6778    // If a function is defined as defaulted or deleted, mark it as such now.
6779    switch (D.getFunctionDefinitionKind()) {
6780      case FDK_Declaration:
6781      case FDK_Definition:
6782        break;
6783
6784      case FDK_Defaulted:
6785        NewFD->setDefaulted();
6786        break;
6787
6788      case FDK_Deleted:
6789        NewFD->setDeletedAsWritten();
6790        break;
6791    }
6792
6793    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6794        D.isFunctionDefinition()) {
6795      // C++ [class.mfct]p2:
6796      //   A member function may be defined (8.4) in its class definition, in
6797      //   which case it is an inline member function (7.1.2)
6798      NewFD->setImplicitlyInline();
6799    }
6800
6801    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6802        !CurContext->isRecord()) {
6803      // C++ [class.static]p1:
6804      //   A data or function member of a class may be declared static
6805      //   in a class definition, in which case it is a static member of
6806      //   the class.
6807
6808      // Complain about the 'static' specifier if it's on an out-of-line
6809      // member function definition.
6810      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6811           diag::err_static_out_of_line)
6812        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6813    }
6814
6815    // C++11 [except.spec]p15:
6816    //   A deallocation function with no exception-specification is treated
6817    //   as if it were specified with noexcept(true).
6818    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6819    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6820         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6821        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6822      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6823      EPI.ExceptionSpecType = EST_BasicNoexcept;
6824      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6825                                             FPT->getArgTypes(), EPI));
6826    }
6827  }
6828
6829  // Filter out previous declarations that don't match the scope.
6830  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6831                       isExplicitSpecialization ||
6832                       isFunctionTemplateSpecialization);
6833
6834  // Handle GNU asm-label extension (encoded as an attribute).
6835  if (Expr *E = (Expr*) D.getAsmLabel()) {
6836    // The parser guarantees this is a string.
6837    StringLiteral *SE = cast<StringLiteral>(E);
6838    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6839                                                SE->getString()));
6840  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6841    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6842      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6843    if (I != ExtnameUndeclaredIdentifiers.end()) {
6844      NewFD->addAttr(I->second);
6845      ExtnameUndeclaredIdentifiers.erase(I);
6846    }
6847  }
6848
6849  // Copy the parameter declarations from the declarator D to the function
6850  // declaration NewFD, if they are available.  First scavenge them into Params.
6851  SmallVector<ParmVarDecl*, 16> Params;
6852  if (D.isFunctionDeclarator()) {
6853    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6854
6855    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6856    // function that takes no arguments, not a function that takes a
6857    // single void argument.
6858    // We let through "const void" here because Sema::GetTypeForDeclarator
6859    // already checks for that case.
6860    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6861        FTI.ArgInfo[0].Param &&
6862        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6863      // Empty arg list, don't push any params.
6864      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6865    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6866      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6867        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6868        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6869        Param->setDeclContext(NewFD);
6870        Params.push_back(Param);
6871
6872        if (Param->isInvalidDecl())
6873          NewFD->setInvalidDecl();
6874      }
6875    }
6876
6877  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6878    // When we're declaring a function with a typedef, typeof, etc as in the
6879    // following example, we'll need to synthesize (unnamed)
6880    // parameters for use in the declaration.
6881    //
6882    // @code
6883    // typedef void fn(int);
6884    // fn f;
6885    // @endcode
6886
6887    // Synthesize a parameter for each argument type.
6888    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6889         AE = FT->arg_type_end(); AI != AE; ++AI) {
6890      ParmVarDecl *Param =
6891        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6892      Param->setScopeInfo(0, Params.size());
6893      Params.push_back(Param);
6894    }
6895  } else {
6896    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6897           "Should not need args for typedef of non-prototype fn");
6898  }
6899
6900  // Finally, we know we have the right number of parameters, install them.
6901  NewFD->setParams(Params);
6902
6903  // Find all anonymous symbols defined during the declaration of this function
6904  // and add to NewFD. This lets us track decls such 'enum Y' in:
6905  //
6906  //   void f(enum Y {AA} x) {}
6907  //
6908  // which would otherwise incorrectly end up in the translation unit scope.
6909  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6910  DeclsInPrototypeScope.clear();
6911
6912  if (D.getDeclSpec().isNoreturnSpecified())
6913    NewFD->addAttr(
6914        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6915                                       Context));
6916
6917  // Process the non-inheritable attributes on this declaration.
6918  ProcessDeclAttributes(S, NewFD, D,
6919                        /*NonInheritable=*/true, /*Inheritable=*/false);
6920
6921  // Functions returning a variably modified type violate C99 6.7.5.2p2
6922  // because all functions have linkage.
6923  if (!NewFD->isInvalidDecl() &&
6924      NewFD->getResultType()->isVariablyModifiedType()) {
6925    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6926    NewFD->setInvalidDecl();
6927  }
6928
6929  // Handle attributes.
6930  ProcessDeclAttributes(S, NewFD, D,
6931                        /*NonInheritable=*/false, /*Inheritable=*/true);
6932
6933  QualType RetType = NewFD->getResultType();
6934  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6935      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6936  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6937      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6938    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6939    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6940      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6941                                                        Context));
6942    }
6943  }
6944
6945  if (!getLangOpts().CPlusPlus) {
6946    // Perform semantic checking on the function declaration.
6947    bool isExplicitSpecialization=false;
6948    if (!NewFD->isInvalidDecl() && NewFD->isMain())
6949      CheckMain(NewFD, D.getDeclSpec());
6950
6951    if (!NewFD->isInvalidDecl())
6952      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6953                                                  isExplicitSpecialization));
6954    else if (!Previous.empty())
6955      // Make graceful recovery from an invalid redeclaration.
6956      D.setRedeclaration(true);
6957    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6958            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6959           "previous declaration set still overloaded");
6960  } else {
6961    // If the declarator is a template-id, translate the parser's template
6962    // argument list into our AST format.
6963    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6964      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6965      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6966      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6967      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6968                                         TemplateId->NumArgs);
6969      translateTemplateArguments(TemplateArgsPtr,
6970                                 TemplateArgs);
6971
6972      HasExplicitTemplateArgs = true;
6973
6974      if (NewFD->isInvalidDecl()) {
6975        HasExplicitTemplateArgs = false;
6976      } else if (FunctionTemplate) {
6977        // Function template with explicit template arguments.
6978        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6979          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6980
6981        HasExplicitTemplateArgs = false;
6982      } else if (!isFunctionTemplateSpecialization &&
6983                 !D.getDeclSpec().isFriendSpecified()) {
6984        // We have encountered something that the user meant to be a
6985        // specialization (because it has explicitly-specified template
6986        // arguments) but that was not introduced with a "template<>" (or had
6987        // too few of them).
6988        // FIXME: Differentiate between attempts for explicit instantiations
6989        // (starting with "template") and the rest.
6990        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6991          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6992          << FixItHint::CreateInsertion(
6993                                    D.getDeclSpec().getLocStart(),
6994                                        "template<> ");
6995        isFunctionTemplateSpecialization = true;
6996      } else {
6997        // "friend void foo<>(int);" is an implicit specialization decl.
6998        isFunctionTemplateSpecialization = true;
6999      }
7000    } else if (isFriend && isFunctionTemplateSpecialization) {
7001      // This combination is only possible in a recovery case;  the user
7002      // wrote something like:
7003      //   template <> friend void foo(int);
7004      // which we're recovering from as if the user had written:
7005      //   friend void foo<>(int);
7006      // Go ahead and fake up a template id.
7007      HasExplicitTemplateArgs = true;
7008        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7009      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7010    }
7011
7012    // If it's a friend (and only if it's a friend), it's possible
7013    // that either the specialized function type or the specialized
7014    // template is dependent, and therefore matching will fail.  In
7015    // this case, don't check the specialization yet.
7016    bool InstantiationDependent = false;
7017    if (isFunctionTemplateSpecialization && isFriend &&
7018        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7019         TemplateSpecializationType::anyDependentTemplateArguments(
7020            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7021            InstantiationDependent))) {
7022      assert(HasExplicitTemplateArgs &&
7023             "friend function specialization without template args");
7024      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7025                                                       Previous))
7026        NewFD->setInvalidDecl();
7027    } else if (isFunctionTemplateSpecialization) {
7028      if (CurContext->isDependentContext() && CurContext->isRecord()
7029          && !isFriend) {
7030        isDependentClassScopeExplicitSpecialization = true;
7031        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7032          diag::ext_function_specialization_in_class :
7033          diag::err_function_specialization_in_class)
7034          << NewFD->getDeclName();
7035      } else if (CheckFunctionTemplateSpecialization(NewFD,
7036                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7037                                                     Previous))
7038        NewFD->setInvalidDecl();
7039
7040      // C++ [dcl.stc]p1:
7041      //   A storage-class-specifier shall not be specified in an explicit
7042      //   specialization (14.7.3)
7043      FunctionTemplateSpecializationInfo *Info =
7044          NewFD->getTemplateSpecializationInfo();
7045      if (Info && SC != SC_None) {
7046        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7047          Diag(NewFD->getLocation(),
7048               diag::err_explicit_specialization_inconsistent_storage_class)
7049            << SC
7050            << FixItHint::CreateRemoval(
7051                                      D.getDeclSpec().getStorageClassSpecLoc());
7052
7053        else
7054          Diag(NewFD->getLocation(),
7055               diag::ext_explicit_specialization_storage_class)
7056            << FixItHint::CreateRemoval(
7057                                      D.getDeclSpec().getStorageClassSpecLoc());
7058      }
7059
7060    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7061      if (CheckMemberSpecialization(NewFD, Previous))
7062          NewFD->setInvalidDecl();
7063    }
7064
7065    // Perform semantic checking on the function declaration.
7066    if (!isDependentClassScopeExplicitSpecialization) {
7067      if (!NewFD->isInvalidDecl() && NewFD->isMain())
7068        CheckMain(NewFD, D.getDeclSpec());
7069
7070      if (NewFD->isInvalidDecl()) {
7071        // If this is a class member, mark the class invalid immediately.
7072        // This avoids some consistency errors later.
7073        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
7074          methodDecl->getParent()->setInvalidDecl();
7075      } else
7076        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7077                                                    isExplicitSpecialization));
7078    }
7079
7080    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7081            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7082           "previous declaration set still overloaded");
7083
7084    NamedDecl *PrincipalDecl = (FunctionTemplate
7085                                ? cast<NamedDecl>(FunctionTemplate)
7086                                : NewFD);
7087
7088    if (isFriend && D.isRedeclaration()) {
7089      AccessSpecifier Access = AS_public;
7090      if (!NewFD->isInvalidDecl())
7091        Access = NewFD->getPreviousDecl()->getAccess();
7092
7093      NewFD->setAccess(Access);
7094      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7095    }
7096
7097    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7098        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7099      PrincipalDecl->setNonMemberOperator();
7100
7101    // If we have a function template, check the template parameter
7102    // list. This will check and merge default template arguments.
7103    if (FunctionTemplate) {
7104      FunctionTemplateDecl *PrevTemplate =
7105                                     FunctionTemplate->getPreviousDecl();
7106      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7107                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7108                            D.getDeclSpec().isFriendSpecified()
7109                              ? (D.isFunctionDefinition()
7110                                   ? TPC_FriendFunctionTemplateDefinition
7111                                   : TPC_FriendFunctionTemplate)
7112                              : (D.getCXXScopeSpec().isSet() &&
7113                                 DC && DC->isRecord() &&
7114                                 DC->isDependentContext())
7115                                  ? TPC_ClassTemplateMember
7116                                  : TPC_FunctionTemplate);
7117    }
7118
7119    if (NewFD->isInvalidDecl()) {
7120      // Ignore all the rest of this.
7121    } else if (!D.isRedeclaration()) {
7122      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7123                                       AddToScope };
7124      // Fake up an access specifier if it's supposed to be a class member.
7125      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7126        NewFD->setAccess(AS_public);
7127
7128      // Qualified decls generally require a previous declaration.
7129      if (D.getCXXScopeSpec().isSet()) {
7130        // ...with the major exception of templated-scope or
7131        // dependent-scope friend declarations.
7132
7133        // TODO: we currently also suppress this check in dependent
7134        // contexts because (1) the parameter depth will be off when
7135        // matching friend templates and (2) we might actually be
7136        // selecting a friend based on a dependent factor.  But there
7137        // are situations where these conditions don't apply and we
7138        // can actually do this check immediately.
7139        if (isFriend &&
7140            (TemplateParamLists.size() ||
7141             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7142             CurContext->isDependentContext())) {
7143          // ignore these
7144        } else {
7145          // The user tried to provide an out-of-line definition for a
7146          // function that is a member of a class or namespace, but there
7147          // was no such member function declared (C++ [class.mfct]p2,
7148          // C++ [namespace.memdef]p2). For example:
7149          //
7150          // class X {
7151          //   void f() const;
7152          // };
7153          //
7154          // void X::f() { } // ill-formed
7155          //
7156          // Complain about this problem, and attempt to suggest close
7157          // matches (e.g., those that differ only in cv-qualifiers and
7158          // whether the parameter types are references).
7159
7160          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7161                  *this, Previous, NewFD, ExtraArgs, false, 0)) {
7162            AddToScope = ExtraArgs.AddToScope;
7163            return Result;
7164          }
7165        }
7166
7167        // Unqualified local friend declarations are required to resolve
7168        // to something.
7169      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7170        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7171                *this, Previous, NewFD, ExtraArgs, true, S)) {
7172          AddToScope = ExtraArgs.AddToScope;
7173          return Result;
7174        }
7175      }
7176
7177    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7178               !isFriend && !isFunctionTemplateSpecialization &&
7179               !isExplicitSpecialization) {
7180      // An out-of-line member function declaration must also be a
7181      // definition (C++ [dcl.meaning]p1).
7182      // Note that this is not the case for explicit specializations of
7183      // function templates or member functions of class templates, per
7184      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7185      // extension for compatibility with old SWIG code which likes to
7186      // generate them.
7187      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7188        << D.getCXXScopeSpec().getRange();
7189    }
7190  }
7191
7192  ProcessPragmaWeak(S, NewFD);
7193  checkAttributesAfterMerging(*this, *NewFD);
7194
7195  AddKnownFunctionAttributes(NewFD);
7196
7197  if (NewFD->hasAttr<OverloadableAttr>() &&
7198      !NewFD->getType()->getAs<FunctionProtoType>()) {
7199    Diag(NewFD->getLocation(),
7200         diag::err_attribute_overloadable_no_prototype)
7201      << NewFD;
7202
7203    // Turn this into a variadic function with no parameters.
7204    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7205    FunctionProtoType::ExtProtoInfo EPI;
7206    EPI.Variadic = true;
7207    EPI.ExtInfo = FT->getExtInfo();
7208
7209    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7210    NewFD->setType(R);
7211  }
7212
7213  // If there's a #pragma GCC visibility in scope, and this isn't a class
7214  // member, set the visibility of this function.
7215  if (!DC->isRecord() && NewFD->isExternallyVisible())
7216    AddPushedVisibilityAttribute(NewFD);
7217
7218  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7219  // marking the function.
7220  AddCFAuditedAttribute(NewFD);
7221
7222  // If this is the first declaration of an extern C variable, update
7223  // the map of such variables.
7224  if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
7225      isIncompleteDeclExternC(*this, NewFD))
7226    RegisterLocallyScopedExternCDecl(NewFD, S);
7227
7228  // Set this FunctionDecl's range up to the right paren.
7229  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7230
7231  if (getLangOpts().CPlusPlus) {
7232    if (FunctionTemplate) {
7233      if (NewFD->isInvalidDecl())
7234        FunctionTemplate->setInvalidDecl();
7235      return FunctionTemplate;
7236    }
7237  }
7238
7239  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7240    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7241    if ((getLangOpts().OpenCLVersion >= 120)
7242        && (SC == SC_Static)) {
7243      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7244      D.setInvalidType();
7245    }
7246
7247    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7248    if (!NewFD->getResultType()->isVoidType()) {
7249      Diag(D.getIdentifierLoc(),
7250           diag::err_expected_kernel_void_return_type);
7251      D.setInvalidType();
7252    }
7253
7254    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7255    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7256         PE = NewFD->param_end(); PI != PE; ++PI) {
7257      ParmVarDecl *Param = *PI;
7258      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7259    }
7260  }
7261
7262  MarkUnusedFileScopedDecl(NewFD);
7263
7264  if (getLangOpts().CUDA)
7265    if (IdentifierInfo *II = NewFD->getIdentifier())
7266      if (!NewFD->isInvalidDecl() &&
7267          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7268        if (II->isStr("cudaConfigureCall")) {
7269          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7270            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7271
7272          Context.setcudaConfigureCallDecl(NewFD);
7273        }
7274      }
7275
7276  // Here we have an function template explicit specialization at class scope.
7277  // The actually specialization will be postponed to template instatiation
7278  // time via the ClassScopeFunctionSpecializationDecl node.
7279  if (isDependentClassScopeExplicitSpecialization) {
7280    ClassScopeFunctionSpecializationDecl *NewSpec =
7281                         ClassScopeFunctionSpecializationDecl::Create(
7282                                Context, CurContext, SourceLocation(),
7283                                cast<CXXMethodDecl>(NewFD),
7284                                HasExplicitTemplateArgs, TemplateArgs);
7285    CurContext->addDecl(NewSpec);
7286    AddToScope = false;
7287  }
7288
7289  return NewFD;
7290}
7291
7292/// \brief Perform semantic checking of a new function declaration.
7293///
7294/// Performs semantic analysis of the new function declaration
7295/// NewFD. This routine performs all semantic checking that does not
7296/// require the actual declarator involved in the declaration, and is
7297/// used both for the declaration of functions as they are parsed
7298/// (called via ActOnDeclarator) and for the declaration of functions
7299/// that have been instantiated via C++ template instantiation (called
7300/// via InstantiateDecl).
7301///
7302/// \param IsExplicitSpecialization whether this new function declaration is
7303/// an explicit specialization of the previous declaration.
7304///
7305/// This sets NewFD->isInvalidDecl() to true if there was an error.
7306///
7307/// \returns true if the function declaration is a redeclaration.
7308bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7309                                    LookupResult &Previous,
7310                                    bool IsExplicitSpecialization) {
7311  assert(!NewFD->getResultType()->isVariablyModifiedType()
7312         && "Variably modified return types are not handled here");
7313
7314  // Determine whether the type of this function should be merged with
7315  // a previous visible declaration. This never happens for functions in C++,
7316  // and always happens in C if the previous declaration was visible.
7317  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7318                               !Previous.isShadowed();
7319
7320  // Filter out any non-conflicting previous declarations.
7321  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7322
7323  bool Redeclaration = false;
7324  NamedDecl *OldDecl = 0;
7325
7326  // Merge or overload the declaration with an existing declaration of
7327  // the same name, if appropriate.
7328  if (!Previous.empty()) {
7329    // Determine whether NewFD is an overload of PrevDecl or
7330    // a declaration that requires merging. If it's an overload,
7331    // there's no more work to do here; we'll just add the new
7332    // function to the scope.
7333    if (!AllowOverloadingOfFunction(Previous, Context)) {
7334      NamedDecl *Candidate = Previous.getFoundDecl();
7335      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7336        Redeclaration = true;
7337        OldDecl = Candidate;
7338      }
7339    } else {
7340      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7341                            /*NewIsUsingDecl*/ false)) {
7342      case Ovl_Match:
7343        Redeclaration = true;
7344        break;
7345
7346      case Ovl_NonFunction:
7347        Redeclaration = true;
7348        break;
7349
7350      case Ovl_Overload:
7351        Redeclaration = false;
7352        break;
7353      }
7354
7355      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7356        // If a function name is overloadable in C, then every function
7357        // with that name must be marked "overloadable".
7358        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7359          << Redeclaration << NewFD;
7360        NamedDecl *OverloadedDecl = 0;
7361        if (Redeclaration)
7362          OverloadedDecl = OldDecl;
7363        else if (!Previous.empty())
7364          OverloadedDecl = Previous.getRepresentativeDecl();
7365        if (OverloadedDecl)
7366          Diag(OverloadedDecl->getLocation(),
7367               diag::note_attribute_overloadable_prev_overload);
7368        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7369                                                        Context));
7370      }
7371    }
7372  }
7373
7374  // Check for a previous extern "C" declaration with this name.
7375  if (!Redeclaration &&
7376      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7377    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7378    if (!Previous.empty()) {
7379      // This is an extern "C" declaration with the same name as a previous
7380      // declaration, and thus redeclares that entity...
7381      Redeclaration = true;
7382      OldDecl = Previous.getFoundDecl();
7383      MergeTypeWithPrevious = false;
7384
7385      // ... except in the presence of __attribute__((overloadable)).
7386      if (OldDecl->hasAttr<OverloadableAttr>()) {
7387        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7388          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7389            << Redeclaration << NewFD;
7390          Diag(Previous.getFoundDecl()->getLocation(),
7391               diag::note_attribute_overloadable_prev_overload);
7392          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7393                                                          Context));
7394        }
7395        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7396          Redeclaration = false;
7397          OldDecl = 0;
7398        }
7399      }
7400    }
7401  }
7402
7403  // C++11 [dcl.constexpr]p8:
7404  //   A constexpr specifier for a non-static member function that is not
7405  //   a constructor declares that member function to be const.
7406  //
7407  // This needs to be delayed until we know whether this is an out-of-line
7408  // definition of a static member function.
7409  //
7410  // This rule is not present in C++1y, so we produce a backwards
7411  // compatibility warning whenever it happens in C++11.
7412  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7413  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7414      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7415      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7416    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7417    if (FunctionTemplateDecl *OldTD =
7418          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7419      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7420    if (!OldMD || !OldMD->isStatic()) {
7421      const FunctionProtoType *FPT =
7422        MD->getType()->castAs<FunctionProtoType>();
7423      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7424      EPI.TypeQuals |= Qualifiers::Const;
7425      MD->setType(Context.getFunctionType(FPT->getResultType(),
7426                                          FPT->getArgTypes(), EPI));
7427
7428      // Warn that we did this, if we're not performing template instantiation.
7429      // In that case, we'll have warned already when the template was defined.
7430      if (ActiveTemplateInstantiations.empty()) {
7431        SourceLocation AddConstLoc;
7432        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7433                .IgnoreParens().getAs<FunctionTypeLoc>())
7434          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7435
7436        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7437          << FixItHint::CreateInsertion(AddConstLoc, " const");
7438      }
7439    }
7440  }
7441
7442  if (Redeclaration) {
7443    // NewFD and OldDecl represent declarations that need to be
7444    // merged.
7445    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7446      NewFD->setInvalidDecl();
7447      return Redeclaration;
7448    }
7449
7450    Previous.clear();
7451    Previous.addDecl(OldDecl);
7452
7453    if (FunctionTemplateDecl *OldTemplateDecl
7454                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7455      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7456      FunctionTemplateDecl *NewTemplateDecl
7457        = NewFD->getDescribedFunctionTemplate();
7458      assert(NewTemplateDecl && "Template/non-template mismatch");
7459      if (CXXMethodDecl *Method
7460            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7461        Method->setAccess(OldTemplateDecl->getAccess());
7462        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7463      }
7464
7465      // If this is an explicit specialization of a member that is a function
7466      // template, mark it as a member specialization.
7467      if (IsExplicitSpecialization &&
7468          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7469        NewTemplateDecl->setMemberSpecialization();
7470        assert(OldTemplateDecl->isMemberSpecialization());
7471      }
7472
7473    } else {
7474      // This needs to happen first so that 'inline' propagates.
7475      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7476
7477      if (isa<CXXMethodDecl>(NewFD)) {
7478        // A valid redeclaration of a C++ method must be out-of-line,
7479        // but (unfortunately) it's not necessarily a definition
7480        // because of templates, which means that the previous
7481        // declaration is not necessarily from the class definition.
7482
7483        // For just setting the access, that doesn't matter.
7484        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7485        NewFD->setAccess(oldMethod->getAccess());
7486
7487        // Update the key-function state if necessary for this ABI.
7488        if (NewFD->isInlined() &&
7489            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7490          // setNonKeyFunction needs to work with the original
7491          // declaration from the class definition, and isVirtual() is
7492          // just faster in that case, so map back to that now.
7493          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7494          if (oldMethod->isVirtual()) {
7495            Context.setNonKeyFunction(oldMethod);
7496          }
7497        }
7498      }
7499    }
7500  }
7501
7502  // Semantic checking for this function declaration (in isolation).
7503  if (getLangOpts().CPlusPlus) {
7504    // C++-specific checks.
7505    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7506      CheckConstructor(Constructor);
7507    } else if (CXXDestructorDecl *Destructor =
7508                dyn_cast<CXXDestructorDecl>(NewFD)) {
7509      CXXRecordDecl *Record = Destructor->getParent();
7510      QualType ClassType = Context.getTypeDeclType(Record);
7511
7512      // FIXME: Shouldn't we be able to perform this check even when the class
7513      // type is dependent? Both gcc and edg can handle that.
7514      if (!ClassType->isDependentType()) {
7515        DeclarationName Name
7516          = Context.DeclarationNames.getCXXDestructorName(
7517                                        Context.getCanonicalType(ClassType));
7518        if (NewFD->getDeclName() != Name) {
7519          Diag(NewFD->getLocation(), diag::err_destructor_name);
7520          NewFD->setInvalidDecl();
7521          return Redeclaration;
7522        }
7523      }
7524    } else if (CXXConversionDecl *Conversion
7525               = dyn_cast<CXXConversionDecl>(NewFD)) {
7526      ActOnConversionDeclarator(Conversion);
7527    }
7528
7529    // Find any virtual functions that this function overrides.
7530    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7531      if (!Method->isFunctionTemplateSpecialization() &&
7532          !Method->getDescribedFunctionTemplate() &&
7533          Method->isCanonicalDecl()) {
7534        if (AddOverriddenMethods(Method->getParent(), Method)) {
7535          // If the function was marked as "static", we have a problem.
7536          if (NewFD->getStorageClass() == SC_Static) {
7537            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7538          }
7539        }
7540      }
7541
7542      if (Method->isStatic())
7543        checkThisInStaticMemberFunctionType(Method);
7544    }
7545
7546    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7547    if (NewFD->isOverloadedOperator() &&
7548        CheckOverloadedOperatorDeclaration(NewFD)) {
7549      NewFD->setInvalidDecl();
7550      return Redeclaration;
7551    }
7552
7553    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7554    if (NewFD->getLiteralIdentifier() &&
7555        CheckLiteralOperatorDeclaration(NewFD)) {
7556      NewFD->setInvalidDecl();
7557      return Redeclaration;
7558    }
7559
7560    // In C++, check default arguments now that we have merged decls. Unless
7561    // the lexical context is the class, because in this case this is done
7562    // during delayed parsing anyway.
7563    if (!CurContext->isRecord())
7564      CheckCXXDefaultArguments(NewFD);
7565
7566    // If this function declares a builtin function, check the type of this
7567    // declaration against the expected type for the builtin.
7568    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7569      ASTContext::GetBuiltinTypeError Error;
7570      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7571      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7572      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7573        // The type of this function differs from the type of the builtin,
7574        // so forget about the builtin entirely.
7575        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7576      }
7577    }
7578
7579    // If this function is declared as being extern "C", then check to see if
7580    // the function returns a UDT (class, struct, or union type) that is not C
7581    // compatible, and if it does, warn the user.
7582    // But, issue any diagnostic on the first declaration only.
7583    if (NewFD->isExternC() && Previous.empty()) {
7584      QualType R = NewFD->getResultType();
7585      if (R->isIncompleteType() && !R->isVoidType())
7586        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7587            << NewFD << R;
7588      else if (!R.isPODType(Context) && !R->isVoidType() &&
7589               !R->isObjCObjectPointerType())
7590        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7591    }
7592  }
7593  return Redeclaration;
7594}
7595
7596static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7597  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7598  if (!TSI)
7599    return SourceRange();
7600
7601  TypeLoc TL = TSI->getTypeLoc();
7602  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7603  if (!FunctionTL)
7604    return SourceRange();
7605
7606  TypeLoc ResultTL = FunctionTL.getResultLoc();
7607  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7608    return ResultTL.getSourceRange();
7609
7610  return SourceRange();
7611}
7612
7613void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7614  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7615  //   static or constexpr is ill-formed.
7616  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7617  //   appear in a declaration of main.
7618  // static main is not an error under C99, but we should warn about it.
7619  // We accept _Noreturn main as an extension.
7620  if (FD->getStorageClass() == SC_Static)
7621    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7622         ? diag::err_static_main : diag::warn_static_main)
7623      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7624  if (FD->isInlineSpecified())
7625    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7626      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7627  if (DS.isNoreturnSpecified()) {
7628    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7629    SourceRange NoreturnRange(NoreturnLoc,
7630                              PP.getLocForEndOfToken(NoreturnLoc));
7631    Diag(NoreturnLoc, diag::ext_noreturn_main);
7632    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7633      << FixItHint::CreateRemoval(NoreturnRange);
7634  }
7635  if (FD->isConstexpr()) {
7636    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7637      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7638    FD->setConstexpr(false);
7639  }
7640
7641  QualType T = FD->getType();
7642  assert(T->isFunctionType() && "function decl is not of function type");
7643  const FunctionType* FT = T->castAs<FunctionType>();
7644
7645  // All the standards say that main() should should return 'int'.
7646  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7647    // In C and C++, main magically returns 0 if you fall off the end;
7648    // set the flag which tells us that.
7649    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7650    FD->setHasImplicitReturnZero(true);
7651
7652  // In C with GNU extensions we allow main() to have non-integer return
7653  // type, but we should warn about the extension, and we disable the
7654  // implicit-return-zero rule.
7655  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7656    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7657
7658    SourceRange ResultRange = getResultSourceRange(FD);
7659    if (ResultRange.isValid())
7660      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7661          << FixItHint::CreateReplacement(ResultRange, "int");
7662
7663  // Otherwise, this is just a flat-out error.
7664  } else {
7665    SourceRange ResultRange = getResultSourceRange(FD);
7666    if (ResultRange.isValid())
7667      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7668          << FixItHint::CreateReplacement(ResultRange, "int");
7669    else
7670      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7671
7672    FD->setInvalidDecl(true);
7673  }
7674
7675  // Treat protoless main() as nullary.
7676  if (isa<FunctionNoProtoType>(FT)) return;
7677
7678  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7679  unsigned nparams = FTP->getNumArgs();
7680  assert(FD->getNumParams() == nparams);
7681
7682  bool HasExtraParameters = (nparams > 3);
7683
7684  // Darwin passes an undocumented fourth argument of type char**.  If
7685  // other platforms start sprouting these, the logic below will start
7686  // getting shifty.
7687  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7688    HasExtraParameters = false;
7689
7690  if (HasExtraParameters) {
7691    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7692    FD->setInvalidDecl(true);
7693    nparams = 3;
7694  }
7695
7696  // FIXME: a lot of the following diagnostics would be improved
7697  // if we had some location information about types.
7698
7699  QualType CharPP =
7700    Context.getPointerType(Context.getPointerType(Context.CharTy));
7701  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7702
7703  for (unsigned i = 0; i < nparams; ++i) {
7704    QualType AT = FTP->getArgType(i);
7705
7706    bool mismatch = true;
7707
7708    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7709      mismatch = false;
7710    else if (Expected[i] == CharPP) {
7711      // As an extension, the following forms are okay:
7712      //   char const **
7713      //   char const * const *
7714      //   char * const *
7715
7716      QualifierCollector qs;
7717      const PointerType* PT;
7718      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7719          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7720          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7721                              Context.CharTy)) {
7722        qs.removeConst();
7723        mismatch = !qs.empty();
7724      }
7725    }
7726
7727    if (mismatch) {
7728      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7729      // TODO: suggest replacing given type with expected type
7730      FD->setInvalidDecl(true);
7731    }
7732  }
7733
7734  if (nparams == 1 && !FD->isInvalidDecl()) {
7735    Diag(FD->getLocation(), diag::warn_main_one_arg);
7736  }
7737
7738  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7739    Diag(FD->getLocation(), diag::err_main_template_decl);
7740    FD->setInvalidDecl();
7741  }
7742}
7743
7744bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7745  // FIXME: Need strict checking.  In C89, we need to check for
7746  // any assignment, increment, decrement, function-calls, or
7747  // commas outside of a sizeof.  In C99, it's the same list,
7748  // except that the aforementioned are allowed in unevaluated
7749  // expressions.  Everything else falls under the
7750  // "may accept other forms of constant expressions" exception.
7751  // (We never end up here for C++, so the constant expression
7752  // rules there don't matter.)
7753  if (Init->isConstantInitializer(Context, false))
7754    return false;
7755  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7756    << Init->getSourceRange();
7757  return true;
7758}
7759
7760namespace {
7761  // Visits an initialization expression to see if OrigDecl is evaluated in
7762  // its own initialization and throws a warning if it does.
7763  class SelfReferenceChecker
7764      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7765    Sema &S;
7766    Decl *OrigDecl;
7767    bool isRecordType;
7768    bool isPODType;
7769    bool isReferenceType;
7770
7771  public:
7772    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7773
7774    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7775                                                    S(S), OrigDecl(OrigDecl) {
7776      isPODType = false;
7777      isRecordType = false;
7778      isReferenceType = false;
7779      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7780        isPODType = VD->getType().isPODType(S.Context);
7781        isRecordType = VD->getType()->isRecordType();
7782        isReferenceType = VD->getType()->isReferenceType();
7783      }
7784    }
7785
7786    // For most expressions, the cast is directly above the DeclRefExpr.
7787    // For conditional operators, the cast can be outside the conditional
7788    // operator if both expressions are DeclRefExpr's.
7789    void HandleValue(Expr *E) {
7790      if (isReferenceType)
7791        return;
7792      E = E->IgnoreParenImpCasts();
7793      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7794        HandleDeclRefExpr(DRE);
7795        return;
7796      }
7797
7798      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7799        HandleValue(CO->getTrueExpr());
7800        HandleValue(CO->getFalseExpr());
7801        return;
7802      }
7803
7804      if (isa<MemberExpr>(E)) {
7805        Expr *Base = E->IgnoreParenImpCasts();
7806        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7807          // Check for static member variables and don't warn on them.
7808          if (!isa<FieldDecl>(ME->getMemberDecl()))
7809            return;
7810          Base = ME->getBase()->IgnoreParenImpCasts();
7811        }
7812        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7813          HandleDeclRefExpr(DRE);
7814        return;
7815      }
7816    }
7817
7818    // Reference types are handled here since all uses of references are
7819    // bad, not just r-value uses.
7820    void VisitDeclRefExpr(DeclRefExpr *E) {
7821      if (isReferenceType)
7822        HandleDeclRefExpr(E);
7823    }
7824
7825    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7826      if (E->getCastKind() == CK_LValueToRValue ||
7827          (isRecordType && E->getCastKind() == CK_NoOp))
7828        HandleValue(E->getSubExpr());
7829
7830      Inherited::VisitImplicitCastExpr(E);
7831    }
7832
7833    void VisitMemberExpr(MemberExpr *E) {
7834      // Don't warn on arrays since they can be treated as pointers.
7835      if (E->getType()->canDecayToPointerType()) return;
7836
7837      // Warn when a non-static method call is followed by non-static member
7838      // field accesses, which is followed by a DeclRefExpr.
7839      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7840      bool Warn = (MD && !MD->isStatic());
7841      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7842      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7843        if (!isa<FieldDecl>(ME->getMemberDecl()))
7844          Warn = false;
7845        Base = ME->getBase()->IgnoreParenImpCasts();
7846      }
7847
7848      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7849        if (Warn)
7850          HandleDeclRefExpr(DRE);
7851        return;
7852      }
7853
7854      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7855      // Visit that expression.
7856      Visit(Base);
7857    }
7858
7859    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7860      if (E->getNumArgs() > 0)
7861        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7862          HandleDeclRefExpr(DRE);
7863
7864      Inherited::VisitCXXOperatorCallExpr(E);
7865    }
7866
7867    void VisitUnaryOperator(UnaryOperator *E) {
7868      // For POD record types, addresses of its own members are well-defined.
7869      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7870          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7871        if (!isPODType)
7872          HandleValue(E->getSubExpr());
7873        return;
7874      }
7875      Inherited::VisitUnaryOperator(E);
7876    }
7877
7878    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7879
7880    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7881      Decl* ReferenceDecl = DRE->getDecl();
7882      if (OrigDecl != ReferenceDecl) return;
7883      unsigned diag;
7884      if (isReferenceType) {
7885        diag = diag::warn_uninit_self_reference_in_reference_init;
7886      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7887        diag = diag::warn_static_self_reference_in_init;
7888      } else {
7889        diag = diag::warn_uninit_self_reference_in_init;
7890      }
7891
7892      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7893                            S.PDiag(diag)
7894                              << DRE->getNameInfo().getName()
7895                              << OrigDecl->getLocation()
7896                              << DRE->getSourceRange());
7897    }
7898  };
7899
7900  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7901  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7902                                 bool DirectInit) {
7903    // Parameters arguments are occassionially constructed with itself,
7904    // for instance, in recursive functions.  Skip them.
7905    if (isa<ParmVarDecl>(OrigDecl))
7906      return;
7907
7908    E = E->IgnoreParens();
7909
7910    // Skip checking T a = a where T is not a record or reference type.
7911    // Doing so is a way to silence uninitialized warnings.
7912    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7913      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7914        if (ICE->getCastKind() == CK_LValueToRValue)
7915          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7916            if (DRE->getDecl() == OrigDecl)
7917              return;
7918
7919    SelfReferenceChecker(S, OrigDecl).Visit(E);
7920  }
7921}
7922
7923/// AddInitializerToDecl - Adds the initializer Init to the
7924/// declaration dcl. If DirectInit is true, this is C++ direct
7925/// initialization rather than copy initialization.
7926void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7927                                bool DirectInit, bool TypeMayContainAuto) {
7928  // If there is no declaration, there was an error parsing it.  Just ignore
7929  // the initializer.
7930  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7931    return;
7932
7933  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7934    // With declarators parsed the way they are, the parser cannot
7935    // distinguish between a normal initializer and a pure-specifier.
7936    // Thus this grotesque test.
7937    IntegerLiteral *IL;
7938    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7939        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7940      CheckPureMethod(Method, Init->getSourceRange());
7941    else {
7942      Diag(Method->getLocation(), diag::err_member_function_initialization)
7943        << Method->getDeclName() << Init->getSourceRange();
7944      Method->setInvalidDecl();
7945    }
7946    return;
7947  }
7948
7949  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7950  if (!VDecl) {
7951    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7952    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7953    RealDecl->setInvalidDecl();
7954    return;
7955  }
7956  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7957
7958  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7959  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7960    Expr *DeduceInit = Init;
7961    // Initializer could be a C++ direct-initializer. Deduction only works if it
7962    // contains exactly one expression.
7963    if (CXXDirectInit) {
7964      if (CXXDirectInit->getNumExprs() == 0) {
7965        // It isn't possible to write this directly, but it is possible to
7966        // end up in this situation with "auto x(some_pack...);"
7967        Diag(CXXDirectInit->getLocStart(),
7968             diag::err_auto_var_init_no_expression)
7969          << VDecl->getDeclName() << VDecl->getType()
7970          << VDecl->getSourceRange();
7971        RealDecl->setInvalidDecl();
7972        return;
7973      } else if (CXXDirectInit->getNumExprs() > 1) {
7974        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7975             diag::err_auto_var_init_multiple_expressions)
7976          << VDecl->getDeclName() << VDecl->getType()
7977          << VDecl->getSourceRange();
7978        RealDecl->setInvalidDecl();
7979        return;
7980      } else {
7981        DeduceInit = CXXDirectInit->getExpr(0);
7982      }
7983    }
7984
7985    // Expressions default to 'id' when we're in a debugger.
7986    bool DefaultedToAuto = false;
7987    if (getLangOpts().DebuggerCastResultToId &&
7988        Init->getType() == Context.UnknownAnyTy) {
7989      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7990      if (Result.isInvalid()) {
7991        VDecl->setInvalidDecl();
7992        return;
7993      }
7994      Init = Result.take();
7995      DefaultedToAuto = true;
7996    }
7997
7998    QualType DeducedType;
7999    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8000            DAR_Failed)
8001      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8002    if (DeducedType.isNull()) {
8003      RealDecl->setInvalidDecl();
8004      return;
8005    }
8006    VDecl->setType(DeducedType);
8007    assert(VDecl->isLinkageValid());
8008
8009    // In ARC, infer lifetime.
8010    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8011      VDecl->setInvalidDecl();
8012
8013    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8014    // 'id' instead of a specific object type prevents most of our usual checks.
8015    // We only want to warn outside of template instantiations, though:
8016    // inside a template, the 'id' could have come from a parameter.
8017    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8018        DeducedType->isObjCIdType()) {
8019      SourceLocation Loc =
8020          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8021      Diag(Loc, diag::warn_auto_var_is_id)
8022        << VDecl->getDeclName() << DeduceInit->getSourceRange();
8023    }
8024
8025    // If this is a redeclaration, check that the type we just deduced matches
8026    // the previously declared type.
8027    if (VarDecl *Old = VDecl->getPreviousDecl()) {
8028      // We never need to merge the type, because we cannot form an incomplete
8029      // array of auto, nor deduce such a type.
8030      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8031    }
8032
8033    // Check the deduced type is valid for a variable declaration.
8034    CheckVariableDeclarationType(VDecl);
8035    if (VDecl->isInvalidDecl())
8036      return;
8037  }
8038
8039  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8040    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8041    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8042    VDecl->setInvalidDecl();
8043    return;
8044  }
8045
8046  if (!VDecl->getType()->isDependentType()) {
8047    // A definition must end up with a complete type, which means it must be
8048    // complete with the restriction that an array type might be completed by
8049    // the initializer; note that later code assumes this restriction.
8050    QualType BaseDeclType = VDecl->getType();
8051    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8052      BaseDeclType = Array->getElementType();
8053    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8054                            diag::err_typecheck_decl_incomplete_type)) {
8055      RealDecl->setInvalidDecl();
8056      return;
8057    }
8058
8059    // The variable can not have an abstract class type.
8060    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8061                               diag::err_abstract_type_in_decl,
8062                               AbstractVariableType))
8063      VDecl->setInvalidDecl();
8064  }
8065
8066  const VarDecl *Def;
8067  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8068    Diag(VDecl->getLocation(), diag::err_redefinition)
8069      << VDecl->getDeclName();
8070    Diag(Def->getLocation(), diag::note_previous_definition);
8071    VDecl->setInvalidDecl();
8072    return;
8073  }
8074
8075  const VarDecl* PrevInit = 0;
8076  if (getLangOpts().CPlusPlus) {
8077    // C++ [class.static.data]p4
8078    //   If a static data member is of const integral or const
8079    //   enumeration type, its declaration in the class definition can
8080    //   specify a constant-initializer which shall be an integral
8081    //   constant expression (5.19). In that case, the member can appear
8082    //   in integral constant expressions. The member shall still be
8083    //   defined in a namespace scope if it is used in the program and the
8084    //   namespace scope definition shall not contain an initializer.
8085    //
8086    // We already performed a redefinition check above, but for static
8087    // data members we also need to check whether there was an in-class
8088    // declaration with an initializer.
8089    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8090      Diag(VDecl->getLocation(), diag::err_redefinition)
8091        << VDecl->getDeclName();
8092      Diag(PrevInit->getLocation(), diag::note_previous_definition);
8093      return;
8094    }
8095
8096    if (VDecl->hasLocalStorage())
8097      getCurFunction()->setHasBranchProtectedScope();
8098
8099    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8100      VDecl->setInvalidDecl();
8101      return;
8102    }
8103  }
8104
8105  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8106  // a kernel function cannot be initialized."
8107  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8108    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8109    VDecl->setInvalidDecl();
8110    return;
8111  }
8112
8113  // Get the decls type and save a reference for later, since
8114  // CheckInitializerTypes may change it.
8115  QualType DclT = VDecl->getType(), SavT = DclT;
8116
8117  // Expressions default to 'id' when we're in a debugger
8118  // and we are assigning it to a variable of Objective-C pointer type.
8119  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8120      Init->getType() == Context.UnknownAnyTy) {
8121    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8122    if (Result.isInvalid()) {
8123      VDecl->setInvalidDecl();
8124      return;
8125    }
8126    Init = Result.take();
8127  }
8128
8129  // Perform the initialization.
8130  if (!VDecl->isInvalidDecl()) {
8131    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8132    InitializationKind Kind
8133      = DirectInit ?
8134          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8135                                                           Init->getLocStart(),
8136                                                           Init->getLocEnd())
8137                        : InitializationKind::CreateDirectList(
8138                                                          VDecl->getLocation())
8139                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8140                                                    Init->getLocStart());
8141
8142    MultiExprArg Args = Init;
8143    if (CXXDirectInit)
8144      Args = MultiExprArg(CXXDirectInit->getExprs(),
8145                          CXXDirectInit->getNumExprs());
8146
8147    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8148    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8149    if (Result.isInvalid()) {
8150      VDecl->setInvalidDecl();
8151      return;
8152    }
8153
8154    Init = Result.takeAs<Expr>();
8155  }
8156
8157  // Check for self-references within variable initializers.
8158  // Variables declared within a function/method body (except for references)
8159  // are handled by a dataflow analysis.
8160  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8161      VDecl->getType()->isReferenceType()) {
8162    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8163  }
8164
8165  // If the type changed, it means we had an incomplete type that was
8166  // completed by the initializer. For example:
8167  //   int ary[] = { 1, 3, 5 };
8168  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8169  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8170    VDecl->setType(DclT);
8171
8172  if (!VDecl->isInvalidDecl()) {
8173    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8174
8175    if (VDecl->hasAttr<BlocksAttr>())
8176      checkRetainCycles(VDecl, Init);
8177
8178    // It is safe to assign a weak reference into a strong variable.
8179    // Although this code can still have problems:
8180    //   id x = self.weakProp;
8181    //   id y = self.weakProp;
8182    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8183    // paths through the function. This should be revisited if
8184    // -Wrepeated-use-of-weak is made flow-sensitive.
8185    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8186      DiagnosticsEngine::Level Level =
8187        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8188                                 Init->getLocStart());
8189      if (Level != DiagnosticsEngine::Ignored)
8190        getCurFunction()->markSafeWeakUse(Init);
8191    }
8192  }
8193
8194  // The initialization is usually a full-expression.
8195  //
8196  // FIXME: If this is a braced initialization of an aggregate, it is not
8197  // an expression, and each individual field initializer is a separate
8198  // full-expression. For instance, in:
8199  //
8200  //   struct Temp { ~Temp(); };
8201  //   struct S { S(Temp); };
8202  //   struct T { S a, b; } t = { Temp(), Temp() }
8203  //
8204  // we should destroy the first Temp before constructing the second.
8205  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8206                                          false,
8207                                          VDecl->isConstexpr());
8208  if (Result.isInvalid()) {
8209    VDecl->setInvalidDecl();
8210    return;
8211  }
8212  Init = Result.take();
8213
8214  // Attach the initializer to the decl.
8215  VDecl->setInit(Init);
8216
8217  if (VDecl->isLocalVarDecl()) {
8218    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8219    // static storage duration shall be constant expressions or string literals.
8220    // C++ does not have this restriction.
8221    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8222      if (VDecl->getStorageClass() == SC_Static)
8223        CheckForConstantInitializer(Init, DclT);
8224      // C89 is stricter than C99 for non-static aggregate types.
8225      // C89 6.5.7p3: All the expressions [...] in an initializer list
8226      // for an object that has aggregate or union type shall be
8227      // constant expressions.
8228      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8229               isa<InitListExpr>(Init) &&
8230               !Init->isConstantInitializer(Context, false))
8231        Diag(Init->getExprLoc(),
8232             diag::ext_aggregate_init_not_constant)
8233          << Init->getSourceRange();
8234    }
8235  } else if (VDecl->isStaticDataMember() &&
8236             VDecl->getLexicalDeclContext()->isRecord()) {
8237    // This is an in-class initialization for a static data member, e.g.,
8238    //
8239    // struct S {
8240    //   static const int value = 17;
8241    // };
8242
8243    // C++ [class.mem]p4:
8244    //   A member-declarator can contain a constant-initializer only
8245    //   if it declares a static member (9.4) of const integral or
8246    //   const enumeration type, see 9.4.2.
8247    //
8248    // C++11 [class.static.data]p3:
8249    //   If a non-volatile const static data member is of integral or
8250    //   enumeration type, its declaration in the class definition can
8251    //   specify a brace-or-equal-initializer in which every initalizer-clause
8252    //   that is an assignment-expression is a constant expression. A static
8253    //   data member of literal type can be declared in the class definition
8254    //   with the constexpr specifier; if so, its declaration shall specify a
8255    //   brace-or-equal-initializer in which every initializer-clause that is
8256    //   an assignment-expression is a constant expression.
8257
8258    // Do nothing on dependent types.
8259    if (DclT->isDependentType()) {
8260
8261    // Allow any 'static constexpr' members, whether or not they are of literal
8262    // type. We separately check that every constexpr variable is of literal
8263    // type.
8264    } else if (VDecl->isConstexpr()) {
8265
8266    // Require constness.
8267    } else if (!DclT.isConstQualified()) {
8268      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8269        << Init->getSourceRange();
8270      VDecl->setInvalidDecl();
8271
8272    // We allow integer constant expressions in all cases.
8273    } else if (DclT->isIntegralOrEnumerationType()) {
8274      // Check whether the expression is a constant expression.
8275      SourceLocation Loc;
8276      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8277        // In C++11, a non-constexpr const static data member with an
8278        // in-class initializer cannot be volatile.
8279        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8280      else if (Init->isValueDependent())
8281        ; // Nothing to check.
8282      else if (Init->isIntegerConstantExpr(Context, &Loc))
8283        ; // Ok, it's an ICE!
8284      else if (Init->isEvaluatable(Context)) {
8285        // If we can constant fold the initializer through heroics, accept it,
8286        // but report this as a use of an extension for -pedantic.
8287        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8288          << Init->getSourceRange();
8289      } else {
8290        // Otherwise, this is some crazy unknown case.  Report the issue at the
8291        // location provided by the isIntegerConstantExpr failed check.
8292        Diag(Loc, diag::err_in_class_initializer_non_constant)
8293          << Init->getSourceRange();
8294        VDecl->setInvalidDecl();
8295      }
8296
8297    // We allow foldable floating-point constants as an extension.
8298    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8299      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8300      // it anyway and provide a fixit to add the 'constexpr'.
8301      if (getLangOpts().CPlusPlus11) {
8302        Diag(VDecl->getLocation(),
8303             diag::ext_in_class_initializer_float_type_cxx11)
8304            << DclT << Init->getSourceRange();
8305        Diag(VDecl->getLocStart(),
8306             diag::note_in_class_initializer_float_type_cxx11)
8307            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8308      } else {
8309        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8310          << DclT << Init->getSourceRange();
8311
8312        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8313          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8314            << Init->getSourceRange();
8315          VDecl->setInvalidDecl();
8316        }
8317      }
8318
8319    // Suggest adding 'constexpr' in C++11 for literal types.
8320    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8321      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8322        << DclT << Init->getSourceRange()
8323        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8324      VDecl->setConstexpr(true);
8325
8326    } else {
8327      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8328        << DclT << Init->getSourceRange();
8329      VDecl->setInvalidDecl();
8330    }
8331  } else if (VDecl->isFileVarDecl()) {
8332    if (VDecl->getStorageClass() == SC_Extern &&
8333        (!getLangOpts().CPlusPlus ||
8334         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8335           VDecl->isExternC())))
8336      Diag(VDecl->getLocation(), diag::warn_extern_init);
8337
8338    // C99 6.7.8p4. All file scoped initializers need to be constant.
8339    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8340      CheckForConstantInitializer(Init, DclT);
8341    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8342             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8343             !Init->isValueDependent() && !VDecl->isConstexpr() &&
8344             !Init->isConstantInitializer(
8345                 Context, VDecl->getType()->isReferenceType())) {
8346      // GNU C++98 edits for __thread, [basic.start.init]p4:
8347      //   An object of thread storage duration shall not require dynamic
8348      //   initialization.
8349      // FIXME: Need strict checking here.
8350      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8351      if (getLangOpts().CPlusPlus11)
8352        Diag(VDecl->getLocation(), diag::note_use_thread_local);
8353    }
8354  }
8355
8356  // We will represent direct-initialization similarly to copy-initialization:
8357  //    int x(1);  -as-> int x = 1;
8358  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8359  //
8360  // Clients that want to distinguish between the two forms, can check for
8361  // direct initializer using VarDecl::getInitStyle().
8362  // A major benefit is that clients that don't particularly care about which
8363  // exactly form was it (like the CodeGen) can handle both cases without
8364  // special case code.
8365
8366  // C++ 8.5p11:
8367  // The form of initialization (using parentheses or '=') is generally
8368  // insignificant, but does matter when the entity being initialized has a
8369  // class type.
8370  if (CXXDirectInit) {
8371    assert(DirectInit && "Call-style initializer must be direct init.");
8372    VDecl->setInitStyle(VarDecl::CallInit);
8373  } else if (DirectInit) {
8374    // This must be list-initialization. No other way is direct-initialization.
8375    VDecl->setInitStyle(VarDecl::ListInit);
8376  }
8377
8378  CheckCompleteVariableDeclaration(VDecl);
8379}
8380
8381/// ActOnInitializerError - Given that there was an error parsing an
8382/// initializer for the given declaration, try to return to some form
8383/// of sanity.
8384void Sema::ActOnInitializerError(Decl *D) {
8385  // Our main concern here is re-establishing invariants like "a
8386  // variable's type is either dependent or complete".
8387  if (!D || D->isInvalidDecl()) return;
8388
8389  VarDecl *VD = dyn_cast<VarDecl>(D);
8390  if (!VD) return;
8391
8392  // Auto types are meaningless if we can't make sense of the initializer.
8393  if (ParsingInitForAutoVars.count(D)) {
8394    D->setInvalidDecl();
8395    return;
8396  }
8397
8398  QualType Ty = VD->getType();
8399  if (Ty->isDependentType()) return;
8400
8401  // Require a complete type.
8402  if (RequireCompleteType(VD->getLocation(),
8403                          Context.getBaseElementType(Ty),
8404                          diag::err_typecheck_decl_incomplete_type)) {
8405    VD->setInvalidDecl();
8406    return;
8407  }
8408
8409  // Require an abstract type.
8410  if (RequireNonAbstractType(VD->getLocation(), Ty,
8411                             diag::err_abstract_type_in_decl,
8412                             AbstractVariableType)) {
8413    VD->setInvalidDecl();
8414    return;
8415  }
8416
8417  // Don't bother complaining about constructors or destructors,
8418  // though.
8419}
8420
8421void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8422                                  bool TypeMayContainAuto) {
8423  // If there is no declaration, there was an error parsing it. Just ignore it.
8424  if (RealDecl == 0)
8425    return;
8426
8427  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8428    QualType Type = Var->getType();
8429
8430    // C++11 [dcl.spec.auto]p3
8431    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8432      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8433        << Var->getDeclName() << Type;
8434      Var->setInvalidDecl();
8435      return;
8436    }
8437
8438    // C++11 [class.static.data]p3: A static data member can be declared with
8439    // the constexpr specifier; if so, its declaration shall specify
8440    // a brace-or-equal-initializer.
8441    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8442    // the definition of a variable [...] or the declaration of a static data
8443    // member.
8444    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8445      if (Var->isStaticDataMember())
8446        Diag(Var->getLocation(),
8447             diag::err_constexpr_static_mem_var_requires_init)
8448          << Var->getDeclName();
8449      else
8450        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8451      Var->setInvalidDecl();
8452      return;
8453    }
8454
8455    switch (Var->isThisDeclarationADefinition()) {
8456    case VarDecl::Definition:
8457      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8458        break;
8459
8460      // We have an out-of-line definition of a static data member
8461      // that has an in-class initializer, so we type-check this like
8462      // a declaration.
8463      //
8464      // Fall through
8465
8466    case VarDecl::DeclarationOnly:
8467      // It's only a declaration.
8468
8469      // Block scope. C99 6.7p7: If an identifier for an object is
8470      // declared with no linkage (C99 6.2.2p6), the type for the
8471      // object shall be complete.
8472      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8473          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8474          RequireCompleteType(Var->getLocation(), Type,
8475                              diag::err_typecheck_decl_incomplete_type))
8476        Var->setInvalidDecl();
8477
8478      // Make sure that the type is not abstract.
8479      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8480          RequireNonAbstractType(Var->getLocation(), Type,
8481                                 diag::err_abstract_type_in_decl,
8482                                 AbstractVariableType))
8483        Var->setInvalidDecl();
8484      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8485          Var->getStorageClass() == SC_PrivateExtern) {
8486        Diag(Var->getLocation(), diag::warn_private_extern);
8487        Diag(Var->getLocation(), diag::note_private_extern);
8488      }
8489
8490      return;
8491
8492    case VarDecl::TentativeDefinition:
8493      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8494      // object that has file scope without an initializer, and without a
8495      // storage-class specifier or with the storage-class specifier "static",
8496      // constitutes a tentative definition. Note: A tentative definition with
8497      // external linkage is valid (C99 6.2.2p5).
8498      if (!Var->isInvalidDecl()) {
8499        if (const IncompleteArrayType *ArrayT
8500                                    = Context.getAsIncompleteArrayType(Type)) {
8501          if (RequireCompleteType(Var->getLocation(),
8502                                  ArrayT->getElementType(),
8503                                  diag::err_illegal_decl_array_incomplete_type))
8504            Var->setInvalidDecl();
8505        } else if (Var->getStorageClass() == SC_Static) {
8506          // C99 6.9.2p3: If the declaration of an identifier for an object is
8507          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8508          // declared type shall not be an incomplete type.
8509          // NOTE: code such as the following
8510          //     static struct s;
8511          //     struct s { int a; };
8512          // is accepted by gcc. Hence here we issue a warning instead of
8513          // an error and we do not invalidate the static declaration.
8514          // NOTE: to avoid multiple warnings, only check the first declaration.
8515          if (Var->getPreviousDecl() == 0)
8516            RequireCompleteType(Var->getLocation(), Type,
8517                                diag::ext_typecheck_decl_incomplete_type);
8518        }
8519      }
8520
8521      // Record the tentative definition; we're done.
8522      if (!Var->isInvalidDecl())
8523        TentativeDefinitions.push_back(Var);
8524      return;
8525    }
8526
8527    // Provide a specific diagnostic for uninitialized variable
8528    // definitions with incomplete array type.
8529    if (Type->isIncompleteArrayType()) {
8530      Diag(Var->getLocation(),
8531           diag::err_typecheck_incomplete_array_needs_initializer);
8532      Var->setInvalidDecl();
8533      return;
8534    }
8535
8536    // Provide a specific diagnostic for uninitialized variable
8537    // definitions with reference type.
8538    if (Type->isReferenceType()) {
8539      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8540        << Var->getDeclName()
8541        << SourceRange(Var->getLocation(), Var->getLocation());
8542      Var->setInvalidDecl();
8543      return;
8544    }
8545
8546    // Do not attempt to type-check the default initializer for a
8547    // variable with dependent type.
8548    if (Type->isDependentType())
8549      return;
8550
8551    if (Var->isInvalidDecl())
8552      return;
8553
8554    if (RequireCompleteType(Var->getLocation(),
8555                            Context.getBaseElementType(Type),
8556                            diag::err_typecheck_decl_incomplete_type)) {
8557      Var->setInvalidDecl();
8558      return;
8559    }
8560
8561    // The variable can not have an abstract class type.
8562    if (RequireNonAbstractType(Var->getLocation(), Type,
8563                               diag::err_abstract_type_in_decl,
8564                               AbstractVariableType)) {
8565      Var->setInvalidDecl();
8566      return;
8567    }
8568
8569    // Check for jumps past the implicit initializer.  C++0x
8570    // clarifies that this applies to a "variable with automatic
8571    // storage duration", not a "local variable".
8572    // C++11 [stmt.dcl]p3
8573    //   A program that jumps from a point where a variable with automatic
8574    //   storage duration is not in scope to a point where it is in scope is
8575    //   ill-formed unless the variable has scalar type, class type with a
8576    //   trivial default constructor and a trivial destructor, a cv-qualified
8577    //   version of one of these types, or an array of one of the preceding
8578    //   types and is declared without an initializer.
8579    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8580      if (const RecordType *Record
8581            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8582        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8583        // Mark the function for further checking even if the looser rules of
8584        // C++11 do not require such checks, so that we can diagnose
8585        // incompatibilities with C++98.
8586        if (!CXXRecord->isPOD())
8587          getCurFunction()->setHasBranchProtectedScope();
8588      }
8589    }
8590
8591    // C++03 [dcl.init]p9:
8592    //   If no initializer is specified for an object, and the
8593    //   object is of (possibly cv-qualified) non-POD class type (or
8594    //   array thereof), the object shall be default-initialized; if
8595    //   the object is of const-qualified type, the underlying class
8596    //   type shall have a user-declared default
8597    //   constructor. Otherwise, if no initializer is specified for
8598    //   a non- static object, the object and its subobjects, if
8599    //   any, have an indeterminate initial value); if the object
8600    //   or any of its subobjects are of const-qualified type, the
8601    //   program is ill-formed.
8602    // C++0x [dcl.init]p11:
8603    //   If no initializer is specified for an object, the object is
8604    //   default-initialized; [...].
8605    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8606    InitializationKind Kind
8607      = InitializationKind::CreateDefault(Var->getLocation());
8608
8609    InitializationSequence InitSeq(*this, Entity, Kind, None);
8610    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8611    if (Init.isInvalid())
8612      Var->setInvalidDecl();
8613    else if (Init.get()) {
8614      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8615      // This is important for template substitution.
8616      Var->setInitStyle(VarDecl::CallInit);
8617    }
8618
8619    CheckCompleteVariableDeclaration(Var);
8620  }
8621}
8622
8623void Sema::ActOnCXXForRangeDecl(Decl *D) {
8624  VarDecl *VD = dyn_cast<VarDecl>(D);
8625  if (!VD) {
8626    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8627    D->setInvalidDecl();
8628    return;
8629  }
8630
8631  VD->setCXXForRangeDecl(true);
8632
8633  // for-range-declaration cannot be given a storage class specifier.
8634  int Error = -1;
8635  switch (VD->getStorageClass()) {
8636  case SC_None:
8637    break;
8638  case SC_Extern:
8639    Error = 0;
8640    break;
8641  case SC_Static:
8642    Error = 1;
8643    break;
8644  case SC_PrivateExtern:
8645    Error = 2;
8646    break;
8647  case SC_Auto:
8648    Error = 3;
8649    break;
8650  case SC_Register:
8651    Error = 4;
8652    break;
8653  case SC_OpenCLWorkGroupLocal:
8654    llvm_unreachable("Unexpected storage class");
8655  }
8656  if (VD->isConstexpr())
8657    Error = 5;
8658  if (Error != -1) {
8659    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8660      << VD->getDeclName() << Error;
8661    D->setInvalidDecl();
8662  }
8663}
8664
8665void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8666  if (var->isInvalidDecl()) return;
8667
8668  // In ARC, don't allow jumps past the implicit initialization of a
8669  // local retaining variable.
8670  if (getLangOpts().ObjCAutoRefCount &&
8671      var->hasLocalStorage()) {
8672    switch (var->getType().getObjCLifetime()) {
8673    case Qualifiers::OCL_None:
8674    case Qualifiers::OCL_ExplicitNone:
8675    case Qualifiers::OCL_Autoreleasing:
8676      break;
8677
8678    case Qualifiers::OCL_Weak:
8679    case Qualifiers::OCL_Strong:
8680      getCurFunction()->setHasBranchProtectedScope();
8681      break;
8682    }
8683  }
8684
8685  if (var->isThisDeclarationADefinition() &&
8686      var->isExternallyVisible() &&
8687      getDiagnostics().getDiagnosticLevel(
8688                       diag::warn_missing_variable_declarations,
8689                       var->getLocation())) {
8690    // Find a previous declaration that's not a definition.
8691    VarDecl *prev = var->getPreviousDecl();
8692    while (prev && prev->isThisDeclarationADefinition())
8693      prev = prev->getPreviousDecl();
8694
8695    if (!prev)
8696      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8697  }
8698
8699  if (var->getTLSKind() == VarDecl::TLS_Static &&
8700      var->getType().isDestructedType()) {
8701    // GNU C++98 edits for __thread, [basic.start.term]p3:
8702    //   The type of an object with thread storage duration shall not
8703    //   have a non-trivial destructor.
8704    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8705    if (getLangOpts().CPlusPlus11)
8706      Diag(var->getLocation(), diag::note_use_thread_local);
8707  }
8708
8709  // All the following checks are C++ only.
8710  if (!getLangOpts().CPlusPlus) return;
8711
8712  QualType type = var->getType();
8713  if (type->isDependentType()) return;
8714
8715  // __block variables might require us to capture a copy-initializer.
8716  if (var->hasAttr<BlocksAttr>()) {
8717    // It's currently invalid to ever have a __block variable with an
8718    // array type; should we diagnose that here?
8719
8720    // Regardless, we don't want to ignore array nesting when
8721    // constructing this copy.
8722    if (type->isStructureOrClassType()) {
8723      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8724      SourceLocation poi = var->getLocation();
8725      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8726      ExprResult result
8727        = PerformMoveOrCopyInitialization(
8728            InitializedEntity::InitializeBlock(poi, type, false),
8729            var, var->getType(), varRef, /*AllowNRVO=*/true);
8730      if (!result.isInvalid()) {
8731        result = MaybeCreateExprWithCleanups(result);
8732        Expr *init = result.takeAs<Expr>();
8733        Context.setBlockVarCopyInits(var, init);
8734      }
8735    }
8736  }
8737
8738  Expr *Init = var->getInit();
8739  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8740  QualType baseType = Context.getBaseElementType(type);
8741
8742  if (!var->getDeclContext()->isDependentContext() &&
8743      Init && !Init->isValueDependent()) {
8744    if (IsGlobal && !var->isConstexpr() &&
8745        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8746                                            var->getLocation())
8747          != DiagnosticsEngine::Ignored) {
8748      // Warn about globals which don't have a constant initializer.  Don't
8749      // warn about globals with a non-trivial destructor because we already
8750      // warned about them.
8751      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8752      if (!(RD && !RD->hasTrivialDestructor()) &&
8753          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8754        Diag(var->getLocation(), diag::warn_global_constructor)
8755          << Init->getSourceRange();
8756    }
8757
8758    if (var->isConstexpr()) {
8759      SmallVector<PartialDiagnosticAt, 8> Notes;
8760      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8761        SourceLocation DiagLoc = var->getLocation();
8762        // If the note doesn't add any useful information other than a source
8763        // location, fold it into the primary diagnostic.
8764        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8765              diag::note_invalid_subexpr_in_const_expr) {
8766          DiagLoc = Notes[0].first;
8767          Notes.clear();
8768        }
8769        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8770          << var << Init->getSourceRange();
8771        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8772          Diag(Notes[I].first, Notes[I].second);
8773      }
8774    } else if (var->isUsableInConstantExpressions(Context)) {
8775      // Check whether the initializer of a const variable of integral or
8776      // enumeration type is an ICE now, since we can't tell whether it was
8777      // initialized by a constant expression if we check later.
8778      var->checkInitIsICE();
8779    }
8780  }
8781
8782  // Require the destructor.
8783  if (const RecordType *recordType = baseType->getAs<RecordType>())
8784    FinalizeVarWithDestructor(var, recordType);
8785}
8786
8787/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8788/// any semantic actions necessary after any initializer has been attached.
8789void
8790Sema::FinalizeDeclaration(Decl *ThisDecl) {
8791  // Note that we are no longer parsing the initializer for this declaration.
8792  ParsingInitForAutoVars.erase(ThisDecl);
8793
8794  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8795  if (!VD)
8796    return;
8797
8798  const DeclContext *DC = VD->getDeclContext();
8799  // If there's a #pragma GCC visibility in scope, and this isn't a class
8800  // member, set the visibility of this variable.
8801  if (!DC->isRecord() && VD->isExternallyVisible())
8802    AddPushedVisibilityAttribute(VD);
8803
8804  if (VD->isFileVarDecl())
8805    MarkUnusedFileScopedDecl(VD);
8806
8807  // Now we have parsed the initializer and can update the table of magic
8808  // tag values.
8809  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8810      !VD->getType()->isIntegralOrEnumerationType())
8811    return;
8812
8813  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8814         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8815         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8816       I != E; ++I) {
8817    const Expr *MagicValueExpr = VD->getInit();
8818    if (!MagicValueExpr) {
8819      continue;
8820    }
8821    llvm::APSInt MagicValueInt;
8822    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8823      Diag(I->getRange().getBegin(),
8824           diag::err_type_tag_for_datatype_not_ice)
8825        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8826      continue;
8827    }
8828    if (MagicValueInt.getActiveBits() > 64) {
8829      Diag(I->getRange().getBegin(),
8830           diag::err_type_tag_for_datatype_too_large)
8831        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8832      continue;
8833    }
8834    uint64_t MagicValue = MagicValueInt.getZExtValue();
8835    RegisterTypeTagForDatatype(I->getArgumentKind(),
8836                               MagicValue,
8837                               I->getMatchingCType(),
8838                               I->getLayoutCompatible(),
8839                               I->getMustBeNull());
8840  }
8841}
8842
8843Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8844                                                   ArrayRef<Decl *> Group) {
8845  SmallVector<Decl*, 8> Decls;
8846
8847  if (DS.isTypeSpecOwned())
8848    Decls.push_back(DS.getRepAsDecl());
8849
8850  for (unsigned i = 0, e = Group.size(); i != e; ++i)
8851    if (Decl *D = Group[i])
8852      Decls.push_back(D);
8853
8854  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8855    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8856      HandleTagNumbering(*this, Tag);
8857  }
8858
8859  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8860}
8861
8862/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8863/// group, performing any necessary semantic checking.
8864Sema::DeclGroupPtrTy
8865Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8866                           bool TypeMayContainAuto) {
8867  // C++0x [dcl.spec.auto]p7:
8868  //   If the type deduced for the template parameter U is not the same in each
8869  //   deduction, the program is ill-formed.
8870  // FIXME: When initializer-list support is added, a distinction is needed
8871  // between the deduced type U and the deduced type which 'auto' stands for.
8872  //   auto a = 0, b = { 1, 2, 3 };
8873  // is legal because the deduced type U is 'int' in both cases.
8874  if (TypeMayContainAuto && Group.size() > 1) {
8875    QualType Deduced;
8876    CanQualType DeducedCanon;
8877    VarDecl *DeducedDecl = 0;
8878    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8879      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8880        AutoType *AT = D->getType()->getContainedAutoType();
8881        // Don't reissue diagnostics when instantiating a template.
8882        if (AT && D->isInvalidDecl())
8883          break;
8884        QualType U = AT ? AT->getDeducedType() : QualType();
8885        if (!U.isNull()) {
8886          CanQualType UCanon = Context.getCanonicalType(U);
8887          if (Deduced.isNull()) {
8888            Deduced = U;
8889            DeducedCanon = UCanon;
8890            DeducedDecl = D;
8891          } else if (DeducedCanon != UCanon) {
8892            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8893                 diag::err_auto_different_deductions)
8894              << (AT->isDecltypeAuto() ? 1 : 0)
8895              << Deduced << DeducedDecl->getDeclName()
8896              << U << D->getDeclName()
8897              << DeducedDecl->getInit()->getSourceRange()
8898              << D->getInit()->getSourceRange();
8899            D->setInvalidDecl();
8900            break;
8901          }
8902        }
8903      }
8904    }
8905  }
8906
8907  ActOnDocumentableDecls(Group);
8908
8909  return DeclGroupPtrTy::make(
8910      DeclGroupRef::Create(Context, Group.data(), Group.size()));
8911}
8912
8913void Sema::ActOnDocumentableDecl(Decl *D) {
8914  ActOnDocumentableDecls(D);
8915}
8916
8917void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8918  // Don't parse the comment if Doxygen diagnostics are ignored.
8919  if (Group.empty() || !Group[0])
8920   return;
8921
8922  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8923                               Group[0]->getLocation())
8924        == DiagnosticsEngine::Ignored)
8925    return;
8926
8927  if (Group.size() >= 2) {
8928    // This is a decl group.  Normally it will contain only declarations
8929    // produced from declarator list.  But in case we have any definitions or
8930    // additional declaration references:
8931    //   'typedef struct S {} S;'
8932    //   'typedef struct S *S;'
8933    //   'struct S *pS;'
8934    // FinalizeDeclaratorGroup adds these as separate declarations.
8935    Decl *MaybeTagDecl = Group[0];
8936    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8937      Group = Group.slice(1);
8938    }
8939  }
8940
8941  // See if there are any new comments that are not attached to a decl.
8942  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8943  if (!Comments.empty() &&
8944      !Comments.back()->isAttached()) {
8945    // There is at least one comment that not attached to a decl.
8946    // Maybe it should be attached to one of these decls?
8947    //
8948    // Note that this way we pick up not only comments that precede the
8949    // declaration, but also comments that *follow* the declaration -- thanks to
8950    // the lookahead in the lexer: we've consumed the semicolon and looked
8951    // ahead through comments.
8952    for (unsigned i = 0, e = Group.size(); i != e; ++i)
8953      Context.getCommentForDecl(Group[i], &PP);
8954  }
8955}
8956
8957/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8958/// to introduce parameters into function prototype scope.
8959Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8960  const DeclSpec &DS = D.getDeclSpec();
8961
8962  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8963  // C++03 [dcl.stc]p2 also permits 'auto'.
8964  VarDecl::StorageClass StorageClass = SC_None;
8965  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8966    StorageClass = SC_Register;
8967  } else if (getLangOpts().CPlusPlus &&
8968             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8969    StorageClass = SC_Auto;
8970  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8971    Diag(DS.getStorageClassSpecLoc(),
8972         diag::err_invalid_storage_class_in_func_decl);
8973    D.getMutableDeclSpec().ClearStorageClassSpecs();
8974  }
8975
8976  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8977    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8978      << DeclSpec::getSpecifierName(TSCS);
8979  if (DS.isConstexprSpecified())
8980    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8981      << 0;
8982
8983  DiagnoseFunctionSpecifiers(DS);
8984
8985  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8986  QualType parmDeclType = TInfo->getType();
8987
8988  if (getLangOpts().CPlusPlus) {
8989    // Check that there are no default arguments inside the type of this
8990    // parameter.
8991    CheckExtraCXXDefaultArguments(D);
8992
8993    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8994    if (D.getCXXScopeSpec().isSet()) {
8995      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8996        << D.getCXXScopeSpec().getRange();
8997      D.getCXXScopeSpec().clear();
8998    }
8999  }
9000
9001  // Ensure we have a valid name
9002  IdentifierInfo *II = 0;
9003  if (D.hasName()) {
9004    II = D.getIdentifier();
9005    if (!II) {
9006      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9007        << GetNameForDeclarator(D).getName().getAsString();
9008      D.setInvalidType(true);
9009    }
9010  }
9011
9012  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9013  if (II) {
9014    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9015                   ForRedeclaration);
9016    LookupName(R, S);
9017    if (R.isSingleResult()) {
9018      NamedDecl *PrevDecl = R.getFoundDecl();
9019      if (PrevDecl->isTemplateParameter()) {
9020        // Maybe we will complain about the shadowed template parameter.
9021        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9022        // Just pretend that we didn't see the previous declaration.
9023        PrevDecl = 0;
9024      } else if (S->isDeclScope(PrevDecl)) {
9025        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9026        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9027
9028        // Recover by removing the name
9029        II = 0;
9030        D.SetIdentifier(0, D.getIdentifierLoc());
9031        D.setInvalidType(true);
9032      }
9033    }
9034  }
9035
9036  // Temporarily put parameter variables in the translation unit, not
9037  // the enclosing context.  This prevents them from accidentally
9038  // looking like class members in C++.
9039  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9040                                    D.getLocStart(),
9041                                    D.getIdentifierLoc(), II,
9042                                    parmDeclType, TInfo,
9043                                    StorageClass);
9044
9045  if (D.isInvalidType())
9046    New->setInvalidDecl();
9047
9048  assert(S->isFunctionPrototypeScope());
9049  assert(S->getFunctionPrototypeDepth() >= 1);
9050  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9051                    S->getNextFunctionPrototypeIndex());
9052
9053  // Add the parameter declaration into this scope.
9054  S->AddDecl(New);
9055  if (II)
9056    IdResolver.AddDecl(New);
9057
9058  ProcessDeclAttributes(S, New, D);
9059
9060  if (D.getDeclSpec().isModulePrivateSpecified())
9061    Diag(New->getLocation(), diag::err_module_private_local)
9062      << 1 << New->getDeclName()
9063      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9064      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9065
9066  if (New->hasAttr<BlocksAttr>()) {
9067    Diag(New->getLocation(), diag::err_block_on_nonlocal);
9068  }
9069  return New;
9070}
9071
9072/// \brief Synthesizes a variable for a parameter arising from a
9073/// typedef.
9074ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9075                                              SourceLocation Loc,
9076                                              QualType T) {
9077  /* FIXME: setting StartLoc == Loc.
9078     Would it be worth to modify callers so as to provide proper source
9079     location for the unnamed parameters, embedding the parameter's type? */
9080  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
9081                                T, Context.getTrivialTypeSourceInfo(T, Loc),
9082                                           SC_None, 0);
9083  Param->setImplicit();
9084  return Param;
9085}
9086
9087void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9088                                    ParmVarDecl * const *ParamEnd) {
9089  // Don't diagnose unused-parameter errors in template instantiations; we
9090  // will already have done so in the template itself.
9091  if (!ActiveTemplateInstantiations.empty())
9092    return;
9093
9094  for (; Param != ParamEnd; ++Param) {
9095    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9096        !(*Param)->hasAttr<UnusedAttr>()) {
9097      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9098        << (*Param)->getDeclName();
9099    }
9100  }
9101}
9102
9103void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9104                                                  ParmVarDecl * const *ParamEnd,
9105                                                  QualType ReturnTy,
9106                                                  NamedDecl *D) {
9107  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9108    return;
9109
9110  // Warn if the return value is pass-by-value and larger than the specified
9111  // threshold.
9112  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9113    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9114    if (Size > LangOpts.NumLargeByValueCopy)
9115      Diag(D->getLocation(), diag::warn_return_value_size)
9116          << D->getDeclName() << Size;
9117  }
9118
9119  // Warn if any parameter is pass-by-value and larger than the specified
9120  // threshold.
9121  for (; Param != ParamEnd; ++Param) {
9122    QualType T = (*Param)->getType();
9123    if (T->isDependentType() || !T.isPODType(Context))
9124      continue;
9125    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9126    if (Size > LangOpts.NumLargeByValueCopy)
9127      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9128          << (*Param)->getDeclName() << Size;
9129  }
9130}
9131
9132ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9133                                  SourceLocation NameLoc, IdentifierInfo *Name,
9134                                  QualType T, TypeSourceInfo *TSInfo,
9135                                  VarDecl::StorageClass StorageClass) {
9136  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9137  if (getLangOpts().ObjCAutoRefCount &&
9138      T.getObjCLifetime() == Qualifiers::OCL_None &&
9139      T->isObjCLifetimeType()) {
9140
9141    Qualifiers::ObjCLifetime lifetime;
9142
9143    // Special cases for arrays:
9144    //   - if it's const, use __unsafe_unretained
9145    //   - otherwise, it's an error
9146    if (T->isArrayType()) {
9147      if (!T.isConstQualified()) {
9148        DelayedDiagnostics.add(
9149            sema::DelayedDiagnostic::makeForbiddenType(
9150            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9151      }
9152      lifetime = Qualifiers::OCL_ExplicitNone;
9153    } else {
9154      lifetime = T->getObjCARCImplicitLifetime();
9155    }
9156    T = Context.getLifetimeQualifiedType(T, lifetime);
9157  }
9158
9159  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9160                                         Context.getAdjustedParameterType(T),
9161                                         TSInfo,
9162                                         StorageClass, 0);
9163
9164  // Parameters can not be abstract class types.
9165  // For record types, this is done by the AbstractClassUsageDiagnoser once
9166  // the class has been completely parsed.
9167  if (!CurContext->isRecord() &&
9168      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9169                             AbstractParamType))
9170    New->setInvalidDecl();
9171
9172  // Parameter declarators cannot be interface types. All ObjC objects are
9173  // passed by reference.
9174  if (T->isObjCObjectType()) {
9175    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9176    Diag(NameLoc,
9177         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9178      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9179    T = Context.getObjCObjectPointerType(T);
9180    New->setType(T);
9181  }
9182
9183  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9184  // duration shall not be qualified by an address-space qualifier."
9185  // Since all parameters have automatic store duration, they can not have
9186  // an address space.
9187  if (T.getAddressSpace() != 0) {
9188    Diag(NameLoc, diag::err_arg_with_address_space);
9189    New->setInvalidDecl();
9190  }
9191
9192  return New;
9193}
9194
9195void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9196                                           SourceLocation LocAfterDecls) {
9197  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9198
9199  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9200  // for a K&R function.
9201  if (!FTI.hasPrototype) {
9202    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9203      --i;
9204      if (FTI.ArgInfo[i].Param == 0) {
9205        SmallString<256> Code;
9206        llvm::raw_svector_ostream(Code) << "  int "
9207                                        << FTI.ArgInfo[i].Ident->getName()
9208                                        << ";\n";
9209        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9210          << FTI.ArgInfo[i].Ident
9211          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9212
9213        // Implicitly declare the argument as type 'int' for lack of a better
9214        // type.
9215        AttributeFactory attrs;
9216        DeclSpec DS(attrs);
9217        const char* PrevSpec; // unused
9218        unsigned DiagID; // unused
9219        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9220                           PrevSpec, DiagID);
9221        // Use the identifier location for the type source range.
9222        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9223        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9224        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9225        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9226        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9227      }
9228    }
9229  }
9230}
9231
9232Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9233  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9234  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9235  Scope *ParentScope = FnBodyScope->getParent();
9236
9237  D.setFunctionDefinitionKind(FDK_Definition);
9238  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9239  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9240}
9241
9242static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9243                             const FunctionDecl*& PossibleZeroParamPrototype) {
9244  // Don't warn about invalid declarations.
9245  if (FD->isInvalidDecl())
9246    return false;
9247
9248  // Or declarations that aren't global.
9249  if (!FD->isGlobal())
9250    return false;
9251
9252  // Don't warn about C++ member functions.
9253  if (isa<CXXMethodDecl>(FD))
9254    return false;
9255
9256  // Don't warn about 'main'.
9257  if (FD->isMain())
9258    return false;
9259
9260  // Don't warn about inline functions.
9261  if (FD->isInlined())
9262    return false;
9263
9264  // Don't warn about function templates.
9265  if (FD->getDescribedFunctionTemplate())
9266    return false;
9267
9268  // Don't warn about function template specializations.
9269  if (FD->isFunctionTemplateSpecialization())
9270    return false;
9271
9272  // Don't warn for OpenCL kernels.
9273  if (FD->hasAttr<OpenCLKernelAttr>())
9274    return false;
9275
9276  bool MissingPrototype = true;
9277  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9278       Prev; Prev = Prev->getPreviousDecl()) {
9279    // Ignore any declarations that occur in function or method
9280    // scope, because they aren't visible from the header.
9281    if (Prev->getDeclContext()->isFunctionOrMethod())
9282      continue;
9283
9284    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9285    if (FD->getNumParams() == 0)
9286      PossibleZeroParamPrototype = Prev;
9287    break;
9288  }
9289
9290  return MissingPrototype;
9291}
9292
9293void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9294  // Don't complain if we're in GNU89 mode and the previous definition
9295  // was an extern inline function.
9296  const FunctionDecl *Definition;
9297  if (FD->isDefined(Definition) &&
9298      !canRedefineFunction(Definition, getLangOpts())) {
9299    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9300        Definition->getStorageClass() == SC_Extern)
9301      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9302        << FD->getDeclName() << getLangOpts().CPlusPlus;
9303    else
9304      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9305    Diag(Definition->getLocation(), diag::note_previous_definition);
9306    FD->setInvalidDecl();
9307  }
9308}
9309
9310Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9311  // Clear the last template instantiation error context.
9312  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9313
9314  if (!D)
9315    return D;
9316  FunctionDecl *FD = 0;
9317
9318  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9319    FD = FunTmpl->getTemplatedDecl();
9320  else
9321    FD = cast<FunctionDecl>(D);
9322
9323  // Enter a new function scope
9324  PushFunctionScope();
9325
9326  // See if this is a redefinition.
9327  if (!FD->isLateTemplateParsed())
9328    CheckForFunctionRedefinition(FD);
9329
9330  // Builtin functions cannot be defined.
9331  if (unsigned BuiltinID = FD->getBuiltinID()) {
9332    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9333        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9334      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9335      FD->setInvalidDecl();
9336    }
9337  }
9338
9339  // The return type of a function definition must be complete
9340  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9341  QualType ResultType = FD->getResultType();
9342  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9343      !FD->isInvalidDecl() &&
9344      RequireCompleteType(FD->getLocation(), ResultType,
9345                          diag::err_func_def_incomplete_result))
9346    FD->setInvalidDecl();
9347
9348  // GNU warning -Wmissing-prototypes:
9349  //   Warn if a global function is defined without a previous
9350  //   prototype declaration. This warning is issued even if the
9351  //   definition itself provides a prototype. The aim is to detect
9352  //   global functions that fail to be declared in header files.
9353  const FunctionDecl *PossibleZeroParamPrototype = 0;
9354  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9355    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9356
9357    if (PossibleZeroParamPrototype) {
9358      // We found a declaration that is not a prototype,
9359      // but that could be a zero-parameter prototype
9360      if (TypeSourceInfo *TI =
9361              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9362        TypeLoc TL = TI->getTypeLoc();
9363        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9364          Diag(PossibleZeroParamPrototype->getLocation(),
9365               diag::note_declaration_not_a_prototype)
9366            << PossibleZeroParamPrototype
9367            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9368      }
9369    }
9370  }
9371
9372  if (FnBodyScope)
9373    PushDeclContext(FnBodyScope, FD);
9374
9375  // Check the validity of our function parameters
9376  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9377                           /*CheckParameterNames=*/true);
9378
9379  // Introduce our parameters into the function scope
9380  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9381    ParmVarDecl *Param = FD->getParamDecl(p);
9382    Param->setOwningFunction(FD);
9383
9384    // If this has an identifier, add it to the scope stack.
9385    if (Param->getIdentifier() && FnBodyScope) {
9386      CheckShadow(FnBodyScope, Param);
9387
9388      PushOnScopeChains(Param, FnBodyScope);
9389    }
9390  }
9391
9392  // If we had any tags defined in the function prototype,
9393  // introduce them into the function scope.
9394  if (FnBodyScope) {
9395    for (ArrayRef<NamedDecl *>::iterator
9396             I = FD->getDeclsInPrototypeScope().begin(),
9397             E = FD->getDeclsInPrototypeScope().end();
9398         I != E; ++I) {
9399      NamedDecl *D = *I;
9400
9401      // Some of these decls (like enums) may have been pinned to the translation unit
9402      // for lack of a real context earlier. If so, remove from the translation unit
9403      // and reattach to the current context.
9404      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9405        // Is the decl actually in the context?
9406        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9407               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9408          if (*DI == D) {
9409            Context.getTranslationUnitDecl()->removeDecl(D);
9410            break;
9411          }
9412        }
9413        // Either way, reassign the lexical decl context to our FunctionDecl.
9414        D->setLexicalDeclContext(CurContext);
9415      }
9416
9417      // If the decl has a non-null name, make accessible in the current scope.
9418      if (!D->getName().empty())
9419        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9420
9421      // Similarly, dive into enums and fish their constants out, making them
9422      // accessible in this scope.
9423      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9424        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9425               EE = ED->enumerator_end(); EI != EE; ++EI)
9426          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9427      }
9428    }
9429  }
9430
9431  // Ensure that the function's exception specification is instantiated.
9432  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9433    ResolveExceptionSpec(D->getLocation(), FPT);
9434
9435  // Checking attributes of current function definition
9436  // dllimport attribute.
9437  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9438  if (DA && (!FD->getAttr<DLLExportAttr>())) {
9439    // dllimport attribute cannot be directly applied to definition.
9440    // Microsoft accepts dllimport for functions defined within class scope.
9441    if (!DA->isInherited() &&
9442        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9443      Diag(FD->getLocation(),
9444           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9445        << "dllimport";
9446      FD->setInvalidDecl();
9447      return D;
9448    }
9449
9450    // Visual C++ appears to not think this is an issue, so only issue
9451    // a warning when Microsoft extensions are disabled.
9452    if (!LangOpts.MicrosoftExt) {
9453      // If a symbol previously declared dllimport is later defined, the
9454      // attribute is ignored in subsequent references, and a warning is
9455      // emitted.
9456      Diag(FD->getLocation(),
9457           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9458        << FD->getName() << "dllimport";
9459    }
9460  }
9461  // We want to attach documentation to original Decl (which might be
9462  // a function template).
9463  ActOnDocumentableDecl(D);
9464  return D;
9465}
9466
9467/// \brief Given the set of return statements within a function body,
9468/// compute the variables that are subject to the named return value
9469/// optimization.
9470///
9471/// Each of the variables that is subject to the named return value
9472/// optimization will be marked as NRVO variables in the AST, and any
9473/// return statement that has a marked NRVO variable as its NRVO candidate can
9474/// use the named return value optimization.
9475///
9476/// This function applies a very simplistic algorithm for NRVO: if every return
9477/// statement in the function has the same NRVO candidate, that candidate is
9478/// the NRVO variable.
9479///
9480/// FIXME: Employ a smarter algorithm that accounts for multiple return
9481/// statements and the lifetimes of the NRVO candidates. We should be able to
9482/// find a maximal set of NRVO variables.
9483void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9484  ReturnStmt **Returns = Scope->Returns.data();
9485
9486  const VarDecl *NRVOCandidate = 0;
9487  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9488    if (!Returns[I]->getNRVOCandidate())
9489      return;
9490
9491    if (!NRVOCandidate)
9492      NRVOCandidate = Returns[I]->getNRVOCandidate();
9493    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9494      return;
9495  }
9496
9497  if (NRVOCandidate)
9498    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9499}
9500
9501bool Sema::canSkipFunctionBody(Decl *D) {
9502  if (!Consumer.shouldSkipFunctionBody(D))
9503    return false;
9504
9505  if (isa<ObjCMethodDecl>(D))
9506    return true;
9507
9508  FunctionDecl *FD = 0;
9509  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9510    FD = FTD->getTemplatedDecl();
9511  else
9512    FD = cast<FunctionDecl>(D);
9513
9514  // We cannot skip the body of a function (or function template) which is
9515  // constexpr, since we may need to evaluate its body in order to parse the
9516  // rest of the file.
9517  // We cannot skip the body of a function with an undeduced return type,
9518  // because any callers of that function need to know the type.
9519  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9520}
9521
9522Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9523  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9524    FD->setHasSkippedBody();
9525  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9526    MD->setHasSkippedBody();
9527  return ActOnFinishFunctionBody(Decl, 0);
9528}
9529
9530Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9531  return ActOnFinishFunctionBody(D, BodyArg, false);
9532}
9533
9534Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9535                                    bool IsInstantiation) {
9536  FunctionDecl *FD = 0;
9537  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9538  if (FunTmpl)
9539    FD = FunTmpl->getTemplatedDecl();
9540  else
9541    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9542
9543  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9544  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9545
9546  if (FD) {
9547    FD->setBody(Body);
9548
9549    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9550        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9551      // If the function has a deduced result type but contains no 'return'
9552      // statements, the result type as written must be exactly 'auto', and
9553      // the deduced result type is 'void'.
9554      if (!FD->getResultType()->getAs<AutoType>()) {
9555        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9556          << FD->getResultType();
9557        FD->setInvalidDecl();
9558      } else {
9559        // Substitute 'void' for the 'auto' in the type.
9560        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9561            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9562        Context.adjustDeducedFunctionResultType(
9563            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9564      }
9565    }
9566
9567    // The only way to be included in UndefinedButUsed is if there is an
9568    // ODR use before the definition. Avoid the expensive map lookup if this
9569    // is the first declaration.
9570    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9571      if (!FD->isExternallyVisible())
9572        UndefinedButUsed.erase(FD);
9573      else if (FD->isInlined() &&
9574               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9575               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9576        UndefinedButUsed.erase(FD);
9577    }
9578
9579    // If the function implicitly returns zero (like 'main') or is naked,
9580    // don't complain about missing return statements.
9581    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9582      WP.disableCheckFallThrough();
9583
9584    // MSVC permits the use of pure specifier (=0) on function definition,
9585    // defined at class scope, warn about this non standard construct.
9586    if (getLangOpts().MicrosoftExt && FD->isPure())
9587      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9588
9589    if (!FD->isInvalidDecl()) {
9590      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9591      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9592                                             FD->getResultType(), FD);
9593
9594      // If this is a constructor, we need a vtable.
9595      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9596        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9597
9598      // Try to apply the named return value optimization. We have to check
9599      // if we can do this here because lambdas keep return statements around
9600      // to deduce an implicit return type.
9601      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9602          !FD->isDependentContext())
9603        computeNRVO(Body, getCurFunction());
9604    }
9605
9606    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9607           "Function parsing confused");
9608  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9609    assert(MD == getCurMethodDecl() && "Method parsing confused");
9610    MD->setBody(Body);
9611    if (!MD->isInvalidDecl()) {
9612      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9613      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9614                                             MD->getResultType(), MD);
9615
9616      if (Body)
9617        computeNRVO(Body, getCurFunction());
9618    }
9619    if (getCurFunction()->ObjCShouldCallSuper) {
9620      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9621        << MD->getSelector().getAsString();
9622      getCurFunction()->ObjCShouldCallSuper = false;
9623    }
9624  } else {
9625    return 0;
9626  }
9627
9628  assert(!getCurFunction()->ObjCShouldCallSuper &&
9629         "This should only be set for ObjC methods, which should have been "
9630         "handled in the block above.");
9631
9632  // Verify and clean out per-function state.
9633  if (Body) {
9634    // C++ constructors that have function-try-blocks can't have return
9635    // statements in the handlers of that block. (C++ [except.handle]p14)
9636    // Verify this.
9637    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9638      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9639
9640    // Verify that gotos and switch cases don't jump into scopes illegally.
9641    if (getCurFunction()->NeedsScopeChecking() &&
9642        !dcl->isInvalidDecl() &&
9643        !hasAnyUnrecoverableErrorsInThisFunction() &&
9644        !PP.isCodeCompletionEnabled())
9645      DiagnoseInvalidJumps(Body);
9646
9647    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9648      if (!Destructor->getParent()->isDependentType())
9649        CheckDestructor(Destructor);
9650
9651      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9652                                             Destructor->getParent());
9653    }
9654
9655    // If any errors have occurred, clear out any temporaries that may have
9656    // been leftover. This ensures that these temporaries won't be picked up for
9657    // deletion in some later function.
9658    if (PP.getDiagnostics().hasErrorOccurred() ||
9659        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9660      DiscardCleanupsInEvaluationContext();
9661    }
9662    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9663        !isa<FunctionTemplateDecl>(dcl)) {
9664      // Since the body is valid, issue any analysis-based warnings that are
9665      // enabled.
9666      ActivePolicy = &WP;
9667    }
9668
9669    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9670        (!CheckConstexprFunctionDecl(FD) ||
9671         !CheckConstexprFunctionBody(FD, Body)))
9672      FD->setInvalidDecl();
9673
9674    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9675    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9676    assert(MaybeODRUseExprs.empty() &&
9677           "Leftover expressions for odr-use checking");
9678  }
9679
9680  if (!IsInstantiation)
9681    PopDeclContext();
9682
9683  PopFunctionScopeInfo(ActivePolicy, dcl);
9684
9685  // If any errors have occurred, clear out any temporaries that may have
9686  // been leftover. This ensures that these temporaries won't be picked up for
9687  // deletion in some later function.
9688  if (getDiagnostics().hasErrorOccurred()) {
9689    DiscardCleanupsInEvaluationContext();
9690  }
9691
9692  return dcl;
9693}
9694
9695
9696/// When we finish delayed parsing of an attribute, we must attach it to the
9697/// relevant Decl.
9698void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9699                                       ParsedAttributes &Attrs) {
9700  // Always attach attributes to the underlying decl.
9701  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9702    D = TD->getTemplatedDecl();
9703  ProcessDeclAttributeList(S, D, Attrs.getList());
9704
9705  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9706    if (Method->isStatic())
9707      checkThisInStaticMemberFunctionAttributes(Method);
9708}
9709
9710
9711/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9712/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9713NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9714                                          IdentifierInfo &II, Scope *S) {
9715  // Before we produce a declaration for an implicitly defined
9716  // function, see whether there was a locally-scoped declaration of
9717  // this name as a function or variable. If so, use that
9718  // (non-visible) declaration, and complain about it.
9719  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9720    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9721    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9722    return ExternCPrev;
9723  }
9724
9725  // Extension in C99.  Legal in C90, but warn about it.
9726  unsigned diag_id;
9727  if (II.getName().startswith("__builtin_"))
9728    diag_id = diag::warn_builtin_unknown;
9729  else if (getLangOpts().C99)
9730    diag_id = diag::ext_implicit_function_decl;
9731  else
9732    diag_id = diag::warn_implicit_function_decl;
9733  Diag(Loc, diag_id) << &II;
9734
9735  // Because typo correction is expensive, only do it if the implicit
9736  // function declaration is going to be treated as an error.
9737  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9738    TypoCorrection Corrected;
9739    DeclFilterCCC<FunctionDecl> Validator;
9740    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9741                                      LookupOrdinaryName, S, 0, Validator))) {
9742      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9743      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9744      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9745
9746      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9747          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9748
9749      if (Func->getLocation().isValid()
9750          && !II.getName().startswith("__builtin_"))
9751        Diag(Func->getLocation(), diag::note_previous_decl)
9752            << CorrectedQuotedStr;
9753    }
9754  }
9755
9756  // Set a Declarator for the implicit definition: int foo();
9757  const char *Dummy;
9758  AttributeFactory attrFactory;
9759  DeclSpec DS(attrFactory);
9760  unsigned DiagID;
9761  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9762  (void)Error; // Silence warning.
9763  assert(!Error && "Error setting up implicit decl!");
9764  SourceLocation NoLoc;
9765  Declarator D(DS, Declarator::BlockContext);
9766  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9767                                             /*IsAmbiguous=*/false,
9768                                             /*RParenLoc=*/NoLoc,
9769                                             /*ArgInfo=*/0,
9770                                             /*NumArgs=*/0,
9771                                             /*EllipsisLoc=*/NoLoc,
9772                                             /*RParenLoc=*/NoLoc,
9773                                             /*TypeQuals=*/0,
9774                                             /*RefQualifierIsLvalueRef=*/true,
9775                                             /*RefQualifierLoc=*/NoLoc,
9776                                             /*ConstQualifierLoc=*/NoLoc,
9777                                             /*VolatileQualifierLoc=*/NoLoc,
9778                                             /*MutableLoc=*/NoLoc,
9779                                             EST_None,
9780                                             /*ESpecLoc=*/NoLoc,
9781                                             /*Exceptions=*/0,
9782                                             /*ExceptionRanges=*/0,
9783                                             /*NumExceptions=*/0,
9784                                             /*NoexceptExpr=*/0,
9785                                             Loc, Loc, D),
9786                DS.getAttributes(),
9787                SourceLocation());
9788  D.SetIdentifier(&II, Loc);
9789
9790  // Insert this function into translation-unit scope.
9791
9792  DeclContext *PrevDC = CurContext;
9793  CurContext = Context.getTranslationUnitDecl();
9794
9795  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9796  FD->setImplicit();
9797
9798  CurContext = PrevDC;
9799
9800  AddKnownFunctionAttributes(FD);
9801
9802  return FD;
9803}
9804
9805/// \brief Adds any function attributes that we know a priori based on
9806/// the declaration of this function.
9807///
9808/// These attributes can apply both to implicitly-declared builtins
9809/// (like __builtin___printf_chk) or to library-declared functions
9810/// like NSLog or printf.
9811///
9812/// We need to check for duplicate attributes both here and where user-written
9813/// attributes are applied to declarations.
9814void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9815  if (FD->isInvalidDecl())
9816    return;
9817
9818  // If this is a built-in function, map its builtin attributes to
9819  // actual attributes.
9820  if (unsigned BuiltinID = FD->getBuiltinID()) {
9821    // Handle printf-formatting attributes.
9822    unsigned FormatIdx;
9823    bool HasVAListArg;
9824    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9825      if (!FD->getAttr<FormatAttr>()) {
9826        const char *fmt = "printf";
9827        unsigned int NumParams = FD->getNumParams();
9828        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9829            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9830          fmt = "NSString";
9831        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9832                                               fmt, FormatIdx+1,
9833                                               HasVAListArg ? 0 : FormatIdx+2));
9834      }
9835    }
9836    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9837                                             HasVAListArg)) {
9838     if (!FD->getAttr<FormatAttr>())
9839       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9840                                              "scanf", FormatIdx+1,
9841                                              HasVAListArg ? 0 : FormatIdx+2));
9842    }
9843
9844    // Mark const if we don't care about errno and that is the only
9845    // thing preventing the function from being const. This allows
9846    // IRgen to use LLVM intrinsics for such functions.
9847    if (!getLangOpts().MathErrno &&
9848        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9849      if (!FD->getAttr<ConstAttr>())
9850        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9851    }
9852
9853    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9854        !FD->getAttr<ReturnsTwiceAttr>())
9855      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9856    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9857      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9858    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9859      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9860  }
9861
9862  IdentifierInfo *Name = FD->getIdentifier();
9863  if (!Name)
9864    return;
9865  if ((!getLangOpts().CPlusPlus &&
9866       FD->getDeclContext()->isTranslationUnit()) ||
9867      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9868       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9869       LinkageSpecDecl::lang_c)) {
9870    // Okay: this could be a libc/libm/Objective-C function we know
9871    // about.
9872  } else
9873    return;
9874
9875  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9876    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9877    // target-specific builtins, perhaps?
9878    if (!FD->getAttr<FormatAttr>())
9879      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9880                                             "printf", 2,
9881                                             Name->isStr("vasprintf") ? 0 : 3));
9882  }
9883
9884  if (Name->isStr("__CFStringMakeConstantString")) {
9885    // We already have a __builtin___CFStringMakeConstantString,
9886    // but builds that use -fno-constant-cfstrings don't go through that.
9887    if (!FD->getAttr<FormatArgAttr>())
9888      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9889  }
9890}
9891
9892TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9893                                    TypeSourceInfo *TInfo) {
9894  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9895  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9896
9897  if (!TInfo) {
9898    assert(D.isInvalidType() && "no declarator info for valid type");
9899    TInfo = Context.getTrivialTypeSourceInfo(T);
9900  }
9901
9902  // Scope manipulation handled by caller.
9903  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9904                                           D.getLocStart(),
9905                                           D.getIdentifierLoc(),
9906                                           D.getIdentifier(),
9907                                           TInfo);
9908
9909  // Bail out immediately if we have an invalid declaration.
9910  if (D.isInvalidType()) {
9911    NewTD->setInvalidDecl();
9912    return NewTD;
9913  }
9914
9915  if (D.getDeclSpec().isModulePrivateSpecified()) {
9916    if (CurContext->isFunctionOrMethod())
9917      Diag(NewTD->getLocation(), diag::err_module_private_local)
9918        << 2 << NewTD->getDeclName()
9919        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9920        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9921    else
9922      NewTD->setModulePrivate();
9923  }
9924
9925  // C++ [dcl.typedef]p8:
9926  //   If the typedef declaration defines an unnamed class (or
9927  //   enum), the first typedef-name declared by the declaration
9928  //   to be that class type (or enum type) is used to denote the
9929  //   class type (or enum type) for linkage purposes only.
9930  // We need to check whether the type was declared in the declaration.
9931  switch (D.getDeclSpec().getTypeSpecType()) {
9932  case TST_enum:
9933  case TST_struct:
9934  case TST_interface:
9935  case TST_union:
9936  case TST_class: {
9937    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9938
9939    // Do nothing if the tag is not anonymous or already has an
9940    // associated typedef (from an earlier typedef in this decl group).
9941    if (tagFromDeclSpec->getIdentifier()) break;
9942    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9943
9944    // A well-formed anonymous tag must always be a TUK_Definition.
9945    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9946
9947    // The type must match the tag exactly;  no qualifiers allowed.
9948    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9949      break;
9950
9951    // Otherwise, set this is the anon-decl typedef for the tag.
9952    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9953    break;
9954  }
9955
9956  default:
9957    break;
9958  }
9959
9960  return NewTD;
9961}
9962
9963
9964/// \brief Check that this is a valid underlying type for an enum declaration.
9965bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9966  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9967  QualType T = TI->getType();
9968
9969  if (T->isDependentType())
9970    return false;
9971
9972  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9973    if (BT->isInteger())
9974      return false;
9975
9976  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9977  return true;
9978}
9979
9980/// Check whether this is a valid redeclaration of a previous enumeration.
9981/// \return true if the redeclaration was invalid.
9982bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9983                                  QualType EnumUnderlyingTy,
9984                                  const EnumDecl *Prev) {
9985  bool IsFixed = !EnumUnderlyingTy.isNull();
9986
9987  if (IsScoped != Prev->isScoped()) {
9988    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9989      << Prev->isScoped();
9990    Diag(Prev->getLocation(), diag::note_previous_use);
9991    return true;
9992  }
9993
9994  if (IsFixed && Prev->isFixed()) {
9995    if (!EnumUnderlyingTy->isDependentType() &&
9996        !Prev->getIntegerType()->isDependentType() &&
9997        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9998                                        Prev->getIntegerType())) {
9999      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10000        << EnumUnderlyingTy << Prev->getIntegerType();
10001      Diag(Prev->getLocation(), diag::note_previous_use);
10002      return true;
10003    }
10004  } else if (IsFixed != Prev->isFixed()) {
10005    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10006      << Prev->isFixed();
10007    Diag(Prev->getLocation(), diag::note_previous_use);
10008    return true;
10009  }
10010
10011  return false;
10012}
10013
10014/// \brief Get diagnostic %select index for tag kind for
10015/// redeclaration diagnostic message.
10016/// WARNING: Indexes apply to particular diagnostics only!
10017///
10018/// \returns diagnostic %select index.
10019static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10020  switch (Tag) {
10021  case TTK_Struct: return 0;
10022  case TTK_Interface: return 1;
10023  case TTK_Class:  return 2;
10024  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10025  }
10026}
10027
10028/// \brief Determine if tag kind is a class-key compatible with
10029/// class for redeclaration (class, struct, or __interface).
10030///
10031/// \returns true iff the tag kind is compatible.
10032static bool isClassCompatTagKind(TagTypeKind Tag)
10033{
10034  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10035}
10036
10037/// \brief Determine whether a tag with a given kind is acceptable
10038/// as a redeclaration of the given tag declaration.
10039///
10040/// \returns true if the new tag kind is acceptable, false otherwise.
10041bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10042                                        TagTypeKind NewTag, bool isDefinition,
10043                                        SourceLocation NewTagLoc,
10044                                        const IdentifierInfo &Name) {
10045  // C++ [dcl.type.elab]p3:
10046  //   The class-key or enum keyword present in the
10047  //   elaborated-type-specifier shall agree in kind with the
10048  //   declaration to which the name in the elaborated-type-specifier
10049  //   refers. This rule also applies to the form of
10050  //   elaborated-type-specifier that declares a class-name or
10051  //   friend class since it can be construed as referring to the
10052  //   definition of the class. Thus, in any
10053  //   elaborated-type-specifier, the enum keyword shall be used to
10054  //   refer to an enumeration (7.2), the union class-key shall be
10055  //   used to refer to a union (clause 9), and either the class or
10056  //   struct class-key shall be used to refer to a class (clause 9)
10057  //   declared using the class or struct class-key.
10058  TagTypeKind OldTag = Previous->getTagKind();
10059  if (!isDefinition || !isClassCompatTagKind(NewTag))
10060    if (OldTag == NewTag)
10061      return true;
10062
10063  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10064    // Warn about the struct/class tag mismatch.
10065    bool isTemplate = false;
10066    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10067      isTemplate = Record->getDescribedClassTemplate();
10068
10069    if (!ActiveTemplateInstantiations.empty()) {
10070      // In a template instantiation, do not offer fix-its for tag mismatches
10071      // since they usually mess up the template instead of fixing the problem.
10072      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10073        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10074        << getRedeclDiagFromTagKind(OldTag);
10075      return true;
10076    }
10077
10078    if (isDefinition) {
10079      // On definitions, check previous tags and issue a fix-it for each
10080      // one that doesn't match the current tag.
10081      if (Previous->getDefinition()) {
10082        // Don't suggest fix-its for redefinitions.
10083        return true;
10084      }
10085
10086      bool previousMismatch = false;
10087      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
10088           E(Previous->redecls_end()); I != E; ++I) {
10089        if (I->getTagKind() != NewTag) {
10090          if (!previousMismatch) {
10091            previousMismatch = true;
10092            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10093              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10094              << getRedeclDiagFromTagKind(I->getTagKind());
10095          }
10096          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10097            << getRedeclDiagFromTagKind(NewTag)
10098            << FixItHint::CreateReplacement(I->getInnerLocStart(),
10099                 TypeWithKeyword::getTagTypeKindName(NewTag));
10100        }
10101      }
10102      return true;
10103    }
10104
10105    // Check for a previous definition.  If current tag and definition
10106    // are same type, do nothing.  If no definition, but disagree with
10107    // with previous tag type, give a warning, but no fix-it.
10108    const TagDecl *Redecl = Previous->getDefinition() ?
10109                            Previous->getDefinition() : Previous;
10110    if (Redecl->getTagKind() == NewTag) {
10111      return true;
10112    }
10113
10114    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10115      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10116      << getRedeclDiagFromTagKind(OldTag);
10117    Diag(Redecl->getLocation(), diag::note_previous_use);
10118
10119    // If there is a previous defintion, suggest a fix-it.
10120    if (Previous->getDefinition()) {
10121        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10122          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10123          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10124               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10125    }
10126
10127    return true;
10128  }
10129  return false;
10130}
10131
10132/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10133/// former case, Name will be non-null.  In the later case, Name will be null.
10134/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10135/// reference/declaration/definition of a tag.
10136Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10137                     SourceLocation KWLoc, CXXScopeSpec &SS,
10138                     IdentifierInfo *Name, SourceLocation NameLoc,
10139                     AttributeList *Attr, AccessSpecifier AS,
10140                     SourceLocation ModulePrivateLoc,
10141                     MultiTemplateParamsArg TemplateParameterLists,
10142                     bool &OwnedDecl, bool &IsDependent,
10143                     SourceLocation ScopedEnumKWLoc,
10144                     bool ScopedEnumUsesClassTag,
10145                     TypeResult UnderlyingType) {
10146  // If this is not a definition, it must have a name.
10147  IdentifierInfo *OrigName = Name;
10148  assert((Name != 0 || TUK == TUK_Definition) &&
10149         "Nameless record must be a definition!");
10150  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10151
10152  OwnedDecl = false;
10153  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10154  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10155
10156  // FIXME: Check explicit specializations more carefully.
10157  bool isExplicitSpecialization = false;
10158  bool Invalid = false;
10159
10160  // We only need to do this matching if we have template parameters
10161  // or a scope specifier, which also conveniently avoids this work
10162  // for non-C++ cases.
10163  if (TemplateParameterLists.size() > 0 ||
10164      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10165    if (TemplateParameterList *TemplateParams =
10166            MatchTemplateParametersToScopeSpecifier(
10167                KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10168                isExplicitSpecialization, Invalid)) {
10169      if (Kind == TTK_Enum) {
10170        Diag(KWLoc, diag::err_enum_template);
10171        return 0;
10172      }
10173
10174      if (TemplateParams->size() > 0) {
10175        // This is a declaration or definition of a class template (which may
10176        // be a member of another template).
10177
10178        if (Invalid)
10179          return 0;
10180
10181        OwnedDecl = false;
10182        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10183                                               SS, Name, NameLoc, Attr,
10184                                               TemplateParams, AS,
10185                                               ModulePrivateLoc,
10186                                               TemplateParameterLists.size()-1,
10187                                               TemplateParameterLists.data());
10188        return Result.get();
10189      } else {
10190        // The "template<>" header is extraneous.
10191        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10192          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10193        isExplicitSpecialization = true;
10194      }
10195    }
10196  }
10197
10198  // Figure out the underlying type if this a enum declaration. We need to do
10199  // this early, because it's needed to detect if this is an incompatible
10200  // redeclaration.
10201  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10202
10203  if (Kind == TTK_Enum) {
10204    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10205      // No underlying type explicitly specified, or we failed to parse the
10206      // type, default to int.
10207      EnumUnderlying = Context.IntTy.getTypePtr();
10208    else if (UnderlyingType.get()) {
10209      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10210      // integral type; any cv-qualification is ignored.
10211      TypeSourceInfo *TI = 0;
10212      GetTypeFromParser(UnderlyingType.get(), &TI);
10213      EnumUnderlying = TI;
10214
10215      if (CheckEnumUnderlyingType(TI))
10216        // Recover by falling back to int.
10217        EnumUnderlying = Context.IntTy.getTypePtr();
10218
10219      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10220                                          UPPC_FixedUnderlyingType))
10221        EnumUnderlying = Context.IntTy.getTypePtr();
10222
10223    } else if (getLangOpts().MicrosoftMode)
10224      // Microsoft enums are always of int type.
10225      EnumUnderlying = Context.IntTy.getTypePtr();
10226  }
10227
10228  DeclContext *SearchDC = CurContext;
10229  DeclContext *DC = CurContext;
10230  bool isStdBadAlloc = false;
10231
10232  RedeclarationKind Redecl = ForRedeclaration;
10233  if (TUK == TUK_Friend || TUK == TUK_Reference)
10234    Redecl = NotForRedeclaration;
10235
10236  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10237  bool FriendSawTagOutsideEnclosingNamespace = false;
10238  if (Name && SS.isNotEmpty()) {
10239    // We have a nested-name tag ('struct foo::bar').
10240
10241    // Check for invalid 'foo::'.
10242    if (SS.isInvalid()) {
10243      Name = 0;
10244      goto CreateNewDecl;
10245    }
10246
10247    // If this is a friend or a reference to a class in a dependent
10248    // context, don't try to make a decl for it.
10249    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10250      DC = computeDeclContext(SS, false);
10251      if (!DC) {
10252        IsDependent = true;
10253        return 0;
10254      }
10255    } else {
10256      DC = computeDeclContext(SS, true);
10257      if (!DC) {
10258        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10259          << SS.getRange();
10260        return 0;
10261      }
10262    }
10263
10264    if (RequireCompleteDeclContext(SS, DC))
10265      return 0;
10266
10267    SearchDC = DC;
10268    // Look-up name inside 'foo::'.
10269    LookupQualifiedName(Previous, DC);
10270
10271    if (Previous.isAmbiguous())
10272      return 0;
10273
10274    if (Previous.empty()) {
10275      // Name lookup did not find anything. However, if the
10276      // nested-name-specifier refers to the current instantiation,
10277      // and that current instantiation has any dependent base
10278      // classes, we might find something at instantiation time: treat
10279      // this as a dependent elaborated-type-specifier.
10280      // But this only makes any sense for reference-like lookups.
10281      if (Previous.wasNotFoundInCurrentInstantiation() &&
10282          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10283        IsDependent = true;
10284        return 0;
10285      }
10286
10287      // A tag 'foo::bar' must already exist.
10288      Diag(NameLoc, diag::err_not_tag_in_scope)
10289        << Kind << Name << DC << SS.getRange();
10290      Name = 0;
10291      Invalid = true;
10292      goto CreateNewDecl;
10293    }
10294  } else if (Name) {
10295    // If this is a named struct, check to see if there was a previous forward
10296    // declaration or definition.
10297    // FIXME: We're looking into outer scopes here, even when we
10298    // shouldn't be. Doing so can result in ambiguities that we
10299    // shouldn't be diagnosing.
10300    LookupName(Previous, S);
10301
10302    // When declaring or defining a tag, ignore ambiguities introduced
10303    // by types using'ed into this scope.
10304    if (Previous.isAmbiguous() &&
10305        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10306      LookupResult::Filter F = Previous.makeFilter();
10307      while (F.hasNext()) {
10308        NamedDecl *ND = F.next();
10309        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10310          F.erase();
10311      }
10312      F.done();
10313    }
10314
10315    // C++11 [namespace.memdef]p3:
10316    //   If the name in a friend declaration is neither qualified nor
10317    //   a template-id and the declaration is a function or an
10318    //   elaborated-type-specifier, the lookup to determine whether
10319    //   the entity has been previously declared shall not consider
10320    //   any scopes outside the innermost enclosing namespace.
10321    //
10322    // Does it matter that this should be by scope instead of by
10323    // semantic context?
10324    if (!Previous.empty() && TUK == TUK_Friend) {
10325      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10326      LookupResult::Filter F = Previous.makeFilter();
10327      while (F.hasNext()) {
10328        NamedDecl *ND = F.next();
10329        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10330        if (DC->isFileContext() &&
10331            !EnclosingNS->Encloses(ND->getDeclContext())) {
10332          F.erase();
10333          FriendSawTagOutsideEnclosingNamespace = true;
10334        }
10335      }
10336      F.done();
10337    }
10338
10339    // Note:  there used to be some attempt at recovery here.
10340    if (Previous.isAmbiguous())
10341      return 0;
10342
10343    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10344      // FIXME: This makes sure that we ignore the contexts associated
10345      // with C structs, unions, and enums when looking for a matching
10346      // tag declaration or definition. See the similar lookup tweak
10347      // in Sema::LookupName; is there a better way to deal with this?
10348      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10349        SearchDC = SearchDC->getParent();
10350    }
10351  } else if (S->isFunctionPrototypeScope()) {
10352    // If this is an enum declaration in function prototype scope, set its
10353    // initial context to the translation unit.
10354    // FIXME: [citation needed]
10355    SearchDC = Context.getTranslationUnitDecl();
10356  }
10357
10358  if (Previous.isSingleResult() &&
10359      Previous.getFoundDecl()->isTemplateParameter()) {
10360    // Maybe we will complain about the shadowed template parameter.
10361    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10362    // Just pretend that we didn't see the previous declaration.
10363    Previous.clear();
10364  }
10365
10366  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10367      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10368    // This is a declaration of or a reference to "std::bad_alloc".
10369    isStdBadAlloc = true;
10370
10371    if (Previous.empty() && StdBadAlloc) {
10372      // std::bad_alloc has been implicitly declared (but made invisible to
10373      // name lookup). Fill in this implicit declaration as the previous
10374      // declaration, so that the declarations get chained appropriately.
10375      Previous.addDecl(getStdBadAlloc());
10376    }
10377  }
10378
10379  // If we didn't find a previous declaration, and this is a reference
10380  // (or friend reference), move to the correct scope.  In C++, we
10381  // also need to do a redeclaration lookup there, just in case
10382  // there's a shadow friend decl.
10383  if (Name && Previous.empty() &&
10384      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10385    if (Invalid) goto CreateNewDecl;
10386    assert(SS.isEmpty());
10387
10388    if (TUK == TUK_Reference) {
10389      // C++ [basic.scope.pdecl]p5:
10390      //   -- for an elaborated-type-specifier of the form
10391      //
10392      //          class-key identifier
10393      //
10394      //      if the elaborated-type-specifier is used in the
10395      //      decl-specifier-seq or parameter-declaration-clause of a
10396      //      function defined in namespace scope, the identifier is
10397      //      declared as a class-name in the namespace that contains
10398      //      the declaration; otherwise, except as a friend
10399      //      declaration, the identifier is declared in the smallest
10400      //      non-class, non-function-prototype scope that contains the
10401      //      declaration.
10402      //
10403      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10404      // C structs and unions.
10405      //
10406      // It is an error in C++ to declare (rather than define) an enum
10407      // type, including via an elaborated type specifier.  We'll
10408      // diagnose that later; for now, declare the enum in the same
10409      // scope as we would have picked for any other tag type.
10410      //
10411      // GNU C also supports this behavior as part of its incomplete
10412      // enum types extension, while GNU C++ does not.
10413      //
10414      // Find the context where we'll be declaring the tag.
10415      // FIXME: We would like to maintain the current DeclContext as the
10416      // lexical context,
10417      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10418        SearchDC = SearchDC->getParent();
10419
10420      // Find the scope where we'll be declaring the tag.
10421      while (S->isClassScope() ||
10422             (getLangOpts().CPlusPlus &&
10423              S->isFunctionPrototypeScope()) ||
10424             ((S->getFlags() & Scope::DeclScope) == 0) ||
10425             (S->getEntity() &&
10426              ((DeclContext *)S->getEntity())->isTransparentContext()))
10427        S = S->getParent();
10428    } else {
10429      assert(TUK == TUK_Friend);
10430      // C++ [namespace.memdef]p3:
10431      //   If a friend declaration in a non-local class first declares a
10432      //   class or function, the friend class or function is a member of
10433      //   the innermost enclosing namespace.
10434      SearchDC = SearchDC->getEnclosingNamespaceContext();
10435    }
10436
10437    // In C++, we need to do a redeclaration lookup to properly
10438    // diagnose some problems.
10439    if (getLangOpts().CPlusPlus) {
10440      Previous.setRedeclarationKind(ForRedeclaration);
10441      LookupQualifiedName(Previous, SearchDC);
10442    }
10443  }
10444
10445  if (!Previous.empty()) {
10446    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10447
10448    // It's okay to have a tag decl in the same scope as a typedef
10449    // which hides a tag decl in the same scope.  Finding this
10450    // insanity with a redeclaration lookup can only actually happen
10451    // in C++.
10452    //
10453    // This is also okay for elaborated-type-specifiers, which is
10454    // technically forbidden by the current standard but which is
10455    // okay according to the likely resolution of an open issue;
10456    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10457    if (getLangOpts().CPlusPlus) {
10458      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10459        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10460          TagDecl *Tag = TT->getDecl();
10461          if (Tag->getDeclName() == Name &&
10462              Tag->getDeclContext()->getRedeclContext()
10463                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
10464            PrevDecl = Tag;
10465            Previous.clear();
10466            Previous.addDecl(Tag);
10467            Previous.resolveKind();
10468          }
10469        }
10470      }
10471    }
10472
10473    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10474      // If this is a use of a previous tag, or if the tag is already declared
10475      // in the same scope (so that the definition/declaration completes or
10476      // rementions the tag), reuse the decl.
10477      if (TUK == TUK_Reference || TUK == TUK_Friend ||
10478          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10479        // Make sure that this wasn't declared as an enum and now used as a
10480        // struct or something similar.
10481        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10482                                          TUK == TUK_Definition, KWLoc,
10483                                          *Name)) {
10484          bool SafeToContinue
10485            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10486               Kind != TTK_Enum);
10487          if (SafeToContinue)
10488            Diag(KWLoc, diag::err_use_with_wrong_tag)
10489              << Name
10490              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10491                                              PrevTagDecl->getKindName());
10492          else
10493            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10494          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10495
10496          if (SafeToContinue)
10497            Kind = PrevTagDecl->getTagKind();
10498          else {
10499            // Recover by making this an anonymous redefinition.
10500            Name = 0;
10501            Previous.clear();
10502            Invalid = true;
10503          }
10504        }
10505
10506        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10507          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10508
10509          // If this is an elaborated-type-specifier for a scoped enumeration,
10510          // the 'class' keyword is not necessary and not permitted.
10511          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10512            if (ScopedEnum)
10513              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10514                << PrevEnum->isScoped()
10515                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10516            return PrevTagDecl;
10517          }
10518
10519          QualType EnumUnderlyingTy;
10520          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10521            EnumUnderlyingTy = TI->getType();
10522          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10523            EnumUnderlyingTy = QualType(T, 0);
10524
10525          // All conflicts with previous declarations are recovered by
10526          // returning the previous declaration, unless this is a definition,
10527          // in which case we want the caller to bail out.
10528          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10529                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10530            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10531        }
10532
10533        // C++11 [class.mem]p1:
10534        //   A member shall not be declared twice in the member-specification,
10535        //   except that a nested class or member class template can be declared
10536        //   and then later defined.
10537        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10538            S->isDeclScope(PrevDecl)) {
10539          Diag(NameLoc, diag::ext_member_redeclared);
10540          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10541        }
10542
10543        if (!Invalid) {
10544          // If this is a use, just return the declaration we found.
10545
10546          // FIXME: In the future, return a variant or some other clue
10547          // for the consumer of this Decl to know it doesn't own it.
10548          // For our current ASTs this shouldn't be a problem, but will
10549          // need to be changed with DeclGroups.
10550          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10551               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10552            return PrevTagDecl;
10553
10554          // Diagnose attempts to redefine a tag.
10555          if (TUK == TUK_Definition) {
10556            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10557              // If we're defining a specialization and the previous definition
10558              // is from an implicit instantiation, don't emit an error
10559              // here; we'll catch this in the general case below.
10560              bool IsExplicitSpecializationAfterInstantiation = false;
10561              if (isExplicitSpecialization) {
10562                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10563                  IsExplicitSpecializationAfterInstantiation =
10564                    RD->getTemplateSpecializationKind() !=
10565                    TSK_ExplicitSpecialization;
10566                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10567                  IsExplicitSpecializationAfterInstantiation =
10568                    ED->getTemplateSpecializationKind() !=
10569                    TSK_ExplicitSpecialization;
10570              }
10571
10572              if (!IsExplicitSpecializationAfterInstantiation) {
10573                // A redeclaration in function prototype scope in C isn't
10574                // visible elsewhere, so merely issue a warning.
10575                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10576                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10577                else
10578                  Diag(NameLoc, diag::err_redefinition) << Name;
10579                Diag(Def->getLocation(), diag::note_previous_definition);
10580                // If this is a redefinition, recover by making this
10581                // struct be anonymous, which will make any later
10582                // references get the previous definition.
10583                Name = 0;
10584                Previous.clear();
10585                Invalid = true;
10586              }
10587            } else {
10588              // If the type is currently being defined, complain
10589              // about a nested redefinition.
10590              const TagType *Tag
10591                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10592              if (Tag->isBeingDefined()) {
10593                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10594                Diag(PrevTagDecl->getLocation(),
10595                     diag::note_previous_definition);
10596                Name = 0;
10597                Previous.clear();
10598                Invalid = true;
10599              }
10600            }
10601
10602            // Okay, this is definition of a previously declared or referenced
10603            // tag PrevDecl. We're going to create a new Decl for it.
10604          }
10605        }
10606        // If we get here we have (another) forward declaration or we
10607        // have a definition.  Just create a new decl.
10608
10609      } else {
10610        // If we get here, this is a definition of a new tag type in a nested
10611        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10612        // new decl/type.  We set PrevDecl to NULL so that the entities
10613        // have distinct types.
10614        Previous.clear();
10615      }
10616      // If we get here, we're going to create a new Decl. If PrevDecl
10617      // is non-NULL, it's a definition of the tag declared by
10618      // PrevDecl. If it's NULL, we have a new definition.
10619
10620
10621    // Otherwise, PrevDecl is not a tag, but was found with tag
10622    // lookup.  This is only actually possible in C++, where a few
10623    // things like templates still live in the tag namespace.
10624    } else {
10625      // Use a better diagnostic if an elaborated-type-specifier
10626      // found the wrong kind of type on the first
10627      // (non-redeclaration) lookup.
10628      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10629          !Previous.isForRedeclaration()) {
10630        unsigned Kind = 0;
10631        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10632        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10633        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10634        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10635        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10636        Invalid = true;
10637
10638      // Otherwise, only diagnose if the declaration is in scope.
10639      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10640                                isExplicitSpecialization)) {
10641        // do nothing
10642
10643      // Diagnose implicit declarations introduced by elaborated types.
10644      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10645        unsigned Kind = 0;
10646        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10647        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10648        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10649        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10650        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10651        Invalid = true;
10652
10653      // Otherwise it's a declaration.  Call out a particularly common
10654      // case here.
10655      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10656        unsigned Kind = 0;
10657        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10658        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10659          << Name << Kind << TND->getUnderlyingType();
10660        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10661        Invalid = true;
10662
10663      // Otherwise, diagnose.
10664      } else {
10665        // The tag name clashes with something else in the target scope,
10666        // issue an error and recover by making this tag be anonymous.
10667        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10668        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10669        Name = 0;
10670        Invalid = true;
10671      }
10672
10673      // The existing declaration isn't relevant to us; we're in a
10674      // new scope, so clear out the previous declaration.
10675      Previous.clear();
10676    }
10677  }
10678
10679CreateNewDecl:
10680
10681  TagDecl *PrevDecl = 0;
10682  if (Previous.isSingleResult())
10683    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10684
10685  // If there is an identifier, use the location of the identifier as the
10686  // location of the decl, otherwise use the location of the struct/union
10687  // keyword.
10688  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10689
10690  // Otherwise, create a new declaration. If there is a previous
10691  // declaration of the same entity, the two will be linked via
10692  // PrevDecl.
10693  TagDecl *New;
10694
10695  bool IsForwardReference = false;
10696  if (Kind == TTK_Enum) {
10697    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10698    // enum X { A, B, C } D;    D should chain to X.
10699    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10700                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10701                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10702    // If this is an undefined enum, warn.
10703    if (TUK != TUK_Definition && !Invalid) {
10704      TagDecl *Def;
10705      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10706          cast<EnumDecl>(New)->isFixed()) {
10707        // C++0x: 7.2p2: opaque-enum-declaration.
10708        // Conflicts are diagnosed above. Do nothing.
10709      }
10710      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10711        Diag(Loc, diag::ext_forward_ref_enum_def)
10712          << New;
10713        Diag(Def->getLocation(), diag::note_previous_definition);
10714      } else {
10715        unsigned DiagID = diag::ext_forward_ref_enum;
10716        if (getLangOpts().MicrosoftMode)
10717          DiagID = diag::ext_ms_forward_ref_enum;
10718        else if (getLangOpts().CPlusPlus)
10719          DiagID = diag::err_forward_ref_enum;
10720        Diag(Loc, DiagID);
10721
10722        // If this is a forward-declared reference to an enumeration, make a
10723        // note of it; we won't actually be introducing the declaration into
10724        // the declaration context.
10725        if (TUK == TUK_Reference)
10726          IsForwardReference = true;
10727      }
10728    }
10729
10730    if (EnumUnderlying) {
10731      EnumDecl *ED = cast<EnumDecl>(New);
10732      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10733        ED->setIntegerTypeSourceInfo(TI);
10734      else
10735        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10736      ED->setPromotionType(ED->getIntegerType());
10737    }
10738
10739  } else {
10740    // struct/union/class
10741
10742    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10743    // struct X { int A; } D;    D should chain to X.
10744    if (getLangOpts().CPlusPlus) {
10745      // FIXME: Look for a way to use RecordDecl for simple structs.
10746      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10747                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10748
10749      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10750        StdBadAlloc = cast<CXXRecordDecl>(New);
10751    } else
10752      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10753                               cast_or_null<RecordDecl>(PrevDecl));
10754  }
10755
10756  // Maybe add qualifier info.
10757  if (SS.isNotEmpty()) {
10758    if (SS.isSet()) {
10759      // If this is either a declaration or a definition, check the
10760      // nested-name-specifier against the current context. We don't do this
10761      // for explicit specializations, because they have similar checking
10762      // (with more specific diagnostics) in the call to
10763      // CheckMemberSpecialization, below.
10764      if (!isExplicitSpecialization &&
10765          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10766          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10767        Invalid = true;
10768
10769      New->setQualifierInfo(SS.getWithLocInContext(Context));
10770      if (TemplateParameterLists.size() > 0) {
10771        New->setTemplateParameterListsInfo(Context,
10772                                           TemplateParameterLists.size(),
10773                                           TemplateParameterLists.data());
10774      }
10775    }
10776    else
10777      Invalid = true;
10778  }
10779
10780  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10781    // Add alignment attributes if necessary; these attributes are checked when
10782    // the ASTContext lays out the structure.
10783    //
10784    // It is important for implementing the correct semantics that this
10785    // happen here (in act on tag decl). The #pragma pack stack is
10786    // maintained as a result of parser callbacks which can occur at
10787    // many points during the parsing of a struct declaration (because
10788    // the #pragma tokens are effectively skipped over during the
10789    // parsing of the struct).
10790    if (TUK == TUK_Definition) {
10791      AddAlignmentAttributesForRecord(RD);
10792      AddMsStructLayoutForRecord(RD);
10793    }
10794  }
10795
10796  if (ModulePrivateLoc.isValid()) {
10797    if (isExplicitSpecialization)
10798      Diag(New->getLocation(), diag::err_module_private_specialization)
10799        << 2
10800        << FixItHint::CreateRemoval(ModulePrivateLoc);
10801    // __module_private__ does not apply to local classes. However, we only
10802    // diagnose this as an error when the declaration specifiers are
10803    // freestanding. Here, we just ignore the __module_private__.
10804    else if (!SearchDC->isFunctionOrMethod())
10805      New->setModulePrivate();
10806  }
10807
10808  // If this is a specialization of a member class (of a class template),
10809  // check the specialization.
10810  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10811    Invalid = true;
10812
10813  if (Invalid)
10814    New->setInvalidDecl();
10815
10816  if (Attr)
10817    ProcessDeclAttributeList(S, New, Attr);
10818
10819  // If we're declaring or defining a tag in function prototype scope
10820  // in C, note that this type can only be used within the function.
10821  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10822    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10823
10824  // Set the lexical context. If the tag has a C++ scope specifier, the
10825  // lexical context will be different from the semantic context.
10826  New->setLexicalDeclContext(CurContext);
10827
10828  // Mark this as a friend decl if applicable.
10829  // In Microsoft mode, a friend declaration also acts as a forward
10830  // declaration so we always pass true to setObjectOfFriendDecl to make
10831  // the tag name visible.
10832  if (TUK == TUK_Friend)
10833    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10834                               getLangOpts().MicrosoftExt);
10835
10836  // Set the access specifier.
10837  if (!Invalid && SearchDC->isRecord())
10838    SetMemberAccessSpecifier(New, PrevDecl, AS);
10839
10840  if (TUK == TUK_Definition)
10841    New->startDefinition();
10842
10843  // If this has an identifier, add it to the scope stack.
10844  if (TUK == TUK_Friend) {
10845    // We might be replacing an existing declaration in the lookup tables;
10846    // if so, borrow its access specifier.
10847    if (PrevDecl)
10848      New->setAccess(PrevDecl->getAccess());
10849
10850    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10851    DC->makeDeclVisibleInContext(New);
10852    if (Name) // can be null along some error paths
10853      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10854        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10855  } else if (Name) {
10856    S = getNonFieldDeclScope(S);
10857    PushOnScopeChains(New, S, !IsForwardReference);
10858    if (IsForwardReference)
10859      SearchDC->makeDeclVisibleInContext(New);
10860
10861  } else {
10862    CurContext->addDecl(New);
10863  }
10864
10865  // If this is the C FILE type, notify the AST context.
10866  if (IdentifierInfo *II = New->getIdentifier())
10867    if (!New->isInvalidDecl() &&
10868        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10869        II->isStr("FILE"))
10870      Context.setFILEDecl(New);
10871
10872  // If we were in function prototype scope (and not in C++ mode), add this
10873  // tag to the list of decls to inject into the function definition scope.
10874  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10875      InFunctionDeclarator && Name)
10876    DeclsInPrototypeScope.push_back(New);
10877
10878  if (PrevDecl)
10879    mergeDeclAttributes(New, PrevDecl);
10880
10881  // If there's a #pragma GCC visibility in scope, set the visibility of this
10882  // record.
10883  AddPushedVisibilityAttribute(New);
10884
10885  OwnedDecl = true;
10886  // In C++, don't return an invalid declaration. We can't recover well from
10887  // the cases where we make the type anonymous.
10888  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10889}
10890
10891void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10892  AdjustDeclIfTemplate(TagD);
10893  TagDecl *Tag = cast<TagDecl>(TagD);
10894
10895  // Enter the tag context.
10896  PushDeclContext(S, Tag);
10897
10898  ActOnDocumentableDecl(TagD);
10899
10900  // If there's a #pragma GCC visibility in scope, set the visibility of this
10901  // record.
10902  AddPushedVisibilityAttribute(Tag);
10903}
10904
10905Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10906  assert(isa<ObjCContainerDecl>(IDecl) &&
10907         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10908  DeclContext *OCD = cast<DeclContext>(IDecl);
10909  assert(getContainingDC(OCD) == CurContext &&
10910      "The next DeclContext should be lexically contained in the current one.");
10911  CurContext = OCD;
10912  return IDecl;
10913}
10914
10915void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10916                                           SourceLocation FinalLoc,
10917                                           SourceLocation LBraceLoc) {
10918  AdjustDeclIfTemplate(TagD);
10919  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10920
10921  FieldCollector->StartClass();
10922
10923  if (!Record->getIdentifier())
10924    return;
10925
10926  if (FinalLoc.isValid())
10927    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10928
10929  // C++ [class]p2:
10930  //   [...] The class-name is also inserted into the scope of the
10931  //   class itself; this is known as the injected-class-name. For
10932  //   purposes of access checking, the injected-class-name is treated
10933  //   as if it were a public member name.
10934  CXXRecordDecl *InjectedClassName
10935    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10936                            Record->getLocStart(), Record->getLocation(),
10937                            Record->getIdentifier(),
10938                            /*PrevDecl=*/0,
10939                            /*DelayTypeCreation=*/true);
10940  Context.getTypeDeclType(InjectedClassName, Record);
10941  InjectedClassName->setImplicit();
10942  InjectedClassName->setAccess(AS_public);
10943  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10944      InjectedClassName->setDescribedClassTemplate(Template);
10945  PushOnScopeChains(InjectedClassName, S);
10946  assert(InjectedClassName->isInjectedClassName() &&
10947         "Broken injected-class-name");
10948}
10949
10950void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10951                                    SourceLocation RBraceLoc) {
10952  AdjustDeclIfTemplate(TagD);
10953  TagDecl *Tag = cast<TagDecl>(TagD);
10954  Tag->setRBraceLoc(RBraceLoc);
10955
10956  // Make sure we "complete" the definition even it is invalid.
10957  if (Tag->isBeingDefined()) {
10958    assert(Tag->isInvalidDecl() && "We should already have completed it");
10959    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10960      RD->completeDefinition();
10961  }
10962
10963  if (isa<CXXRecordDecl>(Tag))
10964    FieldCollector->FinishClass();
10965
10966  // Exit this scope of this tag's definition.
10967  PopDeclContext();
10968
10969  if (getCurLexicalContext()->isObjCContainer() &&
10970      Tag->getDeclContext()->isFileContext())
10971    Tag->setTopLevelDeclInObjCContainer();
10972
10973  // Notify the consumer that we've defined a tag.
10974  if (!Tag->isInvalidDecl())
10975    Consumer.HandleTagDeclDefinition(Tag);
10976}
10977
10978void Sema::ActOnObjCContainerFinishDefinition() {
10979  // Exit this scope of this interface definition.
10980  PopDeclContext();
10981}
10982
10983void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10984  assert(DC == CurContext && "Mismatch of container contexts");
10985  OriginalLexicalContext = DC;
10986  ActOnObjCContainerFinishDefinition();
10987}
10988
10989void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10990  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10991  OriginalLexicalContext = 0;
10992}
10993
10994void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10995  AdjustDeclIfTemplate(TagD);
10996  TagDecl *Tag = cast<TagDecl>(TagD);
10997  Tag->setInvalidDecl();
10998
10999  // Make sure we "complete" the definition even it is invalid.
11000  if (Tag->isBeingDefined()) {
11001    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11002      RD->completeDefinition();
11003  }
11004
11005  // We're undoing ActOnTagStartDefinition here, not
11006  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11007  // the FieldCollector.
11008
11009  PopDeclContext();
11010}
11011
11012// Note that FieldName may be null for anonymous bitfields.
11013ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11014                                IdentifierInfo *FieldName,
11015                                QualType FieldTy, bool IsMsStruct,
11016                                Expr *BitWidth, bool *ZeroWidth) {
11017  // Default to true; that shouldn't confuse checks for emptiness
11018  if (ZeroWidth)
11019    *ZeroWidth = true;
11020
11021  // C99 6.7.2.1p4 - verify the field type.
11022  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11023  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11024    // Handle incomplete types with specific error.
11025    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11026      return ExprError();
11027    if (FieldName)
11028      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11029        << FieldName << FieldTy << BitWidth->getSourceRange();
11030    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11031      << FieldTy << BitWidth->getSourceRange();
11032  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11033                                             UPPC_BitFieldWidth))
11034    return ExprError();
11035
11036  // If the bit-width is type- or value-dependent, don't try to check
11037  // it now.
11038  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11039    return Owned(BitWidth);
11040
11041  llvm::APSInt Value;
11042  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11043  if (ICE.isInvalid())
11044    return ICE;
11045  BitWidth = ICE.take();
11046
11047  if (Value != 0 && ZeroWidth)
11048    *ZeroWidth = false;
11049
11050  // Zero-width bitfield is ok for anonymous field.
11051  if (Value == 0 && FieldName)
11052    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11053
11054  if (Value.isSigned() && Value.isNegative()) {
11055    if (FieldName)
11056      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11057               << FieldName << Value.toString(10);
11058    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11059      << Value.toString(10);
11060  }
11061
11062  if (!FieldTy->isDependentType()) {
11063    uint64_t TypeSize = Context.getTypeSize(FieldTy);
11064    if (Value.getZExtValue() > TypeSize) {
11065      if (!getLangOpts().CPlusPlus || IsMsStruct) {
11066        if (FieldName)
11067          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11068            << FieldName << (unsigned)Value.getZExtValue()
11069            << (unsigned)TypeSize;
11070
11071        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11072          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11073      }
11074
11075      if (FieldName)
11076        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11077          << FieldName << (unsigned)Value.getZExtValue()
11078          << (unsigned)TypeSize;
11079      else
11080        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11081          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11082    }
11083  }
11084
11085  return Owned(BitWidth);
11086}
11087
11088/// ActOnField - Each field of a C struct/union is passed into this in order
11089/// to create a FieldDecl object for it.
11090Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11091                       Declarator &D, Expr *BitfieldWidth) {
11092  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11093                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11094                               /*InitStyle=*/ICIS_NoInit, AS_public);
11095  return Res;
11096}
11097
11098/// HandleField - Analyze a field of a C struct or a C++ data member.
11099///
11100FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11101                             SourceLocation DeclStart,
11102                             Declarator &D, Expr *BitWidth,
11103                             InClassInitStyle InitStyle,
11104                             AccessSpecifier AS) {
11105  IdentifierInfo *II = D.getIdentifier();
11106  SourceLocation Loc = DeclStart;
11107  if (II) Loc = D.getIdentifierLoc();
11108
11109  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11110  QualType T = TInfo->getType();
11111  if (getLangOpts().CPlusPlus) {
11112    CheckExtraCXXDefaultArguments(D);
11113
11114    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11115                                        UPPC_DataMemberType)) {
11116      D.setInvalidType();
11117      T = Context.IntTy;
11118      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11119    }
11120  }
11121
11122  // TR 18037 does not allow fields to be declared with address spaces.
11123  if (T.getQualifiers().hasAddressSpace()) {
11124    Diag(Loc, diag::err_field_with_address_space);
11125    D.setInvalidType();
11126  }
11127
11128  // OpenCL 1.2 spec, s6.9 r:
11129  // The event type cannot be used to declare a structure or union field.
11130  if (LangOpts.OpenCL && T->isEventT()) {
11131    Diag(Loc, diag::err_event_t_struct_field);
11132    D.setInvalidType();
11133  }
11134
11135  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11136
11137  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11138    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11139         diag::err_invalid_thread)
11140      << DeclSpec::getSpecifierName(TSCS);
11141
11142  // Check to see if this name was declared as a member previously
11143  NamedDecl *PrevDecl = 0;
11144  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11145  LookupName(Previous, S);
11146  switch (Previous.getResultKind()) {
11147    case LookupResult::Found:
11148    case LookupResult::FoundUnresolvedValue:
11149      PrevDecl = Previous.getAsSingle<NamedDecl>();
11150      break;
11151
11152    case LookupResult::FoundOverloaded:
11153      PrevDecl = Previous.getRepresentativeDecl();
11154      break;
11155
11156    case LookupResult::NotFound:
11157    case LookupResult::NotFoundInCurrentInstantiation:
11158    case LookupResult::Ambiguous:
11159      break;
11160  }
11161  Previous.suppressDiagnostics();
11162
11163  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11164    // Maybe we will complain about the shadowed template parameter.
11165    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11166    // Just pretend that we didn't see the previous declaration.
11167    PrevDecl = 0;
11168  }
11169
11170  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11171    PrevDecl = 0;
11172
11173  bool Mutable
11174    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11175  SourceLocation TSSL = D.getLocStart();
11176  FieldDecl *NewFD
11177    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11178                     TSSL, AS, PrevDecl, &D);
11179
11180  if (NewFD->isInvalidDecl())
11181    Record->setInvalidDecl();
11182
11183  if (D.getDeclSpec().isModulePrivateSpecified())
11184    NewFD->setModulePrivate();
11185
11186  if (NewFD->isInvalidDecl() && PrevDecl) {
11187    // Don't introduce NewFD into scope; there's already something
11188    // with the same name in the same scope.
11189  } else if (II) {
11190    PushOnScopeChains(NewFD, S);
11191  } else
11192    Record->addDecl(NewFD);
11193
11194  return NewFD;
11195}
11196
11197/// \brief Build a new FieldDecl and check its well-formedness.
11198///
11199/// This routine builds a new FieldDecl given the fields name, type,
11200/// record, etc. \p PrevDecl should refer to any previous declaration
11201/// with the same name and in the same scope as the field to be
11202/// created.
11203///
11204/// \returns a new FieldDecl.
11205///
11206/// \todo The Declarator argument is a hack. It will be removed once
11207FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11208                                TypeSourceInfo *TInfo,
11209                                RecordDecl *Record, SourceLocation Loc,
11210                                bool Mutable, Expr *BitWidth,
11211                                InClassInitStyle InitStyle,
11212                                SourceLocation TSSL,
11213                                AccessSpecifier AS, NamedDecl *PrevDecl,
11214                                Declarator *D) {
11215  IdentifierInfo *II = Name.getAsIdentifierInfo();
11216  bool InvalidDecl = false;
11217  if (D) InvalidDecl = D->isInvalidType();
11218
11219  // If we receive a broken type, recover by assuming 'int' and
11220  // marking this declaration as invalid.
11221  if (T.isNull()) {
11222    InvalidDecl = true;
11223    T = Context.IntTy;
11224  }
11225
11226  QualType EltTy = Context.getBaseElementType(T);
11227  if (!EltTy->isDependentType()) {
11228    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11229      // Fields of incomplete type force their record to be invalid.
11230      Record->setInvalidDecl();
11231      InvalidDecl = true;
11232    } else {
11233      NamedDecl *Def;
11234      EltTy->isIncompleteType(&Def);
11235      if (Def && Def->isInvalidDecl()) {
11236        Record->setInvalidDecl();
11237        InvalidDecl = true;
11238      }
11239    }
11240  }
11241
11242  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11243  if (BitWidth && getLangOpts().OpenCL) {
11244    Diag(Loc, diag::err_opencl_bitfields);
11245    InvalidDecl = true;
11246  }
11247
11248  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11249  // than a variably modified type.
11250  if (!InvalidDecl && T->isVariablyModifiedType()) {
11251    bool SizeIsNegative;
11252    llvm::APSInt Oversized;
11253
11254    TypeSourceInfo *FixedTInfo =
11255      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11256                                                    SizeIsNegative,
11257                                                    Oversized);
11258    if (FixedTInfo) {
11259      Diag(Loc, diag::warn_illegal_constant_array_size);
11260      TInfo = FixedTInfo;
11261      T = FixedTInfo->getType();
11262    } else {
11263      if (SizeIsNegative)
11264        Diag(Loc, diag::err_typecheck_negative_array_size);
11265      else if (Oversized.getBoolValue())
11266        Diag(Loc, diag::err_array_too_large)
11267          << Oversized.toString(10);
11268      else
11269        Diag(Loc, diag::err_typecheck_field_variable_size);
11270      InvalidDecl = true;
11271    }
11272  }
11273
11274  // Fields can not have abstract class types
11275  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11276                                             diag::err_abstract_type_in_decl,
11277                                             AbstractFieldType))
11278    InvalidDecl = true;
11279
11280  bool ZeroWidth = false;
11281  // If this is declared as a bit-field, check the bit-field.
11282  if (!InvalidDecl && BitWidth) {
11283    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11284                              &ZeroWidth).take();
11285    if (!BitWidth) {
11286      InvalidDecl = true;
11287      BitWidth = 0;
11288      ZeroWidth = false;
11289    }
11290  }
11291
11292  // Check that 'mutable' is consistent with the type of the declaration.
11293  if (!InvalidDecl && Mutable) {
11294    unsigned DiagID = 0;
11295    if (T->isReferenceType())
11296      DiagID = diag::err_mutable_reference;
11297    else if (T.isConstQualified())
11298      DiagID = diag::err_mutable_const;
11299
11300    if (DiagID) {
11301      SourceLocation ErrLoc = Loc;
11302      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11303        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11304      Diag(ErrLoc, DiagID);
11305      Mutable = false;
11306      InvalidDecl = true;
11307    }
11308  }
11309
11310  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11311                                       BitWidth, Mutable, InitStyle);
11312  if (InvalidDecl)
11313    NewFD->setInvalidDecl();
11314
11315  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11316    Diag(Loc, diag::err_duplicate_member) << II;
11317    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11318    NewFD->setInvalidDecl();
11319  }
11320
11321  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11322    if (Record->isUnion()) {
11323      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11324        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11325        if (RDecl->getDefinition()) {
11326          // C++ [class.union]p1: An object of a class with a non-trivial
11327          // constructor, a non-trivial copy constructor, a non-trivial
11328          // destructor, or a non-trivial copy assignment operator
11329          // cannot be a member of a union, nor can an array of such
11330          // objects.
11331          if (CheckNontrivialField(NewFD))
11332            NewFD->setInvalidDecl();
11333        }
11334      }
11335
11336      // C++ [class.union]p1: If a union contains a member of reference type,
11337      // the program is ill-formed, except when compiling with MSVC extensions
11338      // enabled.
11339      if (EltTy->isReferenceType()) {
11340        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11341                                    diag::ext_union_member_of_reference_type :
11342                                    diag::err_union_member_of_reference_type)
11343          << NewFD->getDeclName() << EltTy;
11344        if (!getLangOpts().MicrosoftExt)
11345          NewFD->setInvalidDecl();
11346      }
11347    }
11348  }
11349
11350  // FIXME: We need to pass in the attributes given an AST
11351  // representation, not a parser representation.
11352  if (D) {
11353    // FIXME: The current scope is almost... but not entirely... correct here.
11354    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11355
11356    if (NewFD->hasAttrs())
11357      CheckAlignasUnderalignment(NewFD);
11358  }
11359
11360  // In auto-retain/release, infer strong retension for fields of
11361  // retainable type.
11362  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11363    NewFD->setInvalidDecl();
11364
11365  if (T.isObjCGCWeak())
11366    Diag(Loc, diag::warn_attribute_weak_on_field);
11367
11368  NewFD->setAccess(AS);
11369  return NewFD;
11370}
11371
11372bool Sema::CheckNontrivialField(FieldDecl *FD) {
11373  assert(FD);
11374  assert(getLangOpts().CPlusPlus && "valid check only for C++");
11375
11376  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11377    return false;
11378
11379  QualType EltTy = Context.getBaseElementType(FD->getType());
11380  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11381    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11382    if (RDecl->getDefinition()) {
11383      // We check for copy constructors before constructors
11384      // because otherwise we'll never get complaints about
11385      // copy constructors.
11386
11387      CXXSpecialMember member = CXXInvalid;
11388      // We're required to check for any non-trivial constructors. Since the
11389      // implicit default constructor is suppressed if there are any
11390      // user-declared constructors, we just need to check that there is a
11391      // trivial default constructor and a trivial copy constructor. (We don't
11392      // worry about move constructors here, since this is a C++98 check.)
11393      if (RDecl->hasNonTrivialCopyConstructor())
11394        member = CXXCopyConstructor;
11395      else if (!RDecl->hasTrivialDefaultConstructor())
11396        member = CXXDefaultConstructor;
11397      else if (RDecl->hasNonTrivialCopyAssignment())
11398        member = CXXCopyAssignment;
11399      else if (RDecl->hasNonTrivialDestructor())
11400        member = CXXDestructor;
11401
11402      if (member != CXXInvalid) {
11403        if (!getLangOpts().CPlusPlus11 &&
11404            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11405          // Objective-C++ ARC: it is an error to have a non-trivial field of
11406          // a union. However, system headers in Objective-C programs
11407          // occasionally have Objective-C lifetime objects within unions,
11408          // and rather than cause the program to fail, we make those
11409          // members unavailable.
11410          SourceLocation Loc = FD->getLocation();
11411          if (getSourceManager().isInSystemHeader(Loc)) {
11412            if (!FD->hasAttr<UnavailableAttr>())
11413              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11414                                  "this system field has retaining ownership"));
11415            return false;
11416          }
11417        }
11418
11419        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11420               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11421               diag::err_illegal_union_or_anon_struct_member)
11422          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11423        DiagnoseNontrivial(RDecl, member);
11424        return !getLangOpts().CPlusPlus11;
11425      }
11426    }
11427  }
11428
11429  return false;
11430}
11431
11432/// TranslateIvarVisibility - Translate visibility from a token ID to an
11433///  AST enum value.
11434static ObjCIvarDecl::AccessControl
11435TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11436  switch (ivarVisibility) {
11437  default: llvm_unreachable("Unknown visitibility kind");
11438  case tok::objc_private: return ObjCIvarDecl::Private;
11439  case tok::objc_public: return ObjCIvarDecl::Public;
11440  case tok::objc_protected: return ObjCIvarDecl::Protected;
11441  case tok::objc_package: return ObjCIvarDecl::Package;
11442  }
11443}
11444
11445/// ActOnIvar - Each ivar field of an objective-c class is passed into this
11446/// in order to create an IvarDecl object for it.
11447Decl *Sema::ActOnIvar(Scope *S,
11448                                SourceLocation DeclStart,
11449                                Declarator &D, Expr *BitfieldWidth,
11450                                tok::ObjCKeywordKind Visibility) {
11451
11452  IdentifierInfo *II = D.getIdentifier();
11453  Expr *BitWidth = (Expr*)BitfieldWidth;
11454  SourceLocation Loc = DeclStart;
11455  if (II) Loc = D.getIdentifierLoc();
11456
11457  // FIXME: Unnamed fields can be handled in various different ways, for
11458  // example, unnamed unions inject all members into the struct namespace!
11459
11460  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11461  QualType T = TInfo->getType();
11462
11463  if (BitWidth) {
11464    // 6.7.2.1p3, 6.7.2.1p4
11465    BitWidth =
11466        VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
11467    if (!BitWidth)
11468      D.setInvalidType();
11469  } else {
11470    // Not a bitfield.
11471
11472    // validate II.
11473
11474  }
11475  if (T->isReferenceType()) {
11476    Diag(Loc, diag::err_ivar_reference_type);
11477    D.setInvalidType();
11478  }
11479  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11480  // than a variably modified type.
11481  else if (T->isVariablyModifiedType()) {
11482    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11483    D.setInvalidType();
11484  }
11485
11486  // Get the visibility (access control) for this ivar.
11487  ObjCIvarDecl::AccessControl ac =
11488    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11489                                        : ObjCIvarDecl::None;
11490  // Must set ivar's DeclContext to its enclosing interface.
11491  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11492  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11493    return 0;
11494  ObjCContainerDecl *EnclosingContext;
11495  if (ObjCImplementationDecl *IMPDecl =
11496      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11497    if (LangOpts.ObjCRuntime.isFragile()) {
11498    // Case of ivar declared in an implementation. Context is that of its class.
11499      EnclosingContext = IMPDecl->getClassInterface();
11500      assert(EnclosingContext && "Implementation has no class interface!");
11501    }
11502    else
11503      EnclosingContext = EnclosingDecl;
11504  } else {
11505    if (ObjCCategoryDecl *CDecl =
11506        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11507      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11508        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11509        return 0;
11510      }
11511    }
11512    EnclosingContext = EnclosingDecl;
11513  }
11514
11515  // Construct the decl.
11516  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11517                                             DeclStart, Loc, II, T,
11518                                             TInfo, ac, (Expr *)BitfieldWidth);
11519
11520  if (II) {
11521    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11522                                           ForRedeclaration);
11523    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11524        && !isa<TagDecl>(PrevDecl)) {
11525      Diag(Loc, diag::err_duplicate_member) << II;
11526      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11527      NewID->setInvalidDecl();
11528    }
11529  }
11530
11531  // Process attributes attached to the ivar.
11532  ProcessDeclAttributes(S, NewID, D);
11533
11534  if (D.isInvalidType())
11535    NewID->setInvalidDecl();
11536
11537  // In ARC, infer 'retaining' for ivars of retainable type.
11538  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11539    NewID->setInvalidDecl();
11540
11541  if (D.getDeclSpec().isModulePrivateSpecified())
11542    NewID->setModulePrivate();
11543
11544  if (II) {
11545    // FIXME: When interfaces are DeclContexts, we'll need to add
11546    // these to the interface.
11547    S->AddDecl(NewID);
11548    IdResolver.AddDecl(NewID);
11549  }
11550
11551  if (LangOpts.ObjCRuntime.isNonFragile() &&
11552      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11553    Diag(Loc, diag::warn_ivars_in_interface);
11554
11555  return NewID;
11556}
11557
11558/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11559/// class and class extensions. For every class \@interface and class
11560/// extension \@interface, if the last ivar is a bitfield of any type,
11561/// then add an implicit `char :0` ivar to the end of that interface.
11562void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11563                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11564  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11565    return;
11566
11567  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11568  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11569
11570  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11571    return;
11572  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11573  if (!ID) {
11574    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11575      if (!CD->IsClassExtension())
11576        return;
11577    }
11578    // No need to add this to end of @implementation.
11579    else
11580      return;
11581  }
11582  // All conditions are met. Add a new bitfield to the tail end of ivars.
11583  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11584  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11585
11586  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11587                              DeclLoc, DeclLoc, 0,
11588                              Context.CharTy,
11589                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11590                                                               DeclLoc),
11591                              ObjCIvarDecl::Private, BW,
11592                              true);
11593  AllIvarDecls.push_back(Ivar);
11594}
11595
11596void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
11597                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
11598                       SourceLocation RBrac, AttributeList *Attr) {
11599  assert(EnclosingDecl && "missing record or interface decl");
11600
11601  // If this is an Objective-C @implementation or category and we have
11602  // new fields here we should reset the layout of the interface since
11603  // it will now change.
11604  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11605    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11606    switch (DC->getKind()) {
11607    default: break;
11608    case Decl::ObjCCategory:
11609      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11610      break;
11611    case Decl::ObjCImplementation:
11612      Context.
11613        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11614      break;
11615    }
11616  }
11617
11618  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11619
11620  // Start counting up the number of named members; make sure to include
11621  // members of anonymous structs and unions in the total.
11622  unsigned NumNamedMembers = 0;
11623  if (Record) {
11624    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11625                                   e = Record->decls_end(); i != e; i++) {
11626      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11627        if (IFD->getDeclName())
11628          ++NumNamedMembers;
11629    }
11630  }
11631
11632  // Verify that all the fields are okay.
11633  SmallVector<FieldDecl*, 32> RecFields;
11634
11635  bool ARCErrReported = false;
11636  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11637       i != end; ++i) {
11638    FieldDecl *FD = cast<FieldDecl>(*i);
11639
11640    // Get the type for the field.
11641    const Type *FDTy = FD->getType().getTypePtr();
11642
11643    if (!FD->isAnonymousStructOrUnion()) {
11644      // Remember all fields written by the user.
11645      RecFields.push_back(FD);
11646    }
11647
11648    // If the field is already invalid for some reason, don't emit more
11649    // diagnostics about it.
11650    if (FD->isInvalidDecl()) {
11651      EnclosingDecl->setInvalidDecl();
11652      continue;
11653    }
11654
11655    // C99 6.7.2.1p2:
11656    //   A structure or union shall not contain a member with
11657    //   incomplete or function type (hence, a structure shall not
11658    //   contain an instance of itself, but may contain a pointer to
11659    //   an instance of itself), except that the last member of a
11660    //   structure with more than one named member may have incomplete
11661    //   array type; such a structure (and any union containing,
11662    //   possibly recursively, a member that is such a structure)
11663    //   shall not be a member of a structure or an element of an
11664    //   array.
11665    if (FDTy->isFunctionType()) {
11666      // Field declared as a function.
11667      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11668        << FD->getDeclName();
11669      FD->setInvalidDecl();
11670      EnclosingDecl->setInvalidDecl();
11671      continue;
11672    } else if (FDTy->isIncompleteArrayType() && Record &&
11673               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11674                ((getLangOpts().MicrosoftExt ||
11675                  getLangOpts().CPlusPlus) &&
11676                 (i + 1 == Fields.end() || Record->isUnion())))) {
11677      // Flexible array member.
11678      // Microsoft and g++ is more permissive regarding flexible array.
11679      // It will accept flexible array in union and also
11680      // as the sole element of a struct/class.
11681      if (getLangOpts().MicrosoftExt) {
11682        if (Record->isUnion())
11683          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11684            << FD->getDeclName();
11685        else if (Fields.size() == 1)
11686          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11687            << FD->getDeclName() << Record->getTagKind();
11688      } else if (getLangOpts().CPlusPlus) {
11689        if (Record->isUnion())
11690          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11691            << FD->getDeclName();
11692        else if (Fields.size() == 1)
11693          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11694            << FD->getDeclName() << Record->getTagKind();
11695      } else if (!getLangOpts().C99) {
11696      if (Record->isUnion())
11697        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11698          << FD->getDeclName();
11699      else
11700        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11701          << FD->getDeclName() << Record->getTagKind();
11702      } else if (NumNamedMembers < 1) {
11703        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11704          << FD->getDeclName();
11705        FD->setInvalidDecl();
11706        EnclosingDecl->setInvalidDecl();
11707        continue;
11708      }
11709      if (!FD->getType()->isDependentType() &&
11710          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11711        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11712          << FD->getDeclName() << FD->getType();
11713        FD->setInvalidDecl();
11714        EnclosingDecl->setInvalidDecl();
11715        continue;
11716      }
11717      // Okay, we have a legal flexible array member at the end of the struct.
11718      if (Record)
11719        Record->setHasFlexibleArrayMember(true);
11720    } else if (!FDTy->isDependentType() &&
11721               RequireCompleteType(FD->getLocation(), FD->getType(),
11722                                   diag::err_field_incomplete)) {
11723      // Incomplete type
11724      FD->setInvalidDecl();
11725      EnclosingDecl->setInvalidDecl();
11726      continue;
11727    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11728      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11729        // If this is a member of a union, then entire union becomes "flexible".
11730        if (Record && Record->isUnion()) {
11731          Record->setHasFlexibleArrayMember(true);
11732        } else {
11733          // If this is a struct/class and this is not the last element, reject
11734          // it.  Note that GCC supports variable sized arrays in the middle of
11735          // structures.
11736          if (i + 1 != Fields.end())
11737            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11738              << FD->getDeclName() << FD->getType();
11739          else {
11740            // We support flexible arrays at the end of structs in
11741            // other structs as an extension.
11742            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11743              << FD->getDeclName();
11744            if (Record)
11745              Record->setHasFlexibleArrayMember(true);
11746          }
11747        }
11748      }
11749      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11750          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11751                                 diag::err_abstract_type_in_decl,
11752                                 AbstractIvarType)) {
11753        // Ivars can not have abstract class types
11754        FD->setInvalidDecl();
11755      }
11756      if (Record && FDTTy->getDecl()->hasObjectMember())
11757        Record->setHasObjectMember(true);
11758      if (Record && FDTTy->getDecl()->hasVolatileMember())
11759        Record->setHasVolatileMember(true);
11760    } else if (FDTy->isObjCObjectType()) {
11761      /// A field cannot be an Objective-c object
11762      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11763        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11764      QualType T = Context.getObjCObjectPointerType(FD->getType());
11765      FD->setType(T);
11766    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11767               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11768      // It's an error in ARC if a field has lifetime.
11769      // We don't want to report this in a system header, though,
11770      // so we just make the field unavailable.
11771      // FIXME: that's really not sufficient; we need to make the type
11772      // itself invalid to, say, initialize or copy.
11773      QualType T = FD->getType();
11774      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11775      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11776        SourceLocation loc = FD->getLocation();
11777        if (getSourceManager().isInSystemHeader(loc)) {
11778          if (!FD->hasAttr<UnavailableAttr>()) {
11779            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11780                              "this system field has retaining ownership"));
11781          }
11782        } else {
11783          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11784            << T->isBlockPointerType() << Record->getTagKind();
11785        }
11786        ARCErrReported = true;
11787      }
11788    } else if (getLangOpts().ObjC1 &&
11789               getLangOpts().getGC() != LangOptions::NonGC &&
11790               Record && !Record->hasObjectMember()) {
11791      if (FD->getType()->isObjCObjectPointerType() ||
11792          FD->getType().isObjCGCStrong())
11793        Record->setHasObjectMember(true);
11794      else if (Context.getAsArrayType(FD->getType())) {
11795        QualType BaseType = Context.getBaseElementType(FD->getType());
11796        if (BaseType->isRecordType() &&
11797            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11798          Record->setHasObjectMember(true);
11799        else if (BaseType->isObjCObjectPointerType() ||
11800                 BaseType.isObjCGCStrong())
11801               Record->setHasObjectMember(true);
11802      }
11803    }
11804    if (Record && FD->getType().isVolatileQualified())
11805      Record->setHasVolatileMember(true);
11806    // Keep track of the number of named members.
11807    if (FD->getIdentifier())
11808      ++NumNamedMembers;
11809  }
11810
11811  // Okay, we successfully defined 'Record'.
11812  if (Record) {
11813    bool Completed = false;
11814    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11815      if (!CXXRecord->isInvalidDecl()) {
11816        // Set access bits correctly on the directly-declared conversions.
11817        for (CXXRecordDecl::conversion_iterator
11818               I = CXXRecord->conversion_begin(),
11819               E = CXXRecord->conversion_end(); I != E; ++I)
11820          I.setAccess((*I)->getAccess());
11821
11822        if (!CXXRecord->isDependentType()) {
11823          if (CXXRecord->hasUserDeclaredDestructor()) {
11824            // Adjust user-defined destructor exception spec.
11825            if (getLangOpts().CPlusPlus11)
11826              AdjustDestructorExceptionSpec(CXXRecord,
11827                                            CXXRecord->getDestructor());
11828
11829            // The Microsoft ABI requires that we perform the destructor body
11830            // checks (i.e. operator delete() lookup) at every declaration, as
11831            // any translation unit may need to emit a deleting destructor.
11832            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11833              CheckDestructor(CXXRecord->getDestructor());
11834          }
11835
11836          // Add any implicitly-declared members to this class.
11837          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11838
11839          // If we have virtual base classes, we may end up finding multiple
11840          // final overriders for a given virtual function. Check for this
11841          // problem now.
11842          if (CXXRecord->getNumVBases()) {
11843            CXXFinalOverriderMap FinalOverriders;
11844            CXXRecord->getFinalOverriders(FinalOverriders);
11845
11846            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11847                                             MEnd = FinalOverriders.end();
11848                 M != MEnd; ++M) {
11849              for (OverridingMethods::iterator SO = M->second.begin(),
11850                                            SOEnd = M->second.end();
11851                   SO != SOEnd; ++SO) {
11852                assert(SO->second.size() > 0 &&
11853                       "Virtual function without overridding functions?");
11854                if (SO->second.size() == 1)
11855                  continue;
11856
11857                // C++ [class.virtual]p2:
11858                //   In a derived class, if a virtual member function of a base
11859                //   class subobject has more than one final overrider the
11860                //   program is ill-formed.
11861                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11862                  << (const NamedDecl *)M->first << Record;
11863                Diag(M->first->getLocation(),
11864                     diag::note_overridden_virtual_function);
11865                for (OverridingMethods::overriding_iterator
11866                          OM = SO->second.begin(),
11867                       OMEnd = SO->second.end();
11868                     OM != OMEnd; ++OM)
11869                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11870                    << (const NamedDecl *)M->first << OM->Method->getParent();
11871
11872                Record->setInvalidDecl();
11873              }
11874            }
11875            CXXRecord->completeDefinition(&FinalOverriders);
11876            Completed = true;
11877          }
11878        }
11879      }
11880    }
11881
11882    if (!Completed)
11883      Record->completeDefinition();
11884
11885    if (Record->hasAttrs())
11886      CheckAlignasUnderalignment(Record);
11887
11888    // Check if the structure/union declaration is a language extension.
11889    if (!getLangOpts().CPlusPlus) {
11890      bool ZeroSize = true;
11891      bool IsEmpty = true;
11892      unsigned NonBitFields = 0;
11893      for (RecordDecl::field_iterator I = Record->field_begin(),
11894                                      E = Record->field_end();
11895           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11896        IsEmpty = false;
11897        if (I->isUnnamedBitfield()) {
11898          if (I->getBitWidthValue(Context) > 0)
11899            ZeroSize = false;
11900        } else {
11901          ++NonBitFields;
11902          QualType FieldType = I->getType();
11903          if (FieldType->isIncompleteType() ||
11904              !Context.getTypeSizeInChars(FieldType).isZero())
11905            ZeroSize = false;
11906        }
11907      }
11908
11909      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11910      // C++.
11911      if (ZeroSize)
11912        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11913            << Record->isUnion() << (NonBitFields > 1);
11914
11915      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11916      // are accepted by GCC.
11917      if (NonBitFields == 0) {
11918        if (IsEmpty)
11919          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11920        else
11921          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11922      }
11923    }
11924  } else {
11925    ObjCIvarDecl **ClsFields =
11926      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11927    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11928      ID->setEndOfDefinitionLoc(RBrac);
11929      // Add ivar's to class's DeclContext.
11930      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11931        ClsFields[i]->setLexicalDeclContext(ID);
11932        ID->addDecl(ClsFields[i]);
11933      }
11934      // Must enforce the rule that ivars in the base classes may not be
11935      // duplicates.
11936      if (ID->getSuperClass())
11937        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11938    } else if (ObjCImplementationDecl *IMPDecl =
11939                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11940      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11941      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11942        // Ivar declared in @implementation never belongs to the implementation.
11943        // Only it is in implementation's lexical context.
11944        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11945      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11946      IMPDecl->setIvarLBraceLoc(LBrac);
11947      IMPDecl->setIvarRBraceLoc(RBrac);
11948    } else if (ObjCCategoryDecl *CDecl =
11949                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11950      // case of ivars in class extension; all other cases have been
11951      // reported as errors elsewhere.
11952      // FIXME. Class extension does not have a LocEnd field.
11953      // CDecl->setLocEnd(RBrac);
11954      // Add ivar's to class extension's DeclContext.
11955      // Diagnose redeclaration of private ivars.
11956      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11957      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11958        if (IDecl) {
11959          if (const ObjCIvarDecl *ClsIvar =
11960              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11961            Diag(ClsFields[i]->getLocation(),
11962                 diag::err_duplicate_ivar_declaration);
11963            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11964            continue;
11965          }
11966          for (ObjCInterfaceDecl::known_extensions_iterator
11967                 Ext = IDecl->known_extensions_begin(),
11968                 ExtEnd = IDecl->known_extensions_end();
11969               Ext != ExtEnd; ++Ext) {
11970            if (const ObjCIvarDecl *ClsExtIvar
11971                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11972              Diag(ClsFields[i]->getLocation(),
11973                   diag::err_duplicate_ivar_declaration);
11974              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11975              continue;
11976            }
11977          }
11978        }
11979        ClsFields[i]->setLexicalDeclContext(CDecl);
11980        CDecl->addDecl(ClsFields[i]);
11981      }
11982      CDecl->setIvarLBraceLoc(LBrac);
11983      CDecl->setIvarRBraceLoc(RBrac);
11984    }
11985  }
11986
11987  if (Attr)
11988    ProcessDeclAttributeList(S, Record, Attr);
11989}
11990
11991/// \brief Determine whether the given integral value is representable within
11992/// the given type T.
11993static bool isRepresentableIntegerValue(ASTContext &Context,
11994                                        llvm::APSInt &Value,
11995                                        QualType T) {
11996  assert(T->isIntegralType(Context) && "Integral type required!");
11997  unsigned BitWidth = Context.getIntWidth(T);
11998
11999  if (Value.isUnsigned() || Value.isNonNegative()) {
12000    if (T->isSignedIntegerOrEnumerationType())
12001      --BitWidth;
12002    return Value.getActiveBits() <= BitWidth;
12003  }
12004  return Value.getMinSignedBits() <= BitWidth;
12005}
12006
12007// \brief Given an integral type, return the next larger integral type
12008// (or a NULL type of no such type exists).
12009static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12010  // FIXME: Int128/UInt128 support, which also needs to be introduced into
12011  // enum checking below.
12012  assert(T->isIntegralType(Context) && "Integral type required!");
12013  const unsigned NumTypes = 4;
12014  QualType SignedIntegralTypes[NumTypes] = {
12015    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12016  };
12017  QualType UnsignedIntegralTypes[NumTypes] = {
12018    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12019    Context.UnsignedLongLongTy
12020  };
12021
12022  unsigned BitWidth = Context.getTypeSize(T);
12023  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12024                                                        : UnsignedIntegralTypes;
12025  for (unsigned I = 0; I != NumTypes; ++I)
12026    if (Context.getTypeSize(Types[I]) > BitWidth)
12027      return Types[I];
12028
12029  return QualType();
12030}
12031
12032EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12033                                          EnumConstantDecl *LastEnumConst,
12034                                          SourceLocation IdLoc,
12035                                          IdentifierInfo *Id,
12036                                          Expr *Val) {
12037  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12038  llvm::APSInt EnumVal(IntWidth);
12039  QualType EltTy;
12040
12041  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12042    Val = 0;
12043
12044  if (Val)
12045    Val = DefaultLvalueConversion(Val).take();
12046
12047  if (Val) {
12048    if (Enum->isDependentType() || Val->isTypeDependent())
12049      EltTy = Context.DependentTy;
12050    else {
12051      SourceLocation ExpLoc;
12052      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12053          !getLangOpts().MicrosoftMode) {
12054        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12055        // constant-expression in the enumerator-definition shall be a converted
12056        // constant expression of the underlying type.
12057        EltTy = Enum->getIntegerType();
12058        ExprResult Converted =
12059          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12060                                           CCEK_Enumerator);
12061        if (Converted.isInvalid())
12062          Val = 0;
12063        else
12064          Val = Converted.take();
12065      } else if (!Val->isValueDependent() &&
12066                 !(Val = VerifyIntegerConstantExpression(Val,
12067                                                         &EnumVal).take())) {
12068        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12069      } else {
12070        if (Enum->isFixed()) {
12071          EltTy = Enum->getIntegerType();
12072
12073          // In Obj-C and Microsoft mode, require the enumeration value to be
12074          // representable in the underlying type of the enumeration. In C++11,
12075          // we perform a non-narrowing conversion as part of converted constant
12076          // expression checking.
12077          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12078            if (getLangOpts().MicrosoftMode) {
12079              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12080              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12081            } else
12082              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12083          } else
12084            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12085        } else if (getLangOpts().CPlusPlus) {
12086          // C++11 [dcl.enum]p5:
12087          //   If the underlying type is not fixed, the type of each enumerator
12088          //   is the type of its initializing value:
12089          //     - If an initializer is specified for an enumerator, the
12090          //       initializing value has the same type as the expression.
12091          EltTy = Val->getType();
12092        } else {
12093          // C99 6.7.2.2p2:
12094          //   The expression that defines the value of an enumeration constant
12095          //   shall be an integer constant expression that has a value
12096          //   representable as an int.
12097
12098          // Complain if the value is not representable in an int.
12099          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12100            Diag(IdLoc, diag::ext_enum_value_not_int)
12101              << EnumVal.toString(10) << Val->getSourceRange()
12102              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12103          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12104            // Force the type of the expression to 'int'.
12105            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12106          }
12107          EltTy = Val->getType();
12108        }
12109      }
12110    }
12111  }
12112
12113  if (!Val) {
12114    if (Enum->isDependentType())
12115      EltTy = Context.DependentTy;
12116    else if (!LastEnumConst) {
12117      // C++0x [dcl.enum]p5:
12118      //   If the underlying type is not fixed, the type of each enumerator
12119      //   is the type of its initializing value:
12120      //     - If no initializer is specified for the first enumerator, the
12121      //       initializing value has an unspecified integral type.
12122      //
12123      // GCC uses 'int' for its unspecified integral type, as does
12124      // C99 6.7.2.2p3.
12125      if (Enum->isFixed()) {
12126        EltTy = Enum->getIntegerType();
12127      }
12128      else {
12129        EltTy = Context.IntTy;
12130      }
12131    } else {
12132      // Assign the last value + 1.
12133      EnumVal = LastEnumConst->getInitVal();
12134      ++EnumVal;
12135      EltTy = LastEnumConst->getType();
12136
12137      // Check for overflow on increment.
12138      if (EnumVal < LastEnumConst->getInitVal()) {
12139        // C++0x [dcl.enum]p5:
12140        //   If the underlying type is not fixed, the type of each enumerator
12141        //   is the type of its initializing value:
12142        //
12143        //     - Otherwise the type of the initializing value is the same as
12144        //       the type of the initializing value of the preceding enumerator
12145        //       unless the incremented value is not representable in that type,
12146        //       in which case the type is an unspecified integral type
12147        //       sufficient to contain the incremented value. If no such type
12148        //       exists, the program is ill-formed.
12149        QualType T = getNextLargerIntegralType(Context, EltTy);
12150        if (T.isNull() || Enum->isFixed()) {
12151          // There is no integral type larger enough to represent this
12152          // value. Complain, then allow the value to wrap around.
12153          EnumVal = LastEnumConst->getInitVal();
12154          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12155          ++EnumVal;
12156          if (Enum->isFixed())
12157            // When the underlying type is fixed, this is ill-formed.
12158            Diag(IdLoc, diag::err_enumerator_wrapped)
12159              << EnumVal.toString(10)
12160              << EltTy;
12161          else
12162            Diag(IdLoc, diag::warn_enumerator_too_large)
12163              << EnumVal.toString(10);
12164        } else {
12165          EltTy = T;
12166        }
12167
12168        // Retrieve the last enumerator's value, extent that type to the
12169        // type that is supposed to be large enough to represent the incremented
12170        // value, then increment.
12171        EnumVal = LastEnumConst->getInitVal();
12172        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12173        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12174        ++EnumVal;
12175
12176        // If we're not in C++, diagnose the overflow of enumerator values,
12177        // which in C99 means that the enumerator value is not representable in
12178        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12179        // permits enumerator values that are representable in some larger
12180        // integral type.
12181        if (!getLangOpts().CPlusPlus && !T.isNull())
12182          Diag(IdLoc, diag::warn_enum_value_overflow);
12183      } else if (!getLangOpts().CPlusPlus &&
12184                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12185        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12186        Diag(IdLoc, diag::ext_enum_value_not_int)
12187          << EnumVal.toString(10) << 1;
12188      }
12189    }
12190  }
12191
12192  if (!EltTy->isDependentType()) {
12193    // Make the enumerator value match the signedness and size of the
12194    // enumerator's type.
12195    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12196    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12197  }
12198
12199  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12200                                  Val, EnumVal);
12201}
12202
12203
12204Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12205                              SourceLocation IdLoc, IdentifierInfo *Id,
12206                              AttributeList *Attr,
12207                              SourceLocation EqualLoc, Expr *Val) {
12208  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12209  EnumConstantDecl *LastEnumConst =
12210    cast_or_null<EnumConstantDecl>(lastEnumConst);
12211
12212  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12213  // we find one that is.
12214  S = getNonFieldDeclScope(S);
12215
12216  // Verify that there isn't already something declared with this name in this
12217  // scope.
12218  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12219                                         ForRedeclaration);
12220  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12221    // Maybe we will complain about the shadowed template parameter.
12222    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12223    // Just pretend that we didn't see the previous declaration.
12224    PrevDecl = 0;
12225  }
12226
12227  if (PrevDecl) {
12228    // When in C++, we may get a TagDecl with the same name; in this case the
12229    // enum constant will 'hide' the tag.
12230    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12231           "Received TagDecl when not in C++!");
12232    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12233      if (isa<EnumConstantDecl>(PrevDecl))
12234        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12235      else
12236        Diag(IdLoc, diag::err_redefinition) << Id;
12237      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12238      return 0;
12239    }
12240  }
12241
12242  // C++ [class.mem]p15:
12243  // If T is the name of a class, then each of the following shall have a name
12244  // different from T:
12245  // - every enumerator of every member of class T that is an unscoped
12246  // enumerated type
12247  if (CXXRecordDecl *Record
12248                      = dyn_cast<CXXRecordDecl>(
12249                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12250    if (!TheEnumDecl->isScoped() &&
12251        Record->getIdentifier() && Record->getIdentifier() == Id)
12252      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12253
12254  EnumConstantDecl *New =
12255    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12256
12257  if (New) {
12258    // Process attributes.
12259    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12260
12261    // Register this decl in the current scope stack.
12262    New->setAccess(TheEnumDecl->getAccess());
12263    PushOnScopeChains(New, S);
12264  }
12265
12266  ActOnDocumentableDecl(New);
12267
12268  return New;
12269}
12270
12271// Returns true when the enum initial expression does not trigger the
12272// duplicate enum warning.  A few common cases are exempted as follows:
12273// Element2 = Element1
12274// Element2 = Element1 + 1
12275// Element2 = Element1 - 1
12276// Where Element2 and Element1 are from the same enum.
12277static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12278  Expr *InitExpr = ECD->getInitExpr();
12279  if (!InitExpr)
12280    return true;
12281  InitExpr = InitExpr->IgnoreImpCasts();
12282
12283  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12284    if (!BO->isAdditiveOp())
12285      return true;
12286    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12287    if (!IL)
12288      return true;
12289    if (IL->getValue() != 1)
12290      return true;
12291
12292    InitExpr = BO->getLHS();
12293  }
12294
12295  // This checks if the elements are from the same enum.
12296  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12297  if (!DRE)
12298    return true;
12299
12300  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12301  if (!EnumConstant)
12302    return true;
12303
12304  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12305      Enum)
12306    return true;
12307
12308  return false;
12309}
12310
12311struct DupKey {
12312  int64_t val;
12313  bool isTombstoneOrEmptyKey;
12314  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12315    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12316};
12317
12318static DupKey GetDupKey(const llvm::APSInt& Val) {
12319  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12320                false);
12321}
12322
12323struct DenseMapInfoDupKey {
12324  static DupKey getEmptyKey() { return DupKey(0, true); }
12325  static DupKey getTombstoneKey() { return DupKey(1, true); }
12326  static unsigned getHashValue(const DupKey Key) {
12327    return (unsigned)(Key.val * 37);
12328  }
12329  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12330    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12331           LHS.val == RHS.val;
12332  }
12333};
12334
12335// Emits a warning when an element is implicitly set a value that
12336// a previous element has already been set to.
12337static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12338                                        EnumDecl *Enum,
12339                                        QualType EnumType) {
12340  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12341                                 Enum->getLocation()) ==
12342      DiagnosticsEngine::Ignored)
12343    return;
12344  // Avoid anonymous enums
12345  if (!Enum->getIdentifier())
12346    return;
12347
12348  // Only check for small enums.
12349  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12350    return;
12351
12352  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12353  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12354
12355  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12356  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12357          ValueToVectorMap;
12358
12359  DuplicatesVector DupVector;
12360  ValueToVectorMap EnumMap;
12361
12362  // Populate the EnumMap with all values represented by enum constants without
12363  // an initialier.
12364  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12365    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12366
12367    // Null EnumConstantDecl means a previous diagnostic has been emitted for
12368    // this constant.  Skip this enum since it may be ill-formed.
12369    if (!ECD) {
12370      return;
12371    }
12372
12373    if (ECD->getInitExpr())
12374      continue;
12375
12376    DupKey Key = GetDupKey(ECD->getInitVal());
12377    DeclOrVector &Entry = EnumMap[Key];
12378
12379    // First time encountering this value.
12380    if (Entry.isNull())
12381      Entry = ECD;
12382  }
12383
12384  // Create vectors for any values that has duplicates.
12385  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12386    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12387    if (!ValidDuplicateEnum(ECD, Enum))
12388      continue;
12389
12390    DupKey Key = GetDupKey(ECD->getInitVal());
12391
12392    DeclOrVector& Entry = EnumMap[Key];
12393    if (Entry.isNull())
12394      continue;
12395
12396    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12397      // Ensure constants are different.
12398      if (D == ECD)
12399        continue;
12400
12401      // Create new vector and push values onto it.
12402      ECDVector *Vec = new ECDVector();
12403      Vec->push_back(D);
12404      Vec->push_back(ECD);
12405
12406      // Update entry to point to the duplicates vector.
12407      Entry = Vec;
12408
12409      // Store the vector somewhere we can consult later for quick emission of
12410      // diagnostics.
12411      DupVector.push_back(Vec);
12412      continue;
12413    }
12414
12415    ECDVector *Vec = Entry.get<ECDVector*>();
12416    // Make sure constants are not added more than once.
12417    if (*Vec->begin() == ECD)
12418      continue;
12419
12420    Vec->push_back(ECD);
12421  }
12422
12423  // Emit diagnostics.
12424  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12425                                  DupVectorEnd = DupVector.end();
12426       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12427    ECDVector *Vec = *DupVectorIter;
12428    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12429
12430    // Emit warning for one enum constant.
12431    ECDVector::iterator I = Vec->begin();
12432    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12433      << (*I)->getName() << (*I)->getInitVal().toString(10)
12434      << (*I)->getSourceRange();
12435    ++I;
12436
12437    // Emit one note for each of the remaining enum constants with
12438    // the same value.
12439    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12440      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12441        << (*I)->getName() << (*I)->getInitVal().toString(10)
12442        << (*I)->getSourceRange();
12443    delete Vec;
12444  }
12445}
12446
12447void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12448                         SourceLocation RBraceLoc, Decl *EnumDeclX,
12449                         ArrayRef<Decl *> Elements,
12450                         Scope *S, AttributeList *Attr) {
12451  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12452  QualType EnumType = Context.getTypeDeclType(Enum);
12453
12454  if (Attr)
12455    ProcessDeclAttributeList(S, Enum, Attr);
12456
12457  if (Enum->isDependentType()) {
12458    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12459      EnumConstantDecl *ECD =
12460        cast_or_null<EnumConstantDecl>(Elements[i]);
12461      if (!ECD) continue;
12462
12463      ECD->setType(EnumType);
12464    }
12465
12466    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12467    return;
12468  }
12469
12470  // TODO: If the result value doesn't fit in an int, it must be a long or long
12471  // long value.  ISO C does not support this, but GCC does as an extension,
12472  // emit a warning.
12473  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12474  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12475  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12476
12477  // Verify that all the values are okay, compute the size of the values, and
12478  // reverse the list.
12479  unsigned NumNegativeBits = 0;
12480  unsigned NumPositiveBits = 0;
12481
12482  // Keep track of whether all elements have type int.
12483  bool AllElementsInt = true;
12484
12485  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12486    EnumConstantDecl *ECD =
12487      cast_or_null<EnumConstantDecl>(Elements[i]);
12488    if (!ECD) continue;  // Already issued a diagnostic.
12489
12490    const llvm::APSInt &InitVal = ECD->getInitVal();
12491
12492    // Keep track of the size of positive and negative values.
12493    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12494      NumPositiveBits = std::max(NumPositiveBits,
12495                                 (unsigned)InitVal.getActiveBits());
12496    else
12497      NumNegativeBits = std::max(NumNegativeBits,
12498                                 (unsigned)InitVal.getMinSignedBits());
12499
12500    // Keep track of whether every enum element has type int (very commmon).
12501    if (AllElementsInt)
12502      AllElementsInt = ECD->getType() == Context.IntTy;
12503  }
12504
12505  // Figure out the type that should be used for this enum.
12506  QualType BestType;
12507  unsigned BestWidth;
12508
12509  // C++0x N3000 [conv.prom]p3:
12510  //   An rvalue of an unscoped enumeration type whose underlying
12511  //   type is not fixed can be converted to an rvalue of the first
12512  //   of the following types that can represent all the values of
12513  //   the enumeration: int, unsigned int, long int, unsigned long
12514  //   int, long long int, or unsigned long long int.
12515  // C99 6.4.4.3p2:
12516  //   An identifier declared as an enumeration constant has type int.
12517  // The C99 rule is modified by a gcc extension
12518  QualType BestPromotionType;
12519
12520  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12521  // -fshort-enums is the equivalent to specifying the packed attribute on all
12522  // enum definitions.
12523  if (LangOpts.ShortEnums)
12524    Packed = true;
12525
12526  if (Enum->isFixed()) {
12527    BestType = Enum->getIntegerType();
12528    if (BestType->isPromotableIntegerType())
12529      BestPromotionType = Context.getPromotedIntegerType(BestType);
12530    else
12531      BestPromotionType = BestType;
12532    // We don't need to set BestWidth, because BestType is going to be the type
12533    // of the enumerators, but we do anyway because otherwise some compilers
12534    // warn that it might be used uninitialized.
12535    BestWidth = CharWidth;
12536  }
12537  else if (NumNegativeBits) {
12538    // If there is a negative value, figure out the smallest integer type (of
12539    // int/long/longlong) that fits.
12540    // If it's packed, check also if it fits a char or a short.
12541    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12542      BestType = Context.SignedCharTy;
12543      BestWidth = CharWidth;
12544    } else if (Packed && NumNegativeBits <= ShortWidth &&
12545               NumPositiveBits < ShortWidth) {
12546      BestType = Context.ShortTy;
12547      BestWidth = ShortWidth;
12548    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12549      BestType = Context.IntTy;
12550      BestWidth = IntWidth;
12551    } else {
12552      BestWidth = Context.getTargetInfo().getLongWidth();
12553
12554      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12555        BestType = Context.LongTy;
12556      } else {
12557        BestWidth = Context.getTargetInfo().getLongLongWidth();
12558
12559        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12560          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12561        BestType = Context.LongLongTy;
12562      }
12563    }
12564    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12565  } else {
12566    // If there is no negative value, figure out the smallest type that fits
12567    // all of the enumerator values.
12568    // If it's packed, check also if it fits a char or a short.
12569    if (Packed && NumPositiveBits <= CharWidth) {
12570      BestType = Context.UnsignedCharTy;
12571      BestPromotionType = Context.IntTy;
12572      BestWidth = CharWidth;
12573    } else if (Packed && NumPositiveBits <= ShortWidth) {
12574      BestType = Context.UnsignedShortTy;
12575      BestPromotionType = Context.IntTy;
12576      BestWidth = ShortWidth;
12577    } else if (NumPositiveBits <= IntWidth) {
12578      BestType = Context.UnsignedIntTy;
12579      BestWidth = IntWidth;
12580      BestPromotionType
12581        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12582                           ? Context.UnsignedIntTy : Context.IntTy;
12583    } else if (NumPositiveBits <=
12584               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12585      BestType = Context.UnsignedLongTy;
12586      BestPromotionType
12587        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12588                           ? Context.UnsignedLongTy : Context.LongTy;
12589    } else {
12590      BestWidth = Context.getTargetInfo().getLongLongWidth();
12591      assert(NumPositiveBits <= BestWidth &&
12592             "How could an initializer get larger than ULL?");
12593      BestType = Context.UnsignedLongLongTy;
12594      BestPromotionType
12595        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12596                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12597    }
12598  }
12599
12600  // Loop over all of the enumerator constants, changing their types to match
12601  // the type of the enum if needed.
12602  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12603    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12604    if (!ECD) continue;  // Already issued a diagnostic.
12605
12606    // Standard C says the enumerators have int type, but we allow, as an
12607    // extension, the enumerators to be larger than int size.  If each
12608    // enumerator value fits in an int, type it as an int, otherwise type it the
12609    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12610    // that X has type 'int', not 'unsigned'.
12611
12612    // Determine whether the value fits into an int.
12613    llvm::APSInt InitVal = ECD->getInitVal();
12614
12615    // If it fits into an integer type, force it.  Otherwise force it to match
12616    // the enum decl type.
12617    QualType NewTy;
12618    unsigned NewWidth;
12619    bool NewSign;
12620    if (!getLangOpts().CPlusPlus &&
12621        !Enum->isFixed() &&
12622        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12623      NewTy = Context.IntTy;
12624      NewWidth = IntWidth;
12625      NewSign = true;
12626    } else if (ECD->getType() == BestType) {
12627      // Already the right type!
12628      if (getLangOpts().CPlusPlus)
12629        // C++ [dcl.enum]p4: Following the closing brace of an
12630        // enum-specifier, each enumerator has the type of its
12631        // enumeration.
12632        ECD->setType(EnumType);
12633      continue;
12634    } else {
12635      NewTy = BestType;
12636      NewWidth = BestWidth;
12637      NewSign = BestType->isSignedIntegerOrEnumerationType();
12638    }
12639
12640    // Adjust the APSInt value.
12641    InitVal = InitVal.extOrTrunc(NewWidth);
12642    InitVal.setIsSigned(NewSign);
12643    ECD->setInitVal(InitVal);
12644
12645    // Adjust the Expr initializer and type.
12646    if (ECD->getInitExpr() &&
12647        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12648      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12649                                                CK_IntegralCast,
12650                                                ECD->getInitExpr(),
12651                                                /*base paths*/ 0,
12652                                                VK_RValue));
12653    if (getLangOpts().CPlusPlus)
12654      // C++ [dcl.enum]p4: Following the closing brace of an
12655      // enum-specifier, each enumerator has the type of its
12656      // enumeration.
12657      ECD->setType(EnumType);
12658    else
12659      ECD->setType(NewTy);
12660  }
12661
12662  Enum->completeDefinition(BestType, BestPromotionType,
12663                           NumPositiveBits, NumNegativeBits);
12664
12665  // If we're declaring a function, ensure this decl isn't forgotten about -
12666  // it needs to go into the function scope.
12667  if (InFunctionDeclarator)
12668    DeclsInPrototypeScope.push_back(Enum);
12669
12670  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12671
12672  // Now that the enum type is defined, ensure it's not been underaligned.
12673  if (Enum->hasAttrs())
12674    CheckAlignasUnderalignment(Enum);
12675}
12676
12677Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12678                                  SourceLocation StartLoc,
12679                                  SourceLocation EndLoc) {
12680  StringLiteral *AsmString = cast<StringLiteral>(expr);
12681
12682  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12683                                                   AsmString, StartLoc,
12684                                                   EndLoc);
12685  CurContext->addDecl(New);
12686  return New;
12687}
12688
12689DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12690                                   SourceLocation ImportLoc,
12691                                   ModuleIdPath Path) {
12692  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12693                                                Module::AllVisible,
12694                                                /*IsIncludeDirective=*/false);
12695  if (!Mod)
12696    return true;
12697
12698  SmallVector<SourceLocation, 2> IdentifierLocs;
12699  Module *ModCheck = Mod;
12700  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12701    // If we've run out of module parents, just drop the remaining identifiers.
12702    // We need the length to be consistent.
12703    if (!ModCheck)
12704      break;
12705    ModCheck = ModCheck->Parent;
12706
12707    IdentifierLocs.push_back(Path[I].second);
12708  }
12709
12710  ImportDecl *Import = ImportDecl::Create(Context,
12711                                          Context.getTranslationUnitDecl(),
12712                                          AtLoc.isValid()? AtLoc : ImportLoc,
12713                                          Mod, IdentifierLocs);
12714  Context.getTranslationUnitDecl()->addDecl(Import);
12715  return Import;
12716}
12717
12718void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12719  // Create the implicit import declaration.
12720  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12721  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12722                                                   Loc, Mod, Loc);
12723  TU->addDecl(ImportD);
12724  Consumer.HandleImplicitImportDecl(ImportD);
12725
12726  // Make the module visible.
12727  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12728                                         /*Complain=*/false);
12729}
12730
12731void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12732                                      IdentifierInfo* AliasName,
12733                                      SourceLocation PragmaLoc,
12734                                      SourceLocation NameLoc,
12735                                      SourceLocation AliasNameLoc) {
12736  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12737                                    LookupOrdinaryName);
12738  AsmLabelAttr *Attr =
12739     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12740
12741  if (PrevDecl)
12742    PrevDecl->addAttr(Attr);
12743  else
12744    (void)ExtnameUndeclaredIdentifiers.insert(
12745      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12746}
12747
12748void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12749                             SourceLocation PragmaLoc,
12750                             SourceLocation NameLoc) {
12751  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12752
12753  if (PrevDecl) {
12754    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12755  } else {
12756    (void)WeakUndeclaredIdentifiers.insert(
12757      std::pair<IdentifierInfo*,WeakInfo>
12758        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12759  }
12760}
12761
12762void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12763                                IdentifierInfo* AliasName,
12764                                SourceLocation PragmaLoc,
12765                                SourceLocation NameLoc,
12766                                SourceLocation AliasNameLoc) {
12767  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12768                                    LookupOrdinaryName);
12769  WeakInfo W = WeakInfo(Name, NameLoc);
12770
12771  if (PrevDecl) {
12772    if (!PrevDecl->hasAttr<AliasAttr>())
12773      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12774        DeclApplyPragmaWeak(TUScope, ND, W);
12775  } else {
12776    (void)WeakUndeclaredIdentifiers.insert(
12777      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12778  }
12779}
12780
12781Decl *Sema::getObjCDeclContext() const {
12782  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12783}
12784
12785AvailabilityResult Sema::getCurContextAvailability() const {
12786  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12787  return D->getAvailability();
12788}
12789