SemaDecl.cpp revision 3aaf486af649d6be464e6b937c8181529ffef931
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Parse/Template.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Lex/HeaderSearch.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40#include <queue>
41using namespace clang;
42
43/// getDeclName - Return a pretty name for the specified decl if possible, or
44/// an empty string if not.  This is used for pretty crash reporting.
45std::string Sema::getDeclName(DeclPtrTy d) {
46  Decl *D = d.getAs<Decl>();
47  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
48    return DN->getQualifiedNameAsString();
49  return "";
50}
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
53  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
54}
55
56/// \brief If the identifier refers to a type name within this scope,
57/// return the declaration of that type.
58///
59/// This routine performs ordinary name lookup of the identifier II
60/// within the given scope, with optional C++ scope specifier SS, to
61/// determine whether the name refers to a type. If so, returns an
62/// opaque pointer (actually a QualType) corresponding to that
63/// type. Otherwise, returns NULL.
64///
65/// If name lookup results in an ambiguity, this routine will complain
66/// and then return NULL.
67Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
68                                Scope *S, const CXXScopeSpec *SS,
69                                bool isClassName,
70                                TypeTy *ObjectTypePtr) {
71  // Determine where we will perform name lookup.
72  DeclContext *LookupCtx = 0;
73  if (ObjectTypePtr) {
74    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
75    if (ObjectType->isRecordType())
76      LookupCtx = computeDeclContext(ObjectType);
77  } else if (SS && SS->isSet()) {
78    LookupCtx = computeDeclContext(*SS, false);
79
80    if (!LookupCtx) {
81      if (isDependentScopeSpecifier(*SS)) {
82        // C++ [temp.res]p3:
83        //   A qualified-id that refers to a type and in which the
84        //   nested-name-specifier depends on a template-parameter (14.6.2)
85        //   shall be prefixed by the keyword typename to indicate that the
86        //   qualified-id denotes a type, forming an
87        //   elaborated-type-specifier (7.1.5.3).
88        //
89        // We therefore do not perform any name lookup if the result would
90        // refer to a member of an unknown specialization.
91        if (!isClassName)
92          return 0;
93
94        // We know from the grammar that this name refers to a type, so build a
95        // TypenameType node to describe the type.
96        // FIXME: Record somewhere that this TypenameType node has no "typename"
97        // keyword associated with it.
98        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
99                                 II, SS->getRange()).getAsOpaquePtr();
100      }
101
102      return 0;
103    }
104
105    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
106      return 0;
107  }
108
109  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    return 0;
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return 0;
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return 0;
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    // C++ [temp.local]p2:
189    //   Within the scope of a class template specialization or
190    //   partial specialization, when the injected-class-name is
191    //   not followed by a <, it is equivalent to the
192    //   injected-class-name followed by the template-argument s
193    //   of the class template specialization or partial
194    //   specialization enclosed in <>.
195    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
196      if (RD->isInjectedClassName())
197        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
198          T = Template->getInjectedClassNameType(Context);
199
200    if (T.isNull())
201      T = Context.getTypeDeclType(TD);
202
203    if (SS)
204      T = getQualifiedNameType(*SS, T);
205
206  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
207    T = Context.getObjCInterfaceType(IDecl);
208  } else if (UnresolvedUsingTypenameDecl *UUDecl =
209               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
210    // FIXME: preserve source structure information.
211    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
212  } else {
213    // If it's not plausibly a type, suppress diagnostics.
214    Result.suppressDiagnostics();
215    return 0;
216  }
217
218  return T.getAsOpaquePtr();
219}
220
221/// isTagName() - This method is called *for error recovery purposes only*
222/// to determine if the specified name is a valid tag name ("struct foo").  If
223/// so, this returns the TST for the tag corresponding to it (TST_enum,
224/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
225/// where the user forgot to specify the tag.
226DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
227  // Do a tag name lookup in this scope.
228  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
229  LookupName(R, S, false);
230  R.suppressDiagnostics();
231  if (R.getResultKind() == LookupResult::Found)
232    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
233      switch (TD->getTagKind()) {
234      case TagDecl::TK_struct: return DeclSpec::TST_struct;
235      case TagDecl::TK_union:  return DeclSpec::TST_union;
236      case TagDecl::TK_class:  return DeclSpec::TST_class;
237      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
238      }
239    }
240
241  return DeclSpec::TST_unspecified;
242}
243
244bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
245                                   SourceLocation IILoc,
246                                   Scope *S,
247                                   const CXXScopeSpec *SS,
248                                   TypeTy *&SuggestedType) {
249  // We don't have anything to suggest (yet).
250  SuggestedType = 0;
251
252  // FIXME: Should we move the logic that tries to recover from a missing tag
253  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
254
255  if (!SS)
256    Diag(IILoc, diag::err_unknown_typename) << &II;
257  else if (DeclContext *DC = computeDeclContext(*SS, false))
258    Diag(IILoc, diag::err_typename_nested_not_found)
259      << &II << DC << SS->getRange();
260  else if (isDependentScopeSpecifier(*SS)) {
261    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
262      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
263      << SourceRange(SS->getRange().getBegin(), IILoc)
264      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
265                                               "typename ");
266    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
267  } else {
268    assert(SS && SS->isInvalid() &&
269           "Invalid scope specifier has already been diagnosed");
270  }
271
272  return true;
273}
274
275// Determines the context to return to after temporarily entering a
276// context.  This depends in an unnecessarily complicated way on the
277// exact ordering of callbacks from the parser.
278DeclContext *Sema::getContainingDC(DeclContext *DC) {
279
280  // Functions defined inline within classes aren't parsed until we've
281  // finished parsing the top-level class, so the top-level class is
282  // the context we'll need to return to.
283  if (isa<FunctionDecl>(DC)) {
284    DC = DC->getLexicalParent();
285
286    // A function not defined within a class will always return to its
287    // lexical context.
288    if (!isa<CXXRecordDecl>(DC))
289      return DC;
290
291    // A C++ inline method/friend is parsed *after* the topmost class
292    // it was declared in is fully parsed ("complete");  the topmost
293    // class is the context we need to return to.
294    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
295      DC = RD;
296
297    // Return the declaration context of the topmost class the inline method is
298    // declared in.
299    return DC;
300  }
301
302  if (isa<ObjCMethodDecl>(DC))
303    return Context.getTranslationUnitDecl();
304
305  return DC->getLexicalParent();
306}
307
308void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
309  assert(getContainingDC(DC) == CurContext &&
310      "The next DeclContext should be lexically contained in the current one.");
311  CurContext = DC;
312  S->setEntity(DC);
313}
314
315void Sema::PopDeclContext() {
316  assert(CurContext && "DeclContext imbalance!");
317
318  CurContext = getContainingDC(CurContext);
319}
320
321/// EnterDeclaratorContext - Used when we must lookup names in the context
322/// of a declarator's nested name specifier.
323void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
324  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
325  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
326  CurContext = DC;
327  assert(CurContext && "No context?");
328  S->setEntity(CurContext);
329}
330
331void Sema::ExitDeclaratorContext(Scope *S) {
332  S->setEntity(PreDeclaratorDC);
333  PreDeclaratorDC = 0;
334
335  // Reset CurContext to the nearest enclosing context.
336  while (!S->getEntity() && S->getParent())
337    S = S->getParent();
338  CurContext = static_cast<DeclContext*>(S->getEntity());
339  assert(CurContext && "No context?");
340}
341
342/// \brief Determine whether we allow overloading of the function
343/// PrevDecl with another declaration.
344///
345/// This routine determines whether overloading is possible, not
346/// whether some new function is actually an overload. It will return
347/// true in C++ (where we can always provide overloads) or, as an
348/// extension, in C when the previous function is already an
349/// overloaded function declaration or has the "overloadable"
350/// attribute.
351static bool AllowOverloadingOfFunction(LookupResult &Previous,
352                                       ASTContext &Context) {
353  if (Context.getLangOptions().CPlusPlus)
354    return true;
355
356  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
357    return true;
358
359  return (Previous.getResultKind() == LookupResult::Found
360          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
361}
362
363/// Add this decl to the scope shadowed decl chains.
364void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
365  // Move up the scope chain until we find the nearest enclosing
366  // non-transparent context. The declaration will be introduced into this
367  // scope.
368  while (S->getEntity() &&
369         ((DeclContext *)S->getEntity())->isTransparentContext())
370    S = S->getParent();
371
372  // Add scoped declarations into their context, so that they can be
373  // found later. Declarations without a context won't be inserted
374  // into any context.
375  if (AddToContext)
376    CurContext->addDecl(D);
377
378  // Out-of-line function and variable definitions should not be pushed into
379  // scope.
380  if ((isa<FunctionTemplateDecl>(D) &&
381       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
382      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
383      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
384    return;
385
386  // If this replaces anything in the current scope,
387  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
388                               IEnd = IdResolver.end();
389  for (; I != IEnd; ++I) {
390    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
391      S->RemoveDecl(DeclPtrTy::make(*I));
392      IdResolver.RemoveDecl(*I);
393
394      // Should only need to replace one decl.
395      break;
396    }
397  }
398
399  S->AddDecl(DeclPtrTy::make(D));
400  IdResolver.AddDecl(D);
401}
402
403bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
404  return IdResolver.isDeclInScope(D, Ctx, Context, S);
405}
406
407static bool isOutOfScopePreviousDeclaration(NamedDecl *,
408                                            DeclContext*,
409                                            ASTContext&);
410
411/// Filters out lookup results that don't fall within the given scope
412/// as determined by isDeclInScope.
413static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
414                                 DeclContext *Ctx, Scope *S,
415                                 bool ConsiderLinkage) {
416  LookupResult::Filter F = R.makeFilter();
417  while (F.hasNext()) {
418    NamedDecl *D = F.next();
419
420    if (SemaRef.isDeclInScope(D, Ctx, S))
421      continue;
422
423    if (ConsiderLinkage &&
424        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
425      continue;
426
427    F.erase();
428  }
429
430  F.done();
431}
432
433static bool isUsingDecl(NamedDecl *D) {
434  return isa<UsingShadowDecl>(D) ||
435         isa<UnresolvedUsingTypenameDecl>(D) ||
436         isa<UnresolvedUsingValueDecl>(D);
437}
438
439/// Removes using shadow declarations from the lookup results.
440static void RemoveUsingDecls(LookupResult &R) {
441  LookupResult::Filter F = R.makeFilter();
442  while (F.hasNext())
443    if (isUsingDecl(F.next()))
444      F.erase();
445
446  F.done();
447}
448
449static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
450  if (D->isUsed() || D->hasAttr<UnusedAttr>())
451    return false;
452
453  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
454    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
455      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
456        if (!RD->hasTrivialConstructor())
457          return false;
458        if (!RD->hasTrivialDestructor())
459          return false;
460      }
461    }
462  }
463
464  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
465          !isa<ImplicitParamDecl>(D) &&
466          D->getDeclContext()->isFunctionOrMethod());
467}
468
469void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
470  if (S->decl_empty()) return;
471  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
472         "Scope shouldn't contain decls!");
473
474  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
475       I != E; ++I) {
476    Decl *TmpD = (*I).getAs<Decl>();
477    assert(TmpD && "This decl didn't get pushed??");
478
479    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
480    NamedDecl *D = cast<NamedDecl>(TmpD);
481
482    if (!D->getDeclName()) continue;
483
484    // Diagnose unused variables in this scope.
485    if (ShouldDiagnoseUnusedDecl(D))
486      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
487
488    // Remove this name from our lexical scope.
489    IdResolver.RemoveDecl(D);
490  }
491}
492
493/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
494/// return 0 if one not found.
495ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
496  // The third "scope" argument is 0 since we aren't enabling lazy built-in
497  // creation from this context.
498  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
499
500  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
501}
502
503/// getNonFieldDeclScope - Retrieves the innermost scope, starting
504/// from S, where a non-field would be declared. This routine copes
505/// with the difference between C and C++ scoping rules in structs and
506/// unions. For example, the following code is well-formed in C but
507/// ill-formed in C++:
508/// @code
509/// struct S6 {
510///   enum { BAR } e;
511/// };
512///
513/// void test_S6() {
514///   struct S6 a;
515///   a.e = BAR;
516/// }
517/// @endcode
518/// For the declaration of BAR, this routine will return a different
519/// scope. The scope S will be the scope of the unnamed enumeration
520/// within S6. In C++, this routine will return the scope associated
521/// with S6, because the enumeration's scope is a transparent
522/// context but structures can contain non-field names. In C, this
523/// routine will return the translation unit scope, since the
524/// enumeration's scope is a transparent context and structures cannot
525/// contain non-field names.
526Scope *Sema::getNonFieldDeclScope(Scope *S) {
527  while (((S->getFlags() & Scope::DeclScope) == 0) ||
528         (S->getEntity() &&
529          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
530         (S->isClassScope() && !getLangOptions().CPlusPlus))
531    S = S->getParent();
532  return S;
533}
534
535void Sema::InitBuiltinVaListType() {
536  if (!Context.getBuiltinVaListType().isNull())
537    return;
538
539  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
540  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
541  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
542  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
543}
544
545/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
546/// file scope.  lazily create a decl for it. ForRedeclaration is true
547/// if we're creating this built-in in anticipation of redeclaring the
548/// built-in.
549NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
550                                     Scope *S, bool ForRedeclaration,
551                                     SourceLocation Loc) {
552  Builtin::ID BID = (Builtin::ID)bid;
553
554  if (Context.BuiltinInfo.hasVAListUse(BID))
555    InitBuiltinVaListType();
556
557  ASTContext::GetBuiltinTypeError Error;
558  QualType R = Context.GetBuiltinType(BID, Error);
559  switch (Error) {
560  case ASTContext::GE_None:
561    // Okay
562    break;
563
564  case ASTContext::GE_Missing_stdio:
565    if (ForRedeclaration)
566      Diag(Loc, diag::err_implicit_decl_requires_stdio)
567        << Context.BuiltinInfo.GetName(BID);
568    return 0;
569
570  case ASTContext::GE_Missing_setjmp:
571    if (ForRedeclaration)
572      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
573        << Context.BuiltinInfo.GetName(BID);
574    return 0;
575  }
576
577  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
578    Diag(Loc, diag::ext_implicit_lib_function_decl)
579      << Context.BuiltinInfo.GetName(BID)
580      << R;
581    if (Context.BuiltinInfo.getHeaderName(BID) &&
582        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
583          != Diagnostic::Ignored)
584      Diag(Loc, diag::note_please_include_header)
585        << Context.BuiltinInfo.getHeaderName(BID)
586        << Context.BuiltinInfo.GetName(BID);
587  }
588
589  FunctionDecl *New = FunctionDecl::Create(Context,
590                                           Context.getTranslationUnitDecl(),
591                                           Loc, II, R, /*DInfo=*/0,
592                                           FunctionDecl::Extern, false,
593                                           /*hasPrototype=*/true);
594  New->setImplicit();
595
596  // Create Decl objects for each parameter, adding them to the
597  // FunctionDecl.
598  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
599    llvm::SmallVector<ParmVarDecl*, 16> Params;
600    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
601      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
602                                           FT->getArgType(i), /*DInfo=*/0,
603                                           VarDecl::None, 0));
604    New->setParams(Context, Params.data(), Params.size());
605  }
606
607  AddKnownFunctionAttributes(New);
608
609  // TUScope is the translation-unit scope to insert this function into.
610  // FIXME: This is hideous. We need to teach PushOnScopeChains to
611  // relate Scopes to DeclContexts, and probably eliminate CurContext
612  // entirely, but we're not there yet.
613  DeclContext *SavedContext = CurContext;
614  CurContext = Context.getTranslationUnitDecl();
615  PushOnScopeChains(New, TUScope);
616  CurContext = SavedContext;
617  return New;
618}
619
620/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
621/// same name and scope as a previous declaration 'Old'.  Figure out
622/// how to resolve this situation, merging decls or emitting
623/// diagnostics as appropriate. If there was an error, set New to be invalid.
624///
625void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
626  // If the new decl is known invalid already, don't bother doing any
627  // merging checks.
628  if (New->isInvalidDecl()) return;
629
630  // Allow multiple definitions for ObjC built-in typedefs.
631  // FIXME: Verify the underlying types are equivalent!
632  if (getLangOptions().ObjC1) {
633    const IdentifierInfo *TypeID = New->getIdentifier();
634    switch (TypeID->getLength()) {
635    default: break;
636    case 2:
637      if (!TypeID->isStr("id"))
638        break;
639      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
640      // Install the built-in type for 'id', ignoring the current definition.
641      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
642      return;
643    case 5:
644      if (!TypeID->isStr("Class"))
645        break;
646      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
647      // Install the built-in type for 'Class', ignoring the current definition.
648      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
649      return;
650    case 3:
651      if (!TypeID->isStr("SEL"))
652        break;
653      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
654      // Install the built-in type for 'SEL', ignoring the current definition.
655      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
656      return;
657    case 8:
658      if (!TypeID->isStr("Protocol"))
659        break;
660      Context.setObjCProtoType(New->getUnderlyingType());
661      return;
662    }
663    // Fall through - the typedef name was not a builtin type.
664  }
665
666  // Verify the old decl was also a type.
667  TypeDecl *Old = 0;
668  if (!OldDecls.isSingleResult() ||
669      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
670    Diag(New->getLocation(), diag::err_redefinition_different_kind)
671      << New->getDeclName();
672
673    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
674    if (OldD->getLocation().isValid())
675      Diag(OldD->getLocation(), diag::note_previous_definition);
676
677    return New->setInvalidDecl();
678  }
679
680  // If the old declaration is invalid, just give up here.
681  if (Old->isInvalidDecl())
682    return New->setInvalidDecl();
683
684  // Determine the "old" type we'll use for checking and diagnostics.
685  QualType OldType;
686  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
687    OldType = OldTypedef->getUnderlyingType();
688  else
689    OldType = Context.getTypeDeclType(Old);
690
691  // If the typedef types are not identical, reject them in all languages and
692  // with any extensions enabled.
693
694  if (OldType != New->getUnderlyingType() &&
695      Context.getCanonicalType(OldType) !=
696      Context.getCanonicalType(New->getUnderlyingType())) {
697    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
698      << New->getUnderlyingType() << OldType;
699    if (Old->getLocation().isValid())
700      Diag(Old->getLocation(), diag::note_previous_definition);
701    return New->setInvalidDecl();
702  }
703
704  if (getLangOptions().Microsoft)
705    return;
706
707  // C++ [dcl.typedef]p2:
708  //   In a given non-class scope, a typedef specifier can be used to
709  //   redefine the name of any type declared in that scope to refer
710  //   to the type to which it already refers.
711  if (getLangOptions().CPlusPlus) {
712    if (!isa<CXXRecordDecl>(CurContext))
713      return;
714    Diag(New->getLocation(), diag::err_redefinition)
715      << New->getDeclName();
716    Diag(Old->getLocation(), diag::note_previous_definition);
717    return New->setInvalidDecl();
718  }
719
720  // If we have a redefinition of a typedef in C, emit a warning.  This warning
721  // is normally mapped to an error, but can be controlled with
722  // -Wtypedef-redefinition.  If either the original or the redefinition is
723  // in a system header, don't emit this for compatibility with GCC.
724  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
725      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
726       Context.getSourceManager().isInSystemHeader(New->getLocation())))
727    return;
728
729  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
730    << New->getDeclName();
731  Diag(Old->getLocation(), diag::note_previous_definition);
732  return;
733}
734
735/// DeclhasAttr - returns true if decl Declaration already has the target
736/// attribute.
737static bool
738DeclHasAttr(const Decl *decl, const Attr *target) {
739  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
740    if (attr->getKind() == target->getKind())
741      return true;
742
743  return false;
744}
745
746/// MergeAttributes - append attributes from the Old decl to the New one.
747static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
748  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
749    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
750      Attr *NewAttr = attr->clone(C);
751      NewAttr->setInherited(true);
752      New->addAttr(NewAttr);
753    }
754  }
755}
756
757/// Used in MergeFunctionDecl to keep track of function parameters in
758/// C.
759struct GNUCompatibleParamWarning {
760  ParmVarDecl *OldParm;
761  ParmVarDecl *NewParm;
762  QualType PromotedType;
763};
764
765/// MergeFunctionDecl - We just parsed a function 'New' from
766/// declarator D which has the same name and scope as a previous
767/// declaration 'Old'.  Figure out how to resolve this situation,
768/// merging decls or emitting diagnostics as appropriate.
769///
770/// In C++, New and Old must be declarations that are not
771/// overloaded. Use IsOverload to determine whether New and Old are
772/// overloaded, and to select the Old declaration that New should be
773/// merged with.
774///
775/// Returns true if there was an error, false otherwise.
776bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
777  // Verify the old decl was also a function.
778  FunctionDecl *Old = 0;
779  if (FunctionTemplateDecl *OldFunctionTemplate
780        = dyn_cast<FunctionTemplateDecl>(OldD))
781    Old = OldFunctionTemplate->getTemplatedDecl();
782  else
783    Old = dyn_cast<FunctionDecl>(OldD);
784  if (!Old) {
785    Diag(New->getLocation(), diag::err_redefinition_different_kind)
786      << New->getDeclName();
787    Diag(OldD->getLocation(), diag::note_previous_definition);
788    return true;
789  }
790
791  // Determine whether the previous declaration was a definition,
792  // implicit declaration, or a declaration.
793  diag::kind PrevDiag;
794  if (Old->isThisDeclarationADefinition())
795    PrevDiag = diag::note_previous_definition;
796  else if (Old->isImplicit())
797    PrevDiag = diag::note_previous_implicit_declaration;
798  else
799    PrevDiag = diag::note_previous_declaration;
800
801  QualType OldQType = Context.getCanonicalType(Old->getType());
802  QualType NewQType = Context.getCanonicalType(New->getType());
803
804  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
805      New->getStorageClass() == FunctionDecl::Static &&
806      Old->getStorageClass() != FunctionDecl::Static) {
807    Diag(New->getLocation(), diag::err_static_non_static)
808      << New;
809    Diag(Old->getLocation(), PrevDiag);
810    return true;
811  }
812
813  if (getLangOptions().CPlusPlus) {
814    // (C++98 13.1p2):
815    //   Certain function declarations cannot be overloaded:
816    //     -- Function declarations that differ only in the return type
817    //        cannot be overloaded.
818    QualType OldReturnType
819      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
820    QualType NewReturnType
821      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
822    if (OldReturnType != NewReturnType) {
823      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
824      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
825      return true;
826    }
827
828    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
829    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
830    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
831        NewMethod->getLexicalDeclContext()->isRecord()) {
832      //    -- Member function declarations with the same name and the
833      //       same parameter types cannot be overloaded if any of them
834      //       is a static member function declaration.
835      if (OldMethod->isStatic() || NewMethod->isStatic()) {
836        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
837        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
838        return true;
839      }
840
841      // C++ [class.mem]p1:
842      //   [...] A member shall not be declared twice in the
843      //   member-specification, except that a nested class or member
844      //   class template can be declared and then later defined.
845      unsigned NewDiag;
846      if (isa<CXXConstructorDecl>(OldMethod))
847        NewDiag = diag::err_constructor_redeclared;
848      else if (isa<CXXDestructorDecl>(NewMethod))
849        NewDiag = diag::err_destructor_redeclared;
850      else if (isa<CXXConversionDecl>(NewMethod))
851        NewDiag = diag::err_conv_function_redeclared;
852      else
853        NewDiag = diag::err_member_redeclared;
854
855      Diag(New->getLocation(), NewDiag);
856      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
857    }
858
859    // (C++98 8.3.5p3):
860    //   All declarations for a function shall agree exactly in both the
861    //   return type and the parameter-type-list.
862    if (OldQType == NewQType)
863      return MergeCompatibleFunctionDecls(New, Old);
864
865    // Fall through for conflicting redeclarations and redefinitions.
866  }
867
868  // C: Function types need to be compatible, not identical. This handles
869  // duplicate function decls like "void f(int); void f(enum X);" properly.
870  if (!getLangOptions().CPlusPlus &&
871      Context.typesAreCompatible(OldQType, NewQType)) {
872    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
873    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
874    const FunctionProtoType *OldProto = 0;
875    if (isa<FunctionNoProtoType>(NewFuncType) &&
876        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
877      // The old declaration provided a function prototype, but the
878      // new declaration does not. Merge in the prototype.
879      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
880      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
881                                                 OldProto->arg_type_end());
882      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
883                                         ParamTypes.data(), ParamTypes.size(),
884                                         OldProto->isVariadic(),
885                                         OldProto->getTypeQuals());
886      New->setType(NewQType);
887      New->setHasInheritedPrototype();
888
889      // Synthesize a parameter for each argument type.
890      llvm::SmallVector<ParmVarDecl*, 16> Params;
891      for (FunctionProtoType::arg_type_iterator
892             ParamType = OldProto->arg_type_begin(),
893             ParamEnd = OldProto->arg_type_end();
894           ParamType != ParamEnd; ++ParamType) {
895        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
896                                                 SourceLocation(), 0,
897                                                 *ParamType, /*DInfo=*/0,
898                                                 VarDecl::None, 0);
899        Param->setImplicit();
900        Params.push_back(Param);
901      }
902
903      New->setParams(Context, Params.data(), Params.size());
904    }
905
906    return MergeCompatibleFunctionDecls(New, Old);
907  }
908
909  // GNU C permits a K&R definition to follow a prototype declaration
910  // if the declared types of the parameters in the K&R definition
911  // match the types in the prototype declaration, even when the
912  // promoted types of the parameters from the K&R definition differ
913  // from the types in the prototype. GCC then keeps the types from
914  // the prototype.
915  //
916  // If a variadic prototype is followed by a non-variadic K&R definition,
917  // the K&R definition becomes variadic.  This is sort of an edge case, but
918  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
919  // C99 6.9.1p8.
920  if (!getLangOptions().CPlusPlus &&
921      Old->hasPrototype() && !New->hasPrototype() &&
922      New->getType()->getAs<FunctionProtoType>() &&
923      Old->getNumParams() == New->getNumParams()) {
924    llvm::SmallVector<QualType, 16> ArgTypes;
925    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
926    const FunctionProtoType *OldProto
927      = Old->getType()->getAs<FunctionProtoType>();
928    const FunctionProtoType *NewProto
929      = New->getType()->getAs<FunctionProtoType>();
930
931    // Determine whether this is the GNU C extension.
932    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
933                                               NewProto->getResultType());
934    bool LooseCompatible = !MergedReturn.isNull();
935    for (unsigned Idx = 0, End = Old->getNumParams();
936         LooseCompatible && Idx != End; ++Idx) {
937      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
938      ParmVarDecl *NewParm = New->getParamDecl(Idx);
939      if (Context.typesAreCompatible(OldParm->getType(),
940                                     NewProto->getArgType(Idx))) {
941        ArgTypes.push_back(NewParm->getType());
942      } else if (Context.typesAreCompatible(OldParm->getType(),
943                                            NewParm->getType())) {
944        GNUCompatibleParamWarning Warn
945          = { OldParm, NewParm, NewProto->getArgType(Idx) };
946        Warnings.push_back(Warn);
947        ArgTypes.push_back(NewParm->getType());
948      } else
949        LooseCompatible = false;
950    }
951
952    if (LooseCompatible) {
953      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
954        Diag(Warnings[Warn].NewParm->getLocation(),
955             diag::ext_param_promoted_not_compatible_with_prototype)
956          << Warnings[Warn].PromotedType
957          << Warnings[Warn].OldParm->getType();
958        Diag(Warnings[Warn].OldParm->getLocation(),
959             diag::note_previous_declaration);
960      }
961
962      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
963                                           ArgTypes.size(),
964                                           OldProto->isVariadic(), 0));
965      return MergeCompatibleFunctionDecls(New, Old);
966    }
967
968    // Fall through to diagnose conflicting types.
969  }
970
971  // A function that has already been declared has been redeclared or defined
972  // with a different type- show appropriate diagnostic
973  if (unsigned BuiltinID = Old->getBuiltinID()) {
974    // The user has declared a builtin function with an incompatible
975    // signature.
976    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
977      // The function the user is redeclaring is a library-defined
978      // function like 'malloc' or 'printf'. Warn about the
979      // redeclaration, then pretend that we don't know about this
980      // library built-in.
981      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
982      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
983        << Old << Old->getType();
984      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
985      Old->setInvalidDecl();
986      return false;
987    }
988
989    PrevDiag = diag::note_previous_builtin_declaration;
990  }
991
992  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
993  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
994  return true;
995}
996
997/// \brief Completes the merge of two function declarations that are
998/// known to be compatible.
999///
1000/// This routine handles the merging of attributes and other
1001/// properties of function declarations form the old declaration to
1002/// the new declaration, once we know that New is in fact a
1003/// redeclaration of Old.
1004///
1005/// \returns false
1006bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1007  // Merge the attributes
1008  MergeAttributes(New, Old, Context);
1009
1010  // Merge the storage class.
1011  if (Old->getStorageClass() != FunctionDecl::Extern &&
1012      Old->getStorageClass() != FunctionDecl::None)
1013    New->setStorageClass(Old->getStorageClass());
1014
1015  // Merge "pure" flag.
1016  if (Old->isPure())
1017    New->setPure();
1018
1019  // Merge the "deleted" flag.
1020  if (Old->isDeleted())
1021    New->setDeleted();
1022
1023  if (getLangOptions().CPlusPlus)
1024    return MergeCXXFunctionDecl(New, Old);
1025
1026  return false;
1027}
1028
1029/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1030/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1031/// situation, merging decls or emitting diagnostics as appropriate.
1032///
1033/// Tentative definition rules (C99 6.9.2p2) are checked by
1034/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1035/// definitions here, since the initializer hasn't been attached.
1036///
1037void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1038  // If the new decl is already invalid, don't do any other checking.
1039  if (New->isInvalidDecl())
1040    return;
1041
1042  // Verify the old decl was also a variable.
1043  VarDecl *Old = 0;
1044  if (!Previous.isSingleResult() ||
1045      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1046    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1047      << New->getDeclName();
1048    Diag(Previous.getRepresentativeDecl()->getLocation(),
1049         diag::note_previous_definition);
1050    return New->setInvalidDecl();
1051  }
1052
1053  MergeAttributes(New, Old, Context);
1054
1055  // Merge the types
1056  QualType MergedT;
1057  if (getLangOptions().CPlusPlus) {
1058    if (Context.hasSameType(New->getType(), Old->getType()))
1059      MergedT = New->getType();
1060    // C++ [basic.types]p7:
1061    //   [...] The declared type of an array object might be an array of
1062    //   unknown size and therefore be incomplete at one point in a
1063    //   translation unit and complete later on; [...]
1064    else if (Old->getType()->isIncompleteArrayType() &&
1065             New->getType()->isArrayType()) {
1066      CanQual<ArrayType> OldArray
1067        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1068      CanQual<ArrayType> NewArray
1069        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1070      if (OldArray->getElementType() == NewArray->getElementType())
1071        MergedT = New->getType();
1072    }
1073  } else {
1074    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1075  }
1076  if (MergedT.isNull()) {
1077    Diag(New->getLocation(), diag::err_redefinition_different_type)
1078      << New->getDeclName();
1079    Diag(Old->getLocation(), diag::note_previous_definition);
1080    return New->setInvalidDecl();
1081  }
1082  New->setType(MergedT);
1083
1084  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1085  if (New->getStorageClass() == VarDecl::Static &&
1086      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1087    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1088    Diag(Old->getLocation(), diag::note_previous_definition);
1089    return New->setInvalidDecl();
1090  }
1091  // C99 6.2.2p4:
1092  //   For an identifier declared with the storage-class specifier
1093  //   extern in a scope in which a prior declaration of that
1094  //   identifier is visible,23) if the prior declaration specifies
1095  //   internal or external linkage, the linkage of the identifier at
1096  //   the later declaration is the same as the linkage specified at
1097  //   the prior declaration. If no prior declaration is visible, or
1098  //   if the prior declaration specifies no linkage, then the
1099  //   identifier has external linkage.
1100  if (New->hasExternalStorage() && Old->hasLinkage())
1101    /* Okay */;
1102  else if (New->getStorageClass() != VarDecl::Static &&
1103           Old->getStorageClass() == VarDecl::Static) {
1104    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1105    Diag(Old->getLocation(), diag::note_previous_definition);
1106    return New->setInvalidDecl();
1107  }
1108
1109  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1110
1111  // FIXME: The test for external storage here seems wrong? We still
1112  // need to check for mismatches.
1113  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1114      // Don't complain about out-of-line definitions of static members.
1115      !(Old->getLexicalDeclContext()->isRecord() &&
1116        !New->getLexicalDeclContext()->isRecord())) {
1117    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1118    Diag(Old->getLocation(), diag::note_previous_definition);
1119    return New->setInvalidDecl();
1120  }
1121
1122  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1123    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1124    Diag(Old->getLocation(), diag::note_previous_definition);
1125  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1126    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1127    Diag(Old->getLocation(), diag::note_previous_definition);
1128  }
1129
1130  // Keep a chain of previous declarations.
1131  New->setPreviousDeclaration(Old);
1132}
1133
1134/// CheckFallThrough - Check that we don't fall off the end of a
1135/// Statement that should return a value.
1136///
1137/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1138/// MaybeFallThrough iff we might or might not fall off the end,
1139/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1140/// return.  We assume NeverFallThrough iff we never fall off the end of the
1141/// statement but we may return.  We assume that functions not marked noreturn
1142/// will return.
1143Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1144  // FIXME: Eventually share this CFG object when we have other warnings based
1145  // of the CFG.  This can be done using AnalysisContext.
1146  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1147
1148  // FIXME: They should never return 0, fix that, delete this code.
1149  if (cfg == 0)
1150    // FIXME: This should be NeverFallThrough
1151    return NeverFallThroughOrReturn;
1152  // The CFG leaves in dead things, and we don't want to dead code paths to
1153  // confuse us, so we mark all live things first.
1154  std::queue<CFGBlock*> workq;
1155  llvm::BitVector live(cfg->getNumBlockIDs());
1156  // Prep work queue
1157  workq.push(&cfg->getEntry());
1158  // Solve
1159  while (!workq.empty()) {
1160    CFGBlock *item = workq.front();
1161    workq.pop();
1162    live.set(item->getBlockID());
1163    for (CFGBlock::succ_iterator I=item->succ_begin(),
1164           E=item->succ_end();
1165         I != E;
1166         ++I) {
1167      if ((*I) && !live[(*I)->getBlockID()]) {
1168        live.set((*I)->getBlockID());
1169        workq.push(*I);
1170      }
1171    }
1172  }
1173
1174  // Now we know what is live, we check the live precessors of the exit block
1175  // and look for fall through paths, being careful to ignore normal returns,
1176  // and exceptional paths.
1177  bool HasLiveReturn = false;
1178  bool HasFakeEdge = false;
1179  bool HasPlainEdge = false;
1180  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1181         E = cfg->getExit().pred_end();
1182       I != E;
1183       ++I) {
1184    CFGBlock& B = **I;
1185    if (!live[B.getBlockID()])
1186      continue;
1187    if (B.size() == 0) {
1188      // A labeled empty statement, or the entry block...
1189      HasPlainEdge = true;
1190      continue;
1191    }
1192    Stmt *S = B[B.size()-1];
1193    if (isa<ReturnStmt>(S)) {
1194      HasLiveReturn = true;
1195      continue;
1196    }
1197    if (isa<ObjCAtThrowStmt>(S)) {
1198      HasFakeEdge = true;
1199      continue;
1200    }
1201    if (isa<CXXThrowExpr>(S)) {
1202      HasFakeEdge = true;
1203      continue;
1204    }
1205    bool NoReturnEdge = false;
1206    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1207      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1208      if (CEE->getType().getNoReturnAttr()) {
1209        NoReturnEdge = true;
1210        HasFakeEdge = true;
1211      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1212        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1213          if (FD->hasAttr<NoReturnAttr>()) {
1214            NoReturnEdge = true;
1215            HasFakeEdge = true;
1216          }
1217        }
1218      }
1219    }
1220    // FIXME: Add noreturn message sends.
1221    if (NoReturnEdge == false)
1222      HasPlainEdge = true;
1223  }
1224  if (!HasPlainEdge) {
1225    if (HasLiveReturn)
1226      return NeverFallThrough;
1227    return NeverFallThroughOrReturn;
1228  }
1229  if (HasFakeEdge || HasLiveReturn)
1230    return MaybeFallThrough;
1231  // This says AlwaysFallThrough for calls to functions that are not marked
1232  // noreturn, that don't return.  If people would like this warning to be more
1233  // accurate, such functions should be marked as noreturn.
1234  return AlwaysFallThrough;
1235}
1236
1237/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1238/// function that should return a value.  Check that we don't fall off the end
1239/// of a noreturn function.  We assume that functions and blocks not marked
1240/// noreturn will return.
1241void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1242  // FIXME: Would be nice if we had a better way to control cascading errors,
1243  // but for now, avoid them.  The problem is that when Parse sees:
1244  //   int foo() { return a; }
1245  // The return is eaten and the Sema code sees just:
1246  //   int foo() { }
1247  // which this code would then warn about.
1248  if (getDiagnostics().hasErrorOccurred())
1249    return;
1250
1251  bool ReturnsVoid = false;
1252  bool HasNoReturn = false;
1253  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1254    // If the result type of the function is a dependent type, we don't know
1255    // whether it will be void or not, so don't
1256    if (FD->getResultType()->isDependentType())
1257      return;
1258    if (FD->getResultType()->isVoidType())
1259      ReturnsVoid = true;
1260    if (FD->hasAttr<NoReturnAttr>())
1261      HasNoReturn = true;
1262  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1263    if (MD->getResultType()->isVoidType())
1264      ReturnsVoid = true;
1265    if (MD->hasAttr<NoReturnAttr>())
1266      HasNoReturn = true;
1267  }
1268
1269  // Short circuit for compilation speed.
1270  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1271       == Diagnostic::Ignored || ReturnsVoid)
1272      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1273          == Diagnostic::Ignored || !HasNoReturn)
1274      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1275          == Diagnostic::Ignored || !ReturnsVoid))
1276    return;
1277  // FIXME: Function try block
1278  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1279    switch (CheckFallThrough(Body)) {
1280    case MaybeFallThrough:
1281      if (HasNoReturn)
1282        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1283      else if (!ReturnsVoid)
1284        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1285      break;
1286    case AlwaysFallThrough:
1287      if (HasNoReturn)
1288        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1289      else if (!ReturnsVoid)
1290        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1291      break;
1292    case NeverFallThroughOrReturn:
1293      if (ReturnsVoid && !HasNoReturn)
1294        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1295      break;
1296    case NeverFallThrough:
1297      break;
1298    }
1299  }
1300}
1301
1302/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1303/// that should return a value.  Check that we don't fall off the end of a
1304/// noreturn block.  We assume that functions and blocks not marked noreturn
1305/// will return.
1306void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1307  // FIXME: Would be nice if we had a better way to control cascading errors,
1308  // but for now, avoid them.  The problem is that when Parse sees:
1309  //   int foo() { return a; }
1310  // The return is eaten and the Sema code sees just:
1311  //   int foo() { }
1312  // which this code would then warn about.
1313  if (getDiagnostics().hasErrorOccurred())
1314    return;
1315  bool ReturnsVoid = false;
1316  bool HasNoReturn = false;
1317  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1318    if (FT->getResultType()->isVoidType())
1319      ReturnsVoid = true;
1320    if (FT->getNoReturnAttr())
1321      HasNoReturn = true;
1322  }
1323
1324  // Short circuit for compilation speed.
1325  if (ReturnsVoid
1326      && !HasNoReturn
1327      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1328          == Diagnostic::Ignored || !ReturnsVoid))
1329    return;
1330  // FIXME: Funtion try block
1331  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1332    switch (CheckFallThrough(Body)) {
1333    case MaybeFallThrough:
1334      if (HasNoReturn)
1335        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1336      else if (!ReturnsVoid)
1337        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1338      break;
1339    case AlwaysFallThrough:
1340      if (HasNoReturn)
1341        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1342      else if (!ReturnsVoid)
1343        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1344      break;
1345    case NeverFallThroughOrReturn:
1346      if (ReturnsVoid)
1347        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1348      break;
1349    case NeverFallThrough:
1350      break;
1351    }
1352  }
1353}
1354
1355/// CheckParmsForFunctionDef - Check that the parameters of the given
1356/// function are appropriate for the definition of a function. This
1357/// takes care of any checks that cannot be performed on the
1358/// declaration itself, e.g., that the types of each of the function
1359/// parameters are complete.
1360bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1361  bool HasInvalidParm = false;
1362  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1363    ParmVarDecl *Param = FD->getParamDecl(p);
1364
1365    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1366    // function declarator that is part of a function definition of
1367    // that function shall not have incomplete type.
1368    //
1369    // This is also C++ [dcl.fct]p6.
1370    if (!Param->isInvalidDecl() &&
1371        RequireCompleteType(Param->getLocation(), Param->getType(),
1372                               diag::err_typecheck_decl_incomplete_type)) {
1373      Param->setInvalidDecl();
1374      HasInvalidParm = true;
1375    }
1376
1377    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1378    // declaration of each parameter shall include an identifier.
1379    if (Param->getIdentifier() == 0 &&
1380        !Param->isImplicit() &&
1381        !getLangOptions().CPlusPlus)
1382      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1383  }
1384
1385  return HasInvalidParm;
1386}
1387
1388/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1389/// no declarator (e.g. "struct foo;") is parsed.
1390Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1391  // FIXME: Error on auto/register at file scope
1392  // FIXME: Error on inline/virtual/explicit
1393  // FIXME: Error on invalid restrict
1394  // FIXME: Warn on useless __thread
1395  // FIXME: Warn on useless const/volatile
1396  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1397  // FIXME: Warn on useless attributes
1398  Decl *TagD = 0;
1399  TagDecl *Tag = 0;
1400  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1401      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1402      DS.getTypeSpecType() == DeclSpec::TST_union ||
1403      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1404    TagD = static_cast<Decl *>(DS.getTypeRep());
1405
1406    if (!TagD) // We probably had an error
1407      return DeclPtrTy();
1408
1409    // Note that the above type specs guarantee that the
1410    // type rep is a Decl, whereas in many of the others
1411    // it's a Type.
1412    Tag = dyn_cast<TagDecl>(TagD);
1413  }
1414
1415  if (DS.isFriendSpecified()) {
1416    // If we're dealing with a class template decl, assume that the
1417    // template routines are handling it.
1418    if (TagD && isa<ClassTemplateDecl>(TagD))
1419      return DeclPtrTy();
1420    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1421  }
1422
1423  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1424    // If there are attributes in the DeclSpec, apply them to the record.
1425    if (const AttributeList *AL = DS.getAttributes())
1426      ProcessDeclAttributeList(S, Record, AL);
1427
1428    if (!Record->getDeclName() && Record->isDefinition() &&
1429        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1430      if (getLangOptions().CPlusPlus ||
1431          Record->getDeclContext()->isRecord())
1432        return BuildAnonymousStructOrUnion(S, DS, Record);
1433
1434      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1435        << DS.getSourceRange();
1436    }
1437
1438    // Microsoft allows unnamed struct/union fields. Don't complain
1439    // about them.
1440    // FIXME: Should we support Microsoft's extensions in this area?
1441    if (Record->getDeclName() && getLangOptions().Microsoft)
1442      return DeclPtrTy::make(Tag);
1443  }
1444
1445  if (!DS.isMissingDeclaratorOk() &&
1446      DS.getTypeSpecType() != DeclSpec::TST_error) {
1447    // Warn about typedefs of enums without names, since this is an
1448    // extension in both Microsoft an GNU.
1449    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1450        Tag && isa<EnumDecl>(Tag)) {
1451      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1452        << DS.getSourceRange();
1453      return DeclPtrTy::make(Tag);
1454    }
1455
1456    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1457      << DS.getSourceRange();
1458    return DeclPtrTy();
1459  }
1460
1461  return DeclPtrTy::make(Tag);
1462}
1463
1464/// We are trying to introduce the given name into the given context;
1465/// check if there's an existing declaration that can't be overloaded.
1466///
1467/// \return true if this is a forbidden redeclaration
1468bool Sema::CheckRedeclaration(DeclContext *DC,
1469                              DeclarationName Name,
1470                              SourceLocation NameLoc,
1471                              unsigned diagnostic) {
1472  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1473                 ForRedeclaration);
1474  LookupQualifiedName(R, DC);
1475
1476  if (R.empty()) return false;
1477
1478  if (R.getResultKind() == LookupResult::Found &&
1479      isa<TagDecl>(R.getFoundDecl()))
1480    return false;
1481
1482  // Pick a representative declaration.
1483  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1484
1485  Diag(NameLoc, diagnostic) << Name;
1486  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1487
1488  return true;
1489}
1490
1491/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1492/// anonymous struct or union AnonRecord into the owning context Owner
1493/// and scope S. This routine will be invoked just after we realize
1494/// that an unnamed union or struct is actually an anonymous union or
1495/// struct, e.g.,
1496///
1497/// @code
1498/// union {
1499///   int i;
1500///   float f;
1501/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1502///    // f into the surrounding scope.x
1503/// @endcode
1504///
1505/// This routine is recursive, injecting the names of nested anonymous
1506/// structs/unions into the owning context and scope as well.
1507bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1508                                               RecordDecl *AnonRecord) {
1509  unsigned diagKind
1510    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1511                            : diag::err_anonymous_struct_member_redecl;
1512
1513  bool Invalid = false;
1514  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1515                               FEnd = AnonRecord->field_end();
1516       F != FEnd; ++F) {
1517    if ((*F)->getDeclName()) {
1518      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1519                             (*F)->getLocation(), diagKind)) {
1520        // C++ [class.union]p2:
1521        //   The names of the members of an anonymous union shall be
1522        //   distinct from the names of any other entity in the
1523        //   scope in which the anonymous union is declared.
1524        Invalid = true;
1525      } else {
1526        // C++ [class.union]p2:
1527        //   For the purpose of name lookup, after the anonymous union
1528        //   definition, the members of the anonymous union are
1529        //   considered to have been defined in the scope in which the
1530        //   anonymous union is declared.
1531        Owner->makeDeclVisibleInContext(*F);
1532        S->AddDecl(DeclPtrTy::make(*F));
1533        IdResolver.AddDecl(*F);
1534      }
1535    } else if (const RecordType *InnerRecordType
1536                 = (*F)->getType()->getAs<RecordType>()) {
1537      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1538      if (InnerRecord->isAnonymousStructOrUnion())
1539        Invalid = Invalid ||
1540          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1541    }
1542  }
1543
1544  return Invalid;
1545}
1546
1547/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1548/// anonymous structure or union. Anonymous unions are a C++ feature
1549/// (C++ [class.union]) and a GNU C extension; anonymous structures
1550/// are a GNU C and GNU C++ extension.
1551Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1552                                                  RecordDecl *Record) {
1553  DeclContext *Owner = Record->getDeclContext();
1554
1555  // Diagnose whether this anonymous struct/union is an extension.
1556  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1557    Diag(Record->getLocation(), diag::ext_anonymous_union);
1558  else if (!Record->isUnion())
1559    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1560
1561  // C and C++ require different kinds of checks for anonymous
1562  // structs/unions.
1563  bool Invalid = false;
1564  if (getLangOptions().CPlusPlus) {
1565    const char* PrevSpec = 0;
1566    unsigned DiagID;
1567    // C++ [class.union]p3:
1568    //   Anonymous unions declared in a named namespace or in the
1569    //   global namespace shall be declared static.
1570    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1571        (isa<TranslationUnitDecl>(Owner) ||
1572         (isa<NamespaceDecl>(Owner) &&
1573          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1574      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1575      Invalid = true;
1576
1577      // Recover by adding 'static'.
1578      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1579                             PrevSpec, DiagID);
1580    }
1581    // C++ [class.union]p3:
1582    //   A storage class is not allowed in a declaration of an
1583    //   anonymous union in a class scope.
1584    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1585             isa<RecordDecl>(Owner)) {
1586      Diag(DS.getStorageClassSpecLoc(),
1587           diag::err_anonymous_union_with_storage_spec);
1588      Invalid = true;
1589
1590      // Recover by removing the storage specifier.
1591      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1592                             PrevSpec, DiagID);
1593    }
1594
1595    // C++ [class.union]p2:
1596    //   The member-specification of an anonymous union shall only
1597    //   define non-static data members. [Note: nested types and
1598    //   functions cannot be declared within an anonymous union. ]
1599    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1600                                 MemEnd = Record->decls_end();
1601         Mem != MemEnd; ++Mem) {
1602      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1603        // C++ [class.union]p3:
1604        //   An anonymous union shall not have private or protected
1605        //   members (clause 11).
1606        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1607          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1608            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1609          Invalid = true;
1610        }
1611      } else if ((*Mem)->isImplicit()) {
1612        // Any implicit members are fine.
1613      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1614        // This is a type that showed up in an
1615        // elaborated-type-specifier inside the anonymous struct or
1616        // union, but which actually declares a type outside of the
1617        // anonymous struct or union. It's okay.
1618      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1619        if (!MemRecord->isAnonymousStructOrUnion() &&
1620            MemRecord->getDeclName()) {
1621          // This is a nested type declaration.
1622          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1623            << (int)Record->isUnion();
1624          Invalid = true;
1625        }
1626      } else {
1627        // We have something that isn't a non-static data
1628        // member. Complain about it.
1629        unsigned DK = diag::err_anonymous_record_bad_member;
1630        if (isa<TypeDecl>(*Mem))
1631          DK = diag::err_anonymous_record_with_type;
1632        else if (isa<FunctionDecl>(*Mem))
1633          DK = diag::err_anonymous_record_with_function;
1634        else if (isa<VarDecl>(*Mem))
1635          DK = diag::err_anonymous_record_with_static;
1636        Diag((*Mem)->getLocation(), DK)
1637            << (int)Record->isUnion();
1638          Invalid = true;
1639      }
1640    }
1641  }
1642
1643  if (!Record->isUnion() && !Owner->isRecord()) {
1644    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1645      << (int)getLangOptions().CPlusPlus;
1646    Invalid = true;
1647  }
1648
1649  // Mock up a declarator.
1650  Declarator Dc(DS, Declarator::TypeNameContext);
1651  DeclaratorInfo *DInfo = 0;
1652  GetTypeForDeclarator(Dc, S, &DInfo);
1653  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1654
1655  // Create a declaration for this anonymous struct/union.
1656  NamedDecl *Anon = 0;
1657  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1658    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1659                             /*IdentifierInfo=*/0,
1660                             Context.getTypeDeclType(Record),
1661                             DInfo,
1662                             /*BitWidth=*/0, /*Mutable=*/false);
1663    Anon->setAccess(AS_public);
1664    if (getLangOptions().CPlusPlus)
1665      FieldCollector->Add(cast<FieldDecl>(Anon));
1666  } else {
1667    VarDecl::StorageClass SC;
1668    switch (DS.getStorageClassSpec()) {
1669    default: assert(0 && "Unknown storage class!");
1670    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1671    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1672    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1673    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1674    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1675    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1676    case DeclSpec::SCS_mutable:
1677      // mutable can only appear on non-static class members, so it's always
1678      // an error here
1679      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1680      Invalid = true;
1681      SC = VarDecl::None;
1682      break;
1683    }
1684
1685    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1686                           /*IdentifierInfo=*/0,
1687                           Context.getTypeDeclType(Record),
1688                           DInfo,
1689                           SC);
1690  }
1691  Anon->setImplicit();
1692
1693  // Add the anonymous struct/union object to the current
1694  // context. We'll be referencing this object when we refer to one of
1695  // its members.
1696  Owner->addDecl(Anon);
1697
1698  // Inject the members of the anonymous struct/union into the owning
1699  // context and into the identifier resolver chain for name lookup
1700  // purposes.
1701  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1702    Invalid = true;
1703
1704  // Mark this as an anonymous struct/union type. Note that we do not
1705  // do this until after we have already checked and injected the
1706  // members of this anonymous struct/union type, because otherwise
1707  // the members could be injected twice: once by DeclContext when it
1708  // builds its lookup table, and once by
1709  // InjectAnonymousStructOrUnionMembers.
1710  Record->setAnonymousStructOrUnion(true);
1711
1712  if (Invalid)
1713    Anon->setInvalidDecl();
1714
1715  return DeclPtrTy::make(Anon);
1716}
1717
1718
1719/// GetNameForDeclarator - Determine the full declaration name for the
1720/// given Declarator.
1721DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1722  return GetNameFromUnqualifiedId(D.getName());
1723}
1724
1725/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1726DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1727  switch (Name.getKind()) {
1728    case UnqualifiedId::IK_Identifier:
1729      return DeclarationName(Name.Identifier);
1730
1731    case UnqualifiedId::IK_OperatorFunctionId:
1732      return Context.DeclarationNames.getCXXOperatorName(
1733                                              Name.OperatorFunctionId.Operator);
1734
1735    case UnqualifiedId::IK_LiteralOperatorId:
1736      return Context.DeclarationNames.getCXXLiteralOperatorName(
1737                                                               Name.Identifier);
1738
1739    case UnqualifiedId::IK_ConversionFunctionId: {
1740      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1741      if (Ty.isNull())
1742        return DeclarationName();
1743
1744      return Context.DeclarationNames.getCXXConversionFunctionName(
1745                                                  Context.getCanonicalType(Ty));
1746    }
1747
1748    case UnqualifiedId::IK_ConstructorName: {
1749      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1750      if (Ty.isNull())
1751        return DeclarationName();
1752
1753      return Context.DeclarationNames.getCXXConstructorName(
1754                                                  Context.getCanonicalType(Ty));
1755    }
1756
1757    case UnqualifiedId::IK_DestructorName: {
1758      QualType Ty = GetTypeFromParser(Name.DestructorName);
1759      if (Ty.isNull())
1760        return DeclarationName();
1761
1762      return Context.DeclarationNames.getCXXDestructorName(
1763                                                           Context.getCanonicalType(Ty));
1764    }
1765
1766    case UnqualifiedId::IK_TemplateId: {
1767      TemplateName TName
1768        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1769      return Context.getNameForTemplate(TName);
1770    }
1771  }
1772
1773  assert(false && "Unknown name kind");
1774  return DeclarationName();
1775}
1776
1777/// isNearlyMatchingFunction - Determine whether the C++ functions
1778/// Declaration and Definition are "nearly" matching. This heuristic
1779/// is used to improve diagnostics in the case where an out-of-line
1780/// function definition doesn't match any declaration within
1781/// the class or namespace.
1782static bool isNearlyMatchingFunction(ASTContext &Context,
1783                                     FunctionDecl *Declaration,
1784                                     FunctionDecl *Definition) {
1785  if (Declaration->param_size() != Definition->param_size())
1786    return false;
1787  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1788    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1789    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1790
1791    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1792                                        DefParamTy.getNonReferenceType()))
1793      return false;
1794  }
1795
1796  return true;
1797}
1798
1799Sema::DeclPtrTy
1800Sema::HandleDeclarator(Scope *S, Declarator &D,
1801                       MultiTemplateParamsArg TemplateParamLists,
1802                       bool IsFunctionDefinition) {
1803  DeclarationName Name = GetNameForDeclarator(D);
1804
1805  // All of these full declarators require an identifier.  If it doesn't have
1806  // one, the ParsedFreeStandingDeclSpec action should be used.
1807  if (!Name) {
1808    if (!D.isInvalidType())  // Reject this if we think it is valid.
1809      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1810           diag::err_declarator_need_ident)
1811        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1812    return DeclPtrTy();
1813  }
1814
1815  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1816  // we find one that is.
1817  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1818         (S->getFlags() & Scope::TemplateParamScope) != 0)
1819    S = S->getParent();
1820
1821  // If this is an out-of-line definition of a member of a class template
1822  // or class template partial specialization, we may need to rebuild the
1823  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1824  // for more information.
1825  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1826  // handle expressions properly.
1827  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1828  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1829      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1830      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1831       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1832       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1833       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1834    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1835      // FIXME: Preserve type source info.
1836      QualType T = GetTypeFromParser(DS.getTypeRep());
1837      EnterDeclaratorContext(S, DC);
1838      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1839      ExitDeclaratorContext(S);
1840      if (T.isNull())
1841        return DeclPtrTy();
1842      DS.UpdateTypeRep(T.getAsOpaquePtr());
1843    }
1844  }
1845
1846  DeclContext *DC;
1847  NamedDecl *New;
1848
1849  DeclaratorInfo *DInfo = 0;
1850  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1851
1852  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1853                        ForRedeclaration);
1854
1855  // See if this is a redefinition of a variable in the same scope.
1856  if (D.getCXXScopeSpec().isInvalid()) {
1857    DC = CurContext;
1858    D.setInvalidType();
1859  } else if (!D.getCXXScopeSpec().isSet()) {
1860    bool IsLinkageLookup = false;
1861
1862    // If the declaration we're planning to build will be a function
1863    // or object with linkage, then look for another declaration with
1864    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1865    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1866      /* Do nothing*/;
1867    else if (R->isFunctionType()) {
1868      if (CurContext->isFunctionOrMethod() ||
1869          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1870        IsLinkageLookup = true;
1871    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1872      IsLinkageLookup = true;
1873    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1874             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1875      IsLinkageLookup = true;
1876
1877    if (IsLinkageLookup)
1878      Previous.clear(LookupRedeclarationWithLinkage);
1879
1880    DC = CurContext;
1881    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1882  } else { // Something like "int foo::x;"
1883    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1884
1885    if (!DC) {
1886      // If we could not compute the declaration context, it's because the
1887      // declaration context is dependent but does not refer to a class,
1888      // class template, or class template partial specialization. Complain
1889      // and return early, to avoid the coming semantic disaster.
1890      Diag(D.getIdentifierLoc(),
1891           diag::err_template_qualified_declarator_no_match)
1892        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1893        << D.getCXXScopeSpec().getRange();
1894      return DeclPtrTy();
1895    }
1896
1897    if (!DC->isDependentContext() &&
1898        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1899      return DeclPtrTy();
1900
1901    LookupQualifiedName(Previous, DC);
1902
1903    // Don't consider using declarations as previous declarations for
1904    // out-of-line members.
1905    RemoveUsingDecls(Previous);
1906
1907    // C++ 7.3.1.2p2:
1908    // Members (including explicit specializations of templates) of a named
1909    // namespace can also be defined outside that namespace by explicit
1910    // qualification of the name being defined, provided that the entity being
1911    // defined was already declared in the namespace and the definition appears
1912    // after the point of declaration in a namespace that encloses the
1913    // declarations namespace.
1914    //
1915    // Note that we only check the context at this point. We don't yet
1916    // have enough information to make sure that PrevDecl is actually
1917    // the declaration we want to match. For example, given:
1918    //
1919    //   class X {
1920    //     void f();
1921    //     void f(float);
1922    //   };
1923    //
1924    //   void X::f(int) { } // ill-formed
1925    //
1926    // In this case, PrevDecl will point to the overload set
1927    // containing the two f's declared in X, but neither of them
1928    // matches.
1929
1930    // First check whether we named the global scope.
1931    if (isa<TranslationUnitDecl>(DC)) {
1932      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1933        << Name << D.getCXXScopeSpec().getRange();
1934    } else {
1935      DeclContext *Cur = CurContext;
1936      while (isa<LinkageSpecDecl>(Cur))
1937        Cur = Cur->getParent();
1938      if (!Cur->Encloses(DC)) {
1939        // The qualifying scope doesn't enclose the original declaration.
1940        // Emit diagnostic based on current scope.
1941        SourceLocation L = D.getIdentifierLoc();
1942        SourceRange R = D.getCXXScopeSpec().getRange();
1943        if (isa<FunctionDecl>(Cur))
1944          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1945        else
1946          Diag(L, diag::err_invalid_declarator_scope)
1947            << Name << cast<NamedDecl>(DC) << R;
1948        D.setInvalidType();
1949      }
1950    }
1951  }
1952
1953  if (Previous.isSingleResult() &&
1954      Previous.getFoundDecl()->isTemplateParameter()) {
1955    // Maybe we will complain about the shadowed template parameter.
1956    if (!D.isInvalidType())
1957      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1958                                          Previous.getFoundDecl()))
1959        D.setInvalidType();
1960
1961    // Just pretend that we didn't see the previous declaration.
1962    Previous.clear();
1963  }
1964
1965  // In C++, the previous declaration we find might be a tag type
1966  // (class or enum). In this case, the new declaration will hide the
1967  // tag type. Note that this does does not apply if we're declaring a
1968  // typedef (C++ [dcl.typedef]p4).
1969  if (Previous.isSingleTagDecl() &&
1970      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1971    Previous.clear();
1972
1973  bool Redeclaration = false;
1974  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1975    if (TemplateParamLists.size()) {
1976      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1977      return DeclPtrTy();
1978    }
1979
1980    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, Previous, Redeclaration);
1981  } else if (R->isFunctionType()) {
1982    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, Previous,
1983                                  move(TemplateParamLists),
1984                                  IsFunctionDefinition, Redeclaration);
1985  } else {
1986    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, Previous,
1987                                  move(TemplateParamLists),
1988                                  Redeclaration);
1989  }
1990
1991  if (New == 0)
1992    return DeclPtrTy();
1993
1994  // If this has an identifier and is not an invalid redeclaration or
1995  // function template specialization, add it to the scope stack.
1996  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1997      !(isa<FunctionDecl>(New) &&
1998        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1999    PushOnScopeChains(New, S);
2000
2001  return DeclPtrTy::make(New);
2002}
2003
2004/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2005/// types into constant array types in certain situations which would otherwise
2006/// be errors (for GCC compatibility).
2007static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2008                                                    ASTContext &Context,
2009                                                    bool &SizeIsNegative) {
2010  // This method tries to turn a variable array into a constant
2011  // array even when the size isn't an ICE.  This is necessary
2012  // for compatibility with code that depends on gcc's buggy
2013  // constant expression folding, like struct {char x[(int)(char*)2];}
2014  SizeIsNegative = false;
2015
2016  QualifierCollector Qs;
2017  const Type *Ty = Qs.strip(T);
2018
2019  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2020    QualType Pointee = PTy->getPointeeType();
2021    QualType FixedType =
2022        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2023    if (FixedType.isNull()) return FixedType;
2024    FixedType = Context.getPointerType(FixedType);
2025    return Qs.apply(FixedType);
2026  }
2027
2028  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2029  if (!VLATy)
2030    return QualType();
2031  // FIXME: We should probably handle this case
2032  if (VLATy->getElementType()->isVariablyModifiedType())
2033    return QualType();
2034
2035  Expr::EvalResult EvalResult;
2036  if (!VLATy->getSizeExpr() ||
2037      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2038      !EvalResult.Val.isInt())
2039    return QualType();
2040
2041  llvm::APSInt &Res = EvalResult.Val.getInt();
2042  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2043    // TODO: preserve the size expression in declarator info
2044    return Context.getConstantArrayType(VLATy->getElementType(),
2045                                        Res, ArrayType::Normal, 0);
2046  }
2047
2048  SizeIsNegative = true;
2049  return QualType();
2050}
2051
2052/// \brief Register the given locally-scoped external C declaration so
2053/// that it can be found later for redeclarations
2054void
2055Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2056                                       const LookupResult &Previous,
2057                                       Scope *S) {
2058  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2059         "Decl is not a locally-scoped decl!");
2060  // Note that we have a locally-scoped external with this name.
2061  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2062
2063  if (!Previous.isSingleResult())
2064    return;
2065
2066  NamedDecl *PrevDecl = Previous.getFoundDecl();
2067
2068  // If there was a previous declaration of this variable, it may be
2069  // in our identifier chain. Update the identifier chain with the new
2070  // declaration.
2071  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2072    // The previous declaration was found on the identifer resolver
2073    // chain, so remove it from its scope.
2074    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2075      S = S->getParent();
2076
2077    if (S)
2078      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2079  }
2080}
2081
2082/// \brief Diagnose function specifiers on a declaration of an identifier that
2083/// does not identify a function.
2084void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2085  // FIXME: We should probably indicate the identifier in question to avoid
2086  // confusion for constructs like "inline int a(), b;"
2087  if (D.getDeclSpec().isInlineSpecified())
2088    Diag(D.getDeclSpec().getInlineSpecLoc(),
2089         diag::err_inline_non_function);
2090
2091  if (D.getDeclSpec().isVirtualSpecified())
2092    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2093         diag::err_virtual_non_function);
2094
2095  if (D.getDeclSpec().isExplicitSpecified())
2096    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2097         diag::err_explicit_non_function);
2098}
2099
2100NamedDecl*
2101Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2102                             QualType R,  DeclaratorInfo *DInfo,
2103                             LookupResult &Previous, bool &Redeclaration) {
2104  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2105  if (D.getCXXScopeSpec().isSet()) {
2106    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2107      << D.getCXXScopeSpec().getRange();
2108    D.setInvalidType();
2109    // Pretend we didn't see the scope specifier.
2110    DC = 0;
2111  }
2112
2113  if (getLangOptions().CPlusPlus) {
2114    // Check that there are no default arguments (C++ only).
2115    CheckExtraCXXDefaultArguments(D);
2116  }
2117
2118  DiagnoseFunctionSpecifiers(D);
2119
2120  if (D.getDeclSpec().isThreadSpecified())
2121    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2122
2123  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2124  if (!NewTD) return 0;
2125
2126  // Handle attributes prior to checking for duplicates in MergeVarDecl
2127  ProcessDeclAttributes(S, NewTD, D);
2128
2129  // Merge the decl with the existing one if appropriate. If the decl is
2130  // in an outer scope, it isn't the same thing.
2131  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2132  if (!Previous.empty()) {
2133    Redeclaration = true;
2134    MergeTypeDefDecl(NewTD, Previous);
2135  }
2136
2137  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2138  // then it shall have block scope.
2139  QualType T = NewTD->getUnderlyingType();
2140  if (T->isVariablyModifiedType()) {
2141    CurFunctionNeedsScopeChecking = true;
2142
2143    if (S->getFnParent() == 0) {
2144      bool SizeIsNegative;
2145      QualType FixedTy =
2146          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2147      if (!FixedTy.isNull()) {
2148        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2149        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2150      } else {
2151        if (SizeIsNegative)
2152          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2153        else if (T->isVariableArrayType())
2154          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2155        else
2156          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2157        NewTD->setInvalidDecl();
2158      }
2159    }
2160  }
2161
2162  // If this is the C FILE type, notify the AST context.
2163  if (IdentifierInfo *II = NewTD->getIdentifier())
2164    if (!NewTD->isInvalidDecl() &&
2165        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2166      if (II->isStr("FILE"))
2167        Context.setFILEDecl(NewTD);
2168      else if (II->isStr("jmp_buf"))
2169        Context.setjmp_bufDecl(NewTD);
2170      else if (II->isStr("sigjmp_buf"))
2171        Context.setsigjmp_bufDecl(NewTD);
2172    }
2173
2174  return NewTD;
2175}
2176
2177/// \brief Determines whether the given declaration is an out-of-scope
2178/// previous declaration.
2179///
2180/// This routine should be invoked when name lookup has found a
2181/// previous declaration (PrevDecl) that is not in the scope where a
2182/// new declaration by the same name is being introduced. If the new
2183/// declaration occurs in a local scope, previous declarations with
2184/// linkage may still be considered previous declarations (C99
2185/// 6.2.2p4-5, C++ [basic.link]p6).
2186///
2187/// \param PrevDecl the previous declaration found by name
2188/// lookup
2189///
2190/// \param DC the context in which the new declaration is being
2191/// declared.
2192///
2193/// \returns true if PrevDecl is an out-of-scope previous declaration
2194/// for a new delcaration with the same name.
2195static bool
2196isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2197                                ASTContext &Context) {
2198  if (!PrevDecl)
2199    return 0;
2200
2201  if (!PrevDecl->hasLinkage())
2202    return false;
2203
2204  if (Context.getLangOptions().CPlusPlus) {
2205    // C++ [basic.link]p6:
2206    //   If there is a visible declaration of an entity with linkage
2207    //   having the same name and type, ignoring entities declared
2208    //   outside the innermost enclosing namespace scope, the block
2209    //   scope declaration declares that same entity and receives the
2210    //   linkage of the previous declaration.
2211    DeclContext *OuterContext = DC->getLookupContext();
2212    if (!OuterContext->isFunctionOrMethod())
2213      // This rule only applies to block-scope declarations.
2214      return false;
2215    else {
2216      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2217      if (PrevOuterContext->isRecord())
2218        // We found a member function: ignore it.
2219        return false;
2220      else {
2221        // Find the innermost enclosing namespace for the new and
2222        // previous declarations.
2223        while (!OuterContext->isFileContext())
2224          OuterContext = OuterContext->getParent();
2225        while (!PrevOuterContext->isFileContext())
2226          PrevOuterContext = PrevOuterContext->getParent();
2227
2228        // The previous declaration is in a different namespace, so it
2229        // isn't the same function.
2230        if (OuterContext->getPrimaryContext() !=
2231            PrevOuterContext->getPrimaryContext())
2232          return false;
2233      }
2234    }
2235  }
2236
2237  return true;
2238}
2239
2240NamedDecl*
2241Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2242                              QualType R, DeclaratorInfo *DInfo,
2243                              LookupResult &Previous,
2244                              MultiTemplateParamsArg TemplateParamLists,
2245                              bool &Redeclaration) {
2246  DeclarationName Name = GetNameForDeclarator(D);
2247
2248  // Check that there are no default arguments (C++ only).
2249  if (getLangOptions().CPlusPlus)
2250    CheckExtraCXXDefaultArguments(D);
2251
2252  VarDecl *NewVD;
2253  VarDecl::StorageClass SC;
2254  switch (D.getDeclSpec().getStorageClassSpec()) {
2255  default: assert(0 && "Unknown storage class!");
2256  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2257  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2258  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2259  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2260  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2261  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2262  case DeclSpec::SCS_mutable:
2263    // mutable can only appear on non-static class members, so it's always
2264    // an error here
2265    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2266    D.setInvalidType();
2267    SC = VarDecl::None;
2268    break;
2269  }
2270
2271  IdentifierInfo *II = Name.getAsIdentifierInfo();
2272  if (!II) {
2273    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2274      << Name.getAsString();
2275    return 0;
2276  }
2277
2278  DiagnoseFunctionSpecifiers(D);
2279
2280  if (!DC->isRecord() && S->getFnParent() == 0) {
2281    // C99 6.9p2: The storage-class specifiers auto and register shall not
2282    // appear in the declaration specifiers in an external declaration.
2283    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2284
2285      // If this is a register variable with an asm label specified, then this
2286      // is a GNU extension.
2287      if (SC == VarDecl::Register && D.getAsmLabel())
2288        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2289      else
2290        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2291      D.setInvalidType();
2292    }
2293  }
2294  if (DC->isRecord() && !CurContext->isRecord()) {
2295    // This is an out-of-line definition of a static data member.
2296    if (SC == VarDecl::Static) {
2297      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2298           diag::err_static_out_of_line)
2299        << CodeModificationHint::CreateRemoval(
2300                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2301    } else if (SC == VarDecl::None)
2302      SC = VarDecl::Static;
2303  }
2304  if (SC == VarDecl::Static) {
2305    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2306      if (RD->isLocalClass())
2307        Diag(D.getIdentifierLoc(),
2308             diag::err_static_data_member_not_allowed_in_local_class)
2309          << Name << RD->getDeclName();
2310    }
2311  }
2312
2313  // Match up the template parameter lists with the scope specifier, then
2314  // determine whether we have a template or a template specialization.
2315  bool isExplicitSpecialization = false;
2316  if (TemplateParameterList *TemplateParams
2317        = MatchTemplateParametersToScopeSpecifier(
2318                                  D.getDeclSpec().getSourceRange().getBegin(),
2319                                                  D.getCXXScopeSpec(),
2320                        (TemplateParameterList**)TemplateParamLists.get(),
2321                                                   TemplateParamLists.size(),
2322                                                  isExplicitSpecialization)) {
2323    if (TemplateParams->size() > 0) {
2324      // There is no such thing as a variable template.
2325      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2326        << II
2327        << SourceRange(TemplateParams->getTemplateLoc(),
2328                       TemplateParams->getRAngleLoc());
2329      return 0;
2330    } else {
2331      // There is an extraneous 'template<>' for this variable. Complain
2332      // about it, but allow the declaration of the variable.
2333      Diag(TemplateParams->getTemplateLoc(),
2334           diag::err_template_variable_noparams)
2335        << II
2336        << SourceRange(TemplateParams->getTemplateLoc(),
2337                       TemplateParams->getRAngleLoc());
2338
2339      isExplicitSpecialization = true;
2340    }
2341  }
2342
2343  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2344                          II, R, DInfo, SC);
2345
2346  if (D.isInvalidType())
2347    NewVD->setInvalidDecl();
2348
2349  if (D.getDeclSpec().isThreadSpecified()) {
2350    if (NewVD->hasLocalStorage())
2351      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2352    else if (!Context.Target.isTLSSupported())
2353      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2354    else
2355      NewVD->setThreadSpecified(true);
2356  }
2357
2358  // Set the lexical context. If the declarator has a C++ scope specifier, the
2359  // lexical context will be different from the semantic context.
2360  NewVD->setLexicalDeclContext(CurContext);
2361
2362  // Handle attributes prior to checking for duplicates in MergeVarDecl
2363  ProcessDeclAttributes(S, NewVD, D);
2364
2365  // Handle GNU asm-label extension (encoded as an attribute).
2366  if (Expr *E = (Expr*) D.getAsmLabel()) {
2367    // The parser guarantees this is a string.
2368    StringLiteral *SE = cast<StringLiteral>(E);
2369    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2370  }
2371
2372  // Don't consider existing declarations that are in a different
2373  // scope and are out-of-semantic-context declarations (if the new
2374  // declaration has linkage).
2375  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2376
2377  // Merge the decl with the existing one if appropriate.
2378  if (!Previous.empty()) {
2379    if (Previous.isSingleResult() &&
2380        isa<FieldDecl>(Previous.getFoundDecl()) &&
2381        D.getCXXScopeSpec().isSet()) {
2382      // The user tried to define a non-static data member
2383      // out-of-line (C++ [dcl.meaning]p1).
2384      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2385        << D.getCXXScopeSpec().getRange();
2386      Previous.clear();
2387      NewVD->setInvalidDecl();
2388    }
2389  } else if (D.getCXXScopeSpec().isSet()) {
2390    // No previous declaration in the qualifying scope.
2391    Diag(D.getIdentifierLoc(), diag::err_no_member)
2392      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2393      << D.getCXXScopeSpec().getRange();
2394    NewVD->setInvalidDecl();
2395  }
2396
2397  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2398
2399  // This is an explicit specialization of a static data member. Check it.
2400  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2401      CheckMemberSpecialization(NewVD, Previous))
2402    NewVD->setInvalidDecl();
2403
2404  // attributes declared post-definition are currently ignored
2405  if (Previous.isSingleResult()) {
2406    const VarDecl *Def = 0;
2407    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2408    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2409      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2410      Diag(Def->getLocation(), diag::note_previous_definition);
2411    }
2412  }
2413
2414  // If this is a locally-scoped extern C variable, update the map of
2415  // such variables.
2416  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2417      !NewVD->isInvalidDecl())
2418    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2419
2420  return NewVD;
2421}
2422
2423/// \brief Perform semantic checking on a newly-created variable
2424/// declaration.
2425///
2426/// This routine performs all of the type-checking required for a
2427/// variable declaration once it has been built. It is used both to
2428/// check variables after they have been parsed and their declarators
2429/// have been translated into a declaration, and to check variables
2430/// that have been instantiated from a template.
2431///
2432/// Sets NewVD->isInvalidDecl() if an error was encountered.
2433void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2434                                    LookupResult &Previous,
2435                                    bool &Redeclaration) {
2436  // If the decl is already known invalid, don't check it.
2437  if (NewVD->isInvalidDecl())
2438    return;
2439
2440  QualType T = NewVD->getType();
2441
2442  if (T->isObjCInterfaceType()) {
2443    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2444    return NewVD->setInvalidDecl();
2445  }
2446
2447  // Emit an error if an address space was applied to decl with local storage.
2448  // This includes arrays of objects with address space qualifiers, but not
2449  // automatic variables that point to other address spaces.
2450  // ISO/IEC TR 18037 S5.1.2
2451  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2452    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2453    return NewVD->setInvalidDecl();
2454  }
2455
2456  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2457      && !NewVD->hasAttr<BlocksAttr>())
2458    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2459
2460  bool isVM = T->isVariablyModifiedType();
2461  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2462      NewVD->hasAttr<BlocksAttr>())
2463    CurFunctionNeedsScopeChecking = true;
2464
2465  if ((isVM && NewVD->hasLinkage()) ||
2466      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2467    bool SizeIsNegative;
2468    QualType FixedTy =
2469        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2470
2471    if (FixedTy.isNull() && T->isVariableArrayType()) {
2472      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2473      // FIXME: This won't give the correct result for
2474      // int a[10][n];
2475      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2476
2477      if (NewVD->isFileVarDecl())
2478        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2479        << SizeRange;
2480      else if (NewVD->getStorageClass() == VarDecl::Static)
2481        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2482        << SizeRange;
2483      else
2484        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2485        << SizeRange;
2486      return NewVD->setInvalidDecl();
2487    }
2488
2489    if (FixedTy.isNull()) {
2490      if (NewVD->isFileVarDecl())
2491        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2492      else
2493        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2494      return NewVD->setInvalidDecl();
2495    }
2496
2497    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2498    NewVD->setType(FixedTy);
2499  }
2500
2501  if (Previous.empty() && NewVD->isExternC()) {
2502    // Since we did not find anything by this name and we're declaring
2503    // an extern "C" variable, look for a non-visible extern "C"
2504    // declaration with the same name.
2505    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2506      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2507    if (Pos != LocallyScopedExternalDecls.end())
2508      Previous.addDecl(Pos->second);
2509  }
2510
2511  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2512    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2513      << T;
2514    return NewVD->setInvalidDecl();
2515  }
2516
2517  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2518    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2519    return NewVD->setInvalidDecl();
2520  }
2521
2522  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2523    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2524    return NewVD->setInvalidDecl();
2525  }
2526
2527  if (!Previous.empty()) {
2528    Redeclaration = true;
2529    MergeVarDecl(NewVD, Previous);
2530  }
2531}
2532
2533/// \brief Data used with FindOverriddenMethod
2534struct FindOverriddenMethodData {
2535  Sema *S;
2536  CXXMethodDecl *Method;
2537};
2538
2539/// \brief Member lookup function that determines whether a given C++
2540/// method overrides a method in a base class, to be used with
2541/// CXXRecordDecl::lookupInBases().
2542static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2543                                 CXXBasePath &Path,
2544                                 void *UserData) {
2545  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2546
2547  FindOverriddenMethodData *Data
2548    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2549
2550  DeclarationName Name = Data->Method->getDeclName();
2551
2552  // FIXME: Do we care about other names here too?
2553  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2554    // We really want to find the base class constructor here.
2555    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2556    CanQualType CT = Data->S->Context.getCanonicalType(T);
2557
2558    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2559  }
2560
2561  for (Path.Decls = BaseRecord->lookup(Name);
2562       Path.Decls.first != Path.Decls.second;
2563       ++Path.Decls.first) {
2564    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2565      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2566        return true;
2567    }
2568  }
2569
2570  return false;
2571}
2572
2573/// AddOverriddenMethods - See if a method overrides any in the base classes,
2574/// and if so, check that it's a valid override and remember it.
2575void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2576  // Look for virtual methods in base classes that this method might override.
2577  CXXBasePaths Paths;
2578  FindOverriddenMethodData Data;
2579  Data.Method = MD;
2580  Data.S = this;
2581  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2582    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2583         E = Paths.found_decls_end(); I != E; ++I) {
2584      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2585        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2586            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2587            !CheckOverridingFunctionAttributes(MD, OldMD))
2588          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2589      }
2590    }
2591  }
2592}
2593
2594NamedDecl*
2595Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2596                              QualType R, DeclaratorInfo *DInfo,
2597                              LookupResult &Previous,
2598                              MultiTemplateParamsArg TemplateParamLists,
2599                              bool IsFunctionDefinition, bool &Redeclaration) {
2600  assert(R.getTypePtr()->isFunctionType());
2601
2602  DeclarationName Name = GetNameForDeclarator(D);
2603  FunctionDecl::StorageClass SC = FunctionDecl::None;
2604  switch (D.getDeclSpec().getStorageClassSpec()) {
2605  default: assert(0 && "Unknown storage class!");
2606  case DeclSpec::SCS_auto:
2607  case DeclSpec::SCS_register:
2608  case DeclSpec::SCS_mutable:
2609    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2610         diag::err_typecheck_sclass_func);
2611    D.setInvalidType();
2612    break;
2613  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2614  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2615  case DeclSpec::SCS_static: {
2616    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2617      // C99 6.7.1p5:
2618      //   The declaration of an identifier for a function that has
2619      //   block scope shall have no explicit storage-class specifier
2620      //   other than extern
2621      // See also (C++ [dcl.stc]p4).
2622      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2623           diag::err_static_block_func);
2624      SC = FunctionDecl::None;
2625    } else
2626      SC = FunctionDecl::Static;
2627    break;
2628  }
2629  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2630  }
2631
2632  if (D.getDeclSpec().isThreadSpecified())
2633    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2634
2635  bool isFriend = D.getDeclSpec().isFriendSpecified();
2636  bool isInline = D.getDeclSpec().isInlineSpecified();
2637  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2638  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2639
2640  // Check that the return type is not an abstract class type.
2641  // For record types, this is done by the AbstractClassUsageDiagnoser once
2642  // the class has been completely parsed.
2643  if (!DC->isRecord() &&
2644      RequireNonAbstractType(D.getIdentifierLoc(),
2645                             R->getAs<FunctionType>()->getResultType(),
2646                             diag::err_abstract_type_in_decl,
2647                             AbstractReturnType))
2648    D.setInvalidType();
2649
2650  // Do not allow returning a objc interface by-value.
2651  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2652    Diag(D.getIdentifierLoc(),
2653         diag::err_object_cannot_be_passed_returned_by_value) << 0
2654      << R->getAs<FunctionType>()->getResultType();
2655    D.setInvalidType();
2656  }
2657
2658  bool isVirtualOkay = false;
2659  FunctionDecl *NewFD;
2660
2661  if (isFriend) {
2662    // C++ [class.friend]p5
2663    //   A function can be defined in a friend declaration of a
2664    //   class . . . . Such a function is implicitly inline.
2665    isInline |= IsFunctionDefinition;
2666  }
2667
2668  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2669    // This is a C++ constructor declaration.
2670    assert(DC->isRecord() &&
2671           "Constructors can only be declared in a member context");
2672
2673    R = CheckConstructorDeclarator(D, R, SC);
2674
2675    // Create the new declaration
2676    NewFD = CXXConstructorDecl::Create(Context,
2677                                       cast<CXXRecordDecl>(DC),
2678                                       D.getIdentifierLoc(), Name, R, DInfo,
2679                                       isExplicit, isInline,
2680                                       /*isImplicitlyDeclared=*/false);
2681  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2682    // This is a C++ destructor declaration.
2683    if (DC->isRecord()) {
2684      R = CheckDestructorDeclarator(D, SC);
2685
2686      NewFD = CXXDestructorDecl::Create(Context,
2687                                        cast<CXXRecordDecl>(DC),
2688                                        D.getIdentifierLoc(), Name, R,
2689                                        isInline,
2690                                        /*isImplicitlyDeclared=*/false);
2691
2692      isVirtualOkay = true;
2693    } else {
2694      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2695
2696      // Create a FunctionDecl to satisfy the function definition parsing
2697      // code path.
2698      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2699                                   Name, R, DInfo, SC, isInline,
2700                                   /*hasPrototype=*/true);
2701      D.setInvalidType();
2702    }
2703  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2704    if (!DC->isRecord()) {
2705      Diag(D.getIdentifierLoc(),
2706           diag::err_conv_function_not_member);
2707      return 0;
2708    }
2709
2710    CheckConversionDeclarator(D, R, SC);
2711    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2712                                      D.getIdentifierLoc(), Name, R, DInfo,
2713                                      isInline, isExplicit);
2714
2715    isVirtualOkay = true;
2716  } else if (DC->isRecord()) {
2717    // If the of the function is the same as the name of the record, then this
2718    // must be an invalid constructor that has a return type.
2719    // (The parser checks for a return type and makes the declarator a
2720    // constructor if it has no return type).
2721    // must have an invalid constructor that has a return type
2722    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2723      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2724        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2725        << SourceRange(D.getIdentifierLoc());
2726      return 0;
2727    }
2728
2729    bool isStatic = SC == FunctionDecl::Static;
2730
2731    // [class.free]p1:
2732    // Any allocation function for a class T is a static member
2733    // (even if not explicitly declared static).
2734    if (Name.getCXXOverloadedOperator() == OO_New ||
2735        Name.getCXXOverloadedOperator() == OO_Array_New)
2736      isStatic = true;
2737
2738    // [class.free]p6 Any deallocation function for a class X is a static member
2739    // (even if not explicitly declared static).
2740    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2741        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2742      isStatic = true;
2743
2744    // This is a C++ method declaration.
2745    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2746                                  D.getIdentifierLoc(), Name, R, DInfo,
2747                                  isStatic, isInline);
2748
2749    isVirtualOkay = !isStatic;
2750  } else {
2751    // Determine whether the function was written with a
2752    // prototype. This true when:
2753    //   - we're in C++ (where every function has a prototype),
2754    //   - there is a prototype in the declarator, or
2755    //   - the type R of the function is some kind of typedef or other reference
2756    //     to a type name (which eventually refers to a function type).
2757    bool HasPrototype =
2758       getLangOptions().CPlusPlus ||
2759       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2760       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2761
2762    NewFD = FunctionDecl::Create(Context, DC,
2763                                 D.getIdentifierLoc(),
2764                                 Name, R, DInfo, SC, isInline, HasPrototype);
2765  }
2766
2767  if (D.isInvalidType())
2768    NewFD->setInvalidDecl();
2769
2770  // Set the lexical context. If the declarator has a C++
2771  // scope specifier, or is the object of a friend declaration, the
2772  // lexical context will be different from the semantic context.
2773  NewFD->setLexicalDeclContext(CurContext);
2774
2775  // Match up the template parameter lists with the scope specifier, then
2776  // determine whether we have a template or a template specialization.
2777  FunctionTemplateDecl *FunctionTemplate = 0;
2778  bool isExplicitSpecialization = false;
2779  bool isFunctionTemplateSpecialization = false;
2780  if (TemplateParameterList *TemplateParams
2781        = MatchTemplateParametersToScopeSpecifier(
2782                                  D.getDeclSpec().getSourceRange().getBegin(),
2783                                  D.getCXXScopeSpec(),
2784                           (TemplateParameterList**)TemplateParamLists.get(),
2785                                                  TemplateParamLists.size(),
2786                                                  isExplicitSpecialization)) {
2787    if (TemplateParams->size() > 0) {
2788      // This is a function template
2789
2790      // Check that we can declare a template here.
2791      if (CheckTemplateDeclScope(S, TemplateParams))
2792        return 0;
2793
2794      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2795                                                      NewFD->getLocation(),
2796                                                      Name, TemplateParams,
2797                                                      NewFD);
2798      FunctionTemplate->setLexicalDeclContext(CurContext);
2799      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2800    } else {
2801      // This is a function template specialization.
2802      isFunctionTemplateSpecialization = true;
2803    }
2804
2805    // FIXME: Free this memory properly.
2806    TemplateParamLists.release();
2807  }
2808
2809  // C++ [dcl.fct.spec]p5:
2810  //   The virtual specifier shall only be used in declarations of
2811  //   nonstatic class member functions that appear within a
2812  //   member-specification of a class declaration; see 10.3.
2813  //
2814  if (isVirtual && !NewFD->isInvalidDecl()) {
2815    if (!isVirtualOkay) {
2816       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2817           diag::err_virtual_non_function);
2818    } else if (!CurContext->isRecord()) {
2819      // 'virtual' was specified outside of the class.
2820      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2821        << CodeModificationHint::CreateRemoval(
2822                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2823    } else {
2824      // Okay: Add virtual to the method.
2825      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2826      CurClass->setMethodAsVirtual(NewFD);
2827    }
2828  }
2829
2830  // Filter out previous declarations that don't match the scope.
2831  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2832
2833  if (isFriend) {
2834    // DC is the namespace in which the function is being declared.
2835    assert((DC->isFileContext() || !Previous.empty()) &&
2836           "previously-undeclared friend function being created "
2837           "in a non-namespace context");
2838
2839    if (FunctionTemplate) {
2840      FunctionTemplate->setObjectOfFriendDecl(
2841                                   /* PreviouslyDeclared= */ !Previous.empty());
2842      FunctionTemplate->setAccess(AS_public);
2843    }
2844    else
2845      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2846
2847    NewFD->setAccess(AS_public);
2848  }
2849
2850  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2851      !CurContext->isRecord()) {
2852    // C++ [class.static]p1:
2853    //   A data or function member of a class may be declared static
2854    //   in a class definition, in which case it is a static member of
2855    //   the class.
2856
2857    // Complain about the 'static' specifier if it's on an out-of-line
2858    // member function definition.
2859    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2860         diag::err_static_out_of_line)
2861      << CodeModificationHint::CreateRemoval(
2862                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2863  }
2864
2865  // Handle GNU asm-label extension (encoded as an attribute).
2866  if (Expr *E = (Expr*) D.getAsmLabel()) {
2867    // The parser guarantees this is a string.
2868    StringLiteral *SE = cast<StringLiteral>(E);
2869    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2870  }
2871
2872  // Copy the parameter declarations from the declarator D to the function
2873  // declaration NewFD, if they are available.  First scavenge them into Params.
2874  llvm::SmallVector<ParmVarDecl*, 16> Params;
2875  if (D.getNumTypeObjects() > 0) {
2876    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2877
2878    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2879    // function that takes no arguments, not a function that takes a
2880    // single void argument.
2881    // We let through "const void" here because Sema::GetTypeForDeclarator
2882    // already checks for that case.
2883    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2884        FTI.ArgInfo[0].Param &&
2885        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2886      // Empty arg list, don't push any params.
2887      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2888
2889      // In C++, the empty parameter-type-list must be spelled "void"; a
2890      // typedef of void is not permitted.
2891      if (getLangOptions().CPlusPlus &&
2892          Param->getType().getUnqualifiedType() != Context.VoidTy)
2893        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2894      // FIXME: Leaks decl?
2895    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2896      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2897        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2898        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2899        Param->setDeclContext(NewFD);
2900        Params.push_back(Param);
2901      }
2902    }
2903
2904  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2905    // When we're declaring a function with a typedef, typeof, etc as in the
2906    // following example, we'll need to synthesize (unnamed)
2907    // parameters for use in the declaration.
2908    //
2909    // @code
2910    // typedef void fn(int);
2911    // fn f;
2912    // @endcode
2913
2914    // Synthesize a parameter for each argument type.
2915    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2916         AE = FT->arg_type_end(); AI != AE; ++AI) {
2917      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2918                                               SourceLocation(), 0,
2919                                               *AI, /*DInfo=*/0,
2920                                               VarDecl::None, 0);
2921      Param->setImplicit();
2922      Params.push_back(Param);
2923    }
2924  } else {
2925    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2926           "Should not need args for typedef of non-prototype fn");
2927  }
2928  // Finally, we know we have the right number of parameters, install them.
2929  NewFD->setParams(Context, Params.data(), Params.size());
2930
2931  // If the declarator is a template-id, translate the parser's template
2932  // argument list into our AST format.
2933  bool HasExplicitTemplateArgs = false;
2934  TemplateArgumentListInfo TemplateArgs;
2935  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2936    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2937    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2938    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2939    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2940                                       TemplateId->getTemplateArgs(),
2941                                       TemplateId->NumArgs);
2942    translateTemplateArguments(TemplateArgsPtr,
2943                               TemplateArgs);
2944    TemplateArgsPtr.release();
2945
2946    HasExplicitTemplateArgs = true;
2947
2948    if (FunctionTemplate) {
2949      // FIXME: Diagnose function template with explicit template
2950      // arguments.
2951      HasExplicitTemplateArgs = false;
2952    } else if (!isFunctionTemplateSpecialization &&
2953               !D.getDeclSpec().isFriendSpecified()) {
2954      // We have encountered something that the user meant to be a
2955      // specialization (because it has explicitly-specified template
2956      // arguments) but that was not introduced with a "template<>" (or had
2957      // too few of them).
2958      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2959        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2960        << CodeModificationHint::CreateInsertion(
2961                                   D.getDeclSpec().getSourceRange().getBegin(),
2962                                                 "template<> ");
2963      isFunctionTemplateSpecialization = true;
2964    }
2965  }
2966
2967  if (isFunctionTemplateSpecialization) {
2968      if (CheckFunctionTemplateSpecialization(NewFD,
2969                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
2970                                              Previous))
2971        NewFD->setInvalidDecl();
2972  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2973             CheckMemberSpecialization(NewFD, Previous))
2974    NewFD->setInvalidDecl();
2975
2976  // Perform semantic checking on the function declaration.
2977  bool OverloadableAttrRequired = false; // FIXME: HACK!
2978  CheckFunctionDeclaration(NewFD, Previous, isExplicitSpecialization,
2979                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2980
2981  assert((NewFD->isInvalidDecl() || !Redeclaration ||
2982          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
2983         "previous declaration set still overloaded");
2984
2985  // If we have a function template, check the template parameter
2986  // list. This will check and merge default template arguments.
2987  if (FunctionTemplate) {
2988    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
2989    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
2990                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
2991             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
2992                                                : TPC_FunctionTemplate);
2993  }
2994
2995  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2996    // An out-of-line member function declaration must also be a
2997    // definition (C++ [dcl.meaning]p1).
2998    // Note that this is not the case for explicit specializations of
2999    // function templates or member functions of class templates, per
3000    // C++ [temp.expl.spec]p2.
3001    if (!IsFunctionDefinition && !isFriend &&
3002        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3003      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3004        << D.getCXXScopeSpec().getRange();
3005      NewFD->setInvalidDecl();
3006    } else if (!Redeclaration) {
3007      // The user tried to provide an out-of-line definition for a
3008      // function that is a member of a class or namespace, but there
3009      // was no such member function declared (C++ [class.mfct]p2,
3010      // C++ [namespace.memdef]p2). For example:
3011      //
3012      // class X {
3013      //   void f() const;
3014      // };
3015      //
3016      // void X::f() { } // ill-formed
3017      //
3018      // Complain about this problem, and attempt to suggest close
3019      // matches (e.g., those that differ only in cv-qualifiers and
3020      // whether the parameter types are references).
3021      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3022        << Name << DC << D.getCXXScopeSpec().getRange();
3023      NewFD->setInvalidDecl();
3024
3025      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3026                        ForRedeclaration);
3027      LookupQualifiedName(Prev, DC);
3028      assert(!Prev.isAmbiguous() &&
3029             "Cannot have an ambiguity in previous-declaration lookup");
3030      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3031           Func != FuncEnd; ++Func) {
3032        if (isa<FunctionDecl>(*Func) &&
3033            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3034          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3035      }
3036    }
3037  }
3038
3039  // Handle attributes. We need to have merged decls when handling attributes
3040  // (for example to check for conflicts, etc).
3041  // FIXME: This needs to happen before we merge declarations. Then,
3042  // let attribute merging cope with attribute conflicts.
3043  ProcessDeclAttributes(S, NewFD, D);
3044
3045  // attributes declared post-definition are currently ignored
3046  if (Redeclaration && Previous.isSingleResult()) {
3047    const FunctionDecl *Def;
3048    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3049    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3050      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3051      Diag(Def->getLocation(), diag::note_previous_definition);
3052    }
3053  }
3054
3055  AddKnownFunctionAttributes(NewFD);
3056
3057  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3058    // If a function name is overloadable in C, then every function
3059    // with that name must be marked "overloadable".
3060    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3061      << Redeclaration << NewFD;
3062    if (!Previous.empty())
3063      Diag(Previous.getRepresentativeDecl()->getLocation(),
3064           diag::note_attribute_overloadable_prev_overload);
3065    NewFD->addAttr(::new (Context) OverloadableAttr());
3066  }
3067
3068  // If this is a locally-scoped extern C function, update the
3069  // map of such names.
3070  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3071      && !NewFD->isInvalidDecl())
3072    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3073
3074  // Set this FunctionDecl's range up to the right paren.
3075  NewFD->setLocEnd(D.getSourceRange().getEnd());
3076
3077  if (FunctionTemplate && NewFD->isInvalidDecl())
3078    FunctionTemplate->setInvalidDecl();
3079
3080  if (FunctionTemplate)
3081    return FunctionTemplate;
3082
3083  return NewFD;
3084}
3085
3086/// \brief Perform semantic checking of a new function declaration.
3087///
3088/// Performs semantic analysis of the new function declaration
3089/// NewFD. This routine performs all semantic checking that does not
3090/// require the actual declarator involved in the declaration, and is
3091/// used both for the declaration of functions as they are parsed
3092/// (called via ActOnDeclarator) and for the declaration of functions
3093/// that have been instantiated via C++ template instantiation (called
3094/// via InstantiateDecl).
3095///
3096/// \param IsExplicitSpecialiation whether this new function declaration is
3097/// an explicit specialization of the previous declaration.
3098///
3099/// This sets NewFD->isInvalidDecl() to true if there was an error.
3100void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD,
3101                                    LookupResult &Previous,
3102                                    bool IsExplicitSpecialization,
3103                                    bool &Redeclaration,
3104                                    bool &OverloadableAttrRequired) {
3105  // If NewFD is already known erroneous, don't do any of this checking.
3106  if (NewFD->isInvalidDecl())
3107    return;
3108
3109  if (NewFD->getResultType()->isVariablyModifiedType()) {
3110    // Functions returning a variably modified type violate C99 6.7.5.2p2
3111    // because all functions have linkage.
3112    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3113    return NewFD->setInvalidDecl();
3114  }
3115
3116  if (NewFD->isMain())
3117    CheckMain(NewFD);
3118
3119  // Check for a previous declaration of this name.
3120  if (Previous.empty() && NewFD->isExternC()) {
3121    // Since we did not find anything by this name and we're declaring
3122    // an extern "C" function, look for a non-visible extern "C"
3123    // declaration with the same name.
3124    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3125      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3126    if (Pos != LocallyScopedExternalDecls.end())
3127      Previous.addDecl(Pos->second);
3128  }
3129
3130  // Merge or overload the declaration with an existing declaration of
3131  // the same name, if appropriate.
3132  if (!Previous.empty()) {
3133    // Determine whether NewFD is an overload of PrevDecl or
3134    // a declaration that requires merging. If it's an overload,
3135    // there's no more work to do here; we'll just add the new
3136    // function to the scope.
3137
3138    if (!getLangOptions().CPlusPlus &&
3139        AllowOverloadingOfFunction(Previous, Context)) {
3140      OverloadableAttrRequired = true;
3141
3142      // Functions marked "overloadable" must have a prototype (that
3143      // we can't get through declaration merging).
3144      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3145        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3146          << NewFD;
3147        Redeclaration = true;
3148
3149        // Turn this into a variadic function with no parameters.
3150        QualType R = Context.getFunctionType(
3151                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3152                       0, 0, true, 0);
3153        NewFD->setType(R);
3154        return NewFD->setInvalidDecl();
3155      }
3156    }
3157
3158    NamedDecl *OldDecl = 0;
3159    if (!Previous.empty()) {
3160      if (!AllowOverloadingOfFunction(Previous, Context)) {
3161        Redeclaration = true;
3162        OldDecl = Previous.getFoundDecl();
3163      } else if (!IsOverload(NewFD, Previous, OldDecl)) {
3164        if (!isUsingDecl(OldDecl))
3165          Redeclaration = true;
3166      }
3167    }
3168
3169    if (Redeclaration) {
3170      // NewFD and OldDecl represent declarations that need to be
3171      // merged.
3172      if (MergeFunctionDecl(NewFD, OldDecl))
3173        return NewFD->setInvalidDecl();
3174
3175      Previous.clear();
3176      Previous.addDecl(OldDecl);
3177
3178      if (FunctionTemplateDecl *OldTemplateDecl
3179                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3180        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3181        FunctionTemplateDecl *NewTemplateDecl
3182          = NewFD->getDescribedFunctionTemplate();
3183        assert(NewTemplateDecl && "Template/non-template mismatch");
3184        if (CXXMethodDecl *Method
3185              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3186          Method->setAccess(OldTemplateDecl->getAccess());
3187          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3188        }
3189
3190        // If this is an explicit specialization of a member that is a function
3191        // template, mark it as a member specialization.
3192        if (IsExplicitSpecialization &&
3193            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3194          NewTemplateDecl->setMemberSpecialization();
3195          assert(OldTemplateDecl->isMemberSpecialization());
3196        }
3197      } else {
3198        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3199          NewFD->setAccess(OldDecl->getAccess());
3200        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3201      }
3202    }
3203  }
3204
3205  // Semantic checking for this function declaration (in isolation).
3206  if (getLangOptions().CPlusPlus) {
3207    // C++-specific checks.
3208    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3209      CheckConstructor(Constructor);
3210    } else if (CXXDestructorDecl *Destructor =
3211                dyn_cast<CXXDestructorDecl>(NewFD)) {
3212      CXXRecordDecl *Record = Destructor->getParent();
3213      QualType ClassType = Context.getTypeDeclType(Record);
3214
3215      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3216      // type is dependent? Both gcc and edg can handle that.
3217      if (!ClassType->isDependentType()) {
3218        DeclarationName Name
3219          = Context.DeclarationNames.getCXXDestructorName(
3220                                        Context.getCanonicalType(ClassType));
3221        if (NewFD->getDeclName() != Name) {
3222          Diag(NewFD->getLocation(), diag::err_destructor_name);
3223          return NewFD->setInvalidDecl();
3224        }
3225      }
3226
3227      Record->setUserDeclaredDestructor(true);
3228      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3229      // user-defined destructor.
3230      Record->setPOD(false);
3231
3232      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3233      // declared destructor.
3234      // FIXME: C++0x: don't do this for "= default" destructors
3235      Record->setHasTrivialDestructor(false);
3236    } else if (CXXConversionDecl *Conversion
3237               = dyn_cast<CXXConversionDecl>(NewFD)) {
3238      ActOnConversionDeclarator(Conversion);
3239    }
3240
3241    // Find any virtual functions that this function overrides.
3242    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3243      if (!Method->isFunctionTemplateSpecialization() &&
3244          !Method->getDescribedFunctionTemplate())
3245        AddOverriddenMethods(Method->getParent(), Method);
3246    }
3247
3248    // Additional checks for the destructor; make sure we do this after we
3249    // figure out whether the destructor is virtual.
3250    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3251      if (!Destructor->getParent()->isDependentType())
3252        CheckDestructor(Destructor);
3253
3254    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3255    if (NewFD->isOverloadedOperator() &&
3256        CheckOverloadedOperatorDeclaration(NewFD))
3257      return NewFD->setInvalidDecl();
3258
3259    // In C++, check default arguments now that we have merged decls. Unless
3260    // the lexical context is the class, because in this case this is done
3261    // during delayed parsing anyway.
3262    if (!CurContext->isRecord())
3263      CheckCXXDefaultArguments(NewFD);
3264  }
3265}
3266
3267void Sema::CheckMain(FunctionDecl* FD) {
3268  // C++ [basic.start.main]p3:  A program that declares main to be inline
3269  //   or static is ill-formed.
3270  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3271  //   shall not appear in a declaration of main.
3272  // static main is not an error under C99, but we should warn about it.
3273  bool isInline = FD->isInlineSpecified();
3274  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3275  if (isInline || isStatic) {
3276    unsigned diagID = diag::warn_unusual_main_decl;
3277    if (isInline || getLangOptions().CPlusPlus)
3278      diagID = diag::err_unusual_main_decl;
3279
3280    int which = isStatic + (isInline << 1) - 1;
3281    Diag(FD->getLocation(), diagID) << which;
3282  }
3283
3284  QualType T = FD->getType();
3285  assert(T->isFunctionType() && "function decl is not of function type");
3286  const FunctionType* FT = T->getAs<FunctionType>();
3287
3288  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3289    // TODO: add a replacement fixit to turn the return type into 'int'.
3290    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3291    FD->setInvalidDecl(true);
3292  }
3293
3294  // Treat protoless main() as nullary.
3295  if (isa<FunctionNoProtoType>(FT)) return;
3296
3297  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3298  unsigned nparams = FTP->getNumArgs();
3299  assert(FD->getNumParams() == nparams);
3300
3301  if (nparams > 3) {
3302    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3303    FD->setInvalidDecl(true);
3304    nparams = 3;
3305  }
3306
3307  // FIXME: a lot of the following diagnostics would be improved
3308  // if we had some location information about types.
3309
3310  QualType CharPP =
3311    Context.getPointerType(Context.getPointerType(Context.CharTy));
3312  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3313
3314  for (unsigned i = 0; i < nparams; ++i) {
3315    QualType AT = FTP->getArgType(i);
3316
3317    bool mismatch = true;
3318
3319    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3320      mismatch = false;
3321    else if (Expected[i] == CharPP) {
3322      // As an extension, the following forms are okay:
3323      //   char const **
3324      //   char const * const *
3325      //   char * const *
3326
3327      QualifierCollector qs;
3328      const PointerType* PT;
3329      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3330          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3331          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3332        qs.removeConst();
3333        mismatch = !qs.empty();
3334      }
3335    }
3336
3337    if (mismatch) {
3338      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3339      // TODO: suggest replacing given type with expected type
3340      FD->setInvalidDecl(true);
3341    }
3342  }
3343
3344  if (nparams == 1 && !FD->isInvalidDecl()) {
3345    Diag(FD->getLocation(), diag::warn_main_one_arg);
3346  }
3347}
3348
3349bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3350  // FIXME: Need strict checking.  In C89, we need to check for
3351  // any assignment, increment, decrement, function-calls, or
3352  // commas outside of a sizeof.  In C99, it's the same list,
3353  // except that the aforementioned are allowed in unevaluated
3354  // expressions.  Everything else falls under the
3355  // "may accept other forms of constant expressions" exception.
3356  // (We never end up here for C++, so the constant expression
3357  // rules there don't matter.)
3358  if (Init->isConstantInitializer(Context))
3359    return false;
3360  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3361    << Init->getSourceRange();
3362  return true;
3363}
3364
3365void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3366  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3367}
3368
3369/// AddInitializerToDecl - Adds the initializer Init to the
3370/// declaration dcl. If DirectInit is true, this is C++ direct
3371/// initialization rather than copy initialization.
3372void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3373  Decl *RealDecl = dcl.getAs<Decl>();
3374  // If there is no declaration, there was an error parsing it.  Just ignore
3375  // the initializer.
3376  if (RealDecl == 0)
3377    return;
3378
3379  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3380    // With declarators parsed the way they are, the parser cannot
3381    // distinguish between a normal initializer and a pure-specifier.
3382    // Thus this grotesque test.
3383    IntegerLiteral *IL;
3384    Expr *Init = static_cast<Expr *>(init.get());
3385    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3386        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3387      CheckPureMethod(Method, Init->getSourceRange());
3388    else {
3389      Diag(Method->getLocation(), diag::err_member_function_initialization)
3390        << Method->getDeclName() << Init->getSourceRange();
3391      Method->setInvalidDecl();
3392    }
3393    return;
3394  }
3395
3396  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3397  if (!VDecl) {
3398    if (getLangOptions().CPlusPlus &&
3399        RealDecl->getLexicalDeclContext()->isRecord() &&
3400        isa<NamedDecl>(RealDecl))
3401      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3402        << cast<NamedDecl>(RealDecl)->getDeclName();
3403    else
3404      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3405    RealDecl->setInvalidDecl();
3406    return;
3407  }
3408
3409  // A definition must end up with a complete type, which means it must be
3410  // complete with the restriction that an array type might be completed by the
3411  // initializer; note that later code assumes this restriction.
3412  QualType BaseDeclType = VDecl->getType();
3413  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3414    BaseDeclType = Array->getElementType();
3415  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3416                          diag::err_typecheck_decl_incomplete_type)) {
3417    RealDecl->setInvalidDecl();
3418    return;
3419  }
3420
3421  // The variable can not have an abstract class type.
3422  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3423                             diag::err_abstract_type_in_decl,
3424                             AbstractVariableType))
3425    VDecl->setInvalidDecl();
3426
3427  const VarDecl *Def = 0;
3428  if (VDecl->getDefinition(Def)) {
3429    Diag(VDecl->getLocation(), diag::err_redefinition)
3430      << VDecl->getDeclName();
3431    Diag(Def->getLocation(), diag::note_previous_definition);
3432    VDecl->setInvalidDecl();
3433    return;
3434  }
3435
3436  // Take ownership of the expression, now that we're sure we have somewhere
3437  // to put it.
3438  Expr *Init = init.takeAs<Expr>();
3439  assert(Init && "missing initializer");
3440
3441  // Get the decls type and save a reference for later, since
3442  // CheckInitializerTypes may change it.
3443  QualType DclT = VDecl->getType(), SavT = DclT;
3444  if (VDecl->isBlockVarDecl()) {
3445    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3446      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3447      VDecl->setInvalidDecl();
3448    } else if (!VDecl->isInvalidDecl()) {
3449      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3450                                VDecl->getDeclName(), DirectInit))
3451        VDecl->setInvalidDecl();
3452
3453      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3454      // Don't check invalid declarations to avoid emitting useless diagnostics.
3455      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3456        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3457          CheckForConstantInitializer(Init, DclT);
3458      }
3459    }
3460  } else if (VDecl->isStaticDataMember() &&
3461             VDecl->getLexicalDeclContext()->isRecord()) {
3462    // This is an in-class initialization for a static data member, e.g.,
3463    //
3464    // struct S {
3465    //   static const int value = 17;
3466    // };
3467
3468    // Attach the initializer
3469    VDecl->setInit(Context, Init);
3470
3471    // C++ [class.mem]p4:
3472    //   A member-declarator can contain a constant-initializer only
3473    //   if it declares a static member (9.4) of const integral or
3474    //   const enumeration type, see 9.4.2.
3475    QualType T = VDecl->getType();
3476    if (!T->isDependentType() &&
3477        (!Context.getCanonicalType(T).isConstQualified() ||
3478         !T->isIntegralType())) {
3479      Diag(VDecl->getLocation(), diag::err_member_initialization)
3480        << VDecl->getDeclName() << Init->getSourceRange();
3481      VDecl->setInvalidDecl();
3482    } else {
3483      // C++ [class.static.data]p4:
3484      //   If a static data member is of const integral or const
3485      //   enumeration type, its declaration in the class definition
3486      //   can specify a constant-initializer which shall be an
3487      //   integral constant expression (5.19).
3488      if (!Init->isTypeDependent() &&
3489          !Init->getType()->isIntegralType()) {
3490        // We have a non-dependent, non-integral or enumeration type.
3491        Diag(Init->getSourceRange().getBegin(),
3492             diag::err_in_class_initializer_non_integral_type)
3493          << Init->getType() << Init->getSourceRange();
3494        VDecl->setInvalidDecl();
3495      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3496        // Check whether the expression is a constant expression.
3497        llvm::APSInt Value;
3498        SourceLocation Loc;
3499        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3500          Diag(Loc, diag::err_in_class_initializer_non_constant)
3501            << Init->getSourceRange();
3502          VDecl->setInvalidDecl();
3503        } else if (!VDecl->getType()->isDependentType())
3504          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3505      }
3506    }
3507  } else if (VDecl->isFileVarDecl()) {
3508    if (VDecl->getStorageClass() == VarDecl::Extern)
3509      Diag(VDecl->getLocation(), diag::warn_extern_init);
3510    if (!VDecl->isInvalidDecl())
3511      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3512                                VDecl->getDeclName(), DirectInit))
3513        VDecl->setInvalidDecl();
3514
3515    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3516    // Don't check invalid declarations to avoid emitting useless diagnostics.
3517    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3518      // C99 6.7.8p4. All file scoped initializers need to be constant.
3519      CheckForConstantInitializer(Init, DclT);
3520    }
3521  }
3522  // If the type changed, it means we had an incomplete type that was
3523  // completed by the initializer. For example:
3524  //   int ary[] = { 1, 3, 5 };
3525  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3526  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3527    VDecl->setType(DclT);
3528    Init->setType(DclT);
3529  }
3530
3531  Init = MaybeCreateCXXExprWithTemporaries(Init,
3532                                           /*ShouldDestroyTemporaries=*/true);
3533  // Attach the initializer to the decl.
3534  VDecl->setInit(Context, Init);
3535
3536  // If the previous declaration of VDecl was a tentative definition,
3537  // remove it from the set of tentative definitions.
3538  if (VDecl->getPreviousDeclaration() &&
3539      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3540    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3541    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3542  }
3543
3544  return;
3545}
3546
3547void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3548                                  bool TypeContainsUndeducedAuto) {
3549  Decl *RealDecl = dcl.getAs<Decl>();
3550
3551  // If there is no declaration, there was an error parsing it. Just ignore it.
3552  if (RealDecl == 0)
3553    return;
3554
3555  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3556    QualType Type = Var->getType();
3557
3558    // Record tentative definitions.
3559    if (Var->isTentativeDefinition(Context)) {
3560      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3561        InsertPair =
3562           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3563
3564      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3565      // want the second one in the map.
3566      InsertPair.first->second = Var;
3567
3568      // However, for the list, we don't care about the order, just make sure
3569      // that there are no dupes for a given declaration name.
3570      if (InsertPair.second)
3571        TentativeDefinitionList.push_back(Var->getDeclName());
3572    }
3573
3574    // C++ [dcl.init.ref]p3:
3575    //   The initializer can be omitted for a reference only in a
3576    //   parameter declaration (8.3.5), in the declaration of a
3577    //   function return type, in the declaration of a class member
3578    //   within its class declaration (9.2), and where the extern
3579    //   specifier is explicitly used.
3580    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3581      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3582        << Var->getDeclName()
3583        << SourceRange(Var->getLocation(), Var->getLocation());
3584      Var->setInvalidDecl();
3585      return;
3586    }
3587
3588    // C++0x [dcl.spec.auto]p3
3589    if (TypeContainsUndeducedAuto) {
3590      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3591        << Var->getDeclName() << Type;
3592      Var->setInvalidDecl();
3593      return;
3594    }
3595
3596    // An array without size is an incomplete type, and there are no special
3597    // rules in C++ to make such a definition acceptable.
3598    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3599        !Var->hasExternalStorage()) {
3600      Diag(Var->getLocation(),
3601           diag::err_typecheck_incomplete_array_needs_initializer);
3602      Var->setInvalidDecl();
3603      return;
3604    }
3605
3606    // C++ [temp.expl.spec]p15:
3607    //   An explicit specialization of a static data member of a template is a
3608    //   definition if the declaration includes an initializer; otherwise, it
3609    //   is a declaration.
3610    if (Var->isStaticDataMember() &&
3611        Var->getInstantiatedFromStaticDataMember() &&
3612        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3613      return;
3614
3615    // C++ [dcl.init]p9:
3616    //   If no initializer is specified for an object, and the object
3617    //   is of (possibly cv-qualified) non-POD class type (or array
3618    //   thereof), the object shall be default-initialized; if the
3619    //   object is of const-qualified type, the underlying class type
3620    //   shall have a user-declared default constructor.
3621    //
3622    // FIXME: Diagnose the "user-declared default constructor" bit.
3623    if (getLangOptions().CPlusPlus) {
3624      QualType InitType = Type;
3625      if (const ArrayType *Array = Context.getAsArrayType(Type))
3626        InitType = Context.getBaseElementType(Array);
3627      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3628          InitType->isRecordType() && !InitType->isDependentType()) {
3629        if (!RequireCompleteType(Var->getLocation(), InitType,
3630                                 diag::err_invalid_incomplete_type_use)) {
3631          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3632
3633          CXXConstructorDecl *Constructor
3634            = PerformInitializationByConstructor(InitType,
3635                                                 MultiExprArg(*this, 0, 0),
3636                                                 Var->getLocation(),
3637                                               SourceRange(Var->getLocation(),
3638                                                           Var->getLocation()),
3639                                                 Var->getDeclName(),
3640                                                 IK_Default,
3641                                                 ConstructorArgs);
3642
3643          // FIXME: Location info for the variable initialization?
3644          if (!Constructor)
3645            Var->setInvalidDecl();
3646          else {
3647            // FIXME: Cope with initialization of arrays
3648            if (!Constructor->isTrivial() &&
3649                InitializeVarWithConstructor(Var, Constructor,
3650                                             move_arg(ConstructorArgs)))
3651              Var->setInvalidDecl();
3652
3653            FinalizeVarWithDestructor(Var, InitType);
3654          }
3655        } else {
3656          Var->setInvalidDecl();
3657        }
3658      }
3659
3660      // The variable can not have an abstract class type.
3661      if (RequireNonAbstractType(Var->getLocation(), Type,
3662                                 diag::err_abstract_type_in_decl,
3663                                 AbstractVariableType))
3664        Var->setInvalidDecl();
3665    }
3666
3667#if 0
3668    // FIXME: Temporarily disabled because we are not properly parsing
3669    // linkage specifications on declarations, e.g.,
3670    //
3671    //   extern "C" const CGPoint CGPointerZero;
3672    //
3673    // C++ [dcl.init]p9:
3674    //
3675    //     If no initializer is specified for an object, and the
3676    //     object is of (possibly cv-qualified) non-POD class type (or
3677    //     array thereof), the object shall be default-initialized; if
3678    //     the object is of const-qualified type, the underlying class
3679    //     type shall have a user-declared default
3680    //     constructor. Otherwise, if no initializer is specified for
3681    //     an object, the object and its subobjects, if any, have an
3682    //     indeterminate initial value; if the object or any of its
3683    //     subobjects are of const-qualified type, the program is
3684    //     ill-formed.
3685    //
3686    // This isn't technically an error in C, so we don't diagnose it.
3687    //
3688    // FIXME: Actually perform the POD/user-defined default
3689    // constructor check.
3690    if (getLangOptions().CPlusPlus &&
3691        Context.getCanonicalType(Type).isConstQualified() &&
3692        !Var->hasExternalStorage())
3693      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3694        << Var->getName()
3695        << SourceRange(Var->getLocation(), Var->getLocation());
3696#endif
3697  }
3698}
3699
3700Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3701                                                   DeclPtrTy *Group,
3702                                                   unsigned NumDecls) {
3703  llvm::SmallVector<Decl*, 8> Decls;
3704
3705  if (DS.isTypeSpecOwned())
3706    Decls.push_back((Decl*)DS.getTypeRep());
3707
3708  for (unsigned i = 0; i != NumDecls; ++i)
3709    if (Decl *D = Group[i].getAs<Decl>())
3710      Decls.push_back(D);
3711
3712  // Perform semantic analysis that depends on having fully processed both
3713  // the declarator and initializer.
3714  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3715    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3716    if (!IDecl)
3717      continue;
3718    QualType T = IDecl->getType();
3719
3720    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3721    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3722    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3723      if (T->isDependentType()) {
3724        // If T is dependent, we should not require a complete type.
3725        // (RequireCompleteType shouldn't be called with dependent types.)
3726        // But we still can at least check if we've got an array of unspecified
3727        // size without an initializer.
3728        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3729            !IDecl->getInit()) {
3730          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3731            << T;
3732          IDecl->setInvalidDecl();
3733        }
3734      } else if (!IDecl->isInvalidDecl()) {
3735        // If T is an incomplete array type with an initializer list that is
3736        // dependent on something, its size has not been fixed. We could attempt
3737        // to fix the size for such arrays, but we would still have to check
3738        // here for initializers containing a C++0x vararg expansion, e.g.
3739        // template <typename... Args> void f(Args... args) {
3740        //   int vals[] = { args };
3741        // }
3742        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3743        Expr *Init = IDecl->getInit();
3744        if (IAT && Init &&
3745            (Init->isTypeDependent() || Init->isValueDependent())) {
3746          // Check that the member type of the array is complete, at least.
3747          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3748                                  diag::err_typecheck_decl_incomplete_type))
3749            IDecl->setInvalidDecl();
3750        } else if (RequireCompleteType(IDecl->getLocation(), T,
3751                                      diag::err_typecheck_decl_incomplete_type))
3752          IDecl->setInvalidDecl();
3753      }
3754    }
3755    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3756    // object that has file scope without an initializer, and without a
3757    // storage-class specifier or with the storage-class specifier "static",
3758    // constitutes a tentative definition. Note: A tentative definition with
3759    // external linkage is valid (C99 6.2.2p5).
3760    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3761      if (const IncompleteArrayType *ArrayT
3762          = Context.getAsIncompleteArrayType(T)) {
3763        if (RequireCompleteType(IDecl->getLocation(),
3764                                ArrayT->getElementType(),
3765                                diag::err_illegal_decl_array_incomplete_type))
3766          IDecl->setInvalidDecl();
3767      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3768        // C99 6.9.2p3: If the declaration of an identifier for an object is
3769        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3770        // declared type shall not be an incomplete type.
3771        // NOTE: code such as the following
3772        //     static struct s;
3773        //     struct s { int a; };
3774        // is accepted by gcc. Hence here we issue a warning instead of
3775        // an error and we do not invalidate the static declaration.
3776        // NOTE: to avoid multiple warnings, only check the first declaration.
3777        if (IDecl->getPreviousDeclaration() == 0)
3778          RequireCompleteType(IDecl->getLocation(), T,
3779                              diag::ext_typecheck_decl_incomplete_type);
3780      }
3781    }
3782  }
3783  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3784                                                   Decls.data(), Decls.size()));
3785}
3786
3787
3788/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3789/// to introduce parameters into function prototype scope.
3790Sema::DeclPtrTy
3791Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3792  const DeclSpec &DS = D.getDeclSpec();
3793
3794  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3795  VarDecl::StorageClass StorageClass = VarDecl::None;
3796  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3797    StorageClass = VarDecl::Register;
3798  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3799    Diag(DS.getStorageClassSpecLoc(),
3800         diag::err_invalid_storage_class_in_func_decl);
3801    D.getMutableDeclSpec().ClearStorageClassSpecs();
3802  }
3803
3804  if (D.getDeclSpec().isThreadSpecified())
3805    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3806
3807  DiagnoseFunctionSpecifiers(D);
3808
3809  // Check that there are no default arguments inside the type of this
3810  // parameter (C++ only).
3811  if (getLangOptions().CPlusPlus)
3812    CheckExtraCXXDefaultArguments(D);
3813
3814  DeclaratorInfo *DInfo = 0;
3815  TagDecl *OwnedDecl = 0;
3816  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3817
3818  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3819    // C++ [dcl.fct]p6:
3820    //   Types shall not be defined in return or parameter types.
3821    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3822      << Context.getTypeDeclType(OwnedDecl);
3823  }
3824
3825  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3826  // Can this happen for params?  We already checked that they don't conflict
3827  // among each other.  Here they can only shadow globals, which is ok.
3828  IdentifierInfo *II = D.getIdentifier();
3829  if (II) {
3830    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3831      if (PrevDecl->isTemplateParameter()) {
3832        // Maybe we will complain about the shadowed template parameter.
3833        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3834        // Just pretend that we didn't see the previous declaration.
3835        PrevDecl = 0;
3836      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3837        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3838
3839        // Recover by removing the name
3840        II = 0;
3841        D.SetIdentifier(0, D.getIdentifierLoc());
3842      }
3843    }
3844  }
3845
3846  // Parameters can not be abstract class types.
3847  // For record types, this is done by the AbstractClassUsageDiagnoser once
3848  // the class has been completely parsed.
3849  if (!CurContext->isRecord() &&
3850      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3851                             diag::err_abstract_type_in_decl,
3852                             AbstractParamType))
3853    D.setInvalidType(true);
3854
3855  QualType T = adjustParameterType(parmDeclType);
3856
3857  ParmVarDecl *New
3858    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3859                          T, DInfo, StorageClass, 0);
3860
3861  if (D.isInvalidType())
3862    New->setInvalidDecl();
3863
3864  // Parameter declarators cannot be interface types. All ObjC objects are
3865  // passed by reference.
3866  if (T->isObjCInterfaceType()) {
3867    Diag(D.getIdentifierLoc(),
3868         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3869    New->setInvalidDecl();
3870  }
3871
3872  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3873  if (D.getCXXScopeSpec().isSet()) {
3874    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3875      << D.getCXXScopeSpec().getRange();
3876    New->setInvalidDecl();
3877  }
3878
3879  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3880  // duration shall not be qualified by an address-space qualifier."
3881  // Since all parameters have automatic store duration, they can not have
3882  // an address space.
3883  if (T.getAddressSpace() != 0) {
3884    Diag(D.getIdentifierLoc(),
3885         diag::err_arg_with_address_space);
3886    New->setInvalidDecl();
3887  }
3888
3889
3890  // Add the parameter declaration into this scope.
3891  S->AddDecl(DeclPtrTy::make(New));
3892  if (II)
3893    IdResolver.AddDecl(New);
3894
3895  ProcessDeclAttributes(S, New, D);
3896
3897  if (New->hasAttr<BlocksAttr>()) {
3898    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3899  }
3900  return DeclPtrTy::make(New);
3901}
3902
3903void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3904                                           SourceLocation LocAfterDecls) {
3905  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3906         "Not a function declarator!");
3907  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3908
3909  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3910  // for a K&R function.
3911  if (!FTI.hasPrototype) {
3912    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3913      --i;
3914      if (FTI.ArgInfo[i].Param == 0) {
3915        llvm::SmallString<256> Code;
3916        llvm::raw_svector_ostream(Code) << "  int "
3917                                        << FTI.ArgInfo[i].Ident->getName()
3918                                        << ";\n";
3919        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3920          << FTI.ArgInfo[i].Ident
3921          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3922
3923        // Implicitly declare the argument as type 'int' for lack of a better
3924        // type.
3925        DeclSpec DS;
3926        const char* PrevSpec; // unused
3927        unsigned DiagID; // unused
3928        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3929                           PrevSpec, DiagID);
3930        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3931        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3932        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3933      }
3934    }
3935  }
3936}
3937
3938Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3939                                              Declarator &D) {
3940  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3941  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3942         "Not a function declarator!");
3943  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3944
3945  if (FTI.hasPrototype) {
3946    // FIXME: Diagnose arguments without names in C.
3947  }
3948
3949  Scope *ParentScope = FnBodyScope->getParent();
3950
3951  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3952                                  MultiTemplateParamsArg(*this),
3953                                  /*IsFunctionDefinition=*/true);
3954  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3955}
3956
3957Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3958  // Clear the last template instantiation error context.
3959  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3960
3961  if (!D)
3962    return D;
3963  FunctionDecl *FD = 0;
3964
3965  if (FunctionTemplateDecl *FunTmpl
3966        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3967    FD = FunTmpl->getTemplatedDecl();
3968  else
3969    FD = cast<FunctionDecl>(D.getAs<Decl>());
3970
3971  CurFunctionNeedsScopeChecking = false;
3972
3973  // See if this is a redefinition.
3974  const FunctionDecl *Definition;
3975  if (FD->getBody(Definition)) {
3976    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3977    Diag(Definition->getLocation(), diag::note_previous_definition);
3978  }
3979
3980  // Builtin functions cannot be defined.
3981  if (unsigned BuiltinID = FD->getBuiltinID()) {
3982    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3983      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3984      FD->setInvalidDecl();
3985    }
3986  }
3987
3988  // The return type of a function definition must be complete
3989  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3990  QualType ResultType = FD->getResultType();
3991  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3992      !FD->isInvalidDecl() &&
3993      RequireCompleteType(FD->getLocation(), ResultType,
3994                          diag::err_func_def_incomplete_result))
3995    FD->setInvalidDecl();
3996
3997  // GNU warning -Wmissing-prototypes:
3998  //   Warn if a global function is defined without a previous
3999  //   prototype declaration. This warning is issued even if the
4000  //   definition itself provides a prototype. The aim is to detect
4001  //   global functions that fail to be declared in header files.
4002  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
4003      !FD->isMain()) {
4004    bool MissingPrototype = true;
4005    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4006         Prev; Prev = Prev->getPreviousDeclaration()) {
4007      // Ignore any declarations that occur in function or method
4008      // scope, because they aren't visible from the header.
4009      if (Prev->getDeclContext()->isFunctionOrMethod())
4010        continue;
4011
4012      MissingPrototype = !Prev->getType()->isFunctionProtoType();
4013      break;
4014    }
4015
4016    if (MissingPrototype)
4017      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4018  }
4019
4020  if (FnBodyScope)
4021    PushDeclContext(FnBodyScope, FD);
4022
4023  // Check the validity of our function parameters
4024  CheckParmsForFunctionDef(FD);
4025
4026  // Introduce our parameters into the function scope
4027  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4028    ParmVarDecl *Param = FD->getParamDecl(p);
4029    Param->setOwningFunction(FD);
4030
4031    // If this has an identifier, add it to the scope stack.
4032    if (Param->getIdentifier() && FnBodyScope)
4033      PushOnScopeChains(Param, FnBodyScope);
4034  }
4035
4036  // Checking attributes of current function definition
4037  // dllimport attribute.
4038  if (FD->getAttr<DLLImportAttr>() &&
4039      (!FD->getAttr<DLLExportAttr>())) {
4040    // dllimport attribute cannot be applied to definition.
4041    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4042      Diag(FD->getLocation(),
4043           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4044        << "dllimport";
4045      FD->setInvalidDecl();
4046      return DeclPtrTy::make(FD);
4047    } else {
4048      // If a symbol previously declared dllimport is later defined, the
4049      // attribute is ignored in subsequent references, and a warning is
4050      // emitted.
4051      Diag(FD->getLocation(),
4052           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4053        << FD->getNameAsCString() << "dllimport";
4054    }
4055  }
4056  return DeclPtrTy::make(FD);
4057}
4058
4059Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4060  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4061}
4062
4063Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4064                                              bool IsInstantiation) {
4065  Decl *dcl = D.getAs<Decl>();
4066  Stmt *Body = BodyArg.takeAs<Stmt>();
4067
4068  FunctionDecl *FD = 0;
4069  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4070  if (FunTmpl)
4071    FD = FunTmpl->getTemplatedDecl();
4072  else
4073    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4074
4075  if (FD) {
4076    FD->setBody(Body);
4077    if (FD->isMain())
4078      // C and C++ allow for main to automagically return 0.
4079      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4080      FD->setHasImplicitReturnZero(true);
4081    else
4082      CheckFallThroughForFunctionDef(FD, Body);
4083
4084    if (!FD->isInvalidDecl())
4085      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4086
4087    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) {
4088      // C++ [basic.def.odr]p2:
4089      //   [...] A virtual member function is used if it is not pure. [...]
4090      if (Method->isVirtual() && !Method->isPure())
4091        MarkDeclarationReferenced(Method->getLocation(), Method);
4092
4093      MaybeMarkVirtualImplicitMembersReferenced(Method->getLocation(), Method);
4094    }
4095    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4096  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4097    assert(MD == getCurMethodDecl() && "Method parsing confused");
4098    MD->setBody(Body);
4099    CheckFallThroughForFunctionDef(MD, Body);
4100    MD->setEndLoc(Body->getLocEnd());
4101
4102    if (!MD->isInvalidDecl())
4103      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4104  } else {
4105    Body->Destroy(Context);
4106    return DeclPtrTy();
4107  }
4108  if (!IsInstantiation)
4109    PopDeclContext();
4110
4111  // Verify and clean out per-function state.
4112
4113  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4114
4115  // Check goto/label use.
4116  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4117       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4118    LabelStmt *L = I->second;
4119
4120    // Verify that we have no forward references left.  If so, there was a goto
4121    // or address of a label taken, but no definition of it.  Label fwd
4122    // definitions are indicated with a null substmt.
4123    if (L->getSubStmt() != 0)
4124      continue;
4125
4126    // Emit error.
4127    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4128
4129    // At this point, we have gotos that use the bogus label.  Stitch it into
4130    // the function body so that they aren't leaked and that the AST is well
4131    // formed.
4132    if (Body == 0) {
4133      // The whole function wasn't parsed correctly, just delete this.
4134      L->Destroy(Context);
4135      continue;
4136    }
4137
4138    // Otherwise, the body is valid: we want to stitch the label decl into the
4139    // function somewhere so that it is properly owned and so that the goto
4140    // has a valid target.  Do this by creating a new compound stmt with the
4141    // label in it.
4142
4143    // Give the label a sub-statement.
4144    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4145
4146    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4147                               cast<CXXTryStmt>(Body)->getTryBlock() :
4148                               cast<CompoundStmt>(Body);
4149    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4150    Elements.push_back(L);
4151    Compound->setStmts(Context, &Elements[0], Elements.size());
4152  }
4153  FunctionLabelMap.clear();
4154
4155  if (!Body) return D;
4156
4157  // Verify that that gotos and switch cases don't jump into scopes illegally.
4158  if (CurFunctionNeedsScopeChecking)
4159    DiagnoseInvalidJumps(Body);
4160
4161  // C++ constructors that have function-try-blocks can't have return
4162  // statements in the handlers of that block. (C++ [except.handle]p14)
4163  // Verify this.
4164  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4165    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4166
4167  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4168    MarkBaseAndMemberDestructorsReferenced(Destructor);
4169
4170  // If any errors have occurred, clear out any temporaries that may have
4171  // been leftover. This ensures that these temporaries won't be picked up for
4172  // deletion in some later function.
4173  if (PP.getDiagnostics().hasErrorOccurred())
4174    ExprTemporaries.clear();
4175
4176  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4177  return D;
4178}
4179
4180/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4181/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4182NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4183                                          IdentifierInfo &II, Scope *S) {
4184  // Before we produce a declaration for an implicitly defined
4185  // function, see whether there was a locally-scoped declaration of
4186  // this name as a function or variable. If so, use that
4187  // (non-visible) declaration, and complain about it.
4188  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4189    = LocallyScopedExternalDecls.find(&II);
4190  if (Pos != LocallyScopedExternalDecls.end()) {
4191    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4192    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4193    return Pos->second;
4194  }
4195
4196  // Extension in C99.  Legal in C90, but warn about it.
4197  if (II.getName().startswith("__builtin_"))
4198    Diag(Loc, diag::warn_builtin_unknown) << &II;
4199  else if (getLangOptions().C99)
4200    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4201  else
4202    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4203
4204  // Set a Declarator for the implicit definition: int foo();
4205  const char *Dummy;
4206  DeclSpec DS;
4207  unsigned DiagID;
4208  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4209  Error = Error; // Silence warning.
4210  assert(!Error && "Error setting up implicit decl!");
4211  Declarator D(DS, Declarator::BlockContext);
4212  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4213                                             0, 0, false, SourceLocation(),
4214                                             false, 0,0,0, Loc, Loc, D),
4215                SourceLocation());
4216  D.SetIdentifier(&II, Loc);
4217
4218  // Insert this function into translation-unit scope.
4219
4220  DeclContext *PrevDC = CurContext;
4221  CurContext = Context.getTranslationUnitDecl();
4222
4223  FunctionDecl *FD =
4224 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4225  FD->setImplicit();
4226
4227  CurContext = PrevDC;
4228
4229  AddKnownFunctionAttributes(FD);
4230
4231  return FD;
4232}
4233
4234/// \brief Adds any function attributes that we know a priori based on
4235/// the declaration of this function.
4236///
4237/// These attributes can apply both to implicitly-declared builtins
4238/// (like __builtin___printf_chk) or to library-declared functions
4239/// like NSLog or printf.
4240void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4241  if (FD->isInvalidDecl())
4242    return;
4243
4244  // If this is a built-in function, map its builtin attributes to
4245  // actual attributes.
4246  if (unsigned BuiltinID = FD->getBuiltinID()) {
4247    // Handle printf-formatting attributes.
4248    unsigned FormatIdx;
4249    bool HasVAListArg;
4250    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4251      if (!FD->getAttr<FormatAttr>())
4252        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4253                                             HasVAListArg ? 0 : FormatIdx + 2));
4254    }
4255
4256    // Mark const if we don't care about errno and that is the only
4257    // thing preventing the function from being const. This allows
4258    // IRgen to use LLVM intrinsics for such functions.
4259    if (!getLangOptions().MathErrno &&
4260        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4261      if (!FD->getAttr<ConstAttr>())
4262        FD->addAttr(::new (Context) ConstAttr());
4263    }
4264
4265    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4266      FD->addAttr(::new (Context) NoReturnAttr());
4267  }
4268
4269  IdentifierInfo *Name = FD->getIdentifier();
4270  if (!Name)
4271    return;
4272  if ((!getLangOptions().CPlusPlus &&
4273       FD->getDeclContext()->isTranslationUnit()) ||
4274      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4275       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4276       LinkageSpecDecl::lang_c)) {
4277    // Okay: this could be a libc/libm/Objective-C function we know
4278    // about.
4279  } else
4280    return;
4281
4282  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4283    // FIXME: NSLog and NSLogv should be target specific
4284    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4285      // FIXME: We known better than our headers.
4286      const_cast<FormatAttr *>(Format)->setType("printf");
4287    } else
4288      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4289                                             Name->isStr("NSLogv") ? 0 : 2));
4290  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4291    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4292    // target-specific builtins, perhaps?
4293    if (!FD->getAttr<FormatAttr>())
4294      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4295                                             Name->isStr("vasprintf") ? 0 : 3));
4296  }
4297}
4298
4299TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4300                                    DeclaratorInfo *DInfo) {
4301  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4302  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4303
4304  if (!DInfo) {
4305    assert(D.isInvalidType() && "no declarator info for valid type");
4306    DInfo = Context.getTrivialDeclaratorInfo(T);
4307  }
4308
4309  // Scope manipulation handled by caller.
4310  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4311                                           D.getIdentifierLoc(),
4312                                           D.getIdentifier(),
4313                                           DInfo);
4314
4315  if (const TagType *TT = T->getAs<TagType>()) {
4316    TagDecl *TD = TT->getDecl();
4317
4318    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4319    // keep track of the TypedefDecl.
4320    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4321      TD->setTypedefForAnonDecl(NewTD);
4322  }
4323
4324  if (D.isInvalidType())
4325    NewTD->setInvalidDecl();
4326  return NewTD;
4327}
4328
4329
4330/// \brief Determine whether a tag with a given kind is acceptable
4331/// as a redeclaration of the given tag declaration.
4332///
4333/// \returns true if the new tag kind is acceptable, false otherwise.
4334bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4335                                        TagDecl::TagKind NewTag,
4336                                        SourceLocation NewTagLoc,
4337                                        const IdentifierInfo &Name) {
4338  // C++ [dcl.type.elab]p3:
4339  //   The class-key or enum keyword present in the
4340  //   elaborated-type-specifier shall agree in kind with the
4341  //   declaration to which the name in theelaborated-type-specifier
4342  //   refers. This rule also applies to the form of
4343  //   elaborated-type-specifier that declares a class-name or
4344  //   friend class since it can be construed as referring to the
4345  //   definition of the class. Thus, in any
4346  //   elaborated-type-specifier, the enum keyword shall be used to
4347  //   refer to an enumeration (7.2), the union class-keyshall be
4348  //   used to refer to a union (clause 9), and either the class or
4349  //   struct class-key shall be used to refer to a class (clause 9)
4350  //   declared using the class or struct class-key.
4351  TagDecl::TagKind OldTag = Previous->getTagKind();
4352  if (OldTag == NewTag)
4353    return true;
4354
4355  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4356      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4357    // Warn about the struct/class tag mismatch.
4358    bool isTemplate = false;
4359    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4360      isTemplate = Record->getDescribedClassTemplate();
4361
4362    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4363      << (NewTag == TagDecl::TK_class)
4364      << isTemplate << &Name
4365      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4366                              OldTag == TagDecl::TK_class? "class" : "struct");
4367    Diag(Previous->getLocation(), diag::note_previous_use);
4368    return true;
4369  }
4370  return false;
4371}
4372
4373/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4374/// former case, Name will be non-null.  In the later case, Name will be null.
4375/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4376/// reference/declaration/definition of a tag.
4377Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4378                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4379                               IdentifierInfo *Name, SourceLocation NameLoc,
4380                               AttributeList *Attr, AccessSpecifier AS,
4381                               MultiTemplateParamsArg TemplateParameterLists,
4382                               bool &OwnedDecl, bool &IsDependent) {
4383  // If this is not a definition, it must have a name.
4384  assert((Name != 0 || TUK == TUK_Definition) &&
4385         "Nameless record must be a definition!");
4386
4387  OwnedDecl = false;
4388  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4389
4390  // FIXME: Check explicit specializations more carefully.
4391  bool isExplicitSpecialization = false;
4392  if (TUK != TUK_Reference) {
4393    if (TemplateParameterList *TemplateParams
4394          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4395                        (TemplateParameterList**)TemplateParameterLists.get(),
4396                                              TemplateParameterLists.size(),
4397                                                    isExplicitSpecialization)) {
4398      if (TemplateParams->size() > 0) {
4399        // This is a declaration or definition of a class template (which may
4400        // be a member of another template).
4401        OwnedDecl = false;
4402        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4403                                               SS, Name, NameLoc, Attr,
4404                                               TemplateParams,
4405                                               AS);
4406        TemplateParameterLists.release();
4407        return Result.get();
4408      } else {
4409        // The "template<>" header is extraneous.
4410        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4411          << ElaboratedType::getNameForTagKind(Kind) << Name;
4412        isExplicitSpecialization = true;
4413      }
4414    }
4415
4416    TemplateParameterLists.release();
4417  }
4418
4419  DeclContext *SearchDC = CurContext;
4420  DeclContext *DC = CurContext;
4421  bool isStdBadAlloc = false;
4422  bool Invalid = false;
4423
4424  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4425                                                   : NotForRedeclaration);
4426
4427  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4428
4429  if (Name && SS.isNotEmpty()) {
4430    // We have a nested-name tag ('struct foo::bar').
4431
4432    // Check for invalid 'foo::'.
4433    if (SS.isInvalid()) {
4434      Name = 0;
4435      goto CreateNewDecl;
4436    }
4437
4438    // If this is a friend or a reference to a class in a dependent
4439    // context, don't try to make a decl for it.
4440    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4441      DC = computeDeclContext(SS, false);
4442      if (!DC) {
4443        IsDependent = true;
4444        return DeclPtrTy();
4445      }
4446    }
4447
4448    if (RequireCompleteDeclContext(SS))
4449      return DeclPtrTy::make((Decl *)0);
4450
4451    DC = computeDeclContext(SS, true);
4452    SearchDC = DC;
4453    // Look-up name inside 'foo::'.
4454    LookupQualifiedName(Previous, DC);
4455
4456    if (Previous.isAmbiguous())
4457      return DeclPtrTy();
4458
4459    // A tag 'foo::bar' must already exist.
4460    if (Previous.empty()) {
4461      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4462      Name = 0;
4463      Invalid = true;
4464      goto CreateNewDecl;
4465    }
4466  } else if (Name) {
4467    // If this is a named struct, check to see if there was a previous forward
4468    // declaration or definition.
4469    // FIXME: We're looking into outer scopes here, even when we
4470    // shouldn't be. Doing so can result in ambiguities that we
4471    // shouldn't be diagnosing.
4472    LookupName(Previous, S);
4473
4474    // Note:  there used to be some attempt at recovery here.
4475    if (Previous.isAmbiguous())
4476      return DeclPtrTy();
4477
4478    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4479      // FIXME: This makes sure that we ignore the contexts associated
4480      // with C structs, unions, and enums when looking for a matching
4481      // tag declaration or definition. See the similar lookup tweak
4482      // in Sema::LookupName; is there a better way to deal with this?
4483      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4484        SearchDC = SearchDC->getParent();
4485    }
4486  }
4487
4488  if (Previous.isSingleResult() &&
4489      Previous.getFoundDecl()->isTemplateParameter()) {
4490    // Maybe we will complain about the shadowed template parameter.
4491    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4492    // Just pretend that we didn't see the previous declaration.
4493    Previous.clear();
4494  }
4495
4496  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4497      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4498    // This is a declaration of or a reference to "std::bad_alloc".
4499    isStdBadAlloc = true;
4500
4501    if (Previous.empty() && StdBadAlloc) {
4502      // std::bad_alloc has been implicitly declared (but made invisible to
4503      // name lookup). Fill in this implicit declaration as the previous
4504      // declaration, so that the declarations get chained appropriately.
4505      Previous.addDecl(StdBadAlloc);
4506    }
4507  }
4508
4509  if (!Previous.empty()) {
4510    assert(Previous.isSingleResult());
4511    NamedDecl *PrevDecl = Previous.getFoundDecl();
4512    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4513      // If this is a use of a previous tag, or if the tag is already declared
4514      // in the same scope (so that the definition/declaration completes or
4515      // rementions the tag), reuse the decl.
4516      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4517          isDeclInScope(PrevDecl, SearchDC, S)) {
4518        // Make sure that this wasn't declared as an enum and now used as a
4519        // struct or something similar.
4520        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4521          bool SafeToContinue
4522            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4523               Kind != TagDecl::TK_enum);
4524          if (SafeToContinue)
4525            Diag(KWLoc, diag::err_use_with_wrong_tag)
4526              << Name
4527              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4528                                                  PrevTagDecl->getKindName());
4529          else
4530            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4531          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4532
4533          if (SafeToContinue)
4534            Kind = PrevTagDecl->getTagKind();
4535          else {
4536            // Recover by making this an anonymous redefinition.
4537            Name = 0;
4538            Previous.clear();
4539            Invalid = true;
4540          }
4541        }
4542
4543        if (!Invalid) {
4544          // If this is a use, just return the declaration we found.
4545
4546          // FIXME: In the future, return a variant or some other clue
4547          // for the consumer of this Decl to know it doesn't own it.
4548          // For our current ASTs this shouldn't be a problem, but will
4549          // need to be changed with DeclGroups.
4550          if (TUK == TUK_Reference || TUK == TUK_Friend)
4551            return DeclPtrTy::make(PrevTagDecl);
4552
4553          // Diagnose attempts to redefine a tag.
4554          if (TUK == TUK_Definition) {
4555            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4556              // If we're defining a specialization and the previous definition
4557              // is from an implicit instantiation, don't emit an error
4558              // here; we'll catch this in the general case below.
4559              if (!isExplicitSpecialization ||
4560                  !isa<CXXRecordDecl>(Def) ||
4561                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4562                                               == TSK_ExplicitSpecialization) {
4563                Diag(NameLoc, diag::err_redefinition) << Name;
4564                Diag(Def->getLocation(), diag::note_previous_definition);
4565                // If this is a redefinition, recover by making this
4566                // struct be anonymous, which will make any later
4567                // references get the previous definition.
4568                Name = 0;
4569                Previous.clear();
4570                Invalid = true;
4571              }
4572            } else {
4573              // If the type is currently being defined, complain
4574              // about a nested redefinition.
4575              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4576              if (Tag->isBeingDefined()) {
4577                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4578                Diag(PrevTagDecl->getLocation(),
4579                     diag::note_previous_definition);
4580                Name = 0;
4581                Previous.clear();
4582                Invalid = true;
4583              }
4584            }
4585
4586            // Okay, this is definition of a previously declared or referenced
4587            // tag PrevDecl. We're going to create a new Decl for it.
4588          }
4589        }
4590        // If we get here we have (another) forward declaration or we
4591        // have a definition.  Just create a new decl.
4592
4593      } else {
4594        // If we get here, this is a definition of a new tag type in a nested
4595        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4596        // new decl/type.  We set PrevDecl to NULL so that the entities
4597        // have distinct types.
4598        Previous.clear();
4599      }
4600      // If we get here, we're going to create a new Decl. If PrevDecl
4601      // is non-NULL, it's a definition of the tag declared by
4602      // PrevDecl. If it's NULL, we have a new definition.
4603    } else {
4604      // PrevDecl is a namespace, template, or anything else
4605      // that lives in the IDNS_Tag identifier namespace.
4606      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4607        // The tag name clashes with a namespace name, issue an error and
4608        // recover by making this tag be anonymous.
4609        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4610        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4611        Name = 0;
4612        Previous.clear();
4613        Invalid = true;
4614      } else {
4615        // The existing declaration isn't relevant to us; we're in a
4616        // new scope, so clear out the previous declaration.
4617        Previous.clear();
4618      }
4619    }
4620  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4621    // C++ [basic.scope.pdecl]p5:
4622    //   -- for an elaborated-type-specifier of the form
4623    //
4624    //          class-key identifier
4625    //
4626    //      if the elaborated-type-specifier is used in the
4627    //      decl-specifier-seq or parameter-declaration-clause of a
4628    //      function defined in namespace scope, the identifier is
4629    //      declared as a class-name in the namespace that contains
4630    //      the declaration; otherwise, except as a friend
4631    //      declaration, the identifier is declared in the smallest
4632    //      non-class, non-function-prototype scope that contains the
4633    //      declaration.
4634    //
4635    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4636    // C structs and unions.
4637    //
4638    // It is an error in C++ to declare (rather than define) an enum
4639    // type, including via an elaborated type specifier.  We'll
4640    // diagnose that later; for now, declare the enum in the same
4641    // scope as we would have picked for any other tag type.
4642    //
4643    // GNU C also supports this behavior as part of its incomplete
4644    // enum types extension, while GNU C++ does not.
4645    //
4646    // Find the context where we'll be declaring the tag.
4647    // FIXME: We would like to maintain the current DeclContext as the
4648    // lexical context,
4649    while (SearchDC->isRecord())
4650      SearchDC = SearchDC->getParent();
4651
4652    // Find the scope where we'll be declaring the tag.
4653    while (S->isClassScope() ||
4654           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4655           ((S->getFlags() & Scope::DeclScope) == 0) ||
4656           (S->getEntity() &&
4657            ((DeclContext *)S->getEntity())->isTransparentContext()))
4658      S = S->getParent();
4659
4660  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4661    // C++ [namespace.memdef]p3:
4662    //   If a friend declaration in a non-local class first declares a
4663    //   class or function, the friend class or function is a member of
4664    //   the innermost enclosing namespace.
4665    while (!SearchDC->isFileContext())
4666      SearchDC = SearchDC->getParent();
4667
4668    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4669    while (S->getEntity() != SearchDC)
4670      S = S->getParent();
4671  }
4672
4673CreateNewDecl:
4674
4675  TagDecl *PrevDecl = 0;
4676  if (Previous.isSingleResult())
4677    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4678
4679  // If there is an identifier, use the location of the identifier as the
4680  // location of the decl, otherwise use the location of the struct/union
4681  // keyword.
4682  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4683
4684  // Otherwise, create a new declaration. If there is a previous
4685  // declaration of the same entity, the two will be linked via
4686  // PrevDecl.
4687  TagDecl *New;
4688
4689  if (Kind == TagDecl::TK_enum) {
4690    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4691    // enum X { A, B, C } D;    D should chain to X.
4692    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4693                           cast_or_null<EnumDecl>(PrevDecl));
4694    // If this is an undefined enum, warn.
4695    if (TUK != TUK_Definition && !Invalid)  {
4696      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4697                                              : diag::ext_forward_ref_enum;
4698      Diag(Loc, DK);
4699    }
4700  } else {
4701    // struct/union/class
4702
4703    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4704    // struct X { int A; } D;    D should chain to X.
4705    if (getLangOptions().CPlusPlus) {
4706      // FIXME: Look for a way to use RecordDecl for simple structs.
4707      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4708                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4709
4710      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4711        StdBadAlloc = cast<CXXRecordDecl>(New);
4712    } else
4713      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4714                               cast_or_null<RecordDecl>(PrevDecl));
4715  }
4716
4717  if (Kind != TagDecl::TK_enum) {
4718    // Handle #pragma pack: if the #pragma pack stack has non-default
4719    // alignment, make up a packed attribute for this decl. These
4720    // attributes are checked when the ASTContext lays out the
4721    // structure.
4722    //
4723    // It is important for implementing the correct semantics that this
4724    // happen here (in act on tag decl). The #pragma pack stack is
4725    // maintained as a result of parser callbacks which can occur at
4726    // many points during the parsing of a struct declaration (because
4727    // the #pragma tokens are effectively skipped over during the
4728    // parsing of the struct).
4729    if (unsigned Alignment = getPragmaPackAlignment())
4730      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4731  }
4732
4733  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4734    // C++ [dcl.typedef]p3:
4735    //   [...] Similarly, in a given scope, a class or enumeration
4736    //   shall not be declared with the same name as a typedef-name
4737    //   that is declared in that scope and refers to a type other
4738    //   than the class or enumeration itself.
4739    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4740                        ForRedeclaration);
4741    LookupName(Lookup, S);
4742    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4743    NamedDecl *PrevTypedefNamed = PrevTypedef;
4744    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4745        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4746          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4747      Diag(Loc, diag::err_tag_definition_of_typedef)
4748        << Context.getTypeDeclType(New)
4749        << PrevTypedef->getUnderlyingType();
4750      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4751      Invalid = true;
4752    }
4753  }
4754
4755  // If this is a specialization of a member class (of a class template),
4756  // check the specialization.
4757  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4758    Invalid = true;
4759
4760  if (Invalid)
4761    New->setInvalidDecl();
4762
4763  if (Attr)
4764    ProcessDeclAttributeList(S, New, Attr);
4765
4766  // If we're declaring or defining a tag in function prototype scope
4767  // in C, note that this type can only be used within the function.
4768  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4769    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4770
4771  // Set the lexical context. If the tag has a C++ scope specifier, the
4772  // lexical context will be different from the semantic context.
4773  New->setLexicalDeclContext(CurContext);
4774
4775  // Mark this as a friend decl if applicable.
4776  if (TUK == TUK_Friend)
4777    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4778
4779  // Set the access specifier.
4780  if (!Invalid && TUK != TUK_Friend)
4781    SetMemberAccessSpecifier(New, PrevDecl, AS);
4782
4783  if (TUK == TUK_Definition)
4784    New->startDefinition();
4785
4786  // If this has an identifier, add it to the scope stack.
4787  if (TUK == TUK_Friend) {
4788    // We might be replacing an existing declaration in the lookup tables;
4789    // if so, borrow its access specifier.
4790    if (PrevDecl)
4791      New->setAccess(PrevDecl->getAccess());
4792
4793    // Friend tag decls are visible in fairly strange ways.
4794    if (!CurContext->isDependentContext()) {
4795      DeclContext *DC = New->getDeclContext()->getLookupContext();
4796      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4797      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4798        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4799    }
4800  } else if (Name) {
4801    S = getNonFieldDeclScope(S);
4802    PushOnScopeChains(New, S);
4803  } else {
4804    CurContext->addDecl(New);
4805  }
4806
4807  // If this is the C FILE type, notify the AST context.
4808  if (IdentifierInfo *II = New->getIdentifier())
4809    if (!New->isInvalidDecl() &&
4810        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4811        II->isStr("FILE"))
4812      Context.setFILEDecl(New);
4813
4814  OwnedDecl = true;
4815  return DeclPtrTy::make(New);
4816}
4817
4818void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4819  AdjustDeclIfTemplate(TagD);
4820  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4821
4822  // Enter the tag context.
4823  PushDeclContext(S, Tag);
4824
4825  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4826    FieldCollector->StartClass();
4827
4828    if (Record->getIdentifier()) {
4829      // C++ [class]p2:
4830      //   [...] The class-name is also inserted into the scope of the
4831      //   class itself; this is known as the injected-class-name. For
4832      //   purposes of access checking, the injected-class-name is treated
4833      //   as if it were a public member name.
4834      CXXRecordDecl *InjectedClassName
4835        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4836                                CurContext, Record->getLocation(),
4837                                Record->getIdentifier(),
4838                                Record->getTagKeywordLoc(),
4839                                Record);
4840      InjectedClassName->setImplicit();
4841      InjectedClassName->setAccess(AS_public);
4842      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4843        InjectedClassName->setDescribedClassTemplate(Template);
4844      PushOnScopeChains(InjectedClassName, S);
4845      assert(InjectedClassName->isInjectedClassName() &&
4846             "Broken injected-class-name");
4847    }
4848  }
4849}
4850
4851void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4852                                    SourceLocation RBraceLoc) {
4853  AdjustDeclIfTemplate(TagD);
4854  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4855  Tag->setRBraceLoc(RBraceLoc);
4856
4857  if (isa<CXXRecordDecl>(Tag))
4858    FieldCollector->FinishClass();
4859
4860  // Exit this scope of this tag's definition.
4861  PopDeclContext();
4862
4863  // Notify the consumer that we've defined a tag.
4864  Consumer.HandleTagDeclDefinition(Tag);
4865}
4866
4867// Note that FieldName may be null for anonymous bitfields.
4868bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4869                          QualType FieldTy, const Expr *BitWidth,
4870                          bool *ZeroWidth) {
4871  // Default to true; that shouldn't confuse checks for emptiness
4872  if (ZeroWidth)
4873    *ZeroWidth = true;
4874
4875  // C99 6.7.2.1p4 - verify the field type.
4876  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4877  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4878    // Handle incomplete types with specific error.
4879    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4880      return true;
4881    if (FieldName)
4882      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4883        << FieldName << FieldTy << BitWidth->getSourceRange();
4884    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4885      << FieldTy << BitWidth->getSourceRange();
4886  }
4887
4888  // If the bit-width is type- or value-dependent, don't try to check
4889  // it now.
4890  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4891    return false;
4892
4893  llvm::APSInt Value;
4894  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4895    return true;
4896
4897  if (Value != 0 && ZeroWidth)
4898    *ZeroWidth = false;
4899
4900  // Zero-width bitfield is ok for anonymous field.
4901  if (Value == 0 && FieldName)
4902    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4903
4904  if (Value.isSigned() && Value.isNegative()) {
4905    if (FieldName)
4906      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4907               << FieldName << Value.toString(10);
4908    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4909      << Value.toString(10);
4910  }
4911
4912  if (!FieldTy->isDependentType()) {
4913    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4914    if (Value.getZExtValue() > TypeSize) {
4915      if (FieldName)
4916        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4917          << FieldName << (unsigned)TypeSize;
4918      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4919        << (unsigned)TypeSize;
4920    }
4921  }
4922
4923  return false;
4924}
4925
4926/// ActOnField - Each field of a struct/union/class is passed into this in order
4927/// to create a FieldDecl object for it.
4928Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4929                                 SourceLocation DeclStart,
4930                                 Declarator &D, ExprTy *BitfieldWidth) {
4931  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4932                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4933                               AS_public);
4934  return DeclPtrTy::make(Res);
4935}
4936
4937/// HandleField - Analyze a field of a C struct or a C++ data member.
4938///
4939FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4940                             SourceLocation DeclStart,
4941                             Declarator &D, Expr *BitWidth,
4942                             AccessSpecifier AS) {
4943  IdentifierInfo *II = D.getIdentifier();
4944  SourceLocation Loc = DeclStart;
4945  if (II) Loc = D.getIdentifierLoc();
4946
4947  DeclaratorInfo *DInfo = 0;
4948  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4949  if (getLangOptions().CPlusPlus)
4950    CheckExtraCXXDefaultArguments(D);
4951
4952  DiagnoseFunctionSpecifiers(D);
4953
4954  if (D.getDeclSpec().isThreadSpecified())
4955    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4956
4957  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4958                                         ForRedeclaration);
4959
4960  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4961    // Maybe we will complain about the shadowed template parameter.
4962    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4963    // Just pretend that we didn't see the previous declaration.
4964    PrevDecl = 0;
4965  }
4966
4967  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4968    PrevDecl = 0;
4969
4970  bool Mutable
4971    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4972  SourceLocation TSSL = D.getSourceRange().getBegin();
4973  FieldDecl *NewFD
4974    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4975                     AS, PrevDecl, &D);
4976  if (NewFD->isInvalidDecl() && PrevDecl) {
4977    // Don't introduce NewFD into scope; there's already something
4978    // with the same name in the same scope.
4979  } else if (II) {
4980    PushOnScopeChains(NewFD, S);
4981  } else
4982    Record->addDecl(NewFD);
4983
4984  return NewFD;
4985}
4986
4987/// \brief Build a new FieldDecl and check its well-formedness.
4988///
4989/// This routine builds a new FieldDecl given the fields name, type,
4990/// record, etc. \p PrevDecl should refer to any previous declaration
4991/// with the same name and in the same scope as the field to be
4992/// created.
4993///
4994/// \returns a new FieldDecl.
4995///
4996/// \todo The Declarator argument is a hack. It will be removed once
4997FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4998                                DeclaratorInfo *DInfo,
4999                                RecordDecl *Record, SourceLocation Loc,
5000                                bool Mutable, Expr *BitWidth,
5001                                SourceLocation TSSL,
5002                                AccessSpecifier AS, NamedDecl *PrevDecl,
5003                                Declarator *D) {
5004  IdentifierInfo *II = Name.getAsIdentifierInfo();
5005  bool InvalidDecl = false;
5006  if (D) InvalidDecl = D->isInvalidType();
5007
5008  // If we receive a broken type, recover by assuming 'int' and
5009  // marking this declaration as invalid.
5010  if (T.isNull()) {
5011    InvalidDecl = true;
5012    T = Context.IntTy;
5013  }
5014
5015  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5016  // than a variably modified type.
5017  if (T->isVariablyModifiedType()) {
5018    bool SizeIsNegative;
5019    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5020                                                           SizeIsNegative);
5021    if (!FixedTy.isNull()) {
5022      Diag(Loc, diag::warn_illegal_constant_array_size);
5023      T = FixedTy;
5024    } else {
5025      if (SizeIsNegative)
5026        Diag(Loc, diag::err_typecheck_negative_array_size);
5027      else
5028        Diag(Loc, diag::err_typecheck_field_variable_size);
5029      InvalidDecl = true;
5030    }
5031  }
5032
5033  // Fields can not have abstract class types
5034  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
5035                             AbstractFieldType))
5036    InvalidDecl = true;
5037
5038  bool ZeroWidth = false;
5039  // If this is declared as a bit-field, check the bit-field.
5040  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5041    InvalidDecl = true;
5042    DeleteExpr(BitWidth);
5043    BitWidth = 0;
5044    ZeroWidth = false;
5045  }
5046
5047  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
5048                                       BitWidth, Mutable);
5049  if (InvalidDecl)
5050    NewFD->setInvalidDecl();
5051
5052  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5053    Diag(Loc, diag::err_duplicate_member) << II;
5054    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5055    NewFD->setInvalidDecl();
5056  }
5057
5058  if (getLangOptions().CPlusPlus) {
5059    QualType EltTy = Context.getBaseElementType(T);
5060
5061    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5062
5063    if (!T->isPODType())
5064      CXXRecord->setPOD(false);
5065    if (!ZeroWidth)
5066      CXXRecord->setEmpty(false);
5067
5068    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5069      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5070
5071      if (!RDecl->hasTrivialConstructor())
5072        CXXRecord->setHasTrivialConstructor(false);
5073      if (!RDecl->hasTrivialCopyConstructor())
5074        CXXRecord->setHasTrivialCopyConstructor(false);
5075      if (!RDecl->hasTrivialCopyAssignment())
5076        CXXRecord->setHasTrivialCopyAssignment(false);
5077      if (!RDecl->hasTrivialDestructor())
5078        CXXRecord->setHasTrivialDestructor(false);
5079
5080      // C++ 9.5p1: An object of a class with a non-trivial
5081      // constructor, a non-trivial copy constructor, a non-trivial
5082      // destructor, or a non-trivial copy assignment operator
5083      // cannot be a member of a union, nor can an array of such
5084      // objects.
5085      // TODO: C++0x alters this restriction significantly.
5086      if (Record->isUnion()) {
5087        // We check for copy constructors before constructors
5088        // because otherwise we'll never get complaints about
5089        // copy constructors.
5090
5091        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5092
5093        CXXSpecialMember member;
5094        if (!RDecl->hasTrivialCopyConstructor())
5095          member = CXXCopyConstructor;
5096        else if (!RDecl->hasTrivialConstructor())
5097          member = CXXDefaultConstructor;
5098        else if (!RDecl->hasTrivialCopyAssignment())
5099          member = CXXCopyAssignment;
5100        else if (!RDecl->hasTrivialDestructor())
5101          member = CXXDestructor;
5102        else
5103          member = invalid;
5104
5105        if (member != invalid) {
5106          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5107          DiagnoseNontrivial(RT, member);
5108          NewFD->setInvalidDecl();
5109        }
5110      }
5111    }
5112  }
5113
5114  // FIXME: We need to pass in the attributes given an AST
5115  // representation, not a parser representation.
5116  if (D)
5117    // FIXME: What to pass instead of TUScope?
5118    ProcessDeclAttributes(TUScope, NewFD, *D);
5119
5120  if (T.isObjCGCWeak())
5121    Diag(Loc, diag::warn_attribute_weak_on_field);
5122
5123  NewFD->setAccess(AS);
5124
5125  // C++ [dcl.init.aggr]p1:
5126  //   An aggregate is an array or a class (clause 9) with [...] no
5127  //   private or protected non-static data members (clause 11).
5128  // A POD must be an aggregate.
5129  if (getLangOptions().CPlusPlus &&
5130      (AS == AS_private || AS == AS_protected)) {
5131    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5132    CXXRecord->setAggregate(false);
5133    CXXRecord->setPOD(false);
5134  }
5135
5136  return NewFD;
5137}
5138
5139/// DiagnoseNontrivial - Given that a class has a non-trivial
5140/// special member, figure out why.
5141void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5142  QualType QT(T, 0U);
5143  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5144
5145  // Check whether the member was user-declared.
5146  switch (member) {
5147  case CXXDefaultConstructor:
5148    if (RD->hasUserDeclaredConstructor()) {
5149      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5150      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5151        const FunctionDecl *body = 0;
5152        ci->getBody(body);
5153        if (!body ||
5154            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5155          SourceLocation CtorLoc = ci->getLocation();
5156          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5157          return;
5158        }
5159      }
5160
5161      assert(0 && "found no user-declared constructors");
5162      return;
5163    }
5164    break;
5165
5166  case CXXCopyConstructor:
5167    if (RD->hasUserDeclaredCopyConstructor()) {
5168      SourceLocation CtorLoc =
5169        RD->getCopyConstructor(Context, 0)->getLocation();
5170      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5171      return;
5172    }
5173    break;
5174
5175  case CXXCopyAssignment:
5176    if (RD->hasUserDeclaredCopyAssignment()) {
5177      // FIXME: this should use the location of the copy
5178      // assignment, not the type.
5179      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5180      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5181      return;
5182    }
5183    break;
5184
5185  case CXXDestructor:
5186    if (RD->hasUserDeclaredDestructor()) {
5187      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5188      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5189      return;
5190    }
5191    break;
5192  }
5193
5194  typedef CXXRecordDecl::base_class_iterator base_iter;
5195
5196  // Virtual bases and members inhibit trivial copying/construction,
5197  // but not trivial destruction.
5198  if (member != CXXDestructor) {
5199    // Check for virtual bases.  vbases includes indirect virtual bases,
5200    // so we just iterate through the direct bases.
5201    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5202      if (bi->isVirtual()) {
5203        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5204        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5205        return;
5206      }
5207
5208    // Check for virtual methods.
5209    typedef CXXRecordDecl::method_iterator meth_iter;
5210    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5211         ++mi) {
5212      if (mi->isVirtual()) {
5213        SourceLocation MLoc = mi->getSourceRange().getBegin();
5214        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5215        return;
5216      }
5217    }
5218  }
5219
5220  bool (CXXRecordDecl::*hasTrivial)() const;
5221  switch (member) {
5222  case CXXDefaultConstructor:
5223    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5224  case CXXCopyConstructor:
5225    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5226  case CXXCopyAssignment:
5227    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5228  case CXXDestructor:
5229    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5230  default:
5231    assert(0 && "unexpected special member"); return;
5232  }
5233
5234  // Check for nontrivial bases (and recurse).
5235  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5236    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5237    assert(BaseRT && "Don't know how to handle dependent bases");
5238    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5239    if (!(BaseRecTy->*hasTrivial)()) {
5240      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5241      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5242      DiagnoseNontrivial(BaseRT, member);
5243      return;
5244    }
5245  }
5246
5247  // Check for nontrivial members (and recurse).
5248  typedef RecordDecl::field_iterator field_iter;
5249  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5250       ++fi) {
5251    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5252    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5253      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5254
5255      if (!(EltRD->*hasTrivial)()) {
5256        SourceLocation FLoc = (*fi)->getLocation();
5257        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5258        DiagnoseNontrivial(EltRT, member);
5259        return;
5260      }
5261    }
5262  }
5263
5264  assert(0 && "found no explanation for non-trivial member");
5265}
5266
5267/// TranslateIvarVisibility - Translate visibility from a token ID to an
5268///  AST enum value.
5269static ObjCIvarDecl::AccessControl
5270TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5271  switch (ivarVisibility) {
5272  default: assert(0 && "Unknown visitibility kind");
5273  case tok::objc_private: return ObjCIvarDecl::Private;
5274  case tok::objc_public: return ObjCIvarDecl::Public;
5275  case tok::objc_protected: return ObjCIvarDecl::Protected;
5276  case tok::objc_package: return ObjCIvarDecl::Package;
5277  }
5278}
5279
5280/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5281/// in order to create an IvarDecl object for it.
5282Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5283                                SourceLocation DeclStart,
5284                                DeclPtrTy IntfDecl,
5285                                Declarator &D, ExprTy *BitfieldWidth,
5286                                tok::ObjCKeywordKind Visibility) {
5287
5288  IdentifierInfo *II = D.getIdentifier();
5289  Expr *BitWidth = (Expr*)BitfieldWidth;
5290  SourceLocation Loc = DeclStart;
5291  if (II) Loc = D.getIdentifierLoc();
5292
5293  // FIXME: Unnamed fields can be handled in various different ways, for
5294  // example, unnamed unions inject all members into the struct namespace!
5295
5296  DeclaratorInfo *DInfo = 0;
5297  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5298
5299  if (BitWidth) {
5300    // 6.7.2.1p3, 6.7.2.1p4
5301    if (VerifyBitField(Loc, II, T, BitWidth)) {
5302      D.setInvalidType();
5303      DeleteExpr(BitWidth);
5304      BitWidth = 0;
5305    }
5306  } else {
5307    // Not a bitfield.
5308
5309    // validate II.
5310
5311  }
5312
5313  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5314  // than a variably modified type.
5315  if (T->isVariablyModifiedType()) {
5316    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5317    D.setInvalidType();
5318  }
5319
5320  // Get the visibility (access control) for this ivar.
5321  ObjCIvarDecl::AccessControl ac =
5322    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5323                                        : ObjCIvarDecl::None;
5324  // Must set ivar's DeclContext to its enclosing interface.
5325  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5326  DeclContext *EnclosingContext;
5327  if (ObjCImplementationDecl *IMPDecl =
5328      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5329    // Case of ivar declared in an implementation. Context is that of its class.
5330    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5331    assert(IDecl && "No class- ActOnIvar");
5332    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5333  } else
5334    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5335  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5336
5337  // Construct the decl.
5338  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5339                                             EnclosingContext, Loc, II, T,
5340                                             DInfo, ac, (Expr *)BitfieldWidth);
5341
5342  if (II) {
5343    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5344                                           ForRedeclaration);
5345    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5346        && !isa<TagDecl>(PrevDecl)) {
5347      Diag(Loc, diag::err_duplicate_member) << II;
5348      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5349      NewID->setInvalidDecl();
5350    }
5351  }
5352
5353  // Process attributes attached to the ivar.
5354  ProcessDeclAttributes(S, NewID, D);
5355
5356  if (D.isInvalidType())
5357    NewID->setInvalidDecl();
5358
5359  if (II) {
5360    // FIXME: When interfaces are DeclContexts, we'll need to add
5361    // these to the interface.
5362    S->AddDecl(DeclPtrTy::make(NewID));
5363    IdResolver.AddDecl(NewID);
5364  }
5365
5366  return DeclPtrTy::make(NewID);
5367}
5368
5369void Sema::ActOnFields(Scope* S,
5370                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5371                       DeclPtrTy *Fields, unsigned NumFields,
5372                       SourceLocation LBrac, SourceLocation RBrac,
5373                       AttributeList *Attr) {
5374  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5375  assert(EnclosingDecl && "missing record or interface decl");
5376
5377  // If the decl this is being inserted into is invalid, then it may be a
5378  // redeclaration or some other bogus case.  Don't try to add fields to it.
5379  if (EnclosingDecl->isInvalidDecl()) {
5380    // FIXME: Deallocate fields?
5381    return;
5382  }
5383
5384
5385  // Verify that all the fields are okay.
5386  unsigned NumNamedMembers = 0;
5387  llvm::SmallVector<FieldDecl*, 32> RecFields;
5388
5389  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5390  for (unsigned i = 0; i != NumFields; ++i) {
5391    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5392
5393    // Get the type for the field.
5394    Type *FDTy = FD->getType().getTypePtr();
5395
5396    if (!FD->isAnonymousStructOrUnion()) {
5397      // Remember all fields written by the user.
5398      RecFields.push_back(FD);
5399    }
5400
5401    // If the field is already invalid for some reason, don't emit more
5402    // diagnostics about it.
5403    if (FD->isInvalidDecl())
5404      continue;
5405
5406    // C99 6.7.2.1p2:
5407    //   A structure or union shall not contain a member with
5408    //   incomplete or function type (hence, a structure shall not
5409    //   contain an instance of itself, but may contain a pointer to
5410    //   an instance of itself), except that the last member of a
5411    //   structure with more than one named member may have incomplete
5412    //   array type; such a structure (and any union containing,
5413    //   possibly recursively, a member that is such a structure)
5414    //   shall not be a member of a structure or an element of an
5415    //   array.
5416    if (FDTy->isFunctionType()) {
5417      // Field declared as a function.
5418      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5419        << FD->getDeclName();
5420      FD->setInvalidDecl();
5421      EnclosingDecl->setInvalidDecl();
5422      continue;
5423    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5424               Record && Record->isStruct()) {
5425      // Flexible array member.
5426      if (NumNamedMembers < 1) {
5427        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5428          << FD->getDeclName();
5429        FD->setInvalidDecl();
5430        EnclosingDecl->setInvalidDecl();
5431        continue;
5432      }
5433      // Okay, we have a legal flexible array member at the end of the struct.
5434      if (Record)
5435        Record->setHasFlexibleArrayMember(true);
5436    } else if (!FDTy->isDependentType() &&
5437               RequireCompleteType(FD->getLocation(), FD->getType(),
5438                                   diag::err_field_incomplete)) {
5439      // Incomplete type
5440      FD->setInvalidDecl();
5441      EnclosingDecl->setInvalidDecl();
5442      continue;
5443    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5444      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5445        // If this is a member of a union, then entire union becomes "flexible".
5446        if (Record && Record->isUnion()) {
5447          Record->setHasFlexibleArrayMember(true);
5448        } else {
5449          // If this is a struct/class and this is not the last element, reject
5450          // it.  Note that GCC supports variable sized arrays in the middle of
5451          // structures.
5452          if (i != NumFields-1)
5453            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5454              << FD->getDeclName() << FD->getType();
5455          else {
5456            // We support flexible arrays at the end of structs in
5457            // other structs as an extension.
5458            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5459              << FD->getDeclName();
5460            if (Record)
5461              Record->setHasFlexibleArrayMember(true);
5462          }
5463        }
5464      }
5465      if (Record && FDTTy->getDecl()->hasObjectMember())
5466        Record->setHasObjectMember(true);
5467    } else if (FDTy->isObjCInterfaceType()) {
5468      /// A field cannot be an Objective-c object
5469      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5470      FD->setInvalidDecl();
5471      EnclosingDecl->setInvalidDecl();
5472      continue;
5473    } else if (getLangOptions().ObjC1 &&
5474               getLangOptions().getGCMode() != LangOptions::NonGC &&
5475               Record &&
5476               (FD->getType()->isObjCObjectPointerType() ||
5477                FD->getType().isObjCGCStrong()))
5478      Record->setHasObjectMember(true);
5479    // Keep track of the number of named members.
5480    if (FD->getIdentifier())
5481      ++NumNamedMembers;
5482  }
5483
5484  // Okay, we successfully defined 'Record'.
5485  if (Record) {
5486    Record->completeDefinition(Context);
5487  } else {
5488    ObjCIvarDecl **ClsFields =
5489      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5490    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5491      ID->setIVarList(ClsFields, RecFields.size(), Context);
5492      ID->setLocEnd(RBrac);
5493      // Add ivar's to class's DeclContext.
5494      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5495        ClsFields[i]->setLexicalDeclContext(ID);
5496        ID->addDecl(ClsFields[i]);
5497      }
5498      // Must enforce the rule that ivars in the base classes may not be
5499      // duplicates.
5500      if (ID->getSuperClass()) {
5501        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5502             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5503          ObjCIvarDecl* Ivar = (*IVI);
5504
5505          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5506            ObjCIvarDecl* prevIvar =
5507              ID->getSuperClass()->lookupInstanceVariable(II);
5508            if (prevIvar) {
5509              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5510              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5511            }
5512          }
5513        }
5514      }
5515    } else if (ObjCImplementationDecl *IMPDecl =
5516                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5517      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5518      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5519        // Ivar declared in @implementation never belongs to the implementation.
5520        // Only it is in implementation's lexical context.
5521        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5522      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5523    }
5524  }
5525
5526  if (Attr)
5527    ProcessDeclAttributeList(S, Record, Attr);
5528}
5529
5530EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5531                                          EnumConstantDecl *LastEnumConst,
5532                                          SourceLocation IdLoc,
5533                                          IdentifierInfo *Id,
5534                                          ExprArg val) {
5535  Expr *Val = (Expr *)val.get();
5536
5537  llvm::APSInt EnumVal(32);
5538  QualType EltTy;
5539  if (Val) {
5540    if (Val->isTypeDependent())
5541      EltTy = Context.DependentTy;
5542    else {
5543      // Make sure to promote the operand type to int.
5544      UsualUnaryConversions(Val);
5545      if (Val != val.get()) {
5546        val.release();
5547        val = Val;
5548      }
5549
5550      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5551      SourceLocation ExpLoc;
5552      if (!Val->isValueDependent() &&
5553          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5554        Val = 0;
5555      } else {
5556        EltTy = Val->getType();
5557      }
5558    }
5559  }
5560
5561  if (!Val) {
5562    if (LastEnumConst) {
5563      // Assign the last value + 1.
5564      EnumVal = LastEnumConst->getInitVal();
5565      ++EnumVal;
5566
5567      // Check for overflow on increment.
5568      if (EnumVal < LastEnumConst->getInitVal())
5569        Diag(IdLoc, diag::warn_enum_value_overflow);
5570
5571      EltTy = LastEnumConst->getType();
5572    } else {
5573      // First value, set to zero.
5574      EltTy = Context.IntTy;
5575      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5576    }
5577  }
5578
5579  assert(!EltTy.isNull() && "Enum constant with NULL type");
5580
5581  val.release();
5582  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5583                                  Val, EnumVal);
5584}
5585
5586
5587Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5588                                        DeclPtrTy lastEnumConst,
5589                                        SourceLocation IdLoc,
5590                                        IdentifierInfo *Id,
5591                                        SourceLocation EqualLoc, ExprTy *val) {
5592  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5593  EnumConstantDecl *LastEnumConst =
5594    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5595  Expr *Val = static_cast<Expr*>(val);
5596
5597  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5598  // we find one that is.
5599  S = getNonFieldDeclScope(S);
5600
5601  // Verify that there isn't already something declared with this name in this
5602  // scope.
5603  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5604  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5605    // Maybe we will complain about the shadowed template parameter.
5606    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5607    // Just pretend that we didn't see the previous declaration.
5608    PrevDecl = 0;
5609  }
5610
5611  if (PrevDecl) {
5612    // When in C++, we may get a TagDecl with the same name; in this case the
5613    // enum constant will 'hide' the tag.
5614    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5615           "Received TagDecl when not in C++!");
5616    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5617      if (isa<EnumConstantDecl>(PrevDecl))
5618        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5619      else
5620        Diag(IdLoc, diag::err_redefinition) << Id;
5621      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5622      if (Val) Val->Destroy(Context);
5623      return DeclPtrTy();
5624    }
5625  }
5626
5627  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5628                                            IdLoc, Id, Owned(Val));
5629
5630  // Register this decl in the current scope stack.
5631  if (New)
5632    PushOnScopeChains(New, S);
5633
5634  return DeclPtrTy::make(New);
5635}
5636
5637void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5638                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5639                         DeclPtrTy *Elements, unsigned NumElements,
5640                         Scope *S, AttributeList *Attr) {
5641  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5642  QualType EnumType = Context.getTypeDeclType(Enum);
5643
5644  if (Attr)
5645    ProcessDeclAttributeList(S, Enum, Attr);
5646
5647  // TODO: If the result value doesn't fit in an int, it must be a long or long
5648  // long value.  ISO C does not support this, but GCC does as an extension,
5649  // emit a warning.
5650  unsigned IntWidth = Context.Target.getIntWidth();
5651  unsigned CharWidth = Context.Target.getCharWidth();
5652  unsigned ShortWidth = Context.Target.getShortWidth();
5653
5654  // Verify that all the values are okay, compute the size of the values, and
5655  // reverse the list.
5656  unsigned NumNegativeBits = 0;
5657  unsigned NumPositiveBits = 0;
5658
5659  // Keep track of whether all elements have type int.
5660  bool AllElementsInt = true;
5661
5662  for (unsigned i = 0; i != NumElements; ++i) {
5663    EnumConstantDecl *ECD =
5664      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5665    if (!ECD) continue;  // Already issued a diagnostic.
5666
5667    // If the enum value doesn't fit in an int, emit an extension warning.
5668    const llvm::APSInt &InitVal = ECD->getInitVal();
5669    assert(InitVal.getBitWidth() >= IntWidth &&
5670           "Should have promoted value to int");
5671    if (InitVal.getBitWidth() > IntWidth) {
5672      llvm::APSInt V(InitVal);
5673      V.trunc(IntWidth);
5674      V.extend(InitVal.getBitWidth());
5675      if (V != InitVal)
5676        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5677          << InitVal.toString(10);
5678    }
5679
5680    // Keep track of the size of positive and negative values.
5681    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5682      NumPositiveBits = std::max(NumPositiveBits,
5683                                 (unsigned)InitVal.getActiveBits());
5684    else
5685      NumNegativeBits = std::max(NumNegativeBits,
5686                                 (unsigned)InitVal.getMinSignedBits());
5687
5688    // Keep track of whether every enum element has type int (very commmon).
5689    if (AllElementsInt)
5690      AllElementsInt = ECD->getType() == Context.IntTy;
5691  }
5692
5693  // Figure out the type that should be used for this enum.
5694  // FIXME: Support -fshort-enums.
5695  QualType BestType;
5696  unsigned BestWidth;
5697
5698  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5699
5700  if (NumNegativeBits) {
5701    // If there is a negative value, figure out the smallest integer type (of
5702    // int/long/longlong) that fits.
5703    // If it's packed, check also if it fits a char or a short.
5704    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5705        BestType = Context.SignedCharTy;
5706        BestWidth = CharWidth;
5707    } else if (Packed && NumNegativeBits <= ShortWidth &&
5708               NumPositiveBits < ShortWidth) {
5709        BestType = Context.ShortTy;
5710        BestWidth = ShortWidth;
5711    }
5712    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5713      BestType = Context.IntTy;
5714      BestWidth = IntWidth;
5715    } else {
5716      BestWidth = Context.Target.getLongWidth();
5717
5718      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5719        BestType = Context.LongTy;
5720      else {
5721        BestWidth = Context.Target.getLongLongWidth();
5722
5723        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5724          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5725        BestType = Context.LongLongTy;
5726      }
5727    }
5728  } else {
5729    // If there is no negative value, figure out which of uint, ulong, ulonglong
5730    // fits.
5731    // If it's packed, check also if it fits a char or a short.
5732    if (Packed && NumPositiveBits <= CharWidth) {
5733        BestType = Context.UnsignedCharTy;
5734        BestWidth = CharWidth;
5735    } else if (Packed && NumPositiveBits <= ShortWidth) {
5736        BestType = Context.UnsignedShortTy;
5737        BestWidth = ShortWidth;
5738    }
5739    else if (NumPositiveBits <= IntWidth) {
5740      BestType = Context.UnsignedIntTy;
5741      BestWidth = IntWidth;
5742    } else if (NumPositiveBits <=
5743               (BestWidth = Context.Target.getLongWidth())) {
5744      BestType = Context.UnsignedLongTy;
5745    } else {
5746      BestWidth = Context.Target.getLongLongWidth();
5747      assert(NumPositiveBits <= BestWidth &&
5748             "How could an initializer get larger than ULL?");
5749      BestType = Context.UnsignedLongLongTy;
5750    }
5751  }
5752
5753  // Loop over all of the enumerator constants, changing their types to match
5754  // the type of the enum if needed.
5755  for (unsigned i = 0; i != NumElements; ++i) {
5756    EnumConstantDecl *ECD =
5757      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5758    if (!ECD) continue;  // Already issued a diagnostic.
5759
5760    // Standard C says the enumerators have int type, but we allow, as an
5761    // extension, the enumerators to be larger than int size.  If each
5762    // enumerator value fits in an int, type it as an int, otherwise type it the
5763    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5764    // that X has type 'int', not 'unsigned'.
5765    if (ECD->getType() == Context.IntTy) {
5766      // Make sure the init value is signed.
5767      llvm::APSInt IV = ECD->getInitVal();
5768      IV.setIsSigned(true);
5769      ECD->setInitVal(IV);
5770
5771      if (getLangOptions().CPlusPlus)
5772        // C++ [dcl.enum]p4: Following the closing brace of an
5773        // enum-specifier, each enumerator has the type of its
5774        // enumeration.
5775        ECD->setType(EnumType);
5776      continue;  // Already int type.
5777    }
5778
5779    // Determine whether the value fits into an int.
5780    llvm::APSInt InitVal = ECD->getInitVal();
5781    bool FitsInInt;
5782    if (InitVal.isUnsigned() || !InitVal.isNegative())
5783      FitsInInt = InitVal.getActiveBits() < IntWidth;
5784    else
5785      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5786
5787    // If it fits into an integer type, force it.  Otherwise force it to match
5788    // the enum decl type.
5789    QualType NewTy;
5790    unsigned NewWidth;
5791    bool NewSign;
5792    if (FitsInInt) {
5793      NewTy = Context.IntTy;
5794      NewWidth = IntWidth;
5795      NewSign = true;
5796    } else if (ECD->getType() == BestType) {
5797      // Already the right type!
5798      if (getLangOptions().CPlusPlus)
5799        // C++ [dcl.enum]p4: Following the closing brace of an
5800        // enum-specifier, each enumerator has the type of its
5801        // enumeration.
5802        ECD->setType(EnumType);
5803      continue;
5804    } else {
5805      NewTy = BestType;
5806      NewWidth = BestWidth;
5807      NewSign = BestType->isSignedIntegerType();
5808    }
5809
5810    // Adjust the APSInt value.
5811    InitVal.extOrTrunc(NewWidth);
5812    InitVal.setIsSigned(NewSign);
5813    ECD->setInitVal(InitVal);
5814
5815    // Adjust the Expr initializer and type.
5816    if (ECD->getInitExpr())
5817      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5818                                                      CastExpr::CK_IntegralCast,
5819                                                      ECD->getInitExpr(),
5820                                                      /*isLvalue=*/false));
5821    if (getLangOptions().CPlusPlus)
5822      // C++ [dcl.enum]p4: Following the closing brace of an
5823      // enum-specifier, each enumerator has the type of its
5824      // enumeration.
5825      ECD->setType(EnumType);
5826    else
5827      ECD->setType(NewTy);
5828  }
5829
5830  Enum->completeDefinition(Context, BestType);
5831}
5832
5833Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5834                                            ExprArg expr) {
5835  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5836
5837  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5838                                                   Loc, AsmString);
5839  CurContext->addDecl(New);
5840  return DeclPtrTy::make(New);
5841}
5842
5843void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5844                             SourceLocation PragmaLoc,
5845                             SourceLocation NameLoc) {
5846  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5847
5848  if (PrevDecl) {
5849    PrevDecl->addAttr(::new (Context) WeakAttr());
5850  } else {
5851    (void)WeakUndeclaredIdentifiers.insert(
5852      std::pair<IdentifierInfo*,WeakInfo>
5853        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5854  }
5855}
5856
5857void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5858                                IdentifierInfo* AliasName,
5859                                SourceLocation PragmaLoc,
5860                                SourceLocation NameLoc,
5861                                SourceLocation AliasNameLoc) {
5862  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5863  WeakInfo W = WeakInfo(Name, NameLoc);
5864
5865  if (PrevDecl) {
5866    if (!PrevDecl->hasAttr<AliasAttr>())
5867      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5868        DeclApplyPragmaWeak(TUScope, ND, W);
5869  } else {
5870    (void)WeakUndeclaredIdentifiers.insert(
5871      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5872  }
5873}
5874