SemaDecl.cpp revision 3b547d17ed66c9ceb818e84602313f0d3a06b136
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        IIDecl = *Res;
89        break;
90      }
91    }
92
93    if (!IIDecl) {
94      // None of the entities we found is a type, so there is no way
95      // to even assume that the result is a type. In this case, don't
96      // complain about the ambiguity. The parser will either try to
97      // perform this lookup again (e.g., as an object name), which
98      // will produce the ambiguity, or will complain that it expected
99      // a type name.
100      Result.Destroy();
101      return 0;
102    }
103
104    // We found a type within the ambiguous lookup; diagnose the
105    // ambiguity and then return that type. This might be the right
106    // answer, or it might not be, but it suppresses any attempt to
107    // perform the name lookup again.
108    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
109    break;
110  }
111
112  case LookupResult::Found:
113    IIDecl = Result.getAsDecl();
114    break;
115  }
116
117  if (IIDecl) {
118    QualType T;
119
120    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
121      // Check whether we can use this type
122      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
123
124      T = Context.getTypeDeclType(TD);
125    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
126      // Check whether we can use this interface.
127      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
128
129      T = Context.getObjCInterfaceType(IDecl);
130    } else
131      return 0;
132
133    if (SS)
134      T = getQualifiedNameType(*SS, T);
135
136    return T.getAsOpaquePtr();
137  }
138
139  return 0;
140}
141
142/// isTagName() - This method is called *for error recovery purposes only*
143/// to determine if the specified name is a valid tag name ("struct foo").  If
144/// so, this returns the TST for the tag corresponding to it (TST_enum,
145/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
146/// where the user forgot to specify the tag.
147DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
148  // Do a tag name lookup in this scope.
149  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
150  if (R.getKind() == LookupResult::Found)
151    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
152      switch (TD->getTagKind()) {
153      case TagDecl::TK_struct: return DeclSpec::TST_struct;
154      case TagDecl::TK_union:  return DeclSpec::TST_union;
155      case TagDecl::TK_class:  return DeclSpec::TST_class;
156      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
157      }
158    }
159
160  return DeclSpec::TST_unspecified;
161}
162
163
164
165DeclContext *Sema::getContainingDC(DeclContext *DC) {
166  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
167    // A C++ out-of-line method will return to the file declaration context.
168    if (MD->isOutOfLineDefinition())
169      return MD->getLexicalDeclContext();
170
171    // A C++ inline method is parsed *after* the topmost class it was declared
172    // in is fully parsed (it's "complete").
173    // The parsing of a C++ inline method happens at the declaration context of
174    // the topmost (non-nested) class it is lexically declared in.
175    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
176    DC = MD->getParent();
177    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
178      DC = RD;
179
180    // Return the declaration context of the topmost class the inline method is
181    // declared in.
182    return DC;
183  }
184
185  if (isa<ObjCMethodDecl>(DC))
186    return Context.getTranslationUnitDecl();
187
188  return DC->getLexicalParent();
189}
190
191void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
192  assert(getContainingDC(DC) == CurContext &&
193      "The next DeclContext should be lexically contained in the current one.");
194  CurContext = DC;
195  S->setEntity(DC);
196}
197
198void Sema::PopDeclContext() {
199  assert(CurContext && "DeclContext imbalance!");
200
201  CurContext = getContainingDC(CurContext);
202}
203
204/// \brief Determine whether we allow overloading of the function
205/// PrevDecl with another declaration.
206///
207/// This routine determines whether overloading is possible, not
208/// whether some new function is actually an overload. It will return
209/// true in C++ (where we can always provide overloads) or, as an
210/// extension, in C when the previous function is already an
211/// overloaded function declaration or has the "overloadable"
212/// attribute.
213static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
214  if (Context.getLangOptions().CPlusPlus)
215    return true;
216
217  if (isa<OverloadedFunctionDecl>(PrevDecl))
218    return true;
219
220  return PrevDecl->getAttr<OverloadableAttr>() != 0;
221}
222
223/// Add this decl to the scope shadowed decl chains.
224void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
225  // Move up the scope chain until we find the nearest enclosing
226  // non-transparent context. The declaration will be introduced into this
227  // scope.
228  while (S->getEntity() &&
229         ((DeclContext *)S->getEntity())->isTransparentContext())
230    S = S->getParent();
231
232  S->AddDecl(DeclPtrTy::make(D));
233
234  // Add scoped declarations into their context, so that they can be
235  // found later. Declarations without a context won't be inserted
236  // into any context.
237  CurContext->addDecl(Context, D);
238
239  // C++ [basic.scope]p4:
240  //   -- exactly one declaration shall declare a class name or
241  //   enumeration name that is not a typedef name and the other
242  //   declarations shall all refer to the same object or
243  //   enumerator, or all refer to functions and function templates;
244  //   in this case the class name or enumeration name is hidden.
245  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
246    // We are pushing the name of a tag (enum or class).
247    if (CurContext->getLookupContext()
248          == TD->getDeclContext()->getLookupContext()) {
249      // We're pushing the tag into the current context, which might
250      // require some reshuffling in the identifier resolver.
251      IdentifierResolver::iterator
252        I = IdResolver.begin(TD->getDeclName()),
253        IEnd = IdResolver.end();
254      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
255        NamedDecl *PrevDecl = *I;
256        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
257             PrevDecl = *I, ++I) {
258          if (TD->declarationReplaces(*I)) {
259            // This is a redeclaration. Remove it from the chain and
260            // break out, so that we'll add in the shadowed
261            // declaration.
262            S->RemoveDecl(DeclPtrTy::make(*I));
263            if (PrevDecl == *I) {
264              IdResolver.RemoveDecl(*I);
265              IdResolver.AddDecl(TD);
266              return;
267            } else {
268              IdResolver.RemoveDecl(*I);
269              break;
270            }
271          }
272        }
273
274        // There is already a declaration with the same name in the same
275        // scope, which is not a tag declaration. It must be found
276        // before we find the new declaration, so insert the new
277        // declaration at the end of the chain.
278        IdResolver.AddShadowedDecl(TD, PrevDecl);
279
280        return;
281      }
282    }
283  } else if (isa<FunctionDecl>(D) &&
284             AllowOverloadingOfFunction(D, Context)) {
285    // We are pushing the name of a function, which might be an
286    // overloaded name.
287    FunctionDecl *FD = cast<FunctionDecl>(D);
288    IdentifierResolver::iterator Redecl
289      = std::find_if(IdResolver.begin(FD->getDeclName()),
290                     IdResolver.end(),
291                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
292                                  FD));
293    if (Redecl != IdResolver.end() &&
294        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
295      // There is already a declaration of a function on our
296      // IdResolver chain. Replace it with this declaration.
297      S->RemoveDecl(DeclPtrTy::make(*Redecl));
298      IdResolver.RemoveDecl(*Redecl);
299    }
300  }
301
302  IdResolver.AddDecl(D);
303}
304
305void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
306  if (S->decl_empty()) return;
307  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
308	 "Scope shouldn't contain decls!");
309
310  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
311       I != E; ++I) {
312    Decl *TmpD = (*I).getAs<Decl>();
313    assert(TmpD && "This decl didn't get pushed??");
314
315    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
316    NamedDecl *D = cast<NamedDecl>(TmpD);
317
318    if (!D->getDeclName()) continue;
319
320    // Remove this name from our lexical scope.
321    IdResolver.RemoveDecl(D);
322  }
323}
324
325/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
326/// return 0 if one not found.
327ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
328  // The third "scope" argument is 0 since we aren't enabling lazy built-in
329  // creation from this context.
330  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
331
332  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
333}
334
335/// getNonFieldDeclScope - Retrieves the innermost scope, starting
336/// from S, where a non-field would be declared. This routine copes
337/// with the difference between C and C++ scoping rules in structs and
338/// unions. For example, the following code is well-formed in C but
339/// ill-formed in C++:
340/// @code
341/// struct S6 {
342///   enum { BAR } e;
343/// };
344///
345/// void test_S6() {
346///   struct S6 a;
347///   a.e = BAR;
348/// }
349/// @endcode
350/// For the declaration of BAR, this routine will return a different
351/// scope. The scope S will be the scope of the unnamed enumeration
352/// within S6. In C++, this routine will return the scope associated
353/// with S6, because the enumeration's scope is a transparent
354/// context but structures can contain non-field names. In C, this
355/// routine will return the translation unit scope, since the
356/// enumeration's scope is a transparent context and structures cannot
357/// contain non-field names.
358Scope *Sema::getNonFieldDeclScope(Scope *S) {
359  while (((S->getFlags() & Scope::DeclScope) == 0) ||
360         (S->getEntity() &&
361          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
362         (S->isClassScope() && !getLangOptions().CPlusPlus))
363    S = S->getParent();
364  return S;
365}
366
367void Sema::InitBuiltinVaListType() {
368  if (!Context.getBuiltinVaListType().isNull())
369    return;
370
371  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
372  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
373  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
374  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
375}
376
377/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
378/// file scope.  lazily create a decl for it. ForRedeclaration is true
379/// if we're creating this built-in in anticipation of redeclaring the
380/// built-in.
381NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
382                                     Scope *S, bool ForRedeclaration,
383                                     SourceLocation Loc) {
384  Builtin::ID BID = (Builtin::ID)bid;
385
386  if (Context.BuiltinInfo.hasVAListUse(BID))
387    InitBuiltinVaListType();
388
389  Builtin::Context::GetBuiltinTypeError Error;
390  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
391  switch (Error) {
392  case Builtin::Context::GE_None:
393    // Okay
394    break;
395
396  case Builtin::Context::GE_Missing_FILE:
397    if (ForRedeclaration)
398      Diag(Loc, diag::err_implicit_decl_requires_stdio)
399        << Context.BuiltinInfo.GetName(BID);
400    return 0;
401  }
402
403  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
404    Diag(Loc, diag::ext_implicit_lib_function_decl)
405      << Context.BuiltinInfo.GetName(BID)
406      << R;
407    if (Context.BuiltinInfo.getHeaderName(BID) &&
408        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
409          != diag::MAP_IGNORE)
410      Diag(Loc, diag::note_please_include_header)
411        << Context.BuiltinInfo.getHeaderName(BID)
412        << Context.BuiltinInfo.GetName(BID);
413  }
414
415  FunctionDecl *New = FunctionDecl::Create(Context,
416                                           Context.getTranslationUnitDecl(),
417                                           Loc, II, R,
418                                           FunctionDecl::Extern, false,
419                                           /*hasPrototype=*/true);
420  New->setImplicit();
421
422  // Create Decl objects for each parameter, adding them to the
423  // FunctionDecl.
424  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
425    llvm::SmallVector<ParmVarDecl*, 16> Params;
426    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
427      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
428                                           FT->getArgType(i), VarDecl::None, 0));
429    New->setParams(Context, &Params[0], Params.size());
430  }
431
432  AddKnownFunctionAttributes(New);
433
434  // TUScope is the translation-unit scope to insert this function into.
435  // FIXME: This is hideous. We need to teach PushOnScopeChains to
436  // relate Scopes to DeclContexts, and probably eliminate CurContext
437  // entirely, but we're not there yet.
438  DeclContext *SavedContext = CurContext;
439  CurContext = Context.getTranslationUnitDecl();
440  PushOnScopeChains(New, TUScope);
441  CurContext = SavedContext;
442  return New;
443}
444
445/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
446/// everything from the standard library is defined.
447NamespaceDecl *Sema::GetStdNamespace() {
448  if (!StdNamespace) {
449    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
450    DeclContext *Global = Context.getTranslationUnitDecl();
451    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
452    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
453  }
454  return StdNamespace;
455}
456
457/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
458/// same name and scope as a previous declaration 'Old'.  Figure out
459/// how to resolve this situation, merging decls or emitting
460/// diagnostics as appropriate. Returns true if there was an error,
461/// false otherwise.
462///
463bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
464  bool objc_types = false;
465  // Allow multiple definitions for ObjC built-in typedefs.
466  // FIXME: Verify the underlying types are equivalent!
467  if (getLangOptions().ObjC1) {
468    const IdentifierInfo *TypeID = New->getIdentifier();
469    switch (TypeID->getLength()) {
470    default: break;
471    case 2:
472      if (!TypeID->isStr("id"))
473        break;
474      Context.setObjCIdType(New);
475      objc_types = true;
476      break;
477    case 5:
478      if (!TypeID->isStr("Class"))
479        break;
480      Context.setObjCClassType(New);
481      objc_types = true;
482      return false;
483    case 3:
484      if (!TypeID->isStr("SEL"))
485        break;
486      Context.setObjCSelType(New);
487      objc_types = true;
488      return false;
489    case 8:
490      if (!TypeID->isStr("Protocol"))
491        break;
492      Context.setObjCProtoType(New->getUnderlyingType());
493      objc_types = true;
494      return false;
495    }
496    // Fall through - the typedef name was not a builtin type.
497  }
498  // Verify the old decl was also a type.
499  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
500  if (!Old) {
501    Diag(New->getLocation(), diag::err_redefinition_different_kind)
502      << New->getDeclName();
503    if (!objc_types)
504      Diag(OldD->getLocation(), diag::note_previous_definition);
505    return true;
506  }
507
508  // Determine the "old" type we'll use for checking and diagnostics.
509  QualType OldType;
510  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
511    OldType = OldTypedef->getUnderlyingType();
512  else
513    OldType = Context.getTypeDeclType(Old);
514
515  // If the typedef types are not identical, reject them in all languages and
516  // with any extensions enabled.
517
518  if (OldType != New->getUnderlyingType() &&
519      Context.getCanonicalType(OldType) !=
520      Context.getCanonicalType(New->getUnderlyingType())) {
521    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
522      << New->getUnderlyingType() << OldType;
523    if (!objc_types)
524      Diag(Old->getLocation(), diag::note_previous_definition);
525    return true;
526  }
527  if (objc_types) return false;
528  if (getLangOptions().Microsoft) return false;
529
530  // C++ [dcl.typedef]p2:
531  //   In a given non-class scope, a typedef specifier can be used to
532  //   redefine the name of any type declared in that scope to refer
533  //   to the type to which it already refers.
534  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
535    return false;
536
537  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
538  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
539  // *either* declaration is in a system header. The code below implements
540  // this adhoc compatibility rule. FIXME: The following code will not
541  // work properly when compiling ".i" files (containing preprocessed output).
542  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
543    SourceManager &SrcMgr = Context.getSourceManager();
544    if (SrcMgr.isInSystemHeader(Old->getLocation()))
545      return false;
546    if (SrcMgr.isInSystemHeader(New->getLocation()))
547      return false;
548  }
549
550  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
551  Diag(Old->getLocation(), diag::note_previous_definition);
552  return true;
553}
554
555/// DeclhasAttr - returns true if decl Declaration already has the target
556/// attribute.
557static bool DeclHasAttr(const Decl *decl, const Attr *target) {
558  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
559    if (attr->getKind() == target->getKind())
560      return true;
561
562  return false;
563}
564
565/// MergeAttributes - append attributes from the Old decl to the New one.
566static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
567  Attr *attr = const_cast<Attr*>(Old->getAttrs());
568
569  while (attr) {
570    Attr *tmp = attr;
571    attr = attr->getNext();
572
573    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
574      tmp->setInherited(true);
575      New->addAttr(tmp);
576    } else {
577      tmp->setNext(0);
578      tmp->Destroy(C);
579    }
580  }
581
582  Old->invalidateAttrs();
583}
584
585/// Used in MergeFunctionDecl to keep track of function parameters in
586/// C.
587struct GNUCompatibleParamWarning {
588  ParmVarDecl *OldParm;
589  ParmVarDecl *NewParm;
590  QualType PromotedType;
591};
592
593/// MergeFunctionDecl - We just parsed a function 'New' from
594/// declarator D which has the same name and scope as a previous
595/// declaration 'Old'.  Figure out how to resolve this situation,
596/// merging decls or emitting diagnostics as appropriate.
597///
598/// In C++, New and Old must be declarations that are not
599/// overloaded. Use IsOverload to determine whether New and Old are
600/// overloaded, and to select the Old declaration that New should be
601/// merged with.
602///
603/// Returns true if there was an error, false otherwise.
604bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
605  assert(!isa<OverloadedFunctionDecl>(OldD) &&
606         "Cannot merge with an overloaded function declaration");
607
608  // Verify the old decl was also a function.
609  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
610  if (!Old) {
611    Diag(New->getLocation(), diag::err_redefinition_different_kind)
612      << New->getDeclName();
613    Diag(OldD->getLocation(), diag::note_previous_definition);
614    return true;
615  }
616
617  // Determine whether the previous declaration was a definition,
618  // implicit declaration, or a declaration.
619  diag::kind PrevDiag;
620  if (Old->isThisDeclarationADefinition())
621    PrevDiag = diag::note_previous_definition;
622  else if (Old->isImplicit())
623    PrevDiag = diag::note_previous_implicit_declaration;
624  else
625    PrevDiag = diag::note_previous_declaration;
626
627  QualType OldQType = Context.getCanonicalType(Old->getType());
628  QualType NewQType = Context.getCanonicalType(New->getType());
629
630  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
631      New->getStorageClass() == FunctionDecl::Static &&
632      Old->getStorageClass() != FunctionDecl::Static) {
633    Diag(New->getLocation(), diag::err_static_non_static)
634      << New;
635    Diag(Old->getLocation(), PrevDiag);
636    return true;
637  }
638
639  if (getLangOptions().CPlusPlus) {
640    // (C++98 13.1p2):
641    //   Certain function declarations cannot be overloaded:
642    //     -- Function declarations that differ only in the return type
643    //        cannot be overloaded.
644    QualType OldReturnType
645      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
646    QualType NewReturnType
647      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
648    if (OldReturnType != NewReturnType) {
649      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
650      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
651      return true;
652    }
653
654    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
655    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
656    if (OldMethod && NewMethod &&
657        OldMethod->getLexicalDeclContext() ==
658          NewMethod->getLexicalDeclContext()) {
659      //    -- Member function declarations with the same name and the
660      //       same parameter types cannot be overloaded if any of them
661      //       is a static member function declaration.
662      if (OldMethod->isStatic() || NewMethod->isStatic()) {
663        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
664        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
665        return true;
666      }
667
668      // C++ [class.mem]p1:
669      //   [...] A member shall not be declared twice in the
670      //   member-specification, except that a nested class or member
671      //   class template can be declared and then later defined.
672      unsigned NewDiag;
673      if (isa<CXXConstructorDecl>(OldMethod))
674        NewDiag = diag::err_constructor_redeclared;
675      else if (isa<CXXDestructorDecl>(NewMethod))
676        NewDiag = diag::err_destructor_redeclared;
677      else if (isa<CXXConversionDecl>(NewMethod))
678        NewDiag = diag::err_conv_function_redeclared;
679      else
680        NewDiag = diag::err_member_redeclared;
681
682      Diag(New->getLocation(), NewDiag);
683      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
684    }
685
686    // (C++98 8.3.5p3):
687    //   All declarations for a function shall agree exactly in both the
688    //   return type and the parameter-type-list.
689    if (OldQType == NewQType)
690      return MergeCompatibleFunctionDecls(New, Old);
691
692    // Fall through for conflicting redeclarations and redefinitions.
693  }
694
695  // C: Function types need to be compatible, not identical. This handles
696  // duplicate function decls like "void f(int); void f(enum X);" properly.
697  if (!getLangOptions().CPlusPlus &&
698      Context.typesAreCompatible(OldQType, NewQType)) {
699    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
700    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
701    const FunctionProtoType *OldProto = 0;
702    if (isa<FunctionNoProtoType>(NewFuncType) &&
703        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
704      // The old declaration provided a function prototype, but the
705      // new declaration does not. Merge in the prototype.
706      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
707                                                 OldProto->arg_type_end());
708      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
709                                         &ParamTypes[0], ParamTypes.size(),
710                                         OldProto->isVariadic(),
711                                         OldProto->getTypeQuals());
712      New->setType(NewQType);
713      New->setInheritedPrototype();
714
715      // Synthesize a parameter for each argument type.
716      llvm::SmallVector<ParmVarDecl*, 16> Params;
717      for (FunctionProtoType::arg_type_iterator
718             ParamType = OldProto->arg_type_begin(),
719             ParamEnd = OldProto->arg_type_end();
720           ParamType != ParamEnd; ++ParamType) {
721        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
722                                                 SourceLocation(), 0,
723                                                 *ParamType, VarDecl::None,
724                                                 0);
725        Param->setImplicit();
726        Params.push_back(Param);
727      }
728
729      New->setParams(Context, &Params[0], Params.size());
730    }
731
732    return MergeCompatibleFunctionDecls(New, Old);
733  }
734
735  // GNU C permits a K&R definition to follow a prototype declaration
736  // if the declared types of the parameters in the K&R definition
737  // match the types in the prototype declaration, even when the
738  // promoted types of the parameters from the K&R definition differ
739  // from the types in the prototype. GCC then keeps the types from
740  // the prototype.
741  if (!getLangOptions().CPlusPlus &&
742      !getLangOptions().NoExtensions &&
743      Old->hasPrototype() && !New->hasPrototype() &&
744      New->getType()->getAsFunctionProtoType() &&
745      Old->getNumParams() == New->getNumParams()) {
746    llvm::SmallVector<QualType, 16> ArgTypes;
747    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
748    const FunctionProtoType *OldProto
749      = Old->getType()->getAsFunctionProtoType();
750    const FunctionProtoType *NewProto
751      = New->getType()->getAsFunctionProtoType();
752
753    // Determine whether this is the GNU C extension.
754    bool GNUCompatible =
755      Context.typesAreCompatible(OldProto->getResultType(),
756                                 NewProto->getResultType()) &&
757      (OldProto->isVariadic() == NewProto->isVariadic());
758    for (unsigned Idx = 0, End = Old->getNumParams();
759         GNUCompatible && Idx != End; ++Idx) {
760      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
761      ParmVarDecl *NewParm = New->getParamDecl(Idx);
762      if (Context.typesAreCompatible(OldParm->getType(),
763                                     NewProto->getArgType(Idx))) {
764        ArgTypes.push_back(NewParm->getType());
765      } else if (Context.typesAreCompatible(OldParm->getType(),
766                                            NewParm->getType())) {
767        GNUCompatibleParamWarning Warn
768          = { OldParm, NewParm, NewProto->getArgType(Idx) };
769        Warnings.push_back(Warn);
770        ArgTypes.push_back(NewParm->getType());
771      } else
772        GNUCompatible = false;
773    }
774
775    if (GNUCompatible) {
776      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
777        Diag(Warnings[Warn].NewParm->getLocation(),
778             diag::ext_param_promoted_not_compatible_with_prototype)
779          << Warnings[Warn].PromotedType
780          << Warnings[Warn].OldParm->getType();
781        Diag(Warnings[Warn].OldParm->getLocation(),
782             diag::note_previous_declaration);
783      }
784
785      New->setType(Context.getFunctionType(NewProto->getResultType(),
786                                           &ArgTypes[0], ArgTypes.size(),
787                                           NewProto->isVariadic(),
788                                           NewProto->getTypeQuals()));
789      return MergeCompatibleFunctionDecls(New, Old);
790    }
791
792    // Fall through to diagnose conflicting types.
793  }
794
795  // A function that has already been declared has been redeclared or defined
796  // with a different type- show appropriate diagnostic
797  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
798    // The user has declared a builtin function with an incompatible
799    // signature.
800    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
801      // The function the user is redeclaring is a library-defined
802      // function like 'malloc' or 'printf'. Warn about the
803      // redeclaration, then pretend that we don't know about this
804      // library built-in.
805      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
806      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
807        << Old << Old->getType();
808      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
809      Old->setInvalidDecl();
810      return false;
811    }
812
813    PrevDiag = diag::note_previous_builtin_declaration;
814  }
815
816  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
817  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
818  return true;
819}
820
821/// \brief Completes the merge of two function declarations that are
822/// known to be compatible.
823///
824/// This routine handles the merging of attributes and other
825/// properties of function declarations form the old declaration to
826/// the new declaration, once we know that New is in fact a
827/// redeclaration of Old.
828///
829/// \returns false
830bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
831  // Merge the attributes
832  MergeAttributes(New, Old, Context);
833
834  // Merge the storage class.
835  New->setStorageClass(Old->getStorageClass());
836
837  // FIXME: need to implement inline semantics
838
839  // Merge "pure" flag.
840  if (Old->isPure())
841    New->setPure();
842
843  // Merge the "deleted" flag.
844  if (Old->isDeleted())
845    New->setDeleted();
846
847  if (getLangOptions().CPlusPlus)
848    return MergeCXXFunctionDecl(New, Old);
849
850  return false;
851}
852
853/// MergeVarDecl - We just parsed a variable 'New' which has the same name
854/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
855/// situation, merging decls or emitting diagnostics as appropriate.
856///
857/// Tentative definition rules (C99 6.9.2p2) are checked by
858/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
859/// definitions here, since the initializer hasn't been attached.
860///
861bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
862  // Verify the old decl was also a variable.
863  VarDecl *Old = dyn_cast<VarDecl>(OldD);
864  if (!Old) {
865    Diag(New->getLocation(), diag::err_redefinition_different_kind)
866      << New->getDeclName();
867    Diag(OldD->getLocation(), diag::note_previous_definition);
868    return true;
869  }
870
871  MergeAttributes(New, Old, Context);
872
873  // Merge the types
874  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
875  if (MergedT.isNull()) {
876    Diag(New->getLocation(), diag::err_redefinition_different_type)
877      << New->getDeclName();
878    Diag(Old->getLocation(), diag::note_previous_definition);
879    return true;
880  }
881  New->setType(MergedT);
882
883  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
884  if (New->getStorageClass() == VarDecl::Static &&
885      (Old->getStorageClass() == VarDecl::None ||
886       Old->getStorageClass() == VarDecl::Extern)) {
887    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
888    Diag(Old->getLocation(), diag::note_previous_definition);
889    return true;
890  }
891  // C99 6.2.2p4:
892  //   For an identifier declared with the storage-class specifier
893  //   extern in a scope in which a prior declaration of that
894  //   identifier is visible,23) if the prior declaration specifies
895  //   internal or external linkage, the linkage of the identifier at
896  //   the later declaration is the same as the linkage specified at
897  //   the prior declaration. If no prior declaration is visible, or
898  //   if the prior declaration specifies no linkage, then the
899  //   identifier has external linkage.
900  if (New->hasExternalStorage() && Old->hasLinkage())
901    /* Okay */;
902  else if (New->getStorageClass() != VarDecl::Static &&
903           Old->getStorageClass() == VarDecl::Static) {
904    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
905    Diag(Old->getLocation(), diag::note_previous_definition);
906    return true;
907  }
908  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
909  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
910      // Don't complain about out-of-line definitions of static members.
911      !(Old->getLexicalDeclContext()->isRecord() &&
912        !New->getLexicalDeclContext()->isRecord())) {
913    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
914    Diag(Old->getLocation(), diag::note_previous_definition);
915    return true;
916  }
917
918  // Keep a chain of previous declarations.
919  New->setPreviousDeclaration(Old);
920
921  return false;
922}
923
924/// CheckParmsForFunctionDef - Check that the parameters of the given
925/// function are appropriate for the definition of a function. This
926/// takes care of any checks that cannot be performed on the
927/// declaration itself, e.g., that the types of each of the function
928/// parameters are complete.
929bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
930  bool HasInvalidParm = false;
931  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
932    ParmVarDecl *Param = FD->getParamDecl(p);
933
934    // C99 6.7.5.3p4: the parameters in a parameter type list in a
935    // function declarator that is part of a function definition of
936    // that function shall not have incomplete type.
937    //
938    // This is also C++ [dcl.fct]p6.
939    if (!Param->isInvalidDecl() &&
940        RequireCompleteType(Param->getLocation(), Param->getType(),
941                               diag::err_typecheck_decl_incomplete_type)) {
942      Param->setInvalidDecl();
943      HasInvalidParm = true;
944    }
945
946    // C99 6.9.1p5: If the declarator includes a parameter type list, the
947    // declaration of each parameter shall include an identifier.
948    if (Param->getIdentifier() == 0 &&
949        !Param->isImplicit() &&
950        !getLangOptions().CPlusPlus)
951      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
952  }
953
954  return HasInvalidParm;
955}
956
957/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
958/// no declarator (e.g. "struct foo;") is parsed.
959Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
960  // FIXME: Error on auto/register at file scope
961  // FIXME: Error on inline/virtual/explicit
962  // FIXME: Error on invalid restrict
963  // FIXME: Warn on useless const/volatile
964  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
965  // FIXME: Warn on useless attributes
966
967  TagDecl *Tag = 0;
968  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
969      DS.getTypeSpecType() == DeclSpec::TST_struct ||
970      DS.getTypeSpecType() == DeclSpec::TST_union ||
971      DS.getTypeSpecType() == DeclSpec::TST_enum)
972    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
973
974  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
975    if (!Record->getDeclName() && Record->isDefinition() &&
976        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
977      if (getLangOptions().CPlusPlus ||
978          Record->getDeclContext()->isRecord())
979        return BuildAnonymousStructOrUnion(S, DS, Record);
980
981      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
982        << DS.getSourceRange();
983    }
984
985    // Microsoft allows unnamed struct/union fields. Don't complain
986    // about them.
987    // FIXME: Should we support Microsoft's extensions in this area?
988    if (Record->getDeclName() && getLangOptions().Microsoft)
989      return DeclPtrTy::make(Tag);
990  }
991
992  if (!DS.isMissingDeclaratorOk() &&
993      DS.getTypeSpecType() != DeclSpec::TST_error) {
994    // Warn about typedefs of enums without names, since this is an
995    // extension in both Microsoft an GNU.
996    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
997        Tag && isa<EnumDecl>(Tag)) {
998      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
999        << DS.getSourceRange();
1000      return DeclPtrTy::make(Tag);
1001    }
1002
1003    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1004      << DS.getSourceRange();
1005    return DeclPtrTy();
1006  }
1007
1008  return DeclPtrTy::make(Tag);
1009}
1010
1011/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1012/// anonymous struct or union AnonRecord into the owning context Owner
1013/// and scope S. This routine will be invoked just after we realize
1014/// that an unnamed union or struct is actually an anonymous union or
1015/// struct, e.g.,
1016///
1017/// @code
1018/// union {
1019///   int i;
1020///   float f;
1021/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1022///    // f into the surrounding scope.x
1023/// @endcode
1024///
1025/// This routine is recursive, injecting the names of nested anonymous
1026/// structs/unions into the owning context and scope as well.
1027bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1028                                               RecordDecl *AnonRecord) {
1029  bool Invalid = false;
1030  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1031                               FEnd = AnonRecord->field_end(Context);
1032       F != FEnd; ++F) {
1033    if ((*F)->getDeclName()) {
1034      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1035                                                LookupOrdinaryName, true);
1036      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1037        // C++ [class.union]p2:
1038        //   The names of the members of an anonymous union shall be
1039        //   distinct from the names of any other entity in the
1040        //   scope in which the anonymous union is declared.
1041        unsigned diagKind
1042          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1043                                 : diag::err_anonymous_struct_member_redecl;
1044        Diag((*F)->getLocation(), diagKind)
1045          << (*F)->getDeclName();
1046        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1047        Invalid = true;
1048      } else {
1049        // C++ [class.union]p2:
1050        //   For the purpose of name lookup, after the anonymous union
1051        //   definition, the members of the anonymous union are
1052        //   considered to have been defined in the scope in which the
1053        //   anonymous union is declared.
1054        Owner->makeDeclVisibleInContext(Context, *F);
1055        S->AddDecl(DeclPtrTy::make(*F));
1056        IdResolver.AddDecl(*F);
1057      }
1058    } else if (const RecordType *InnerRecordType
1059                 = (*F)->getType()->getAsRecordType()) {
1060      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1061      if (InnerRecord->isAnonymousStructOrUnion())
1062        Invalid = Invalid ||
1063          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1064    }
1065  }
1066
1067  return Invalid;
1068}
1069
1070/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1071/// anonymous structure or union. Anonymous unions are a C++ feature
1072/// (C++ [class.union]) and a GNU C extension; anonymous structures
1073/// are a GNU C and GNU C++ extension.
1074Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1075                                                  RecordDecl *Record) {
1076  DeclContext *Owner = Record->getDeclContext();
1077
1078  // Diagnose whether this anonymous struct/union is an extension.
1079  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1080    Diag(Record->getLocation(), diag::ext_anonymous_union);
1081  else if (!Record->isUnion())
1082    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1083
1084  // C and C++ require different kinds of checks for anonymous
1085  // structs/unions.
1086  bool Invalid = false;
1087  if (getLangOptions().CPlusPlus) {
1088    const char* PrevSpec = 0;
1089    // C++ [class.union]p3:
1090    //   Anonymous unions declared in a named namespace or in the
1091    //   global namespace shall be declared static.
1092    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1093        (isa<TranslationUnitDecl>(Owner) ||
1094         (isa<NamespaceDecl>(Owner) &&
1095          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1096      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1097      Invalid = true;
1098
1099      // Recover by adding 'static'.
1100      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1101    }
1102    // C++ [class.union]p3:
1103    //   A storage class is not allowed in a declaration of an
1104    //   anonymous union in a class scope.
1105    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1106             isa<RecordDecl>(Owner)) {
1107      Diag(DS.getStorageClassSpecLoc(),
1108           diag::err_anonymous_union_with_storage_spec);
1109      Invalid = true;
1110
1111      // Recover by removing the storage specifier.
1112      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1113                             PrevSpec);
1114    }
1115
1116    // C++ [class.union]p2:
1117    //   The member-specification of an anonymous union shall only
1118    //   define non-static data members. [Note: nested types and
1119    //   functions cannot be declared within an anonymous union. ]
1120    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1121                                 MemEnd = Record->decls_end(Context);
1122         Mem != MemEnd; ++Mem) {
1123      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1124        // C++ [class.union]p3:
1125        //   An anonymous union shall not have private or protected
1126        //   members (clause 11).
1127        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1128          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1129            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1130          Invalid = true;
1131        }
1132      } else if ((*Mem)->isImplicit()) {
1133        // Any implicit members are fine.
1134      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1135        // This is a type that showed up in an
1136        // elaborated-type-specifier inside the anonymous struct or
1137        // union, but which actually declares a type outside of the
1138        // anonymous struct or union. It's okay.
1139      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1140        if (!MemRecord->isAnonymousStructOrUnion() &&
1141            MemRecord->getDeclName()) {
1142          // This is a nested type declaration.
1143          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1144            << (int)Record->isUnion();
1145          Invalid = true;
1146        }
1147      } else {
1148        // We have something that isn't a non-static data
1149        // member. Complain about it.
1150        unsigned DK = diag::err_anonymous_record_bad_member;
1151        if (isa<TypeDecl>(*Mem))
1152          DK = diag::err_anonymous_record_with_type;
1153        else if (isa<FunctionDecl>(*Mem))
1154          DK = diag::err_anonymous_record_with_function;
1155        else if (isa<VarDecl>(*Mem))
1156          DK = diag::err_anonymous_record_with_static;
1157        Diag((*Mem)->getLocation(), DK)
1158            << (int)Record->isUnion();
1159          Invalid = true;
1160      }
1161    }
1162  }
1163
1164  if (!Record->isUnion() && !Owner->isRecord()) {
1165    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1166      << (int)getLangOptions().CPlusPlus;
1167    Invalid = true;
1168  }
1169
1170  // Create a declaration for this anonymous struct/union.
1171  NamedDecl *Anon = 0;
1172  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1173    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1174                             /*IdentifierInfo=*/0,
1175                             Context.getTypeDeclType(Record),
1176                             /*BitWidth=*/0, /*Mutable=*/false);
1177    Anon->setAccess(AS_public);
1178    if (getLangOptions().CPlusPlus)
1179      FieldCollector->Add(cast<FieldDecl>(Anon));
1180  } else {
1181    VarDecl::StorageClass SC;
1182    switch (DS.getStorageClassSpec()) {
1183    default: assert(0 && "Unknown storage class!");
1184    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1185    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1186    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1187    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1188    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1189    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1190    case DeclSpec::SCS_mutable:
1191      // mutable can only appear on non-static class members, so it's always
1192      // an error here
1193      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1194      Invalid = true;
1195      SC = VarDecl::None;
1196      break;
1197    }
1198
1199    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1200                           /*IdentifierInfo=*/0,
1201                           Context.getTypeDeclType(Record),
1202                           SC, DS.getSourceRange().getBegin());
1203  }
1204  Anon->setImplicit();
1205
1206  // Add the anonymous struct/union object to the current
1207  // context. We'll be referencing this object when we refer to one of
1208  // its members.
1209  Owner->addDecl(Context, Anon);
1210
1211  // Inject the members of the anonymous struct/union into the owning
1212  // context and into the identifier resolver chain for name lookup
1213  // purposes.
1214  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1215    Invalid = true;
1216
1217  // Mark this as an anonymous struct/union type. Note that we do not
1218  // do this until after we have already checked and injected the
1219  // members of this anonymous struct/union type, because otherwise
1220  // the members could be injected twice: once by DeclContext when it
1221  // builds its lookup table, and once by
1222  // InjectAnonymousStructOrUnionMembers.
1223  Record->setAnonymousStructOrUnion(true);
1224
1225  if (Invalid)
1226    Anon->setInvalidDecl();
1227
1228  return DeclPtrTy::make(Anon);
1229}
1230
1231
1232/// GetNameForDeclarator - Determine the full declaration name for the
1233/// given Declarator.
1234DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1235  switch (D.getKind()) {
1236  case Declarator::DK_Abstract:
1237    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1238    return DeclarationName();
1239
1240  case Declarator::DK_Normal:
1241    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1242    return DeclarationName(D.getIdentifier());
1243
1244  case Declarator::DK_Constructor: {
1245    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1246    Ty = Context.getCanonicalType(Ty);
1247    return Context.DeclarationNames.getCXXConstructorName(Ty);
1248  }
1249
1250  case Declarator::DK_Destructor: {
1251    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1252    Ty = Context.getCanonicalType(Ty);
1253    return Context.DeclarationNames.getCXXDestructorName(Ty);
1254  }
1255
1256  case Declarator::DK_Conversion: {
1257    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1258    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1259    Ty = Context.getCanonicalType(Ty);
1260    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1261  }
1262
1263  case Declarator::DK_Operator:
1264    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1265    return Context.DeclarationNames.getCXXOperatorName(
1266                                                D.getOverloadedOperator());
1267  }
1268
1269  assert(false && "Unknown name kind");
1270  return DeclarationName();
1271}
1272
1273/// isNearlyMatchingFunction - Determine whether the C++ functions
1274/// Declaration and Definition are "nearly" matching. This heuristic
1275/// is used to improve diagnostics in the case where an out-of-line
1276/// function definition doesn't match any declaration within
1277/// the class or namespace.
1278static bool isNearlyMatchingFunction(ASTContext &Context,
1279                                     FunctionDecl *Declaration,
1280                                     FunctionDecl *Definition) {
1281  if (Declaration->param_size() != Definition->param_size())
1282    return false;
1283  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1284    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1285    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1286
1287    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1288    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1289    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1290      return false;
1291  }
1292
1293  return true;
1294}
1295
1296Sema::DeclPtrTy
1297Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1298  DeclarationName Name = GetNameForDeclarator(D);
1299
1300  // All of these full declarators require an identifier.  If it doesn't have
1301  // one, the ParsedFreeStandingDeclSpec action should be used.
1302  if (!Name) {
1303    if (!D.getInvalidType())  // Reject this if we think it is valid.
1304      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1305           diag::err_declarator_need_ident)
1306        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1307    return DeclPtrTy();
1308  }
1309
1310  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1311  // we find one that is.
1312  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1313         (S->getFlags() & Scope::TemplateParamScope) != 0)
1314    S = S->getParent();
1315
1316  DeclContext *DC;
1317  NamedDecl *PrevDecl;
1318  NamedDecl *New;
1319  bool InvalidDecl = false;
1320
1321  QualType R = GetTypeForDeclarator(D, S);
1322  if (R.isNull()) {
1323    InvalidDecl = true;
1324    R = Context.IntTy;
1325  }
1326
1327  // See if this is a redefinition of a variable in the same scope.
1328  if (D.getCXXScopeSpec().isInvalid()) {
1329    DC = CurContext;
1330    PrevDecl = 0;
1331    InvalidDecl = true;
1332  } else if (!D.getCXXScopeSpec().isSet()) {
1333    LookupNameKind NameKind = LookupOrdinaryName;
1334
1335    // If the declaration we're planning to build will be a function
1336    // or object with linkage, then look for another declaration with
1337    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1338    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1339      /* Do nothing*/;
1340    else if (R->isFunctionType()) {
1341      if (CurContext->isFunctionOrMethod())
1342        NameKind = LookupRedeclarationWithLinkage;
1343    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1344      NameKind = LookupRedeclarationWithLinkage;
1345
1346    DC = CurContext;
1347    PrevDecl = LookupName(S, Name, NameKind, true,
1348                          D.getDeclSpec().getStorageClassSpec() !=
1349                            DeclSpec::SCS_static,
1350                          D.getIdentifierLoc());
1351  } else { // Something like "int foo::x;"
1352    DC = computeDeclContext(D.getCXXScopeSpec());
1353    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1354    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1355
1356    // C++ 7.3.1.2p2:
1357    // Members (including explicit specializations of templates) of a named
1358    // namespace can also be defined outside that namespace by explicit
1359    // qualification of the name being defined, provided that the entity being
1360    // defined was already declared in the namespace and the definition appears
1361    // after the point of declaration in a namespace that encloses the
1362    // declarations namespace.
1363    //
1364    // Note that we only check the context at this point. We don't yet
1365    // have enough information to make sure that PrevDecl is actually
1366    // the declaration we want to match. For example, given:
1367    //
1368    //   class X {
1369    //     void f();
1370    //     void f(float);
1371    //   };
1372    //
1373    //   void X::f(int) { } // ill-formed
1374    //
1375    // In this case, PrevDecl will point to the overload set
1376    // containing the two f's declared in X, but neither of them
1377    // matches.
1378
1379    // First check whether we named the global scope.
1380    if (isa<TranslationUnitDecl>(DC)) {
1381      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1382        << Name << D.getCXXScopeSpec().getRange();
1383    } else if (!CurContext->Encloses(DC)) {
1384      // The qualifying scope doesn't enclose the original declaration.
1385      // Emit diagnostic based on current scope.
1386      SourceLocation L = D.getIdentifierLoc();
1387      SourceRange R = D.getCXXScopeSpec().getRange();
1388      if (isa<FunctionDecl>(CurContext))
1389        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1390      else
1391        Diag(L, diag::err_invalid_declarator_scope)
1392          << Name << cast<NamedDecl>(DC) << R;
1393      InvalidDecl = true;
1394    }
1395  }
1396
1397  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1398    // Maybe we will complain about the shadowed template parameter.
1399    InvalidDecl = InvalidDecl
1400      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1401    // Just pretend that we didn't see the previous declaration.
1402    PrevDecl = 0;
1403  }
1404
1405  // In C++, the previous declaration we find might be a tag type
1406  // (class or enum). In this case, the new declaration will hide the
1407  // tag type. Note that this does does not apply if we're declaring a
1408  // typedef (C++ [dcl.typedef]p4).
1409  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1410      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1411    PrevDecl = 0;
1412
1413  bool Redeclaration = false;
1414  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1415    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1416                                 InvalidDecl, Redeclaration);
1417  } else if (R->isFunctionType()) {
1418    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1419                                  IsFunctionDefinition, InvalidDecl,
1420                                  Redeclaration);
1421  } else {
1422    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1423                                  InvalidDecl, Redeclaration);
1424  }
1425
1426  if (New == 0)
1427    return DeclPtrTy();
1428
1429  // If this has an identifier and is not an invalid redeclaration,
1430  // add it to the scope stack.
1431  if (Name && !(Redeclaration && InvalidDecl))
1432    PushOnScopeChains(New, S);
1433  // If any semantic error occurred, mark the decl as invalid.
1434  if (D.getInvalidType() || InvalidDecl)
1435    New->setInvalidDecl();
1436
1437  return DeclPtrTy::make(New);
1438}
1439
1440/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1441/// types into constant array types in certain situations which would otherwise
1442/// be errors (for GCC compatibility).
1443static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1444                                                    ASTContext &Context,
1445                                                    bool &SizeIsNegative) {
1446  // This method tries to turn a variable array into a constant
1447  // array even when the size isn't an ICE.  This is necessary
1448  // for compatibility with code that depends on gcc's buggy
1449  // constant expression folding, like struct {char x[(int)(char*)2];}
1450  SizeIsNegative = false;
1451
1452  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1453    QualType Pointee = PTy->getPointeeType();
1454    QualType FixedType =
1455        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1456    if (FixedType.isNull()) return FixedType;
1457    FixedType = Context.getPointerType(FixedType);
1458    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1459    return FixedType;
1460  }
1461
1462  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1463  if (!VLATy)
1464    return QualType();
1465  // FIXME: We should probably handle this case
1466  if (VLATy->getElementType()->isVariablyModifiedType())
1467    return QualType();
1468
1469  Expr::EvalResult EvalResult;
1470  if (!VLATy->getSizeExpr() ||
1471      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1472      !EvalResult.Val.isInt())
1473    return QualType();
1474
1475  llvm::APSInt &Res = EvalResult.Val.getInt();
1476  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1477    return Context.getConstantArrayType(VLATy->getElementType(),
1478                                        Res, ArrayType::Normal, 0);
1479
1480  SizeIsNegative = true;
1481  return QualType();
1482}
1483
1484/// \brief Register the given locally-scoped external C declaration so
1485/// that it can be found later for redeclarations
1486void
1487Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1488                                       Scope *S) {
1489  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1490         "Decl is not a locally-scoped decl!");
1491  // Note that we have a locally-scoped external with this name.
1492  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1493
1494  if (!PrevDecl)
1495    return;
1496
1497  // If there was a previous declaration of this variable, it may be
1498  // in our identifier chain. Update the identifier chain with the new
1499  // declaration.
1500  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1501    // The previous declaration was found on the identifer resolver
1502    // chain, so remove it from its scope.
1503    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1504      S = S->getParent();
1505
1506    if (S)
1507      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1508  }
1509}
1510
1511/// \brief Diagnose function specifiers on a declaration of an identifier that
1512/// does not identify a function.
1513void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1514  // FIXME: We should probably indicate the identifier in question to avoid
1515  // confusion for constructs like "inline int a(), b;"
1516  if (D.getDeclSpec().isInlineSpecified())
1517    Diag(D.getDeclSpec().getInlineSpecLoc(),
1518         diag::err_inline_non_function);
1519
1520  if (D.getDeclSpec().isVirtualSpecified())
1521    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1522         diag::err_virtual_non_function);
1523
1524  if (D.getDeclSpec().isExplicitSpecified())
1525    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1526         diag::err_explicit_non_function);
1527}
1528
1529NamedDecl*
1530Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1531                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1532                             bool &Redeclaration) {
1533  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1534  if (D.getCXXScopeSpec().isSet()) {
1535    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1536      << D.getCXXScopeSpec().getRange();
1537    InvalidDecl = true;
1538    // Pretend we didn't see the scope specifier.
1539    DC = 0;
1540  }
1541
1542  if (getLangOptions().CPlusPlus) {
1543    // Check that there are no default arguments (C++ only).
1544    CheckExtraCXXDefaultArguments(D);
1545  }
1546
1547  DiagnoseFunctionSpecifiers(D);
1548
1549  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1550  if (!NewTD) return 0;
1551
1552  // Handle attributes prior to checking for duplicates in MergeVarDecl
1553  ProcessDeclAttributes(NewTD, D);
1554  // Merge the decl with the existing one if appropriate. If the decl is
1555  // in an outer scope, it isn't the same thing.
1556  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1557    Redeclaration = true;
1558    if (MergeTypeDefDecl(NewTD, PrevDecl))
1559      InvalidDecl = true;
1560  }
1561
1562  if (S->getFnParent() == 0) {
1563    QualType T = NewTD->getUnderlyingType();
1564    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1565    // then it shall have block scope.
1566    if (T->isVariablyModifiedType()) {
1567      bool SizeIsNegative;
1568      QualType FixedTy =
1569          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1570      if (!FixedTy.isNull()) {
1571        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1572        NewTD->setUnderlyingType(FixedTy);
1573      } else {
1574        if (SizeIsNegative)
1575          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1576        else if (T->isVariableArrayType())
1577          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1578        else
1579          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1580        InvalidDecl = true;
1581      }
1582    }
1583  }
1584  return NewTD;
1585}
1586
1587/// \brief Determines whether the given declaration is an out-of-scope
1588/// previous declaration.
1589///
1590/// This routine should be invoked when name lookup has found a
1591/// previous declaration (PrevDecl) that is not in the scope where a
1592/// new declaration by the same name is being introduced. If the new
1593/// declaration occurs in a local scope, previous declarations with
1594/// linkage may still be considered previous declarations (C99
1595/// 6.2.2p4-5, C++ [basic.link]p6).
1596///
1597/// \param PrevDecl the previous declaration found by name
1598/// lookup
1599///
1600/// \param DC the context in which the new declaration is being
1601/// declared.
1602///
1603/// \returns true if PrevDecl is an out-of-scope previous declaration
1604/// for a new delcaration with the same name.
1605static bool
1606isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1607                                ASTContext &Context) {
1608  if (!PrevDecl)
1609    return 0;
1610
1611  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1612  // case we need to check each of the overloaded functions.
1613  if (!PrevDecl->hasLinkage())
1614    return false;
1615
1616  if (Context.getLangOptions().CPlusPlus) {
1617    // C++ [basic.link]p6:
1618    //   If there is a visible declaration of an entity with linkage
1619    //   having the same name and type, ignoring entities declared
1620    //   outside the innermost enclosing namespace scope, the block
1621    //   scope declaration declares that same entity and receives the
1622    //   linkage of the previous declaration.
1623    DeclContext *OuterContext = DC->getLookupContext();
1624    if (!OuterContext->isFunctionOrMethod())
1625      // This rule only applies to block-scope declarations.
1626      return false;
1627    else {
1628      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1629      if (PrevOuterContext->isRecord())
1630        // We found a member function: ignore it.
1631        return false;
1632      else {
1633        // Find the innermost enclosing namespace for the new and
1634        // previous declarations.
1635        while (!OuterContext->isFileContext())
1636          OuterContext = OuterContext->getParent();
1637        while (!PrevOuterContext->isFileContext())
1638          PrevOuterContext = PrevOuterContext->getParent();
1639
1640        // The previous declaration is in a different namespace, so it
1641        // isn't the same function.
1642        if (OuterContext->getPrimaryContext() !=
1643            PrevOuterContext->getPrimaryContext())
1644          return false;
1645      }
1646    }
1647  }
1648
1649  return true;
1650}
1651
1652NamedDecl*
1653Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1654                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1655                              bool &Redeclaration) {
1656  DeclarationName Name = GetNameForDeclarator(D);
1657
1658  // Check that there are no default arguments (C++ only).
1659  if (getLangOptions().CPlusPlus)
1660    CheckExtraCXXDefaultArguments(D);
1661
1662  VarDecl *NewVD;
1663  VarDecl::StorageClass SC;
1664  switch (D.getDeclSpec().getStorageClassSpec()) {
1665  default: assert(0 && "Unknown storage class!");
1666  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1667  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1668  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1669  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1670  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1671  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1672  case DeclSpec::SCS_mutable:
1673    // mutable can only appear on non-static class members, so it's always
1674    // an error here
1675    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1676    InvalidDecl = true;
1677    SC = VarDecl::None;
1678    break;
1679  }
1680
1681  IdentifierInfo *II = Name.getAsIdentifierInfo();
1682  if (!II) {
1683    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1684      << Name.getAsString();
1685    return 0;
1686  }
1687
1688  DiagnoseFunctionSpecifiers(D);
1689
1690  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1691  if (!DC->isRecord() && S->getFnParent() == 0) {
1692    // C99 6.9p2: The storage-class specifiers auto and register shall not
1693    // appear in the declaration specifiers in an external declaration.
1694    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1695      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1696      InvalidDecl = true;
1697    }
1698  }
1699  if (DC->isRecord() && !CurContext->isRecord()) {
1700    // This is an out-of-line definition of a static data member.
1701    if (SC == VarDecl::Static) {
1702      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1703           diag::err_static_out_of_line)
1704        << CodeModificationHint::CreateRemoval(
1705                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1706    } else if (SC == VarDecl::None)
1707      SC = VarDecl::Static;
1708  }
1709
1710  // The variable can not
1711  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1712                          II, R, SC,
1713                          // FIXME: Move to DeclGroup...
1714                          D.getDeclSpec().getSourceRange().getBegin());
1715  NewVD->setThreadSpecified(ThreadSpecified);
1716
1717  // Set the lexical context. If the declarator has a C++ scope specifier, the
1718  // lexical context will be different from the semantic context.
1719  NewVD->setLexicalDeclContext(CurContext);
1720
1721  // Handle attributes prior to checking for duplicates in MergeVarDecl
1722  ProcessDeclAttributes(NewVD, D);
1723
1724  // Handle GNU asm-label extension (encoded as an attribute).
1725  if (Expr *E = (Expr*) D.getAsmLabel()) {
1726    // The parser guarantees this is a string.
1727    StringLiteral *SE = cast<StringLiteral>(E);
1728    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1729                                                        SE->getByteLength())));
1730  }
1731
1732  // If name lookup finds a previous declaration that is not in the
1733  // same scope as the new declaration, this may still be an
1734  // acceptable redeclaration.
1735  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1736      !(NewVD->hasLinkage() &&
1737        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1738    PrevDecl = 0;
1739
1740  // Merge the decl with the existing one if appropriate.
1741  if (PrevDecl) {
1742    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1743      // The user tried to define a non-static data member
1744      // out-of-line (C++ [dcl.meaning]p1).
1745      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1746        << D.getCXXScopeSpec().getRange();
1747      PrevDecl = 0;
1748      InvalidDecl = true;
1749    }
1750  } else if (D.getCXXScopeSpec().isSet()) {
1751    // No previous declaration in the qualifying scope.
1752    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1753      << Name << D.getCXXScopeSpec().getRange();
1754    InvalidDecl = true;
1755  }
1756
1757  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1758    InvalidDecl = true;
1759
1760  // If this is a locally-scoped extern C variable, update the map of
1761  // such variables.
1762  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1763      !InvalidDecl)
1764    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1765
1766  return NewVD;
1767}
1768
1769/// \brief Perform semantic checking on a newly-created variable
1770/// declaration.
1771///
1772/// This routine performs all of the type-checking required for a
1773/// variable declaration once it has been build. It is used both to
1774/// check variables after they have been parsed and their declarators
1775/// have been translated into a declaration, and to check
1776///
1777/// \returns true if an error was encountered, false otherwise.
1778bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1779                                    bool &Redeclaration) {
1780  bool Invalid = false;
1781
1782  QualType T = NewVD->getType();
1783
1784  if (T->isObjCInterfaceType()) {
1785    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1786    Invalid = true;
1787  }
1788
1789  // The variable can not have an abstract class type.
1790  if (RequireNonAbstractType(NewVD->getLocation(), T,
1791                             diag::err_abstract_type_in_decl,
1792                             AbstractVariableType))
1793    Invalid = true;
1794
1795  // Emit an error if an address space was applied to decl with local storage.
1796  // This includes arrays of objects with address space qualifiers, but not
1797  // automatic variables that point to other address spaces.
1798  // ISO/IEC TR 18037 S5.1.2
1799  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1800    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1801    Invalid = true;
1802  }
1803
1804  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1805    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1806
1807  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1808  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1809  if (isIllegalVLA || isIllegalVM) {
1810    bool SizeIsNegative;
1811    QualType FixedTy =
1812        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1813    if (!FixedTy.isNull()) {
1814      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1815      NewVD->setType(FixedTy);
1816    } else if (T->isVariableArrayType()) {
1817      Invalid = true;
1818
1819      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1820      // FIXME: This won't give the correct result for
1821      // int a[10][n];
1822      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1823
1824      if (NewVD->isFileVarDecl())
1825        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1826          << SizeRange;
1827      else if (NewVD->getStorageClass() == VarDecl::Static)
1828        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1829          << SizeRange;
1830      else
1831        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1832            << SizeRange;
1833    } else {
1834      Invalid = true;
1835
1836      if (NewVD->isFileVarDecl())
1837        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1838      else
1839        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1840    }
1841  }
1842
1843  if (!PrevDecl && NewVD->isExternC(Context)) {
1844    // Since we did not find anything by this name and we're declaring
1845    // an extern "C" variable, look for a non-visible extern "C"
1846    // declaration with the same name.
1847    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1848      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1849    if (Pos != LocallyScopedExternalDecls.end())
1850      PrevDecl = Pos->second;
1851  }
1852
1853  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1854    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1855      << T;
1856    Invalid = true;
1857  }
1858
1859  if (PrevDecl) {
1860    Redeclaration = true;
1861    if (MergeVarDecl(NewVD, PrevDecl))
1862      Invalid = true;
1863  }
1864
1865  return NewVD->isInvalidDecl() || Invalid;
1866}
1867
1868NamedDecl*
1869Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1870                              QualType R, NamedDecl* PrevDecl,
1871                              bool IsFunctionDefinition,
1872                              bool& InvalidDecl, bool &Redeclaration) {
1873  assert(R.getTypePtr()->isFunctionType());
1874
1875  DeclarationName Name = GetNameForDeclarator(D);
1876  FunctionDecl::StorageClass SC = FunctionDecl::None;
1877  switch (D.getDeclSpec().getStorageClassSpec()) {
1878  default: assert(0 && "Unknown storage class!");
1879  case DeclSpec::SCS_auto:
1880  case DeclSpec::SCS_register:
1881  case DeclSpec::SCS_mutable:
1882    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1883         diag::err_typecheck_sclass_func);
1884    InvalidDecl = true;
1885    break;
1886  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1887  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1888  case DeclSpec::SCS_static: {
1889    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1890      // C99 6.7.1p5:
1891      //   The declaration of an identifier for a function that has
1892      //   block scope shall have no explicit storage-class specifier
1893      //   other than extern
1894      // See also (C++ [dcl.stc]p4).
1895      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1896           diag::err_static_block_func);
1897      SC = FunctionDecl::None;
1898    } else
1899      SC = FunctionDecl::Static;
1900    break;
1901  }
1902  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1903  }
1904
1905  bool isInline = D.getDeclSpec().isInlineSpecified();
1906  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1907  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1908
1909  // Check that the return type is not an abstract class type.
1910  // For record types, this is done by the AbstractClassUsageDiagnoser once
1911  // the class has been completely parsed.
1912  if (!DC->isRecord() &&
1913      RequireNonAbstractType(D.getIdentifierLoc(),
1914                             R->getAsFunctionType()->getResultType(),
1915                             diag::err_abstract_type_in_decl,
1916                             AbstractReturnType))
1917    InvalidDecl = true;
1918
1919  // Do not allow returning a objc interface by-value.
1920  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1921    Diag(D.getIdentifierLoc(),
1922         diag::err_object_cannot_be_passed_returned_by_value) << 0
1923      << R->getAsFunctionType()->getResultType();
1924    InvalidDecl = true;
1925  }
1926
1927  bool isVirtualOkay = false;
1928  FunctionDecl *NewFD;
1929  if (D.getKind() == Declarator::DK_Constructor) {
1930    // This is a C++ constructor declaration.
1931    assert(DC->isRecord() &&
1932           "Constructors can only be declared in a member context");
1933
1934    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1935
1936    // Create the new declaration
1937    NewFD = CXXConstructorDecl::Create(Context,
1938                                       cast<CXXRecordDecl>(DC),
1939                                       D.getIdentifierLoc(), Name, R,
1940                                       isExplicit, isInline,
1941                                       /*isImplicitlyDeclared=*/false);
1942
1943    if (InvalidDecl)
1944      NewFD->setInvalidDecl();
1945  } else if (D.getKind() == Declarator::DK_Destructor) {
1946    // This is a C++ destructor declaration.
1947    if (DC->isRecord()) {
1948      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1949
1950      NewFD = CXXDestructorDecl::Create(Context,
1951                                        cast<CXXRecordDecl>(DC),
1952                                        D.getIdentifierLoc(), Name, R,
1953                                        isInline,
1954                                        /*isImplicitlyDeclared=*/false);
1955
1956      if (InvalidDecl)
1957        NewFD->setInvalidDecl();
1958
1959      isVirtualOkay = true;
1960    } else {
1961      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1962
1963      // Create a FunctionDecl to satisfy the function definition parsing
1964      // code path.
1965      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1966                                   Name, R, SC, isInline,
1967                                   /*hasPrototype=*/true,
1968                                   // FIXME: Move to DeclGroup...
1969                                   D.getDeclSpec().getSourceRange().getBegin());
1970      InvalidDecl = true;
1971      NewFD->setInvalidDecl();
1972    }
1973  } else if (D.getKind() == Declarator::DK_Conversion) {
1974    if (!DC->isRecord()) {
1975      Diag(D.getIdentifierLoc(),
1976           diag::err_conv_function_not_member);
1977      return 0;
1978    } else {
1979      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1980
1981      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1982                                        D.getIdentifierLoc(), Name, R,
1983                                        isInline, isExplicit);
1984
1985      if (InvalidDecl)
1986        NewFD->setInvalidDecl();
1987
1988      isVirtualOkay = true;
1989    }
1990  } else if (DC->isRecord()) {
1991    // This is a C++ method declaration.
1992    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1993                                  D.getIdentifierLoc(), Name, R,
1994                                  (SC == FunctionDecl::Static), isInline);
1995
1996    isVirtualOkay = (SC != FunctionDecl::Static);
1997  } else {
1998    // Determine whether the function was written with a
1999    // prototype. This true when:
2000    //   - we're in C++ (where every function has a prototype),
2001    //   - there is a prototype in the declarator, or
2002    //   - the type R of the function is some kind of typedef or other reference
2003    //     to a type name (which eventually refers to a function type).
2004    bool HasPrototype =
2005       getLangOptions().CPlusPlus ||
2006       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2007       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2008
2009    NewFD = FunctionDecl::Create(Context, DC,
2010                                 D.getIdentifierLoc(),
2011                                 Name, R, SC, isInline, HasPrototype,
2012                                 // FIXME: Move to DeclGroup...
2013                                 D.getDeclSpec().getSourceRange().getBegin());
2014  }
2015
2016  // Set the lexical context. If the declarator has a C++
2017  // scope specifier, the lexical context will be different
2018  // from the semantic context.
2019  NewFD->setLexicalDeclContext(CurContext);
2020
2021  // C++ [dcl.fct.spec]p5:
2022  //   The virtual specifier shall only be used in declarations of
2023  //   nonstatic class member functions that appear within a
2024  //   member-specification of a class declaration; see 10.3.
2025  //
2026  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2027  // function is also virtual if it overrides an already virtual
2028  // function. This is important to do here because it's part of the
2029  // declaration.
2030  if (isVirtual && !InvalidDecl) {
2031    if (!isVirtualOkay) {
2032       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2033           diag::err_virtual_non_function);
2034    } else if (!CurContext->isRecord()) {
2035      // 'virtual' was specified outside of the class.
2036      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2037        << CodeModificationHint::CreateRemoval(
2038                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2039    } else {
2040      // Okay: Add virtual to the method.
2041      cast<CXXMethodDecl>(NewFD)->setVirtual();
2042      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2043      CurClass->setAggregate(false);
2044      CurClass->setPOD(false);
2045      CurClass->setPolymorphic(true);
2046    }
2047  }
2048
2049  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2050      !CurContext->isRecord()) {
2051    // C++ [class.static]p1:
2052    //   A data or function member of a class may be declared static
2053    //   in a class definition, in which case it is a static member of
2054    //   the class.
2055
2056    // Complain about the 'static' specifier if it's on an out-of-line
2057    // member function definition.
2058    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2059         diag::err_static_out_of_line)
2060      << CodeModificationHint::CreateRemoval(
2061                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2062  }
2063
2064  // Handle GNU asm-label extension (encoded as an attribute).
2065  if (Expr *E = (Expr*) D.getAsmLabel()) {
2066    // The parser guarantees this is a string.
2067    StringLiteral *SE = cast<StringLiteral>(E);
2068    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2069                                                        SE->getByteLength())));
2070  }
2071
2072  // Copy the parameter declarations from the declarator D to
2073  // the function declaration NewFD, if they are available.
2074  if (D.getNumTypeObjects() > 0) {
2075    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2076
2077    // Create Decl objects for each parameter, adding them to the
2078    // FunctionDecl.
2079    llvm::SmallVector<ParmVarDecl*, 16> Params;
2080
2081    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2082    // function that takes no arguments, not a function that takes a
2083    // single void argument.
2084    // We let through "const void" here because Sema::GetTypeForDeclarator
2085    // already checks for that case.
2086    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2087        FTI.ArgInfo[0].Param &&
2088        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2089      // empty arg list, don't push any params.
2090      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2091
2092      // In C++, the empty parameter-type-list must be spelled "void"; a
2093      // typedef of void is not permitted.
2094      if (getLangOptions().CPlusPlus &&
2095          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2096        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2097      }
2098    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2099      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2100        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2101    }
2102
2103    NewFD->setParams(Context, &Params[0], Params.size());
2104  } else if (R->getAsTypedefType()) {
2105    // When we're declaring a function with a typedef, as in the
2106    // following example, we'll need to synthesize (unnamed)
2107    // parameters for use in the declaration.
2108    //
2109    // @code
2110    // typedef void fn(int);
2111    // fn f;
2112    // @endcode
2113    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2114    if (!FT) {
2115      // This is a typedef of a function with no prototype, so we
2116      // don't need to do anything.
2117    } else if ((FT->getNumArgs() == 0) ||
2118               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2119                FT->getArgType(0)->isVoidType())) {
2120      // This is a zero-argument function. We don't need to do anything.
2121    } else {
2122      // Synthesize a parameter for each argument type.
2123      llvm::SmallVector<ParmVarDecl*, 16> Params;
2124      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2125           ArgType != FT->arg_type_end(); ++ArgType) {
2126        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2127                                                 SourceLocation(), 0,
2128                                                 *ArgType, VarDecl::None,
2129                                                 0);
2130        Param->setImplicit();
2131        Params.push_back(Param);
2132      }
2133
2134      NewFD->setParams(Context, &Params[0], Params.size());
2135    }
2136  }
2137
2138  // If name lookup finds a previous declaration that is not in the
2139  // same scope as the new declaration, this may still be an
2140  // acceptable redeclaration.
2141  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2142      !(NewFD->hasLinkage() &&
2143        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2144    PrevDecl = 0;
2145
2146  // Perform semantic checking on the function declaration.
2147  bool OverloadableAttrRequired = false; // FIXME: HACK!
2148  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2149                               /*FIXME:*/OverloadableAttrRequired))
2150    InvalidDecl = true;
2151
2152  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2153    // An out-of-line member function declaration must also be a
2154    // definition (C++ [dcl.meaning]p1).
2155    if (!IsFunctionDefinition) {
2156      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2157        << D.getCXXScopeSpec().getRange();
2158      InvalidDecl = true;
2159    } else if (!Redeclaration) {
2160      // The user tried to provide an out-of-line definition for a
2161      // function that is a member of a class or namespace, but there
2162      // was no such member function declared (C++ [class.mfct]p2,
2163      // C++ [namespace.memdef]p2). For example:
2164      //
2165      // class X {
2166      //   void f() const;
2167      // };
2168      //
2169      // void X::f() { } // ill-formed
2170      //
2171      // Complain about this problem, and attempt to suggest close
2172      // matches (e.g., those that differ only in cv-qualifiers and
2173      // whether the parameter types are references).
2174      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2175        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2176      InvalidDecl = true;
2177
2178      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2179                                              true);
2180      assert(!Prev.isAmbiguous() &&
2181             "Cannot have an ambiguity in previous-declaration lookup");
2182      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2183           Func != FuncEnd; ++Func) {
2184        if (isa<FunctionDecl>(*Func) &&
2185            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2186          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2187      }
2188
2189      PrevDecl = 0;
2190    }
2191  }
2192
2193  // Handle attributes. We need to have merged decls when handling attributes
2194  // (for example to check for conflicts, etc).
2195  // FIXME: This needs to happen before we merge declarations. Then,
2196  // let attribute merging cope with attribute conflicts.
2197  ProcessDeclAttributes(NewFD, D);
2198  AddKnownFunctionAttributes(NewFD);
2199
2200  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2201    // If a function name is overloadable in C, then every function
2202    // with that name must be marked "overloadable".
2203    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2204      << Redeclaration << NewFD;
2205    if (PrevDecl)
2206      Diag(PrevDecl->getLocation(),
2207           diag::note_attribute_overloadable_prev_overload);
2208    NewFD->addAttr(::new (Context) OverloadableAttr());
2209  }
2210
2211  // If this is a locally-scoped extern C function, update the
2212  // map of such names.
2213  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2214      && !InvalidDecl)
2215    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2216
2217  return NewFD;
2218}
2219
2220/// \brief Perform semantic checking of a new function declaration.
2221///
2222/// Performs semantic analysis of the new function declaration
2223/// NewFD. This routine performs all semantic checking that does not
2224/// require the actual declarator involved in the declaration, and is
2225/// used both for the declaration of functions as they are parsed
2226/// (called via ActOnDeclarator) and for the declaration of functions
2227/// that have been instantiated via C++ template instantiation (called
2228/// via InstantiateDecl).
2229///
2230/// \returns true if there was an error, false otherwise.
2231bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2232                                    bool &Redeclaration,
2233                                    bool &OverloadableAttrRequired) {
2234  bool InvalidDecl = false;
2235
2236  // Semantic checking for this function declaration (in isolation).
2237  if (getLangOptions().CPlusPlus) {
2238    // C++-specific checks.
2239    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2240      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2241    else if (isa<CXXDestructorDecl>(NewFD)) {
2242      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2243      Record->setUserDeclaredDestructor(true);
2244      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2245      // user-defined destructor.
2246      Record->setPOD(false);
2247    } else if (CXXConversionDecl *Conversion
2248               = dyn_cast<CXXConversionDecl>(NewFD))
2249      ActOnConversionDeclarator(Conversion);
2250
2251    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2252    if (NewFD->isOverloadedOperator() &&
2253        CheckOverloadedOperatorDeclaration(NewFD))
2254      InvalidDecl = true;
2255  }
2256
2257  // Check for a previous declaration of this name.
2258  if (!PrevDecl && NewFD->isExternC(Context)) {
2259    // Since we did not find anything by this name and we're declaring
2260    // an extern "C" function, look for a non-visible extern "C"
2261    // declaration with the same name.
2262    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2263      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2264    if (Pos != LocallyScopedExternalDecls.end())
2265      PrevDecl = Pos->second;
2266  }
2267
2268  // Merge or overload the declaration with an existing declaration of
2269  // the same name, if appropriate.
2270  if (PrevDecl) {
2271    // Determine whether NewFD is an overload of PrevDecl or
2272    // a declaration that requires merging. If it's an overload,
2273    // there's no more work to do here; we'll just add the new
2274    // function to the scope.
2275    OverloadedFunctionDecl::function_iterator MatchedDecl;
2276
2277    if (!getLangOptions().CPlusPlus &&
2278        AllowOverloadingOfFunction(PrevDecl, Context)) {
2279      OverloadableAttrRequired = true;
2280
2281      // Functions marked "overloadable" must have a prototype (that
2282      // we can't get through declaration merging).
2283      if (!NewFD->getType()->getAsFunctionProtoType()) {
2284        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2285          << NewFD;
2286        InvalidDecl = true;
2287        Redeclaration = true;
2288
2289        // Turn this into a variadic function with no parameters.
2290        QualType R = Context.getFunctionType(
2291                       NewFD->getType()->getAsFunctionType()->getResultType(),
2292                       0, 0, true, 0);
2293        NewFD->setType(R);
2294      }
2295    }
2296
2297    if (PrevDecl &&
2298        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2299         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2300      Redeclaration = true;
2301      Decl *OldDecl = PrevDecl;
2302
2303      // If PrevDecl was an overloaded function, extract the
2304      // FunctionDecl that matched.
2305      if (isa<OverloadedFunctionDecl>(PrevDecl))
2306        OldDecl = *MatchedDecl;
2307
2308      // NewFD and OldDecl represent declarations that need to be
2309      // merged.
2310      if (MergeFunctionDecl(NewFD, OldDecl))
2311        InvalidDecl = true;
2312
2313      if (!InvalidDecl)
2314        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2315    }
2316  }
2317
2318  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2319    // In C++, check default arguments now that we have merged decls. Unless
2320    // the lexical context is the class, because in this case this is done
2321    // during delayed parsing anyway.
2322    CheckCXXDefaultArguments(NewFD);
2323  }
2324
2325  return InvalidDecl || NewFD->isInvalidDecl();
2326}
2327
2328bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2329  // FIXME: Need strict checking.  In C89, we need to check for
2330  // any assignment, increment, decrement, function-calls, or
2331  // commas outside of a sizeof.  In C99, it's the same list,
2332  // except that the aforementioned are allowed in unevaluated
2333  // expressions.  Everything else falls under the
2334  // "may accept other forms of constant expressions" exception.
2335  // (We never end up here for C++, so the constant expression
2336  // rules there don't matter.)
2337  if (Init->isConstantInitializer(Context))
2338    return false;
2339  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2340    << Init->getSourceRange();
2341  return true;
2342}
2343
2344void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2345  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2346}
2347
2348/// AddInitializerToDecl - Adds the initializer Init to the
2349/// declaration dcl. If DirectInit is true, this is C++ direct
2350/// initialization rather than copy initialization.
2351void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2352  Decl *RealDecl = dcl.getAs<Decl>();
2353  // If there is no declaration, there was an error parsing it.  Just ignore
2354  // the initializer.
2355  if (RealDecl == 0)
2356    return;
2357
2358  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2359    // With declarators parsed the way they are, the parser cannot
2360    // distinguish between a normal initializer and a pure-specifier.
2361    // Thus this grotesque test.
2362    IntegerLiteral *IL;
2363    Expr *Init = static_cast<Expr *>(init.get());
2364    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2365        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2366      if (Method->isVirtual()) {
2367        Method->setPure();
2368
2369        // A class is abstract if at least one function is pure virtual.
2370        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2371      } else if (!Method->isInvalidDecl()) {
2372        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2373          << Method->getDeclName() << Init->getSourceRange();
2374        Method->setInvalidDecl();
2375      }
2376    } else {
2377      Diag(Method->getLocation(), diag::err_member_function_initialization)
2378        << Method->getDeclName() << Init->getSourceRange();
2379      Method->setInvalidDecl();
2380    }
2381    return;
2382  }
2383
2384  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2385  if (!VDecl) {
2386    if (getLangOptions().CPlusPlus &&
2387        RealDecl->getLexicalDeclContext()->isRecord() &&
2388        isa<NamedDecl>(RealDecl))
2389      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2390        << cast<NamedDecl>(RealDecl)->getDeclName();
2391    else
2392      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2393    RealDecl->setInvalidDecl();
2394    return;
2395  }
2396
2397  const VarDecl *Def = 0;
2398  if (VDecl->getDefinition(Def)) {
2399    Diag(VDecl->getLocation(), diag::err_redefinition)
2400      << VDecl->getDeclName();
2401    Diag(Def->getLocation(), diag::note_previous_definition);
2402    VDecl->setInvalidDecl();
2403    return;
2404  }
2405
2406  // Take ownership of the expression, now that we're sure we have somewhere
2407  // to put it.
2408  Expr *Init = static_cast<Expr *>(init.release());
2409  assert(Init && "missing initializer");
2410
2411  // Get the decls type and save a reference for later, since
2412  // CheckInitializerTypes may change it.
2413  QualType DclT = VDecl->getType(), SavT = DclT;
2414  if (VDecl->isBlockVarDecl()) {
2415    VarDecl::StorageClass SC = VDecl->getStorageClass();
2416    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2417      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2418      VDecl->setInvalidDecl();
2419    } else if (!VDecl->isInvalidDecl()) {
2420      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2421                                VDecl->getDeclName(), DirectInit))
2422        VDecl->setInvalidDecl();
2423
2424      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2425      // Don't check invalid declarations to avoid emitting useless diagnostics.
2426      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2427        if (SC == VarDecl::Static) // C99 6.7.8p4.
2428          CheckForConstantInitializer(Init, DclT);
2429      }
2430    }
2431  } else if (VDecl->isStaticDataMember() &&
2432             VDecl->getLexicalDeclContext()->isRecord()) {
2433    // This is an in-class initialization for a static data member, e.g.,
2434    //
2435    // struct S {
2436    //   static const int value = 17;
2437    // };
2438
2439    // Attach the initializer
2440    VDecl->setInit(Init);
2441
2442    // C++ [class.mem]p4:
2443    //   A member-declarator can contain a constant-initializer only
2444    //   if it declares a static member (9.4) of const integral or
2445    //   const enumeration type, see 9.4.2.
2446    QualType T = VDecl->getType();
2447    if (!T->isDependentType() &&
2448        (!Context.getCanonicalType(T).isConstQualified() ||
2449         !T->isIntegralType())) {
2450      Diag(VDecl->getLocation(), diag::err_member_initialization)
2451        << VDecl->getDeclName() << Init->getSourceRange();
2452      VDecl->setInvalidDecl();
2453    } else {
2454      // C++ [class.static.data]p4:
2455      //   If a static data member is of const integral or const
2456      //   enumeration type, its declaration in the class definition
2457      //   can specify a constant-initializer which shall be an
2458      //   integral constant expression (5.19).
2459      if (!Init->isTypeDependent() &&
2460          !Init->getType()->isIntegralType()) {
2461        // We have a non-dependent, non-integral or enumeration type.
2462        Diag(Init->getSourceRange().getBegin(),
2463             diag::err_in_class_initializer_non_integral_type)
2464          << Init->getType() << Init->getSourceRange();
2465        VDecl->setInvalidDecl();
2466      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2467        // Check whether the expression is a constant expression.
2468        llvm::APSInt Value;
2469        SourceLocation Loc;
2470        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2471          Diag(Loc, diag::err_in_class_initializer_non_constant)
2472            << Init->getSourceRange();
2473          VDecl->setInvalidDecl();
2474        } else if (!VDecl->getType()->isDependentType())
2475          ImpCastExprToType(Init, VDecl->getType());
2476      }
2477    }
2478  } else if (VDecl->isFileVarDecl()) {
2479    if (VDecl->getStorageClass() == VarDecl::Extern)
2480      Diag(VDecl->getLocation(), diag::warn_extern_init);
2481    if (!VDecl->isInvalidDecl())
2482      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2483                                VDecl->getDeclName(), DirectInit))
2484        VDecl->setInvalidDecl();
2485
2486    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2487    // Don't check invalid declarations to avoid emitting useless diagnostics.
2488    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2489      // C99 6.7.8p4. All file scoped initializers need to be constant.
2490      CheckForConstantInitializer(Init, DclT);
2491    }
2492  }
2493  // If the type changed, it means we had an incomplete type that was
2494  // completed by the initializer. For example:
2495  //   int ary[] = { 1, 3, 5 };
2496  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2497  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2498    VDecl->setType(DclT);
2499    Init->setType(DclT);
2500  }
2501
2502  // Attach the initializer to the decl.
2503  VDecl->setInit(Init);
2504  return;
2505}
2506
2507void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2508  Decl *RealDecl = dcl.getAs<Decl>();
2509
2510  // If there is no declaration, there was an error parsing it. Just ignore it.
2511  if (RealDecl == 0)
2512    return;
2513
2514  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2515    QualType Type = Var->getType();
2516    // C++ [dcl.init.ref]p3:
2517    //   The initializer can be omitted for a reference only in a
2518    //   parameter declaration (8.3.5), in the declaration of a
2519    //   function return type, in the declaration of a class member
2520    //   within its class declaration (9.2), and where the extern
2521    //   specifier is explicitly used.
2522    if (Type->isReferenceType() &&
2523        Var->getStorageClass() != VarDecl::Extern &&
2524        Var->getStorageClass() != VarDecl::PrivateExtern) {
2525      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2526        << Var->getDeclName()
2527        << SourceRange(Var->getLocation(), Var->getLocation());
2528      Var->setInvalidDecl();
2529      return;
2530    }
2531
2532    // C++ [dcl.init]p9:
2533    //
2534    //   If no initializer is specified for an object, and the object
2535    //   is of (possibly cv-qualified) non-POD class type (or array
2536    //   thereof), the object shall be default-initialized; if the
2537    //   object is of const-qualified type, the underlying class type
2538    //   shall have a user-declared default constructor.
2539    if (getLangOptions().CPlusPlus) {
2540      QualType InitType = Type;
2541      if (const ArrayType *Array = Context.getAsArrayType(Type))
2542        InitType = Array->getElementType();
2543      if (Var->getStorageClass() != VarDecl::Extern &&
2544          Var->getStorageClass() != VarDecl::PrivateExtern &&
2545          InitType->isRecordType()) {
2546        const CXXConstructorDecl *Constructor = 0;
2547        if (!RequireCompleteType(Var->getLocation(), InitType,
2548                                    diag::err_invalid_incomplete_type_use))
2549          Constructor
2550            = PerformInitializationByConstructor(InitType, 0, 0,
2551                                                 Var->getLocation(),
2552                                               SourceRange(Var->getLocation(),
2553                                                           Var->getLocation()),
2554                                                 Var->getDeclName(),
2555                                                 IK_Default);
2556        if (!Constructor)
2557          Var->setInvalidDecl();
2558      }
2559    }
2560
2561#if 0
2562    // FIXME: Temporarily disabled because we are not properly parsing
2563    // linkage specifications on declarations, e.g.,
2564    //
2565    //   extern "C" const CGPoint CGPointerZero;
2566    //
2567    // C++ [dcl.init]p9:
2568    //
2569    //     If no initializer is specified for an object, and the
2570    //     object is of (possibly cv-qualified) non-POD class type (or
2571    //     array thereof), the object shall be default-initialized; if
2572    //     the object is of const-qualified type, the underlying class
2573    //     type shall have a user-declared default
2574    //     constructor. Otherwise, if no initializer is specified for
2575    //     an object, the object and its subobjects, if any, have an
2576    //     indeterminate initial value; if the object or any of its
2577    //     subobjects are of const-qualified type, the program is
2578    //     ill-formed.
2579    //
2580    // This isn't technically an error in C, so we don't diagnose it.
2581    //
2582    // FIXME: Actually perform the POD/user-defined default
2583    // constructor check.
2584    if (getLangOptions().CPlusPlus &&
2585        Context.getCanonicalType(Type).isConstQualified() &&
2586        Var->getStorageClass() != VarDecl::Extern)
2587      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2588        << Var->getName()
2589        << SourceRange(Var->getLocation(), Var->getLocation());
2590#endif
2591  }
2592}
2593
2594Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2595                                                   unsigned NumDecls) {
2596  llvm::SmallVector<Decl*, 8> Decls;
2597
2598  for (unsigned i = 0; i != NumDecls; ++i)
2599    if (Decl *D = Group[i].getAs<Decl>())
2600      Decls.push_back(D);
2601
2602  // Perform semantic analysis that depends on having fully processed both
2603  // the declarator and initializer.
2604  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2605    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2606    if (!IDecl)
2607      continue;
2608    QualType T = IDecl->getType();
2609
2610    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2611    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2612    if (IDecl->isBlockVarDecl() &&
2613        IDecl->getStorageClass() != VarDecl::Extern) {
2614      if (!IDecl->isInvalidDecl() &&
2615          RequireCompleteType(IDecl->getLocation(), T,
2616                              diag::err_typecheck_decl_incomplete_type))
2617        IDecl->setInvalidDecl();
2618    }
2619    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2620    // object that has file scope without an initializer, and without a
2621    // storage-class specifier or with the storage-class specifier "static",
2622    // constitutes a tentative definition. Note: A tentative definition with
2623    // external linkage is valid (C99 6.2.2p5).
2624    if (IDecl->isTentativeDefinition(Context)) {
2625      QualType CheckType = T;
2626      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2627
2628      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2629      if (ArrayT) {
2630        CheckType = ArrayT->getElementType();
2631        DiagID = diag::err_illegal_decl_array_incomplete_type;
2632      }
2633
2634      if (IDecl->isInvalidDecl()) {
2635        // Do nothing with invalid declarations
2636      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2637                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2638        // C99 6.9.2p3: If the declaration of an identifier for an object is
2639        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2640        // declared type shall not be an incomplete type.
2641        IDecl->setInvalidDecl();
2642      }
2643    }
2644  }
2645  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2646                                                   &Decls[0], Decls.size()));
2647}
2648
2649
2650/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2651/// to introduce parameters into function prototype scope.
2652Sema::DeclPtrTy
2653Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2654  const DeclSpec &DS = D.getDeclSpec();
2655
2656  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2657  VarDecl::StorageClass StorageClass = VarDecl::None;
2658  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2659    StorageClass = VarDecl::Register;
2660  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2661    Diag(DS.getStorageClassSpecLoc(),
2662         diag::err_invalid_storage_class_in_func_decl);
2663    D.getMutableDeclSpec().ClearStorageClassSpecs();
2664  }
2665  if (DS.isThreadSpecified()) {
2666    Diag(DS.getThreadSpecLoc(),
2667         diag::err_invalid_storage_class_in_func_decl);
2668    D.getMutableDeclSpec().ClearStorageClassSpecs();
2669  }
2670  DiagnoseFunctionSpecifiers(D);
2671
2672  // Check that there are no default arguments inside the type of this
2673  // parameter (C++ only).
2674  if (getLangOptions().CPlusPlus)
2675    CheckExtraCXXDefaultArguments(D);
2676
2677  // In this context, we *do not* check D.getInvalidType(). If the declarator
2678  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2679  // though it will not reflect the user specified type.
2680  QualType parmDeclType = GetTypeForDeclarator(D, S);
2681  if (parmDeclType.isNull()) {
2682    D.setInvalidType(true);
2683    parmDeclType = Context.IntTy;
2684  }
2685
2686  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2687  // Can this happen for params?  We already checked that they don't conflict
2688  // among each other.  Here they can only shadow globals, which is ok.
2689  IdentifierInfo *II = D.getIdentifier();
2690  if (II) {
2691    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2692      if (PrevDecl->isTemplateParameter()) {
2693        // Maybe we will complain about the shadowed template parameter.
2694        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2695        // Just pretend that we didn't see the previous declaration.
2696        PrevDecl = 0;
2697      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2698        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2699
2700        // Recover by removing the name
2701        II = 0;
2702        D.SetIdentifier(0, D.getIdentifierLoc());
2703      }
2704    }
2705  }
2706
2707  // Parameters can not be abstract class types.
2708  // For record types, this is done by the AbstractClassUsageDiagnoser once
2709  // the class has been completely parsed.
2710  if (!CurContext->isRecord() &&
2711      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2712                             diag::err_abstract_type_in_decl,
2713                             AbstractParamType))
2714    D.setInvalidType(true);
2715
2716  QualType T = adjustParameterType(parmDeclType);
2717
2718  ParmVarDecl *New;
2719  if (T == parmDeclType) // parameter type did not need adjustment
2720    New = ParmVarDecl::Create(Context, CurContext,
2721                              D.getIdentifierLoc(), II,
2722                              parmDeclType, StorageClass,
2723                              0);
2724  else // keep track of both the adjusted and unadjusted types
2725    New = OriginalParmVarDecl::Create(Context, CurContext,
2726                                      D.getIdentifierLoc(), II, T,
2727                                      parmDeclType, StorageClass, 0);
2728
2729  if (D.getInvalidType())
2730    New->setInvalidDecl();
2731
2732  // Parameter declarators cannot be interface types. All ObjC objects are
2733  // passed by reference.
2734  if (T->isObjCInterfaceType()) {
2735    Diag(D.getIdentifierLoc(),
2736         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2737    New->setInvalidDecl();
2738  }
2739
2740  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2741  if (D.getCXXScopeSpec().isSet()) {
2742    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2743      << D.getCXXScopeSpec().getRange();
2744    New->setInvalidDecl();
2745  }
2746
2747  // Add the parameter declaration into this scope.
2748  S->AddDecl(DeclPtrTy::make(New));
2749  if (II)
2750    IdResolver.AddDecl(New);
2751
2752  ProcessDeclAttributes(New, D);
2753  return DeclPtrTy::make(New);
2754}
2755
2756void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2757                                           SourceLocation LocAfterDecls) {
2758  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2759         "Not a function declarator!");
2760  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2761
2762  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2763  // for a K&R function.
2764  if (!FTI.hasPrototype) {
2765    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2766      --i;
2767      if (FTI.ArgInfo[i].Param == 0) {
2768        std::string Code = "  int ";
2769        Code += FTI.ArgInfo[i].Ident->getName();
2770        Code += ";\n";
2771        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2772          << FTI.ArgInfo[i].Ident
2773          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2774
2775        // Implicitly declare the argument as type 'int' for lack of a better
2776        // type.
2777        DeclSpec DS;
2778        const char* PrevSpec; // unused
2779        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2780                           PrevSpec);
2781        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2782        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2783        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2784      }
2785    }
2786  }
2787}
2788
2789Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2790                                              Declarator &D) {
2791  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2792  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2793         "Not a function declarator!");
2794  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2795
2796  if (FTI.hasPrototype) {
2797    // FIXME: Diagnose arguments without names in C.
2798  }
2799
2800  Scope *ParentScope = FnBodyScope->getParent();
2801
2802  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2803  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2804}
2805
2806Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2807  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2808
2809  // See if this is a redefinition.
2810  const FunctionDecl *Definition;
2811  if (FD->getBody(Definition)) {
2812    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2813    Diag(Definition->getLocation(), diag::note_previous_definition);
2814  }
2815
2816  // Builtin functions cannot be defined.
2817  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2818    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2819      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2820      FD->setInvalidDecl();
2821    }
2822  }
2823
2824  // The return type of a function definition must be complete
2825  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2826  QualType ResultType = FD->getResultType();
2827  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2828      RequireCompleteType(FD->getLocation(), ResultType,
2829                          diag::err_func_def_incomplete_result))
2830    FD->setInvalidDecl();
2831
2832  // GNU warning -Wmissing-prototypes:
2833  //   Warn if a global function is defined without a previous
2834  //   prototype declaration. This warning is issued even if the
2835  //   definition itself provides a prototype. The aim is to detect
2836  //   global functions that fail to be declared in header files.
2837  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2838      !FD->isMain()) {
2839    bool MissingPrototype = true;
2840    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2841         Prev; Prev = Prev->getPreviousDeclaration()) {
2842      // Ignore any declarations that occur in function or method
2843      // scope, because they aren't visible from the header.
2844      if (Prev->getDeclContext()->isFunctionOrMethod())
2845        continue;
2846
2847      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2848      break;
2849    }
2850
2851    if (MissingPrototype)
2852      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2853  }
2854
2855  PushDeclContext(FnBodyScope, FD);
2856
2857  // Check the validity of our function parameters
2858  CheckParmsForFunctionDef(FD);
2859
2860  // Introduce our parameters into the function scope
2861  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2862    ParmVarDecl *Param = FD->getParamDecl(p);
2863    Param->setOwningFunction(FD);
2864
2865    // If this has an identifier, add it to the scope stack.
2866    if (Param->getIdentifier())
2867      PushOnScopeChains(Param, FnBodyScope);
2868  }
2869
2870  // Checking attributes of current function definition
2871  // dllimport attribute.
2872  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2873    // dllimport attribute cannot be applied to definition.
2874    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2875      Diag(FD->getLocation(),
2876           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2877        << "dllimport";
2878      FD->setInvalidDecl();
2879      return DeclPtrTy::make(FD);
2880    } else {
2881      // If a symbol previously declared dllimport is later defined, the
2882      // attribute is ignored in subsequent references, and a warning is
2883      // emitted.
2884      Diag(FD->getLocation(),
2885           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2886        << FD->getNameAsCString() << "dllimport";
2887    }
2888  }
2889  return DeclPtrTy::make(FD);
2890}
2891
2892static bool StatementCreatesScope(Stmt* S) {
2893  DeclStmt *DS = dyn_cast<DeclStmt>(S);
2894  if (DS == 0) return false;
2895
2896  for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
2897       I != E; ++I) {
2898    if (VarDecl *D = dyn_cast<VarDecl>(*I)) {
2899      if (D->getType()->isVariablyModifiedType() ||
2900          D->hasAttr<CleanupAttr>())
2901        return true;
2902    } else if (TypedefDecl *D = dyn_cast<TypedefDecl>(*I)) {
2903      if (D->getUnderlyingType()->isVariablyModifiedType())
2904        return true;
2905    }
2906  }
2907
2908  return false;
2909}
2910
2911
2912void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2913                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2914                                    std::vector<void*>& ScopeStack,
2915                                    Stmt* CurStmt,
2916                                    Stmt* ParentCompoundStmt) {
2917  for (Stmt::child_iterator i = CurStmt->child_begin();
2918       i != CurStmt->child_end(); ++i) {
2919    if (!*i) continue;
2920    if (StatementCreatesScope(*i))  {
2921      ScopeStack.push_back(*i);
2922      PopScopeMap[*i] = ParentCompoundStmt;
2923    } else if (isa<LabelStmt>(CurStmt)) {
2924      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2925    }
2926    if (isa<DeclStmt>(*i)) continue;
2927    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2928    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2929                             *i, CurCompound);
2930  }
2931
2932  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2933    ScopeStack.pop_back();
2934  }
2935}
2936
2937void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2938                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2939                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2940                                   std::vector<void*>& ScopeStack,
2941                                   Stmt* CurStmt) {
2942  for (Stmt::child_iterator i = CurStmt->child_begin();
2943       i != CurStmt->child_end(); ++i) {
2944    if (!*i) continue;
2945    if (StatementCreatesScope(*i))  {
2946      ScopeStack.push_back(*i);
2947    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2948      void* LScope = LabelScopeMap[GS->getLabel()];
2949      if (LScope) {
2950        bool foundScopeInStack = false;
2951        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2952          if (LScope == ScopeStack[i-1]) {
2953            foundScopeInStack = true;
2954            break;
2955          }
2956        }
2957        if (!foundScopeInStack) {
2958          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2959        }
2960      }
2961    }
2962    if (isa<DeclStmt>(*i)) continue;
2963    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2964                            ScopeStack, *i);
2965  }
2966
2967  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2968    ScopeStack.pop_back();
2969  }
2970}
2971
2972Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2973  Decl *dcl = D.getAs<Decl>();
2974  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2975  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2976    FD->setBody(cast<CompoundStmt>(Body));
2977    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2978  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2979    assert(MD == getCurMethodDecl() && "Method parsing confused");
2980    MD->setBody(cast<CompoundStmt>(Body));
2981  } else {
2982    Body->Destroy(Context);
2983    return DeclPtrTy();
2984  }
2985  PopDeclContext();
2986  // Verify and clean out per-function state.
2987
2988  bool HaveLabels = !LabelMap.empty();
2989  // Check goto/label use.
2990  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2991       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2992    // Verify that we have no forward references left.  If so, there was a goto
2993    // or address of a label taken, but no definition of it.  Label fwd
2994    // definitions are indicated with a null substmt.
2995    if (I->second->getSubStmt() == 0) {
2996      LabelStmt *L = I->second;
2997      // Emit error.
2998      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2999
3000      // At this point, we have gotos that use the bogus label.  Stitch it into
3001      // the function body so that they aren't leaked and that the AST is well
3002      // formed.
3003      if (Body) {
3004#if 0
3005        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3006        // and the AST is malformed anyway.  We should just blow away 'L'.
3007        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3008        cast<CompoundStmt>(Body)->push_back(L);
3009#else
3010        L->Destroy(Context);
3011#endif
3012      } else {
3013        // The whole function wasn't parsed correctly, just delete this.
3014        L->Destroy(Context);
3015      }
3016    }
3017  }
3018  LabelMap.clear();
3019
3020  if (!Body) return D;
3021
3022  if (HaveLabels) {
3023    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
3024    llvm::DenseMap<void*, Stmt*> PopScopeMap;
3025    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
3026    std::vector<void*> ScopeStack;
3027    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
3028    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
3029  }
3030
3031  return D;
3032}
3033
3034/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3035/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3036NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3037                                          IdentifierInfo &II, Scope *S) {
3038  // Before we produce a declaration for an implicitly defined
3039  // function, see whether there was a locally-scoped declaration of
3040  // this name as a function or variable. If so, use that
3041  // (non-visible) declaration, and complain about it.
3042  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3043    = LocallyScopedExternalDecls.find(&II);
3044  if (Pos != LocallyScopedExternalDecls.end()) {
3045    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3046    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3047    return Pos->second;
3048  }
3049
3050  // Extension in C99.  Legal in C90, but warn about it.
3051  if (getLangOptions().C99)
3052    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3053  else
3054    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3055
3056  // FIXME: handle stuff like:
3057  // void foo() { extern float X(); }
3058  // void bar() { X(); }  <-- implicit decl for X in another scope.
3059
3060  // Set a Declarator for the implicit definition: int foo();
3061  const char *Dummy;
3062  DeclSpec DS;
3063  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3064  Error = Error; // Silence warning.
3065  assert(!Error && "Error setting up implicit decl!");
3066  Declarator D(DS, Declarator::BlockContext);
3067  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3068                                             0, 0, 0, Loc, D),
3069                SourceLocation());
3070  D.SetIdentifier(&II, Loc);
3071
3072  // Insert this function into translation-unit scope.
3073
3074  DeclContext *PrevDC = CurContext;
3075  CurContext = Context.getTranslationUnitDecl();
3076
3077  FunctionDecl *FD =
3078 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3079  FD->setImplicit();
3080
3081  CurContext = PrevDC;
3082
3083  AddKnownFunctionAttributes(FD);
3084
3085  return FD;
3086}
3087
3088/// \brief Adds any function attributes that we know a priori based on
3089/// the declaration of this function.
3090///
3091/// These attributes can apply both to implicitly-declared builtins
3092/// (like __builtin___printf_chk) or to library-declared functions
3093/// like NSLog or printf.
3094void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3095  if (FD->isInvalidDecl())
3096    return;
3097
3098  // If this is a built-in function, map its builtin attributes to
3099  // actual attributes.
3100  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3101    // Handle printf-formatting attributes.
3102    unsigned FormatIdx;
3103    bool HasVAListArg;
3104    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3105      if (!FD->getAttr<FormatAttr>())
3106        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3107                                               FormatIdx + 2));
3108    }
3109
3110    // Mark const if we don't care about errno and that is the only
3111    // thing preventing the function from being const. This allows
3112    // IRgen to use LLVM intrinsics for such functions.
3113    if (!getLangOptions().MathErrno &&
3114        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3115      if (!FD->getAttr<ConstAttr>())
3116        FD->addAttr(::new (Context) ConstAttr());
3117    }
3118  }
3119
3120  IdentifierInfo *Name = FD->getIdentifier();
3121  if (!Name)
3122    return;
3123  if ((!getLangOptions().CPlusPlus &&
3124       FD->getDeclContext()->isTranslationUnit()) ||
3125      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3126       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3127       LinkageSpecDecl::lang_c)) {
3128    // Okay: this could be a libc/libm/Objective-C function we know
3129    // about.
3130  } else
3131    return;
3132
3133  unsigned KnownID;
3134  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3135    if (KnownFunctionIDs[KnownID] == Name)
3136      break;
3137
3138  switch (KnownID) {
3139  case id_NSLog:
3140  case id_NSLogv:
3141    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3142      // FIXME: We known better than our headers.
3143      const_cast<FormatAttr *>(Format)->setType("printf");
3144    } else
3145      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3146    break;
3147
3148  case id_asprintf:
3149  case id_vasprintf:
3150    if (!FD->getAttr<FormatAttr>())
3151      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3152    break;
3153
3154  default:
3155    // Unknown function or known function without any attributes to
3156    // add. Do nothing.
3157    break;
3158  }
3159}
3160
3161TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3162  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3163  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3164
3165  // Scope manipulation handled by caller.
3166  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3167                                           D.getIdentifierLoc(),
3168                                           D.getIdentifier(),
3169                                           T);
3170
3171  if (TagType *TT = dyn_cast<TagType>(T)) {
3172    TagDecl *TD = TT->getDecl();
3173
3174    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3175    // keep track of the TypedefDecl.
3176    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3177      TD->setTypedefForAnonDecl(NewTD);
3178  }
3179
3180  if (D.getInvalidType())
3181    NewTD->setInvalidDecl();
3182  return NewTD;
3183}
3184
3185/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3186/// former case, Name will be non-null.  In the later case, Name will be null.
3187/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3188/// reference/declaration/definition of a tag.
3189Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3190                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3191                               IdentifierInfo *Name, SourceLocation NameLoc,
3192                               AttributeList *Attr, AccessSpecifier AS) {
3193  // If this is not a definition, it must have a name.
3194  assert((Name != 0 || TK == TK_Definition) &&
3195         "Nameless record must be a definition!");
3196
3197  TagDecl::TagKind Kind;
3198  switch (TagSpec) {
3199  default: assert(0 && "Unknown tag type!");
3200  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3201  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3202  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3203  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3204  }
3205
3206  DeclContext *SearchDC = CurContext;
3207  DeclContext *DC = CurContext;
3208  NamedDecl *PrevDecl = 0;
3209
3210  bool Invalid = false;
3211
3212  if (Name && SS.isNotEmpty()) {
3213    // We have a nested-name tag ('struct foo::bar').
3214
3215    // Check for invalid 'foo::'.
3216    if (SS.isInvalid()) {
3217      Name = 0;
3218      goto CreateNewDecl;
3219    }
3220
3221    // FIXME: RequireCompleteDeclContext(SS)?
3222    DC = computeDeclContext(SS);
3223    SearchDC = DC;
3224    // Look-up name inside 'foo::'.
3225    PrevDecl = dyn_cast_or_null<TagDecl>(
3226                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3227
3228    // A tag 'foo::bar' must already exist.
3229    if (PrevDecl == 0) {
3230      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3231      Name = 0;
3232      goto CreateNewDecl;
3233    }
3234  } else if (Name) {
3235    // If this is a named struct, check to see if there was a previous forward
3236    // declaration or definition.
3237    // FIXME: We're looking into outer scopes here, even when we
3238    // shouldn't be. Doing so can result in ambiguities that we
3239    // shouldn't be diagnosing.
3240    LookupResult R = LookupName(S, Name, LookupTagName,
3241                                /*RedeclarationOnly=*/(TK != TK_Reference));
3242    if (R.isAmbiguous()) {
3243      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3244      // FIXME: This is not best way to recover from case like:
3245      //
3246      // struct S s;
3247      //
3248      // causes needless "incomplete type" error later.
3249      Name = 0;
3250      PrevDecl = 0;
3251      Invalid = true;
3252    }
3253    else
3254      PrevDecl = R;
3255
3256    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3257      // FIXME: This makes sure that we ignore the contexts associated
3258      // with C structs, unions, and enums when looking for a matching
3259      // tag declaration or definition. See the similar lookup tweak
3260      // in Sema::LookupName; is there a better way to deal with this?
3261      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3262        SearchDC = SearchDC->getParent();
3263    }
3264  }
3265
3266  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3267    // Maybe we will complain about the shadowed template parameter.
3268    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3269    // Just pretend that we didn't see the previous declaration.
3270    PrevDecl = 0;
3271  }
3272
3273  if (PrevDecl) {
3274    // Check whether the previous declaration is usable.
3275    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3276
3277    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3278      // If this is a use of a previous tag, or if the tag is already declared
3279      // in the same scope (so that the definition/declaration completes or
3280      // rementions the tag), reuse the decl.
3281      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3282        // Make sure that this wasn't declared as an enum and now used as a
3283        // struct or something similar.
3284        if (PrevTagDecl->getTagKind() != Kind) {
3285          bool SafeToContinue
3286            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3287               Kind != TagDecl::TK_enum);
3288          if (SafeToContinue)
3289            Diag(KWLoc, diag::err_use_with_wrong_tag)
3290              << Name
3291              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3292                                                  PrevTagDecl->getKindName());
3293          else
3294            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3295          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3296
3297          if (SafeToContinue)
3298            Kind = PrevTagDecl->getTagKind();
3299          else {
3300            // Recover by making this an anonymous redefinition.
3301            Name = 0;
3302            PrevDecl = 0;
3303            Invalid = true;
3304          }
3305        }
3306
3307        if (!Invalid) {
3308          // If this is a use, just return the declaration we found.
3309
3310          // FIXME: In the future, return a variant or some other clue
3311          // for the consumer of this Decl to know it doesn't own it.
3312          // For our current ASTs this shouldn't be a problem, but will
3313          // need to be changed with DeclGroups.
3314          if (TK == TK_Reference)
3315            return DeclPtrTy::make(PrevDecl);
3316
3317          // Diagnose attempts to redefine a tag.
3318          if (TK == TK_Definition) {
3319            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3320              Diag(NameLoc, diag::err_redefinition) << Name;
3321              Diag(Def->getLocation(), diag::note_previous_definition);
3322              // If this is a redefinition, recover by making this
3323              // struct be anonymous, which will make any later
3324              // references get the previous definition.
3325              Name = 0;
3326              PrevDecl = 0;
3327              Invalid = true;
3328            } else {
3329              // If the type is currently being defined, complain
3330              // about a nested redefinition.
3331              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3332              if (Tag->isBeingDefined()) {
3333                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3334                Diag(PrevTagDecl->getLocation(),
3335                     diag::note_previous_definition);
3336                Name = 0;
3337                PrevDecl = 0;
3338                Invalid = true;
3339              }
3340            }
3341
3342            // Okay, this is definition of a previously declared or referenced
3343            // tag PrevDecl. We're going to create a new Decl for it.
3344          }
3345        }
3346        // If we get here we have (another) forward declaration or we
3347        // have a definition.  Just create a new decl.
3348      } else {
3349        // If we get here, this is a definition of a new tag type in a nested
3350        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3351        // new decl/type.  We set PrevDecl to NULL so that the entities
3352        // have distinct types.
3353        PrevDecl = 0;
3354      }
3355      // If we get here, we're going to create a new Decl. If PrevDecl
3356      // is non-NULL, it's a definition of the tag declared by
3357      // PrevDecl. If it's NULL, we have a new definition.
3358    } else {
3359      // PrevDecl is a namespace, template, or anything else
3360      // that lives in the IDNS_Tag identifier namespace.
3361      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3362        // The tag name clashes with a namespace name, issue an error and
3363        // recover by making this tag be anonymous.
3364        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3365        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3366        Name = 0;
3367        PrevDecl = 0;
3368        Invalid = true;
3369      } else {
3370        // The existing declaration isn't relevant to us; we're in a
3371        // new scope, so clear out the previous declaration.
3372        PrevDecl = 0;
3373      }
3374    }
3375  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3376             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3377    // C.scope.pdecl]p5:
3378    //   -- for an elaborated-type-specifier of the form
3379    //
3380    //          class-key identifier
3381    //
3382    //      if the elaborated-type-specifier is used in the
3383    //      decl-specifier-seq or parameter-declaration-clause of a
3384    //      function defined in namespace scope, the identifier is
3385    //      declared as a class-name in the namespace that contains
3386    //      the declaration; otherwise, except as a friend
3387    //      declaration, the identifier is declared in the smallest
3388    //      non-class, non-function-prototype scope that contains the
3389    //      declaration.
3390    //
3391    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3392    // C structs and unions.
3393    //
3394    // GNU C also supports this behavior as part of its incomplete
3395    // enum types extension, while GNU C++ does not.
3396    //
3397    // Find the context where we'll be declaring the tag.
3398    // FIXME: We would like to maintain the current DeclContext as the
3399    // lexical context,
3400    while (SearchDC->isRecord())
3401      SearchDC = SearchDC->getParent();
3402
3403    // Find the scope where we'll be declaring the tag.
3404    while (S->isClassScope() ||
3405           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3406           ((S->getFlags() & Scope::DeclScope) == 0) ||
3407           (S->getEntity() &&
3408            ((DeclContext *)S->getEntity())->isTransparentContext()))
3409      S = S->getParent();
3410  }
3411
3412CreateNewDecl:
3413
3414  // If there is an identifier, use the location of the identifier as the
3415  // location of the decl, otherwise use the location of the struct/union
3416  // keyword.
3417  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3418
3419  // Otherwise, create a new declaration. If there is a previous
3420  // declaration of the same entity, the two will be linked via
3421  // PrevDecl.
3422  TagDecl *New;
3423
3424  if (Kind == TagDecl::TK_enum) {
3425    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3426    // enum X { A, B, C } D;    D should chain to X.
3427    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3428                           cast_or_null<EnumDecl>(PrevDecl));
3429    // If this is an undefined enum, warn.
3430    if (TK != TK_Definition && !Invalid)  {
3431      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3432                                              : diag::ext_forward_ref_enum;
3433      Diag(Loc, DK);
3434    }
3435  } else {
3436    // struct/union/class
3437
3438    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3439    // struct X { int A; } D;    D should chain to X.
3440    if (getLangOptions().CPlusPlus)
3441      // FIXME: Look for a way to use RecordDecl for simple structs.
3442      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3443                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3444    else
3445      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3446                               cast_or_null<RecordDecl>(PrevDecl));
3447  }
3448
3449  if (Kind != TagDecl::TK_enum) {
3450    // Handle #pragma pack: if the #pragma pack stack has non-default
3451    // alignment, make up a packed attribute for this decl. These
3452    // attributes are checked when the ASTContext lays out the
3453    // structure.
3454    //
3455    // It is important for implementing the correct semantics that this
3456    // happen here (in act on tag decl). The #pragma pack stack is
3457    // maintained as a result of parser callbacks which can occur at
3458    // many points during the parsing of a struct declaration (because
3459    // the #pragma tokens are effectively skipped over during the
3460    // parsing of the struct).
3461    if (unsigned Alignment = getPragmaPackAlignment())
3462      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3463  }
3464
3465  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3466    // C++ [dcl.typedef]p3:
3467    //   [...] Similarly, in a given scope, a class or enumeration
3468    //   shall not be declared with the same name as a typedef-name
3469    //   that is declared in that scope and refers to a type other
3470    //   than the class or enumeration itself.
3471    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3472    TypedefDecl *PrevTypedef = 0;
3473    if (Lookup.getKind() == LookupResult::Found)
3474      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3475
3476    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3477        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3478          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3479      Diag(Loc, diag::err_tag_definition_of_typedef)
3480        << Context.getTypeDeclType(New)
3481        << PrevTypedef->getUnderlyingType();
3482      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3483      Invalid = true;
3484    }
3485  }
3486
3487  if (Invalid)
3488    New->setInvalidDecl();
3489
3490  if (Attr)
3491    ProcessDeclAttributeList(New, Attr);
3492
3493  // If we're declaring or defining a tag in function prototype scope
3494  // in C, note that this type can only be used within the function.
3495  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3496    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3497
3498  // Set the lexical context. If the tag has a C++ scope specifier, the
3499  // lexical context will be different from the semantic context.
3500  New->setLexicalDeclContext(CurContext);
3501
3502  // Set the access specifier.
3503  SetMemberAccessSpecifier(New, PrevDecl, AS);
3504
3505  if (TK == TK_Definition)
3506    New->startDefinition();
3507
3508  // If this has an identifier, add it to the scope stack.
3509  if (Name) {
3510    S = getNonFieldDeclScope(S);
3511    PushOnScopeChains(New, S);
3512  } else {
3513    CurContext->addDecl(Context, New);
3514  }
3515
3516  return DeclPtrTy::make(New);
3517}
3518
3519void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3520  AdjustDeclIfTemplate(TagD);
3521  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3522
3523  // Enter the tag context.
3524  PushDeclContext(S, Tag);
3525
3526  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3527    FieldCollector->StartClass();
3528
3529    if (Record->getIdentifier()) {
3530      // C++ [class]p2:
3531      //   [...] The class-name is also inserted into the scope of the
3532      //   class itself; this is known as the injected-class-name. For
3533      //   purposes of access checking, the injected-class-name is treated
3534      //   as if it were a public member name.
3535      CXXRecordDecl *InjectedClassName
3536        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3537                                CurContext, Record->getLocation(),
3538                                Record->getIdentifier(), Record);
3539      InjectedClassName->setImplicit();
3540      InjectedClassName->setAccess(AS_public);
3541      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3542        InjectedClassName->setDescribedClassTemplate(Template);
3543      PushOnScopeChains(InjectedClassName, S);
3544      assert(InjectedClassName->isInjectedClassName() &&
3545             "Broken injected-class-name");
3546    }
3547  }
3548}
3549
3550void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3551  AdjustDeclIfTemplate(TagD);
3552  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3553
3554  if (isa<CXXRecordDecl>(Tag))
3555    FieldCollector->FinishClass();
3556
3557  // Exit this scope of this tag's definition.
3558  PopDeclContext();
3559
3560  // Notify the consumer that we've defined a tag.
3561  Consumer.HandleTagDeclDefinition(Tag);
3562}
3563
3564bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3565                          QualType FieldTy, const Expr *BitWidth) {
3566  // C99 6.7.2.1p4 - verify the field type.
3567  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3568  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3569    // Handle incomplete types with specific error.
3570    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3571      return true;
3572    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3573      << FieldName << FieldTy << BitWidth->getSourceRange();
3574  }
3575
3576  // If the bit-width is type- or value-dependent, don't try to check
3577  // it now.
3578  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3579    return false;
3580
3581  llvm::APSInt Value;
3582  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3583    return true;
3584
3585  // Zero-width bitfield is ok for anonymous field.
3586  if (Value == 0 && FieldName)
3587    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3588
3589  if (Value.isSigned() && Value.isNegative())
3590    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3591             << FieldName << Value.toString(10);
3592
3593  if (!FieldTy->isDependentType()) {
3594    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3595    // FIXME: We won't need the 0 size once we check that the field type is valid.
3596    if (TypeSize && Value.getZExtValue() > TypeSize)
3597      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3598        << FieldName << (unsigned)TypeSize;
3599  }
3600
3601  return false;
3602}
3603
3604/// ActOnField - Each field of a struct/union/class is passed into this in order
3605/// to create a FieldDecl object for it.
3606Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3607                                 SourceLocation DeclStart,
3608                                 Declarator &D, ExprTy *BitfieldWidth) {
3609  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3610                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3611                               AS_public);
3612  return DeclPtrTy::make(Res);
3613}
3614
3615/// HandleField - Analyze a field of a C struct or a C++ data member.
3616///
3617FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3618                             SourceLocation DeclStart,
3619                             Declarator &D, Expr *BitWidth,
3620                             AccessSpecifier AS) {
3621  IdentifierInfo *II = D.getIdentifier();
3622  SourceLocation Loc = DeclStart;
3623  if (II) Loc = D.getIdentifierLoc();
3624
3625  QualType T = GetTypeForDeclarator(D, S);
3626
3627  if (getLangOptions().CPlusPlus) {
3628    CheckExtraCXXDefaultArguments(D);
3629  }
3630
3631  DiagnoseFunctionSpecifiers(D);
3632
3633  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3634  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3635    PrevDecl = 0;
3636
3637  FieldDecl *NewFD
3638    = CheckFieldDecl(II, T, Record, Loc,
3639               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3640                     BitWidth, AS, PrevDecl, &D);
3641  if (NewFD->isInvalidDecl() && PrevDecl) {
3642    // Don't introduce NewFD into scope; there's already something
3643    // with the same name in the same scope.
3644  } else if (II) {
3645    PushOnScopeChains(NewFD, S);
3646  } else
3647    Record->addDecl(Context, NewFD);
3648
3649  return NewFD;
3650}
3651
3652/// \brief Build a new FieldDecl and check its well-formedness.
3653///
3654/// This routine builds a new FieldDecl given the fields name, type,
3655/// record, etc. \p PrevDecl should refer to any previous declaration
3656/// with the same name and in the same scope as the field to be
3657/// created.
3658///
3659/// \returns a new FieldDecl.
3660///
3661/// \todo The Declarator argument is a hack. It will be removed once
3662FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3663                                RecordDecl *Record, SourceLocation Loc,
3664                                bool Mutable, Expr *BitWidth,
3665                                AccessSpecifier AS, NamedDecl *PrevDecl,
3666                                Declarator *D) {
3667  IdentifierInfo *II = Name.getAsIdentifierInfo();
3668  bool InvalidDecl = false;
3669
3670  // If we receive a broken type, recover by assuming 'int' and
3671  // marking this declaration as invalid.
3672  if (T.isNull()) {
3673    InvalidDecl = true;
3674    T = Context.IntTy;
3675  }
3676
3677  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3678  // than a variably modified type.
3679  if (T->isVariablyModifiedType()) {
3680    bool SizeIsNegative;
3681    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3682                                                           SizeIsNegative);
3683    if (!FixedTy.isNull()) {
3684      Diag(Loc, diag::warn_illegal_constant_array_size);
3685      T = FixedTy;
3686    } else {
3687      if (SizeIsNegative)
3688        Diag(Loc, diag::err_typecheck_negative_array_size);
3689      else
3690        Diag(Loc, diag::err_typecheck_field_variable_size);
3691      T = Context.IntTy;
3692      InvalidDecl = true;
3693    }
3694  }
3695
3696  // Fields can not have abstract class types
3697  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3698                             AbstractFieldType))
3699    InvalidDecl = true;
3700
3701  // If this is declared as a bit-field, check the bit-field.
3702  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3703    InvalidDecl = true;
3704    DeleteExpr(BitWidth);
3705    BitWidth = 0;
3706  }
3707
3708  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3709                                       Mutable);
3710
3711  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3712    Diag(Loc, diag::err_duplicate_member) << II;
3713    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3714    NewFD->setInvalidDecl();
3715    Record->setInvalidDecl();
3716  }
3717
3718  if (getLangOptions().CPlusPlus && !T->isPODType())
3719    cast<CXXRecordDecl>(Record)->setPOD(false);
3720
3721  // FIXME: We need to pass in the attributes given an AST
3722  // representation, not a parser representation.
3723  if (D)
3724    ProcessDeclAttributes(NewFD, *D);
3725
3726  if (T.isObjCGCWeak())
3727    Diag(Loc, diag::warn_attribute_weak_on_field);
3728
3729  if (InvalidDecl)
3730    NewFD->setInvalidDecl();
3731
3732  NewFD->setAccess(AS);
3733
3734  // C++ [dcl.init.aggr]p1:
3735  //   An aggregate is an array or a class (clause 9) with [...] no
3736  //   private or protected non-static data members (clause 11).
3737  // A POD must be an aggregate.
3738  if (getLangOptions().CPlusPlus &&
3739      (AS == AS_private || AS == AS_protected)) {
3740    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3741    CXXRecord->setAggregate(false);
3742    CXXRecord->setPOD(false);
3743  }
3744
3745  return NewFD;
3746}
3747
3748/// TranslateIvarVisibility - Translate visibility from a token ID to an
3749///  AST enum value.
3750static ObjCIvarDecl::AccessControl
3751TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3752  switch (ivarVisibility) {
3753  default: assert(0 && "Unknown visitibility kind");
3754  case tok::objc_private: return ObjCIvarDecl::Private;
3755  case tok::objc_public: return ObjCIvarDecl::Public;
3756  case tok::objc_protected: return ObjCIvarDecl::Protected;
3757  case tok::objc_package: return ObjCIvarDecl::Package;
3758  }
3759}
3760
3761/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3762/// in order to create an IvarDecl object for it.
3763Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3764                                SourceLocation DeclStart,
3765                                Declarator &D, ExprTy *BitfieldWidth,
3766                                tok::ObjCKeywordKind Visibility) {
3767
3768  IdentifierInfo *II = D.getIdentifier();
3769  Expr *BitWidth = (Expr*)BitfieldWidth;
3770  SourceLocation Loc = DeclStart;
3771  if (II) Loc = D.getIdentifierLoc();
3772
3773  // FIXME: Unnamed fields can be handled in various different ways, for
3774  // example, unnamed unions inject all members into the struct namespace!
3775
3776  QualType T = GetTypeForDeclarator(D, S);
3777  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3778  bool InvalidDecl = false;
3779
3780  if (BitWidth) {
3781    // 6.7.2.1p3, 6.7.2.1p4
3782    if (VerifyBitField(Loc, II, T, BitWidth)) {
3783      InvalidDecl = true;
3784      DeleteExpr(BitWidth);
3785      BitWidth = 0;
3786    }
3787  } else {
3788    // Not a bitfield.
3789
3790    // validate II.
3791
3792  }
3793
3794  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3795  // than a variably modified type.
3796  if (T->isVariablyModifiedType()) {
3797    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3798    InvalidDecl = true;
3799  }
3800
3801  // Get the visibility (access control) for this ivar.
3802  ObjCIvarDecl::AccessControl ac =
3803    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3804                                        : ObjCIvarDecl::None;
3805
3806  // Construct the decl.
3807  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3808                                             (Expr *)BitfieldWidth);
3809
3810  if (II) {
3811    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3812    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3813        && !isa<TagDecl>(PrevDecl)) {
3814      Diag(Loc, diag::err_duplicate_member) << II;
3815      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3816      NewID->setInvalidDecl();
3817    }
3818  }
3819
3820  // Process attributes attached to the ivar.
3821  ProcessDeclAttributes(NewID, D);
3822
3823  if (D.getInvalidType() || InvalidDecl)
3824    NewID->setInvalidDecl();
3825
3826  if (II) {
3827    // FIXME: When interfaces are DeclContexts, we'll need to add
3828    // these to the interface.
3829    S->AddDecl(DeclPtrTy::make(NewID));
3830    IdResolver.AddDecl(NewID);
3831  }
3832
3833  return DeclPtrTy::make(NewID);
3834}
3835
3836void Sema::ActOnFields(Scope* S,
3837                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3838                       DeclPtrTy *Fields, unsigned NumFields,
3839                       SourceLocation LBrac, SourceLocation RBrac,
3840                       AttributeList *Attr) {
3841  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3842  assert(EnclosingDecl && "missing record or interface decl");
3843
3844  // If the decl this is being inserted into is invalid, then it may be a
3845  // redeclaration or some other bogus case.  Don't try to add fields to it.
3846  if (EnclosingDecl->isInvalidDecl()) {
3847    // FIXME: Deallocate fields?
3848    return;
3849  }
3850
3851
3852  // Verify that all the fields are okay.
3853  unsigned NumNamedMembers = 0;
3854  llvm::SmallVector<FieldDecl*, 32> RecFields;
3855
3856  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3857  for (unsigned i = 0; i != NumFields; ++i) {
3858    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3859
3860    // Get the type for the field.
3861    Type *FDTy = FD->getType().getTypePtr();
3862
3863    if (!FD->isAnonymousStructOrUnion()) {
3864      // Remember all fields written by the user.
3865      RecFields.push_back(FD);
3866    }
3867
3868    // If the field is already invalid for some reason, don't emit more
3869    // diagnostics about it.
3870    if (FD->isInvalidDecl())
3871      continue;
3872
3873    // C99 6.7.2.1p2:
3874    //   A structure or union shall not contain a member with
3875    //   incomplete or function type (hence, a structure shall not
3876    //   contain an instance of itself, but may contain a pointer to
3877    //   an instance of itself), except that the last member of a
3878    //   structure with more than one named member may have incomplete
3879    //   array type; such a structure (and any union containing,
3880    //   possibly recursively, a member that is such a structure)
3881    //   shall not be a member of a structure or an element of an
3882    //   array.
3883    if (FDTy->isFunctionType()) {
3884      // Field declared as a function.
3885      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3886        << FD->getDeclName();
3887      FD->setInvalidDecl();
3888      EnclosingDecl->setInvalidDecl();
3889      continue;
3890    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3891               Record && Record->isStruct()) {
3892      // Flexible array member.
3893      if (NumNamedMembers < 1) {
3894        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3895          << FD->getDeclName();
3896        FD->setInvalidDecl();
3897        EnclosingDecl->setInvalidDecl();
3898        continue;
3899      }
3900      // Okay, we have a legal flexible array member at the end of the struct.
3901      if (Record)
3902        Record->setHasFlexibleArrayMember(true);
3903    } else if (!FDTy->isDependentType() &&
3904               RequireCompleteType(FD->getLocation(), FD->getType(),
3905                                   diag::err_field_incomplete)) {
3906      // Incomplete type
3907      FD->setInvalidDecl();
3908      EnclosingDecl->setInvalidDecl();
3909      continue;
3910    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3911      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3912        // If this is a member of a union, then entire union becomes "flexible".
3913        if (Record && Record->isUnion()) {
3914          Record->setHasFlexibleArrayMember(true);
3915        } else {
3916          // If this is a struct/class and this is not the last element, reject
3917          // it.  Note that GCC supports variable sized arrays in the middle of
3918          // structures.
3919          if (i != NumFields-1)
3920            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3921              << FD->getDeclName();
3922          else {
3923            // We support flexible arrays at the end of structs in
3924            // other structs as an extension.
3925            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3926              << FD->getDeclName();
3927            if (Record)
3928              Record->setHasFlexibleArrayMember(true);
3929          }
3930        }
3931      }
3932    } else if (FDTy->isObjCInterfaceType()) {
3933      /// A field cannot be an Objective-c object
3934      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3935      FD->setInvalidDecl();
3936      EnclosingDecl->setInvalidDecl();
3937      continue;
3938    }
3939    // Keep track of the number of named members.
3940    if (FD->getIdentifier())
3941      ++NumNamedMembers;
3942  }
3943
3944  // Okay, we successfully defined 'Record'.
3945  if (Record) {
3946    Record->completeDefinition(Context);
3947  } else {
3948    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3949    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3950      ID->setIVarList(ClsFields, RecFields.size(), Context);
3951      ID->setLocEnd(RBrac);
3952
3953      // Must enforce the rule that ivars in the base classes may not be
3954      // duplicates.
3955      if (ID->getSuperClass()) {
3956        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3957             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3958          ObjCIvarDecl* Ivar = (*IVI);
3959          IdentifierInfo *II = Ivar->getIdentifier();
3960          ObjCIvarDecl* prevIvar =
3961            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3962          if (prevIvar) {
3963            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3964            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3965          }
3966        }
3967      }
3968    } else if (ObjCImplementationDecl *IMPDecl =
3969                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3970      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3971      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3972      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3973    }
3974  }
3975
3976  if (Attr)
3977    ProcessDeclAttributeList(Record, Attr);
3978}
3979
3980EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3981                                          EnumConstantDecl *LastEnumConst,
3982                                          SourceLocation IdLoc,
3983                                          IdentifierInfo *Id,
3984                                          ExprArg val) {
3985  Expr *Val = (Expr *)val.get();
3986
3987  llvm::APSInt EnumVal(32);
3988  QualType EltTy;
3989  if (Val && !Val->isTypeDependent()) {
3990    // Make sure to promote the operand type to int.
3991    UsualUnaryConversions(Val);
3992    if (Val != val.get()) {
3993      val.release();
3994      val = Val;
3995    }
3996
3997    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3998    SourceLocation ExpLoc;
3999    if (!Val->isValueDependent() &&
4000        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4001      Val = 0;
4002    } else {
4003      EltTy = Val->getType();
4004    }
4005  }
4006
4007  if (!Val) {
4008    if (LastEnumConst) {
4009      // Assign the last value + 1.
4010      EnumVal = LastEnumConst->getInitVal();
4011      ++EnumVal;
4012
4013      // Check for overflow on increment.
4014      if (EnumVal < LastEnumConst->getInitVal())
4015        Diag(IdLoc, diag::warn_enum_value_overflow);
4016
4017      EltTy = LastEnumConst->getType();
4018    } else {
4019      // First value, set to zero.
4020      EltTy = Context.IntTy;
4021      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4022    }
4023  }
4024
4025  val.release();
4026  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4027                                  Val, EnumVal);
4028}
4029
4030
4031Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4032                                        DeclPtrTy lastEnumConst,
4033                                        SourceLocation IdLoc,
4034                                        IdentifierInfo *Id,
4035                                        SourceLocation EqualLoc, ExprTy *val) {
4036  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4037  EnumConstantDecl *LastEnumConst =
4038    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4039  Expr *Val = static_cast<Expr*>(val);
4040
4041  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4042  // we find one that is.
4043  S = getNonFieldDeclScope(S);
4044
4045  // Verify that there isn't already something declared with this name in this
4046  // scope.
4047  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4048  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4049    // Maybe we will complain about the shadowed template parameter.
4050    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4051    // Just pretend that we didn't see the previous declaration.
4052    PrevDecl = 0;
4053  }
4054
4055  if (PrevDecl) {
4056    // When in C++, we may get a TagDecl with the same name; in this case the
4057    // enum constant will 'hide' the tag.
4058    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4059           "Received TagDecl when not in C++!");
4060    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4061      if (isa<EnumConstantDecl>(PrevDecl))
4062        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4063      else
4064        Diag(IdLoc, diag::err_redefinition) << Id;
4065      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4066      if (Val) Val->Destroy(Context);
4067      return DeclPtrTy();
4068    }
4069  }
4070
4071  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4072                                            IdLoc, Id, Owned(Val));
4073
4074  // Register this decl in the current scope stack.
4075  if (New)
4076    PushOnScopeChains(New, S);
4077
4078  return DeclPtrTy::make(New);
4079}
4080
4081// FIXME: For consistency with ActOnFields(), we should have the parser
4082// pass in the source location for the left/right braces.
4083void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4084                         DeclPtrTy *Elements, unsigned NumElements) {
4085  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4086  QualType EnumType = Context.getTypeDeclType(Enum);
4087
4088  // TODO: If the result value doesn't fit in an int, it must be a long or long
4089  // long value.  ISO C does not support this, but GCC does as an extension,
4090  // emit a warning.
4091  unsigned IntWidth = Context.Target.getIntWidth();
4092
4093  // Verify that all the values are okay, compute the size of the values, and
4094  // reverse the list.
4095  unsigned NumNegativeBits = 0;
4096  unsigned NumPositiveBits = 0;
4097
4098  // Keep track of whether all elements have type int.
4099  bool AllElementsInt = true;
4100
4101  for (unsigned i = 0; i != NumElements; ++i) {
4102    EnumConstantDecl *ECD =
4103      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4104    if (!ECD) continue;  // Already issued a diagnostic.
4105
4106    // If the enum value doesn't fit in an int, emit an extension warning.
4107    const llvm::APSInt &InitVal = ECD->getInitVal();
4108    assert(InitVal.getBitWidth() >= IntWidth &&
4109           "Should have promoted value to int");
4110    if (InitVal.getBitWidth() > IntWidth) {
4111      llvm::APSInt V(InitVal);
4112      V.trunc(IntWidth);
4113      V.extend(InitVal.getBitWidth());
4114      if (V != InitVal)
4115        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4116          << InitVal.toString(10);
4117    }
4118
4119    // Keep track of the size of positive and negative values.
4120    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4121      NumPositiveBits = std::max(NumPositiveBits,
4122                                 (unsigned)InitVal.getActiveBits());
4123    else
4124      NumNegativeBits = std::max(NumNegativeBits,
4125                                 (unsigned)InitVal.getMinSignedBits());
4126
4127    // Keep track of whether every enum element has type int (very commmon).
4128    if (AllElementsInt)
4129      AllElementsInt = ECD->getType() == Context.IntTy;
4130  }
4131
4132  // Figure out the type that should be used for this enum.
4133  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4134  QualType BestType;
4135  unsigned BestWidth;
4136
4137  if (NumNegativeBits) {
4138    // If there is a negative value, figure out the smallest integer type (of
4139    // int/long/longlong) that fits.
4140    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4141      BestType = Context.IntTy;
4142      BestWidth = IntWidth;
4143    } else {
4144      BestWidth = Context.Target.getLongWidth();
4145
4146      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4147        BestType = Context.LongTy;
4148      else {
4149        BestWidth = Context.Target.getLongLongWidth();
4150
4151        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4152          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4153        BestType = Context.LongLongTy;
4154      }
4155    }
4156  } else {
4157    // If there is no negative value, figure out which of uint, ulong, ulonglong
4158    // fits.
4159    if (NumPositiveBits <= IntWidth) {
4160      BestType = Context.UnsignedIntTy;
4161      BestWidth = IntWidth;
4162    } else if (NumPositiveBits <=
4163               (BestWidth = Context.Target.getLongWidth())) {
4164      BestType = Context.UnsignedLongTy;
4165    } else {
4166      BestWidth = Context.Target.getLongLongWidth();
4167      assert(NumPositiveBits <= BestWidth &&
4168             "How could an initializer get larger than ULL?");
4169      BestType = Context.UnsignedLongLongTy;
4170    }
4171  }
4172
4173  // Loop over all of the enumerator constants, changing their types to match
4174  // the type of the enum if needed.
4175  for (unsigned i = 0; i != NumElements; ++i) {
4176    EnumConstantDecl *ECD =
4177      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4178    if (!ECD) continue;  // Already issued a diagnostic.
4179
4180    // Standard C says the enumerators have int type, but we allow, as an
4181    // extension, the enumerators to be larger than int size.  If each
4182    // enumerator value fits in an int, type it as an int, otherwise type it the
4183    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4184    // that X has type 'int', not 'unsigned'.
4185    if (ECD->getType() == Context.IntTy) {
4186      // Make sure the init value is signed.
4187      llvm::APSInt IV = ECD->getInitVal();
4188      IV.setIsSigned(true);
4189      ECD->setInitVal(IV);
4190
4191      if (getLangOptions().CPlusPlus)
4192        // C++ [dcl.enum]p4: Following the closing brace of an
4193        // enum-specifier, each enumerator has the type of its
4194        // enumeration.
4195        ECD->setType(EnumType);
4196      continue;  // Already int type.
4197    }
4198
4199    // Determine whether the value fits into an int.
4200    llvm::APSInt InitVal = ECD->getInitVal();
4201    bool FitsInInt;
4202    if (InitVal.isUnsigned() || !InitVal.isNegative())
4203      FitsInInt = InitVal.getActiveBits() < IntWidth;
4204    else
4205      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4206
4207    // If it fits into an integer type, force it.  Otherwise force it to match
4208    // the enum decl type.
4209    QualType NewTy;
4210    unsigned NewWidth;
4211    bool NewSign;
4212    if (FitsInInt) {
4213      NewTy = Context.IntTy;
4214      NewWidth = IntWidth;
4215      NewSign = true;
4216    } else if (ECD->getType() == BestType) {
4217      // Already the right type!
4218      if (getLangOptions().CPlusPlus)
4219        // C++ [dcl.enum]p4: Following the closing brace of an
4220        // enum-specifier, each enumerator has the type of its
4221        // enumeration.
4222        ECD->setType(EnumType);
4223      continue;
4224    } else {
4225      NewTy = BestType;
4226      NewWidth = BestWidth;
4227      NewSign = BestType->isSignedIntegerType();
4228    }
4229
4230    // Adjust the APSInt value.
4231    InitVal.extOrTrunc(NewWidth);
4232    InitVal.setIsSigned(NewSign);
4233    ECD->setInitVal(InitVal);
4234
4235    // Adjust the Expr initializer and type.
4236    if (ECD->getInitExpr())
4237      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4238                                                      /*isLvalue=*/false));
4239    if (getLangOptions().CPlusPlus)
4240      // C++ [dcl.enum]p4: Following the closing brace of an
4241      // enum-specifier, each enumerator has the type of its
4242      // enumeration.
4243      ECD->setType(EnumType);
4244    else
4245      ECD->setType(NewTy);
4246  }
4247
4248  Enum->completeDefinition(Context, BestType);
4249}
4250
4251Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4252                                            ExprArg expr) {
4253  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4254
4255  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4256                                                  Loc, AsmString));
4257}
4258
4259