SemaDecl.cpp revision 3b5c316aaca67e942eeb6a81353dbdbae060378d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName && !IsCtorOrDtorName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOpts().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOpts()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOpts().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOpts().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOpts().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOpts().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  // Same implementation as PushDeclContext, but enters the context
876  // from the lexical parent, rather than the top-level class.
877  assert(CurContext == FD->getLexicalParent() &&
878    "The next DeclContext should be lexically contained in the current one.");
879  CurContext = FD;
880  S->setEntity(CurContext);
881
882  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
883    ParmVarDecl *Param = FD->getParamDecl(P);
884    // If the parameter has an identifier, then add it to the scope
885    if (Param->getIdentifier()) {
886      S->AddDecl(Param);
887      IdResolver.AddDecl(Param);
888    }
889  }
890}
891
892
893void Sema::ActOnExitFunctionContext() {
894  // Same implementation as PopDeclContext, but returns to the lexical parent,
895  // rather than the top-level class.
896  assert(CurContext && "DeclContext imbalance!");
897  CurContext = CurContext->getLexicalParent();
898  assert(CurContext && "Popped translation unit!");
899}
900
901
902/// \brief Determine whether we allow overloading of the function
903/// PrevDecl with another declaration.
904///
905/// This routine determines whether overloading is possible, not
906/// whether some new function is actually an overload. It will return
907/// true in C++ (where we can always provide overloads) or, as an
908/// extension, in C when the previous function is already an
909/// overloaded function declaration or has the "overloadable"
910/// attribute.
911static bool AllowOverloadingOfFunction(LookupResult &Previous,
912                                       ASTContext &Context) {
913  if (Context.getLangOpts().CPlusPlus)
914    return true;
915
916  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
917    return true;
918
919  return (Previous.getResultKind() == LookupResult::Found
920          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
921}
922
923/// Add this decl to the scope shadowed decl chains.
924void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
925  // Move up the scope chain until we find the nearest enclosing
926  // non-transparent context. The declaration will be introduced into this
927  // scope.
928  while (S->getEntity() &&
929         ((DeclContext *)S->getEntity())->isTransparentContext())
930    S = S->getParent();
931
932  // Add scoped declarations into their context, so that they can be
933  // found later. Declarations without a context won't be inserted
934  // into any context.
935  if (AddToContext)
936    CurContext->addDecl(D);
937
938  // Out-of-line definitions shouldn't be pushed into scope in C++.
939  // Out-of-line variable and function definitions shouldn't even in C.
940  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
941      D->isOutOfLine() &&
942      !D->getDeclContext()->getRedeclContext()->Equals(
943        D->getLexicalDeclContext()->getRedeclContext()))
944    return;
945
946  // Template instantiations should also not be pushed into scope.
947  if (isa<FunctionDecl>(D) &&
948      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
949    return;
950
951  // If this replaces anything in the current scope,
952  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
953                               IEnd = IdResolver.end();
954  for (; I != IEnd; ++I) {
955    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
956      S->RemoveDecl(*I);
957      IdResolver.RemoveDecl(*I);
958
959      // Should only need to replace one decl.
960      break;
961    }
962  }
963
964  S->AddDecl(D);
965
966  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
967    // Implicitly-generated labels may end up getting generated in an order that
968    // isn't strictly lexical, which breaks name lookup. Be careful to insert
969    // the label at the appropriate place in the identifier chain.
970    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
971      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
972      if (IDC == CurContext) {
973        if (!S->isDeclScope(*I))
974          continue;
975      } else if (IDC->Encloses(CurContext))
976        break;
977    }
978
979    IdResolver.InsertDeclAfter(I, D);
980  } else {
981    IdResolver.AddDecl(D);
982  }
983}
984
985void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
986  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
987    TUScope->AddDecl(D);
988}
989
990bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
991                         bool ExplicitInstantiationOrSpecialization) {
992  return IdResolver.isDeclInScope(D, Ctx, Context, S,
993                                  ExplicitInstantiationOrSpecialization);
994}
995
996Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
997  DeclContext *TargetDC = DC->getPrimaryContext();
998  do {
999    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1000      if (ScopeDC->getPrimaryContext() == TargetDC)
1001        return S;
1002  } while ((S = S->getParent()));
1003
1004  return 0;
1005}
1006
1007static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1008                                            DeclContext*,
1009                                            ASTContext&);
1010
1011/// Filters out lookup results that don't fall within the given scope
1012/// as determined by isDeclInScope.
1013void Sema::FilterLookupForScope(LookupResult &R,
1014                                DeclContext *Ctx, Scope *S,
1015                                bool ConsiderLinkage,
1016                                bool ExplicitInstantiationOrSpecialization) {
1017  LookupResult::Filter F = R.makeFilter();
1018  while (F.hasNext()) {
1019    NamedDecl *D = F.next();
1020
1021    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1022      continue;
1023
1024    if (ConsiderLinkage &&
1025        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1026      continue;
1027
1028    F.erase();
1029  }
1030
1031  F.done();
1032}
1033
1034static bool isUsingDecl(NamedDecl *D) {
1035  return isa<UsingShadowDecl>(D) ||
1036         isa<UnresolvedUsingTypenameDecl>(D) ||
1037         isa<UnresolvedUsingValueDecl>(D);
1038}
1039
1040/// Removes using shadow declarations from the lookup results.
1041static void RemoveUsingDecls(LookupResult &R) {
1042  LookupResult::Filter F = R.makeFilter();
1043  while (F.hasNext())
1044    if (isUsingDecl(F.next()))
1045      F.erase();
1046
1047  F.done();
1048}
1049
1050/// \brief Check for this common pattern:
1051/// @code
1052/// class S {
1053///   S(const S&); // DO NOT IMPLEMENT
1054///   void operator=(const S&); // DO NOT IMPLEMENT
1055/// };
1056/// @endcode
1057static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1058  // FIXME: Should check for private access too but access is set after we get
1059  // the decl here.
1060  if (D->doesThisDeclarationHaveABody())
1061    return false;
1062
1063  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1064    return CD->isCopyConstructor();
1065  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1066    return Method->isCopyAssignmentOperator();
1067  return false;
1068}
1069
1070bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1071  assert(D);
1072
1073  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1074    return false;
1075
1076  // Ignore class templates.
1077  if (D->getDeclContext()->isDependentContext() ||
1078      D->getLexicalDeclContext()->isDependentContext())
1079    return false;
1080
1081  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1082    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1083      return false;
1084
1085    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1086      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1087        return false;
1088    } else {
1089      // 'static inline' functions are used in headers; don't warn.
1090      if (FD->getStorageClass() == SC_Static &&
1091          FD->isInlineSpecified())
1092        return false;
1093    }
1094
1095    if (FD->doesThisDeclarationHaveABody() &&
1096        Context.DeclMustBeEmitted(FD))
1097      return false;
1098  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1099    if (!VD->isFileVarDecl() ||
1100        VD->getType().isConstant(Context) ||
1101        Context.DeclMustBeEmitted(VD))
1102      return false;
1103
1104    if (VD->isStaticDataMember() &&
1105        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1106      return false;
1107
1108  } else {
1109    return false;
1110  }
1111
1112  // Only warn for unused decls internal to the translation unit.
1113  if (D->getLinkage() == ExternalLinkage)
1114    return false;
1115
1116  return true;
1117}
1118
1119void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1120  if (!D)
1121    return;
1122
1123  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1124    const FunctionDecl *First = FD->getFirstDeclaration();
1125    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1126      return; // First should already be in the vector.
1127  }
1128
1129  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1130    const VarDecl *First = VD->getFirstDeclaration();
1131    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1132      return; // First should already be in the vector.
1133  }
1134
1135   if (ShouldWarnIfUnusedFileScopedDecl(D))
1136     UnusedFileScopedDecls.push_back(D);
1137 }
1138
1139static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1140  if (D->isInvalidDecl())
1141    return false;
1142
1143  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1144    return false;
1145
1146  if (isa<LabelDecl>(D))
1147    return true;
1148
1149  // White-list anything that isn't a local variable.
1150  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1151      !D->getDeclContext()->isFunctionOrMethod())
1152    return false;
1153
1154  // Types of valid local variables should be complete, so this should succeed.
1155  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1156
1157    // White-list anything with an __attribute__((unused)) type.
1158    QualType Ty = VD->getType();
1159
1160    // Only look at the outermost level of typedef.
1161    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1162      if (TT->getDecl()->hasAttr<UnusedAttr>())
1163        return false;
1164    }
1165
1166    // If we failed to complete the type for some reason, or if the type is
1167    // dependent, don't diagnose the variable.
1168    if (Ty->isIncompleteType() || Ty->isDependentType())
1169      return false;
1170
1171    if (const TagType *TT = Ty->getAs<TagType>()) {
1172      const TagDecl *Tag = TT->getDecl();
1173      if (Tag->hasAttr<UnusedAttr>())
1174        return false;
1175
1176      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1177        if (!RD->hasTrivialDestructor())
1178          return false;
1179
1180        if (const Expr *Init = VD->getInit()) {
1181          const CXXConstructExpr *Construct =
1182            dyn_cast<CXXConstructExpr>(Init);
1183          if (Construct && !Construct->isElidable()) {
1184            CXXConstructorDecl *CD = Construct->getConstructor();
1185            if (!CD->isTrivial())
1186              return false;
1187          }
1188        }
1189      }
1190    }
1191
1192    // TODO: __attribute__((unused)) templates?
1193  }
1194
1195  return true;
1196}
1197
1198static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1199                                     FixItHint &Hint) {
1200  if (isa<LabelDecl>(D)) {
1201    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1202                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1203    if (AfterColon.isInvalid())
1204      return;
1205    Hint = FixItHint::CreateRemoval(CharSourceRange::
1206                                    getCharRange(D->getLocStart(), AfterColon));
1207  }
1208  return;
1209}
1210
1211/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1212/// unless they are marked attr(unused).
1213void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1214  FixItHint Hint;
1215  if (!ShouldDiagnoseUnusedDecl(D))
1216    return;
1217
1218  GenerateFixForUnusedDecl(D, Context, Hint);
1219
1220  unsigned DiagID;
1221  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1222    DiagID = diag::warn_unused_exception_param;
1223  else if (isa<LabelDecl>(D))
1224    DiagID = diag::warn_unused_label;
1225  else
1226    DiagID = diag::warn_unused_variable;
1227
1228  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1229}
1230
1231static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1232  // Verify that we have no forward references left.  If so, there was a goto
1233  // or address of a label taken, but no definition of it.  Label fwd
1234  // definitions are indicated with a null substmt.
1235  if (L->getStmt() == 0)
1236    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1237}
1238
1239void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1240  if (S->decl_empty()) return;
1241  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1242         "Scope shouldn't contain decls!");
1243
1244  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1245       I != E; ++I) {
1246    Decl *TmpD = (*I);
1247    assert(TmpD && "This decl didn't get pushed??");
1248
1249    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1250    NamedDecl *D = cast<NamedDecl>(TmpD);
1251
1252    if (!D->getDeclName()) continue;
1253
1254    // Diagnose unused variables in this scope.
1255    if (!S->hasErrorOccurred())
1256      DiagnoseUnusedDecl(D);
1257
1258    // If this was a forward reference to a label, verify it was defined.
1259    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1260      CheckPoppedLabel(LD, *this);
1261
1262    // Remove this name from our lexical scope.
1263    IdResolver.RemoveDecl(D);
1264  }
1265}
1266
1267void Sema::ActOnStartFunctionDeclarator() {
1268  ++InFunctionDeclarator;
1269}
1270
1271void Sema::ActOnEndFunctionDeclarator() {
1272  assert(InFunctionDeclarator);
1273  --InFunctionDeclarator;
1274}
1275
1276/// \brief Look for an Objective-C class in the translation unit.
1277///
1278/// \param Id The name of the Objective-C class we're looking for. If
1279/// typo-correction fixes this name, the Id will be updated
1280/// to the fixed name.
1281///
1282/// \param IdLoc The location of the name in the translation unit.
1283///
1284/// \param TypoCorrection If true, this routine will attempt typo correction
1285/// if there is no class with the given name.
1286///
1287/// \returns The declaration of the named Objective-C class, or NULL if the
1288/// class could not be found.
1289ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1290                                              SourceLocation IdLoc,
1291                                              bool DoTypoCorrection) {
1292  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1293  // creation from this context.
1294  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1295
1296  if (!IDecl && DoTypoCorrection) {
1297    // Perform typo correction at the given location, but only if we
1298    // find an Objective-C class name.
1299    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1300    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1301                                       LookupOrdinaryName, TUScope, NULL,
1302                                       Validator)) {
1303      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1304      Diag(IdLoc, diag::err_undef_interface_suggest)
1305        << Id << IDecl->getDeclName()
1306        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1307      Diag(IDecl->getLocation(), diag::note_previous_decl)
1308        << IDecl->getDeclName();
1309
1310      Id = IDecl->getIdentifier();
1311    }
1312  }
1313  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1314  // This routine must always return a class definition, if any.
1315  if (Def && Def->getDefinition())
1316      Def = Def->getDefinition();
1317  return Def;
1318}
1319
1320/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1321/// from S, where a non-field would be declared. This routine copes
1322/// with the difference between C and C++ scoping rules in structs and
1323/// unions. For example, the following code is well-formed in C but
1324/// ill-formed in C++:
1325/// @code
1326/// struct S6 {
1327///   enum { BAR } e;
1328/// };
1329///
1330/// void test_S6() {
1331///   struct S6 a;
1332///   a.e = BAR;
1333/// }
1334/// @endcode
1335/// For the declaration of BAR, this routine will return a different
1336/// scope. The scope S will be the scope of the unnamed enumeration
1337/// within S6. In C++, this routine will return the scope associated
1338/// with S6, because the enumeration's scope is a transparent
1339/// context but structures can contain non-field names. In C, this
1340/// routine will return the translation unit scope, since the
1341/// enumeration's scope is a transparent context and structures cannot
1342/// contain non-field names.
1343Scope *Sema::getNonFieldDeclScope(Scope *S) {
1344  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1345         (S->getEntity() &&
1346          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1347         (S->isClassScope() && !getLangOpts().CPlusPlus))
1348    S = S->getParent();
1349  return S;
1350}
1351
1352/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1353/// file scope.  lazily create a decl for it. ForRedeclaration is true
1354/// if we're creating this built-in in anticipation of redeclaring the
1355/// built-in.
1356NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1357                                     Scope *S, bool ForRedeclaration,
1358                                     SourceLocation Loc) {
1359  Builtin::ID BID = (Builtin::ID)bid;
1360
1361  ASTContext::GetBuiltinTypeError Error;
1362  QualType R = Context.GetBuiltinType(BID, Error);
1363  switch (Error) {
1364  case ASTContext::GE_None:
1365    // Okay
1366    break;
1367
1368  case ASTContext::GE_Missing_stdio:
1369    if (ForRedeclaration)
1370      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1371        << Context.BuiltinInfo.GetName(BID);
1372    return 0;
1373
1374  case ASTContext::GE_Missing_setjmp:
1375    if (ForRedeclaration)
1376      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1377        << Context.BuiltinInfo.GetName(BID);
1378    return 0;
1379
1380  case ASTContext::GE_Missing_ucontext:
1381    if (ForRedeclaration)
1382      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1383        << Context.BuiltinInfo.GetName(BID);
1384    return 0;
1385  }
1386
1387  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1388    Diag(Loc, diag::ext_implicit_lib_function_decl)
1389      << Context.BuiltinInfo.GetName(BID)
1390      << R;
1391    if (Context.BuiltinInfo.getHeaderName(BID) &&
1392        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1393          != DiagnosticsEngine::Ignored)
1394      Diag(Loc, diag::note_please_include_header)
1395        << Context.BuiltinInfo.getHeaderName(BID)
1396        << Context.BuiltinInfo.GetName(BID);
1397  }
1398
1399  FunctionDecl *New = FunctionDecl::Create(Context,
1400                                           Context.getTranslationUnitDecl(),
1401                                           Loc, Loc, II, R, /*TInfo=*/0,
1402                                           SC_Extern,
1403                                           SC_None, false,
1404                                           /*hasPrototype=*/true);
1405  New->setImplicit();
1406
1407  // Create Decl objects for each parameter, adding them to the
1408  // FunctionDecl.
1409  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1410    SmallVector<ParmVarDecl*, 16> Params;
1411    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1412      ParmVarDecl *parm =
1413        ParmVarDecl::Create(Context, New, SourceLocation(),
1414                            SourceLocation(), 0,
1415                            FT->getArgType(i), /*TInfo=*/0,
1416                            SC_None, SC_None, 0);
1417      parm->setScopeInfo(0, i);
1418      Params.push_back(parm);
1419    }
1420    New->setParams(Params);
1421  }
1422
1423  AddKnownFunctionAttributes(New);
1424
1425  // TUScope is the translation-unit scope to insert this function into.
1426  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1427  // relate Scopes to DeclContexts, and probably eliminate CurContext
1428  // entirely, but we're not there yet.
1429  DeclContext *SavedContext = CurContext;
1430  CurContext = Context.getTranslationUnitDecl();
1431  PushOnScopeChains(New, TUScope);
1432  CurContext = SavedContext;
1433  return New;
1434}
1435
1436bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1437  QualType OldType;
1438  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1439    OldType = OldTypedef->getUnderlyingType();
1440  else
1441    OldType = Context.getTypeDeclType(Old);
1442  QualType NewType = New->getUnderlyingType();
1443
1444  if (NewType->isVariablyModifiedType()) {
1445    // Must not redefine a typedef with a variably-modified type.
1446    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1447    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1448      << Kind << NewType;
1449    if (Old->getLocation().isValid())
1450      Diag(Old->getLocation(), diag::note_previous_definition);
1451    New->setInvalidDecl();
1452    return true;
1453  }
1454
1455  if (OldType != NewType &&
1456      !OldType->isDependentType() &&
1457      !NewType->isDependentType() &&
1458      !Context.hasSameType(OldType, NewType)) {
1459    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1460    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1461      << Kind << NewType << OldType;
1462    if (Old->getLocation().isValid())
1463      Diag(Old->getLocation(), diag::note_previous_definition);
1464    New->setInvalidDecl();
1465    return true;
1466  }
1467  return false;
1468}
1469
1470/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1471/// same name and scope as a previous declaration 'Old'.  Figure out
1472/// how to resolve this situation, merging decls or emitting
1473/// diagnostics as appropriate. If there was an error, set New to be invalid.
1474///
1475void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1476  // If the new decl is known invalid already, don't bother doing any
1477  // merging checks.
1478  if (New->isInvalidDecl()) return;
1479
1480  // Allow multiple definitions for ObjC built-in typedefs.
1481  // FIXME: Verify the underlying types are equivalent!
1482  if (getLangOpts().ObjC1) {
1483    const IdentifierInfo *TypeID = New->getIdentifier();
1484    switch (TypeID->getLength()) {
1485    default: break;
1486    case 2:
1487      if (!TypeID->isStr("id"))
1488        break;
1489      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1490      // Install the built-in type for 'id', ignoring the current definition.
1491      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1492      return;
1493    case 5:
1494      if (!TypeID->isStr("Class"))
1495        break;
1496      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1497      // Install the built-in type for 'Class', ignoring the current definition.
1498      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1499      return;
1500    case 3:
1501      if (!TypeID->isStr("SEL"))
1502        break;
1503      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1504      // Install the built-in type for 'SEL', ignoring the current definition.
1505      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1506      return;
1507    }
1508    // Fall through - the typedef name was not a builtin type.
1509  }
1510
1511  // Verify the old decl was also a type.
1512  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1513  if (!Old) {
1514    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1515      << New->getDeclName();
1516
1517    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1518    if (OldD->getLocation().isValid())
1519      Diag(OldD->getLocation(), diag::note_previous_definition);
1520
1521    return New->setInvalidDecl();
1522  }
1523
1524  // If the old declaration is invalid, just give up here.
1525  if (Old->isInvalidDecl())
1526    return New->setInvalidDecl();
1527
1528  // If the typedef types are not identical, reject them in all languages and
1529  // with any extensions enabled.
1530  if (isIncompatibleTypedef(Old, New))
1531    return;
1532
1533  // The types match.  Link up the redeclaration chain if the old
1534  // declaration was a typedef.
1535  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1536    New->setPreviousDeclaration(Typedef);
1537
1538  if (getLangOpts().MicrosoftExt)
1539    return;
1540
1541  if (getLangOpts().CPlusPlus) {
1542    // C++ [dcl.typedef]p2:
1543    //   In a given non-class scope, a typedef specifier can be used to
1544    //   redefine the name of any type declared in that scope to refer
1545    //   to the type to which it already refers.
1546    if (!isa<CXXRecordDecl>(CurContext))
1547      return;
1548
1549    // C++0x [dcl.typedef]p4:
1550    //   In a given class scope, a typedef specifier can be used to redefine
1551    //   any class-name declared in that scope that is not also a typedef-name
1552    //   to refer to the type to which it already refers.
1553    //
1554    // This wording came in via DR424, which was a correction to the
1555    // wording in DR56, which accidentally banned code like:
1556    //
1557    //   struct S {
1558    //     typedef struct A { } A;
1559    //   };
1560    //
1561    // in the C++03 standard. We implement the C++0x semantics, which
1562    // allow the above but disallow
1563    //
1564    //   struct S {
1565    //     typedef int I;
1566    //     typedef int I;
1567    //   };
1568    //
1569    // since that was the intent of DR56.
1570    if (!isa<TypedefNameDecl>(Old))
1571      return;
1572
1573    Diag(New->getLocation(), diag::err_redefinition)
1574      << New->getDeclName();
1575    Diag(Old->getLocation(), diag::note_previous_definition);
1576    return New->setInvalidDecl();
1577  }
1578
1579  // Modules always permit redefinition of typedefs, as does C11.
1580  if (getLangOpts().Modules || getLangOpts().C11)
1581    return;
1582
1583  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1584  // is normally mapped to an error, but can be controlled with
1585  // -Wtypedef-redefinition.  If either the original or the redefinition is
1586  // in a system header, don't emit this for compatibility with GCC.
1587  if (getDiagnostics().getSuppressSystemWarnings() &&
1588      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1589       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1590    return;
1591
1592  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1593    << New->getDeclName();
1594  Diag(Old->getLocation(), diag::note_previous_definition);
1595  return;
1596}
1597
1598/// DeclhasAttr - returns true if decl Declaration already has the target
1599/// attribute.
1600static bool
1601DeclHasAttr(const Decl *D, const Attr *A) {
1602  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1603  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1604  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1605    if ((*i)->getKind() == A->getKind()) {
1606      if (Ann) {
1607        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1608          return true;
1609        continue;
1610      }
1611      // FIXME: Don't hardcode this check
1612      if (OA && isa<OwnershipAttr>(*i))
1613        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1614      return true;
1615    }
1616
1617  return false;
1618}
1619
1620/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1621void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1622                               bool MergeDeprecation) {
1623  if (!Old->hasAttrs())
1624    return;
1625
1626  bool foundAny = New->hasAttrs();
1627
1628  // Ensure that any moving of objects within the allocated map is done before
1629  // we process them.
1630  if (!foundAny) New->setAttrs(AttrVec());
1631
1632  for (specific_attr_iterator<InheritableAttr>
1633         i = Old->specific_attr_begin<InheritableAttr>(),
1634         e = Old->specific_attr_end<InheritableAttr>();
1635       i != e; ++i) {
1636    // Ignore deprecated/unavailable/availability attributes if requested.
1637    if (!MergeDeprecation &&
1638        (isa<DeprecatedAttr>(*i) ||
1639         isa<UnavailableAttr>(*i) ||
1640         isa<AvailabilityAttr>(*i)))
1641      continue;
1642
1643    if (!DeclHasAttr(New, *i)) {
1644      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1645      newAttr->setInherited(true);
1646      New->addAttr(newAttr);
1647      foundAny = true;
1648    }
1649  }
1650
1651  if (!foundAny) New->dropAttrs();
1652}
1653
1654/// mergeParamDeclAttributes - Copy attributes from the old parameter
1655/// to the new one.
1656static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1657                                     const ParmVarDecl *oldDecl,
1658                                     ASTContext &C) {
1659  if (!oldDecl->hasAttrs())
1660    return;
1661
1662  bool foundAny = newDecl->hasAttrs();
1663
1664  // Ensure that any moving of objects within the allocated map is
1665  // done before we process them.
1666  if (!foundAny) newDecl->setAttrs(AttrVec());
1667
1668  for (specific_attr_iterator<InheritableParamAttr>
1669       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1670       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1671    if (!DeclHasAttr(newDecl, *i)) {
1672      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1673      newAttr->setInherited(true);
1674      newDecl->addAttr(newAttr);
1675      foundAny = true;
1676    }
1677  }
1678
1679  if (!foundAny) newDecl->dropAttrs();
1680}
1681
1682namespace {
1683
1684/// Used in MergeFunctionDecl to keep track of function parameters in
1685/// C.
1686struct GNUCompatibleParamWarning {
1687  ParmVarDecl *OldParm;
1688  ParmVarDecl *NewParm;
1689  QualType PromotedType;
1690};
1691
1692}
1693
1694/// getSpecialMember - get the special member enum for a method.
1695Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1696  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1697    if (Ctor->isDefaultConstructor())
1698      return Sema::CXXDefaultConstructor;
1699
1700    if (Ctor->isCopyConstructor())
1701      return Sema::CXXCopyConstructor;
1702
1703    if (Ctor->isMoveConstructor())
1704      return Sema::CXXMoveConstructor;
1705  } else if (isa<CXXDestructorDecl>(MD)) {
1706    return Sema::CXXDestructor;
1707  } else if (MD->isCopyAssignmentOperator()) {
1708    return Sema::CXXCopyAssignment;
1709  } else if (MD->isMoveAssignmentOperator()) {
1710    return Sema::CXXMoveAssignment;
1711  }
1712
1713  return Sema::CXXInvalid;
1714}
1715
1716/// canRedefineFunction - checks if a function can be redefined. Currently,
1717/// only extern inline functions can be redefined, and even then only in
1718/// GNU89 mode.
1719static bool canRedefineFunction(const FunctionDecl *FD,
1720                                const LangOptions& LangOpts) {
1721  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1722          !LangOpts.CPlusPlus &&
1723          FD->isInlineSpecified() &&
1724          FD->getStorageClass() == SC_Extern);
1725}
1726
1727/// MergeFunctionDecl - We just parsed a function 'New' from
1728/// declarator D which has the same name and scope as a previous
1729/// declaration 'Old'.  Figure out how to resolve this situation,
1730/// merging decls or emitting diagnostics as appropriate.
1731///
1732/// In C++, New and Old must be declarations that are not
1733/// overloaded. Use IsOverload to determine whether New and Old are
1734/// overloaded, and to select the Old declaration that New should be
1735/// merged with.
1736///
1737/// Returns true if there was an error, false otherwise.
1738bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1739  // Verify the old decl was also a function.
1740  FunctionDecl *Old = 0;
1741  if (FunctionTemplateDecl *OldFunctionTemplate
1742        = dyn_cast<FunctionTemplateDecl>(OldD))
1743    Old = OldFunctionTemplate->getTemplatedDecl();
1744  else
1745    Old = dyn_cast<FunctionDecl>(OldD);
1746  if (!Old) {
1747    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1748      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1749      Diag(Shadow->getTargetDecl()->getLocation(),
1750           diag::note_using_decl_target);
1751      Diag(Shadow->getUsingDecl()->getLocation(),
1752           diag::note_using_decl) << 0;
1753      return true;
1754    }
1755
1756    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1757      << New->getDeclName();
1758    Diag(OldD->getLocation(), diag::note_previous_definition);
1759    return true;
1760  }
1761
1762  // Determine whether the previous declaration was a definition,
1763  // implicit declaration, or a declaration.
1764  diag::kind PrevDiag;
1765  if (Old->isThisDeclarationADefinition())
1766    PrevDiag = diag::note_previous_definition;
1767  else if (Old->isImplicit())
1768    PrevDiag = diag::note_previous_implicit_declaration;
1769  else
1770    PrevDiag = diag::note_previous_declaration;
1771
1772  QualType OldQType = Context.getCanonicalType(Old->getType());
1773  QualType NewQType = Context.getCanonicalType(New->getType());
1774
1775  // Don't complain about this if we're in GNU89 mode and the old function
1776  // is an extern inline function.
1777  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1778      New->getStorageClass() == SC_Static &&
1779      Old->getStorageClass() != SC_Static &&
1780      !canRedefineFunction(Old, getLangOpts())) {
1781    if (getLangOpts().MicrosoftExt) {
1782      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1783      Diag(Old->getLocation(), PrevDiag);
1784    } else {
1785      Diag(New->getLocation(), diag::err_static_non_static) << New;
1786      Diag(Old->getLocation(), PrevDiag);
1787      return true;
1788    }
1789  }
1790
1791  // If a function is first declared with a calling convention, but is
1792  // later declared or defined without one, the second decl assumes the
1793  // calling convention of the first.
1794  //
1795  // For the new decl, we have to look at the NON-canonical type to tell the
1796  // difference between a function that really doesn't have a calling
1797  // convention and one that is declared cdecl. That's because in
1798  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1799  // because it is the default calling convention.
1800  //
1801  // Note also that we DO NOT return at this point, because we still have
1802  // other tests to run.
1803  const FunctionType *OldType = cast<FunctionType>(OldQType);
1804  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1805  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1806  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1807  bool RequiresAdjustment = false;
1808  if (OldTypeInfo.getCC() != CC_Default &&
1809      NewTypeInfo.getCC() == CC_Default) {
1810    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1811    RequiresAdjustment = true;
1812  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1813                                     NewTypeInfo.getCC())) {
1814    // Calling conventions really aren't compatible, so complain.
1815    Diag(New->getLocation(), diag::err_cconv_change)
1816      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1817      << (OldTypeInfo.getCC() == CC_Default)
1818      << (OldTypeInfo.getCC() == CC_Default ? "" :
1819          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1820    Diag(Old->getLocation(), diag::note_previous_declaration);
1821    return true;
1822  }
1823
1824  // FIXME: diagnose the other way around?
1825  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1826    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1827    RequiresAdjustment = true;
1828  }
1829
1830  // Merge regparm attribute.
1831  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1832      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1833    if (NewTypeInfo.getHasRegParm()) {
1834      Diag(New->getLocation(), diag::err_regparm_mismatch)
1835        << NewType->getRegParmType()
1836        << OldType->getRegParmType();
1837      Diag(Old->getLocation(), diag::note_previous_declaration);
1838      return true;
1839    }
1840
1841    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1842    RequiresAdjustment = true;
1843  }
1844
1845  // Merge ns_returns_retained attribute.
1846  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1847    if (NewTypeInfo.getProducesResult()) {
1848      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1849      Diag(Old->getLocation(), diag::note_previous_declaration);
1850      return true;
1851    }
1852
1853    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1854    RequiresAdjustment = true;
1855  }
1856
1857  if (RequiresAdjustment) {
1858    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1859    New->setType(QualType(NewType, 0));
1860    NewQType = Context.getCanonicalType(New->getType());
1861  }
1862
1863  if (getLangOpts().CPlusPlus) {
1864    // (C++98 13.1p2):
1865    //   Certain function declarations cannot be overloaded:
1866    //     -- Function declarations that differ only in the return type
1867    //        cannot be overloaded.
1868    QualType OldReturnType = OldType->getResultType();
1869    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1870    QualType ResQT;
1871    if (OldReturnType != NewReturnType) {
1872      if (NewReturnType->isObjCObjectPointerType()
1873          && OldReturnType->isObjCObjectPointerType())
1874        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1875      if (ResQT.isNull()) {
1876        if (New->isCXXClassMember() && New->isOutOfLine())
1877          Diag(New->getLocation(),
1878               diag::err_member_def_does_not_match_ret_type) << New;
1879        else
1880          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1881        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1882        return true;
1883      }
1884      else
1885        NewQType = ResQT;
1886    }
1887
1888    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1889    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1890    if (OldMethod && NewMethod) {
1891      // Preserve triviality.
1892      NewMethod->setTrivial(OldMethod->isTrivial());
1893
1894      // MSVC allows explicit template specialization at class scope:
1895      // 2 CXMethodDecls referring to the same function will be injected.
1896      // We don't want a redeclartion error.
1897      bool IsClassScopeExplicitSpecialization =
1898                              OldMethod->isFunctionTemplateSpecialization() &&
1899                              NewMethod->isFunctionTemplateSpecialization();
1900      bool isFriend = NewMethod->getFriendObjectKind();
1901
1902      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1903          !IsClassScopeExplicitSpecialization) {
1904        //    -- Member function declarations with the same name and the
1905        //       same parameter types cannot be overloaded if any of them
1906        //       is a static member function declaration.
1907        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1908          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1909          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1910          return true;
1911        }
1912
1913        // C++ [class.mem]p1:
1914        //   [...] A member shall not be declared twice in the
1915        //   member-specification, except that a nested class or member
1916        //   class template can be declared and then later defined.
1917        unsigned NewDiag;
1918        if (isa<CXXConstructorDecl>(OldMethod))
1919          NewDiag = diag::err_constructor_redeclared;
1920        else if (isa<CXXDestructorDecl>(NewMethod))
1921          NewDiag = diag::err_destructor_redeclared;
1922        else if (isa<CXXConversionDecl>(NewMethod))
1923          NewDiag = diag::err_conv_function_redeclared;
1924        else
1925          NewDiag = diag::err_member_redeclared;
1926
1927        Diag(New->getLocation(), NewDiag);
1928        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1929
1930      // Complain if this is an explicit declaration of a special
1931      // member that was initially declared implicitly.
1932      //
1933      // As an exception, it's okay to befriend such methods in order
1934      // to permit the implicit constructor/destructor/operator calls.
1935      } else if (OldMethod->isImplicit()) {
1936        if (isFriend) {
1937          NewMethod->setImplicit();
1938        } else {
1939          Diag(NewMethod->getLocation(),
1940               diag::err_definition_of_implicitly_declared_member)
1941            << New << getSpecialMember(OldMethod);
1942          return true;
1943        }
1944      } else if (OldMethod->isExplicitlyDefaulted()) {
1945        Diag(NewMethod->getLocation(),
1946             diag::err_definition_of_explicitly_defaulted_member)
1947          << getSpecialMember(OldMethod);
1948        return true;
1949      }
1950    }
1951
1952    // (C++98 8.3.5p3):
1953    //   All declarations for a function shall agree exactly in both the
1954    //   return type and the parameter-type-list.
1955    // We also want to respect all the extended bits except noreturn.
1956
1957    // noreturn should now match unless the old type info didn't have it.
1958    QualType OldQTypeForComparison = OldQType;
1959    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1960      assert(OldQType == QualType(OldType, 0));
1961      const FunctionType *OldTypeForComparison
1962        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1963      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1964      assert(OldQTypeForComparison.isCanonical());
1965    }
1966
1967    if (OldQTypeForComparison == NewQType)
1968      return MergeCompatibleFunctionDecls(New, Old, S);
1969
1970    // Fall through for conflicting redeclarations and redefinitions.
1971  }
1972
1973  // C: Function types need to be compatible, not identical. This handles
1974  // duplicate function decls like "void f(int); void f(enum X);" properly.
1975  if (!getLangOpts().CPlusPlus &&
1976      Context.typesAreCompatible(OldQType, NewQType)) {
1977    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1978    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1979    const FunctionProtoType *OldProto = 0;
1980    if (isa<FunctionNoProtoType>(NewFuncType) &&
1981        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1982      // The old declaration provided a function prototype, but the
1983      // new declaration does not. Merge in the prototype.
1984      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1985      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1986                                                 OldProto->arg_type_end());
1987      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1988                                         ParamTypes.data(), ParamTypes.size(),
1989                                         OldProto->getExtProtoInfo());
1990      New->setType(NewQType);
1991      New->setHasInheritedPrototype();
1992
1993      // Synthesize a parameter for each argument type.
1994      SmallVector<ParmVarDecl*, 16> Params;
1995      for (FunctionProtoType::arg_type_iterator
1996             ParamType = OldProto->arg_type_begin(),
1997             ParamEnd = OldProto->arg_type_end();
1998           ParamType != ParamEnd; ++ParamType) {
1999        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2000                                                 SourceLocation(),
2001                                                 SourceLocation(), 0,
2002                                                 *ParamType, /*TInfo=*/0,
2003                                                 SC_None, SC_None,
2004                                                 0);
2005        Param->setScopeInfo(0, Params.size());
2006        Param->setImplicit();
2007        Params.push_back(Param);
2008      }
2009
2010      New->setParams(Params);
2011    }
2012
2013    return MergeCompatibleFunctionDecls(New, Old, S);
2014  }
2015
2016  // GNU C permits a K&R definition to follow a prototype declaration
2017  // if the declared types of the parameters in the K&R definition
2018  // match the types in the prototype declaration, even when the
2019  // promoted types of the parameters from the K&R definition differ
2020  // from the types in the prototype. GCC then keeps the types from
2021  // the prototype.
2022  //
2023  // If a variadic prototype is followed by a non-variadic K&R definition,
2024  // the K&R definition becomes variadic.  This is sort of an edge case, but
2025  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2026  // C99 6.9.1p8.
2027  if (!getLangOpts().CPlusPlus &&
2028      Old->hasPrototype() && !New->hasPrototype() &&
2029      New->getType()->getAs<FunctionProtoType>() &&
2030      Old->getNumParams() == New->getNumParams()) {
2031    SmallVector<QualType, 16> ArgTypes;
2032    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2033    const FunctionProtoType *OldProto
2034      = Old->getType()->getAs<FunctionProtoType>();
2035    const FunctionProtoType *NewProto
2036      = New->getType()->getAs<FunctionProtoType>();
2037
2038    // Determine whether this is the GNU C extension.
2039    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2040                                               NewProto->getResultType());
2041    bool LooseCompatible = !MergedReturn.isNull();
2042    for (unsigned Idx = 0, End = Old->getNumParams();
2043         LooseCompatible && Idx != End; ++Idx) {
2044      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2045      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2046      if (Context.typesAreCompatible(OldParm->getType(),
2047                                     NewProto->getArgType(Idx))) {
2048        ArgTypes.push_back(NewParm->getType());
2049      } else if (Context.typesAreCompatible(OldParm->getType(),
2050                                            NewParm->getType(),
2051                                            /*CompareUnqualified=*/true)) {
2052        GNUCompatibleParamWarning Warn
2053          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2054        Warnings.push_back(Warn);
2055        ArgTypes.push_back(NewParm->getType());
2056      } else
2057        LooseCompatible = false;
2058    }
2059
2060    if (LooseCompatible) {
2061      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2062        Diag(Warnings[Warn].NewParm->getLocation(),
2063             diag::ext_param_promoted_not_compatible_with_prototype)
2064          << Warnings[Warn].PromotedType
2065          << Warnings[Warn].OldParm->getType();
2066        if (Warnings[Warn].OldParm->getLocation().isValid())
2067          Diag(Warnings[Warn].OldParm->getLocation(),
2068               diag::note_previous_declaration);
2069      }
2070
2071      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2072                                           ArgTypes.size(),
2073                                           OldProto->getExtProtoInfo()));
2074      return MergeCompatibleFunctionDecls(New, Old, S);
2075    }
2076
2077    // Fall through to diagnose conflicting types.
2078  }
2079
2080  // A function that has already been declared has been redeclared or defined
2081  // with a different type- show appropriate diagnostic
2082  if (unsigned BuiltinID = Old->getBuiltinID()) {
2083    // The user has declared a builtin function with an incompatible
2084    // signature.
2085    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2086      // The function the user is redeclaring is a library-defined
2087      // function like 'malloc' or 'printf'. Warn about the
2088      // redeclaration, then pretend that we don't know about this
2089      // library built-in.
2090      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2091      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2092        << Old << Old->getType();
2093      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2094      Old->setInvalidDecl();
2095      return false;
2096    }
2097
2098    PrevDiag = diag::note_previous_builtin_declaration;
2099  }
2100
2101  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2102  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2103  return true;
2104}
2105
2106/// \brief Completes the merge of two function declarations that are
2107/// known to be compatible.
2108///
2109/// This routine handles the merging of attributes and other
2110/// properties of function declarations form the old declaration to
2111/// the new declaration, once we know that New is in fact a
2112/// redeclaration of Old.
2113///
2114/// \returns false
2115bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2116                                        Scope *S) {
2117  // Merge the attributes
2118  mergeDeclAttributes(New, Old);
2119
2120  // Merge the storage class.
2121  if (Old->getStorageClass() != SC_Extern &&
2122      Old->getStorageClass() != SC_None)
2123    New->setStorageClass(Old->getStorageClass());
2124
2125  // Merge "pure" flag.
2126  if (Old->isPure())
2127    New->setPure();
2128
2129  // Merge attributes from the parameters.  These can mismatch with K&R
2130  // declarations.
2131  if (New->getNumParams() == Old->getNumParams())
2132    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2133      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2134                               Context);
2135
2136  if (getLangOpts().CPlusPlus)
2137    return MergeCXXFunctionDecl(New, Old, S);
2138
2139  return false;
2140}
2141
2142
2143void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2144                                ObjCMethodDecl *oldMethod) {
2145  // We don't want to merge unavailable and deprecated attributes
2146  // except from interface to implementation.
2147  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2148
2149  // Merge the attributes.
2150  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2151
2152  // Merge attributes from the parameters.
2153  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2154  for (ObjCMethodDecl::param_iterator
2155         ni = newMethod->param_begin(), ne = newMethod->param_end();
2156       ni != ne; ++ni, ++oi)
2157    mergeParamDeclAttributes(*ni, *oi, Context);
2158
2159  CheckObjCMethodOverride(newMethod, oldMethod, true);
2160}
2161
2162/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2163/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2164/// emitting diagnostics as appropriate.
2165///
2166/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2167/// to here in AddInitializerToDecl. We can't check them before the initializer
2168/// is attached.
2169void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2170  if (New->isInvalidDecl() || Old->isInvalidDecl())
2171    return;
2172
2173  QualType MergedT;
2174  if (getLangOpts().CPlusPlus) {
2175    AutoType *AT = New->getType()->getContainedAutoType();
2176    if (AT && !AT->isDeduced()) {
2177      // We don't know what the new type is until the initializer is attached.
2178      return;
2179    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2180      // These could still be something that needs exception specs checked.
2181      return MergeVarDeclExceptionSpecs(New, Old);
2182    }
2183    // C++ [basic.link]p10:
2184    //   [...] the types specified by all declarations referring to a given
2185    //   object or function shall be identical, except that declarations for an
2186    //   array object can specify array types that differ by the presence or
2187    //   absence of a major array bound (8.3.4).
2188    else if (Old->getType()->isIncompleteArrayType() &&
2189             New->getType()->isArrayType()) {
2190      CanQual<ArrayType> OldArray
2191        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2192      CanQual<ArrayType> NewArray
2193        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2194      if (OldArray->getElementType() == NewArray->getElementType())
2195        MergedT = New->getType();
2196    } else if (Old->getType()->isArrayType() &&
2197             New->getType()->isIncompleteArrayType()) {
2198      CanQual<ArrayType> OldArray
2199        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2200      CanQual<ArrayType> NewArray
2201        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2202      if (OldArray->getElementType() == NewArray->getElementType())
2203        MergedT = Old->getType();
2204    } else if (New->getType()->isObjCObjectPointerType()
2205               && Old->getType()->isObjCObjectPointerType()) {
2206        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2207                                                        Old->getType());
2208    }
2209  } else {
2210    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2211  }
2212  if (MergedT.isNull()) {
2213    Diag(New->getLocation(), diag::err_redefinition_different_type)
2214      << New->getDeclName();
2215    Diag(Old->getLocation(), diag::note_previous_definition);
2216    return New->setInvalidDecl();
2217  }
2218  New->setType(MergedT);
2219}
2220
2221/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2222/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2223/// situation, merging decls or emitting diagnostics as appropriate.
2224///
2225/// Tentative definition rules (C99 6.9.2p2) are checked by
2226/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2227/// definitions here, since the initializer hasn't been attached.
2228///
2229void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2230  // If the new decl is already invalid, don't do any other checking.
2231  if (New->isInvalidDecl())
2232    return;
2233
2234  // Verify the old decl was also a variable.
2235  VarDecl *Old = 0;
2236  if (!Previous.isSingleResult() ||
2237      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2238    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2239      << New->getDeclName();
2240    Diag(Previous.getRepresentativeDecl()->getLocation(),
2241         diag::note_previous_definition);
2242    return New->setInvalidDecl();
2243  }
2244
2245  // C++ [class.mem]p1:
2246  //   A member shall not be declared twice in the member-specification [...]
2247  //
2248  // Here, we need only consider static data members.
2249  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2250    Diag(New->getLocation(), diag::err_duplicate_member)
2251      << New->getIdentifier();
2252    Diag(Old->getLocation(), diag::note_previous_declaration);
2253    New->setInvalidDecl();
2254  }
2255
2256  mergeDeclAttributes(New, Old);
2257  // Warn if an already-declared variable is made a weak_import in a subsequent
2258  // declaration
2259  if (New->getAttr<WeakImportAttr>() &&
2260      Old->getStorageClass() == SC_None &&
2261      !Old->getAttr<WeakImportAttr>()) {
2262    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2263    Diag(Old->getLocation(), diag::note_previous_definition);
2264    // Remove weak_import attribute on new declaration.
2265    New->dropAttr<WeakImportAttr>();
2266  }
2267
2268  // Merge the types.
2269  MergeVarDeclTypes(New, Old);
2270  if (New->isInvalidDecl())
2271    return;
2272
2273  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2274  if (New->getStorageClass() == SC_Static &&
2275      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2276    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2277    Diag(Old->getLocation(), diag::note_previous_definition);
2278    return New->setInvalidDecl();
2279  }
2280  // C99 6.2.2p4:
2281  //   For an identifier declared with the storage-class specifier
2282  //   extern in a scope in which a prior declaration of that
2283  //   identifier is visible,23) if the prior declaration specifies
2284  //   internal or external linkage, the linkage of the identifier at
2285  //   the later declaration is the same as the linkage specified at
2286  //   the prior declaration. If no prior declaration is visible, or
2287  //   if the prior declaration specifies no linkage, then the
2288  //   identifier has external linkage.
2289  if (New->hasExternalStorage() && Old->hasLinkage())
2290    /* Okay */;
2291  else if (New->getStorageClass() != SC_Static &&
2292           Old->getStorageClass() == SC_Static) {
2293    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2294    Diag(Old->getLocation(), diag::note_previous_definition);
2295    return New->setInvalidDecl();
2296  }
2297
2298  // Check if extern is followed by non-extern and vice-versa.
2299  if (New->hasExternalStorage() &&
2300      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2301    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2302    Diag(Old->getLocation(), diag::note_previous_definition);
2303    return New->setInvalidDecl();
2304  }
2305  if (Old->hasExternalStorage() &&
2306      !New->hasLinkage() && New->isLocalVarDecl()) {
2307    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2308    Diag(Old->getLocation(), diag::note_previous_definition);
2309    return New->setInvalidDecl();
2310  }
2311
2312  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2313
2314  // FIXME: The test for external storage here seems wrong? We still
2315  // need to check for mismatches.
2316  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2317      // Don't complain about out-of-line definitions of static members.
2318      !(Old->getLexicalDeclContext()->isRecord() &&
2319        !New->getLexicalDeclContext()->isRecord())) {
2320    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2321    Diag(Old->getLocation(), diag::note_previous_definition);
2322    return New->setInvalidDecl();
2323  }
2324
2325  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2326    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2327    Diag(Old->getLocation(), diag::note_previous_definition);
2328  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2329    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2330    Diag(Old->getLocation(), diag::note_previous_definition);
2331  }
2332
2333  // C++ doesn't have tentative definitions, so go right ahead and check here.
2334  const VarDecl *Def;
2335  if (getLangOpts().CPlusPlus &&
2336      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2337      (Def = Old->getDefinition())) {
2338    Diag(New->getLocation(), diag::err_redefinition)
2339      << New->getDeclName();
2340    Diag(Def->getLocation(), diag::note_previous_definition);
2341    New->setInvalidDecl();
2342    return;
2343  }
2344  // c99 6.2.2 P4.
2345  // For an identifier declared with the storage-class specifier extern in a
2346  // scope in which a prior declaration of that identifier is visible, if
2347  // the prior declaration specifies internal or external linkage, the linkage
2348  // of the identifier at the later declaration is the same as the linkage
2349  // specified at the prior declaration.
2350  // FIXME. revisit this code.
2351  if (New->hasExternalStorage() &&
2352      Old->getLinkage() == InternalLinkage &&
2353      New->getDeclContext() == Old->getDeclContext())
2354    New->setStorageClass(Old->getStorageClass());
2355
2356  // Keep a chain of previous declarations.
2357  New->setPreviousDeclaration(Old);
2358
2359  // Inherit access appropriately.
2360  New->setAccess(Old->getAccess());
2361}
2362
2363/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2364/// no declarator (e.g. "struct foo;") is parsed.
2365Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2366                                       DeclSpec &DS) {
2367  return ParsedFreeStandingDeclSpec(S, AS, DS,
2368                                    MultiTemplateParamsArg(*this, 0, 0));
2369}
2370
2371/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2372/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2373/// parameters to cope with template friend declarations.
2374Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2375                                       DeclSpec &DS,
2376                                       MultiTemplateParamsArg TemplateParams) {
2377  Decl *TagD = 0;
2378  TagDecl *Tag = 0;
2379  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2380      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2381      DS.getTypeSpecType() == DeclSpec::TST_union ||
2382      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2383    TagD = DS.getRepAsDecl();
2384
2385    if (!TagD) // We probably had an error
2386      return 0;
2387
2388    // Note that the above type specs guarantee that the
2389    // type rep is a Decl, whereas in many of the others
2390    // it's a Type.
2391    if (isa<TagDecl>(TagD))
2392      Tag = cast<TagDecl>(TagD);
2393    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2394      Tag = CTD->getTemplatedDecl();
2395  }
2396
2397  if (Tag) {
2398    Tag->setFreeStanding();
2399    if (Tag->isInvalidDecl())
2400      return Tag;
2401  }
2402
2403  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2404    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2405    // or incomplete types shall not be restrict-qualified."
2406    if (TypeQuals & DeclSpec::TQ_restrict)
2407      Diag(DS.getRestrictSpecLoc(),
2408           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2409           << DS.getSourceRange();
2410  }
2411
2412  if (DS.isConstexprSpecified()) {
2413    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2414    // and definitions of functions and variables.
2415    if (Tag)
2416      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2417        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2418            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2419            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2420    else
2421      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2422    // Don't emit warnings after this error.
2423    return TagD;
2424  }
2425
2426  if (DS.isFriendSpecified()) {
2427    // If we're dealing with a decl but not a TagDecl, assume that
2428    // whatever routines created it handled the friendship aspect.
2429    if (TagD && !Tag)
2430      return 0;
2431    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2432  }
2433
2434  // Track whether we warned about the fact that there aren't any
2435  // declarators.
2436  bool emittedWarning = false;
2437
2438  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2439    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2440        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2441      if (getLangOpts().CPlusPlus ||
2442          Record->getDeclContext()->isRecord())
2443        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2444
2445      Diag(DS.getLocStart(), diag::ext_no_declarators)
2446        << DS.getSourceRange();
2447      emittedWarning = true;
2448    }
2449  }
2450
2451  // Check for Microsoft C extension: anonymous struct.
2452  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2453      CurContext->isRecord() &&
2454      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2455    // Handle 2 kinds of anonymous struct:
2456    //   struct STRUCT;
2457    // and
2458    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2459    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2460    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2461        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2462         DS.getRepAsType().get()->isStructureType())) {
2463      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2464        << DS.getSourceRange();
2465      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2466    }
2467  }
2468
2469  if (getLangOpts().CPlusPlus &&
2470      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2471    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2472      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2473          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2474        Diag(Enum->getLocation(), diag::ext_no_declarators)
2475          << DS.getSourceRange();
2476        emittedWarning = true;
2477      }
2478
2479  // Skip all the checks below if we have a type error.
2480  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2481
2482  if (!DS.isMissingDeclaratorOk()) {
2483    // Warn about typedefs of enums without names, since this is an
2484    // extension in both Microsoft and GNU.
2485    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2486        Tag && isa<EnumDecl>(Tag)) {
2487      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2488        << DS.getSourceRange();
2489      return Tag;
2490    }
2491
2492    Diag(DS.getLocStart(), diag::ext_no_declarators)
2493      << DS.getSourceRange();
2494    emittedWarning = true;
2495  }
2496
2497  // We're going to complain about a bunch of spurious specifiers;
2498  // only do this if we're declaring a tag, because otherwise we
2499  // should be getting diag::ext_no_declarators.
2500  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2501    return TagD;
2502
2503  // Note that a linkage-specification sets a storage class, but
2504  // 'extern "C" struct foo;' is actually valid and not theoretically
2505  // useless.
2506  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2507    if (!DS.isExternInLinkageSpec())
2508      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2509        << DeclSpec::getSpecifierName(scs);
2510
2511  if (DS.isThreadSpecified())
2512    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2513  if (DS.getTypeQualifiers()) {
2514    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2515      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2516    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2517      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2518    // Restrict is covered above.
2519  }
2520  if (DS.isInlineSpecified())
2521    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2522  if (DS.isVirtualSpecified())
2523    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2524  if (DS.isExplicitSpecified())
2525    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2526
2527  if (DS.isModulePrivateSpecified() &&
2528      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2529    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2530      << Tag->getTagKind()
2531      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2532
2533  // Warn about ignored type attributes, for example:
2534  // __attribute__((aligned)) struct A;
2535  // Attributes should be placed after tag to apply to type declaration.
2536  if (!DS.getAttributes().empty()) {
2537    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2538    if (TypeSpecType == DeclSpec::TST_class ||
2539        TypeSpecType == DeclSpec::TST_struct ||
2540        TypeSpecType == DeclSpec::TST_union ||
2541        TypeSpecType == DeclSpec::TST_enum) {
2542      AttributeList* attrs = DS.getAttributes().getList();
2543      while (attrs) {
2544        Diag(attrs->getScopeLoc(),
2545             diag::warn_declspec_attribute_ignored)
2546        << attrs->getName()
2547        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2548            TypeSpecType == DeclSpec::TST_struct ? 1 :
2549            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2550        attrs = attrs->getNext();
2551      }
2552    }
2553  }
2554
2555  return TagD;
2556}
2557
2558/// We are trying to inject an anonymous member into the given scope;
2559/// check if there's an existing declaration that can't be overloaded.
2560///
2561/// \return true if this is a forbidden redeclaration
2562static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2563                                         Scope *S,
2564                                         DeclContext *Owner,
2565                                         DeclarationName Name,
2566                                         SourceLocation NameLoc,
2567                                         unsigned diagnostic) {
2568  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2569                 Sema::ForRedeclaration);
2570  if (!SemaRef.LookupName(R, S)) return false;
2571
2572  if (R.getAsSingle<TagDecl>())
2573    return false;
2574
2575  // Pick a representative declaration.
2576  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2577  assert(PrevDecl && "Expected a non-null Decl");
2578
2579  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2580    return false;
2581
2582  SemaRef.Diag(NameLoc, diagnostic) << Name;
2583  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2584
2585  return true;
2586}
2587
2588/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2589/// anonymous struct or union AnonRecord into the owning context Owner
2590/// and scope S. This routine will be invoked just after we realize
2591/// that an unnamed union or struct is actually an anonymous union or
2592/// struct, e.g.,
2593///
2594/// @code
2595/// union {
2596///   int i;
2597///   float f;
2598/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2599///    // f into the surrounding scope.x
2600/// @endcode
2601///
2602/// This routine is recursive, injecting the names of nested anonymous
2603/// structs/unions into the owning context and scope as well.
2604static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2605                                                DeclContext *Owner,
2606                                                RecordDecl *AnonRecord,
2607                                                AccessSpecifier AS,
2608                              SmallVector<NamedDecl*, 2> &Chaining,
2609                                                      bool MSAnonStruct) {
2610  unsigned diagKind
2611    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2612                            : diag::err_anonymous_struct_member_redecl;
2613
2614  bool Invalid = false;
2615
2616  // Look every FieldDecl and IndirectFieldDecl with a name.
2617  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2618                               DEnd = AnonRecord->decls_end();
2619       D != DEnd; ++D) {
2620    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2621        cast<NamedDecl>(*D)->getDeclName()) {
2622      ValueDecl *VD = cast<ValueDecl>(*D);
2623      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2624                                       VD->getLocation(), diagKind)) {
2625        // C++ [class.union]p2:
2626        //   The names of the members of an anonymous union shall be
2627        //   distinct from the names of any other entity in the
2628        //   scope in which the anonymous union is declared.
2629        Invalid = true;
2630      } else {
2631        // C++ [class.union]p2:
2632        //   For the purpose of name lookup, after the anonymous union
2633        //   definition, the members of the anonymous union are
2634        //   considered to have been defined in the scope in which the
2635        //   anonymous union is declared.
2636        unsigned OldChainingSize = Chaining.size();
2637        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2638          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2639               PE = IF->chain_end(); PI != PE; ++PI)
2640            Chaining.push_back(*PI);
2641        else
2642          Chaining.push_back(VD);
2643
2644        assert(Chaining.size() >= 2);
2645        NamedDecl **NamedChain =
2646          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2647        for (unsigned i = 0; i < Chaining.size(); i++)
2648          NamedChain[i] = Chaining[i];
2649
2650        IndirectFieldDecl* IndirectField =
2651          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2652                                    VD->getIdentifier(), VD->getType(),
2653                                    NamedChain, Chaining.size());
2654
2655        IndirectField->setAccess(AS);
2656        IndirectField->setImplicit();
2657        SemaRef.PushOnScopeChains(IndirectField, S);
2658
2659        // That includes picking up the appropriate access specifier.
2660        if (AS != AS_none) IndirectField->setAccess(AS);
2661
2662        Chaining.resize(OldChainingSize);
2663      }
2664    }
2665  }
2666
2667  return Invalid;
2668}
2669
2670/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2671/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2672/// illegal input values are mapped to SC_None.
2673static StorageClass
2674StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2675  switch (StorageClassSpec) {
2676  case DeclSpec::SCS_unspecified:    return SC_None;
2677  case DeclSpec::SCS_extern:         return SC_Extern;
2678  case DeclSpec::SCS_static:         return SC_Static;
2679  case DeclSpec::SCS_auto:           return SC_Auto;
2680  case DeclSpec::SCS_register:       return SC_Register;
2681  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2682    // Illegal SCSs map to None: error reporting is up to the caller.
2683  case DeclSpec::SCS_mutable:        // Fall through.
2684  case DeclSpec::SCS_typedef:        return SC_None;
2685  }
2686  llvm_unreachable("unknown storage class specifier");
2687}
2688
2689/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2690/// a StorageClass. Any error reporting is up to the caller:
2691/// illegal input values are mapped to SC_None.
2692static StorageClass
2693StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2694  switch (StorageClassSpec) {
2695  case DeclSpec::SCS_unspecified:    return SC_None;
2696  case DeclSpec::SCS_extern:         return SC_Extern;
2697  case DeclSpec::SCS_static:         return SC_Static;
2698  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2699    // Illegal SCSs map to None: error reporting is up to the caller.
2700  case DeclSpec::SCS_auto:           // Fall through.
2701  case DeclSpec::SCS_mutable:        // Fall through.
2702  case DeclSpec::SCS_register:       // Fall through.
2703  case DeclSpec::SCS_typedef:        return SC_None;
2704  }
2705  llvm_unreachable("unknown storage class specifier");
2706}
2707
2708/// BuildAnonymousStructOrUnion - Handle the declaration of an
2709/// anonymous structure or union. Anonymous unions are a C++ feature
2710/// (C++ [class.union]) and a C11 feature; anonymous structures
2711/// are a C11 feature and GNU C++ extension.
2712Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2713                                             AccessSpecifier AS,
2714                                             RecordDecl *Record) {
2715  DeclContext *Owner = Record->getDeclContext();
2716
2717  // Diagnose whether this anonymous struct/union is an extension.
2718  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2719    Diag(Record->getLocation(), diag::ext_anonymous_union);
2720  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2721    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2722  else if (!Record->isUnion() && !getLangOpts().C11)
2723    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2724
2725  // C and C++ require different kinds of checks for anonymous
2726  // structs/unions.
2727  bool Invalid = false;
2728  if (getLangOpts().CPlusPlus) {
2729    const char* PrevSpec = 0;
2730    unsigned DiagID;
2731    if (Record->isUnion()) {
2732      // C++ [class.union]p6:
2733      //   Anonymous unions declared in a named namespace or in the
2734      //   global namespace shall be declared static.
2735      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2736          (isa<TranslationUnitDecl>(Owner) ||
2737           (isa<NamespaceDecl>(Owner) &&
2738            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2739        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2740          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2741
2742        // Recover by adding 'static'.
2743        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2744                               PrevSpec, DiagID);
2745      }
2746      // C++ [class.union]p6:
2747      //   A storage class is not allowed in a declaration of an
2748      //   anonymous union in a class scope.
2749      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2750               isa<RecordDecl>(Owner)) {
2751        Diag(DS.getStorageClassSpecLoc(),
2752             diag::err_anonymous_union_with_storage_spec)
2753          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2754
2755        // Recover by removing the storage specifier.
2756        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2757                               SourceLocation(),
2758                               PrevSpec, DiagID);
2759      }
2760    }
2761
2762    // Ignore const/volatile/restrict qualifiers.
2763    if (DS.getTypeQualifiers()) {
2764      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2765        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2766          << Record->isUnion() << 0
2767          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2768      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2769        Diag(DS.getVolatileSpecLoc(),
2770             diag::ext_anonymous_struct_union_qualified)
2771          << Record->isUnion() << 1
2772          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2773      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2774        Diag(DS.getRestrictSpecLoc(),
2775             diag::ext_anonymous_struct_union_qualified)
2776          << Record->isUnion() << 2
2777          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2778
2779      DS.ClearTypeQualifiers();
2780    }
2781
2782    // C++ [class.union]p2:
2783    //   The member-specification of an anonymous union shall only
2784    //   define non-static data members. [Note: nested types and
2785    //   functions cannot be declared within an anonymous union. ]
2786    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2787                                 MemEnd = Record->decls_end();
2788         Mem != MemEnd; ++Mem) {
2789      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2790        // C++ [class.union]p3:
2791        //   An anonymous union shall not have private or protected
2792        //   members (clause 11).
2793        assert(FD->getAccess() != AS_none);
2794        if (FD->getAccess() != AS_public) {
2795          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2796            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2797          Invalid = true;
2798        }
2799
2800        // C++ [class.union]p1
2801        //   An object of a class with a non-trivial constructor, a non-trivial
2802        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2803        //   assignment operator cannot be a member of a union, nor can an
2804        //   array of such objects.
2805        if (CheckNontrivialField(FD))
2806          Invalid = true;
2807      } else if ((*Mem)->isImplicit()) {
2808        // Any implicit members are fine.
2809      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2810        // This is a type that showed up in an
2811        // elaborated-type-specifier inside the anonymous struct or
2812        // union, but which actually declares a type outside of the
2813        // anonymous struct or union. It's okay.
2814      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2815        if (!MemRecord->isAnonymousStructOrUnion() &&
2816            MemRecord->getDeclName()) {
2817          // Visual C++ allows type definition in anonymous struct or union.
2818          if (getLangOpts().MicrosoftExt)
2819            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2820              << (int)Record->isUnion();
2821          else {
2822            // This is a nested type declaration.
2823            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2824              << (int)Record->isUnion();
2825            Invalid = true;
2826          }
2827        }
2828      } else if (isa<AccessSpecDecl>(*Mem)) {
2829        // Any access specifier is fine.
2830      } else {
2831        // We have something that isn't a non-static data
2832        // member. Complain about it.
2833        unsigned DK = diag::err_anonymous_record_bad_member;
2834        if (isa<TypeDecl>(*Mem))
2835          DK = diag::err_anonymous_record_with_type;
2836        else if (isa<FunctionDecl>(*Mem))
2837          DK = diag::err_anonymous_record_with_function;
2838        else if (isa<VarDecl>(*Mem))
2839          DK = diag::err_anonymous_record_with_static;
2840
2841        // Visual C++ allows type definition in anonymous struct or union.
2842        if (getLangOpts().MicrosoftExt &&
2843            DK == diag::err_anonymous_record_with_type)
2844          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2845            << (int)Record->isUnion();
2846        else {
2847          Diag((*Mem)->getLocation(), DK)
2848              << (int)Record->isUnion();
2849          Invalid = true;
2850        }
2851      }
2852    }
2853  }
2854
2855  if (!Record->isUnion() && !Owner->isRecord()) {
2856    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2857      << (int)getLangOpts().CPlusPlus;
2858    Invalid = true;
2859  }
2860
2861  // Mock up a declarator.
2862  Declarator Dc(DS, Declarator::MemberContext);
2863  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2864  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2865
2866  // Create a declaration for this anonymous struct/union.
2867  NamedDecl *Anon = 0;
2868  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2869    Anon = FieldDecl::Create(Context, OwningClass,
2870                             DS.getLocStart(),
2871                             Record->getLocation(),
2872                             /*IdentifierInfo=*/0,
2873                             Context.getTypeDeclType(Record),
2874                             TInfo,
2875                             /*BitWidth=*/0, /*Mutable=*/false,
2876                             /*HasInit=*/false);
2877    Anon->setAccess(AS);
2878    if (getLangOpts().CPlusPlus)
2879      FieldCollector->Add(cast<FieldDecl>(Anon));
2880  } else {
2881    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2882    assert(SCSpec != DeclSpec::SCS_typedef &&
2883           "Parser allowed 'typedef' as storage class VarDecl.");
2884    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2885    if (SCSpec == DeclSpec::SCS_mutable) {
2886      // mutable can only appear on non-static class members, so it's always
2887      // an error here
2888      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2889      Invalid = true;
2890      SC = SC_None;
2891    }
2892    SCSpec = DS.getStorageClassSpecAsWritten();
2893    VarDecl::StorageClass SCAsWritten
2894      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2895
2896    Anon = VarDecl::Create(Context, Owner,
2897                           DS.getLocStart(),
2898                           Record->getLocation(), /*IdentifierInfo=*/0,
2899                           Context.getTypeDeclType(Record),
2900                           TInfo, SC, SCAsWritten);
2901
2902    // Default-initialize the implicit variable. This initialization will be
2903    // trivial in almost all cases, except if a union member has an in-class
2904    // initializer:
2905    //   union { int n = 0; };
2906    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2907  }
2908  Anon->setImplicit();
2909
2910  // Add the anonymous struct/union object to the current
2911  // context. We'll be referencing this object when we refer to one of
2912  // its members.
2913  Owner->addDecl(Anon);
2914
2915  // Inject the members of the anonymous struct/union into the owning
2916  // context and into the identifier resolver chain for name lookup
2917  // purposes.
2918  SmallVector<NamedDecl*, 2> Chain;
2919  Chain.push_back(Anon);
2920
2921  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2922                                          Chain, false))
2923    Invalid = true;
2924
2925  // Mark this as an anonymous struct/union type. Note that we do not
2926  // do this until after we have already checked and injected the
2927  // members of this anonymous struct/union type, because otherwise
2928  // the members could be injected twice: once by DeclContext when it
2929  // builds its lookup table, and once by
2930  // InjectAnonymousStructOrUnionMembers.
2931  Record->setAnonymousStructOrUnion(true);
2932
2933  if (Invalid)
2934    Anon->setInvalidDecl();
2935
2936  return Anon;
2937}
2938
2939/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2940/// Microsoft C anonymous structure.
2941/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2942/// Example:
2943///
2944/// struct A { int a; };
2945/// struct B { struct A; int b; };
2946///
2947/// void foo() {
2948///   B var;
2949///   var.a = 3;
2950/// }
2951///
2952Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2953                                           RecordDecl *Record) {
2954
2955  // If there is no Record, get the record via the typedef.
2956  if (!Record)
2957    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2958
2959  // Mock up a declarator.
2960  Declarator Dc(DS, Declarator::TypeNameContext);
2961  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2962  assert(TInfo && "couldn't build declarator info for anonymous struct");
2963
2964  // Create a declaration for this anonymous struct.
2965  NamedDecl* Anon = FieldDecl::Create(Context,
2966                             cast<RecordDecl>(CurContext),
2967                             DS.getLocStart(),
2968                             DS.getLocStart(),
2969                             /*IdentifierInfo=*/0,
2970                             Context.getTypeDeclType(Record),
2971                             TInfo,
2972                             /*BitWidth=*/0, /*Mutable=*/false,
2973                             /*HasInit=*/false);
2974  Anon->setImplicit();
2975
2976  // Add the anonymous struct object to the current context.
2977  CurContext->addDecl(Anon);
2978
2979  // Inject the members of the anonymous struct into the current
2980  // context and into the identifier resolver chain for name lookup
2981  // purposes.
2982  SmallVector<NamedDecl*, 2> Chain;
2983  Chain.push_back(Anon);
2984
2985  RecordDecl *RecordDef = Record->getDefinition();
2986  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2987                                                        RecordDef, AS_none,
2988                                                        Chain, true))
2989    Anon->setInvalidDecl();
2990
2991  return Anon;
2992}
2993
2994/// GetNameForDeclarator - Determine the full declaration name for the
2995/// given Declarator.
2996DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2997  return GetNameFromUnqualifiedId(D.getName());
2998}
2999
3000/// \brief Retrieves the declaration name from a parsed unqualified-id.
3001DeclarationNameInfo
3002Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3003  DeclarationNameInfo NameInfo;
3004  NameInfo.setLoc(Name.StartLocation);
3005
3006  switch (Name.getKind()) {
3007
3008  case UnqualifiedId::IK_ImplicitSelfParam:
3009  case UnqualifiedId::IK_Identifier:
3010    NameInfo.setName(Name.Identifier);
3011    NameInfo.setLoc(Name.StartLocation);
3012    return NameInfo;
3013
3014  case UnqualifiedId::IK_OperatorFunctionId:
3015    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3016                                           Name.OperatorFunctionId.Operator));
3017    NameInfo.setLoc(Name.StartLocation);
3018    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3019      = Name.OperatorFunctionId.SymbolLocations[0];
3020    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3021      = Name.EndLocation.getRawEncoding();
3022    return NameInfo;
3023
3024  case UnqualifiedId::IK_LiteralOperatorId:
3025    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3026                                                           Name.Identifier));
3027    NameInfo.setLoc(Name.StartLocation);
3028    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3029    return NameInfo;
3030
3031  case UnqualifiedId::IK_ConversionFunctionId: {
3032    TypeSourceInfo *TInfo;
3033    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3034    if (Ty.isNull())
3035      return DeclarationNameInfo();
3036    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3037                                               Context.getCanonicalType(Ty)));
3038    NameInfo.setLoc(Name.StartLocation);
3039    NameInfo.setNamedTypeInfo(TInfo);
3040    return NameInfo;
3041  }
3042
3043  case UnqualifiedId::IK_ConstructorName: {
3044    TypeSourceInfo *TInfo;
3045    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3046    if (Ty.isNull())
3047      return DeclarationNameInfo();
3048    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3049                                              Context.getCanonicalType(Ty)));
3050    NameInfo.setLoc(Name.StartLocation);
3051    NameInfo.setNamedTypeInfo(TInfo);
3052    return NameInfo;
3053  }
3054
3055  case UnqualifiedId::IK_ConstructorTemplateId: {
3056    // In well-formed code, we can only have a constructor
3057    // template-id that refers to the current context, so go there
3058    // to find the actual type being constructed.
3059    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3060    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3061      return DeclarationNameInfo();
3062
3063    // Determine the type of the class being constructed.
3064    QualType CurClassType = Context.getTypeDeclType(CurClass);
3065
3066    // FIXME: Check two things: that the template-id names the same type as
3067    // CurClassType, and that the template-id does not occur when the name
3068    // was qualified.
3069
3070    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3071                                    Context.getCanonicalType(CurClassType)));
3072    NameInfo.setLoc(Name.StartLocation);
3073    // FIXME: should we retrieve TypeSourceInfo?
3074    NameInfo.setNamedTypeInfo(0);
3075    return NameInfo;
3076  }
3077
3078  case UnqualifiedId::IK_DestructorName: {
3079    TypeSourceInfo *TInfo;
3080    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3081    if (Ty.isNull())
3082      return DeclarationNameInfo();
3083    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3084                                              Context.getCanonicalType(Ty)));
3085    NameInfo.setLoc(Name.StartLocation);
3086    NameInfo.setNamedTypeInfo(TInfo);
3087    return NameInfo;
3088  }
3089
3090  case UnqualifiedId::IK_TemplateId: {
3091    TemplateName TName = Name.TemplateId->Template.get();
3092    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3093    return Context.getNameForTemplate(TName, TNameLoc);
3094  }
3095
3096  } // switch (Name.getKind())
3097
3098  llvm_unreachable("Unknown name kind");
3099}
3100
3101static QualType getCoreType(QualType Ty) {
3102  do {
3103    if (Ty->isPointerType() || Ty->isReferenceType())
3104      Ty = Ty->getPointeeType();
3105    else if (Ty->isArrayType())
3106      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3107    else
3108      return Ty.withoutLocalFastQualifiers();
3109  } while (true);
3110}
3111
3112/// hasSimilarParameters - Determine whether the C++ functions Declaration
3113/// and Definition have "nearly" matching parameters. This heuristic is
3114/// used to improve diagnostics in the case where an out-of-line function
3115/// definition doesn't match any declaration within the class or namespace.
3116/// Also sets Params to the list of indices to the parameters that differ
3117/// between the declaration and the definition. If hasSimilarParameters
3118/// returns true and Params is empty, then all of the parameters match.
3119static bool hasSimilarParameters(ASTContext &Context,
3120                                     FunctionDecl *Declaration,
3121                                     FunctionDecl *Definition,
3122                                     llvm::SmallVectorImpl<unsigned> &Params) {
3123  Params.clear();
3124  if (Declaration->param_size() != Definition->param_size())
3125    return false;
3126  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3127    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3128    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3129
3130    // The parameter types are identical
3131    if (Context.hasSameType(DefParamTy, DeclParamTy))
3132      continue;
3133
3134    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3135    QualType DefParamBaseTy = getCoreType(DefParamTy);
3136    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3137    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3138
3139    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3140        (DeclTyName && DeclTyName == DefTyName))
3141      Params.push_back(Idx);
3142    else  // The two parameters aren't even close
3143      return false;
3144  }
3145
3146  return true;
3147}
3148
3149/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3150/// declarator needs to be rebuilt in the current instantiation.
3151/// Any bits of declarator which appear before the name are valid for
3152/// consideration here.  That's specifically the type in the decl spec
3153/// and the base type in any member-pointer chunks.
3154static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3155                                                    DeclarationName Name) {
3156  // The types we specifically need to rebuild are:
3157  //   - typenames, typeofs, and decltypes
3158  //   - types which will become injected class names
3159  // Of course, we also need to rebuild any type referencing such a
3160  // type.  It's safest to just say "dependent", but we call out a
3161  // few cases here.
3162
3163  DeclSpec &DS = D.getMutableDeclSpec();
3164  switch (DS.getTypeSpecType()) {
3165  case DeclSpec::TST_typename:
3166  case DeclSpec::TST_typeofType:
3167  case DeclSpec::TST_decltype:
3168  case DeclSpec::TST_underlyingType:
3169  case DeclSpec::TST_atomic: {
3170    // Grab the type from the parser.
3171    TypeSourceInfo *TSI = 0;
3172    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3173    if (T.isNull() || !T->isDependentType()) break;
3174
3175    // Make sure there's a type source info.  This isn't really much
3176    // of a waste; most dependent types should have type source info
3177    // attached already.
3178    if (!TSI)
3179      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3180
3181    // Rebuild the type in the current instantiation.
3182    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3183    if (!TSI) return true;
3184
3185    // Store the new type back in the decl spec.
3186    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3187    DS.UpdateTypeRep(LocType);
3188    break;
3189  }
3190
3191  case DeclSpec::TST_typeofExpr: {
3192    Expr *E = DS.getRepAsExpr();
3193    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3194    if (Result.isInvalid()) return true;
3195    DS.UpdateExprRep(Result.get());
3196    break;
3197  }
3198
3199  default:
3200    // Nothing to do for these decl specs.
3201    break;
3202  }
3203
3204  // It doesn't matter what order we do this in.
3205  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3206    DeclaratorChunk &Chunk = D.getTypeObject(I);
3207
3208    // The only type information in the declarator which can come
3209    // before the declaration name is the base type of a member
3210    // pointer.
3211    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3212      continue;
3213
3214    // Rebuild the scope specifier in-place.
3215    CXXScopeSpec &SS = Chunk.Mem.Scope();
3216    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3217      return true;
3218  }
3219
3220  return false;
3221}
3222
3223Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3224  D.setFunctionDefinitionKind(FDK_Declaration);
3225  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3226
3227  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3228      Dcl->getDeclContext()->isFileContext())
3229    Dcl->setTopLevelDeclInObjCContainer();
3230
3231  return Dcl;
3232}
3233
3234/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3235///   If T is the name of a class, then each of the following shall have a
3236///   name different from T:
3237///     - every static data member of class T;
3238///     - every member function of class T
3239///     - every member of class T that is itself a type;
3240/// \returns true if the declaration name violates these rules.
3241bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3242                                   DeclarationNameInfo NameInfo) {
3243  DeclarationName Name = NameInfo.getName();
3244
3245  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3246    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3247      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3248      return true;
3249    }
3250
3251  return false;
3252}
3253
3254/// \brief Diagnose a declaration whose declarator-id has the given
3255/// nested-name-specifier.
3256///
3257/// \param SS The nested-name-specifier of the declarator-id.
3258///
3259/// \param DC The declaration context to which the nested-name-specifier
3260/// resolves.
3261///
3262/// \param Name The name of the entity being declared.
3263///
3264/// \param Loc The location of the name of the entity being declared.
3265///
3266/// \returns true if we cannot safely recover from this error, false otherwise.
3267bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3268                                        DeclarationName Name,
3269                                      SourceLocation Loc) {
3270  DeclContext *Cur = CurContext;
3271  while (isa<LinkageSpecDecl>(Cur))
3272    Cur = Cur->getParent();
3273
3274  // C++ [dcl.meaning]p1:
3275  //   A declarator-id shall not be qualified except for the definition
3276  //   of a member function (9.3) or static data member (9.4) outside of
3277  //   its class, the definition or explicit instantiation of a function
3278  //   or variable member of a namespace outside of its namespace, or the
3279  //   definition of an explicit specialization outside of its namespace,
3280  //   or the declaration of a friend function that is a member of
3281  //   another class or namespace (11.3). [...]
3282
3283  // The user provided a superfluous scope specifier that refers back to the
3284  // class or namespaces in which the entity is already declared.
3285  //
3286  // class X {
3287  //   void X::f();
3288  // };
3289  if (Cur->Equals(DC)) {
3290    Diag(Loc, diag::warn_member_extra_qualification)
3291      << Name << FixItHint::CreateRemoval(SS.getRange());
3292    SS.clear();
3293    return false;
3294  }
3295
3296  // Check whether the qualifying scope encloses the scope of the original
3297  // declaration.
3298  if (!Cur->Encloses(DC)) {
3299    if (Cur->isRecord())
3300      Diag(Loc, diag::err_member_qualification)
3301        << Name << SS.getRange();
3302    else if (isa<TranslationUnitDecl>(DC))
3303      Diag(Loc, diag::err_invalid_declarator_global_scope)
3304        << Name << SS.getRange();
3305    else if (isa<FunctionDecl>(Cur))
3306      Diag(Loc, diag::err_invalid_declarator_in_function)
3307        << Name << SS.getRange();
3308    else
3309      Diag(Loc, diag::err_invalid_declarator_scope)
3310      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3311
3312    return true;
3313  }
3314
3315  if (Cur->isRecord()) {
3316    // Cannot qualify members within a class.
3317    Diag(Loc, diag::err_member_qualification)
3318      << Name << SS.getRange();
3319    SS.clear();
3320
3321    // C++ constructors and destructors with incorrect scopes can break
3322    // our AST invariants by having the wrong underlying types. If
3323    // that's the case, then drop this declaration entirely.
3324    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3325         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3326        !Context.hasSameType(Name.getCXXNameType(),
3327                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3328      return true;
3329
3330    return false;
3331  }
3332
3333  // C++11 [dcl.meaning]p1:
3334  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3335  //   not begin with a decltype-specifer"
3336  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3337  while (SpecLoc.getPrefix())
3338    SpecLoc = SpecLoc.getPrefix();
3339  if (dyn_cast_or_null<DecltypeType>(
3340        SpecLoc.getNestedNameSpecifier()->getAsType()))
3341    Diag(Loc, diag::err_decltype_in_declarator)
3342      << SpecLoc.getTypeLoc().getSourceRange();
3343
3344  return false;
3345}
3346
3347Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3348                             MultiTemplateParamsArg TemplateParamLists) {
3349  // TODO: consider using NameInfo for diagnostic.
3350  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3351  DeclarationName Name = NameInfo.getName();
3352
3353  // All of these full declarators require an identifier.  If it doesn't have
3354  // one, the ParsedFreeStandingDeclSpec action should be used.
3355  if (!Name) {
3356    if (!D.isInvalidType())  // Reject this if we think it is valid.
3357      Diag(D.getDeclSpec().getLocStart(),
3358           diag::err_declarator_need_ident)
3359        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3360    return 0;
3361  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3362    return 0;
3363
3364  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3365  // we find one that is.
3366  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3367         (S->getFlags() & Scope::TemplateParamScope) != 0)
3368    S = S->getParent();
3369
3370  DeclContext *DC = CurContext;
3371  if (D.getCXXScopeSpec().isInvalid())
3372    D.setInvalidType();
3373  else if (D.getCXXScopeSpec().isSet()) {
3374    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3375                                        UPPC_DeclarationQualifier))
3376      return 0;
3377
3378    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3379    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3380    if (!DC) {
3381      // If we could not compute the declaration context, it's because the
3382      // declaration context is dependent but does not refer to a class,
3383      // class template, or class template partial specialization. Complain
3384      // and return early, to avoid the coming semantic disaster.
3385      Diag(D.getIdentifierLoc(),
3386           diag::err_template_qualified_declarator_no_match)
3387        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3388        << D.getCXXScopeSpec().getRange();
3389      return 0;
3390    }
3391    bool IsDependentContext = DC->isDependentContext();
3392
3393    if (!IsDependentContext &&
3394        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3395      return 0;
3396
3397    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3398      Diag(D.getIdentifierLoc(),
3399           diag::err_member_def_undefined_record)
3400        << Name << DC << D.getCXXScopeSpec().getRange();
3401      D.setInvalidType();
3402    } else if (!D.getDeclSpec().isFriendSpecified()) {
3403      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3404                                      Name, D.getIdentifierLoc())) {
3405        if (DC->isRecord())
3406          return 0;
3407
3408        D.setInvalidType();
3409      }
3410    }
3411
3412    // Check whether we need to rebuild the type of the given
3413    // declaration in the current instantiation.
3414    if (EnteringContext && IsDependentContext &&
3415        TemplateParamLists.size() != 0) {
3416      ContextRAII SavedContext(*this, DC);
3417      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3418        D.setInvalidType();
3419    }
3420  }
3421
3422  if (DiagnoseClassNameShadow(DC, NameInfo))
3423    // If this is a typedef, we'll end up spewing multiple diagnostics.
3424    // Just return early; it's safer.
3425    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3426      return 0;
3427
3428  NamedDecl *New;
3429
3430  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3431  QualType R = TInfo->getType();
3432
3433  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3434                                      UPPC_DeclarationType))
3435    D.setInvalidType();
3436
3437  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3438                        ForRedeclaration);
3439
3440  // See if this is a redefinition of a variable in the same scope.
3441  if (!D.getCXXScopeSpec().isSet()) {
3442    bool IsLinkageLookup = false;
3443
3444    // If the declaration we're planning to build will be a function
3445    // or object with linkage, then look for another declaration with
3446    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3447    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3448      /* Do nothing*/;
3449    else if (R->isFunctionType()) {
3450      if (CurContext->isFunctionOrMethod() ||
3451          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3452        IsLinkageLookup = true;
3453    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3454      IsLinkageLookup = true;
3455    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3456             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3457      IsLinkageLookup = true;
3458
3459    if (IsLinkageLookup)
3460      Previous.clear(LookupRedeclarationWithLinkage);
3461
3462    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3463  } else { // Something like "int foo::x;"
3464    LookupQualifiedName(Previous, DC);
3465
3466    // C++ [dcl.meaning]p1:
3467    //   When the declarator-id is qualified, the declaration shall refer to a
3468    //  previously declared member of the class or namespace to which the
3469    //  qualifier refers (or, in the case of a namespace, of an element of the
3470    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3471    //  thereof; [...]
3472    //
3473    // Note that we already checked the context above, and that we do not have
3474    // enough information to make sure that Previous contains the declaration
3475    // we want to match. For example, given:
3476    //
3477    //   class X {
3478    //     void f();
3479    //     void f(float);
3480    //   };
3481    //
3482    //   void X::f(int) { } // ill-formed
3483    //
3484    // In this case, Previous will point to the overload set
3485    // containing the two f's declared in X, but neither of them
3486    // matches.
3487
3488    // C++ [dcl.meaning]p1:
3489    //   [...] the member shall not merely have been introduced by a
3490    //   using-declaration in the scope of the class or namespace nominated by
3491    //   the nested-name-specifier of the declarator-id.
3492    RemoveUsingDecls(Previous);
3493  }
3494
3495  if (Previous.isSingleResult() &&
3496      Previous.getFoundDecl()->isTemplateParameter()) {
3497    // Maybe we will complain about the shadowed template parameter.
3498    if (!D.isInvalidType())
3499      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3500                                      Previous.getFoundDecl());
3501
3502    // Just pretend that we didn't see the previous declaration.
3503    Previous.clear();
3504  }
3505
3506  // In C++, the previous declaration we find might be a tag type
3507  // (class or enum). In this case, the new declaration will hide the
3508  // tag type. Note that this does does not apply if we're declaring a
3509  // typedef (C++ [dcl.typedef]p4).
3510  if (Previous.isSingleTagDecl() &&
3511      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3512    Previous.clear();
3513
3514  bool AddToScope = true;
3515  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3516    if (TemplateParamLists.size()) {
3517      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3518      return 0;
3519    }
3520
3521    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3522  } else if (R->isFunctionType()) {
3523    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3524                                  move(TemplateParamLists),
3525                                  AddToScope);
3526  } else {
3527    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3528                                  move(TemplateParamLists));
3529  }
3530
3531  if (New == 0)
3532    return 0;
3533
3534  // If this has an identifier and is not an invalid redeclaration or
3535  // function template specialization, add it to the scope stack.
3536  if (New->getDeclName() && AddToScope &&
3537       !(D.isRedeclaration() && New->isInvalidDecl()))
3538    PushOnScopeChains(New, S);
3539
3540  return New;
3541}
3542
3543/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3544/// types into constant array types in certain situations which would otherwise
3545/// be errors (for GCC compatibility).
3546static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3547                                                    ASTContext &Context,
3548                                                    bool &SizeIsNegative,
3549                                                    llvm::APSInt &Oversized) {
3550  // This method tries to turn a variable array into a constant
3551  // array even when the size isn't an ICE.  This is necessary
3552  // for compatibility with code that depends on gcc's buggy
3553  // constant expression folding, like struct {char x[(int)(char*)2];}
3554  SizeIsNegative = false;
3555  Oversized = 0;
3556
3557  if (T->isDependentType())
3558    return QualType();
3559
3560  QualifierCollector Qs;
3561  const Type *Ty = Qs.strip(T);
3562
3563  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3564    QualType Pointee = PTy->getPointeeType();
3565    QualType FixedType =
3566        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3567                                            Oversized);
3568    if (FixedType.isNull()) return FixedType;
3569    FixedType = Context.getPointerType(FixedType);
3570    return Qs.apply(Context, FixedType);
3571  }
3572  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3573    QualType Inner = PTy->getInnerType();
3574    QualType FixedType =
3575        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3576                                            Oversized);
3577    if (FixedType.isNull()) return FixedType;
3578    FixedType = Context.getParenType(FixedType);
3579    return Qs.apply(Context, FixedType);
3580  }
3581
3582  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3583  if (!VLATy)
3584    return QualType();
3585  // FIXME: We should probably handle this case
3586  if (VLATy->getElementType()->isVariablyModifiedType())
3587    return QualType();
3588
3589  llvm::APSInt Res;
3590  if (!VLATy->getSizeExpr() ||
3591      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3592    return QualType();
3593
3594  // Check whether the array size is negative.
3595  if (Res.isSigned() && Res.isNegative()) {
3596    SizeIsNegative = true;
3597    return QualType();
3598  }
3599
3600  // Check whether the array is too large to be addressed.
3601  unsigned ActiveSizeBits
3602    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3603                                              Res);
3604  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3605    Oversized = Res;
3606    return QualType();
3607  }
3608
3609  return Context.getConstantArrayType(VLATy->getElementType(),
3610                                      Res, ArrayType::Normal, 0);
3611}
3612
3613/// \brief Register the given locally-scoped external C declaration so
3614/// that it can be found later for redeclarations
3615void
3616Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3617                                       const LookupResult &Previous,
3618                                       Scope *S) {
3619  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3620         "Decl is not a locally-scoped decl!");
3621  // Note that we have a locally-scoped external with this name.
3622  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3623
3624  if (!Previous.isSingleResult())
3625    return;
3626
3627  NamedDecl *PrevDecl = Previous.getFoundDecl();
3628
3629  // If there was a previous declaration of this variable, it may be
3630  // in our identifier chain. Update the identifier chain with the new
3631  // declaration.
3632  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3633    // The previous declaration was found on the identifer resolver
3634    // chain, so remove it from its scope.
3635
3636    if (S->isDeclScope(PrevDecl)) {
3637      // Special case for redeclarations in the SAME scope.
3638      // Because this declaration is going to be added to the identifier chain
3639      // later, we should temporarily take it OFF the chain.
3640      IdResolver.RemoveDecl(ND);
3641
3642    } else {
3643      // Find the scope for the original declaration.
3644      while (S && !S->isDeclScope(PrevDecl))
3645        S = S->getParent();
3646    }
3647
3648    if (S)
3649      S->RemoveDecl(PrevDecl);
3650  }
3651}
3652
3653llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3654Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3655  if (ExternalSource) {
3656    // Load locally-scoped external decls from the external source.
3657    SmallVector<NamedDecl *, 4> Decls;
3658    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3659    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3660      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3661        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3662      if (Pos == LocallyScopedExternalDecls.end())
3663        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3664    }
3665  }
3666
3667  return LocallyScopedExternalDecls.find(Name);
3668}
3669
3670/// \brief Diagnose function specifiers on a declaration of an identifier that
3671/// does not identify a function.
3672void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3673  // FIXME: We should probably indicate the identifier in question to avoid
3674  // confusion for constructs like "inline int a(), b;"
3675  if (D.getDeclSpec().isInlineSpecified())
3676    Diag(D.getDeclSpec().getInlineSpecLoc(),
3677         diag::err_inline_non_function);
3678
3679  if (D.getDeclSpec().isVirtualSpecified())
3680    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3681         diag::err_virtual_non_function);
3682
3683  if (D.getDeclSpec().isExplicitSpecified())
3684    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3685         diag::err_explicit_non_function);
3686}
3687
3688NamedDecl*
3689Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3690                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3691  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3692  if (D.getCXXScopeSpec().isSet()) {
3693    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3694      << D.getCXXScopeSpec().getRange();
3695    D.setInvalidType();
3696    // Pretend we didn't see the scope specifier.
3697    DC = CurContext;
3698    Previous.clear();
3699  }
3700
3701  if (getLangOpts().CPlusPlus) {
3702    // Check that there are no default arguments (C++ only).
3703    CheckExtraCXXDefaultArguments(D);
3704  }
3705
3706  DiagnoseFunctionSpecifiers(D);
3707
3708  if (D.getDeclSpec().isThreadSpecified())
3709    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3710  if (D.getDeclSpec().isConstexprSpecified())
3711    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3712      << 1;
3713
3714  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3715    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3716      << D.getName().getSourceRange();
3717    return 0;
3718  }
3719
3720  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3721  if (!NewTD) return 0;
3722
3723  // Handle attributes prior to checking for duplicates in MergeVarDecl
3724  ProcessDeclAttributes(S, NewTD, D);
3725
3726  CheckTypedefForVariablyModifiedType(S, NewTD);
3727
3728  bool Redeclaration = D.isRedeclaration();
3729  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3730  D.setRedeclaration(Redeclaration);
3731  return ND;
3732}
3733
3734void
3735Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3736  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3737  // then it shall have block scope.
3738  // Note that variably modified types must be fixed before merging the decl so
3739  // that redeclarations will match.
3740  QualType T = NewTD->getUnderlyingType();
3741  if (T->isVariablyModifiedType()) {
3742    getCurFunction()->setHasBranchProtectedScope();
3743
3744    if (S->getFnParent() == 0) {
3745      bool SizeIsNegative;
3746      llvm::APSInt Oversized;
3747      QualType FixedTy =
3748          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3749                                              Oversized);
3750      if (!FixedTy.isNull()) {
3751        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3752        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3753      } else {
3754        if (SizeIsNegative)
3755          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3756        else if (T->isVariableArrayType())
3757          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3758        else if (Oversized.getBoolValue())
3759          Diag(NewTD->getLocation(), diag::err_array_too_large)
3760            << Oversized.toString(10);
3761        else
3762          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3763        NewTD->setInvalidDecl();
3764      }
3765    }
3766  }
3767}
3768
3769
3770/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3771/// declares a typedef-name, either using the 'typedef' type specifier or via
3772/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3773NamedDecl*
3774Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3775                           LookupResult &Previous, bool &Redeclaration) {
3776  // Merge the decl with the existing one if appropriate. If the decl is
3777  // in an outer scope, it isn't the same thing.
3778  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3779                       /*ExplicitInstantiationOrSpecialization=*/false);
3780  if (!Previous.empty()) {
3781    Redeclaration = true;
3782    MergeTypedefNameDecl(NewTD, Previous);
3783  }
3784
3785  // If this is the C FILE type, notify the AST context.
3786  if (IdentifierInfo *II = NewTD->getIdentifier())
3787    if (!NewTD->isInvalidDecl() &&
3788        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3789      if (II->isStr("FILE"))
3790        Context.setFILEDecl(NewTD);
3791      else if (II->isStr("jmp_buf"))
3792        Context.setjmp_bufDecl(NewTD);
3793      else if (II->isStr("sigjmp_buf"))
3794        Context.setsigjmp_bufDecl(NewTD);
3795      else if (II->isStr("ucontext_t"))
3796        Context.setucontext_tDecl(NewTD);
3797      else if (II->isStr("__builtin_va_list"))
3798        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3799    }
3800
3801  return NewTD;
3802}
3803
3804/// \brief Determines whether the given declaration is an out-of-scope
3805/// previous declaration.
3806///
3807/// This routine should be invoked when name lookup has found a
3808/// previous declaration (PrevDecl) that is not in the scope where a
3809/// new declaration by the same name is being introduced. If the new
3810/// declaration occurs in a local scope, previous declarations with
3811/// linkage may still be considered previous declarations (C99
3812/// 6.2.2p4-5, C++ [basic.link]p6).
3813///
3814/// \param PrevDecl the previous declaration found by name
3815/// lookup
3816///
3817/// \param DC the context in which the new declaration is being
3818/// declared.
3819///
3820/// \returns true if PrevDecl is an out-of-scope previous declaration
3821/// for a new delcaration with the same name.
3822static bool
3823isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3824                                ASTContext &Context) {
3825  if (!PrevDecl)
3826    return false;
3827
3828  if (!PrevDecl->hasLinkage())
3829    return false;
3830
3831  if (Context.getLangOpts().CPlusPlus) {
3832    // C++ [basic.link]p6:
3833    //   If there is a visible declaration of an entity with linkage
3834    //   having the same name and type, ignoring entities declared
3835    //   outside the innermost enclosing namespace scope, the block
3836    //   scope declaration declares that same entity and receives the
3837    //   linkage of the previous declaration.
3838    DeclContext *OuterContext = DC->getRedeclContext();
3839    if (!OuterContext->isFunctionOrMethod())
3840      // This rule only applies to block-scope declarations.
3841      return false;
3842
3843    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3844    if (PrevOuterContext->isRecord())
3845      // We found a member function: ignore it.
3846      return false;
3847
3848    // Find the innermost enclosing namespace for the new and
3849    // previous declarations.
3850    OuterContext = OuterContext->getEnclosingNamespaceContext();
3851    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3852
3853    // The previous declaration is in a different namespace, so it
3854    // isn't the same function.
3855    if (!OuterContext->Equals(PrevOuterContext))
3856      return false;
3857  }
3858
3859  return true;
3860}
3861
3862static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3863  CXXScopeSpec &SS = D.getCXXScopeSpec();
3864  if (!SS.isSet()) return;
3865  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3866}
3867
3868bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3869  QualType type = decl->getType();
3870  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3871  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3872    // Various kinds of declaration aren't allowed to be __autoreleasing.
3873    unsigned kind = -1U;
3874    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3875      if (var->hasAttr<BlocksAttr>())
3876        kind = 0; // __block
3877      else if (!var->hasLocalStorage())
3878        kind = 1; // global
3879    } else if (isa<ObjCIvarDecl>(decl)) {
3880      kind = 3; // ivar
3881    } else if (isa<FieldDecl>(decl)) {
3882      kind = 2; // field
3883    }
3884
3885    if (kind != -1U) {
3886      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3887        << kind;
3888    }
3889  } else if (lifetime == Qualifiers::OCL_None) {
3890    // Try to infer lifetime.
3891    if (!type->isObjCLifetimeType())
3892      return false;
3893
3894    lifetime = type->getObjCARCImplicitLifetime();
3895    type = Context.getLifetimeQualifiedType(type, lifetime);
3896    decl->setType(type);
3897  }
3898
3899  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3900    // Thread-local variables cannot have lifetime.
3901    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3902        var->isThreadSpecified()) {
3903      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3904        << var->getType();
3905      return true;
3906    }
3907  }
3908
3909  return false;
3910}
3911
3912NamedDecl*
3913Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3914                              TypeSourceInfo *TInfo, LookupResult &Previous,
3915                              MultiTemplateParamsArg TemplateParamLists) {
3916  QualType R = TInfo->getType();
3917  DeclarationName Name = GetNameForDeclarator(D).getName();
3918
3919  // Check that there are no default arguments (C++ only).
3920  if (getLangOpts().CPlusPlus)
3921    CheckExtraCXXDefaultArguments(D);
3922
3923  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3924  assert(SCSpec != DeclSpec::SCS_typedef &&
3925         "Parser allowed 'typedef' as storage class VarDecl.");
3926  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3927  if (SCSpec == DeclSpec::SCS_mutable) {
3928    // mutable can only appear on non-static class members, so it's always
3929    // an error here
3930    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3931    D.setInvalidType();
3932    SC = SC_None;
3933  }
3934  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3935  VarDecl::StorageClass SCAsWritten
3936    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3937
3938  IdentifierInfo *II = Name.getAsIdentifierInfo();
3939  if (!II) {
3940    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3941      << Name;
3942    return 0;
3943  }
3944
3945  DiagnoseFunctionSpecifiers(D);
3946
3947  if (!DC->isRecord() && S->getFnParent() == 0) {
3948    // C99 6.9p2: The storage-class specifiers auto and register shall not
3949    // appear in the declaration specifiers in an external declaration.
3950    if (SC == SC_Auto || SC == SC_Register) {
3951
3952      // If this is a register variable with an asm label specified, then this
3953      // is a GNU extension.
3954      if (SC == SC_Register && D.getAsmLabel())
3955        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3956      else
3957        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3958      D.setInvalidType();
3959    }
3960  }
3961
3962  if (getLangOpts().OpenCL) {
3963    // Set up the special work-group-local storage class for variables in the
3964    // OpenCL __local address space.
3965    if (R.getAddressSpace() == LangAS::opencl_local)
3966      SC = SC_OpenCLWorkGroupLocal;
3967  }
3968
3969  bool isExplicitSpecialization = false;
3970  VarDecl *NewVD;
3971  if (!getLangOpts().CPlusPlus) {
3972    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
3973                            D.getIdentifierLoc(), II,
3974                            R, TInfo, SC, SCAsWritten);
3975
3976    if (D.isInvalidType())
3977      NewVD->setInvalidDecl();
3978  } else {
3979    if (DC->isRecord() && !CurContext->isRecord()) {
3980      // This is an out-of-line definition of a static data member.
3981      if (SC == SC_Static) {
3982        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3983             diag::err_static_out_of_line)
3984          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3985      } else if (SC == SC_None)
3986        SC = SC_Static;
3987    }
3988    if (SC == SC_Static && CurContext->isRecord()) {
3989      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3990        if (RD->isLocalClass())
3991          Diag(D.getIdentifierLoc(),
3992               diag::err_static_data_member_not_allowed_in_local_class)
3993            << Name << RD->getDeclName();
3994
3995        // C++98 [class.union]p1: If a union contains a static data member,
3996        // the program is ill-formed. C++11 drops this restriction.
3997        if (RD->isUnion())
3998          Diag(D.getIdentifierLoc(),
3999               getLangOpts().CPlusPlus0x
4000                 ? diag::warn_cxx98_compat_static_data_member_in_union
4001                 : diag::ext_static_data_member_in_union) << Name;
4002        // We conservatively disallow static data members in anonymous structs.
4003        else if (!RD->getDeclName())
4004          Diag(D.getIdentifierLoc(),
4005               diag::err_static_data_member_not_allowed_in_anon_struct)
4006            << Name << RD->isUnion();
4007      }
4008    }
4009
4010    // Match up the template parameter lists with the scope specifier, then
4011    // determine whether we have a template or a template specialization.
4012    isExplicitSpecialization = false;
4013    bool Invalid = false;
4014    if (TemplateParameterList *TemplateParams
4015        = MatchTemplateParametersToScopeSpecifier(
4016                                  D.getDeclSpec().getLocStart(),
4017                                                  D.getIdentifierLoc(),
4018                                                  D.getCXXScopeSpec(),
4019                                                  TemplateParamLists.get(),
4020                                                  TemplateParamLists.size(),
4021                                                  /*never a friend*/ false,
4022                                                  isExplicitSpecialization,
4023                                                  Invalid)) {
4024      if (TemplateParams->size() > 0) {
4025        // There is no such thing as a variable template.
4026        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4027          << II
4028          << SourceRange(TemplateParams->getTemplateLoc(),
4029                         TemplateParams->getRAngleLoc());
4030        return 0;
4031      } else {
4032        // There is an extraneous 'template<>' for this variable. Complain
4033        // about it, but allow the declaration of the variable.
4034        Diag(TemplateParams->getTemplateLoc(),
4035             diag::err_template_variable_noparams)
4036          << II
4037          << SourceRange(TemplateParams->getTemplateLoc(),
4038                         TemplateParams->getRAngleLoc());
4039      }
4040    }
4041
4042    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4043                            D.getIdentifierLoc(), II,
4044                            R, TInfo, SC, SCAsWritten);
4045
4046    // If this decl has an auto type in need of deduction, make a note of the
4047    // Decl so we can diagnose uses of it in its own initializer.
4048    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4049        R->getContainedAutoType())
4050      ParsingInitForAutoVars.insert(NewVD);
4051
4052    if (D.isInvalidType() || Invalid)
4053      NewVD->setInvalidDecl();
4054
4055    SetNestedNameSpecifier(NewVD, D);
4056
4057    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4058      NewVD->setTemplateParameterListsInfo(Context,
4059                                           TemplateParamLists.size(),
4060                                           TemplateParamLists.release());
4061    }
4062
4063    if (D.getDeclSpec().isConstexprSpecified())
4064      NewVD->setConstexpr(true);
4065  }
4066
4067  // Set the lexical context. If the declarator has a C++ scope specifier, the
4068  // lexical context will be different from the semantic context.
4069  NewVD->setLexicalDeclContext(CurContext);
4070
4071  if (D.getDeclSpec().isThreadSpecified()) {
4072    if (NewVD->hasLocalStorage())
4073      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4074    else if (!Context.getTargetInfo().isTLSSupported())
4075      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4076    else
4077      NewVD->setThreadSpecified(true);
4078  }
4079
4080  if (D.getDeclSpec().isModulePrivateSpecified()) {
4081    if (isExplicitSpecialization)
4082      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4083        << 2
4084        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4085    else if (NewVD->hasLocalStorage())
4086      Diag(NewVD->getLocation(), diag::err_module_private_local)
4087        << 0 << NewVD->getDeclName()
4088        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4089        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4090    else
4091      NewVD->setModulePrivate();
4092  }
4093
4094  // Handle attributes prior to checking for duplicates in MergeVarDecl
4095  ProcessDeclAttributes(S, NewVD, D);
4096
4097  // In auto-retain/release, infer strong retension for variables of
4098  // retainable type.
4099  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4100    NewVD->setInvalidDecl();
4101
4102  // Handle GNU asm-label extension (encoded as an attribute).
4103  if (Expr *E = (Expr*)D.getAsmLabel()) {
4104    // The parser guarantees this is a string.
4105    StringLiteral *SE = cast<StringLiteral>(E);
4106    StringRef Label = SE->getString();
4107    if (S->getFnParent() != 0) {
4108      switch (SC) {
4109      case SC_None:
4110      case SC_Auto:
4111        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4112        break;
4113      case SC_Register:
4114        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4115          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4116        break;
4117      case SC_Static:
4118      case SC_Extern:
4119      case SC_PrivateExtern:
4120      case SC_OpenCLWorkGroupLocal:
4121        break;
4122      }
4123    }
4124
4125    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4126                                                Context, Label));
4127  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4128    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4129      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4130    if (I != ExtnameUndeclaredIdentifiers.end()) {
4131      NewVD->addAttr(I->second);
4132      ExtnameUndeclaredIdentifiers.erase(I);
4133    }
4134  }
4135
4136  // Diagnose shadowed variables before filtering for scope.
4137  if (!D.getCXXScopeSpec().isSet())
4138    CheckShadow(S, NewVD, Previous);
4139
4140  // Don't consider existing declarations that are in a different
4141  // scope and are out-of-semantic-context declarations (if the new
4142  // declaration has linkage).
4143  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4144                       isExplicitSpecialization);
4145
4146  if (!getLangOpts().CPlusPlus) {
4147    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4148  } else {
4149    // Merge the decl with the existing one if appropriate.
4150    if (!Previous.empty()) {
4151      if (Previous.isSingleResult() &&
4152          isa<FieldDecl>(Previous.getFoundDecl()) &&
4153          D.getCXXScopeSpec().isSet()) {
4154        // The user tried to define a non-static data member
4155        // out-of-line (C++ [dcl.meaning]p1).
4156        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4157          << D.getCXXScopeSpec().getRange();
4158        Previous.clear();
4159        NewVD->setInvalidDecl();
4160      }
4161    } else if (D.getCXXScopeSpec().isSet()) {
4162      // No previous declaration in the qualifying scope.
4163      Diag(D.getIdentifierLoc(), diag::err_no_member)
4164        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4165        << D.getCXXScopeSpec().getRange();
4166      NewVD->setInvalidDecl();
4167    }
4168
4169    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4170
4171    // This is an explicit specialization of a static data member. Check it.
4172    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4173        CheckMemberSpecialization(NewVD, Previous))
4174      NewVD->setInvalidDecl();
4175  }
4176
4177  // attributes declared post-definition are currently ignored
4178  // FIXME: This should be handled in attribute merging, not
4179  // here.
4180  if (Previous.isSingleResult()) {
4181    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4182    if (Def && (Def = Def->getDefinition()) &&
4183        Def != NewVD && D.hasAttributes()) {
4184      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4185      Diag(Def->getLocation(), diag::note_previous_definition);
4186    }
4187  }
4188
4189  // If this is a locally-scoped extern C variable, update the map of
4190  // such variables.
4191  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4192      !NewVD->isInvalidDecl())
4193    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4194
4195  // If there's a #pragma GCC visibility in scope, and this isn't a class
4196  // member, set the visibility of this variable.
4197  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4198    AddPushedVisibilityAttribute(NewVD);
4199
4200  MarkUnusedFileScopedDecl(NewVD);
4201
4202  return NewVD;
4203}
4204
4205/// \brief Diagnose variable or built-in function shadowing.  Implements
4206/// -Wshadow.
4207///
4208/// This method is called whenever a VarDecl is added to a "useful"
4209/// scope.
4210///
4211/// \param S the scope in which the shadowing name is being declared
4212/// \param R the lookup of the name
4213///
4214void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4215  // Return if warning is ignored.
4216  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4217        DiagnosticsEngine::Ignored)
4218    return;
4219
4220  // Don't diagnose declarations at file scope.
4221  if (D->hasGlobalStorage())
4222    return;
4223
4224  DeclContext *NewDC = D->getDeclContext();
4225
4226  // Only diagnose if we're shadowing an unambiguous field or variable.
4227  if (R.getResultKind() != LookupResult::Found)
4228    return;
4229
4230  NamedDecl* ShadowedDecl = R.getFoundDecl();
4231  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4232    return;
4233
4234  // Fields are not shadowed by variables in C++ static methods.
4235  if (isa<FieldDecl>(ShadowedDecl))
4236    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4237      if (MD->isStatic())
4238        return;
4239
4240  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4241    if (shadowedVar->isExternC()) {
4242      // For shadowing external vars, make sure that we point to the global
4243      // declaration, not a locally scoped extern declaration.
4244      for (VarDecl::redecl_iterator
4245             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4246           I != E; ++I)
4247        if (I->isFileVarDecl()) {
4248          ShadowedDecl = *I;
4249          break;
4250        }
4251    }
4252
4253  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4254
4255  // Only warn about certain kinds of shadowing for class members.
4256  if (NewDC && NewDC->isRecord()) {
4257    // In particular, don't warn about shadowing non-class members.
4258    if (!OldDC->isRecord())
4259      return;
4260
4261    // TODO: should we warn about static data members shadowing
4262    // static data members from base classes?
4263
4264    // TODO: don't diagnose for inaccessible shadowed members.
4265    // This is hard to do perfectly because we might friend the
4266    // shadowing context, but that's just a false negative.
4267  }
4268
4269  // Determine what kind of declaration we're shadowing.
4270  unsigned Kind;
4271  if (isa<RecordDecl>(OldDC)) {
4272    if (isa<FieldDecl>(ShadowedDecl))
4273      Kind = 3; // field
4274    else
4275      Kind = 2; // static data member
4276  } else if (OldDC->isFileContext())
4277    Kind = 1; // global
4278  else
4279    Kind = 0; // local
4280
4281  DeclarationName Name = R.getLookupName();
4282
4283  // Emit warning and note.
4284  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4285  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4286}
4287
4288/// \brief Check -Wshadow without the advantage of a previous lookup.
4289void Sema::CheckShadow(Scope *S, VarDecl *D) {
4290  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4291        DiagnosticsEngine::Ignored)
4292    return;
4293
4294  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4295                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4296  LookupName(R, S);
4297  CheckShadow(S, D, R);
4298}
4299
4300/// \brief Perform semantic checking on a newly-created variable
4301/// declaration.
4302///
4303/// This routine performs all of the type-checking required for a
4304/// variable declaration once it has been built. It is used both to
4305/// check variables after they have been parsed and their declarators
4306/// have been translated into a declaration, and to check variables
4307/// that have been instantiated from a template.
4308///
4309/// Sets NewVD->isInvalidDecl() if an error was encountered.
4310///
4311/// Returns true if the variable declaration is a redeclaration.
4312bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4313                                    LookupResult &Previous) {
4314  // If the decl is already known invalid, don't check it.
4315  if (NewVD->isInvalidDecl())
4316    return false;
4317
4318  QualType T = NewVD->getType();
4319
4320  if (T->isObjCObjectType()) {
4321    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4322      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4323    T = Context.getObjCObjectPointerType(T);
4324    NewVD->setType(T);
4325  }
4326
4327  // Emit an error if an address space was applied to decl with local storage.
4328  // This includes arrays of objects with address space qualifiers, but not
4329  // automatic variables that point to other address spaces.
4330  // ISO/IEC TR 18037 S5.1.2
4331  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4332    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4333    NewVD->setInvalidDecl();
4334    return false;
4335  }
4336
4337  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4338      && !NewVD->hasAttr<BlocksAttr>()) {
4339    if (getLangOpts().getGC() != LangOptions::NonGC)
4340      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4341    else
4342      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4343  }
4344
4345  bool isVM = T->isVariablyModifiedType();
4346  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4347      NewVD->hasAttr<BlocksAttr>())
4348    getCurFunction()->setHasBranchProtectedScope();
4349
4350  if ((isVM && NewVD->hasLinkage()) ||
4351      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4352    bool SizeIsNegative;
4353    llvm::APSInt Oversized;
4354    QualType FixedTy =
4355        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4356                                            Oversized);
4357
4358    if (FixedTy.isNull() && T->isVariableArrayType()) {
4359      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4360      // FIXME: This won't give the correct result for
4361      // int a[10][n];
4362      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4363
4364      if (NewVD->isFileVarDecl())
4365        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4366        << SizeRange;
4367      else if (NewVD->getStorageClass() == SC_Static)
4368        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4369        << SizeRange;
4370      else
4371        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4372        << SizeRange;
4373      NewVD->setInvalidDecl();
4374      return false;
4375    }
4376
4377    if (FixedTy.isNull()) {
4378      if (NewVD->isFileVarDecl())
4379        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4380      else
4381        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4382      NewVD->setInvalidDecl();
4383      return false;
4384    }
4385
4386    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4387    NewVD->setType(FixedTy);
4388  }
4389
4390  if (Previous.empty() && NewVD->isExternC()) {
4391    // Since we did not find anything by this name and we're declaring
4392    // an extern "C" variable, look for a non-visible extern "C"
4393    // declaration with the same name.
4394    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4395      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4396    if (Pos != LocallyScopedExternalDecls.end())
4397      Previous.addDecl(Pos->second);
4398  }
4399
4400  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4401    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4402      << T;
4403    NewVD->setInvalidDecl();
4404    return false;
4405  }
4406
4407  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4408    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4409    NewVD->setInvalidDecl();
4410    return false;
4411  }
4412
4413  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4414    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4415    NewVD->setInvalidDecl();
4416    return false;
4417  }
4418
4419  if (NewVD->isConstexpr() && !T->isDependentType() &&
4420      RequireLiteralType(NewVD->getLocation(), T,
4421                         PDiag(diag::err_constexpr_var_non_literal))) {
4422    NewVD->setInvalidDecl();
4423    return false;
4424  }
4425
4426  if (!Previous.empty()) {
4427    MergeVarDecl(NewVD, Previous);
4428    return true;
4429  }
4430  return false;
4431}
4432
4433/// \brief Data used with FindOverriddenMethod
4434struct FindOverriddenMethodData {
4435  Sema *S;
4436  CXXMethodDecl *Method;
4437};
4438
4439/// \brief Member lookup function that determines whether a given C++
4440/// method overrides a method in a base class, to be used with
4441/// CXXRecordDecl::lookupInBases().
4442static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4443                                 CXXBasePath &Path,
4444                                 void *UserData) {
4445  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4446
4447  FindOverriddenMethodData *Data
4448    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4449
4450  DeclarationName Name = Data->Method->getDeclName();
4451
4452  // FIXME: Do we care about other names here too?
4453  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4454    // We really want to find the base class destructor here.
4455    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4456    CanQualType CT = Data->S->Context.getCanonicalType(T);
4457
4458    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4459  }
4460
4461  for (Path.Decls = BaseRecord->lookup(Name);
4462       Path.Decls.first != Path.Decls.second;
4463       ++Path.Decls.first) {
4464    NamedDecl *D = *Path.Decls.first;
4465    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4466      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4467        return true;
4468    }
4469  }
4470
4471  return false;
4472}
4473
4474static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4475  const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4476  return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4477}
4478
4479/// AddOverriddenMethods - See if a method overrides any in the base classes,
4480/// and if so, check that it's a valid override and remember it.
4481bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4482  // Look for virtual methods in base classes that this method might override.
4483  CXXBasePaths Paths;
4484  FindOverriddenMethodData Data;
4485  Data.Method = MD;
4486  Data.S = this;
4487  bool AddedAny = false;
4488  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4489    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4490         E = Paths.found_decls_end(); I != E; ++I) {
4491      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4492        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4493        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4494            (hasDelayedExceptionSpec(MD) ||
4495             !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4496            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4497          AddedAny = true;
4498        }
4499      }
4500    }
4501  }
4502
4503  return AddedAny;
4504}
4505
4506namespace {
4507  // Struct for holding all of the extra arguments needed by
4508  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4509  struct ActOnFDArgs {
4510    Scope *S;
4511    Declarator &D;
4512    MultiTemplateParamsArg TemplateParamLists;
4513    bool AddToScope;
4514  };
4515}
4516
4517namespace {
4518
4519// Callback to only accept typo corrections that have a non-zero edit distance.
4520// Also only accept corrections that have the same parent decl.
4521class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4522 public:
4523  DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4524      : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4525
4526  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4527    if (candidate.getEditDistance() == 0)
4528      return false;
4529
4530    if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4531      CXXRecordDecl *Parent = MD->getParent();
4532      return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4533    }
4534
4535    return !ExpectedParent;
4536  }
4537
4538 private:
4539  CXXRecordDecl *ExpectedParent;
4540};
4541
4542}
4543
4544/// \brief Generate diagnostics for an invalid function redeclaration.
4545///
4546/// This routine handles generating the diagnostic messages for an invalid
4547/// function redeclaration, including finding possible similar declarations
4548/// or performing typo correction if there are no previous declarations with
4549/// the same name.
4550///
4551/// Returns a NamedDecl iff typo correction was performed and substituting in
4552/// the new declaration name does not cause new errors.
4553static NamedDecl* DiagnoseInvalidRedeclaration(
4554    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4555    ActOnFDArgs &ExtraArgs) {
4556  NamedDecl *Result = NULL;
4557  DeclarationName Name = NewFD->getDeclName();
4558  DeclContext *NewDC = NewFD->getDeclContext();
4559  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4560                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4561  llvm::SmallVector<unsigned, 1> MismatchedParams;
4562  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4563  TypoCorrection Correction;
4564  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4565                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4566  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4567                                  : diag::err_member_def_does_not_match;
4568
4569  NewFD->setInvalidDecl();
4570  SemaRef.LookupQualifiedName(Prev, NewDC);
4571  assert(!Prev.isAmbiguous() &&
4572         "Cannot have an ambiguity in previous-declaration lookup");
4573  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4574  DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4575  if (!Prev.empty()) {
4576    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4577         Func != FuncEnd; ++Func) {
4578      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4579      if (FD &&
4580          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4581        // Add 1 to the index so that 0 can mean the mismatch didn't
4582        // involve a parameter
4583        unsigned ParamNum =
4584            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4585        NearMatches.push_back(std::make_pair(FD, ParamNum));
4586      }
4587    }
4588  // If the qualified name lookup yielded nothing, try typo correction
4589  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4590                                         Prev.getLookupKind(), 0, 0,
4591                                         Validator, NewDC))) {
4592    // Trap errors.
4593    Sema::SFINAETrap Trap(SemaRef);
4594
4595    // Set up everything for the call to ActOnFunctionDeclarator
4596    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4597                              ExtraArgs.D.getIdentifierLoc());
4598    Previous.clear();
4599    Previous.setLookupName(Correction.getCorrection());
4600    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4601                                    CDeclEnd = Correction.end();
4602         CDecl != CDeclEnd; ++CDecl) {
4603      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4604      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4605                                     MismatchedParams)) {
4606        Previous.addDecl(FD);
4607      }
4608    }
4609    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4610    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4611    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4612    // eliminate the need for the parameter pack ExtraArgs.
4613    Result = SemaRef.ActOnFunctionDeclarator(
4614        ExtraArgs.S, ExtraArgs.D,
4615        Correction.getCorrectionDecl()->getDeclContext(),
4616        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4617        ExtraArgs.AddToScope);
4618    if (Trap.hasErrorOccurred()) {
4619      // Pretend the typo correction never occurred
4620      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4621                                ExtraArgs.D.getIdentifierLoc());
4622      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4623      Previous.clear();
4624      Previous.setLookupName(Name);
4625      Result = NULL;
4626    } else {
4627      for (LookupResult::iterator Func = Previous.begin(),
4628                               FuncEnd = Previous.end();
4629           Func != FuncEnd; ++Func) {
4630        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4631          NearMatches.push_back(std::make_pair(FD, 0));
4632      }
4633    }
4634    if (NearMatches.empty()) {
4635      // Ignore the correction if it didn't yield any close FunctionDecl matches
4636      Correction = TypoCorrection();
4637    } else {
4638      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4639                             : diag::err_member_def_does_not_match_suggest;
4640    }
4641  }
4642
4643  if (Correction)
4644    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4645        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4646        << FixItHint::CreateReplacement(
4647            NewFD->getLocation(),
4648            Correction.getAsString(SemaRef.getLangOpts()));
4649  else
4650    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4651        << Name << NewDC << NewFD->getLocation();
4652
4653  bool NewFDisConst = false;
4654  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4655    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4656
4657  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4658       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4659       NearMatch != NearMatchEnd; ++NearMatch) {
4660    FunctionDecl *FD = NearMatch->first;
4661    bool FDisConst = false;
4662    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4663      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4664
4665    if (unsigned Idx = NearMatch->second) {
4666      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4667      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4668      if (Loc.isInvalid()) Loc = FD->getLocation();
4669      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4670          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4671    } else if (Correction) {
4672      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4673          << Correction.getQuoted(SemaRef.getLangOpts());
4674    } else if (FDisConst != NewFDisConst) {
4675      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4676          << NewFDisConst << FD->getSourceRange().getEnd();
4677    } else
4678      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4679  }
4680  return Result;
4681}
4682
4683static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4684                                                          Declarator &D) {
4685  switch (D.getDeclSpec().getStorageClassSpec()) {
4686  default: llvm_unreachable("Unknown storage class!");
4687  case DeclSpec::SCS_auto:
4688  case DeclSpec::SCS_register:
4689  case DeclSpec::SCS_mutable:
4690    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4691                 diag::err_typecheck_sclass_func);
4692    D.setInvalidType();
4693    break;
4694  case DeclSpec::SCS_unspecified: break;
4695  case DeclSpec::SCS_extern: return SC_Extern;
4696  case DeclSpec::SCS_static: {
4697    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4698      // C99 6.7.1p5:
4699      //   The declaration of an identifier for a function that has
4700      //   block scope shall have no explicit storage-class specifier
4701      //   other than extern
4702      // See also (C++ [dcl.stc]p4).
4703      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4704                   diag::err_static_block_func);
4705      break;
4706    } else
4707      return SC_Static;
4708  }
4709  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4710  }
4711
4712  // No explicit storage class has already been returned
4713  return SC_None;
4714}
4715
4716static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4717                                           DeclContext *DC, QualType &R,
4718                                           TypeSourceInfo *TInfo,
4719                                           FunctionDecl::StorageClass SC,
4720                                           bool &IsVirtualOkay) {
4721  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4722  DeclarationName Name = NameInfo.getName();
4723
4724  FunctionDecl *NewFD = 0;
4725  bool isInline = D.getDeclSpec().isInlineSpecified();
4726  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4727  FunctionDecl::StorageClass SCAsWritten
4728    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4729
4730  if (!SemaRef.getLangOpts().CPlusPlus) {
4731    // Determine whether the function was written with a
4732    // prototype. This true when:
4733    //   - there is a prototype in the declarator, or
4734    //   - the type R of the function is some kind of typedef or other reference
4735    //     to a type name (which eventually refers to a function type).
4736    bool HasPrototype =
4737      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4738      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4739
4740    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4741                                 D.getLocStart(), NameInfo, R,
4742                                 TInfo, SC, SCAsWritten, isInline,
4743                                 HasPrototype);
4744    if (D.isInvalidType())
4745      NewFD->setInvalidDecl();
4746
4747    // Set the lexical context.
4748    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4749
4750    return NewFD;
4751  }
4752
4753  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4754  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4755
4756  // Check that the return type is not an abstract class type.
4757  // For record types, this is done by the AbstractClassUsageDiagnoser once
4758  // the class has been completely parsed.
4759  if (!DC->isRecord() &&
4760      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4761                                     R->getAs<FunctionType>()->getResultType(),
4762                                     diag::err_abstract_type_in_decl,
4763                                     SemaRef.AbstractReturnType))
4764    D.setInvalidType();
4765
4766  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4767    // This is a C++ constructor declaration.
4768    assert(DC->isRecord() &&
4769           "Constructors can only be declared in a member context");
4770
4771    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4772    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4773                                      D.getLocStart(), NameInfo,
4774                                      R, TInfo, isExplicit, isInline,
4775                                      /*isImplicitlyDeclared=*/false,
4776                                      isConstexpr);
4777
4778  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4779    // This is a C++ destructor declaration.
4780    if (DC->isRecord()) {
4781      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4782      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4783      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4784                                        SemaRef.Context, Record,
4785                                        D.getLocStart(),
4786                                        NameInfo, R, TInfo, isInline,
4787                                        /*isImplicitlyDeclared=*/false);
4788
4789      // If the class is complete, then we now create the implicit exception
4790      // specification. If the class is incomplete or dependent, we can't do
4791      // it yet.
4792      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4793          Record->getDefinition() && !Record->isBeingDefined() &&
4794          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4795        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4796      }
4797
4798      IsVirtualOkay = true;
4799      return NewDD;
4800
4801    } else {
4802      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4803      D.setInvalidType();
4804
4805      // Create a FunctionDecl to satisfy the function definition parsing
4806      // code path.
4807      return FunctionDecl::Create(SemaRef.Context, DC,
4808                                  D.getLocStart(),
4809                                  D.getIdentifierLoc(), Name, R, TInfo,
4810                                  SC, SCAsWritten, isInline,
4811                                  /*hasPrototype=*/true, isConstexpr);
4812    }
4813
4814  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4815    if (!DC->isRecord()) {
4816      SemaRef.Diag(D.getIdentifierLoc(),
4817           diag::err_conv_function_not_member);
4818      return 0;
4819    }
4820
4821    SemaRef.CheckConversionDeclarator(D, R, SC);
4822    IsVirtualOkay = true;
4823    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4824                                     D.getLocStart(), NameInfo,
4825                                     R, TInfo, isInline, isExplicit,
4826                                     isConstexpr, SourceLocation());
4827
4828  } else if (DC->isRecord()) {
4829    // If the name of the function is the same as the name of the record,
4830    // then this must be an invalid constructor that has a return type.
4831    // (The parser checks for a return type and makes the declarator a
4832    // constructor if it has no return type).
4833    if (Name.getAsIdentifierInfo() &&
4834        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4835      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4836        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4837        << SourceRange(D.getIdentifierLoc());
4838      return 0;
4839    }
4840
4841    bool isStatic = SC == SC_Static;
4842
4843    // [class.free]p1:
4844    // Any allocation function for a class T is a static member
4845    // (even if not explicitly declared static).
4846    if (Name.getCXXOverloadedOperator() == OO_New ||
4847        Name.getCXXOverloadedOperator() == OO_Array_New)
4848      isStatic = true;
4849
4850    // [class.free]p6 Any deallocation function for a class X is a static member
4851    // (even if not explicitly declared static).
4852    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4853        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4854      isStatic = true;
4855
4856    IsVirtualOkay = !isStatic;
4857
4858    // This is a C++ method declaration.
4859    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4860                                 D.getLocStart(), NameInfo, R,
4861                                 TInfo, isStatic, SCAsWritten, isInline,
4862                                 isConstexpr, SourceLocation());
4863
4864  } else {
4865    // Determine whether the function was written with a
4866    // prototype. This true when:
4867    //   - we're in C++ (where every function has a prototype),
4868    return FunctionDecl::Create(SemaRef.Context, DC,
4869                                D.getLocStart(),
4870                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4871                                true/*HasPrototype*/, isConstexpr);
4872  }
4873}
4874
4875NamedDecl*
4876Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4877                              TypeSourceInfo *TInfo, LookupResult &Previous,
4878                              MultiTemplateParamsArg TemplateParamLists,
4879                              bool &AddToScope) {
4880  QualType R = TInfo->getType();
4881
4882  assert(R.getTypePtr()->isFunctionType());
4883
4884  // TODO: consider using NameInfo for diagnostic.
4885  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4886  DeclarationName Name = NameInfo.getName();
4887  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4888
4889  if (D.getDeclSpec().isThreadSpecified())
4890    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4891
4892  // Do not allow returning a objc interface by-value.
4893  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4894    Diag(D.getIdentifierLoc(),
4895         diag::err_object_cannot_be_passed_returned_by_value) << 0
4896    << R->getAs<FunctionType>()->getResultType()
4897    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4898
4899    QualType T = R->getAs<FunctionType>()->getResultType();
4900    T = Context.getObjCObjectPointerType(T);
4901    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4902      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4903      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4904                                  FPT->getNumArgs(), EPI);
4905    }
4906    else if (isa<FunctionNoProtoType>(R))
4907      R = Context.getFunctionNoProtoType(T);
4908  }
4909
4910  bool isFriend = false;
4911  FunctionTemplateDecl *FunctionTemplate = 0;
4912  bool isExplicitSpecialization = false;
4913  bool isFunctionTemplateSpecialization = false;
4914  bool isDependentClassScopeExplicitSpecialization = false;
4915  bool isVirtualOkay = false;
4916
4917  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4918                                              isVirtualOkay);
4919  if (!NewFD) return 0;
4920
4921  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4922    NewFD->setTopLevelDeclInObjCContainer();
4923
4924  if (getLangOpts().CPlusPlus) {
4925    bool isInline = D.getDeclSpec().isInlineSpecified();
4926    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4927    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4928    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4929    isFriend = D.getDeclSpec().isFriendSpecified();
4930    if (isFriend && !isInline && D.isFunctionDefinition()) {
4931      // C++ [class.friend]p5
4932      //   A function can be defined in a friend declaration of a
4933      //   class . . . . Such a function is implicitly inline.
4934      NewFD->setImplicitlyInline();
4935    }
4936
4937    SetNestedNameSpecifier(NewFD, D);
4938    isExplicitSpecialization = false;
4939    isFunctionTemplateSpecialization = false;
4940    if (D.isInvalidType())
4941      NewFD->setInvalidDecl();
4942
4943    // Set the lexical context. If the declarator has a C++
4944    // scope specifier, or is the object of a friend declaration, the
4945    // lexical context will be different from the semantic context.
4946    NewFD->setLexicalDeclContext(CurContext);
4947
4948    // Match up the template parameter lists with the scope specifier, then
4949    // determine whether we have a template or a template specialization.
4950    bool Invalid = false;
4951    if (TemplateParameterList *TemplateParams
4952          = MatchTemplateParametersToScopeSpecifier(
4953                                  D.getDeclSpec().getLocStart(),
4954                                  D.getIdentifierLoc(),
4955                                  D.getCXXScopeSpec(),
4956                                  TemplateParamLists.get(),
4957                                  TemplateParamLists.size(),
4958                                  isFriend,
4959                                  isExplicitSpecialization,
4960                                  Invalid)) {
4961      if (TemplateParams->size() > 0) {
4962        // This is a function template
4963
4964        // Check that we can declare a template here.
4965        if (CheckTemplateDeclScope(S, TemplateParams))
4966          return 0;
4967
4968        // A destructor cannot be a template.
4969        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4970          Diag(NewFD->getLocation(), diag::err_destructor_template);
4971          return 0;
4972        }
4973
4974        // If we're adding a template to a dependent context, we may need to
4975        // rebuilding some of the types used within the template parameter list,
4976        // now that we know what the current instantiation is.
4977        if (DC->isDependentContext()) {
4978          ContextRAII SavedContext(*this, DC);
4979          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4980            Invalid = true;
4981        }
4982
4983
4984        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4985                                                        NewFD->getLocation(),
4986                                                        Name, TemplateParams,
4987                                                        NewFD);
4988        FunctionTemplate->setLexicalDeclContext(CurContext);
4989        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4990
4991        // For source fidelity, store the other template param lists.
4992        if (TemplateParamLists.size() > 1) {
4993          NewFD->setTemplateParameterListsInfo(Context,
4994                                               TemplateParamLists.size() - 1,
4995                                               TemplateParamLists.release());
4996        }
4997      } else {
4998        // This is a function template specialization.
4999        isFunctionTemplateSpecialization = true;
5000        // For source fidelity, store all the template param lists.
5001        NewFD->setTemplateParameterListsInfo(Context,
5002                                             TemplateParamLists.size(),
5003                                             TemplateParamLists.release());
5004
5005        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5006        if (isFriend) {
5007          // We want to remove the "template<>", found here.
5008          SourceRange RemoveRange = TemplateParams->getSourceRange();
5009
5010          // If we remove the template<> and the name is not a
5011          // template-id, we're actually silently creating a problem:
5012          // the friend declaration will refer to an untemplated decl,
5013          // and clearly the user wants a template specialization.  So
5014          // we need to insert '<>' after the name.
5015          SourceLocation InsertLoc;
5016          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5017            InsertLoc = D.getName().getSourceRange().getEnd();
5018            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5019          }
5020
5021          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5022            << Name << RemoveRange
5023            << FixItHint::CreateRemoval(RemoveRange)
5024            << FixItHint::CreateInsertion(InsertLoc, "<>");
5025        }
5026      }
5027    }
5028    else {
5029      // All template param lists were matched against the scope specifier:
5030      // this is NOT (an explicit specialization of) a template.
5031      if (TemplateParamLists.size() > 0)
5032        // For source fidelity, store all the template param lists.
5033        NewFD->setTemplateParameterListsInfo(Context,
5034                                             TemplateParamLists.size(),
5035                                             TemplateParamLists.release());
5036    }
5037
5038    if (Invalid) {
5039      NewFD->setInvalidDecl();
5040      if (FunctionTemplate)
5041        FunctionTemplate->setInvalidDecl();
5042    }
5043
5044    // If we see "T var();" at block scope, where T is a class type, it is
5045    // probably an attempt to initialize a variable, not a function declaration.
5046    // We don't catch this case earlier, since there is no ambiguity here.
5047    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5048        CurContext->isFunctionOrMethod() &&
5049        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5050        D.getDeclSpec().getStorageClassSpecAsWritten()
5051          == DeclSpec::SCS_unspecified) {
5052      QualType T = R->getAs<FunctionType>()->getResultType();
5053      DeclaratorChunk &C = D.getTypeObject(0);
5054      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5055          !C.Fun.TrailingReturnType &&
5056          C.Fun.getExceptionSpecType() == EST_None) {
5057        SourceRange ParenRange(C.Loc, C.EndLoc);
5058        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5059
5060        // If the declaration looks like:
5061        //   T var1,
5062        //   f();
5063        // and name lookup finds a function named 'f', then the ',' was
5064        // probably intended to be a ';'.
5065        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5066          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5067          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5068          if (Comma.getFileID() != Name.getFileID() ||
5069              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5070            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5071                                LookupOrdinaryName);
5072            if (LookupName(Result, S))
5073              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5074                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5075          }
5076        }
5077        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5078        // Empty parens mean value-initialization, and no parens mean default
5079        // initialization. These are equivalent if the default constructor is
5080        // user-provided, or if zero-initialization is a no-op.
5081        if (RD && RD->hasDefinition() &&
5082            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5083          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5084            << FixItHint::CreateRemoval(ParenRange);
5085        else if (const char *Init = getFixItZeroInitializerForType(T))
5086          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5087            << FixItHint::CreateReplacement(ParenRange, Init);
5088        else if (LangOpts.CPlusPlus0x)
5089          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5090            << FixItHint::CreateReplacement(ParenRange, "{}");
5091      }
5092    }
5093
5094    // C++ [dcl.fct.spec]p5:
5095    //   The virtual specifier shall only be used in declarations of
5096    //   nonstatic class member functions that appear within a
5097    //   member-specification of a class declaration; see 10.3.
5098    //
5099    if (isVirtual && !NewFD->isInvalidDecl()) {
5100      if (!isVirtualOkay) {
5101        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5102             diag::err_virtual_non_function);
5103      } else if (!CurContext->isRecord()) {
5104        // 'virtual' was specified outside of the class.
5105        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5106             diag::err_virtual_out_of_class)
5107          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5108      } else if (NewFD->getDescribedFunctionTemplate()) {
5109        // C++ [temp.mem]p3:
5110        //  A member function template shall not be virtual.
5111        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5112             diag::err_virtual_member_function_template)
5113          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5114      } else {
5115        // Okay: Add virtual to the method.
5116        NewFD->setVirtualAsWritten(true);
5117      }
5118    }
5119
5120    // C++ [dcl.fct.spec]p3:
5121    //  The inline specifier shall not appear on a block scope function
5122    //  declaration.
5123    if (isInline && !NewFD->isInvalidDecl()) {
5124      if (CurContext->isFunctionOrMethod()) {
5125        // 'inline' is not allowed on block scope function declaration.
5126        Diag(D.getDeclSpec().getInlineSpecLoc(),
5127             diag::err_inline_declaration_block_scope) << Name
5128          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5129      }
5130    }
5131
5132    // C++ [dcl.fct.spec]p6:
5133    //  The explicit specifier shall be used only in the declaration of a
5134    //  constructor or conversion function within its class definition;
5135    //  see 12.3.1 and 12.3.2.
5136    if (isExplicit && !NewFD->isInvalidDecl()) {
5137      if (!CurContext->isRecord()) {
5138        // 'explicit' was specified outside of the class.
5139        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5140             diag::err_explicit_out_of_class)
5141          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5142      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5143                 !isa<CXXConversionDecl>(NewFD)) {
5144        // 'explicit' was specified on a function that wasn't a constructor
5145        // or conversion function.
5146        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5147             diag::err_explicit_non_ctor_or_conv_function)
5148          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5149      }
5150    }
5151
5152    if (isConstexpr) {
5153      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5154      // are implicitly inline.
5155      NewFD->setImplicitlyInline();
5156
5157      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5158      // be either constructors or to return a literal type. Therefore,
5159      // destructors cannot be declared constexpr.
5160      if (isa<CXXDestructorDecl>(NewFD))
5161        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5162    }
5163
5164    // If __module_private__ was specified, mark the function accordingly.
5165    if (D.getDeclSpec().isModulePrivateSpecified()) {
5166      if (isFunctionTemplateSpecialization) {
5167        SourceLocation ModulePrivateLoc
5168          = D.getDeclSpec().getModulePrivateSpecLoc();
5169        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5170          << 0
5171          << FixItHint::CreateRemoval(ModulePrivateLoc);
5172      } else {
5173        NewFD->setModulePrivate();
5174        if (FunctionTemplate)
5175          FunctionTemplate->setModulePrivate();
5176      }
5177    }
5178
5179    if (isFriend) {
5180      // For now, claim that the objects have no previous declaration.
5181      if (FunctionTemplate) {
5182        FunctionTemplate->setObjectOfFriendDecl(false);
5183        FunctionTemplate->setAccess(AS_public);
5184      }
5185      NewFD->setObjectOfFriendDecl(false);
5186      NewFD->setAccess(AS_public);
5187    }
5188
5189    // If a function is defined as defaulted or deleted, mark it as such now.
5190    switch (D.getFunctionDefinitionKind()) {
5191      case FDK_Declaration:
5192      case FDK_Definition:
5193        break;
5194
5195      case FDK_Defaulted:
5196        NewFD->setDefaulted();
5197        break;
5198
5199      case FDK_Deleted:
5200        NewFD->setDeletedAsWritten();
5201        break;
5202    }
5203
5204    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5205        D.isFunctionDefinition()) {
5206      // C++ [class.mfct]p2:
5207      //   A member function may be defined (8.4) in its class definition, in
5208      //   which case it is an inline member function (7.1.2)
5209      NewFD->setImplicitlyInline();
5210    }
5211
5212    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5213        !CurContext->isRecord()) {
5214      // C++ [class.static]p1:
5215      //   A data or function member of a class may be declared static
5216      //   in a class definition, in which case it is a static member of
5217      //   the class.
5218
5219      // Complain about the 'static' specifier if it's on an out-of-line
5220      // member function definition.
5221      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5222           diag::err_static_out_of_line)
5223        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5224    }
5225  }
5226
5227  // Filter out previous declarations that don't match the scope.
5228  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5229                       isExplicitSpecialization ||
5230                       isFunctionTemplateSpecialization);
5231
5232  // Handle GNU asm-label extension (encoded as an attribute).
5233  if (Expr *E = (Expr*) D.getAsmLabel()) {
5234    // The parser guarantees this is a string.
5235    StringLiteral *SE = cast<StringLiteral>(E);
5236    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5237                                                SE->getString()));
5238  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5239    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5240      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5241    if (I != ExtnameUndeclaredIdentifiers.end()) {
5242      NewFD->addAttr(I->second);
5243      ExtnameUndeclaredIdentifiers.erase(I);
5244    }
5245  }
5246
5247  // Copy the parameter declarations from the declarator D to the function
5248  // declaration NewFD, if they are available.  First scavenge them into Params.
5249  SmallVector<ParmVarDecl*, 16> Params;
5250  if (D.isFunctionDeclarator()) {
5251    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5252
5253    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5254    // function that takes no arguments, not a function that takes a
5255    // single void argument.
5256    // We let through "const void" here because Sema::GetTypeForDeclarator
5257    // already checks for that case.
5258    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5259        FTI.ArgInfo[0].Param &&
5260        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5261      // Empty arg list, don't push any params.
5262      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5263
5264      // In C++, the empty parameter-type-list must be spelled "void"; a
5265      // typedef of void is not permitted.
5266      if (getLangOpts().CPlusPlus &&
5267          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5268        bool IsTypeAlias = false;
5269        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5270          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5271        else if (const TemplateSpecializationType *TST =
5272                   Param->getType()->getAs<TemplateSpecializationType>())
5273          IsTypeAlias = TST->isTypeAlias();
5274        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5275          << IsTypeAlias;
5276      }
5277    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5278      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5279        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5280        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5281        Param->setDeclContext(NewFD);
5282        Params.push_back(Param);
5283
5284        if (Param->isInvalidDecl())
5285          NewFD->setInvalidDecl();
5286      }
5287    }
5288
5289  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5290    // When we're declaring a function with a typedef, typeof, etc as in the
5291    // following example, we'll need to synthesize (unnamed)
5292    // parameters for use in the declaration.
5293    //
5294    // @code
5295    // typedef void fn(int);
5296    // fn f;
5297    // @endcode
5298
5299    // Synthesize a parameter for each argument type.
5300    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5301         AE = FT->arg_type_end(); AI != AE; ++AI) {
5302      ParmVarDecl *Param =
5303        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5304      Param->setScopeInfo(0, Params.size());
5305      Params.push_back(Param);
5306    }
5307  } else {
5308    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5309           "Should not need args for typedef of non-prototype fn");
5310  }
5311
5312  // Finally, we know we have the right number of parameters, install them.
5313  NewFD->setParams(Params);
5314
5315  // Find all anonymous symbols defined during the declaration of this function
5316  // and add to NewFD. This lets us track decls such 'enum Y' in:
5317  //
5318  //   void f(enum Y {AA} x) {}
5319  //
5320  // which would otherwise incorrectly end up in the translation unit scope.
5321  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5322  DeclsInPrototypeScope.clear();
5323
5324  // Process the non-inheritable attributes on this declaration.
5325  ProcessDeclAttributes(S, NewFD, D,
5326                        /*NonInheritable=*/true, /*Inheritable=*/false);
5327
5328  // Functions returning a variably modified type violate C99 6.7.5.2p2
5329  // because all functions have linkage.
5330  if (!NewFD->isInvalidDecl() &&
5331      NewFD->getResultType()->isVariablyModifiedType()) {
5332    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5333    NewFD->setInvalidDecl();
5334  }
5335
5336  if (!getLangOpts().CPlusPlus) {
5337    // Perform semantic checking on the function declaration.
5338    bool isExplicitSpecialization=false;
5339    if (!NewFD->isInvalidDecl()) {
5340      if (NewFD->isMain())
5341        CheckMain(NewFD, D.getDeclSpec());
5342      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5343                                                  isExplicitSpecialization));
5344    }
5345    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5346            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5347           "previous declaration set still overloaded");
5348  } else {
5349    // If the declarator is a template-id, translate the parser's template
5350    // argument list into our AST format.
5351    bool HasExplicitTemplateArgs = false;
5352    TemplateArgumentListInfo TemplateArgs;
5353    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5354      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5355      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5356      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5357      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5358                                         TemplateId->getTemplateArgs(),
5359                                         TemplateId->NumArgs);
5360      translateTemplateArguments(TemplateArgsPtr,
5361                                 TemplateArgs);
5362      TemplateArgsPtr.release();
5363
5364      HasExplicitTemplateArgs = true;
5365
5366      if (NewFD->isInvalidDecl()) {
5367        HasExplicitTemplateArgs = false;
5368      } else if (FunctionTemplate) {
5369        // Function template with explicit template arguments.
5370        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5371          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5372
5373        HasExplicitTemplateArgs = false;
5374      } else if (!isFunctionTemplateSpecialization &&
5375                 !D.getDeclSpec().isFriendSpecified()) {
5376        // We have encountered something that the user meant to be a
5377        // specialization (because it has explicitly-specified template
5378        // arguments) but that was not introduced with a "template<>" (or had
5379        // too few of them).
5380        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5381          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5382          << FixItHint::CreateInsertion(
5383                                    D.getDeclSpec().getLocStart(),
5384                                        "template<> ");
5385        isFunctionTemplateSpecialization = true;
5386      } else {
5387        // "friend void foo<>(int);" is an implicit specialization decl.
5388        isFunctionTemplateSpecialization = true;
5389      }
5390    } else if (isFriend && isFunctionTemplateSpecialization) {
5391      // This combination is only possible in a recovery case;  the user
5392      // wrote something like:
5393      //   template <> friend void foo(int);
5394      // which we're recovering from as if the user had written:
5395      //   friend void foo<>(int);
5396      // Go ahead and fake up a template id.
5397      HasExplicitTemplateArgs = true;
5398        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5399      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5400    }
5401
5402    // If it's a friend (and only if it's a friend), it's possible
5403    // that either the specialized function type or the specialized
5404    // template is dependent, and therefore matching will fail.  In
5405    // this case, don't check the specialization yet.
5406    bool InstantiationDependent = false;
5407    if (isFunctionTemplateSpecialization && isFriend &&
5408        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5409         TemplateSpecializationType::anyDependentTemplateArguments(
5410            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5411            InstantiationDependent))) {
5412      assert(HasExplicitTemplateArgs &&
5413             "friend function specialization without template args");
5414      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5415                                                       Previous))
5416        NewFD->setInvalidDecl();
5417    } else if (isFunctionTemplateSpecialization) {
5418      if (CurContext->isDependentContext() && CurContext->isRecord()
5419          && !isFriend) {
5420        isDependentClassScopeExplicitSpecialization = true;
5421        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5422          diag::ext_function_specialization_in_class :
5423          diag::err_function_specialization_in_class)
5424          << NewFD->getDeclName();
5425      } else if (CheckFunctionTemplateSpecialization(NewFD,
5426                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5427                                                     Previous))
5428        NewFD->setInvalidDecl();
5429
5430      // C++ [dcl.stc]p1:
5431      //   A storage-class-specifier shall not be specified in an explicit
5432      //   specialization (14.7.3)
5433      if (SC != SC_None) {
5434        if (SC != NewFD->getStorageClass())
5435          Diag(NewFD->getLocation(),
5436               diag::err_explicit_specialization_inconsistent_storage_class)
5437            << SC
5438            << FixItHint::CreateRemoval(
5439                                      D.getDeclSpec().getStorageClassSpecLoc());
5440
5441        else
5442          Diag(NewFD->getLocation(),
5443               diag::ext_explicit_specialization_storage_class)
5444            << FixItHint::CreateRemoval(
5445                                      D.getDeclSpec().getStorageClassSpecLoc());
5446      }
5447
5448    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5449      if (CheckMemberSpecialization(NewFD, Previous))
5450          NewFD->setInvalidDecl();
5451    }
5452
5453    // Perform semantic checking on the function declaration.
5454    if (!isDependentClassScopeExplicitSpecialization) {
5455      if (NewFD->isInvalidDecl()) {
5456        // If this is a class member, mark the class invalid immediately.
5457        // This avoids some consistency errors later.
5458        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5459          methodDecl->getParent()->setInvalidDecl();
5460      } else {
5461        if (NewFD->isMain())
5462          CheckMain(NewFD, D.getDeclSpec());
5463        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5464                                                    isExplicitSpecialization));
5465      }
5466    }
5467
5468    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5469            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5470           "previous declaration set still overloaded");
5471
5472    NamedDecl *PrincipalDecl = (FunctionTemplate
5473                                ? cast<NamedDecl>(FunctionTemplate)
5474                                : NewFD);
5475
5476    if (isFriend && D.isRedeclaration()) {
5477      AccessSpecifier Access = AS_public;
5478      if (!NewFD->isInvalidDecl())
5479        Access = NewFD->getPreviousDecl()->getAccess();
5480
5481      NewFD->setAccess(Access);
5482      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5483
5484      PrincipalDecl->setObjectOfFriendDecl(true);
5485    }
5486
5487    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5488        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5489      PrincipalDecl->setNonMemberOperator();
5490
5491    // If we have a function template, check the template parameter
5492    // list. This will check and merge default template arguments.
5493    if (FunctionTemplate) {
5494      FunctionTemplateDecl *PrevTemplate =
5495                                     FunctionTemplate->getPreviousDecl();
5496      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5497                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5498                            D.getDeclSpec().isFriendSpecified()
5499                              ? (D.isFunctionDefinition()
5500                                   ? TPC_FriendFunctionTemplateDefinition
5501                                   : TPC_FriendFunctionTemplate)
5502                              : (D.getCXXScopeSpec().isSet() &&
5503                                 DC && DC->isRecord() &&
5504                                 DC->isDependentContext())
5505                                  ? TPC_ClassTemplateMember
5506                                  : TPC_FunctionTemplate);
5507    }
5508
5509    if (NewFD->isInvalidDecl()) {
5510      // Ignore all the rest of this.
5511    } else if (!D.isRedeclaration()) {
5512      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5513                                       AddToScope };
5514      // Fake up an access specifier if it's supposed to be a class member.
5515      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5516        NewFD->setAccess(AS_public);
5517
5518      // Qualified decls generally require a previous declaration.
5519      if (D.getCXXScopeSpec().isSet()) {
5520        // ...with the major exception of templated-scope or
5521        // dependent-scope friend declarations.
5522
5523        // TODO: we currently also suppress this check in dependent
5524        // contexts because (1) the parameter depth will be off when
5525        // matching friend templates and (2) we might actually be
5526        // selecting a friend based on a dependent factor.  But there
5527        // are situations where these conditions don't apply and we
5528        // can actually do this check immediately.
5529        if (isFriend &&
5530            (TemplateParamLists.size() ||
5531             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5532             CurContext->isDependentContext())) {
5533          // ignore these
5534        } else {
5535          // The user tried to provide an out-of-line definition for a
5536          // function that is a member of a class or namespace, but there
5537          // was no such member function declared (C++ [class.mfct]p2,
5538          // C++ [namespace.memdef]p2). For example:
5539          //
5540          // class X {
5541          //   void f() const;
5542          // };
5543          //
5544          // void X::f() { } // ill-formed
5545          //
5546          // Complain about this problem, and attempt to suggest close
5547          // matches (e.g., those that differ only in cv-qualifiers and
5548          // whether the parameter types are references).
5549
5550          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5551                                                               NewFD,
5552                                                               ExtraArgs)) {
5553            AddToScope = ExtraArgs.AddToScope;
5554            return Result;
5555          }
5556        }
5557
5558        // Unqualified local friend declarations are required to resolve
5559        // to something.
5560      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5561        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5562                                                             NewFD,
5563                                                             ExtraArgs)) {
5564          AddToScope = ExtraArgs.AddToScope;
5565          return Result;
5566        }
5567      }
5568
5569    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5570               !isFriend && !isFunctionTemplateSpecialization &&
5571               !isExplicitSpecialization) {
5572      // An out-of-line member function declaration must also be a
5573      // definition (C++ [dcl.meaning]p1).
5574      // Note that this is not the case for explicit specializations of
5575      // function templates or member functions of class templates, per
5576      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5577      // extension for compatibility with old SWIG code which likes to
5578      // generate them.
5579      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5580        << D.getCXXScopeSpec().getRange();
5581    }
5582  }
5583
5584
5585  // Handle attributes. We need to have merged decls when handling attributes
5586  // (for example to check for conflicts, etc).
5587  // FIXME: This needs to happen before we merge declarations. Then,
5588  // let attribute merging cope with attribute conflicts.
5589  ProcessDeclAttributes(S, NewFD, D,
5590                        /*NonInheritable=*/false, /*Inheritable=*/true);
5591
5592  // attributes declared post-definition are currently ignored
5593  // FIXME: This should happen during attribute merging
5594  if (D.isRedeclaration() && Previous.isSingleResult()) {
5595    const FunctionDecl *Def;
5596    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5597    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5598      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5599      Diag(Def->getLocation(), diag::note_previous_definition);
5600    }
5601  }
5602
5603  AddKnownFunctionAttributes(NewFD);
5604
5605  if (NewFD->hasAttr<OverloadableAttr>() &&
5606      !NewFD->getType()->getAs<FunctionProtoType>()) {
5607    Diag(NewFD->getLocation(),
5608         diag::err_attribute_overloadable_no_prototype)
5609      << NewFD;
5610
5611    // Turn this into a variadic function with no parameters.
5612    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5613    FunctionProtoType::ExtProtoInfo EPI;
5614    EPI.Variadic = true;
5615    EPI.ExtInfo = FT->getExtInfo();
5616
5617    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5618    NewFD->setType(R);
5619  }
5620
5621  // If there's a #pragma GCC visibility in scope, and this isn't a class
5622  // member, set the visibility of this function.
5623  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5624    AddPushedVisibilityAttribute(NewFD);
5625
5626  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5627  // marking the function.
5628  AddCFAuditedAttribute(NewFD);
5629
5630  // If this is a locally-scoped extern C function, update the
5631  // map of such names.
5632  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5633      && !NewFD->isInvalidDecl())
5634    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5635
5636  // Set this FunctionDecl's range up to the right paren.
5637  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5638
5639  if (getLangOpts().CPlusPlus) {
5640    if (FunctionTemplate) {
5641      if (NewFD->isInvalidDecl())
5642        FunctionTemplate->setInvalidDecl();
5643      return FunctionTemplate;
5644    }
5645  }
5646
5647  MarkUnusedFileScopedDecl(NewFD);
5648
5649  if (getLangOpts().CUDA)
5650    if (IdentifierInfo *II = NewFD->getIdentifier())
5651      if (!NewFD->isInvalidDecl() &&
5652          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5653        if (II->isStr("cudaConfigureCall")) {
5654          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5655            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5656
5657          Context.setcudaConfigureCallDecl(NewFD);
5658        }
5659      }
5660
5661  // Here we have an function template explicit specialization at class scope.
5662  // The actually specialization will be postponed to template instatiation
5663  // time via the ClassScopeFunctionSpecializationDecl node.
5664  if (isDependentClassScopeExplicitSpecialization) {
5665    ClassScopeFunctionSpecializationDecl *NewSpec =
5666                         ClassScopeFunctionSpecializationDecl::Create(
5667                                Context, CurContext,  SourceLocation(),
5668                                cast<CXXMethodDecl>(NewFD));
5669    CurContext->addDecl(NewSpec);
5670    AddToScope = false;
5671  }
5672
5673  return NewFD;
5674}
5675
5676/// \brief Perform semantic checking of a new function declaration.
5677///
5678/// Performs semantic analysis of the new function declaration
5679/// NewFD. This routine performs all semantic checking that does not
5680/// require the actual declarator involved in the declaration, and is
5681/// used both for the declaration of functions as they are parsed
5682/// (called via ActOnDeclarator) and for the declaration of functions
5683/// that have been instantiated via C++ template instantiation (called
5684/// via InstantiateDecl).
5685///
5686/// \param IsExplicitSpecialiation whether this new function declaration is
5687/// an explicit specialization of the previous declaration.
5688///
5689/// This sets NewFD->isInvalidDecl() to true if there was an error.
5690///
5691/// Returns true if the function declaration is a redeclaration.
5692bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5693                                    LookupResult &Previous,
5694                                    bool IsExplicitSpecialization) {
5695  assert(!NewFD->getResultType()->isVariablyModifiedType()
5696         && "Variably modified return types are not handled here");
5697
5698  // Check for a previous declaration of this name.
5699  if (Previous.empty() && NewFD->isExternC()) {
5700    // Since we did not find anything by this name and we're declaring
5701    // an extern "C" function, look for a non-visible extern "C"
5702    // declaration with the same name.
5703    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5704      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5705    if (Pos != LocallyScopedExternalDecls.end())
5706      Previous.addDecl(Pos->second);
5707  }
5708
5709  bool Redeclaration = false;
5710
5711  // Merge or overload the declaration with an existing declaration of
5712  // the same name, if appropriate.
5713  if (!Previous.empty()) {
5714    // Determine whether NewFD is an overload of PrevDecl or
5715    // a declaration that requires merging. If it's an overload,
5716    // there's no more work to do here; we'll just add the new
5717    // function to the scope.
5718
5719    NamedDecl *OldDecl = 0;
5720    if (!AllowOverloadingOfFunction(Previous, Context)) {
5721      Redeclaration = true;
5722      OldDecl = Previous.getFoundDecl();
5723    } else {
5724      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5725                            /*NewIsUsingDecl*/ false)) {
5726      case Ovl_Match:
5727        Redeclaration = true;
5728        break;
5729
5730      case Ovl_NonFunction:
5731        Redeclaration = true;
5732        break;
5733
5734      case Ovl_Overload:
5735        Redeclaration = false;
5736        break;
5737      }
5738
5739      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5740        // If a function name is overloadable in C, then every function
5741        // with that name must be marked "overloadable".
5742        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5743          << Redeclaration << NewFD;
5744        NamedDecl *OverloadedDecl = 0;
5745        if (Redeclaration)
5746          OverloadedDecl = OldDecl;
5747        else if (!Previous.empty())
5748          OverloadedDecl = Previous.getRepresentativeDecl();
5749        if (OverloadedDecl)
5750          Diag(OverloadedDecl->getLocation(),
5751               diag::note_attribute_overloadable_prev_overload);
5752        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5753                                                        Context));
5754      }
5755    }
5756
5757    if (Redeclaration) {
5758      // NewFD and OldDecl represent declarations that need to be
5759      // merged.
5760      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5761        NewFD->setInvalidDecl();
5762        return Redeclaration;
5763      }
5764
5765      Previous.clear();
5766      Previous.addDecl(OldDecl);
5767
5768      if (FunctionTemplateDecl *OldTemplateDecl
5769                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5770        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5771        FunctionTemplateDecl *NewTemplateDecl
5772          = NewFD->getDescribedFunctionTemplate();
5773        assert(NewTemplateDecl && "Template/non-template mismatch");
5774        if (CXXMethodDecl *Method
5775              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5776          Method->setAccess(OldTemplateDecl->getAccess());
5777          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5778        }
5779
5780        // If this is an explicit specialization of a member that is a function
5781        // template, mark it as a member specialization.
5782        if (IsExplicitSpecialization &&
5783            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5784          NewTemplateDecl->setMemberSpecialization();
5785          assert(OldTemplateDecl->isMemberSpecialization());
5786        }
5787
5788      } else {
5789        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5790          NewFD->setAccess(OldDecl->getAccess());
5791        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5792      }
5793    }
5794  }
5795
5796  // Semantic checking for this function declaration (in isolation).
5797  if (getLangOpts().CPlusPlus) {
5798    // C++-specific checks.
5799    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5800      CheckConstructor(Constructor);
5801    } else if (CXXDestructorDecl *Destructor =
5802                dyn_cast<CXXDestructorDecl>(NewFD)) {
5803      CXXRecordDecl *Record = Destructor->getParent();
5804      QualType ClassType = Context.getTypeDeclType(Record);
5805
5806      // FIXME: Shouldn't we be able to perform this check even when the class
5807      // type is dependent? Both gcc and edg can handle that.
5808      if (!ClassType->isDependentType()) {
5809        DeclarationName Name
5810          = Context.DeclarationNames.getCXXDestructorName(
5811                                        Context.getCanonicalType(ClassType));
5812        if (NewFD->getDeclName() != Name) {
5813          Diag(NewFD->getLocation(), diag::err_destructor_name);
5814          NewFD->setInvalidDecl();
5815          return Redeclaration;
5816        }
5817      }
5818    } else if (CXXConversionDecl *Conversion
5819               = dyn_cast<CXXConversionDecl>(NewFD)) {
5820      ActOnConversionDeclarator(Conversion);
5821    }
5822
5823    // Find any virtual functions that this function overrides.
5824    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5825      if (!Method->isFunctionTemplateSpecialization() &&
5826          !Method->getDescribedFunctionTemplate()) {
5827        if (AddOverriddenMethods(Method->getParent(), Method)) {
5828          // If the function was marked as "static", we have a problem.
5829          if (NewFD->getStorageClass() == SC_Static) {
5830            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5831              << NewFD->getDeclName();
5832            for (CXXMethodDecl::method_iterator
5833                      Overridden = Method->begin_overridden_methods(),
5834                   OverriddenEnd = Method->end_overridden_methods();
5835                 Overridden != OverriddenEnd;
5836                 ++Overridden) {
5837              Diag((*Overridden)->getLocation(),
5838                   diag::note_overridden_virtual_function);
5839            }
5840          }
5841        }
5842      }
5843
5844      if (Method->isStatic())
5845        checkThisInStaticMemberFunctionType(Method);
5846    }
5847
5848    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5849    if (NewFD->isOverloadedOperator() &&
5850        CheckOverloadedOperatorDeclaration(NewFD)) {
5851      NewFD->setInvalidDecl();
5852      return Redeclaration;
5853    }
5854
5855    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5856    if (NewFD->getLiteralIdentifier() &&
5857        CheckLiteralOperatorDeclaration(NewFD)) {
5858      NewFD->setInvalidDecl();
5859      return Redeclaration;
5860    }
5861
5862    // In C++, check default arguments now that we have merged decls. Unless
5863    // the lexical context is the class, because in this case this is done
5864    // during delayed parsing anyway.
5865    if (!CurContext->isRecord())
5866      CheckCXXDefaultArguments(NewFD);
5867
5868    // If this function declares a builtin function, check the type of this
5869    // declaration against the expected type for the builtin.
5870    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5871      ASTContext::GetBuiltinTypeError Error;
5872      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5873      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5874        // The type of this function differs from the type of the builtin,
5875        // so forget about the builtin entirely.
5876        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5877      }
5878    }
5879
5880    // If this function is declared as being extern "C", then check to see if
5881    // the function returns a UDT (class, struct, or union type) that is not C
5882    // compatible, and if it does, warn the user.
5883    if (NewFD->isExternC()) {
5884      QualType R = NewFD->getResultType();
5885      if (!R.isPODType(Context) &&
5886          !R->isVoidType())
5887        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5888          << NewFD << R;
5889    }
5890  }
5891  return Redeclaration;
5892}
5893
5894void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5895  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5896  //   static or constexpr is ill-formed.
5897  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5898  //   shall not appear in a declaration of main.
5899  // static main is not an error under C99, but we should warn about it.
5900  if (FD->getStorageClass() == SC_Static)
5901    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
5902         ? diag::err_static_main : diag::warn_static_main)
5903      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5904  if (FD->isInlineSpecified())
5905    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5906      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5907  if (FD->isConstexpr()) {
5908    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5909      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5910    FD->setConstexpr(false);
5911  }
5912
5913  QualType T = FD->getType();
5914  assert(T->isFunctionType() && "function decl is not of function type");
5915  const FunctionType* FT = T->castAs<FunctionType>();
5916
5917  // All the standards say that main() should should return 'int'.
5918  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5919    // In C and C++, main magically returns 0 if you fall off the end;
5920    // set the flag which tells us that.
5921    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5922    FD->setHasImplicitReturnZero(true);
5923
5924  // In C with GNU extensions we allow main() to have non-integer return
5925  // type, but we should warn about the extension, and we disable the
5926  // implicit-return-zero rule.
5927  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
5928    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5929
5930  // Otherwise, this is just a flat-out error.
5931  } else {
5932    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5933    FD->setInvalidDecl(true);
5934  }
5935
5936  // Treat protoless main() as nullary.
5937  if (isa<FunctionNoProtoType>(FT)) return;
5938
5939  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5940  unsigned nparams = FTP->getNumArgs();
5941  assert(FD->getNumParams() == nparams);
5942
5943  bool HasExtraParameters = (nparams > 3);
5944
5945  // Darwin passes an undocumented fourth argument of type char**.  If
5946  // other platforms start sprouting these, the logic below will start
5947  // getting shifty.
5948  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5949    HasExtraParameters = false;
5950
5951  if (HasExtraParameters) {
5952    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5953    FD->setInvalidDecl(true);
5954    nparams = 3;
5955  }
5956
5957  // FIXME: a lot of the following diagnostics would be improved
5958  // if we had some location information about types.
5959
5960  QualType CharPP =
5961    Context.getPointerType(Context.getPointerType(Context.CharTy));
5962  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5963
5964  for (unsigned i = 0; i < nparams; ++i) {
5965    QualType AT = FTP->getArgType(i);
5966
5967    bool mismatch = true;
5968
5969    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5970      mismatch = false;
5971    else if (Expected[i] == CharPP) {
5972      // As an extension, the following forms are okay:
5973      //   char const **
5974      //   char const * const *
5975      //   char * const *
5976
5977      QualifierCollector qs;
5978      const PointerType* PT;
5979      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5980          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5981          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5982        qs.removeConst();
5983        mismatch = !qs.empty();
5984      }
5985    }
5986
5987    if (mismatch) {
5988      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5989      // TODO: suggest replacing given type with expected type
5990      FD->setInvalidDecl(true);
5991    }
5992  }
5993
5994  if (nparams == 1 && !FD->isInvalidDecl()) {
5995    Diag(FD->getLocation(), diag::warn_main_one_arg);
5996  }
5997
5998  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5999    Diag(FD->getLocation(), diag::err_main_template_decl);
6000    FD->setInvalidDecl();
6001  }
6002}
6003
6004bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6005  // FIXME: Need strict checking.  In C89, we need to check for
6006  // any assignment, increment, decrement, function-calls, or
6007  // commas outside of a sizeof.  In C99, it's the same list,
6008  // except that the aforementioned are allowed in unevaluated
6009  // expressions.  Everything else falls under the
6010  // "may accept other forms of constant expressions" exception.
6011  // (We never end up here for C++, so the constant expression
6012  // rules there don't matter.)
6013  if (Init->isConstantInitializer(Context, false))
6014    return false;
6015  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6016    << Init->getSourceRange();
6017  return true;
6018}
6019
6020namespace {
6021  // Visits an initialization expression to see if OrigDecl is evaluated in
6022  // its own initialization and throws a warning if it does.
6023  class SelfReferenceChecker
6024      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6025    Sema &S;
6026    Decl *OrigDecl;
6027    bool isRecordType;
6028    bool isPODType;
6029
6030  public:
6031    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6032
6033    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6034                                                    S(S), OrigDecl(OrigDecl) {
6035      isPODType = false;
6036      isRecordType = false;
6037      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6038        isPODType = VD->getType().isPODType(S.Context);
6039        isRecordType = VD->getType()->isRecordType();
6040      }
6041    }
6042
6043    void VisitExpr(Expr *E) {
6044      if (isa<ObjCMessageExpr>(*E)) return;
6045      if (isRecordType) {
6046        Expr *expr = E;
6047        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6048          ValueDecl *VD = ME->getMemberDecl();
6049          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
6050          expr = ME->getBase();
6051        }
6052        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
6053          HandleDeclRefExpr(DRE);
6054          return;
6055        }
6056      }
6057      Inherited::VisitExpr(E);
6058    }
6059
6060    void VisitMemberExpr(MemberExpr *E) {
6061      if (E->getType()->canDecayToPointerType()) return;
6062      ValueDecl *VD = E->getMemberDecl();
6063      if (isa<FieldDecl>(VD) || isa<CXXMethodDecl>(VD))
6064        if (DeclRefExpr *DRE
6065              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6066          HandleDeclRefExpr(DRE);
6067          return;
6068        }
6069      Inherited::VisitMemberExpr(E);
6070    }
6071
6072    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6073      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
6074          (isRecordType && E->getCastKind() == CK_NoOp)) {
6075        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
6076        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
6077          SubExpr = ME->getBase()->IgnoreParenImpCasts();
6078        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
6079          HandleDeclRefExpr(DRE);
6080          return;
6081        }
6082      }
6083      Inherited::VisitImplicitCastExpr(E);
6084    }
6085
6086    void VisitUnaryOperator(UnaryOperator *E) {
6087      // For POD record types, addresses of its own members are well-defined.
6088      if (isRecordType && isPODType) return;
6089      Inherited::VisitUnaryOperator(E);
6090    }
6091
6092    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6093      Decl* ReferenceDecl = DRE->getDecl();
6094      if (OrigDecl != ReferenceDecl) return;
6095      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6096                          Sema::NotForRedeclaration);
6097      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6098                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6099                              << Result.getLookupName()
6100                              << OrigDecl->getLocation()
6101                              << DRE->getSourceRange());
6102    }
6103  };
6104}
6105
6106/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6107void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6108  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6109}
6110
6111/// AddInitializerToDecl - Adds the initializer Init to the
6112/// declaration dcl. If DirectInit is true, this is C++ direct
6113/// initialization rather than copy initialization.
6114void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6115                                bool DirectInit, bool TypeMayContainAuto) {
6116  // If there is no declaration, there was an error parsing it.  Just ignore
6117  // the initializer.
6118  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6119    return;
6120
6121  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6122    // With declarators parsed the way they are, the parser cannot
6123    // distinguish between a normal initializer and a pure-specifier.
6124    // Thus this grotesque test.
6125    IntegerLiteral *IL;
6126    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6127        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6128      CheckPureMethod(Method, Init->getSourceRange());
6129    else {
6130      Diag(Method->getLocation(), diag::err_member_function_initialization)
6131        << Method->getDeclName() << Init->getSourceRange();
6132      Method->setInvalidDecl();
6133    }
6134    return;
6135  }
6136
6137  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6138  if (!VDecl) {
6139    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6140    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6141    RealDecl->setInvalidDecl();
6142    return;
6143  }
6144
6145  // Check for self-references within variable initializers.
6146  // Variables declared within a function/method body are handled
6147  // by a dataflow analysis.
6148  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6149    CheckSelfReference(RealDecl, Init);
6150
6151  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6152
6153  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6154  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6155    Expr *DeduceInit = Init;
6156    // Initializer could be a C++ direct-initializer. Deduction only works if it
6157    // contains exactly one expression.
6158    if (CXXDirectInit) {
6159      if (CXXDirectInit->getNumExprs() == 0) {
6160        // It isn't possible to write this directly, but it is possible to
6161        // end up in this situation with "auto x(some_pack...);"
6162        Diag(CXXDirectInit->getLocStart(),
6163             diag::err_auto_var_init_no_expression)
6164          << VDecl->getDeclName() << VDecl->getType()
6165          << VDecl->getSourceRange();
6166        RealDecl->setInvalidDecl();
6167        return;
6168      } else if (CXXDirectInit->getNumExprs() > 1) {
6169        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6170             diag::err_auto_var_init_multiple_expressions)
6171          << VDecl->getDeclName() << VDecl->getType()
6172          << VDecl->getSourceRange();
6173        RealDecl->setInvalidDecl();
6174        return;
6175      } else {
6176        DeduceInit = CXXDirectInit->getExpr(0);
6177      }
6178    }
6179    TypeSourceInfo *DeducedType = 0;
6180    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6181            DAR_Failed)
6182      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6183    if (!DeducedType) {
6184      RealDecl->setInvalidDecl();
6185      return;
6186    }
6187    VDecl->setTypeSourceInfo(DeducedType);
6188    VDecl->setType(DeducedType->getType());
6189    VDecl->ClearLinkageCache();
6190
6191    // In ARC, infer lifetime.
6192    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6193      VDecl->setInvalidDecl();
6194
6195    // If this is a redeclaration, check that the type we just deduced matches
6196    // the previously declared type.
6197    if (VarDecl *Old = VDecl->getPreviousDecl())
6198      MergeVarDeclTypes(VDecl, Old);
6199  }
6200
6201  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6202    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6203    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6204    VDecl->setInvalidDecl();
6205    return;
6206  }
6207
6208  if (!VDecl->getType()->isDependentType()) {
6209    // A definition must end up with a complete type, which means it must be
6210    // complete with the restriction that an array type might be completed by
6211    // the initializer; note that later code assumes this restriction.
6212    QualType BaseDeclType = VDecl->getType();
6213    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6214      BaseDeclType = Array->getElementType();
6215    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6216                            diag::err_typecheck_decl_incomplete_type)) {
6217      RealDecl->setInvalidDecl();
6218      return;
6219    }
6220
6221    // The variable can not have an abstract class type.
6222    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6223                               diag::err_abstract_type_in_decl,
6224                               AbstractVariableType))
6225      VDecl->setInvalidDecl();
6226  }
6227
6228  const VarDecl *Def;
6229  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6230    Diag(VDecl->getLocation(), diag::err_redefinition)
6231      << VDecl->getDeclName();
6232    Diag(Def->getLocation(), diag::note_previous_definition);
6233    VDecl->setInvalidDecl();
6234    return;
6235  }
6236
6237  const VarDecl* PrevInit = 0;
6238  if (getLangOpts().CPlusPlus) {
6239    // C++ [class.static.data]p4
6240    //   If a static data member is of const integral or const
6241    //   enumeration type, its declaration in the class definition can
6242    //   specify a constant-initializer which shall be an integral
6243    //   constant expression (5.19). In that case, the member can appear
6244    //   in integral constant expressions. The member shall still be
6245    //   defined in a namespace scope if it is used in the program and the
6246    //   namespace scope definition shall not contain an initializer.
6247    //
6248    // We already performed a redefinition check above, but for static
6249    // data members we also need to check whether there was an in-class
6250    // declaration with an initializer.
6251    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6252      Diag(VDecl->getLocation(), diag::err_redefinition)
6253        << VDecl->getDeclName();
6254      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6255      return;
6256    }
6257
6258    if (VDecl->hasLocalStorage())
6259      getCurFunction()->setHasBranchProtectedScope();
6260
6261    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6262      VDecl->setInvalidDecl();
6263      return;
6264    }
6265  }
6266
6267  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6268  // a kernel function cannot be initialized."
6269  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6270    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6271    VDecl->setInvalidDecl();
6272    return;
6273  }
6274
6275  // Get the decls type and save a reference for later, since
6276  // CheckInitializerTypes may change it.
6277  QualType DclT = VDecl->getType(), SavT = DclT;
6278
6279  // Top-level message sends default to 'id' when we're in a debugger
6280  // and we are assigning it to a variable of 'id' type.
6281  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6282    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6283      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6284      if (Result.isInvalid()) {
6285        VDecl->setInvalidDecl();
6286        return;
6287      }
6288      Init = Result.take();
6289    }
6290
6291  // Perform the initialization.
6292  if (!VDecl->isInvalidDecl()) {
6293    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6294    InitializationKind Kind
6295      = DirectInit ?
6296          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6297                                                           Init->getLocStart(),
6298                                                           Init->getLocEnd())
6299                        : InitializationKind::CreateDirectList(
6300                                                          VDecl->getLocation())
6301                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6302                                                    Init->getLocStart());
6303
6304    Expr **Args = &Init;
6305    unsigned NumArgs = 1;
6306    if (CXXDirectInit) {
6307      Args = CXXDirectInit->getExprs();
6308      NumArgs = CXXDirectInit->getNumExprs();
6309    }
6310    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6311    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6312                                              MultiExprArg(*this, Args,NumArgs),
6313                                              &DclT);
6314    if (Result.isInvalid()) {
6315      VDecl->setInvalidDecl();
6316      return;
6317    }
6318
6319    Init = Result.takeAs<Expr>();
6320  }
6321
6322  // If the type changed, it means we had an incomplete type that was
6323  // completed by the initializer. For example:
6324  //   int ary[] = { 1, 3, 5 };
6325  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6326  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6327    VDecl->setType(DclT);
6328
6329  // Check any implicit conversions within the expression.
6330  CheckImplicitConversions(Init, VDecl->getLocation());
6331
6332  if (!VDecl->isInvalidDecl())
6333    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6334
6335  Init = MaybeCreateExprWithCleanups(Init);
6336  // Attach the initializer to the decl.
6337  VDecl->setInit(Init);
6338
6339  if (VDecl->isLocalVarDecl()) {
6340    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6341    // static storage duration shall be constant expressions or string literals.
6342    // C++ does not have this restriction.
6343    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6344        VDecl->getStorageClass() == SC_Static)
6345      CheckForConstantInitializer(Init, DclT);
6346  } else if (VDecl->isStaticDataMember() &&
6347             VDecl->getLexicalDeclContext()->isRecord()) {
6348    // This is an in-class initialization for a static data member, e.g.,
6349    //
6350    // struct S {
6351    //   static const int value = 17;
6352    // };
6353
6354    // C++ [class.mem]p4:
6355    //   A member-declarator can contain a constant-initializer only
6356    //   if it declares a static member (9.4) of const integral or
6357    //   const enumeration type, see 9.4.2.
6358    //
6359    // C++11 [class.static.data]p3:
6360    //   If a non-volatile const static data member is of integral or
6361    //   enumeration type, its declaration in the class definition can
6362    //   specify a brace-or-equal-initializer in which every initalizer-clause
6363    //   that is an assignment-expression is a constant expression. A static
6364    //   data member of literal type can be declared in the class definition
6365    //   with the constexpr specifier; if so, its declaration shall specify a
6366    //   brace-or-equal-initializer in which every initializer-clause that is
6367    //   an assignment-expression is a constant expression.
6368
6369    // Do nothing on dependent types.
6370    if (DclT->isDependentType()) {
6371
6372    // Allow any 'static constexpr' members, whether or not they are of literal
6373    // type. We separately check that every constexpr variable is of literal
6374    // type.
6375    } else if (VDecl->isConstexpr()) {
6376
6377    // Require constness.
6378    } else if (!DclT.isConstQualified()) {
6379      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6380        << Init->getSourceRange();
6381      VDecl->setInvalidDecl();
6382
6383    // We allow integer constant expressions in all cases.
6384    } else if (DclT->isIntegralOrEnumerationType()) {
6385      // Check whether the expression is a constant expression.
6386      SourceLocation Loc;
6387      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6388        // In C++11, a non-constexpr const static data member with an
6389        // in-class initializer cannot be volatile.
6390        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6391      else if (Init->isValueDependent())
6392        ; // Nothing to check.
6393      else if (Init->isIntegerConstantExpr(Context, &Loc))
6394        ; // Ok, it's an ICE!
6395      else if (Init->isEvaluatable(Context)) {
6396        // If we can constant fold the initializer through heroics, accept it,
6397        // but report this as a use of an extension for -pedantic.
6398        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6399          << Init->getSourceRange();
6400      } else {
6401        // Otherwise, this is some crazy unknown case.  Report the issue at the
6402        // location provided by the isIntegerConstantExpr failed check.
6403        Diag(Loc, diag::err_in_class_initializer_non_constant)
6404          << Init->getSourceRange();
6405        VDecl->setInvalidDecl();
6406      }
6407
6408    // We allow foldable floating-point constants as an extension.
6409    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6410      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6411        << DclT << Init->getSourceRange();
6412      if (getLangOpts().CPlusPlus0x)
6413        Diag(VDecl->getLocation(),
6414             diag::note_in_class_initializer_float_type_constexpr)
6415          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6416
6417      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6418        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6419          << Init->getSourceRange();
6420        VDecl->setInvalidDecl();
6421      }
6422
6423    // Suggest adding 'constexpr' in C++11 for literal types.
6424    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6425      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6426        << DclT << Init->getSourceRange()
6427        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6428      VDecl->setConstexpr(true);
6429
6430    } else {
6431      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6432        << DclT << Init->getSourceRange();
6433      VDecl->setInvalidDecl();
6434    }
6435  } else if (VDecl->isFileVarDecl()) {
6436    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6437        (!getLangOpts().CPlusPlus ||
6438         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6439      Diag(VDecl->getLocation(), diag::warn_extern_init);
6440
6441    // C99 6.7.8p4. All file scoped initializers need to be constant.
6442    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6443      CheckForConstantInitializer(Init, DclT);
6444  }
6445
6446  // We will represent direct-initialization similarly to copy-initialization:
6447  //    int x(1);  -as-> int x = 1;
6448  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6449  //
6450  // Clients that want to distinguish between the two forms, can check for
6451  // direct initializer using VarDecl::getInitStyle().
6452  // A major benefit is that clients that don't particularly care about which
6453  // exactly form was it (like the CodeGen) can handle both cases without
6454  // special case code.
6455
6456  // C++ 8.5p11:
6457  // The form of initialization (using parentheses or '=') is generally
6458  // insignificant, but does matter when the entity being initialized has a
6459  // class type.
6460  if (CXXDirectInit) {
6461    assert(DirectInit && "Call-style initializer must be direct init.");
6462    VDecl->setInitStyle(VarDecl::CallInit);
6463  } else if (DirectInit) {
6464    // This must be list-initialization. No other way is direct-initialization.
6465    VDecl->setInitStyle(VarDecl::ListInit);
6466  }
6467
6468  CheckCompleteVariableDeclaration(VDecl);
6469}
6470
6471/// ActOnInitializerError - Given that there was an error parsing an
6472/// initializer for the given declaration, try to return to some form
6473/// of sanity.
6474void Sema::ActOnInitializerError(Decl *D) {
6475  // Our main concern here is re-establishing invariants like "a
6476  // variable's type is either dependent or complete".
6477  if (!D || D->isInvalidDecl()) return;
6478
6479  VarDecl *VD = dyn_cast<VarDecl>(D);
6480  if (!VD) return;
6481
6482  // Auto types are meaningless if we can't make sense of the initializer.
6483  if (ParsingInitForAutoVars.count(D)) {
6484    D->setInvalidDecl();
6485    return;
6486  }
6487
6488  QualType Ty = VD->getType();
6489  if (Ty->isDependentType()) return;
6490
6491  // Require a complete type.
6492  if (RequireCompleteType(VD->getLocation(),
6493                          Context.getBaseElementType(Ty),
6494                          diag::err_typecheck_decl_incomplete_type)) {
6495    VD->setInvalidDecl();
6496    return;
6497  }
6498
6499  // Require an abstract type.
6500  if (RequireNonAbstractType(VD->getLocation(), Ty,
6501                             diag::err_abstract_type_in_decl,
6502                             AbstractVariableType)) {
6503    VD->setInvalidDecl();
6504    return;
6505  }
6506
6507  // Don't bother complaining about constructors or destructors,
6508  // though.
6509}
6510
6511void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6512                                  bool TypeMayContainAuto) {
6513  // If there is no declaration, there was an error parsing it. Just ignore it.
6514  if (RealDecl == 0)
6515    return;
6516
6517  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6518    QualType Type = Var->getType();
6519
6520    // C++11 [dcl.spec.auto]p3
6521    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6522      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6523        << Var->getDeclName() << Type;
6524      Var->setInvalidDecl();
6525      return;
6526    }
6527
6528    // C++11 [class.static.data]p3: A static data member can be declared with
6529    // the constexpr specifier; if so, its declaration shall specify
6530    // a brace-or-equal-initializer.
6531    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6532    // the definition of a variable [...] or the declaration of a static data
6533    // member.
6534    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6535      if (Var->isStaticDataMember())
6536        Diag(Var->getLocation(),
6537             diag::err_constexpr_static_mem_var_requires_init)
6538          << Var->getDeclName();
6539      else
6540        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6541      Var->setInvalidDecl();
6542      return;
6543    }
6544
6545    switch (Var->isThisDeclarationADefinition()) {
6546    case VarDecl::Definition:
6547      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6548        break;
6549
6550      // We have an out-of-line definition of a static data member
6551      // that has an in-class initializer, so we type-check this like
6552      // a declaration.
6553      //
6554      // Fall through
6555
6556    case VarDecl::DeclarationOnly:
6557      // It's only a declaration.
6558
6559      // Block scope. C99 6.7p7: If an identifier for an object is
6560      // declared with no linkage (C99 6.2.2p6), the type for the
6561      // object shall be complete.
6562      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6563          !Var->getLinkage() && !Var->isInvalidDecl() &&
6564          RequireCompleteType(Var->getLocation(), Type,
6565                              diag::err_typecheck_decl_incomplete_type))
6566        Var->setInvalidDecl();
6567
6568      // Make sure that the type is not abstract.
6569      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6570          RequireNonAbstractType(Var->getLocation(), Type,
6571                                 diag::err_abstract_type_in_decl,
6572                                 AbstractVariableType))
6573        Var->setInvalidDecl();
6574      return;
6575
6576    case VarDecl::TentativeDefinition:
6577      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6578      // object that has file scope without an initializer, and without a
6579      // storage-class specifier or with the storage-class specifier "static",
6580      // constitutes a tentative definition. Note: A tentative definition with
6581      // external linkage is valid (C99 6.2.2p5).
6582      if (!Var->isInvalidDecl()) {
6583        if (const IncompleteArrayType *ArrayT
6584                                    = Context.getAsIncompleteArrayType(Type)) {
6585          if (RequireCompleteType(Var->getLocation(),
6586                                  ArrayT->getElementType(),
6587                                  diag::err_illegal_decl_array_incomplete_type))
6588            Var->setInvalidDecl();
6589        } else if (Var->getStorageClass() == SC_Static) {
6590          // C99 6.9.2p3: If the declaration of an identifier for an object is
6591          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6592          // declared type shall not be an incomplete type.
6593          // NOTE: code such as the following
6594          //     static struct s;
6595          //     struct s { int a; };
6596          // is accepted by gcc. Hence here we issue a warning instead of
6597          // an error and we do not invalidate the static declaration.
6598          // NOTE: to avoid multiple warnings, only check the first declaration.
6599          if (Var->getPreviousDecl() == 0)
6600            RequireCompleteType(Var->getLocation(), Type,
6601                                diag::ext_typecheck_decl_incomplete_type);
6602        }
6603      }
6604
6605      // Record the tentative definition; we're done.
6606      if (!Var->isInvalidDecl())
6607        TentativeDefinitions.push_back(Var);
6608      return;
6609    }
6610
6611    // Provide a specific diagnostic for uninitialized variable
6612    // definitions with incomplete array type.
6613    if (Type->isIncompleteArrayType()) {
6614      Diag(Var->getLocation(),
6615           diag::err_typecheck_incomplete_array_needs_initializer);
6616      Var->setInvalidDecl();
6617      return;
6618    }
6619
6620    // Provide a specific diagnostic for uninitialized variable
6621    // definitions with reference type.
6622    if (Type->isReferenceType()) {
6623      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6624        << Var->getDeclName()
6625        << SourceRange(Var->getLocation(), Var->getLocation());
6626      Var->setInvalidDecl();
6627      return;
6628    }
6629
6630    // Do not attempt to type-check the default initializer for a
6631    // variable with dependent type.
6632    if (Type->isDependentType())
6633      return;
6634
6635    if (Var->isInvalidDecl())
6636      return;
6637
6638    if (RequireCompleteType(Var->getLocation(),
6639                            Context.getBaseElementType(Type),
6640                            diag::err_typecheck_decl_incomplete_type)) {
6641      Var->setInvalidDecl();
6642      return;
6643    }
6644
6645    // The variable can not have an abstract class type.
6646    if (RequireNonAbstractType(Var->getLocation(), Type,
6647                               diag::err_abstract_type_in_decl,
6648                               AbstractVariableType)) {
6649      Var->setInvalidDecl();
6650      return;
6651    }
6652
6653    // Check for jumps past the implicit initializer.  C++0x
6654    // clarifies that this applies to a "variable with automatic
6655    // storage duration", not a "local variable".
6656    // C++11 [stmt.dcl]p3
6657    //   A program that jumps from a point where a variable with automatic
6658    //   storage duration is not in scope to a point where it is in scope is
6659    //   ill-formed unless the variable has scalar type, class type with a
6660    //   trivial default constructor and a trivial destructor, a cv-qualified
6661    //   version of one of these types, or an array of one of the preceding
6662    //   types and is declared without an initializer.
6663    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6664      if (const RecordType *Record
6665            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6666        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6667        // Mark the function for further checking even if the looser rules of
6668        // C++11 do not require such checks, so that we can diagnose
6669        // incompatibilities with C++98.
6670        if (!CXXRecord->isPOD())
6671          getCurFunction()->setHasBranchProtectedScope();
6672      }
6673    }
6674
6675    // C++03 [dcl.init]p9:
6676    //   If no initializer is specified for an object, and the
6677    //   object is of (possibly cv-qualified) non-POD class type (or
6678    //   array thereof), the object shall be default-initialized; if
6679    //   the object is of const-qualified type, the underlying class
6680    //   type shall have a user-declared default
6681    //   constructor. Otherwise, if no initializer is specified for
6682    //   a non- static object, the object and its subobjects, if
6683    //   any, have an indeterminate initial value); if the object
6684    //   or any of its subobjects are of const-qualified type, the
6685    //   program is ill-formed.
6686    // C++0x [dcl.init]p11:
6687    //   If no initializer is specified for an object, the object is
6688    //   default-initialized; [...].
6689    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6690    InitializationKind Kind
6691      = InitializationKind::CreateDefault(Var->getLocation());
6692
6693    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6694    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6695                                      MultiExprArg(*this, 0, 0));
6696    if (Init.isInvalid())
6697      Var->setInvalidDecl();
6698    else if (Init.get()) {
6699      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6700      // This is important for template substitution.
6701      Var->setInitStyle(VarDecl::CallInit);
6702    }
6703
6704    CheckCompleteVariableDeclaration(Var);
6705  }
6706}
6707
6708void Sema::ActOnCXXForRangeDecl(Decl *D) {
6709  VarDecl *VD = dyn_cast<VarDecl>(D);
6710  if (!VD) {
6711    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6712    D->setInvalidDecl();
6713    return;
6714  }
6715
6716  VD->setCXXForRangeDecl(true);
6717
6718  // for-range-declaration cannot be given a storage class specifier.
6719  int Error = -1;
6720  switch (VD->getStorageClassAsWritten()) {
6721  case SC_None:
6722    break;
6723  case SC_Extern:
6724    Error = 0;
6725    break;
6726  case SC_Static:
6727    Error = 1;
6728    break;
6729  case SC_PrivateExtern:
6730    Error = 2;
6731    break;
6732  case SC_Auto:
6733    Error = 3;
6734    break;
6735  case SC_Register:
6736    Error = 4;
6737    break;
6738  case SC_OpenCLWorkGroupLocal:
6739    llvm_unreachable("Unexpected storage class");
6740  }
6741  if (VD->isConstexpr())
6742    Error = 5;
6743  if (Error != -1) {
6744    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6745      << VD->getDeclName() << Error;
6746    D->setInvalidDecl();
6747  }
6748}
6749
6750void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6751  if (var->isInvalidDecl()) return;
6752
6753  // In ARC, don't allow jumps past the implicit initialization of a
6754  // local retaining variable.
6755  if (getLangOpts().ObjCAutoRefCount &&
6756      var->hasLocalStorage()) {
6757    switch (var->getType().getObjCLifetime()) {
6758    case Qualifiers::OCL_None:
6759    case Qualifiers::OCL_ExplicitNone:
6760    case Qualifiers::OCL_Autoreleasing:
6761      break;
6762
6763    case Qualifiers::OCL_Weak:
6764    case Qualifiers::OCL_Strong:
6765      getCurFunction()->setHasBranchProtectedScope();
6766      break;
6767    }
6768  }
6769
6770  // All the following checks are C++ only.
6771  if (!getLangOpts().CPlusPlus) return;
6772
6773  QualType baseType = Context.getBaseElementType(var->getType());
6774  if (baseType->isDependentType()) return;
6775
6776  // __block variables might require us to capture a copy-initializer.
6777  if (var->hasAttr<BlocksAttr>()) {
6778    // It's currently invalid to ever have a __block variable with an
6779    // array type; should we diagnose that here?
6780
6781    // Regardless, we don't want to ignore array nesting when
6782    // constructing this copy.
6783    QualType type = var->getType();
6784
6785    if (type->isStructureOrClassType()) {
6786      SourceLocation poi = var->getLocation();
6787      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6788      ExprResult result =
6789        PerformCopyInitialization(
6790                        InitializedEntity::InitializeBlock(poi, type, false),
6791                                  poi, Owned(varRef));
6792      if (!result.isInvalid()) {
6793        result = MaybeCreateExprWithCleanups(result);
6794        Expr *init = result.takeAs<Expr>();
6795        Context.setBlockVarCopyInits(var, init);
6796      }
6797    }
6798  }
6799
6800  Expr *Init = var->getInit();
6801  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6802
6803  if (!var->getDeclContext()->isDependentContext() && Init) {
6804    if (IsGlobal && !var->isConstexpr() &&
6805        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6806                                            var->getLocation())
6807          != DiagnosticsEngine::Ignored &&
6808        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6809      Diag(var->getLocation(), diag::warn_global_constructor)
6810        << Init->getSourceRange();
6811
6812    if (var->isConstexpr()) {
6813      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6814      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6815        SourceLocation DiagLoc = var->getLocation();
6816        // If the note doesn't add any useful information other than a source
6817        // location, fold it into the primary diagnostic.
6818        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6819              diag::note_invalid_subexpr_in_const_expr) {
6820          DiagLoc = Notes[0].first;
6821          Notes.clear();
6822        }
6823        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6824          << var << Init->getSourceRange();
6825        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6826          Diag(Notes[I].first, Notes[I].second);
6827      }
6828    } else if (var->isUsableInConstantExpressions(Context)) {
6829      // Check whether the initializer of a const variable of integral or
6830      // enumeration type is an ICE now, since we can't tell whether it was
6831      // initialized by a constant expression if we check later.
6832      var->checkInitIsICE();
6833    }
6834  }
6835
6836  // Require the destructor.
6837  if (const RecordType *recordType = baseType->getAs<RecordType>())
6838    FinalizeVarWithDestructor(var, recordType);
6839}
6840
6841/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6842/// any semantic actions necessary after any initializer has been attached.
6843void
6844Sema::FinalizeDeclaration(Decl *ThisDecl) {
6845  // Note that we are no longer parsing the initializer for this declaration.
6846  ParsingInitForAutoVars.erase(ThisDecl);
6847}
6848
6849Sema::DeclGroupPtrTy
6850Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6851                              Decl **Group, unsigned NumDecls) {
6852  SmallVector<Decl*, 8> Decls;
6853
6854  if (DS.isTypeSpecOwned())
6855    Decls.push_back(DS.getRepAsDecl());
6856
6857  for (unsigned i = 0; i != NumDecls; ++i)
6858    if (Decl *D = Group[i])
6859      Decls.push_back(D);
6860
6861  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6862                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6863}
6864
6865/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6866/// group, performing any necessary semantic checking.
6867Sema::DeclGroupPtrTy
6868Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6869                           bool TypeMayContainAuto) {
6870  // C++0x [dcl.spec.auto]p7:
6871  //   If the type deduced for the template parameter U is not the same in each
6872  //   deduction, the program is ill-formed.
6873  // FIXME: When initializer-list support is added, a distinction is needed
6874  // between the deduced type U and the deduced type which 'auto' stands for.
6875  //   auto a = 0, b = { 1, 2, 3 };
6876  // is legal because the deduced type U is 'int' in both cases.
6877  if (TypeMayContainAuto && NumDecls > 1) {
6878    QualType Deduced;
6879    CanQualType DeducedCanon;
6880    VarDecl *DeducedDecl = 0;
6881    for (unsigned i = 0; i != NumDecls; ++i) {
6882      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6883        AutoType *AT = D->getType()->getContainedAutoType();
6884        // Don't reissue diagnostics when instantiating a template.
6885        if (AT && D->isInvalidDecl())
6886          break;
6887        if (AT && AT->isDeduced()) {
6888          QualType U = AT->getDeducedType();
6889          CanQualType UCanon = Context.getCanonicalType(U);
6890          if (Deduced.isNull()) {
6891            Deduced = U;
6892            DeducedCanon = UCanon;
6893            DeducedDecl = D;
6894          } else if (DeducedCanon != UCanon) {
6895            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6896                 diag::err_auto_different_deductions)
6897              << Deduced << DeducedDecl->getDeclName()
6898              << U << D->getDeclName()
6899              << DeducedDecl->getInit()->getSourceRange()
6900              << D->getInit()->getSourceRange();
6901            D->setInvalidDecl();
6902            break;
6903          }
6904        }
6905      }
6906    }
6907  }
6908
6909  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6910}
6911
6912
6913/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6914/// to introduce parameters into function prototype scope.
6915Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6916  const DeclSpec &DS = D.getDeclSpec();
6917
6918  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6919  // C++03 [dcl.stc]p2 also permits 'auto'.
6920  VarDecl::StorageClass StorageClass = SC_None;
6921  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6922  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6923    StorageClass = SC_Register;
6924    StorageClassAsWritten = SC_Register;
6925  } else if (getLangOpts().CPlusPlus &&
6926             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6927    StorageClass = SC_Auto;
6928    StorageClassAsWritten = SC_Auto;
6929  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6930    Diag(DS.getStorageClassSpecLoc(),
6931         diag::err_invalid_storage_class_in_func_decl);
6932    D.getMutableDeclSpec().ClearStorageClassSpecs();
6933  }
6934
6935  if (D.getDeclSpec().isThreadSpecified())
6936    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6937  if (D.getDeclSpec().isConstexprSpecified())
6938    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6939      << 0;
6940
6941  DiagnoseFunctionSpecifiers(D);
6942
6943  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6944  QualType parmDeclType = TInfo->getType();
6945
6946  if (getLangOpts().CPlusPlus) {
6947    // Check that there are no default arguments inside the type of this
6948    // parameter.
6949    CheckExtraCXXDefaultArguments(D);
6950
6951    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6952    if (D.getCXXScopeSpec().isSet()) {
6953      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6954        << D.getCXXScopeSpec().getRange();
6955      D.getCXXScopeSpec().clear();
6956    }
6957  }
6958
6959  // Ensure we have a valid name
6960  IdentifierInfo *II = 0;
6961  if (D.hasName()) {
6962    II = D.getIdentifier();
6963    if (!II) {
6964      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6965        << GetNameForDeclarator(D).getName().getAsString();
6966      D.setInvalidType(true);
6967    }
6968  }
6969
6970  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6971  if (II) {
6972    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6973                   ForRedeclaration);
6974    LookupName(R, S);
6975    if (R.isSingleResult()) {
6976      NamedDecl *PrevDecl = R.getFoundDecl();
6977      if (PrevDecl->isTemplateParameter()) {
6978        // Maybe we will complain about the shadowed template parameter.
6979        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6980        // Just pretend that we didn't see the previous declaration.
6981        PrevDecl = 0;
6982      } else if (S->isDeclScope(PrevDecl)) {
6983        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6984        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6985
6986        // Recover by removing the name
6987        II = 0;
6988        D.SetIdentifier(0, D.getIdentifierLoc());
6989        D.setInvalidType(true);
6990      }
6991    }
6992  }
6993
6994  // Temporarily put parameter variables in the translation unit, not
6995  // the enclosing context.  This prevents them from accidentally
6996  // looking like class members in C++.
6997  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6998                                    D.getLocStart(),
6999                                    D.getIdentifierLoc(), II,
7000                                    parmDeclType, TInfo,
7001                                    StorageClass, StorageClassAsWritten);
7002
7003  if (D.isInvalidType())
7004    New->setInvalidDecl();
7005
7006  assert(S->isFunctionPrototypeScope());
7007  assert(S->getFunctionPrototypeDepth() >= 1);
7008  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7009                    S->getNextFunctionPrototypeIndex());
7010
7011  // Add the parameter declaration into this scope.
7012  S->AddDecl(New);
7013  if (II)
7014    IdResolver.AddDecl(New);
7015
7016  ProcessDeclAttributes(S, New, D);
7017
7018  if (D.getDeclSpec().isModulePrivateSpecified())
7019    Diag(New->getLocation(), diag::err_module_private_local)
7020      << 1 << New->getDeclName()
7021      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7022      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7023
7024  if (New->hasAttr<BlocksAttr>()) {
7025    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7026  }
7027  return New;
7028}
7029
7030/// \brief Synthesizes a variable for a parameter arising from a
7031/// typedef.
7032ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7033                                              SourceLocation Loc,
7034                                              QualType T) {
7035  /* FIXME: setting StartLoc == Loc.
7036     Would it be worth to modify callers so as to provide proper source
7037     location for the unnamed parameters, embedding the parameter's type? */
7038  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7039                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7040                                           SC_None, SC_None, 0);
7041  Param->setImplicit();
7042  return Param;
7043}
7044
7045void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7046                                    ParmVarDecl * const *ParamEnd) {
7047  // Don't diagnose unused-parameter errors in template instantiations; we
7048  // will already have done so in the template itself.
7049  if (!ActiveTemplateInstantiations.empty())
7050    return;
7051
7052  for (; Param != ParamEnd; ++Param) {
7053    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7054        !(*Param)->hasAttr<UnusedAttr>()) {
7055      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7056        << (*Param)->getDeclName();
7057    }
7058  }
7059}
7060
7061void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7062                                                  ParmVarDecl * const *ParamEnd,
7063                                                  QualType ReturnTy,
7064                                                  NamedDecl *D) {
7065  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7066    return;
7067
7068  // Warn if the return value is pass-by-value and larger than the specified
7069  // threshold.
7070  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7071    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7072    if (Size > LangOpts.NumLargeByValueCopy)
7073      Diag(D->getLocation(), diag::warn_return_value_size)
7074          << D->getDeclName() << Size;
7075  }
7076
7077  // Warn if any parameter is pass-by-value and larger than the specified
7078  // threshold.
7079  for (; Param != ParamEnd; ++Param) {
7080    QualType T = (*Param)->getType();
7081    if (T->isDependentType() || !T.isPODType(Context))
7082      continue;
7083    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7084    if (Size > LangOpts.NumLargeByValueCopy)
7085      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7086          << (*Param)->getDeclName() << Size;
7087  }
7088}
7089
7090ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7091                                  SourceLocation NameLoc, IdentifierInfo *Name,
7092                                  QualType T, TypeSourceInfo *TSInfo,
7093                                  VarDecl::StorageClass StorageClass,
7094                                  VarDecl::StorageClass StorageClassAsWritten) {
7095  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7096  if (getLangOpts().ObjCAutoRefCount &&
7097      T.getObjCLifetime() == Qualifiers::OCL_None &&
7098      T->isObjCLifetimeType()) {
7099
7100    Qualifiers::ObjCLifetime lifetime;
7101
7102    // Special cases for arrays:
7103    //   - if it's const, use __unsafe_unretained
7104    //   - otherwise, it's an error
7105    if (T->isArrayType()) {
7106      if (!T.isConstQualified()) {
7107        DelayedDiagnostics.add(
7108            sema::DelayedDiagnostic::makeForbiddenType(
7109            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7110      }
7111      lifetime = Qualifiers::OCL_ExplicitNone;
7112    } else {
7113      lifetime = T->getObjCARCImplicitLifetime();
7114    }
7115    T = Context.getLifetimeQualifiedType(T, lifetime);
7116  }
7117
7118  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7119                                         Context.getAdjustedParameterType(T),
7120                                         TSInfo,
7121                                         StorageClass, StorageClassAsWritten,
7122                                         0);
7123
7124  // Parameters can not be abstract class types.
7125  // For record types, this is done by the AbstractClassUsageDiagnoser once
7126  // the class has been completely parsed.
7127  if (!CurContext->isRecord() &&
7128      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7129                             AbstractParamType))
7130    New->setInvalidDecl();
7131
7132  // Parameter declarators cannot be interface types. All ObjC objects are
7133  // passed by reference.
7134  if (T->isObjCObjectType()) {
7135    Diag(NameLoc,
7136         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7137      << FixItHint::CreateInsertion(NameLoc, "*");
7138    T = Context.getObjCObjectPointerType(T);
7139    New->setType(T);
7140  }
7141
7142  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7143  // duration shall not be qualified by an address-space qualifier."
7144  // Since all parameters have automatic store duration, they can not have
7145  // an address space.
7146  if (T.getAddressSpace() != 0) {
7147    Diag(NameLoc, diag::err_arg_with_address_space);
7148    New->setInvalidDecl();
7149  }
7150
7151  return New;
7152}
7153
7154void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7155                                           SourceLocation LocAfterDecls) {
7156  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7157
7158  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7159  // for a K&R function.
7160  if (!FTI.hasPrototype) {
7161    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7162      --i;
7163      if (FTI.ArgInfo[i].Param == 0) {
7164        SmallString<256> Code;
7165        llvm::raw_svector_ostream(Code) << "  int "
7166                                        << FTI.ArgInfo[i].Ident->getName()
7167                                        << ";\n";
7168        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7169          << FTI.ArgInfo[i].Ident
7170          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7171
7172        // Implicitly declare the argument as type 'int' for lack of a better
7173        // type.
7174        AttributeFactory attrs;
7175        DeclSpec DS(attrs);
7176        const char* PrevSpec; // unused
7177        unsigned DiagID; // unused
7178        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7179                           PrevSpec, DiagID);
7180        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7181        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7182        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7183      }
7184    }
7185  }
7186}
7187
7188Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7189  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7190  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7191  Scope *ParentScope = FnBodyScope->getParent();
7192
7193  D.setFunctionDefinitionKind(FDK_Definition);
7194  Decl *DP = HandleDeclarator(ParentScope, D,
7195                              MultiTemplateParamsArg(*this));
7196  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7197}
7198
7199static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7200  // Don't warn about invalid declarations.
7201  if (FD->isInvalidDecl())
7202    return false;
7203
7204  // Or declarations that aren't global.
7205  if (!FD->isGlobal())
7206    return false;
7207
7208  // Don't warn about C++ member functions.
7209  if (isa<CXXMethodDecl>(FD))
7210    return false;
7211
7212  // Don't warn about 'main'.
7213  if (FD->isMain())
7214    return false;
7215
7216  // Don't warn about inline functions.
7217  if (FD->isInlined())
7218    return false;
7219
7220  // Don't warn about function templates.
7221  if (FD->getDescribedFunctionTemplate())
7222    return false;
7223
7224  // Don't warn about function template specializations.
7225  if (FD->isFunctionTemplateSpecialization())
7226    return false;
7227
7228  bool MissingPrototype = true;
7229  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7230       Prev; Prev = Prev->getPreviousDecl()) {
7231    // Ignore any declarations that occur in function or method
7232    // scope, because they aren't visible from the header.
7233    if (Prev->getDeclContext()->isFunctionOrMethod())
7234      continue;
7235
7236    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7237    break;
7238  }
7239
7240  return MissingPrototype;
7241}
7242
7243void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7244  // Don't complain if we're in GNU89 mode and the previous definition
7245  // was an extern inline function.
7246  const FunctionDecl *Definition;
7247  if (FD->isDefined(Definition) &&
7248      !canRedefineFunction(Definition, getLangOpts())) {
7249    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7250        Definition->getStorageClass() == SC_Extern)
7251      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7252        << FD->getDeclName() << getLangOpts().CPlusPlus;
7253    else
7254      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7255    Diag(Definition->getLocation(), diag::note_previous_definition);
7256  }
7257}
7258
7259Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7260  // Clear the last template instantiation error context.
7261  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7262
7263  if (!D)
7264    return D;
7265  FunctionDecl *FD = 0;
7266
7267  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7268    FD = FunTmpl->getTemplatedDecl();
7269  else
7270    FD = cast<FunctionDecl>(D);
7271
7272  // Enter a new function scope
7273  PushFunctionScope();
7274
7275  // See if this is a redefinition.
7276  if (!FD->isLateTemplateParsed())
7277    CheckForFunctionRedefinition(FD);
7278
7279  // Builtin functions cannot be defined.
7280  if (unsigned BuiltinID = FD->getBuiltinID()) {
7281    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7282      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7283      FD->setInvalidDecl();
7284    }
7285  }
7286
7287  // The return type of a function definition must be complete
7288  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7289  QualType ResultType = FD->getResultType();
7290  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7291      !FD->isInvalidDecl() &&
7292      RequireCompleteType(FD->getLocation(), ResultType,
7293                          diag::err_func_def_incomplete_result))
7294    FD->setInvalidDecl();
7295
7296  // GNU warning -Wmissing-prototypes:
7297  //   Warn if a global function is defined without a previous
7298  //   prototype declaration. This warning is issued even if the
7299  //   definition itself provides a prototype. The aim is to detect
7300  //   global functions that fail to be declared in header files.
7301  if (ShouldWarnAboutMissingPrototype(FD))
7302    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7303
7304  if (FnBodyScope)
7305    PushDeclContext(FnBodyScope, FD);
7306
7307  // Check the validity of our function parameters
7308  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7309                           /*CheckParameterNames=*/true);
7310
7311  // Introduce our parameters into the function scope
7312  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7313    ParmVarDecl *Param = FD->getParamDecl(p);
7314    Param->setOwningFunction(FD);
7315
7316    // If this has an identifier, add it to the scope stack.
7317    if (Param->getIdentifier() && FnBodyScope) {
7318      CheckShadow(FnBodyScope, Param);
7319
7320      PushOnScopeChains(Param, FnBodyScope);
7321    }
7322  }
7323
7324  // If we had any tags defined in the function prototype,
7325  // introduce them into the function scope.
7326  if (FnBodyScope) {
7327    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7328           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7329      NamedDecl *D = *I;
7330
7331      // Some of these decls (like enums) may have been pinned to the translation unit
7332      // for lack of a real context earlier. If so, remove from the translation unit
7333      // and reattach to the current context.
7334      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7335        // Is the decl actually in the context?
7336        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7337               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7338          if (*DI == D) {
7339            Context.getTranslationUnitDecl()->removeDecl(D);
7340            break;
7341          }
7342        }
7343        // Either way, reassign the lexical decl context to our FunctionDecl.
7344        D->setLexicalDeclContext(CurContext);
7345      }
7346
7347      // If the decl has a non-null name, make accessible in the current scope.
7348      if (!D->getName().empty())
7349        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7350
7351      // Similarly, dive into enums and fish their constants out, making them
7352      // accessible in this scope.
7353      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7354        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7355               EE = ED->enumerator_end(); EI != EE; ++EI)
7356          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7357      }
7358    }
7359  }
7360
7361  // Ensure that the function's exception specification is instantiated.
7362  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7363    ResolveExceptionSpec(D->getLocation(), FPT);
7364
7365  // Checking attributes of current function definition
7366  // dllimport attribute.
7367  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7368  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7369    // dllimport attribute cannot be directly applied to definition.
7370    // Microsoft accepts dllimport for functions defined within class scope.
7371    if (!DA->isInherited() &&
7372        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7373      Diag(FD->getLocation(),
7374           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7375        << "dllimport";
7376      FD->setInvalidDecl();
7377      return FD;
7378    }
7379
7380    // Visual C++ appears to not think this is an issue, so only issue
7381    // a warning when Microsoft extensions are disabled.
7382    if (!LangOpts.MicrosoftExt) {
7383      // If a symbol previously declared dllimport is later defined, the
7384      // attribute is ignored in subsequent references, and a warning is
7385      // emitted.
7386      Diag(FD->getLocation(),
7387           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7388        << FD->getName() << "dllimport";
7389    }
7390  }
7391  return FD;
7392}
7393
7394/// \brief Given the set of return statements within a function body,
7395/// compute the variables that are subject to the named return value
7396/// optimization.
7397///
7398/// Each of the variables that is subject to the named return value
7399/// optimization will be marked as NRVO variables in the AST, and any
7400/// return statement that has a marked NRVO variable as its NRVO candidate can
7401/// use the named return value optimization.
7402///
7403/// This function applies a very simplistic algorithm for NRVO: if every return
7404/// statement in the function has the same NRVO candidate, that candidate is
7405/// the NRVO variable.
7406///
7407/// FIXME: Employ a smarter algorithm that accounts for multiple return
7408/// statements and the lifetimes of the NRVO candidates. We should be able to
7409/// find a maximal set of NRVO variables.
7410void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7411  ReturnStmt **Returns = Scope->Returns.data();
7412
7413  const VarDecl *NRVOCandidate = 0;
7414  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7415    if (!Returns[I]->getNRVOCandidate())
7416      return;
7417
7418    if (!NRVOCandidate)
7419      NRVOCandidate = Returns[I]->getNRVOCandidate();
7420    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7421      return;
7422  }
7423
7424  if (NRVOCandidate)
7425    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7426}
7427
7428Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7429  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7430}
7431
7432Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7433                                    bool IsInstantiation) {
7434  FunctionDecl *FD = 0;
7435  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7436  if (FunTmpl)
7437    FD = FunTmpl->getTemplatedDecl();
7438  else
7439    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7440
7441  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7442  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7443
7444  if (FD) {
7445    FD->setBody(Body);
7446
7447    // If the function implicitly returns zero (like 'main') or is naked,
7448    // don't complain about missing return statements.
7449    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7450      WP.disableCheckFallThrough();
7451
7452    // MSVC permits the use of pure specifier (=0) on function definition,
7453    // defined at class scope, warn about this non standard construct.
7454    if (getLangOpts().MicrosoftExt && FD->isPure())
7455      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7456
7457    if (!FD->isInvalidDecl()) {
7458      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7459      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7460                                             FD->getResultType(), FD);
7461
7462      // If this is a constructor, we need a vtable.
7463      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7464        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7465
7466      computeNRVO(Body, getCurFunction());
7467    }
7468
7469    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7470           "Function parsing confused");
7471  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7472    assert(MD == getCurMethodDecl() && "Method parsing confused");
7473    MD->setBody(Body);
7474    if (Body)
7475      MD->setEndLoc(Body->getLocEnd());
7476    if (!MD->isInvalidDecl()) {
7477      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7478      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7479                                             MD->getResultType(), MD);
7480
7481      if (Body)
7482        computeNRVO(Body, getCurFunction());
7483    }
7484    if (ObjCShouldCallSuperDealloc) {
7485      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7486      ObjCShouldCallSuperDealloc = false;
7487    }
7488    if (ObjCShouldCallSuperFinalize) {
7489      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7490      ObjCShouldCallSuperFinalize = false;
7491    }
7492  } else {
7493    return 0;
7494  }
7495
7496  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7497         "ObjC methods, which should have been handled in the block above.");
7498  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7499         "ObjC methods, which should have been handled in the block above.");
7500
7501  // Verify and clean out per-function state.
7502  if (Body) {
7503    // C++ constructors that have function-try-blocks can't have return
7504    // statements in the handlers of that block. (C++ [except.handle]p14)
7505    // Verify this.
7506    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7507      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7508
7509    // Verify that gotos and switch cases don't jump into scopes illegally.
7510    if (getCurFunction()->NeedsScopeChecking() &&
7511        !dcl->isInvalidDecl() &&
7512        !hasAnyUnrecoverableErrorsInThisFunction())
7513      DiagnoseInvalidJumps(Body);
7514
7515    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7516      if (!Destructor->getParent()->isDependentType())
7517        CheckDestructor(Destructor);
7518
7519      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7520                                             Destructor->getParent());
7521    }
7522
7523    // If any errors have occurred, clear out any temporaries that may have
7524    // been leftover. This ensures that these temporaries won't be picked up for
7525    // deletion in some later function.
7526    if (PP.getDiagnostics().hasErrorOccurred() ||
7527        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7528      DiscardCleanupsInEvaluationContext();
7529    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7530      // Since the body is valid, issue any analysis-based warnings that are
7531      // enabled.
7532      ActivePolicy = &WP;
7533    }
7534
7535    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7536        (!CheckConstexprFunctionDecl(FD) ||
7537         !CheckConstexprFunctionBody(FD, Body)))
7538      FD->setInvalidDecl();
7539
7540    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7541    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7542    assert(MaybeODRUseExprs.empty() &&
7543           "Leftover expressions for odr-use checking");
7544  }
7545
7546  if (!IsInstantiation)
7547    PopDeclContext();
7548
7549  PopFunctionScopeInfo(ActivePolicy, dcl);
7550
7551  // If any errors have occurred, clear out any temporaries that may have
7552  // been leftover. This ensures that these temporaries won't be picked up for
7553  // deletion in some later function.
7554  if (getDiagnostics().hasErrorOccurred()) {
7555    DiscardCleanupsInEvaluationContext();
7556  }
7557
7558  return dcl;
7559}
7560
7561
7562/// When we finish delayed parsing of an attribute, we must attach it to the
7563/// relevant Decl.
7564void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7565                                       ParsedAttributes &Attrs) {
7566  // Always attach attributes to the underlying decl.
7567  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7568    D = TD->getTemplatedDecl();
7569  ProcessDeclAttributeList(S, D, Attrs.getList());
7570
7571  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7572    if (Method->isStatic())
7573      checkThisInStaticMemberFunctionAttributes(Method);
7574}
7575
7576
7577/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7578/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7579NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7580                                          IdentifierInfo &II, Scope *S) {
7581  // Before we produce a declaration for an implicitly defined
7582  // function, see whether there was a locally-scoped declaration of
7583  // this name as a function or variable. If so, use that
7584  // (non-visible) declaration, and complain about it.
7585  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7586    = findLocallyScopedExternalDecl(&II);
7587  if (Pos != LocallyScopedExternalDecls.end()) {
7588    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7589    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7590    return Pos->second;
7591  }
7592
7593  // Extension in C99.  Legal in C90, but warn about it.
7594  unsigned diag_id;
7595  if (II.getName().startswith("__builtin_"))
7596    diag_id = diag::warn_builtin_unknown;
7597  else if (getLangOpts().C99)
7598    diag_id = diag::ext_implicit_function_decl;
7599  else
7600    diag_id = diag::warn_implicit_function_decl;
7601  Diag(Loc, diag_id) << &II;
7602
7603  // Because typo correction is expensive, only do it if the implicit
7604  // function declaration is going to be treated as an error.
7605  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7606    TypoCorrection Corrected;
7607    DeclFilterCCC<FunctionDecl> Validator;
7608    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7609                                      LookupOrdinaryName, S, 0, Validator))) {
7610      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7611      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7612      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7613
7614      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7615          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7616
7617      if (Func->getLocation().isValid()
7618          && !II.getName().startswith("__builtin_"))
7619        Diag(Func->getLocation(), diag::note_previous_decl)
7620            << CorrectedQuotedStr;
7621    }
7622  }
7623
7624  // Set a Declarator for the implicit definition: int foo();
7625  const char *Dummy;
7626  AttributeFactory attrFactory;
7627  DeclSpec DS(attrFactory);
7628  unsigned DiagID;
7629  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7630  (void)Error; // Silence warning.
7631  assert(!Error && "Error setting up implicit decl!");
7632  Declarator D(DS, Declarator::BlockContext);
7633  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7634                                             0, 0, true, SourceLocation(),
7635                                             SourceLocation(), SourceLocation(),
7636                                             SourceLocation(),
7637                                             EST_None, SourceLocation(),
7638                                             0, 0, 0, 0, 0, Loc, Loc, D),
7639                DS.getAttributes(),
7640                SourceLocation());
7641  D.SetIdentifier(&II, Loc);
7642
7643  // Insert this function into translation-unit scope.
7644
7645  DeclContext *PrevDC = CurContext;
7646  CurContext = Context.getTranslationUnitDecl();
7647
7648  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7649  FD->setImplicit();
7650
7651  CurContext = PrevDC;
7652
7653  AddKnownFunctionAttributes(FD);
7654
7655  return FD;
7656}
7657
7658/// \brief Adds any function attributes that we know a priori based on
7659/// the declaration of this function.
7660///
7661/// These attributes can apply both to implicitly-declared builtins
7662/// (like __builtin___printf_chk) or to library-declared functions
7663/// like NSLog or printf.
7664///
7665/// We need to check for duplicate attributes both here and where user-written
7666/// attributes are applied to declarations.
7667void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7668  if (FD->isInvalidDecl())
7669    return;
7670
7671  // If this is a built-in function, map its builtin attributes to
7672  // actual attributes.
7673  if (unsigned BuiltinID = FD->getBuiltinID()) {
7674    // Handle printf-formatting attributes.
7675    unsigned FormatIdx;
7676    bool HasVAListArg;
7677    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7678      if (!FD->getAttr<FormatAttr>()) {
7679        const char *fmt = "printf";
7680        unsigned int NumParams = FD->getNumParams();
7681        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7682            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7683          fmt = "NSString";
7684        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7685                                               fmt, FormatIdx+1,
7686                                               HasVAListArg ? 0 : FormatIdx+2));
7687      }
7688    }
7689    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7690                                             HasVAListArg)) {
7691     if (!FD->getAttr<FormatAttr>())
7692       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7693                                              "scanf", FormatIdx+1,
7694                                              HasVAListArg ? 0 : FormatIdx+2));
7695    }
7696
7697    // Mark const if we don't care about errno and that is the only
7698    // thing preventing the function from being const. This allows
7699    // IRgen to use LLVM intrinsics for such functions.
7700    if (!getLangOpts().MathErrno &&
7701        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7702      if (!FD->getAttr<ConstAttr>())
7703        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7704    }
7705
7706    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7707        !FD->getAttr<ReturnsTwiceAttr>())
7708      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7709    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7710      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7711    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7712      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7713  }
7714
7715  IdentifierInfo *Name = FD->getIdentifier();
7716  if (!Name)
7717    return;
7718  if ((!getLangOpts().CPlusPlus &&
7719       FD->getDeclContext()->isTranslationUnit()) ||
7720      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7721       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7722       LinkageSpecDecl::lang_c)) {
7723    // Okay: this could be a libc/libm/Objective-C function we know
7724    // about.
7725  } else
7726    return;
7727
7728  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7729    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7730    // target-specific builtins, perhaps?
7731    if (!FD->getAttr<FormatAttr>())
7732      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7733                                             "printf", 2,
7734                                             Name->isStr("vasprintf") ? 0 : 3));
7735  }
7736}
7737
7738TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7739                                    TypeSourceInfo *TInfo) {
7740  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7741  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7742
7743  if (!TInfo) {
7744    assert(D.isInvalidType() && "no declarator info for valid type");
7745    TInfo = Context.getTrivialTypeSourceInfo(T);
7746  }
7747
7748  // Scope manipulation handled by caller.
7749  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7750                                           D.getLocStart(),
7751                                           D.getIdentifierLoc(),
7752                                           D.getIdentifier(),
7753                                           TInfo);
7754
7755  // Bail out immediately if we have an invalid declaration.
7756  if (D.isInvalidType()) {
7757    NewTD->setInvalidDecl();
7758    return NewTD;
7759  }
7760
7761  if (D.getDeclSpec().isModulePrivateSpecified()) {
7762    if (CurContext->isFunctionOrMethod())
7763      Diag(NewTD->getLocation(), diag::err_module_private_local)
7764        << 2 << NewTD->getDeclName()
7765        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7766        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7767    else
7768      NewTD->setModulePrivate();
7769  }
7770
7771  // C++ [dcl.typedef]p8:
7772  //   If the typedef declaration defines an unnamed class (or
7773  //   enum), the first typedef-name declared by the declaration
7774  //   to be that class type (or enum type) is used to denote the
7775  //   class type (or enum type) for linkage purposes only.
7776  // We need to check whether the type was declared in the declaration.
7777  switch (D.getDeclSpec().getTypeSpecType()) {
7778  case TST_enum:
7779  case TST_struct:
7780  case TST_union:
7781  case TST_class: {
7782    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7783
7784    // Do nothing if the tag is not anonymous or already has an
7785    // associated typedef (from an earlier typedef in this decl group).
7786    if (tagFromDeclSpec->getIdentifier()) break;
7787    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7788
7789    // A well-formed anonymous tag must always be a TUK_Definition.
7790    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7791
7792    // The type must match the tag exactly;  no qualifiers allowed.
7793    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7794      break;
7795
7796    // Otherwise, set this is the anon-decl typedef for the tag.
7797    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7798    break;
7799  }
7800
7801  default:
7802    break;
7803  }
7804
7805  return NewTD;
7806}
7807
7808
7809/// \brief Check that this is a valid underlying type for an enum declaration.
7810bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7811  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7812  QualType T = TI->getType();
7813
7814  if (T->isDependentType() || T->isIntegralType(Context))
7815    return false;
7816
7817  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7818  return true;
7819}
7820
7821/// Check whether this is a valid redeclaration of a previous enumeration.
7822/// \return true if the redeclaration was invalid.
7823bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
7824                                  QualType EnumUnderlyingTy,
7825                                  const EnumDecl *Prev) {
7826  bool IsFixed = !EnumUnderlyingTy.isNull();
7827
7828  if (IsScoped != Prev->isScoped()) {
7829    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
7830      << Prev->isScoped();
7831    Diag(Prev->getLocation(), diag::note_previous_use);
7832    return true;
7833  }
7834
7835  if (IsFixed && Prev->isFixed()) {
7836    if (!EnumUnderlyingTy->isDependentType() &&
7837        !Prev->getIntegerType()->isDependentType() &&
7838        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
7839                                        Prev->getIntegerType())) {
7840      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
7841        << EnumUnderlyingTy << Prev->getIntegerType();
7842      Diag(Prev->getLocation(), diag::note_previous_use);
7843      return true;
7844    }
7845  } else if (IsFixed != Prev->isFixed()) {
7846    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
7847      << Prev->isFixed();
7848    Diag(Prev->getLocation(), diag::note_previous_use);
7849    return true;
7850  }
7851
7852  return false;
7853}
7854
7855/// \brief Determine whether a tag with a given kind is acceptable
7856/// as a redeclaration of the given tag declaration.
7857///
7858/// \returns true if the new tag kind is acceptable, false otherwise.
7859bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7860                                        TagTypeKind NewTag, bool isDefinition,
7861                                        SourceLocation NewTagLoc,
7862                                        const IdentifierInfo &Name) {
7863  // C++ [dcl.type.elab]p3:
7864  //   The class-key or enum keyword present in the
7865  //   elaborated-type-specifier shall agree in kind with the
7866  //   declaration to which the name in the elaborated-type-specifier
7867  //   refers. This rule also applies to the form of
7868  //   elaborated-type-specifier that declares a class-name or
7869  //   friend class since it can be construed as referring to the
7870  //   definition of the class. Thus, in any
7871  //   elaborated-type-specifier, the enum keyword shall be used to
7872  //   refer to an enumeration (7.2), the union class-key shall be
7873  //   used to refer to a union (clause 9), and either the class or
7874  //   struct class-key shall be used to refer to a class (clause 9)
7875  //   declared using the class or struct class-key.
7876  TagTypeKind OldTag = Previous->getTagKind();
7877  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7878    if (OldTag == NewTag)
7879      return true;
7880
7881  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7882      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7883    // Warn about the struct/class tag mismatch.
7884    bool isTemplate = false;
7885    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7886      isTemplate = Record->getDescribedClassTemplate();
7887
7888    if (!ActiveTemplateInstantiations.empty()) {
7889      // In a template instantiation, do not offer fix-its for tag mismatches
7890      // since they usually mess up the template instead of fixing the problem.
7891      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7892        << (NewTag == TTK_Class) << isTemplate << &Name;
7893      return true;
7894    }
7895
7896    if (isDefinition) {
7897      // On definitions, check previous tags and issue a fix-it for each
7898      // one that doesn't match the current tag.
7899      if (Previous->getDefinition()) {
7900        // Don't suggest fix-its for redefinitions.
7901        return true;
7902      }
7903
7904      bool previousMismatch = false;
7905      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7906           E(Previous->redecls_end()); I != E; ++I) {
7907        if (I->getTagKind() != NewTag) {
7908          if (!previousMismatch) {
7909            previousMismatch = true;
7910            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7911              << (NewTag == TTK_Class) << isTemplate << &Name;
7912          }
7913          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7914            << (NewTag == TTK_Class)
7915            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7916                                            NewTag == TTK_Class?
7917                                            "class" : "struct");
7918        }
7919      }
7920      return true;
7921    }
7922
7923    // Check for a previous definition.  If current tag and definition
7924    // are same type, do nothing.  If no definition, but disagree with
7925    // with previous tag type, give a warning, but no fix-it.
7926    const TagDecl *Redecl = Previous->getDefinition() ?
7927                            Previous->getDefinition() : Previous;
7928    if (Redecl->getTagKind() == NewTag) {
7929      return true;
7930    }
7931
7932    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7933      << (NewTag == TTK_Class)
7934      << isTemplate << &Name;
7935    Diag(Redecl->getLocation(), diag::note_previous_use);
7936
7937    // If there is a previous defintion, suggest a fix-it.
7938    if (Previous->getDefinition()) {
7939        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7940          << (Redecl->getTagKind() == TTK_Class)
7941          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7942                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7943    }
7944
7945    return true;
7946  }
7947  return false;
7948}
7949
7950/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7951/// former case, Name will be non-null.  In the later case, Name will be null.
7952/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7953/// reference/declaration/definition of a tag.
7954Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7955                     SourceLocation KWLoc, CXXScopeSpec &SS,
7956                     IdentifierInfo *Name, SourceLocation NameLoc,
7957                     AttributeList *Attr, AccessSpecifier AS,
7958                     SourceLocation ModulePrivateLoc,
7959                     MultiTemplateParamsArg TemplateParameterLists,
7960                     bool &OwnedDecl, bool &IsDependent,
7961                     SourceLocation ScopedEnumKWLoc,
7962                     bool ScopedEnumUsesClassTag,
7963                     TypeResult UnderlyingType) {
7964  // If this is not a definition, it must have a name.
7965  IdentifierInfo *OrigName = Name;
7966  assert((Name != 0 || TUK == TUK_Definition) &&
7967         "Nameless record must be a definition!");
7968  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7969
7970  OwnedDecl = false;
7971  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7972  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7973
7974  // FIXME: Check explicit specializations more carefully.
7975  bool isExplicitSpecialization = false;
7976  bool Invalid = false;
7977
7978  // We only need to do this matching if we have template parameters
7979  // or a scope specifier, which also conveniently avoids this work
7980  // for non-C++ cases.
7981  if (TemplateParameterLists.size() > 0 ||
7982      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7983    if (TemplateParameterList *TemplateParams
7984          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7985                                                TemplateParameterLists.get(),
7986                                                TemplateParameterLists.size(),
7987                                                    TUK == TUK_Friend,
7988                                                    isExplicitSpecialization,
7989                                                    Invalid)) {
7990      if (TemplateParams->size() > 0) {
7991        // This is a declaration or definition of a class template (which may
7992        // be a member of another template).
7993
7994        if (Invalid)
7995          return 0;
7996
7997        OwnedDecl = false;
7998        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7999                                               SS, Name, NameLoc, Attr,
8000                                               TemplateParams, AS,
8001                                               ModulePrivateLoc,
8002                                           TemplateParameterLists.size() - 1,
8003                 (TemplateParameterList**) TemplateParameterLists.release());
8004        return Result.get();
8005      } else {
8006        // The "template<>" header is extraneous.
8007        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8008          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8009        isExplicitSpecialization = true;
8010      }
8011    }
8012  }
8013
8014  // Figure out the underlying type if this a enum declaration. We need to do
8015  // this early, because it's needed to detect if this is an incompatible
8016  // redeclaration.
8017  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8018
8019  if (Kind == TTK_Enum) {
8020    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8021      // No underlying type explicitly specified, or we failed to parse the
8022      // type, default to int.
8023      EnumUnderlying = Context.IntTy.getTypePtr();
8024    else if (UnderlyingType.get()) {
8025      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8026      // integral type; any cv-qualification is ignored.
8027      TypeSourceInfo *TI = 0;
8028      GetTypeFromParser(UnderlyingType.get(), &TI);
8029      EnumUnderlying = TI;
8030
8031      if (CheckEnumUnderlyingType(TI))
8032        // Recover by falling back to int.
8033        EnumUnderlying = Context.IntTy.getTypePtr();
8034
8035      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8036                                          UPPC_FixedUnderlyingType))
8037        EnumUnderlying = Context.IntTy.getTypePtr();
8038
8039    } else if (getLangOpts().MicrosoftMode)
8040      // Microsoft enums are always of int type.
8041      EnumUnderlying = Context.IntTy.getTypePtr();
8042  }
8043
8044  DeclContext *SearchDC = CurContext;
8045  DeclContext *DC = CurContext;
8046  bool isStdBadAlloc = false;
8047
8048  RedeclarationKind Redecl = ForRedeclaration;
8049  if (TUK == TUK_Friend || TUK == TUK_Reference)
8050    Redecl = NotForRedeclaration;
8051
8052  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8053
8054  if (Name && SS.isNotEmpty()) {
8055    // We have a nested-name tag ('struct foo::bar').
8056
8057    // Check for invalid 'foo::'.
8058    if (SS.isInvalid()) {
8059      Name = 0;
8060      goto CreateNewDecl;
8061    }
8062
8063    // If this is a friend or a reference to a class in a dependent
8064    // context, don't try to make a decl for it.
8065    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8066      DC = computeDeclContext(SS, false);
8067      if (!DC) {
8068        IsDependent = true;
8069        return 0;
8070      }
8071    } else {
8072      DC = computeDeclContext(SS, true);
8073      if (!DC) {
8074        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8075          << SS.getRange();
8076        return 0;
8077      }
8078    }
8079
8080    if (RequireCompleteDeclContext(SS, DC))
8081      return 0;
8082
8083    SearchDC = DC;
8084    // Look-up name inside 'foo::'.
8085    LookupQualifiedName(Previous, DC);
8086
8087    if (Previous.isAmbiguous())
8088      return 0;
8089
8090    if (Previous.empty()) {
8091      // Name lookup did not find anything. However, if the
8092      // nested-name-specifier refers to the current instantiation,
8093      // and that current instantiation has any dependent base
8094      // classes, we might find something at instantiation time: treat
8095      // this as a dependent elaborated-type-specifier.
8096      // But this only makes any sense for reference-like lookups.
8097      if (Previous.wasNotFoundInCurrentInstantiation() &&
8098          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8099        IsDependent = true;
8100        return 0;
8101      }
8102
8103      // A tag 'foo::bar' must already exist.
8104      Diag(NameLoc, diag::err_not_tag_in_scope)
8105        << Kind << Name << DC << SS.getRange();
8106      Name = 0;
8107      Invalid = true;
8108      goto CreateNewDecl;
8109    }
8110  } else if (Name) {
8111    // If this is a named struct, check to see if there was a previous forward
8112    // declaration or definition.
8113    // FIXME: We're looking into outer scopes here, even when we
8114    // shouldn't be. Doing so can result in ambiguities that we
8115    // shouldn't be diagnosing.
8116    LookupName(Previous, S);
8117
8118    if (Previous.isAmbiguous() &&
8119        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8120      LookupResult::Filter F = Previous.makeFilter();
8121      while (F.hasNext()) {
8122        NamedDecl *ND = F.next();
8123        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8124          F.erase();
8125      }
8126      F.done();
8127    }
8128
8129    // Note:  there used to be some attempt at recovery here.
8130    if (Previous.isAmbiguous())
8131      return 0;
8132
8133    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8134      // FIXME: This makes sure that we ignore the contexts associated
8135      // with C structs, unions, and enums when looking for a matching
8136      // tag declaration or definition. See the similar lookup tweak
8137      // in Sema::LookupName; is there a better way to deal with this?
8138      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8139        SearchDC = SearchDC->getParent();
8140    }
8141  } else if (S->isFunctionPrototypeScope()) {
8142    // If this is an enum declaration in function prototype scope, set its
8143    // initial context to the translation unit.
8144    // FIXME: [citation needed]
8145    SearchDC = Context.getTranslationUnitDecl();
8146  }
8147
8148  if (Previous.isSingleResult() &&
8149      Previous.getFoundDecl()->isTemplateParameter()) {
8150    // Maybe we will complain about the shadowed template parameter.
8151    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8152    // Just pretend that we didn't see the previous declaration.
8153    Previous.clear();
8154  }
8155
8156  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8157      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8158    // This is a declaration of or a reference to "std::bad_alloc".
8159    isStdBadAlloc = true;
8160
8161    if (Previous.empty() && StdBadAlloc) {
8162      // std::bad_alloc has been implicitly declared (but made invisible to
8163      // name lookup). Fill in this implicit declaration as the previous
8164      // declaration, so that the declarations get chained appropriately.
8165      Previous.addDecl(getStdBadAlloc());
8166    }
8167  }
8168
8169  // If we didn't find a previous declaration, and this is a reference
8170  // (or friend reference), move to the correct scope.  In C++, we
8171  // also need to do a redeclaration lookup there, just in case
8172  // there's a shadow friend decl.
8173  if (Name && Previous.empty() &&
8174      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8175    if (Invalid) goto CreateNewDecl;
8176    assert(SS.isEmpty());
8177
8178    if (TUK == TUK_Reference) {
8179      // C++ [basic.scope.pdecl]p5:
8180      //   -- for an elaborated-type-specifier of the form
8181      //
8182      //          class-key identifier
8183      //
8184      //      if the elaborated-type-specifier is used in the
8185      //      decl-specifier-seq or parameter-declaration-clause of a
8186      //      function defined in namespace scope, the identifier is
8187      //      declared as a class-name in the namespace that contains
8188      //      the declaration; otherwise, except as a friend
8189      //      declaration, the identifier is declared in the smallest
8190      //      non-class, non-function-prototype scope that contains the
8191      //      declaration.
8192      //
8193      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8194      // C structs and unions.
8195      //
8196      // It is an error in C++ to declare (rather than define) an enum
8197      // type, including via an elaborated type specifier.  We'll
8198      // diagnose that later; for now, declare the enum in the same
8199      // scope as we would have picked for any other tag type.
8200      //
8201      // GNU C also supports this behavior as part of its incomplete
8202      // enum types extension, while GNU C++ does not.
8203      //
8204      // Find the context where we'll be declaring the tag.
8205      // FIXME: We would like to maintain the current DeclContext as the
8206      // lexical context,
8207      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8208        SearchDC = SearchDC->getParent();
8209
8210      // Find the scope where we'll be declaring the tag.
8211      while (S->isClassScope() ||
8212             (getLangOpts().CPlusPlus &&
8213              S->isFunctionPrototypeScope()) ||
8214             ((S->getFlags() & Scope::DeclScope) == 0) ||
8215             (S->getEntity() &&
8216              ((DeclContext *)S->getEntity())->isTransparentContext()))
8217        S = S->getParent();
8218    } else {
8219      assert(TUK == TUK_Friend);
8220      // C++ [namespace.memdef]p3:
8221      //   If a friend declaration in a non-local class first declares a
8222      //   class or function, the friend class or function is a member of
8223      //   the innermost enclosing namespace.
8224      SearchDC = SearchDC->getEnclosingNamespaceContext();
8225    }
8226
8227    // In C++, we need to do a redeclaration lookup to properly
8228    // diagnose some problems.
8229    if (getLangOpts().CPlusPlus) {
8230      Previous.setRedeclarationKind(ForRedeclaration);
8231      LookupQualifiedName(Previous, SearchDC);
8232    }
8233  }
8234
8235  if (!Previous.empty()) {
8236    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8237
8238    // It's okay to have a tag decl in the same scope as a typedef
8239    // which hides a tag decl in the same scope.  Finding this
8240    // insanity with a redeclaration lookup can only actually happen
8241    // in C++.
8242    //
8243    // This is also okay for elaborated-type-specifiers, which is
8244    // technically forbidden by the current standard but which is
8245    // okay according to the likely resolution of an open issue;
8246    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8247    if (getLangOpts().CPlusPlus) {
8248      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8249        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8250          TagDecl *Tag = TT->getDecl();
8251          if (Tag->getDeclName() == Name &&
8252              Tag->getDeclContext()->getRedeclContext()
8253                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8254            PrevDecl = Tag;
8255            Previous.clear();
8256            Previous.addDecl(Tag);
8257            Previous.resolveKind();
8258          }
8259        }
8260      }
8261    }
8262
8263    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8264      // If this is a use of a previous tag, or if the tag is already declared
8265      // in the same scope (so that the definition/declaration completes or
8266      // rementions the tag), reuse the decl.
8267      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8268          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8269        // Make sure that this wasn't declared as an enum and now used as a
8270        // struct or something similar.
8271        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8272                                          TUK == TUK_Definition, KWLoc,
8273                                          *Name)) {
8274          bool SafeToContinue
8275            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8276               Kind != TTK_Enum);
8277          if (SafeToContinue)
8278            Diag(KWLoc, diag::err_use_with_wrong_tag)
8279              << Name
8280              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8281                                              PrevTagDecl->getKindName());
8282          else
8283            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8284          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8285
8286          if (SafeToContinue)
8287            Kind = PrevTagDecl->getTagKind();
8288          else {
8289            // Recover by making this an anonymous redefinition.
8290            Name = 0;
8291            Previous.clear();
8292            Invalid = true;
8293          }
8294        }
8295
8296        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8297          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8298
8299          // If this is an elaborated-type-specifier for a scoped enumeration,
8300          // the 'class' keyword is not necessary and not permitted.
8301          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8302            if (ScopedEnum)
8303              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8304                << PrevEnum->isScoped()
8305                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8306            return PrevTagDecl;
8307          }
8308
8309          QualType EnumUnderlyingTy;
8310          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8311            EnumUnderlyingTy = TI->getType();
8312          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8313            EnumUnderlyingTy = QualType(T, 0);
8314
8315          // All conflicts with previous declarations are recovered by
8316          // returning the previous declaration, unless this is a definition,
8317          // in which case we want the caller to bail out.
8318          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8319                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8320            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8321        }
8322
8323        if (!Invalid) {
8324          // If this is a use, just return the declaration we found.
8325
8326          // FIXME: In the future, return a variant or some other clue
8327          // for the consumer of this Decl to know it doesn't own it.
8328          // For our current ASTs this shouldn't be a problem, but will
8329          // need to be changed with DeclGroups.
8330          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8331               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8332            return PrevTagDecl;
8333
8334          // Diagnose attempts to redefine a tag.
8335          if (TUK == TUK_Definition) {
8336            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8337              // If we're defining a specialization and the previous definition
8338              // is from an implicit instantiation, don't emit an error
8339              // here; we'll catch this in the general case below.
8340              bool IsExplicitSpecializationAfterInstantiation = false;
8341              if (isExplicitSpecialization) {
8342                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8343                  IsExplicitSpecializationAfterInstantiation =
8344                    RD->getTemplateSpecializationKind() !=
8345                    TSK_ExplicitSpecialization;
8346                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8347                  IsExplicitSpecializationAfterInstantiation =
8348                    ED->getTemplateSpecializationKind() !=
8349                    TSK_ExplicitSpecialization;
8350              }
8351
8352              if (!IsExplicitSpecializationAfterInstantiation) {
8353                // A redeclaration in function prototype scope in C isn't
8354                // visible elsewhere, so merely issue a warning.
8355                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8356                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8357                else
8358                  Diag(NameLoc, diag::err_redefinition) << Name;
8359                Diag(Def->getLocation(), diag::note_previous_definition);
8360                // If this is a redefinition, recover by making this
8361                // struct be anonymous, which will make any later
8362                // references get the previous definition.
8363                Name = 0;
8364                Previous.clear();
8365                Invalid = true;
8366              }
8367            } else {
8368              // If the type is currently being defined, complain
8369              // about a nested redefinition.
8370              const TagType *Tag
8371                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8372              if (Tag->isBeingDefined()) {
8373                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8374                Diag(PrevTagDecl->getLocation(),
8375                     diag::note_previous_definition);
8376                Name = 0;
8377                Previous.clear();
8378                Invalid = true;
8379              }
8380            }
8381
8382            // Okay, this is definition of a previously declared or referenced
8383            // tag PrevDecl. We're going to create a new Decl for it.
8384          }
8385        }
8386        // If we get here we have (another) forward declaration or we
8387        // have a definition.  Just create a new decl.
8388
8389      } else {
8390        // If we get here, this is a definition of a new tag type in a nested
8391        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8392        // new decl/type.  We set PrevDecl to NULL so that the entities
8393        // have distinct types.
8394        Previous.clear();
8395      }
8396      // If we get here, we're going to create a new Decl. If PrevDecl
8397      // is non-NULL, it's a definition of the tag declared by
8398      // PrevDecl. If it's NULL, we have a new definition.
8399
8400
8401    // Otherwise, PrevDecl is not a tag, but was found with tag
8402    // lookup.  This is only actually possible in C++, where a few
8403    // things like templates still live in the tag namespace.
8404    } else {
8405      // Use a better diagnostic if an elaborated-type-specifier
8406      // found the wrong kind of type on the first
8407      // (non-redeclaration) lookup.
8408      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8409          !Previous.isForRedeclaration()) {
8410        unsigned Kind = 0;
8411        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8412        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8413        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8414        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8415        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8416        Invalid = true;
8417
8418      // Otherwise, only diagnose if the declaration is in scope.
8419      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8420                                isExplicitSpecialization)) {
8421        // do nothing
8422
8423      // Diagnose implicit declarations introduced by elaborated types.
8424      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8425        unsigned Kind = 0;
8426        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8427        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8428        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8429        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8430        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8431        Invalid = true;
8432
8433      // Otherwise it's a declaration.  Call out a particularly common
8434      // case here.
8435      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8436        unsigned Kind = 0;
8437        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8438        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8439          << Name << Kind << TND->getUnderlyingType();
8440        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8441        Invalid = true;
8442
8443      // Otherwise, diagnose.
8444      } else {
8445        // The tag name clashes with something else in the target scope,
8446        // issue an error and recover by making this tag be anonymous.
8447        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8448        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8449        Name = 0;
8450        Invalid = true;
8451      }
8452
8453      // The existing declaration isn't relevant to us; we're in a
8454      // new scope, so clear out the previous declaration.
8455      Previous.clear();
8456    }
8457  }
8458
8459CreateNewDecl:
8460
8461  TagDecl *PrevDecl = 0;
8462  if (Previous.isSingleResult())
8463    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8464
8465  // If there is an identifier, use the location of the identifier as the
8466  // location of the decl, otherwise use the location of the struct/union
8467  // keyword.
8468  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8469
8470  // Otherwise, create a new declaration. If there is a previous
8471  // declaration of the same entity, the two will be linked via
8472  // PrevDecl.
8473  TagDecl *New;
8474
8475  bool IsForwardReference = false;
8476  if (Kind == TTK_Enum) {
8477    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8478    // enum X { A, B, C } D;    D should chain to X.
8479    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8480                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8481                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8482    // If this is an undefined enum, warn.
8483    if (TUK != TUK_Definition && !Invalid) {
8484      TagDecl *Def;
8485      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8486        // C++0x: 7.2p2: opaque-enum-declaration.
8487        // Conflicts are diagnosed above. Do nothing.
8488      }
8489      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8490        Diag(Loc, diag::ext_forward_ref_enum_def)
8491          << New;
8492        Diag(Def->getLocation(), diag::note_previous_definition);
8493      } else {
8494        unsigned DiagID = diag::ext_forward_ref_enum;
8495        if (getLangOpts().MicrosoftMode)
8496          DiagID = diag::ext_ms_forward_ref_enum;
8497        else if (getLangOpts().CPlusPlus)
8498          DiagID = diag::err_forward_ref_enum;
8499        Diag(Loc, DiagID);
8500
8501        // If this is a forward-declared reference to an enumeration, make a
8502        // note of it; we won't actually be introducing the declaration into
8503        // the declaration context.
8504        if (TUK == TUK_Reference)
8505          IsForwardReference = true;
8506      }
8507    }
8508
8509    if (EnumUnderlying) {
8510      EnumDecl *ED = cast<EnumDecl>(New);
8511      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8512        ED->setIntegerTypeSourceInfo(TI);
8513      else
8514        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8515      ED->setPromotionType(ED->getIntegerType());
8516    }
8517
8518  } else {
8519    // struct/union/class
8520
8521    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8522    // struct X { int A; } D;    D should chain to X.
8523    if (getLangOpts().CPlusPlus) {
8524      // FIXME: Look for a way to use RecordDecl for simple structs.
8525      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8526                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8527
8528      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8529        StdBadAlloc = cast<CXXRecordDecl>(New);
8530    } else
8531      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8532                               cast_or_null<RecordDecl>(PrevDecl));
8533  }
8534
8535  // Maybe add qualifier info.
8536  if (SS.isNotEmpty()) {
8537    if (SS.isSet()) {
8538      // If this is either a declaration or a definition, check the
8539      // nested-name-specifier against the current context. We don't do this
8540      // for explicit specializations, because they have similar checking
8541      // (with more specific diagnostics) in the call to
8542      // CheckMemberSpecialization, below.
8543      if (!isExplicitSpecialization &&
8544          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8545          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8546        Invalid = true;
8547
8548      New->setQualifierInfo(SS.getWithLocInContext(Context));
8549      if (TemplateParameterLists.size() > 0) {
8550        New->setTemplateParameterListsInfo(Context,
8551                                           TemplateParameterLists.size(),
8552                    (TemplateParameterList**) TemplateParameterLists.release());
8553      }
8554    }
8555    else
8556      Invalid = true;
8557  }
8558
8559  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8560    // Add alignment attributes if necessary; these attributes are checked when
8561    // the ASTContext lays out the structure.
8562    //
8563    // It is important for implementing the correct semantics that this
8564    // happen here (in act on tag decl). The #pragma pack stack is
8565    // maintained as a result of parser callbacks which can occur at
8566    // many points during the parsing of a struct declaration (because
8567    // the #pragma tokens are effectively skipped over during the
8568    // parsing of the struct).
8569    AddAlignmentAttributesForRecord(RD);
8570
8571    AddMsStructLayoutForRecord(RD);
8572  }
8573
8574  if (ModulePrivateLoc.isValid()) {
8575    if (isExplicitSpecialization)
8576      Diag(New->getLocation(), diag::err_module_private_specialization)
8577        << 2
8578        << FixItHint::CreateRemoval(ModulePrivateLoc);
8579    // __module_private__ does not apply to local classes. However, we only
8580    // diagnose this as an error when the declaration specifiers are
8581    // freestanding. Here, we just ignore the __module_private__.
8582    else if (!SearchDC->isFunctionOrMethod())
8583      New->setModulePrivate();
8584  }
8585
8586  // If this is a specialization of a member class (of a class template),
8587  // check the specialization.
8588  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8589    Invalid = true;
8590
8591  if (Invalid)
8592    New->setInvalidDecl();
8593
8594  if (Attr)
8595    ProcessDeclAttributeList(S, New, Attr);
8596
8597  // If we're declaring or defining a tag in function prototype scope
8598  // in C, note that this type can only be used within the function.
8599  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8600    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8601
8602  // Set the lexical context. If the tag has a C++ scope specifier, the
8603  // lexical context will be different from the semantic context.
8604  New->setLexicalDeclContext(CurContext);
8605
8606  // Mark this as a friend decl if applicable.
8607  // In Microsoft mode, a friend declaration also acts as a forward
8608  // declaration so we always pass true to setObjectOfFriendDecl to make
8609  // the tag name visible.
8610  if (TUK == TUK_Friend)
8611    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8612                               getLangOpts().MicrosoftExt);
8613
8614  // Set the access specifier.
8615  if (!Invalid && SearchDC->isRecord())
8616    SetMemberAccessSpecifier(New, PrevDecl, AS);
8617
8618  if (TUK == TUK_Definition)
8619    New->startDefinition();
8620
8621  // If this has an identifier, add it to the scope stack.
8622  if (TUK == TUK_Friend) {
8623    // We might be replacing an existing declaration in the lookup tables;
8624    // if so, borrow its access specifier.
8625    if (PrevDecl)
8626      New->setAccess(PrevDecl->getAccess());
8627
8628    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8629    DC->makeDeclVisibleInContext(New);
8630    if (Name) // can be null along some error paths
8631      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8632        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8633  } else if (Name) {
8634    S = getNonFieldDeclScope(S);
8635    PushOnScopeChains(New, S, !IsForwardReference);
8636    if (IsForwardReference)
8637      SearchDC->makeDeclVisibleInContext(New);
8638
8639  } else {
8640    CurContext->addDecl(New);
8641  }
8642
8643  // If this is the C FILE type, notify the AST context.
8644  if (IdentifierInfo *II = New->getIdentifier())
8645    if (!New->isInvalidDecl() &&
8646        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8647        II->isStr("FILE"))
8648      Context.setFILEDecl(New);
8649
8650  // If we were in function prototype scope (and not in C++ mode), add this
8651  // tag to the list of decls to inject into the function definition scope.
8652  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8653      InFunctionDeclarator && Name)
8654    DeclsInPrototypeScope.push_back(New);
8655
8656  OwnedDecl = true;
8657  return New;
8658}
8659
8660void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8661  AdjustDeclIfTemplate(TagD);
8662  TagDecl *Tag = cast<TagDecl>(TagD);
8663
8664  // Enter the tag context.
8665  PushDeclContext(S, Tag);
8666}
8667
8668Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8669  assert(isa<ObjCContainerDecl>(IDecl) &&
8670         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8671  DeclContext *OCD = cast<DeclContext>(IDecl);
8672  assert(getContainingDC(OCD) == CurContext &&
8673      "The next DeclContext should be lexically contained in the current one.");
8674  CurContext = OCD;
8675  return IDecl;
8676}
8677
8678void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8679                                           SourceLocation FinalLoc,
8680                                           SourceLocation LBraceLoc) {
8681  AdjustDeclIfTemplate(TagD);
8682  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8683
8684  FieldCollector->StartClass();
8685
8686  if (!Record->getIdentifier())
8687    return;
8688
8689  if (FinalLoc.isValid())
8690    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8691
8692  // C++ [class]p2:
8693  //   [...] The class-name is also inserted into the scope of the
8694  //   class itself; this is known as the injected-class-name. For
8695  //   purposes of access checking, the injected-class-name is treated
8696  //   as if it were a public member name.
8697  CXXRecordDecl *InjectedClassName
8698    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8699                            Record->getLocStart(), Record->getLocation(),
8700                            Record->getIdentifier(),
8701                            /*PrevDecl=*/0,
8702                            /*DelayTypeCreation=*/true);
8703  Context.getTypeDeclType(InjectedClassName, Record);
8704  InjectedClassName->setImplicit();
8705  InjectedClassName->setAccess(AS_public);
8706  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8707      InjectedClassName->setDescribedClassTemplate(Template);
8708  PushOnScopeChains(InjectedClassName, S);
8709  assert(InjectedClassName->isInjectedClassName() &&
8710         "Broken injected-class-name");
8711}
8712
8713void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8714                                    SourceLocation RBraceLoc) {
8715  AdjustDeclIfTemplate(TagD);
8716  TagDecl *Tag = cast<TagDecl>(TagD);
8717  Tag->setRBraceLoc(RBraceLoc);
8718
8719  // Make sure we "complete" the definition even it is invalid.
8720  if (Tag->isBeingDefined()) {
8721    assert(Tag->isInvalidDecl() && "We should already have completed it");
8722    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8723      RD->completeDefinition();
8724  }
8725
8726  if (isa<CXXRecordDecl>(Tag))
8727    FieldCollector->FinishClass();
8728
8729  // Exit this scope of this tag's definition.
8730  PopDeclContext();
8731
8732  // Notify the consumer that we've defined a tag.
8733  Consumer.HandleTagDeclDefinition(Tag);
8734}
8735
8736void Sema::ActOnObjCContainerFinishDefinition() {
8737  // Exit this scope of this interface definition.
8738  PopDeclContext();
8739}
8740
8741void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8742  assert(DC == CurContext && "Mismatch of container contexts");
8743  OriginalLexicalContext = DC;
8744  ActOnObjCContainerFinishDefinition();
8745}
8746
8747void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8748  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8749  OriginalLexicalContext = 0;
8750}
8751
8752void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8753  AdjustDeclIfTemplate(TagD);
8754  TagDecl *Tag = cast<TagDecl>(TagD);
8755  Tag->setInvalidDecl();
8756
8757  // Make sure we "complete" the definition even it is invalid.
8758  if (Tag->isBeingDefined()) {
8759    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8760      RD->completeDefinition();
8761  }
8762
8763  // We're undoing ActOnTagStartDefinition here, not
8764  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8765  // the FieldCollector.
8766
8767  PopDeclContext();
8768}
8769
8770// Note that FieldName may be null for anonymous bitfields.
8771ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8772                                IdentifierInfo *FieldName,
8773                                QualType FieldTy, Expr *BitWidth,
8774                                bool *ZeroWidth) {
8775  // Default to true; that shouldn't confuse checks for emptiness
8776  if (ZeroWidth)
8777    *ZeroWidth = true;
8778
8779  // C99 6.7.2.1p4 - verify the field type.
8780  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8781  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8782    // Handle incomplete types with specific error.
8783    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8784      return ExprError();
8785    if (FieldName)
8786      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8787        << FieldName << FieldTy << BitWidth->getSourceRange();
8788    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8789      << FieldTy << BitWidth->getSourceRange();
8790  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8791                                             UPPC_BitFieldWidth))
8792    return ExprError();
8793
8794  // If the bit-width is type- or value-dependent, don't try to check
8795  // it now.
8796  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8797    return Owned(BitWidth);
8798
8799  llvm::APSInt Value;
8800  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8801  if (ICE.isInvalid())
8802    return ICE;
8803  BitWidth = ICE.take();
8804
8805  if (Value != 0 && ZeroWidth)
8806    *ZeroWidth = false;
8807
8808  // Zero-width bitfield is ok for anonymous field.
8809  if (Value == 0 && FieldName)
8810    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8811
8812  if (Value.isSigned() && Value.isNegative()) {
8813    if (FieldName)
8814      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8815               << FieldName << Value.toString(10);
8816    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8817      << Value.toString(10);
8818  }
8819
8820  if (!FieldTy->isDependentType()) {
8821    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8822    if (Value.getZExtValue() > TypeSize) {
8823      if (!getLangOpts().CPlusPlus) {
8824        if (FieldName)
8825          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8826            << FieldName << (unsigned)Value.getZExtValue()
8827            << (unsigned)TypeSize;
8828
8829        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8830          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8831      }
8832
8833      if (FieldName)
8834        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8835          << FieldName << (unsigned)Value.getZExtValue()
8836          << (unsigned)TypeSize;
8837      else
8838        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8839          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8840    }
8841  }
8842
8843  return Owned(BitWidth);
8844}
8845
8846/// ActOnField - Each field of a C struct/union is passed into this in order
8847/// to create a FieldDecl object for it.
8848Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8849                       Declarator &D, Expr *BitfieldWidth) {
8850  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8851                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8852                               /*HasInit=*/false, AS_public);
8853  return Res;
8854}
8855
8856/// HandleField - Analyze a field of a C struct or a C++ data member.
8857///
8858FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8859                             SourceLocation DeclStart,
8860                             Declarator &D, Expr *BitWidth, bool HasInit,
8861                             AccessSpecifier AS) {
8862  IdentifierInfo *II = D.getIdentifier();
8863  SourceLocation Loc = DeclStart;
8864  if (II) Loc = D.getIdentifierLoc();
8865
8866  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8867  QualType T = TInfo->getType();
8868  if (getLangOpts().CPlusPlus) {
8869    CheckExtraCXXDefaultArguments(D);
8870
8871    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8872                                        UPPC_DataMemberType)) {
8873      D.setInvalidType();
8874      T = Context.IntTy;
8875      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8876    }
8877  }
8878
8879  DiagnoseFunctionSpecifiers(D);
8880
8881  if (D.getDeclSpec().isThreadSpecified())
8882    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8883  if (D.getDeclSpec().isConstexprSpecified())
8884    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8885      << 2;
8886
8887  // Check to see if this name was declared as a member previously
8888  NamedDecl *PrevDecl = 0;
8889  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8890  LookupName(Previous, S);
8891  switch (Previous.getResultKind()) {
8892    case LookupResult::Found:
8893    case LookupResult::FoundUnresolvedValue:
8894      PrevDecl = Previous.getAsSingle<NamedDecl>();
8895      break;
8896
8897    case LookupResult::FoundOverloaded:
8898      PrevDecl = Previous.getRepresentativeDecl();
8899      break;
8900
8901    case LookupResult::NotFound:
8902    case LookupResult::NotFoundInCurrentInstantiation:
8903    case LookupResult::Ambiguous:
8904      break;
8905  }
8906  Previous.suppressDiagnostics();
8907
8908  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8909    // Maybe we will complain about the shadowed template parameter.
8910    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8911    // Just pretend that we didn't see the previous declaration.
8912    PrevDecl = 0;
8913  }
8914
8915  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8916    PrevDecl = 0;
8917
8918  bool Mutable
8919    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8920  SourceLocation TSSL = D.getLocStart();
8921  FieldDecl *NewFD
8922    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8923                     TSSL, AS, PrevDecl, &D);
8924
8925  if (NewFD->isInvalidDecl())
8926    Record->setInvalidDecl();
8927
8928  if (D.getDeclSpec().isModulePrivateSpecified())
8929    NewFD->setModulePrivate();
8930
8931  if (NewFD->isInvalidDecl() && PrevDecl) {
8932    // Don't introduce NewFD into scope; there's already something
8933    // with the same name in the same scope.
8934  } else if (II) {
8935    PushOnScopeChains(NewFD, S);
8936  } else
8937    Record->addDecl(NewFD);
8938
8939  return NewFD;
8940}
8941
8942/// \brief Build a new FieldDecl and check its well-formedness.
8943///
8944/// This routine builds a new FieldDecl given the fields name, type,
8945/// record, etc. \p PrevDecl should refer to any previous declaration
8946/// with the same name and in the same scope as the field to be
8947/// created.
8948///
8949/// \returns a new FieldDecl.
8950///
8951/// \todo The Declarator argument is a hack. It will be removed once
8952FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8953                                TypeSourceInfo *TInfo,
8954                                RecordDecl *Record, SourceLocation Loc,
8955                                bool Mutable, Expr *BitWidth, bool HasInit,
8956                                SourceLocation TSSL,
8957                                AccessSpecifier AS, NamedDecl *PrevDecl,
8958                                Declarator *D) {
8959  IdentifierInfo *II = Name.getAsIdentifierInfo();
8960  bool InvalidDecl = false;
8961  if (D) InvalidDecl = D->isInvalidType();
8962
8963  // If we receive a broken type, recover by assuming 'int' and
8964  // marking this declaration as invalid.
8965  if (T.isNull()) {
8966    InvalidDecl = true;
8967    T = Context.IntTy;
8968  }
8969
8970  QualType EltTy = Context.getBaseElementType(T);
8971  if (!EltTy->isDependentType()) {
8972    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8973      // Fields of incomplete type force their record to be invalid.
8974      Record->setInvalidDecl();
8975      InvalidDecl = true;
8976    } else {
8977      NamedDecl *Def;
8978      EltTy->isIncompleteType(&Def);
8979      if (Def && Def->isInvalidDecl()) {
8980        Record->setInvalidDecl();
8981        InvalidDecl = true;
8982      }
8983    }
8984  }
8985
8986  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8987  // than a variably modified type.
8988  if (!InvalidDecl && T->isVariablyModifiedType()) {
8989    bool SizeIsNegative;
8990    llvm::APSInt Oversized;
8991    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8992                                                           SizeIsNegative,
8993                                                           Oversized);
8994    if (!FixedTy.isNull()) {
8995      Diag(Loc, diag::warn_illegal_constant_array_size);
8996      T = FixedTy;
8997    } else {
8998      if (SizeIsNegative)
8999        Diag(Loc, diag::err_typecheck_negative_array_size);
9000      else if (Oversized.getBoolValue())
9001        Diag(Loc, diag::err_array_too_large)
9002          << Oversized.toString(10);
9003      else
9004        Diag(Loc, diag::err_typecheck_field_variable_size);
9005      InvalidDecl = true;
9006    }
9007  }
9008
9009  // Fields can not have abstract class types
9010  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9011                                             diag::err_abstract_type_in_decl,
9012                                             AbstractFieldType))
9013    InvalidDecl = true;
9014
9015  bool ZeroWidth = false;
9016  // If this is declared as a bit-field, check the bit-field.
9017  if (!InvalidDecl && BitWidth) {
9018    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9019    if (!BitWidth) {
9020      InvalidDecl = true;
9021      BitWidth = 0;
9022      ZeroWidth = false;
9023    }
9024  }
9025
9026  // Check that 'mutable' is consistent with the type of the declaration.
9027  if (!InvalidDecl && Mutable) {
9028    unsigned DiagID = 0;
9029    if (T->isReferenceType())
9030      DiagID = diag::err_mutable_reference;
9031    else if (T.isConstQualified())
9032      DiagID = diag::err_mutable_const;
9033
9034    if (DiagID) {
9035      SourceLocation ErrLoc = Loc;
9036      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9037        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9038      Diag(ErrLoc, DiagID);
9039      Mutable = false;
9040      InvalidDecl = true;
9041    }
9042  }
9043
9044  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9045                                       BitWidth, Mutable, HasInit);
9046  if (InvalidDecl)
9047    NewFD->setInvalidDecl();
9048
9049  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9050    Diag(Loc, diag::err_duplicate_member) << II;
9051    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9052    NewFD->setInvalidDecl();
9053  }
9054
9055  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9056    if (Record->isUnion()) {
9057      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9058        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9059        if (RDecl->getDefinition()) {
9060          // C++ [class.union]p1: An object of a class with a non-trivial
9061          // constructor, a non-trivial copy constructor, a non-trivial
9062          // destructor, or a non-trivial copy assignment operator
9063          // cannot be a member of a union, nor can an array of such
9064          // objects.
9065          if (CheckNontrivialField(NewFD))
9066            NewFD->setInvalidDecl();
9067        }
9068      }
9069
9070      // C++ [class.union]p1: If a union contains a member of reference type,
9071      // the program is ill-formed.
9072      if (EltTy->isReferenceType()) {
9073        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9074          << NewFD->getDeclName() << EltTy;
9075        NewFD->setInvalidDecl();
9076      }
9077    }
9078  }
9079
9080  // FIXME: We need to pass in the attributes given an AST
9081  // representation, not a parser representation.
9082  if (D)
9083    // FIXME: What to pass instead of TUScope?
9084    ProcessDeclAttributes(TUScope, NewFD, *D);
9085
9086  // In auto-retain/release, infer strong retension for fields of
9087  // retainable type.
9088  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9089    NewFD->setInvalidDecl();
9090
9091  if (T.isObjCGCWeak())
9092    Diag(Loc, diag::warn_attribute_weak_on_field);
9093
9094  NewFD->setAccess(AS);
9095  return NewFD;
9096}
9097
9098bool Sema::CheckNontrivialField(FieldDecl *FD) {
9099  assert(FD);
9100  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9101
9102  if (FD->isInvalidDecl())
9103    return true;
9104
9105  QualType EltTy = Context.getBaseElementType(FD->getType());
9106  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9107    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9108    if (RDecl->getDefinition()) {
9109      // We check for copy constructors before constructors
9110      // because otherwise we'll never get complaints about
9111      // copy constructors.
9112
9113      CXXSpecialMember member = CXXInvalid;
9114      if (!RDecl->hasTrivialCopyConstructor())
9115        member = CXXCopyConstructor;
9116      else if (!RDecl->hasTrivialDefaultConstructor())
9117        member = CXXDefaultConstructor;
9118      else if (!RDecl->hasTrivialCopyAssignment())
9119        member = CXXCopyAssignment;
9120      else if (!RDecl->hasTrivialDestructor())
9121        member = CXXDestructor;
9122
9123      if (member != CXXInvalid) {
9124        if (!getLangOpts().CPlusPlus0x &&
9125            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9126          // Objective-C++ ARC: it is an error to have a non-trivial field of
9127          // a union. However, system headers in Objective-C programs
9128          // occasionally have Objective-C lifetime objects within unions,
9129          // and rather than cause the program to fail, we make those
9130          // members unavailable.
9131          SourceLocation Loc = FD->getLocation();
9132          if (getSourceManager().isInSystemHeader(Loc)) {
9133            if (!FD->hasAttr<UnavailableAttr>())
9134              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9135                                  "this system field has retaining ownership"));
9136            return false;
9137          }
9138        }
9139
9140        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9141               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9142               diag::err_illegal_union_or_anon_struct_member)
9143          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9144        DiagnoseNontrivial(RT, member);
9145        return !getLangOpts().CPlusPlus0x;
9146      }
9147    }
9148  }
9149
9150  return false;
9151}
9152
9153/// If the given constructor is user-provided, produce a diagnostic explaining
9154/// that it makes the class non-trivial.
9155static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9156                                               CXXConstructorDecl *CD,
9157                                               Sema::CXXSpecialMember CSM) {
9158  if (!CD->isUserProvided())
9159    return false;
9160
9161  SourceLocation CtorLoc = CD->getLocation();
9162  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9163  return true;
9164}
9165
9166/// DiagnoseNontrivial - Given that a class has a non-trivial
9167/// special member, figure out why.
9168void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9169  QualType QT(T, 0U);
9170  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9171
9172  // Check whether the member was user-declared.
9173  switch (member) {
9174  case CXXInvalid:
9175    break;
9176
9177  case CXXDefaultConstructor:
9178    if (RD->hasUserDeclaredConstructor()) {
9179      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9180      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9181        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9182          return;
9183
9184      // No user-provided constructors; look for constructor templates.
9185      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9186          tmpl_iter;
9187      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9188           TI != TE; ++TI) {
9189        CXXConstructorDecl *CD =
9190            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9191        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9192          return;
9193      }
9194    }
9195    break;
9196
9197  case CXXCopyConstructor:
9198    if (RD->hasUserDeclaredCopyConstructor()) {
9199      SourceLocation CtorLoc =
9200        RD->getCopyConstructor(0)->getLocation();
9201      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9202      return;
9203    }
9204    break;
9205
9206  case CXXMoveConstructor:
9207    if (RD->hasUserDeclaredMoveConstructor()) {
9208      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9209      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9210      return;
9211    }
9212    break;
9213
9214  case CXXCopyAssignment:
9215    if (RD->hasUserDeclaredCopyAssignment()) {
9216      // FIXME: this should use the location of the copy
9217      // assignment, not the type.
9218      SourceLocation TyLoc = RD->getLocStart();
9219      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9220      return;
9221    }
9222    break;
9223
9224  case CXXMoveAssignment:
9225    if (RD->hasUserDeclaredMoveAssignment()) {
9226      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9227      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9228      return;
9229    }
9230    break;
9231
9232  case CXXDestructor:
9233    if (RD->hasUserDeclaredDestructor()) {
9234      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9235      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9236      return;
9237    }
9238    break;
9239  }
9240
9241  typedef CXXRecordDecl::base_class_iterator base_iter;
9242
9243  // Virtual bases and members inhibit trivial copying/construction,
9244  // but not trivial destruction.
9245  if (member != CXXDestructor) {
9246    // Check for virtual bases.  vbases includes indirect virtual bases,
9247    // so we just iterate through the direct bases.
9248    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9249      if (bi->isVirtual()) {
9250        SourceLocation BaseLoc = bi->getLocStart();
9251        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9252        return;
9253      }
9254
9255    // Check for virtual methods.
9256    typedef CXXRecordDecl::method_iterator meth_iter;
9257    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9258         ++mi) {
9259      if (mi->isVirtual()) {
9260        SourceLocation MLoc = mi->getLocStart();
9261        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9262        return;
9263      }
9264    }
9265  }
9266
9267  bool (CXXRecordDecl::*hasTrivial)() const;
9268  switch (member) {
9269  case CXXDefaultConstructor:
9270    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9271  case CXXCopyConstructor:
9272    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9273  case CXXCopyAssignment:
9274    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9275  case CXXDestructor:
9276    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9277  default:
9278    llvm_unreachable("unexpected special member");
9279  }
9280
9281  // Check for nontrivial bases (and recurse).
9282  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9283    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9284    assert(BaseRT && "Don't know how to handle dependent bases");
9285    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9286    if (!(BaseRecTy->*hasTrivial)()) {
9287      SourceLocation BaseLoc = bi->getLocStart();
9288      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9289      DiagnoseNontrivial(BaseRT, member);
9290      return;
9291    }
9292  }
9293
9294  // Check for nontrivial members (and recurse).
9295  typedef RecordDecl::field_iterator field_iter;
9296  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9297       ++fi) {
9298    QualType EltTy = Context.getBaseElementType((*fi)->getType());
9299    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9300      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9301
9302      if (!(EltRD->*hasTrivial)()) {
9303        SourceLocation FLoc = (*fi)->getLocation();
9304        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9305        DiagnoseNontrivial(EltRT, member);
9306        return;
9307      }
9308    }
9309
9310    if (EltTy->isObjCLifetimeType()) {
9311      switch (EltTy.getObjCLifetime()) {
9312      case Qualifiers::OCL_None:
9313      case Qualifiers::OCL_ExplicitNone:
9314        break;
9315
9316      case Qualifiers::OCL_Autoreleasing:
9317      case Qualifiers::OCL_Weak:
9318      case Qualifiers::OCL_Strong:
9319        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9320          << QT << EltTy.getObjCLifetime();
9321        return;
9322      }
9323    }
9324  }
9325
9326  llvm_unreachable("found no explanation for non-trivial member");
9327}
9328
9329/// TranslateIvarVisibility - Translate visibility from a token ID to an
9330///  AST enum value.
9331static ObjCIvarDecl::AccessControl
9332TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9333  switch (ivarVisibility) {
9334  default: llvm_unreachable("Unknown visitibility kind");
9335  case tok::objc_private: return ObjCIvarDecl::Private;
9336  case tok::objc_public: return ObjCIvarDecl::Public;
9337  case tok::objc_protected: return ObjCIvarDecl::Protected;
9338  case tok::objc_package: return ObjCIvarDecl::Package;
9339  }
9340}
9341
9342/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9343/// in order to create an IvarDecl object for it.
9344Decl *Sema::ActOnIvar(Scope *S,
9345                                SourceLocation DeclStart,
9346                                Declarator &D, Expr *BitfieldWidth,
9347                                tok::ObjCKeywordKind Visibility) {
9348
9349  IdentifierInfo *II = D.getIdentifier();
9350  Expr *BitWidth = (Expr*)BitfieldWidth;
9351  SourceLocation Loc = DeclStart;
9352  if (II) Loc = D.getIdentifierLoc();
9353
9354  // FIXME: Unnamed fields can be handled in various different ways, for
9355  // example, unnamed unions inject all members into the struct namespace!
9356
9357  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9358  QualType T = TInfo->getType();
9359
9360  if (BitWidth) {
9361    // 6.7.2.1p3, 6.7.2.1p4
9362    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9363    if (!BitWidth)
9364      D.setInvalidType();
9365  } else {
9366    // Not a bitfield.
9367
9368    // validate II.
9369
9370  }
9371  if (T->isReferenceType()) {
9372    Diag(Loc, diag::err_ivar_reference_type);
9373    D.setInvalidType();
9374  }
9375  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9376  // than a variably modified type.
9377  else if (T->isVariablyModifiedType()) {
9378    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9379    D.setInvalidType();
9380  }
9381
9382  // Get the visibility (access control) for this ivar.
9383  ObjCIvarDecl::AccessControl ac =
9384    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9385                                        : ObjCIvarDecl::None;
9386  // Must set ivar's DeclContext to its enclosing interface.
9387  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9388  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9389    return 0;
9390  ObjCContainerDecl *EnclosingContext;
9391  if (ObjCImplementationDecl *IMPDecl =
9392      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9393    if (!LangOpts.ObjCNonFragileABI2) {
9394    // Case of ivar declared in an implementation. Context is that of its class.
9395      EnclosingContext = IMPDecl->getClassInterface();
9396      assert(EnclosingContext && "Implementation has no class interface!");
9397    }
9398    else
9399      EnclosingContext = EnclosingDecl;
9400  } else {
9401    if (ObjCCategoryDecl *CDecl =
9402        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9403      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9404        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9405        return 0;
9406      }
9407    }
9408    EnclosingContext = EnclosingDecl;
9409  }
9410
9411  // Construct the decl.
9412  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9413                                             DeclStart, Loc, II, T,
9414                                             TInfo, ac, (Expr *)BitfieldWidth);
9415
9416  if (II) {
9417    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9418                                           ForRedeclaration);
9419    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9420        && !isa<TagDecl>(PrevDecl)) {
9421      Diag(Loc, diag::err_duplicate_member) << II;
9422      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9423      NewID->setInvalidDecl();
9424    }
9425  }
9426
9427  // Process attributes attached to the ivar.
9428  ProcessDeclAttributes(S, NewID, D);
9429
9430  if (D.isInvalidType())
9431    NewID->setInvalidDecl();
9432
9433  // In ARC, infer 'retaining' for ivars of retainable type.
9434  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9435    NewID->setInvalidDecl();
9436
9437  if (D.getDeclSpec().isModulePrivateSpecified())
9438    NewID->setModulePrivate();
9439
9440  if (II) {
9441    // FIXME: When interfaces are DeclContexts, we'll need to add
9442    // these to the interface.
9443    S->AddDecl(NewID);
9444    IdResolver.AddDecl(NewID);
9445  }
9446
9447  return NewID;
9448}
9449
9450/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9451/// class and class extensions. For every class @interface and class
9452/// extension @interface, if the last ivar is a bitfield of any type,
9453/// then add an implicit `char :0` ivar to the end of that interface.
9454void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9455                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9456  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9457    return;
9458
9459  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9460  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9461
9462  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9463    return;
9464  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9465  if (!ID) {
9466    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9467      if (!CD->IsClassExtension())
9468        return;
9469    }
9470    // No need to add this to end of @implementation.
9471    else
9472      return;
9473  }
9474  // All conditions are met. Add a new bitfield to the tail end of ivars.
9475  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9476  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9477
9478  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9479                              DeclLoc, DeclLoc, 0,
9480                              Context.CharTy,
9481                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9482                                                               DeclLoc),
9483                              ObjCIvarDecl::Private, BW,
9484                              true);
9485  AllIvarDecls.push_back(Ivar);
9486}
9487
9488void Sema::ActOnFields(Scope* S,
9489                       SourceLocation RecLoc, Decl *EnclosingDecl,
9490                       llvm::ArrayRef<Decl *> Fields,
9491                       SourceLocation LBrac, SourceLocation RBrac,
9492                       AttributeList *Attr) {
9493  assert(EnclosingDecl && "missing record or interface decl");
9494
9495  // If the decl this is being inserted into is invalid, then it may be a
9496  // redeclaration or some other bogus case.  Don't try to add fields to it.
9497  if (EnclosingDecl->isInvalidDecl())
9498    return;
9499
9500  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9501
9502  // Start counting up the number of named members; make sure to include
9503  // members of anonymous structs and unions in the total.
9504  unsigned NumNamedMembers = 0;
9505  if (Record) {
9506    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9507                                   e = Record->decls_end(); i != e; i++) {
9508      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9509        if (IFD->getDeclName())
9510          ++NumNamedMembers;
9511    }
9512  }
9513
9514  // Verify that all the fields are okay.
9515  SmallVector<FieldDecl*, 32> RecFields;
9516
9517  bool ARCErrReported = false;
9518  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9519       i != end; ++i) {
9520    FieldDecl *FD = cast<FieldDecl>(*i);
9521
9522    // Get the type for the field.
9523    const Type *FDTy = FD->getType().getTypePtr();
9524
9525    if (!FD->isAnonymousStructOrUnion()) {
9526      // Remember all fields written by the user.
9527      RecFields.push_back(FD);
9528    }
9529
9530    // If the field is already invalid for some reason, don't emit more
9531    // diagnostics about it.
9532    if (FD->isInvalidDecl()) {
9533      EnclosingDecl->setInvalidDecl();
9534      continue;
9535    }
9536
9537    // C99 6.7.2.1p2:
9538    //   A structure or union shall not contain a member with
9539    //   incomplete or function type (hence, a structure shall not
9540    //   contain an instance of itself, but may contain a pointer to
9541    //   an instance of itself), except that the last member of a
9542    //   structure with more than one named member may have incomplete
9543    //   array type; such a structure (and any union containing,
9544    //   possibly recursively, a member that is such a structure)
9545    //   shall not be a member of a structure or an element of an
9546    //   array.
9547    if (FDTy->isFunctionType()) {
9548      // Field declared as a function.
9549      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9550        << FD->getDeclName();
9551      FD->setInvalidDecl();
9552      EnclosingDecl->setInvalidDecl();
9553      continue;
9554    } else if (FDTy->isIncompleteArrayType() && Record &&
9555               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9556                ((getLangOpts().MicrosoftExt ||
9557                  getLangOpts().CPlusPlus) &&
9558                 (i + 1 == Fields.end() || Record->isUnion())))) {
9559      // Flexible array member.
9560      // Microsoft and g++ is more permissive regarding flexible array.
9561      // It will accept flexible array in union and also
9562      // as the sole element of a struct/class.
9563      if (getLangOpts().MicrosoftExt) {
9564        if (Record->isUnion())
9565          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9566            << FD->getDeclName();
9567        else if (Fields.size() == 1)
9568          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9569            << FD->getDeclName() << Record->getTagKind();
9570      } else if (getLangOpts().CPlusPlus) {
9571        if (Record->isUnion())
9572          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9573            << FD->getDeclName();
9574        else if (Fields.size() == 1)
9575          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9576            << FD->getDeclName() << Record->getTagKind();
9577      } else if (!getLangOpts().C99) {
9578      if (Record->isUnion())
9579        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9580          << FD->getDeclName();
9581      else
9582        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9583          << FD->getDeclName() << Record->getTagKind();
9584      } else if (NumNamedMembers < 1) {
9585        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9586          << FD->getDeclName();
9587        FD->setInvalidDecl();
9588        EnclosingDecl->setInvalidDecl();
9589        continue;
9590      }
9591      if (!FD->getType()->isDependentType() &&
9592          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9593        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9594          << FD->getDeclName() << FD->getType();
9595        FD->setInvalidDecl();
9596        EnclosingDecl->setInvalidDecl();
9597        continue;
9598      }
9599      // Okay, we have a legal flexible array member at the end of the struct.
9600      if (Record)
9601        Record->setHasFlexibleArrayMember(true);
9602    } else if (!FDTy->isDependentType() &&
9603               RequireCompleteType(FD->getLocation(), FD->getType(),
9604                                   diag::err_field_incomplete)) {
9605      // Incomplete type
9606      FD->setInvalidDecl();
9607      EnclosingDecl->setInvalidDecl();
9608      continue;
9609    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9610      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9611        // If this is a member of a union, then entire union becomes "flexible".
9612        if (Record && Record->isUnion()) {
9613          Record->setHasFlexibleArrayMember(true);
9614        } else {
9615          // If this is a struct/class and this is not the last element, reject
9616          // it.  Note that GCC supports variable sized arrays in the middle of
9617          // structures.
9618          if (i + 1 != Fields.end())
9619            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9620              << FD->getDeclName() << FD->getType();
9621          else {
9622            // We support flexible arrays at the end of structs in
9623            // other structs as an extension.
9624            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9625              << FD->getDeclName();
9626            if (Record)
9627              Record->setHasFlexibleArrayMember(true);
9628          }
9629        }
9630      }
9631      if (Record && FDTTy->getDecl()->hasObjectMember())
9632        Record->setHasObjectMember(true);
9633    } else if (FDTy->isObjCObjectType()) {
9634      /// A field cannot be an Objective-c object
9635      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9636        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9637      QualType T = Context.getObjCObjectPointerType(FD->getType());
9638      FD->setType(T);
9639    }
9640    else if (!getLangOpts().CPlusPlus) {
9641      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9642        // It's an error in ARC if a field has lifetime.
9643        // We don't want to report this in a system header, though,
9644        // so we just make the field unavailable.
9645        // FIXME: that's really not sufficient; we need to make the type
9646        // itself invalid to, say, initialize or copy.
9647        QualType T = FD->getType();
9648        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9649        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9650          SourceLocation loc = FD->getLocation();
9651          if (getSourceManager().isInSystemHeader(loc)) {
9652            if (!FD->hasAttr<UnavailableAttr>()) {
9653              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9654                                "this system field has retaining ownership"));
9655            }
9656          } else {
9657            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9658              << T->isBlockPointerType();
9659          }
9660          ARCErrReported = true;
9661        }
9662      }
9663      else if (getLangOpts().ObjC1 &&
9664               getLangOpts().getGC() != LangOptions::NonGC &&
9665               Record && !Record->hasObjectMember()) {
9666        if (FD->getType()->isObjCObjectPointerType() ||
9667            FD->getType().isObjCGCStrong())
9668          Record->setHasObjectMember(true);
9669        else if (Context.getAsArrayType(FD->getType())) {
9670          QualType BaseType = Context.getBaseElementType(FD->getType());
9671          if (BaseType->isRecordType() &&
9672              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9673            Record->setHasObjectMember(true);
9674          else if (BaseType->isObjCObjectPointerType() ||
9675                   BaseType.isObjCGCStrong())
9676                 Record->setHasObjectMember(true);
9677        }
9678      }
9679    }
9680    // Keep track of the number of named members.
9681    if (FD->getIdentifier())
9682      ++NumNamedMembers;
9683  }
9684
9685  // Okay, we successfully defined 'Record'.
9686  if (Record) {
9687    bool Completed = false;
9688    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9689      if (!CXXRecord->isInvalidDecl()) {
9690        // Set access bits correctly on the directly-declared conversions.
9691        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9692        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9693             I != E; ++I)
9694          Convs->setAccess(I, (*I)->getAccess());
9695
9696        if (!CXXRecord->isDependentType()) {
9697          // Objective-C Automatic Reference Counting:
9698          //   If a class has a non-static data member of Objective-C pointer
9699          //   type (or array thereof), it is a non-POD type and its
9700          //   default constructor (if any), copy constructor, copy assignment
9701          //   operator, and destructor are non-trivial.
9702          //
9703          // This rule is also handled by CXXRecordDecl::completeDefinition().
9704          // However, here we check whether this particular class is only
9705          // non-POD because of the presence of an Objective-C pointer member.
9706          // If so, objects of this type cannot be shared between code compiled
9707          // with instant objects and code compiled with manual retain/release.
9708          if (getLangOpts().ObjCAutoRefCount &&
9709              CXXRecord->hasObjectMember() &&
9710              CXXRecord->getLinkage() == ExternalLinkage) {
9711            if (CXXRecord->isPOD()) {
9712              Diag(CXXRecord->getLocation(),
9713                   diag::warn_arc_non_pod_class_with_object_member)
9714               << CXXRecord;
9715            } else {
9716              // FIXME: Fix-Its would be nice here, but finding a good location
9717              // for them is going to be tricky.
9718              if (CXXRecord->hasTrivialCopyConstructor())
9719                Diag(CXXRecord->getLocation(),
9720                     diag::warn_arc_trivial_member_function_with_object_member)
9721                  << CXXRecord << 0;
9722              if (CXXRecord->hasTrivialCopyAssignment())
9723                Diag(CXXRecord->getLocation(),
9724                     diag::warn_arc_trivial_member_function_with_object_member)
9725                << CXXRecord << 1;
9726              if (CXXRecord->hasTrivialDestructor())
9727                Diag(CXXRecord->getLocation(),
9728                     diag::warn_arc_trivial_member_function_with_object_member)
9729                << CXXRecord << 2;
9730            }
9731          }
9732
9733          // Adjust user-defined destructor exception spec.
9734          if (getLangOpts().CPlusPlus0x &&
9735              CXXRecord->hasUserDeclaredDestructor())
9736            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9737
9738          // Add any implicitly-declared members to this class.
9739          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9740
9741          // If we have virtual base classes, we may end up finding multiple
9742          // final overriders for a given virtual function. Check for this
9743          // problem now.
9744          if (CXXRecord->getNumVBases()) {
9745            CXXFinalOverriderMap FinalOverriders;
9746            CXXRecord->getFinalOverriders(FinalOverriders);
9747
9748            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9749                                             MEnd = FinalOverriders.end();
9750                 M != MEnd; ++M) {
9751              for (OverridingMethods::iterator SO = M->second.begin(),
9752                                            SOEnd = M->second.end();
9753                   SO != SOEnd; ++SO) {
9754                assert(SO->second.size() > 0 &&
9755                       "Virtual function without overridding functions?");
9756                if (SO->second.size() == 1)
9757                  continue;
9758
9759                // C++ [class.virtual]p2:
9760                //   In a derived class, if a virtual member function of a base
9761                //   class subobject has more than one final overrider the
9762                //   program is ill-formed.
9763                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9764                  << (NamedDecl *)M->first << Record;
9765                Diag(M->first->getLocation(),
9766                     diag::note_overridden_virtual_function);
9767                for (OverridingMethods::overriding_iterator
9768                          OM = SO->second.begin(),
9769                       OMEnd = SO->second.end();
9770                     OM != OMEnd; ++OM)
9771                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9772                    << (NamedDecl *)M->first << OM->Method->getParent();
9773
9774                Record->setInvalidDecl();
9775              }
9776            }
9777            CXXRecord->completeDefinition(&FinalOverriders);
9778            Completed = true;
9779          }
9780        }
9781      }
9782    }
9783
9784    if (!Completed)
9785      Record->completeDefinition();
9786
9787    // Now that the record is complete, do any delayed exception spec checks
9788    // we were missing.
9789    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9790      const CXXDestructorDecl *Dtor =
9791              DelayedDestructorExceptionSpecChecks.back().first;
9792      if (Dtor->getParent() != Record)
9793        break;
9794
9795      assert(!Dtor->getParent()->isDependentType() &&
9796          "Should not ever add destructors of templates into the list.");
9797      CheckOverridingFunctionExceptionSpec(Dtor,
9798          DelayedDestructorExceptionSpecChecks.back().second);
9799      DelayedDestructorExceptionSpecChecks.pop_back();
9800    }
9801
9802  } else {
9803    ObjCIvarDecl **ClsFields =
9804      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9805    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9806      ID->setEndOfDefinitionLoc(RBrac);
9807      // Add ivar's to class's DeclContext.
9808      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9809        ClsFields[i]->setLexicalDeclContext(ID);
9810        ID->addDecl(ClsFields[i]);
9811      }
9812      // Must enforce the rule that ivars in the base classes may not be
9813      // duplicates.
9814      if (ID->getSuperClass())
9815        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9816    } else if (ObjCImplementationDecl *IMPDecl =
9817                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9818      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9819      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9820        // Ivar declared in @implementation never belongs to the implementation.
9821        // Only it is in implementation's lexical context.
9822        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9823      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9824      IMPDecl->setIvarLBraceLoc(LBrac);
9825      IMPDecl->setIvarRBraceLoc(RBrac);
9826    } else if (ObjCCategoryDecl *CDecl =
9827                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9828      // case of ivars in class extension; all other cases have been
9829      // reported as errors elsewhere.
9830      // FIXME. Class extension does not have a LocEnd field.
9831      // CDecl->setLocEnd(RBrac);
9832      // Add ivar's to class extension's DeclContext.
9833      // Diagnose redeclaration of private ivars.
9834      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9835      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9836        if (IDecl) {
9837          if (const ObjCIvarDecl *ClsIvar =
9838              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9839            Diag(ClsFields[i]->getLocation(),
9840                 diag::err_duplicate_ivar_declaration);
9841            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9842            continue;
9843          }
9844          for (const ObjCCategoryDecl *ClsExtDecl =
9845                IDecl->getFirstClassExtension();
9846               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9847            if (const ObjCIvarDecl *ClsExtIvar =
9848                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9849              Diag(ClsFields[i]->getLocation(),
9850                   diag::err_duplicate_ivar_declaration);
9851              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9852              continue;
9853            }
9854          }
9855        }
9856        ClsFields[i]->setLexicalDeclContext(CDecl);
9857        CDecl->addDecl(ClsFields[i]);
9858      }
9859      CDecl->setIvarLBraceLoc(LBrac);
9860      CDecl->setIvarRBraceLoc(RBrac);
9861    }
9862  }
9863
9864  if (Attr)
9865    ProcessDeclAttributeList(S, Record, Attr);
9866
9867  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9868  // set the visibility of this record.
9869  if (Record && !Record->getDeclContext()->isRecord())
9870    AddPushedVisibilityAttribute(Record);
9871}
9872
9873/// \brief Determine whether the given integral value is representable within
9874/// the given type T.
9875static bool isRepresentableIntegerValue(ASTContext &Context,
9876                                        llvm::APSInt &Value,
9877                                        QualType T) {
9878  assert(T->isIntegralType(Context) && "Integral type required!");
9879  unsigned BitWidth = Context.getIntWidth(T);
9880
9881  if (Value.isUnsigned() || Value.isNonNegative()) {
9882    if (T->isSignedIntegerOrEnumerationType())
9883      --BitWidth;
9884    return Value.getActiveBits() <= BitWidth;
9885  }
9886  return Value.getMinSignedBits() <= BitWidth;
9887}
9888
9889// \brief Given an integral type, return the next larger integral type
9890// (or a NULL type of no such type exists).
9891static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9892  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9893  // enum checking below.
9894  assert(T->isIntegralType(Context) && "Integral type required!");
9895  const unsigned NumTypes = 4;
9896  QualType SignedIntegralTypes[NumTypes] = {
9897    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9898  };
9899  QualType UnsignedIntegralTypes[NumTypes] = {
9900    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9901    Context.UnsignedLongLongTy
9902  };
9903
9904  unsigned BitWidth = Context.getTypeSize(T);
9905  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9906                                                        : UnsignedIntegralTypes;
9907  for (unsigned I = 0; I != NumTypes; ++I)
9908    if (Context.getTypeSize(Types[I]) > BitWidth)
9909      return Types[I];
9910
9911  return QualType();
9912}
9913
9914EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9915                                          EnumConstantDecl *LastEnumConst,
9916                                          SourceLocation IdLoc,
9917                                          IdentifierInfo *Id,
9918                                          Expr *Val) {
9919  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9920  llvm::APSInt EnumVal(IntWidth);
9921  QualType EltTy;
9922
9923  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9924    Val = 0;
9925
9926  if (Val)
9927    Val = DefaultLvalueConversion(Val).take();
9928
9929  if (Val) {
9930    if (Enum->isDependentType() || Val->isTypeDependent())
9931      EltTy = Context.DependentTy;
9932    else {
9933      SourceLocation ExpLoc;
9934      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
9935          !getLangOpts().MicrosoftMode) {
9936        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9937        // constant-expression in the enumerator-definition shall be a converted
9938        // constant expression of the underlying type.
9939        EltTy = Enum->getIntegerType();
9940        ExprResult Converted =
9941          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9942                                           CCEK_Enumerator);
9943        if (Converted.isInvalid())
9944          Val = 0;
9945        else
9946          Val = Converted.take();
9947      } else if (!Val->isValueDependent() &&
9948                 !(Val = VerifyIntegerConstantExpression(Val,
9949                                                         &EnumVal).take())) {
9950        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9951      } else {
9952        if (Enum->isFixed()) {
9953          EltTy = Enum->getIntegerType();
9954
9955          // In Obj-C and Microsoft mode, require the enumeration value to be
9956          // representable in the underlying type of the enumeration. In C++11,
9957          // we perform a non-narrowing conversion as part of converted constant
9958          // expression checking.
9959          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9960            if (getLangOpts().MicrosoftMode) {
9961              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9962              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9963            } else
9964              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9965          } else
9966            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9967        } else if (getLangOpts().CPlusPlus) {
9968          // C++11 [dcl.enum]p5:
9969          //   If the underlying type is not fixed, the type of each enumerator
9970          //   is the type of its initializing value:
9971          //     - If an initializer is specified for an enumerator, the
9972          //       initializing value has the same type as the expression.
9973          EltTy = Val->getType();
9974        } else {
9975          // C99 6.7.2.2p2:
9976          //   The expression that defines the value of an enumeration constant
9977          //   shall be an integer constant expression that has a value
9978          //   representable as an int.
9979
9980          // Complain if the value is not representable in an int.
9981          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9982            Diag(IdLoc, diag::ext_enum_value_not_int)
9983              << EnumVal.toString(10) << Val->getSourceRange()
9984              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9985          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9986            // Force the type of the expression to 'int'.
9987            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9988          }
9989          EltTy = Val->getType();
9990        }
9991      }
9992    }
9993  }
9994
9995  if (!Val) {
9996    if (Enum->isDependentType())
9997      EltTy = Context.DependentTy;
9998    else if (!LastEnumConst) {
9999      // C++0x [dcl.enum]p5:
10000      //   If the underlying type is not fixed, the type of each enumerator
10001      //   is the type of its initializing value:
10002      //     - If no initializer is specified for the first enumerator, the
10003      //       initializing value has an unspecified integral type.
10004      //
10005      // GCC uses 'int' for its unspecified integral type, as does
10006      // C99 6.7.2.2p3.
10007      if (Enum->isFixed()) {
10008        EltTy = Enum->getIntegerType();
10009      }
10010      else {
10011        EltTy = Context.IntTy;
10012      }
10013    } else {
10014      // Assign the last value + 1.
10015      EnumVal = LastEnumConst->getInitVal();
10016      ++EnumVal;
10017      EltTy = LastEnumConst->getType();
10018
10019      // Check for overflow on increment.
10020      if (EnumVal < LastEnumConst->getInitVal()) {
10021        // C++0x [dcl.enum]p5:
10022        //   If the underlying type is not fixed, the type of each enumerator
10023        //   is the type of its initializing value:
10024        //
10025        //     - Otherwise the type of the initializing value is the same as
10026        //       the type of the initializing value of the preceding enumerator
10027        //       unless the incremented value is not representable in that type,
10028        //       in which case the type is an unspecified integral type
10029        //       sufficient to contain the incremented value. If no such type
10030        //       exists, the program is ill-formed.
10031        QualType T = getNextLargerIntegralType(Context, EltTy);
10032        if (T.isNull() || Enum->isFixed()) {
10033          // There is no integral type larger enough to represent this
10034          // value. Complain, then allow the value to wrap around.
10035          EnumVal = LastEnumConst->getInitVal();
10036          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10037          ++EnumVal;
10038          if (Enum->isFixed())
10039            // When the underlying type is fixed, this is ill-formed.
10040            Diag(IdLoc, diag::err_enumerator_wrapped)
10041              << EnumVal.toString(10)
10042              << EltTy;
10043          else
10044            Diag(IdLoc, diag::warn_enumerator_too_large)
10045              << EnumVal.toString(10);
10046        } else {
10047          EltTy = T;
10048        }
10049
10050        // Retrieve the last enumerator's value, extent that type to the
10051        // type that is supposed to be large enough to represent the incremented
10052        // value, then increment.
10053        EnumVal = LastEnumConst->getInitVal();
10054        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10055        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10056        ++EnumVal;
10057
10058        // If we're not in C++, diagnose the overflow of enumerator values,
10059        // which in C99 means that the enumerator value is not representable in
10060        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10061        // permits enumerator values that are representable in some larger
10062        // integral type.
10063        if (!getLangOpts().CPlusPlus && !T.isNull())
10064          Diag(IdLoc, diag::warn_enum_value_overflow);
10065      } else if (!getLangOpts().CPlusPlus &&
10066                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10067        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10068        Diag(IdLoc, diag::ext_enum_value_not_int)
10069          << EnumVal.toString(10) << 1;
10070      }
10071    }
10072  }
10073
10074  if (!EltTy->isDependentType()) {
10075    // Make the enumerator value match the signedness and size of the
10076    // enumerator's type.
10077    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10078    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10079  }
10080
10081  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10082                                  Val, EnumVal);
10083}
10084
10085
10086Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10087                              SourceLocation IdLoc, IdentifierInfo *Id,
10088                              AttributeList *Attr,
10089                              SourceLocation EqualLoc, Expr *Val) {
10090  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10091  EnumConstantDecl *LastEnumConst =
10092    cast_or_null<EnumConstantDecl>(lastEnumConst);
10093
10094  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10095  // we find one that is.
10096  S = getNonFieldDeclScope(S);
10097
10098  // Verify that there isn't already something declared with this name in this
10099  // scope.
10100  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10101                                         ForRedeclaration);
10102  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10103    // Maybe we will complain about the shadowed template parameter.
10104    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10105    // Just pretend that we didn't see the previous declaration.
10106    PrevDecl = 0;
10107  }
10108
10109  if (PrevDecl) {
10110    // When in C++, we may get a TagDecl with the same name; in this case the
10111    // enum constant will 'hide' the tag.
10112    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10113           "Received TagDecl when not in C++!");
10114    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10115      if (isa<EnumConstantDecl>(PrevDecl))
10116        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10117      else
10118        Diag(IdLoc, diag::err_redefinition) << Id;
10119      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10120      return 0;
10121    }
10122  }
10123
10124  // C++ [class.mem]p13:
10125  //   If T is the name of a class, then each of the following shall have a
10126  //   name different from T:
10127  //     - every enumerator of every member of class T that is an enumerated
10128  //       type
10129  if (CXXRecordDecl *Record
10130                      = dyn_cast<CXXRecordDecl>(
10131                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10132    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10133      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10134
10135  EnumConstantDecl *New =
10136    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10137
10138  if (New) {
10139    // Process attributes.
10140    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10141
10142    // Register this decl in the current scope stack.
10143    New->setAccess(TheEnumDecl->getAccess());
10144    PushOnScopeChains(New, S);
10145  }
10146
10147  return New;
10148}
10149
10150void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10151                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10152                         Decl **Elements, unsigned NumElements,
10153                         Scope *S, AttributeList *Attr) {
10154  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10155  QualType EnumType = Context.getTypeDeclType(Enum);
10156
10157  if (Attr)
10158    ProcessDeclAttributeList(S, Enum, Attr);
10159
10160  if (Enum->isDependentType()) {
10161    for (unsigned i = 0; i != NumElements; ++i) {
10162      EnumConstantDecl *ECD =
10163        cast_or_null<EnumConstantDecl>(Elements[i]);
10164      if (!ECD) continue;
10165
10166      ECD->setType(EnumType);
10167    }
10168
10169    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10170    return;
10171  }
10172
10173  // TODO: If the result value doesn't fit in an int, it must be a long or long
10174  // long value.  ISO C does not support this, but GCC does as an extension,
10175  // emit a warning.
10176  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10177  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10178  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10179
10180  // Verify that all the values are okay, compute the size of the values, and
10181  // reverse the list.
10182  unsigned NumNegativeBits = 0;
10183  unsigned NumPositiveBits = 0;
10184
10185  // Keep track of whether all elements have type int.
10186  bool AllElementsInt = true;
10187
10188  for (unsigned i = 0; i != NumElements; ++i) {
10189    EnumConstantDecl *ECD =
10190      cast_or_null<EnumConstantDecl>(Elements[i]);
10191    if (!ECD) continue;  // Already issued a diagnostic.
10192
10193    const llvm::APSInt &InitVal = ECD->getInitVal();
10194
10195    // Keep track of the size of positive and negative values.
10196    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10197      NumPositiveBits = std::max(NumPositiveBits,
10198                                 (unsigned)InitVal.getActiveBits());
10199    else
10200      NumNegativeBits = std::max(NumNegativeBits,
10201                                 (unsigned)InitVal.getMinSignedBits());
10202
10203    // Keep track of whether every enum element has type int (very commmon).
10204    if (AllElementsInt)
10205      AllElementsInt = ECD->getType() == Context.IntTy;
10206  }
10207
10208  // Figure out the type that should be used for this enum.
10209  QualType BestType;
10210  unsigned BestWidth;
10211
10212  // C++0x N3000 [conv.prom]p3:
10213  //   An rvalue of an unscoped enumeration type whose underlying
10214  //   type is not fixed can be converted to an rvalue of the first
10215  //   of the following types that can represent all the values of
10216  //   the enumeration: int, unsigned int, long int, unsigned long
10217  //   int, long long int, or unsigned long long int.
10218  // C99 6.4.4.3p2:
10219  //   An identifier declared as an enumeration constant has type int.
10220  // The C99 rule is modified by a gcc extension
10221  QualType BestPromotionType;
10222
10223  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10224  // -fshort-enums is the equivalent to specifying the packed attribute on all
10225  // enum definitions.
10226  if (LangOpts.ShortEnums)
10227    Packed = true;
10228
10229  if (Enum->isFixed()) {
10230    BestType = Enum->getIntegerType();
10231    if (BestType->isPromotableIntegerType())
10232      BestPromotionType = Context.getPromotedIntegerType(BestType);
10233    else
10234      BestPromotionType = BestType;
10235    // We don't need to set BestWidth, because BestType is going to be the type
10236    // of the enumerators, but we do anyway because otherwise some compilers
10237    // warn that it might be used uninitialized.
10238    BestWidth = CharWidth;
10239  }
10240  else if (NumNegativeBits) {
10241    // If there is a negative value, figure out the smallest integer type (of
10242    // int/long/longlong) that fits.
10243    // If it's packed, check also if it fits a char or a short.
10244    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10245      BestType = Context.SignedCharTy;
10246      BestWidth = CharWidth;
10247    } else if (Packed && NumNegativeBits <= ShortWidth &&
10248               NumPositiveBits < ShortWidth) {
10249      BestType = Context.ShortTy;
10250      BestWidth = ShortWidth;
10251    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10252      BestType = Context.IntTy;
10253      BestWidth = IntWidth;
10254    } else {
10255      BestWidth = Context.getTargetInfo().getLongWidth();
10256
10257      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10258        BestType = Context.LongTy;
10259      } else {
10260        BestWidth = Context.getTargetInfo().getLongLongWidth();
10261
10262        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10263          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10264        BestType = Context.LongLongTy;
10265      }
10266    }
10267    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10268  } else {
10269    // If there is no negative value, figure out the smallest type that fits
10270    // all of the enumerator values.
10271    // If it's packed, check also if it fits a char or a short.
10272    if (Packed && NumPositiveBits <= CharWidth) {
10273      BestType = Context.UnsignedCharTy;
10274      BestPromotionType = Context.IntTy;
10275      BestWidth = CharWidth;
10276    } else if (Packed && NumPositiveBits <= ShortWidth) {
10277      BestType = Context.UnsignedShortTy;
10278      BestPromotionType = Context.IntTy;
10279      BestWidth = ShortWidth;
10280    } else if (NumPositiveBits <= IntWidth) {
10281      BestType = Context.UnsignedIntTy;
10282      BestWidth = IntWidth;
10283      BestPromotionType
10284        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10285                           ? Context.UnsignedIntTy : Context.IntTy;
10286    } else if (NumPositiveBits <=
10287               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10288      BestType = Context.UnsignedLongTy;
10289      BestPromotionType
10290        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10291                           ? Context.UnsignedLongTy : Context.LongTy;
10292    } else {
10293      BestWidth = Context.getTargetInfo().getLongLongWidth();
10294      assert(NumPositiveBits <= BestWidth &&
10295             "How could an initializer get larger than ULL?");
10296      BestType = Context.UnsignedLongLongTy;
10297      BestPromotionType
10298        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10299                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10300    }
10301  }
10302
10303  // Loop over all of the enumerator constants, changing their types to match
10304  // the type of the enum if needed.
10305  for (unsigned i = 0; i != NumElements; ++i) {
10306    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10307    if (!ECD) continue;  // Already issued a diagnostic.
10308
10309    // Standard C says the enumerators have int type, but we allow, as an
10310    // extension, the enumerators to be larger than int size.  If each
10311    // enumerator value fits in an int, type it as an int, otherwise type it the
10312    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10313    // that X has type 'int', not 'unsigned'.
10314
10315    // Determine whether the value fits into an int.
10316    llvm::APSInt InitVal = ECD->getInitVal();
10317
10318    // If it fits into an integer type, force it.  Otherwise force it to match
10319    // the enum decl type.
10320    QualType NewTy;
10321    unsigned NewWidth;
10322    bool NewSign;
10323    if (!getLangOpts().CPlusPlus &&
10324        !Enum->isFixed() &&
10325        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10326      NewTy = Context.IntTy;
10327      NewWidth = IntWidth;
10328      NewSign = true;
10329    } else if (ECD->getType() == BestType) {
10330      // Already the right type!
10331      if (getLangOpts().CPlusPlus)
10332        // C++ [dcl.enum]p4: Following the closing brace of an
10333        // enum-specifier, each enumerator has the type of its
10334        // enumeration.
10335        ECD->setType(EnumType);
10336      continue;
10337    } else {
10338      NewTy = BestType;
10339      NewWidth = BestWidth;
10340      NewSign = BestType->isSignedIntegerOrEnumerationType();
10341    }
10342
10343    // Adjust the APSInt value.
10344    InitVal = InitVal.extOrTrunc(NewWidth);
10345    InitVal.setIsSigned(NewSign);
10346    ECD->setInitVal(InitVal);
10347
10348    // Adjust the Expr initializer and type.
10349    if (ECD->getInitExpr() &&
10350        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10351      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10352                                                CK_IntegralCast,
10353                                                ECD->getInitExpr(),
10354                                                /*base paths*/ 0,
10355                                                VK_RValue));
10356    if (getLangOpts().CPlusPlus)
10357      // C++ [dcl.enum]p4: Following the closing brace of an
10358      // enum-specifier, each enumerator has the type of its
10359      // enumeration.
10360      ECD->setType(EnumType);
10361    else
10362      ECD->setType(NewTy);
10363  }
10364
10365  Enum->completeDefinition(BestType, BestPromotionType,
10366                           NumPositiveBits, NumNegativeBits);
10367
10368  // If we're declaring a function, ensure this decl isn't forgotten about -
10369  // it needs to go into the function scope.
10370  if (InFunctionDeclarator)
10371    DeclsInPrototypeScope.push_back(Enum);
10372
10373}
10374
10375Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10376                                  SourceLocation StartLoc,
10377                                  SourceLocation EndLoc) {
10378  StringLiteral *AsmString = cast<StringLiteral>(expr);
10379
10380  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10381                                                   AsmString, StartLoc,
10382                                                   EndLoc);
10383  CurContext->addDecl(New);
10384  return New;
10385}
10386
10387DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10388                                   SourceLocation ImportLoc,
10389                                   ModuleIdPath Path) {
10390  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10391                                                Module::AllVisible,
10392                                                /*IsIncludeDirective=*/false);
10393  if (!Mod)
10394    return true;
10395
10396  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10397  Module *ModCheck = Mod;
10398  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10399    // If we've run out of module parents, just drop the remaining identifiers.
10400    // We need the length to be consistent.
10401    if (!ModCheck)
10402      break;
10403    ModCheck = ModCheck->Parent;
10404
10405    IdentifierLocs.push_back(Path[I].second);
10406  }
10407
10408  ImportDecl *Import = ImportDecl::Create(Context,
10409                                          Context.getTranslationUnitDecl(),
10410                                          AtLoc.isValid()? AtLoc : ImportLoc,
10411                                          Mod, IdentifierLocs);
10412  Context.getTranslationUnitDecl()->addDecl(Import);
10413  return Import;
10414}
10415
10416void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10417                                      IdentifierInfo* AliasName,
10418                                      SourceLocation PragmaLoc,
10419                                      SourceLocation NameLoc,
10420                                      SourceLocation AliasNameLoc) {
10421  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10422                                    LookupOrdinaryName);
10423  AsmLabelAttr *Attr =
10424     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10425
10426  if (PrevDecl)
10427    PrevDecl->addAttr(Attr);
10428  else
10429    (void)ExtnameUndeclaredIdentifiers.insert(
10430      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10431}
10432
10433void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10434                             SourceLocation PragmaLoc,
10435                             SourceLocation NameLoc) {
10436  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10437
10438  if (PrevDecl) {
10439    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10440  } else {
10441    (void)WeakUndeclaredIdentifiers.insert(
10442      std::pair<IdentifierInfo*,WeakInfo>
10443        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10444  }
10445}
10446
10447void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10448                                IdentifierInfo* AliasName,
10449                                SourceLocation PragmaLoc,
10450                                SourceLocation NameLoc,
10451                                SourceLocation AliasNameLoc) {
10452  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10453                                    LookupOrdinaryName);
10454  WeakInfo W = WeakInfo(Name, NameLoc);
10455
10456  if (PrevDecl) {
10457    if (!PrevDecl->hasAttr<AliasAttr>())
10458      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10459        DeclApplyPragmaWeak(TUScope, ND, W);
10460  } else {
10461    (void)WeakUndeclaredIdentifiers.insert(
10462      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10463  }
10464}
10465
10466Decl *Sema::getObjCDeclContext() const {
10467  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10468}
10469
10470AvailabilityResult Sema::getCurContextAvailability() const {
10471  const Decl *D = cast<Decl>(getCurLexicalContext());
10472  // A category implicitly has the availability of the interface.
10473  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10474    D = CatD->getClassInterface();
10475
10476  return D->getAvailability();
10477}
10478