SemaDecl.cpp revision 4087f27e5416c799bcb6be072f905be752acb61c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, 0, true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(DeclPtrTy::make(*I));
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(DeclPtrTy::make(D));
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482static bool isOutOfScopePreviousDeclaration(NamedDecl *,
483                                            DeclContext*,
484                                            ASTContext&);
485
486/// Filters out lookup results that don't fall within the given scope
487/// as determined by isDeclInScope.
488static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
489                                 DeclContext *Ctx, Scope *S,
490                                 bool ConsiderLinkage) {
491  LookupResult::Filter F = R.makeFilter();
492  while (F.hasNext()) {
493    NamedDecl *D = F.next();
494
495    if (SemaRef.isDeclInScope(D, Ctx, S))
496      continue;
497
498    if (ConsiderLinkage &&
499        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
500      continue;
501
502    F.erase();
503  }
504
505  F.done();
506}
507
508static bool isUsingDecl(NamedDecl *D) {
509  return isa<UsingShadowDecl>(D) ||
510         isa<UnresolvedUsingTypenameDecl>(D) ||
511         isa<UnresolvedUsingValueDecl>(D);
512}
513
514/// Removes using shadow declarations from the lookup results.
515static void RemoveUsingDecls(LookupResult &R) {
516  LookupResult::Filter F = R.makeFilter();
517  while (F.hasNext())
518    if (isUsingDecl(F.next()))
519      F.erase();
520
521  F.done();
522}
523
524/// \brief Check for this common pattern:
525/// @code
526/// class S {
527///   S(const S&); // DO NOT IMPLEMENT
528///   void operator=(const S&); // DO NOT IMPLEMENT
529/// };
530/// @endcode
531static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
532  // FIXME: Should check for private access too but access is set after we get
533  // the decl here.
534  if (D->isThisDeclarationADefinition())
535    return false;
536
537  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
538    return CD->isCopyConstructor();
539  return D->isCopyAssignment();
540}
541
542bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
543  assert(D);
544
545  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
546    return false;
547
548  // Ignore class templates.
549  if (D->getDeclContext()->isDependentContext())
550    return false;
551
552  // We warn for unused decls internal to the translation unit.
553  if (D->getLinkage() == ExternalLinkage)
554    return false;
555
556  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
557    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
558      return false;
559
560    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
561      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
562        return false;
563    } else {
564      // 'static inline' functions are used in headers; don't warn.
565      if (FD->getStorageClass() == FunctionDecl::Static &&
566          FD->isInlineSpecified())
567        return false;
568    }
569
570    if (FD->isThisDeclarationADefinition())
571      return !Context.DeclMustBeEmitted(FD);
572    return true;
573  }
574
575  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
576    if (VD->isStaticDataMember() &&
577        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
578      return false;
579
580    if ( VD->isFileVarDecl() &&
581        !VD->getType().isConstant(Context))
582      return !Context.DeclMustBeEmitted(VD);
583  }
584
585   return false;
586 }
587
588 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
589  if (!D)
590    return;
591
592  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
593    const FunctionDecl *First = FD->getFirstDeclaration();
594    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
595      return; // First should already be in the vector.
596  }
597
598  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
599    const VarDecl *First = VD->getFirstDeclaration();
600    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
601      return; // First should already be in the vector.
602  }
603
604   if (ShouldWarnIfUnusedFileScopedDecl(D))
605     UnusedFileScopedDecls.push_back(D);
606 }
607
608static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
609  if (D->isInvalidDecl())
610    return false;
611
612  if (D->isUsed() || D->hasAttr<UnusedAttr>())
613    return false;
614
615  // White-list anything that isn't a local variable.
616  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
617      !D->getDeclContext()->isFunctionOrMethod())
618    return false;
619
620  // Types of valid local variables should be complete, so this should succeed.
621  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
622
623    // White-list anything with an __attribute__((unused)) type.
624    QualType Ty = VD->getType();
625
626    // Only look at the outermost level of typedef.
627    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
628      if (TT->getDecl()->hasAttr<UnusedAttr>())
629        return false;
630    }
631
632    // If we failed to complete the type for some reason, or if the type is
633    // dependent, don't diagnose the variable.
634    if (Ty->isIncompleteType() || Ty->isDependentType())
635      return false;
636
637    if (const TagType *TT = Ty->getAs<TagType>()) {
638      const TagDecl *Tag = TT->getDecl();
639      if (Tag->hasAttr<UnusedAttr>())
640        return false;
641
642      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
643        // FIXME: Checking for the presence of a user-declared constructor
644        // isn't completely accurate; we'd prefer to check that the initializer
645        // has no side effects.
646        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
647          return false;
648      }
649    }
650
651    // TODO: __attribute__((unused)) templates?
652  }
653
654  return true;
655}
656
657void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
658  if (!ShouldDiagnoseUnusedDecl(D))
659    return;
660
661  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
662    Diag(D->getLocation(), diag::warn_unused_exception_param)
663    << D->getDeclName();
664  else
665    Diag(D->getLocation(), diag::warn_unused_variable)
666    << D->getDeclName();
667}
668
669void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
670  if (S->decl_empty()) return;
671  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
672         "Scope shouldn't contain decls!");
673
674  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
675       I != E; ++I) {
676    Decl *TmpD = (*I).getAs<Decl>();
677    assert(TmpD && "This decl didn't get pushed??");
678
679    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
680    NamedDecl *D = cast<NamedDecl>(TmpD);
681
682    if (!D->getDeclName()) continue;
683
684    // Diagnose unused variables in this scope.
685    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
686      DiagnoseUnusedDecl(D);
687
688    // Remove this name from our lexical scope.
689    IdResolver.RemoveDecl(D);
690  }
691}
692
693/// \brief Look for an Objective-C class in the translation unit.
694///
695/// \param Id The name of the Objective-C class we're looking for. If
696/// typo-correction fixes this name, the Id will be updated
697/// to the fixed name.
698///
699/// \param IdLoc The location of the name in the translation unit.
700///
701/// \param TypoCorrection If true, this routine will attempt typo correction
702/// if there is no class with the given name.
703///
704/// \returns The declaration of the named Objective-C class, or NULL if the
705/// class could not be found.
706ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
707                                              SourceLocation IdLoc,
708                                              bool TypoCorrection) {
709  // The third "scope" argument is 0 since we aren't enabling lazy built-in
710  // creation from this context.
711  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
712
713  if (!IDecl && TypoCorrection) {
714    // Perform typo correction at the given location, but only if we
715    // find an Objective-C class name.
716    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
717    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
718        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
719      Diag(IdLoc, diag::err_undef_interface_suggest)
720        << Id << IDecl->getDeclName()
721        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
722      Diag(IDecl->getLocation(), diag::note_previous_decl)
723        << IDecl->getDeclName();
724
725      Id = IDecl->getIdentifier();
726    }
727  }
728
729  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
730}
731
732/// getNonFieldDeclScope - Retrieves the innermost scope, starting
733/// from S, where a non-field would be declared. This routine copes
734/// with the difference between C and C++ scoping rules in structs and
735/// unions. For example, the following code is well-formed in C but
736/// ill-formed in C++:
737/// @code
738/// struct S6 {
739///   enum { BAR } e;
740/// };
741///
742/// void test_S6() {
743///   struct S6 a;
744///   a.e = BAR;
745/// }
746/// @endcode
747/// For the declaration of BAR, this routine will return a different
748/// scope. The scope S will be the scope of the unnamed enumeration
749/// within S6. In C++, this routine will return the scope associated
750/// with S6, because the enumeration's scope is a transparent
751/// context but structures can contain non-field names. In C, this
752/// routine will return the translation unit scope, since the
753/// enumeration's scope is a transparent context and structures cannot
754/// contain non-field names.
755Scope *Sema::getNonFieldDeclScope(Scope *S) {
756  while (((S->getFlags() & Scope::DeclScope) == 0) ||
757         (S->getEntity() &&
758          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
759         (S->isClassScope() && !getLangOptions().CPlusPlus))
760    S = S->getParent();
761  return S;
762}
763
764void Sema::InitBuiltinVaListType() {
765  if (!Context.getBuiltinVaListType().isNull())
766    return;
767
768  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
769  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
770                                       LookupOrdinaryName, ForRedeclaration);
771  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
772  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
773}
774
775/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
776/// file scope.  lazily create a decl for it. ForRedeclaration is true
777/// if we're creating this built-in in anticipation of redeclaring the
778/// built-in.
779NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
780                                     Scope *S, bool ForRedeclaration,
781                                     SourceLocation Loc) {
782  Builtin::ID BID = (Builtin::ID)bid;
783
784  if (Context.BuiltinInfo.hasVAListUse(BID))
785    InitBuiltinVaListType();
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           FunctionDecl::Extern,
823                                           FunctionDecl::None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           VarDecl::None, VarDecl::None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *decl, const Attr *target) {
1001  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
1002    if (attr->getKind() == target->getKind())
1003      return true;
1004
1005  return false;
1006}
1007
1008/// MergeAttributes - append attributes from the Old decl to the New one.
1009static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
1010  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
1011    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
1012      Attr *NewAttr = attr->clone(C);
1013      NewAttr->setInherited(true);
1014      New->addAttr(NewAttr);
1015    }
1016  }
1017}
1018
1019namespace {
1020
1021/// Used in MergeFunctionDecl to keep track of function parameters in
1022/// C.
1023struct GNUCompatibleParamWarning {
1024  ParmVarDecl *OldParm;
1025  ParmVarDecl *NewParm;
1026  QualType PromotedType;
1027};
1028
1029}
1030
1031/// getSpecialMember - get the special member enum for a method.
1032Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1033  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1034    if (Ctor->isCopyConstructor())
1035      return Sema::CXXCopyConstructor;
1036
1037    return Sema::CXXConstructor;
1038  }
1039
1040  if (isa<CXXDestructorDecl>(MD))
1041    return Sema::CXXDestructor;
1042
1043  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1044  return Sema::CXXCopyAssignment;
1045}
1046
1047/// canRedefineFunction - checks if a function can be redefined. Currently,
1048/// only extern inline functions can be redefined, and even then only in
1049/// GNU89 mode.
1050static bool canRedefineFunction(const FunctionDecl *FD,
1051                                const LangOptions& LangOpts) {
1052  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1053          FD->isInlineSpecified() &&
1054          FD->getStorageClass() == FunctionDecl::Extern);
1055}
1056
1057/// MergeFunctionDecl - We just parsed a function 'New' from
1058/// declarator D which has the same name and scope as a previous
1059/// declaration 'Old'.  Figure out how to resolve this situation,
1060/// merging decls or emitting diagnostics as appropriate.
1061///
1062/// In C++, New and Old must be declarations that are not
1063/// overloaded. Use IsOverload to determine whether New and Old are
1064/// overloaded, and to select the Old declaration that New should be
1065/// merged with.
1066///
1067/// Returns true if there was an error, false otherwise.
1068bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1069  // Verify the old decl was also a function.
1070  FunctionDecl *Old = 0;
1071  if (FunctionTemplateDecl *OldFunctionTemplate
1072        = dyn_cast<FunctionTemplateDecl>(OldD))
1073    Old = OldFunctionTemplate->getTemplatedDecl();
1074  else
1075    Old = dyn_cast<FunctionDecl>(OldD);
1076  if (!Old) {
1077    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1078      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1079      Diag(Shadow->getTargetDecl()->getLocation(),
1080           diag::note_using_decl_target);
1081      Diag(Shadow->getUsingDecl()->getLocation(),
1082           diag::note_using_decl) << 0;
1083      return true;
1084    }
1085
1086    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1087      << New->getDeclName();
1088    Diag(OldD->getLocation(), diag::note_previous_definition);
1089    return true;
1090  }
1091
1092  // Determine whether the previous declaration was a definition,
1093  // implicit declaration, or a declaration.
1094  diag::kind PrevDiag;
1095  if (Old->isThisDeclarationADefinition())
1096    PrevDiag = diag::note_previous_definition;
1097  else if (Old->isImplicit())
1098    PrevDiag = diag::note_previous_implicit_declaration;
1099  else
1100    PrevDiag = diag::note_previous_declaration;
1101
1102  QualType OldQType = Context.getCanonicalType(Old->getType());
1103  QualType NewQType = Context.getCanonicalType(New->getType());
1104
1105  // Don't complain about this if we're in GNU89 mode and the old function
1106  // is an extern inline function.
1107  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1108      New->getStorageClass() == FunctionDecl::Static &&
1109      Old->getStorageClass() != FunctionDecl::Static &&
1110      !canRedefineFunction(Old, getLangOptions())) {
1111    Diag(New->getLocation(), diag::err_static_non_static)
1112      << New;
1113    Diag(Old->getLocation(), PrevDiag);
1114    return true;
1115  }
1116
1117  // If a function is first declared with a calling convention, but is
1118  // later declared or defined without one, the second decl assumes the
1119  // calling convention of the first.
1120  //
1121  // For the new decl, we have to look at the NON-canonical type to tell the
1122  // difference between a function that really doesn't have a calling
1123  // convention and one that is declared cdecl. That's because in
1124  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1125  // because it is the default calling convention.
1126  //
1127  // Note also that we DO NOT return at this point, because we still have
1128  // other tests to run.
1129  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1130  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1131  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1132  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1133  if (OldTypeInfo.getCC() != CC_Default &&
1134      NewTypeInfo.getCC() == CC_Default) {
1135    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1136    New->setType(NewQType);
1137    NewQType = Context.getCanonicalType(NewQType);
1138  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1139                                     NewTypeInfo.getCC())) {
1140    // Calling conventions really aren't compatible, so complain.
1141    Diag(New->getLocation(), diag::err_cconv_change)
1142      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1143      << (OldTypeInfo.getCC() == CC_Default)
1144      << (OldTypeInfo.getCC() == CC_Default ? "" :
1145          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1146    Diag(Old->getLocation(), diag::note_previous_declaration);
1147    return true;
1148  }
1149
1150  // FIXME: diagnose the other way around?
1151  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1152    NewQType = Context.getNoReturnType(NewQType);
1153    New->setType(NewQType);
1154    assert(NewQType.isCanonical());
1155  }
1156
1157  // Merge regparm attribute.
1158  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1159    if (NewType->getRegParmType()) {
1160      Diag(New->getLocation(), diag::err_regparm_mismatch)
1161        << NewType->getRegParmType()
1162        << OldType->getRegParmType();
1163      Diag(Old->getLocation(), diag::note_previous_declaration);
1164      return true;
1165    }
1166
1167    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1168    New->setType(NewQType);
1169    assert(NewQType.isCanonical());
1170  }
1171
1172  if (getLangOptions().CPlusPlus) {
1173    // (C++98 13.1p2):
1174    //   Certain function declarations cannot be overloaded:
1175    //     -- Function declarations that differ only in the return type
1176    //        cannot be overloaded.
1177    QualType OldReturnType
1178      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1179    QualType NewReturnType
1180      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1181    QualType ResQT;
1182    if (OldReturnType != NewReturnType) {
1183      if (NewReturnType->isObjCObjectPointerType()
1184          && OldReturnType->isObjCObjectPointerType())
1185        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1186      if (ResQT.isNull()) {
1187        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1188        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1189        return true;
1190      }
1191      else
1192        NewQType = ResQT;
1193    }
1194
1195    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1196    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1197    if (OldMethod && NewMethod) {
1198      // Preserve triviality.
1199      NewMethod->setTrivial(OldMethod->isTrivial());
1200
1201      bool isFriend = NewMethod->getFriendObjectKind();
1202
1203      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1204        //    -- Member function declarations with the same name and the
1205        //       same parameter types cannot be overloaded if any of them
1206        //       is a static member function declaration.
1207        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1208          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1209          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210          return true;
1211        }
1212
1213        // C++ [class.mem]p1:
1214        //   [...] A member shall not be declared twice in the
1215        //   member-specification, except that a nested class or member
1216        //   class template can be declared and then later defined.
1217        unsigned NewDiag;
1218        if (isa<CXXConstructorDecl>(OldMethod))
1219          NewDiag = diag::err_constructor_redeclared;
1220        else if (isa<CXXDestructorDecl>(NewMethod))
1221          NewDiag = diag::err_destructor_redeclared;
1222        else if (isa<CXXConversionDecl>(NewMethod))
1223          NewDiag = diag::err_conv_function_redeclared;
1224        else
1225          NewDiag = diag::err_member_redeclared;
1226
1227        Diag(New->getLocation(), NewDiag);
1228        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1229
1230      // Complain if this is an explicit declaration of a special
1231      // member that was initially declared implicitly.
1232      //
1233      // As an exception, it's okay to befriend such methods in order
1234      // to permit the implicit constructor/destructor/operator calls.
1235      } else if (OldMethod->isImplicit()) {
1236        if (isFriend) {
1237          NewMethod->setImplicit();
1238        } else {
1239          Diag(NewMethod->getLocation(),
1240               diag::err_definition_of_implicitly_declared_member)
1241            << New << getSpecialMember(OldMethod);
1242          return true;
1243        }
1244      }
1245    }
1246
1247    // (C++98 8.3.5p3):
1248    //   All declarations for a function shall agree exactly in both the
1249    //   return type and the parameter-type-list.
1250    // attributes should be ignored when comparing.
1251    if (Context.getNoReturnType(OldQType, false) ==
1252        Context.getNoReturnType(NewQType, false))
1253      return MergeCompatibleFunctionDecls(New, Old);
1254
1255    // Fall through for conflicting redeclarations and redefinitions.
1256  }
1257
1258  // C: Function types need to be compatible, not identical. This handles
1259  // duplicate function decls like "void f(int); void f(enum X);" properly.
1260  if (!getLangOptions().CPlusPlus &&
1261      Context.typesAreCompatible(OldQType, NewQType)) {
1262    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1263    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1264    const FunctionProtoType *OldProto = 0;
1265    if (isa<FunctionNoProtoType>(NewFuncType) &&
1266        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1267      // The old declaration provided a function prototype, but the
1268      // new declaration does not. Merge in the prototype.
1269      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1270      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1271                                                 OldProto->arg_type_end());
1272      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1273                                         ParamTypes.data(), ParamTypes.size(),
1274                                         OldProto->isVariadic(),
1275                                         OldProto->getTypeQuals(),
1276                                         false, false, 0, 0,
1277                                         OldProto->getExtInfo());
1278      New->setType(NewQType);
1279      New->setHasInheritedPrototype();
1280
1281      // Synthesize a parameter for each argument type.
1282      llvm::SmallVector<ParmVarDecl*, 16> Params;
1283      for (FunctionProtoType::arg_type_iterator
1284             ParamType = OldProto->arg_type_begin(),
1285             ParamEnd = OldProto->arg_type_end();
1286           ParamType != ParamEnd; ++ParamType) {
1287        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1288                                                 SourceLocation(), 0,
1289                                                 *ParamType, /*TInfo=*/0,
1290                                                 VarDecl::None, VarDecl::None,
1291                                                 0);
1292        Param->setImplicit();
1293        Params.push_back(Param);
1294      }
1295
1296      New->setParams(Params.data(), Params.size());
1297    }
1298
1299    return MergeCompatibleFunctionDecls(New, Old);
1300  }
1301
1302  // GNU C permits a K&R definition to follow a prototype declaration
1303  // if the declared types of the parameters in the K&R definition
1304  // match the types in the prototype declaration, even when the
1305  // promoted types of the parameters from the K&R definition differ
1306  // from the types in the prototype. GCC then keeps the types from
1307  // the prototype.
1308  //
1309  // If a variadic prototype is followed by a non-variadic K&R definition,
1310  // the K&R definition becomes variadic.  This is sort of an edge case, but
1311  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1312  // C99 6.9.1p8.
1313  if (!getLangOptions().CPlusPlus &&
1314      Old->hasPrototype() && !New->hasPrototype() &&
1315      New->getType()->getAs<FunctionProtoType>() &&
1316      Old->getNumParams() == New->getNumParams()) {
1317    llvm::SmallVector<QualType, 16> ArgTypes;
1318    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1319    const FunctionProtoType *OldProto
1320      = Old->getType()->getAs<FunctionProtoType>();
1321    const FunctionProtoType *NewProto
1322      = New->getType()->getAs<FunctionProtoType>();
1323
1324    // Determine whether this is the GNU C extension.
1325    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1326                                               NewProto->getResultType());
1327    bool LooseCompatible = !MergedReturn.isNull();
1328    for (unsigned Idx = 0, End = Old->getNumParams();
1329         LooseCompatible && Idx != End; ++Idx) {
1330      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1331      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1332      if (Context.typesAreCompatible(OldParm->getType(),
1333                                     NewProto->getArgType(Idx))) {
1334        ArgTypes.push_back(NewParm->getType());
1335      } else if (Context.typesAreCompatible(OldParm->getType(),
1336                                            NewParm->getType(),
1337                                            /*CompareUnqualified=*/true)) {
1338        GNUCompatibleParamWarning Warn
1339          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1340        Warnings.push_back(Warn);
1341        ArgTypes.push_back(NewParm->getType());
1342      } else
1343        LooseCompatible = false;
1344    }
1345
1346    if (LooseCompatible) {
1347      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1348        Diag(Warnings[Warn].NewParm->getLocation(),
1349             diag::ext_param_promoted_not_compatible_with_prototype)
1350          << Warnings[Warn].PromotedType
1351          << Warnings[Warn].OldParm->getType();
1352        if (Warnings[Warn].OldParm->getLocation().isValid())
1353          Diag(Warnings[Warn].OldParm->getLocation(),
1354               diag::note_previous_declaration);
1355      }
1356
1357      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1358                                           ArgTypes.size(),
1359                                           OldProto->isVariadic(), 0,
1360                                           false, false, 0, 0,
1361                                           OldProto->getExtInfo()));
1362      return MergeCompatibleFunctionDecls(New, Old);
1363    }
1364
1365    // Fall through to diagnose conflicting types.
1366  }
1367
1368  // A function that has already been declared has been redeclared or defined
1369  // with a different type- show appropriate diagnostic
1370  if (unsigned BuiltinID = Old->getBuiltinID()) {
1371    // The user has declared a builtin function with an incompatible
1372    // signature.
1373    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1374      // The function the user is redeclaring is a library-defined
1375      // function like 'malloc' or 'printf'. Warn about the
1376      // redeclaration, then pretend that we don't know about this
1377      // library built-in.
1378      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1379      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1380        << Old << Old->getType();
1381      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1382      Old->setInvalidDecl();
1383      return false;
1384    }
1385
1386    PrevDiag = diag::note_previous_builtin_declaration;
1387  }
1388
1389  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1390  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1391  return true;
1392}
1393
1394/// \brief Completes the merge of two function declarations that are
1395/// known to be compatible.
1396///
1397/// This routine handles the merging of attributes and other
1398/// properties of function declarations form the old declaration to
1399/// the new declaration, once we know that New is in fact a
1400/// redeclaration of Old.
1401///
1402/// \returns false
1403bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1404  // Merge the attributes
1405  MergeAttributes(New, Old, Context);
1406
1407  // Merge the storage class.
1408  if (Old->getStorageClass() != FunctionDecl::Extern &&
1409      Old->getStorageClass() != FunctionDecl::None)
1410    New->setStorageClass(Old->getStorageClass());
1411
1412  // Merge "pure" flag.
1413  if (Old->isPure())
1414    New->setPure();
1415
1416  // Merge the "deleted" flag.
1417  if (Old->isDeleted())
1418    New->setDeleted();
1419
1420  if (getLangOptions().CPlusPlus)
1421    return MergeCXXFunctionDecl(New, Old);
1422
1423  return false;
1424}
1425
1426/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1427/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1428/// situation, merging decls or emitting diagnostics as appropriate.
1429///
1430/// Tentative definition rules (C99 6.9.2p2) are checked by
1431/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1432/// definitions here, since the initializer hasn't been attached.
1433///
1434void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1435  // If the new decl is already invalid, don't do any other checking.
1436  if (New->isInvalidDecl())
1437    return;
1438
1439  // Verify the old decl was also a variable.
1440  VarDecl *Old = 0;
1441  if (!Previous.isSingleResult() ||
1442      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1443    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1444      << New->getDeclName();
1445    Diag(Previous.getRepresentativeDecl()->getLocation(),
1446         diag::note_previous_definition);
1447    return New->setInvalidDecl();
1448  }
1449
1450  MergeAttributes(New, Old, Context);
1451
1452  // Merge the types
1453  QualType MergedT;
1454  if (getLangOptions().CPlusPlus) {
1455    if (Context.hasSameType(New->getType(), Old->getType()))
1456      MergedT = New->getType();
1457    // C++ [basic.link]p10:
1458    //   [...] the types specified by all declarations referring to a given
1459    //   object or function shall be identical, except that declarations for an
1460    //   array object can specify array types that differ by the presence or
1461    //   absence of a major array bound (8.3.4).
1462    else if (Old->getType()->isIncompleteArrayType() &&
1463             New->getType()->isArrayType()) {
1464      CanQual<ArrayType> OldArray
1465        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1466      CanQual<ArrayType> NewArray
1467        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1468      if (OldArray->getElementType() == NewArray->getElementType())
1469        MergedT = New->getType();
1470    } else if (Old->getType()->isArrayType() &&
1471             New->getType()->isIncompleteArrayType()) {
1472      CanQual<ArrayType> OldArray
1473        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1474      CanQual<ArrayType> NewArray
1475        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1476      if (OldArray->getElementType() == NewArray->getElementType())
1477        MergedT = Old->getType();
1478    } else if (New->getType()->isObjCObjectPointerType()
1479               && Old->getType()->isObjCObjectPointerType()) {
1480        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1481    }
1482  } else {
1483    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1484  }
1485  if (MergedT.isNull()) {
1486    Diag(New->getLocation(), diag::err_redefinition_different_type)
1487      << New->getDeclName();
1488    Diag(Old->getLocation(), diag::note_previous_definition);
1489    return New->setInvalidDecl();
1490  }
1491  New->setType(MergedT);
1492
1493  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1494  if (New->getStorageClass() == VarDecl::Static &&
1495      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1496    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1497    Diag(Old->getLocation(), diag::note_previous_definition);
1498    return New->setInvalidDecl();
1499  }
1500  // C99 6.2.2p4:
1501  //   For an identifier declared with the storage-class specifier
1502  //   extern in a scope in which a prior declaration of that
1503  //   identifier is visible,23) if the prior declaration specifies
1504  //   internal or external linkage, the linkage of the identifier at
1505  //   the later declaration is the same as the linkage specified at
1506  //   the prior declaration. If no prior declaration is visible, or
1507  //   if the prior declaration specifies no linkage, then the
1508  //   identifier has external linkage.
1509  if (New->hasExternalStorage() && Old->hasLinkage())
1510    /* Okay */;
1511  else if (New->getStorageClass() != VarDecl::Static &&
1512           Old->getStorageClass() == VarDecl::Static) {
1513    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1514    Diag(Old->getLocation(), diag::note_previous_definition);
1515    return New->setInvalidDecl();
1516  }
1517
1518  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1519
1520  // FIXME: The test for external storage here seems wrong? We still
1521  // need to check for mismatches.
1522  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1523      // Don't complain about out-of-line definitions of static members.
1524      !(Old->getLexicalDeclContext()->isRecord() &&
1525        !New->getLexicalDeclContext()->isRecord())) {
1526    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1527    Diag(Old->getLocation(), diag::note_previous_definition);
1528    return New->setInvalidDecl();
1529  }
1530
1531  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1532    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1533    Diag(Old->getLocation(), diag::note_previous_definition);
1534  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1535    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1536    Diag(Old->getLocation(), diag::note_previous_definition);
1537  }
1538
1539  // C++ doesn't have tentative definitions, so go right ahead and check here.
1540  const VarDecl *Def;
1541  if (getLangOptions().CPlusPlus &&
1542      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1543      (Def = Old->getDefinition())) {
1544    Diag(New->getLocation(), diag::err_redefinition)
1545      << New->getDeclName();
1546    Diag(Def->getLocation(), diag::note_previous_definition);
1547    New->setInvalidDecl();
1548    return;
1549  }
1550  // c99 6.2.2 P4.
1551  // For an identifier declared with the storage-class specifier extern in a
1552  // scope in which a prior declaration of that identifier is visible, if
1553  // the prior declaration specifies internal or external linkage, the linkage
1554  // of the identifier at the later declaration is the same as the linkage
1555  // specified at the prior declaration.
1556  // FIXME. revisit this code.
1557  if (New->hasExternalStorage() &&
1558      Old->getLinkage() == InternalLinkage &&
1559      New->getDeclContext() == Old->getDeclContext())
1560    New->setStorageClass(Old->getStorageClass());
1561
1562  // Keep a chain of previous declarations.
1563  New->setPreviousDeclaration(Old);
1564
1565  // Inherit access appropriately.
1566  New->setAccess(Old->getAccess());
1567}
1568
1569/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1570/// no declarator (e.g. "struct foo;") is parsed.
1571Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1572                                                 DeclSpec &DS) {
1573  // FIXME: Error on auto/register at file scope
1574  // FIXME: Error on inline/virtual/explicit
1575  // FIXME: Warn on useless __thread
1576  // FIXME: Warn on useless const/volatile
1577  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1578  // FIXME: Warn on useless attributes
1579  Decl *TagD = 0;
1580  TagDecl *Tag = 0;
1581  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1582      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1583      DS.getTypeSpecType() == DeclSpec::TST_union ||
1584      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1585    TagD = static_cast<Decl *>(DS.getTypeRep());
1586
1587    if (!TagD) // We probably had an error
1588      return DeclPtrTy();
1589
1590    // Note that the above type specs guarantee that the
1591    // type rep is a Decl, whereas in many of the others
1592    // it's a Type.
1593    Tag = dyn_cast<TagDecl>(TagD);
1594  }
1595
1596  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1597    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1598    // or incomplete types shall not be restrict-qualified."
1599    if (TypeQuals & DeclSpec::TQ_restrict)
1600      Diag(DS.getRestrictSpecLoc(),
1601           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1602           << DS.getSourceRange();
1603  }
1604
1605  if (DS.isFriendSpecified()) {
1606    // If we're dealing with a class template decl, assume that the
1607    // template routines are handling it.
1608    if (TagD && isa<ClassTemplateDecl>(TagD))
1609      return DeclPtrTy();
1610    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1611  }
1612
1613  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1614    // If there are attributes in the DeclSpec, apply them to the record.
1615    if (const AttributeList *AL = DS.getAttributes())
1616      ProcessDeclAttributeList(S, Record, AL);
1617
1618    if (!Record->getDeclName() && Record->isDefinition() &&
1619        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1620      if (getLangOptions().CPlusPlus ||
1621          Record->getDeclContext()->isRecord())
1622        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1623
1624      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1625        << DS.getSourceRange();
1626    }
1627
1628    // Microsoft allows unnamed struct/union fields. Don't complain
1629    // about them.
1630    // FIXME: Should we support Microsoft's extensions in this area?
1631    if (Record->getDeclName() && getLangOptions().Microsoft)
1632      return DeclPtrTy::make(Tag);
1633  }
1634
1635  if (getLangOptions().CPlusPlus &&
1636      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1637    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1638      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1639          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1640        Diag(Enum->getLocation(), diag::ext_no_declarators)
1641          << DS.getSourceRange();
1642
1643  if (!DS.isMissingDeclaratorOk() &&
1644      DS.getTypeSpecType() != DeclSpec::TST_error) {
1645    // Warn about typedefs of enums without names, since this is an
1646    // extension in both Microsoft and GNU.
1647    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1648        Tag && isa<EnumDecl>(Tag)) {
1649      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1650        << DS.getSourceRange();
1651      return DeclPtrTy::make(Tag);
1652    }
1653
1654    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655      << DS.getSourceRange();
1656  }
1657
1658  return DeclPtrTy::make(TagD);
1659}
1660
1661/// We are trying to inject an anonymous member into the given scope;
1662/// check if there's an existing declaration that can't be overloaded.
1663///
1664/// \return true if this is a forbidden redeclaration
1665static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1666                                         Scope *S,
1667                                         DeclContext *Owner,
1668                                         DeclarationName Name,
1669                                         SourceLocation NameLoc,
1670                                         unsigned diagnostic) {
1671  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1672                 Sema::ForRedeclaration);
1673  if (!SemaRef.LookupName(R, S)) return false;
1674
1675  if (R.getAsSingle<TagDecl>())
1676    return false;
1677
1678  // Pick a representative declaration.
1679  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1680  if (PrevDecl && Owner->isRecord()) {
1681    RecordDecl *Record = cast<RecordDecl>(Owner);
1682    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1683      return false;
1684  }
1685
1686  SemaRef.Diag(NameLoc, diagnostic) << Name;
1687  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1688
1689  return true;
1690}
1691
1692/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1693/// anonymous struct or union AnonRecord into the owning context Owner
1694/// and scope S. This routine will be invoked just after we realize
1695/// that an unnamed union or struct is actually an anonymous union or
1696/// struct, e.g.,
1697///
1698/// @code
1699/// union {
1700///   int i;
1701///   float f;
1702/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1703///    // f into the surrounding scope.x
1704/// @endcode
1705///
1706/// This routine is recursive, injecting the names of nested anonymous
1707/// structs/unions into the owning context and scope as well.
1708static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1709                                                DeclContext *Owner,
1710                                                RecordDecl *AnonRecord,
1711                                                AccessSpecifier AS) {
1712  unsigned diagKind
1713    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1714                            : diag::err_anonymous_struct_member_redecl;
1715
1716  bool Invalid = false;
1717  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1718                               FEnd = AnonRecord->field_end();
1719       F != FEnd; ++F) {
1720    if ((*F)->getDeclName()) {
1721      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1722                                       (*F)->getLocation(), diagKind)) {
1723        // C++ [class.union]p2:
1724        //   The names of the members of an anonymous union shall be
1725        //   distinct from the names of any other entity in the
1726        //   scope in which the anonymous union is declared.
1727        Invalid = true;
1728      } else {
1729        // C++ [class.union]p2:
1730        //   For the purpose of name lookup, after the anonymous union
1731        //   definition, the members of the anonymous union are
1732        //   considered to have been defined in the scope in which the
1733        //   anonymous union is declared.
1734        Owner->makeDeclVisibleInContext(*F);
1735        S->AddDecl(Sema::DeclPtrTy::make(*F));
1736        SemaRef.IdResolver.AddDecl(*F);
1737
1738        // That includes picking up the appropriate access specifier.
1739        if (AS != AS_none) (*F)->setAccess(AS);
1740      }
1741    } else if (const RecordType *InnerRecordType
1742                 = (*F)->getType()->getAs<RecordType>()) {
1743      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1744      if (InnerRecord->isAnonymousStructOrUnion())
1745        Invalid = Invalid ||
1746          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1747                                              InnerRecord, AS);
1748    }
1749  }
1750
1751  return Invalid;
1752}
1753
1754/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1755/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1756/// illegal input values are mapped to VarDecl::None.
1757static VarDecl::StorageClass
1758StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1759  switch (StorageClassSpec) {
1760  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1761  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1762  case DeclSpec::SCS_static:         return VarDecl::Static;
1763  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1764  case DeclSpec::SCS_register:       return VarDecl::Register;
1765  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1766    // Illegal SCSs map to None: error reporting is up to the caller.
1767  case DeclSpec::SCS_mutable:        // Fall through.
1768  case DeclSpec::SCS_typedef:        return VarDecl::None;
1769  }
1770  llvm_unreachable("unknown storage class specifier");
1771}
1772
1773/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1774/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1775/// illegal input values are mapped to FunctionDecl::None.
1776static FunctionDecl::StorageClass
1777StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1778  switch (StorageClassSpec) {
1779  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1780  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1781  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1782  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1783    // Illegal SCSs map to None: error reporting is up to the caller.
1784  case DeclSpec::SCS_auto:           // Fall through.
1785  case DeclSpec::SCS_mutable:        // Fall through.
1786  case DeclSpec::SCS_register:       // Fall through.
1787  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1788  }
1789  llvm_unreachable("unknown storage class specifier");
1790}
1791
1792/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1793/// anonymous structure or union. Anonymous unions are a C++ feature
1794/// (C++ [class.union]) and a GNU C extension; anonymous structures
1795/// are a GNU C and GNU C++ extension.
1796Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1797                                                  AccessSpecifier AS,
1798                                                  RecordDecl *Record) {
1799  DeclContext *Owner = Record->getDeclContext();
1800
1801  // Diagnose whether this anonymous struct/union is an extension.
1802  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1803    Diag(Record->getLocation(), diag::ext_anonymous_union);
1804  else if (!Record->isUnion())
1805    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1806
1807  // C and C++ require different kinds of checks for anonymous
1808  // structs/unions.
1809  bool Invalid = false;
1810  if (getLangOptions().CPlusPlus) {
1811    const char* PrevSpec = 0;
1812    unsigned DiagID;
1813    // C++ [class.union]p3:
1814    //   Anonymous unions declared in a named namespace or in the
1815    //   global namespace shall be declared static.
1816    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1817        (isa<TranslationUnitDecl>(Owner) ||
1818         (isa<NamespaceDecl>(Owner) &&
1819          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1820      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1821      Invalid = true;
1822
1823      // Recover by adding 'static'.
1824      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1825                             PrevSpec, DiagID);
1826    }
1827    // C++ [class.union]p3:
1828    //   A storage class is not allowed in a declaration of an
1829    //   anonymous union in a class scope.
1830    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1831             isa<RecordDecl>(Owner)) {
1832      Diag(DS.getStorageClassSpecLoc(),
1833           diag::err_anonymous_union_with_storage_spec);
1834      Invalid = true;
1835
1836      // Recover by removing the storage specifier.
1837      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1838                             PrevSpec, DiagID);
1839    }
1840
1841    // C++ [class.union]p2:
1842    //   The member-specification of an anonymous union shall only
1843    //   define non-static data members. [Note: nested types and
1844    //   functions cannot be declared within an anonymous union. ]
1845    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1846                                 MemEnd = Record->decls_end();
1847         Mem != MemEnd; ++Mem) {
1848      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1849        // C++ [class.union]p3:
1850        //   An anonymous union shall not have private or protected
1851        //   members (clause 11).
1852        assert(FD->getAccess() != AS_none);
1853        if (FD->getAccess() != AS_public) {
1854          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1855            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1856          Invalid = true;
1857        }
1858
1859        if (CheckNontrivialField(FD))
1860          Invalid = true;
1861      } else if ((*Mem)->isImplicit()) {
1862        // Any implicit members are fine.
1863      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1864        // This is a type that showed up in an
1865        // elaborated-type-specifier inside the anonymous struct or
1866        // union, but which actually declares a type outside of the
1867        // anonymous struct or union. It's okay.
1868      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1869        if (!MemRecord->isAnonymousStructOrUnion() &&
1870            MemRecord->getDeclName()) {
1871          // This is a nested type declaration.
1872          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1873            << (int)Record->isUnion();
1874          Invalid = true;
1875        }
1876      } else if (isa<AccessSpecDecl>(*Mem)) {
1877        // Any access specifier is fine.
1878      } else {
1879        // We have something that isn't a non-static data
1880        // member. Complain about it.
1881        unsigned DK = diag::err_anonymous_record_bad_member;
1882        if (isa<TypeDecl>(*Mem))
1883          DK = diag::err_anonymous_record_with_type;
1884        else if (isa<FunctionDecl>(*Mem))
1885          DK = diag::err_anonymous_record_with_function;
1886        else if (isa<VarDecl>(*Mem))
1887          DK = diag::err_anonymous_record_with_static;
1888        Diag((*Mem)->getLocation(), DK)
1889            << (int)Record->isUnion();
1890          Invalid = true;
1891      }
1892    }
1893  }
1894
1895  if (!Record->isUnion() && !Owner->isRecord()) {
1896    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1897      << (int)getLangOptions().CPlusPlus;
1898    Invalid = true;
1899  }
1900
1901  // Mock up a declarator.
1902  Declarator Dc(DS, Declarator::TypeNameContext);
1903  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1904  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1905
1906  // Create a declaration for this anonymous struct/union.
1907  NamedDecl *Anon = 0;
1908  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1909    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1910                             /*IdentifierInfo=*/0,
1911                             Context.getTypeDeclType(Record),
1912                             TInfo,
1913                             /*BitWidth=*/0, /*Mutable=*/false);
1914    Anon->setAccess(AS);
1915    if (getLangOptions().CPlusPlus) {
1916      FieldCollector->Add(cast<FieldDecl>(Anon));
1917      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1918        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1919    }
1920  } else {
1921    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1922    assert(SCSpec != DeclSpec::SCS_typedef &&
1923           "Parser allowed 'typedef' as storage class VarDecl.");
1924    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1925    if (SCSpec == DeclSpec::SCS_mutable) {
1926      // mutable can only appear on non-static class members, so it's always
1927      // an error here
1928      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1929      Invalid = true;
1930      SC = VarDecl::None;
1931    }
1932    SCSpec = DS.getStorageClassSpecAsWritten();
1933    VarDecl::StorageClass SCAsWritten
1934      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1935
1936    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1937                           /*IdentifierInfo=*/0,
1938                           Context.getTypeDeclType(Record),
1939                           TInfo, SC, SCAsWritten);
1940  }
1941  Anon->setImplicit();
1942
1943  // Add the anonymous struct/union object to the current
1944  // context. We'll be referencing this object when we refer to one of
1945  // its members.
1946  Owner->addDecl(Anon);
1947
1948  // Inject the members of the anonymous struct/union into the owning
1949  // context and into the identifier resolver chain for name lookup
1950  // purposes.
1951  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1952    Invalid = true;
1953
1954  // Mark this as an anonymous struct/union type. Note that we do not
1955  // do this until after we have already checked and injected the
1956  // members of this anonymous struct/union type, because otherwise
1957  // the members could be injected twice: once by DeclContext when it
1958  // builds its lookup table, and once by
1959  // InjectAnonymousStructOrUnionMembers.
1960  Record->setAnonymousStructOrUnion(true);
1961
1962  if (Invalid)
1963    Anon->setInvalidDecl();
1964
1965  return DeclPtrTy::make(Anon);
1966}
1967
1968
1969/// GetNameForDeclarator - Determine the full declaration name for the
1970/// given Declarator.
1971DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1972  return GetNameFromUnqualifiedId(D.getName());
1973}
1974
1975/// \brief Retrieves the declaration name from a parsed unqualified-id.
1976DeclarationNameInfo
1977Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1978  DeclarationNameInfo NameInfo;
1979  NameInfo.setLoc(Name.StartLocation);
1980
1981  switch (Name.getKind()) {
1982
1983  case UnqualifiedId::IK_Identifier:
1984    NameInfo.setName(Name.Identifier);
1985    NameInfo.setLoc(Name.StartLocation);
1986    return NameInfo;
1987
1988  case UnqualifiedId::IK_OperatorFunctionId:
1989    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
1990                                           Name.OperatorFunctionId.Operator));
1991    NameInfo.setLoc(Name.StartLocation);
1992    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
1993      = Name.OperatorFunctionId.SymbolLocations[0];
1994    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
1995      = Name.EndLocation.getRawEncoding();
1996    return NameInfo;
1997
1998  case UnqualifiedId::IK_LiteralOperatorId:
1999    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2000                                                           Name.Identifier));
2001    NameInfo.setLoc(Name.StartLocation);
2002    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2003    return NameInfo;
2004
2005  case UnqualifiedId::IK_ConversionFunctionId: {
2006    TypeSourceInfo *TInfo;
2007    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2008    if (Ty.isNull())
2009      return DeclarationNameInfo();
2010    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2011                                               Context.getCanonicalType(Ty)));
2012    NameInfo.setLoc(Name.StartLocation);
2013    NameInfo.setNamedTypeInfo(TInfo);
2014    return NameInfo;
2015  }
2016
2017  case UnqualifiedId::IK_ConstructorName: {
2018    TypeSourceInfo *TInfo;
2019    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2020    if (Ty.isNull())
2021      return DeclarationNameInfo();
2022    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2023                                              Context.getCanonicalType(Ty)));
2024    NameInfo.setLoc(Name.StartLocation);
2025    NameInfo.setNamedTypeInfo(TInfo);
2026    return NameInfo;
2027  }
2028
2029  case UnqualifiedId::IK_ConstructorTemplateId: {
2030    // In well-formed code, we can only have a constructor
2031    // template-id that refers to the current context, so go there
2032    // to find the actual type being constructed.
2033    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2034    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2035      return DeclarationNameInfo();
2036
2037    // Determine the type of the class being constructed.
2038    QualType CurClassType = Context.getTypeDeclType(CurClass);
2039
2040    // FIXME: Check two things: that the template-id names the same type as
2041    // CurClassType, and that the template-id does not occur when the name
2042    // was qualified.
2043
2044    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2045                                    Context.getCanonicalType(CurClassType)));
2046    NameInfo.setLoc(Name.StartLocation);
2047    // FIXME: should we retrieve TypeSourceInfo?
2048    NameInfo.setNamedTypeInfo(0);
2049    return NameInfo;
2050  }
2051
2052  case UnqualifiedId::IK_DestructorName: {
2053    TypeSourceInfo *TInfo;
2054    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2055    if (Ty.isNull())
2056      return DeclarationNameInfo();
2057    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2058                                              Context.getCanonicalType(Ty)));
2059    NameInfo.setLoc(Name.StartLocation);
2060    NameInfo.setNamedTypeInfo(TInfo);
2061    return NameInfo;
2062  }
2063
2064  case UnqualifiedId::IK_TemplateId: {
2065    TemplateName TName
2066      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2067    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2068    return Context.getNameForTemplate(TName, TNameLoc);
2069  }
2070
2071  } // switch (Name.getKind())
2072
2073  assert(false && "Unknown name kind");
2074  return DeclarationNameInfo();
2075}
2076
2077/// isNearlyMatchingFunction - Determine whether the C++ functions
2078/// Declaration and Definition are "nearly" matching. This heuristic
2079/// is used to improve diagnostics in the case where an out-of-line
2080/// function definition doesn't match any declaration within
2081/// the class or namespace.
2082static bool isNearlyMatchingFunction(ASTContext &Context,
2083                                     FunctionDecl *Declaration,
2084                                     FunctionDecl *Definition) {
2085  if (Declaration->param_size() != Definition->param_size())
2086    return false;
2087  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2088    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2089    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2090
2091    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2092                                        DefParamTy.getNonReferenceType()))
2093      return false;
2094  }
2095
2096  return true;
2097}
2098
2099/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2100/// declarator needs to be rebuilt in the current instantiation.
2101/// Any bits of declarator which appear before the name are valid for
2102/// consideration here.  That's specifically the type in the decl spec
2103/// and the base type in any member-pointer chunks.
2104static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2105                                                    DeclarationName Name) {
2106  // The types we specifically need to rebuild are:
2107  //   - typenames, typeofs, and decltypes
2108  //   - types which will become injected class names
2109  // Of course, we also need to rebuild any type referencing such a
2110  // type.  It's safest to just say "dependent", but we call out a
2111  // few cases here.
2112
2113  DeclSpec &DS = D.getMutableDeclSpec();
2114  switch (DS.getTypeSpecType()) {
2115  case DeclSpec::TST_typename:
2116  case DeclSpec::TST_typeofType:
2117  case DeclSpec::TST_typeofExpr:
2118  case DeclSpec::TST_decltype: {
2119    // Grab the type from the parser.
2120    TypeSourceInfo *TSI = 0;
2121    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2122    if (T.isNull() || !T->isDependentType()) break;
2123
2124    // Make sure there's a type source info.  This isn't really much
2125    // of a waste; most dependent types should have type source info
2126    // attached already.
2127    if (!TSI)
2128      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2129
2130    // Rebuild the type in the current instantiation.
2131    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2132    if (!TSI) return true;
2133
2134    // Store the new type back in the decl spec.
2135    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2136    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2137    break;
2138  }
2139
2140  default:
2141    // Nothing to do for these decl specs.
2142    break;
2143  }
2144
2145  // It doesn't matter what order we do this in.
2146  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2147    DeclaratorChunk &Chunk = D.getTypeObject(I);
2148
2149    // The only type information in the declarator which can come
2150    // before the declaration name is the base type of a member
2151    // pointer.
2152    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2153      continue;
2154
2155    // Rebuild the scope specifier in-place.
2156    CXXScopeSpec &SS = Chunk.Mem.Scope();
2157    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2158      return true;
2159  }
2160
2161  return false;
2162}
2163
2164Sema::DeclPtrTy
2165Sema::HandleDeclarator(Scope *S, Declarator &D,
2166                       MultiTemplateParamsArg TemplateParamLists,
2167                       bool IsFunctionDefinition) {
2168  // TODO: consider using NameInfo for diagnostic.
2169  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2170  DeclarationName Name = NameInfo.getName();
2171
2172  // All of these full declarators require an identifier.  If it doesn't have
2173  // one, the ParsedFreeStandingDeclSpec action should be used.
2174  if (!Name) {
2175    if (!D.isInvalidType())  // Reject this if we think it is valid.
2176      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2177           diag::err_declarator_need_ident)
2178        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2179    return DeclPtrTy();
2180  }
2181
2182  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2183  // we find one that is.
2184  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2185         (S->getFlags() & Scope::TemplateParamScope) != 0)
2186    S = S->getParent();
2187
2188  DeclContext *DC = CurContext;
2189  if (D.getCXXScopeSpec().isInvalid())
2190    D.setInvalidType();
2191  else if (D.getCXXScopeSpec().isSet()) {
2192    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2193    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2194    if (!DC) {
2195      // If we could not compute the declaration context, it's because the
2196      // declaration context is dependent but does not refer to a class,
2197      // class template, or class template partial specialization. Complain
2198      // and return early, to avoid the coming semantic disaster.
2199      Diag(D.getIdentifierLoc(),
2200           diag::err_template_qualified_declarator_no_match)
2201        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2202        << D.getCXXScopeSpec().getRange();
2203      return DeclPtrTy();
2204    }
2205
2206    bool IsDependentContext = DC->isDependentContext();
2207
2208    if (!IsDependentContext &&
2209        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2210      return DeclPtrTy();
2211
2212    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2213      Diag(D.getIdentifierLoc(),
2214           diag::err_member_def_undefined_record)
2215        << Name << DC << D.getCXXScopeSpec().getRange();
2216      D.setInvalidType();
2217    }
2218
2219    // Check whether we need to rebuild the type of the given
2220    // declaration in the current instantiation.
2221    if (EnteringContext && IsDependentContext &&
2222        TemplateParamLists.size() != 0) {
2223      ContextRAII SavedContext(*this, DC);
2224      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2225        D.setInvalidType();
2226    }
2227  }
2228
2229  NamedDecl *New;
2230
2231  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2232  QualType R = TInfo->getType();
2233
2234  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2235                        ForRedeclaration);
2236
2237  // See if this is a redefinition of a variable in the same scope.
2238  if (!D.getCXXScopeSpec().isSet()) {
2239    bool IsLinkageLookup = false;
2240
2241    // If the declaration we're planning to build will be a function
2242    // or object with linkage, then look for another declaration with
2243    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2244    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2245      /* Do nothing*/;
2246    else if (R->isFunctionType()) {
2247      if (CurContext->isFunctionOrMethod() ||
2248          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2249        IsLinkageLookup = true;
2250    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2251      IsLinkageLookup = true;
2252    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2253             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2254      IsLinkageLookup = true;
2255
2256    if (IsLinkageLookup)
2257      Previous.clear(LookupRedeclarationWithLinkage);
2258
2259    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2260  } else { // Something like "int foo::x;"
2261    LookupQualifiedName(Previous, DC);
2262
2263    // Don't consider using declarations as previous declarations for
2264    // out-of-line members.
2265    RemoveUsingDecls(Previous);
2266
2267    // C++ 7.3.1.2p2:
2268    // Members (including explicit specializations of templates) of a named
2269    // namespace can also be defined outside that namespace by explicit
2270    // qualification of the name being defined, provided that the entity being
2271    // defined was already declared in the namespace and the definition appears
2272    // after the point of declaration in a namespace that encloses the
2273    // declarations namespace.
2274    //
2275    // Note that we only check the context at this point. We don't yet
2276    // have enough information to make sure that PrevDecl is actually
2277    // the declaration we want to match. For example, given:
2278    //
2279    //   class X {
2280    //     void f();
2281    //     void f(float);
2282    //   };
2283    //
2284    //   void X::f(int) { } // ill-formed
2285    //
2286    // In this case, PrevDecl will point to the overload set
2287    // containing the two f's declared in X, but neither of them
2288    // matches.
2289
2290    // First check whether we named the global scope.
2291    if (isa<TranslationUnitDecl>(DC)) {
2292      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2293        << Name << D.getCXXScopeSpec().getRange();
2294    } else {
2295      DeclContext *Cur = CurContext;
2296      while (isa<LinkageSpecDecl>(Cur))
2297        Cur = Cur->getParent();
2298      if (!Cur->Encloses(DC)) {
2299        // The qualifying scope doesn't enclose the original declaration.
2300        // Emit diagnostic based on current scope.
2301        SourceLocation L = D.getIdentifierLoc();
2302        SourceRange R = D.getCXXScopeSpec().getRange();
2303        if (isa<FunctionDecl>(Cur))
2304          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2305        else
2306          Diag(L, diag::err_invalid_declarator_scope)
2307            << Name << cast<NamedDecl>(DC) << R;
2308        D.setInvalidType();
2309      }
2310    }
2311  }
2312
2313  if (Previous.isSingleResult() &&
2314      Previous.getFoundDecl()->isTemplateParameter()) {
2315    // Maybe we will complain about the shadowed template parameter.
2316    if (!D.isInvalidType())
2317      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2318                                          Previous.getFoundDecl()))
2319        D.setInvalidType();
2320
2321    // Just pretend that we didn't see the previous declaration.
2322    Previous.clear();
2323  }
2324
2325  // In C++, the previous declaration we find might be a tag type
2326  // (class or enum). In this case, the new declaration will hide the
2327  // tag type. Note that this does does not apply if we're declaring a
2328  // typedef (C++ [dcl.typedef]p4).
2329  if (Previous.isSingleTagDecl() &&
2330      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2331    Previous.clear();
2332
2333  bool Redeclaration = false;
2334  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2335    if (TemplateParamLists.size()) {
2336      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2337      return DeclPtrTy();
2338    }
2339
2340    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2341  } else if (R->isFunctionType()) {
2342    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2343                                  move(TemplateParamLists),
2344                                  IsFunctionDefinition, Redeclaration);
2345  } else {
2346    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2347                                  move(TemplateParamLists),
2348                                  Redeclaration);
2349  }
2350
2351  if (New == 0)
2352    return DeclPtrTy();
2353
2354  // If this has an identifier and is not an invalid redeclaration or
2355  // function template specialization, add it to the scope stack.
2356  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2357    PushOnScopeChains(New, S);
2358
2359  return DeclPtrTy::make(New);
2360}
2361
2362/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2363/// types into constant array types in certain situations which would otherwise
2364/// be errors (for GCC compatibility).
2365static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2366                                                    ASTContext &Context,
2367                                                    bool &SizeIsNegative) {
2368  // This method tries to turn a variable array into a constant
2369  // array even when the size isn't an ICE.  This is necessary
2370  // for compatibility with code that depends on gcc's buggy
2371  // constant expression folding, like struct {char x[(int)(char*)2];}
2372  SizeIsNegative = false;
2373
2374  QualifierCollector Qs;
2375  const Type *Ty = Qs.strip(T);
2376
2377  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2378    QualType Pointee = PTy->getPointeeType();
2379    QualType FixedType =
2380        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2381    if (FixedType.isNull()) return FixedType;
2382    FixedType = Context.getPointerType(FixedType);
2383    return Qs.apply(FixedType);
2384  }
2385
2386  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2387  if (!VLATy)
2388    return QualType();
2389  // FIXME: We should probably handle this case
2390  if (VLATy->getElementType()->isVariablyModifiedType())
2391    return QualType();
2392
2393  Expr::EvalResult EvalResult;
2394  if (!VLATy->getSizeExpr() ||
2395      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2396      !EvalResult.Val.isInt())
2397    return QualType();
2398
2399  llvm::APSInt &Res = EvalResult.Val.getInt();
2400  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2401    // TODO: preserve the size expression in declarator info
2402    return Context.getConstantArrayType(VLATy->getElementType(),
2403                                        Res, ArrayType::Normal, 0);
2404  }
2405
2406  SizeIsNegative = true;
2407  return QualType();
2408}
2409
2410/// \brief Register the given locally-scoped external C declaration so
2411/// that it can be found later for redeclarations
2412void
2413Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2414                                       const LookupResult &Previous,
2415                                       Scope *S) {
2416  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2417         "Decl is not a locally-scoped decl!");
2418  // Note that we have a locally-scoped external with this name.
2419  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2420
2421  if (!Previous.isSingleResult())
2422    return;
2423
2424  NamedDecl *PrevDecl = Previous.getFoundDecl();
2425
2426  // If there was a previous declaration of this variable, it may be
2427  // in our identifier chain. Update the identifier chain with the new
2428  // declaration.
2429  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2430    // The previous declaration was found on the identifer resolver
2431    // chain, so remove it from its scope.
2432    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2433      S = S->getParent();
2434
2435    if (S)
2436      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2437  }
2438}
2439
2440/// \brief Diagnose function specifiers on a declaration of an identifier that
2441/// does not identify a function.
2442void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2443  // FIXME: We should probably indicate the identifier in question to avoid
2444  // confusion for constructs like "inline int a(), b;"
2445  if (D.getDeclSpec().isInlineSpecified())
2446    Diag(D.getDeclSpec().getInlineSpecLoc(),
2447         diag::err_inline_non_function);
2448
2449  if (D.getDeclSpec().isVirtualSpecified())
2450    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2451         diag::err_virtual_non_function);
2452
2453  if (D.getDeclSpec().isExplicitSpecified())
2454    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2455         diag::err_explicit_non_function);
2456}
2457
2458NamedDecl*
2459Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2460                             QualType R,  TypeSourceInfo *TInfo,
2461                             LookupResult &Previous, bool &Redeclaration) {
2462  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2463  if (D.getCXXScopeSpec().isSet()) {
2464    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2465      << D.getCXXScopeSpec().getRange();
2466    D.setInvalidType();
2467    // Pretend we didn't see the scope specifier.
2468    DC = CurContext;
2469    Previous.clear();
2470  }
2471
2472  if (getLangOptions().CPlusPlus) {
2473    // Check that there are no default arguments (C++ only).
2474    CheckExtraCXXDefaultArguments(D);
2475  }
2476
2477  DiagnoseFunctionSpecifiers(D);
2478
2479  if (D.getDeclSpec().isThreadSpecified())
2480    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2481
2482  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2483    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2484      << D.getName().getSourceRange();
2485    return 0;
2486  }
2487
2488  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2489  if (!NewTD) return 0;
2490
2491  // Handle attributes prior to checking for duplicates in MergeVarDecl
2492  ProcessDeclAttributes(S, NewTD, D);
2493
2494  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2495  // then it shall have block scope.
2496  // Note that variably modified types must be fixed before merging the decl so
2497  // that redeclarations will match.
2498  QualType T = NewTD->getUnderlyingType();
2499  if (T->isVariablyModifiedType()) {
2500    setFunctionHasBranchProtectedScope();
2501
2502    if (S->getFnParent() == 0) {
2503      bool SizeIsNegative;
2504      QualType FixedTy =
2505          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2506      if (!FixedTy.isNull()) {
2507        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2508        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2509      } else {
2510        if (SizeIsNegative)
2511          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2512        else if (T->isVariableArrayType())
2513          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2514        else
2515          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2516        NewTD->setInvalidDecl();
2517      }
2518    }
2519  }
2520
2521  // Merge the decl with the existing one if appropriate. If the decl is
2522  // in an outer scope, it isn't the same thing.
2523  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2524  if (!Previous.empty()) {
2525    Redeclaration = true;
2526    MergeTypeDefDecl(NewTD, Previous);
2527  }
2528
2529  // If this is the C FILE type, notify the AST context.
2530  if (IdentifierInfo *II = NewTD->getIdentifier())
2531    if (!NewTD->isInvalidDecl() &&
2532        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2533      if (II->isStr("FILE"))
2534        Context.setFILEDecl(NewTD);
2535      else if (II->isStr("jmp_buf"))
2536        Context.setjmp_bufDecl(NewTD);
2537      else if (II->isStr("sigjmp_buf"))
2538        Context.setsigjmp_bufDecl(NewTD);
2539    }
2540
2541  return NewTD;
2542}
2543
2544/// \brief Determines whether the given declaration is an out-of-scope
2545/// previous declaration.
2546///
2547/// This routine should be invoked when name lookup has found a
2548/// previous declaration (PrevDecl) that is not in the scope where a
2549/// new declaration by the same name is being introduced. If the new
2550/// declaration occurs in a local scope, previous declarations with
2551/// linkage may still be considered previous declarations (C99
2552/// 6.2.2p4-5, C++ [basic.link]p6).
2553///
2554/// \param PrevDecl the previous declaration found by name
2555/// lookup
2556///
2557/// \param DC the context in which the new declaration is being
2558/// declared.
2559///
2560/// \returns true if PrevDecl is an out-of-scope previous declaration
2561/// for a new delcaration with the same name.
2562static bool
2563isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2564                                ASTContext &Context) {
2565  if (!PrevDecl)
2566    return 0;
2567
2568  if (!PrevDecl->hasLinkage())
2569    return false;
2570
2571  if (Context.getLangOptions().CPlusPlus) {
2572    // C++ [basic.link]p6:
2573    //   If there is a visible declaration of an entity with linkage
2574    //   having the same name and type, ignoring entities declared
2575    //   outside the innermost enclosing namespace scope, the block
2576    //   scope declaration declares that same entity and receives the
2577    //   linkage of the previous declaration.
2578    DeclContext *OuterContext = DC->getLookupContext();
2579    if (!OuterContext->isFunctionOrMethod())
2580      // This rule only applies to block-scope declarations.
2581      return false;
2582    else {
2583      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2584      if (PrevOuterContext->isRecord())
2585        // We found a member function: ignore it.
2586        return false;
2587      else {
2588        // Find the innermost enclosing namespace for the new and
2589        // previous declarations.
2590        while (!OuterContext->isFileContext())
2591          OuterContext = OuterContext->getParent();
2592        while (!PrevOuterContext->isFileContext())
2593          PrevOuterContext = PrevOuterContext->getParent();
2594
2595        // The previous declaration is in a different namespace, so it
2596        // isn't the same function.
2597        if (OuterContext->getPrimaryContext() !=
2598            PrevOuterContext->getPrimaryContext())
2599          return false;
2600      }
2601    }
2602  }
2603
2604  return true;
2605}
2606
2607static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2608  CXXScopeSpec &SS = D.getCXXScopeSpec();
2609  if (!SS.isSet()) return;
2610  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2611                       SS.getRange());
2612}
2613
2614NamedDecl*
2615Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2616                              QualType R, TypeSourceInfo *TInfo,
2617                              LookupResult &Previous,
2618                              MultiTemplateParamsArg TemplateParamLists,
2619                              bool &Redeclaration) {
2620  DeclarationName Name = GetNameForDeclarator(D).getName();
2621
2622  // Check that there are no default arguments (C++ only).
2623  if (getLangOptions().CPlusPlus)
2624    CheckExtraCXXDefaultArguments(D);
2625
2626  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2627  assert(SCSpec != DeclSpec::SCS_typedef &&
2628         "Parser allowed 'typedef' as storage class VarDecl.");
2629  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2630  if (SCSpec == DeclSpec::SCS_mutable) {
2631    // mutable can only appear on non-static class members, so it's always
2632    // an error here
2633    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2634    D.setInvalidType();
2635    SC = VarDecl::None;
2636  }
2637  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2638  VarDecl::StorageClass SCAsWritten
2639    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2640
2641  IdentifierInfo *II = Name.getAsIdentifierInfo();
2642  if (!II) {
2643    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2644      << Name.getAsString();
2645    return 0;
2646  }
2647
2648  DiagnoseFunctionSpecifiers(D);
2649
2650  if (!DC->isRecord() && S->getFnParent() == 0) {
2651    // C99 6.9p2: The storage-class specifiers auto and register shall not
2652    // appear in the declaration specifiers in an external declaration.
2653    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2654
2655      // If this is a register variable with an asm label specified, then this
2656      // is a GNU extension.
2657      if (SC == VarDecl::Register && D.getAsmLabel())
2658        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2659      else
2660        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2661      D.setInvalidType();
2662    }
2663  }
2664  if (DC->isRecord() && !CurContext->isRecord()) {
2665    // This is an out-of-line definition of a static data member.
2666    if (SC == VarDecl::Static) {
2667      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2668           diag::err_static_out_of_line)
2669        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2670    } else if (SC == VarDecl::None)
2671      SC = VarDecl::Static;
2672  }
2673  if (SC == VarDecl::Static) {
2674    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2675      if (RD->isLocalClass())
2676        Diag(D.getIdentifierLoc(),
2677             diag::err_static_data_member_not_allowed_in_local_class)
2678          << Name << RD->getDeclName();
2679    }
2680  }
2681
2682  // Match up the template parameter lists with the scope specifier, then
2683  // determine whether we have a template or a template specialization.
2684  bool isExplicitSpecialization = false;
2685  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2686  bool Invalid = false;
2687  if (TemplateParameterList *TemplateParams
2688        = MatchTemplateParametersToScopeSpecifier(
2689                                  D.getDeclSpec().getSourceRange().getBegin(),
2690                                                  D.getCXXScopeSpec(),
2691                        (TemplateParameterList**)TemplateParamLists.get(),
2692                                                   TemplateParamLists.size(),
2693                                                  /*never a friend*/ false,
2694                                                  isExplicitSpecialization,
2695                                                  Invalid)) {
2696    // All but one template parameter lists have been matching.
2697    --NumMatchedTemplateParamLists;
2698
2699    if (TemplateParams->size() > 0) {
2700      // There is no such thing as a variable template.
2701      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2702        << II
2703        << SourceRange(TemplateParams->getTemplateLoc(),
2704                       TemplateParams->getRAngleLoc());
2705      return 0;
2706    } else {
2707      // There is an extraneous 'template<>' for this variable. Complain
2708      // about it, but allow the declaration of the variable.
2709      Diag(TemplateParams->getTemplateLoc(),
2710           diag::err_template_variable_noparams)
2711        << II
2712        << SourceRange(TemplateParams->getTemplateLoc(),
2713                       TemplateParams->getRAngleLoc());
2714
2715      isExplicitSpecialization = true;
2716    }
2717  }
2718
2719  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2720                                   II, R, TInfo, SC, SCAsWritten);
2721
2722  if (D.isInvalidType() || Invalid)
2723    NewVD->setInvalidDecl();
2724
2725  SetNestedNameSpecifier(NewVD, D);
2726
2727  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2728    NewVD->setTemplateParameterListsInfo(Context,
2729                                         NumMatchedTemplateParamLists,
2730                        (TemplateParameterList**)TemplateParamLists.release());
2731  }
2732
2733  if (D.getDeclSpec().isThreadSpecified()) {
2734    if (NewVD->hasLocalStorage())
2735      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2736    else if (!Context.Target.isTLSSupported())
2737      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2738    else
2739      NewVD->setThreadSpecified(true);
2740  }
2741
2742  // Set the lexical context. If the declarator has a C++ scope specifier, the
2743  // lexical context will be different from the semantic context.
2744  NewVD->setLexicalDeclContext(CurContext);
2745
2746  // Handle attributes prior to checking for duplicates in MergeVarDecl
2747  ProcessDeclAttributes(S, NewVD, D);
2748
2749  // Handle GNU asm-label extension (encoded as an attribute).
2750  if (Expr *E = (Expr*) D.getAsmLabel()) {
2751    // The parser guarantees this is a string.
2752    StringLiteral *SE = cast<StringLiteral>(E);
2753    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2754  }
2755
2756  // Diagnose shadowed variables before filtering for scope.
2757  if (!D.getCXXScopeSpec().isSet())
2758    CheckShadow(S, NewVD, Previous);
2759
2760  // Don't consider existing declarations that are in a different
2761  // scope and are out-of-semantic-context declarations (if the new
2762  // declaration has linkage).
2763  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2764
2765  // Merge the decl with the existing one if appropriate.
2766  if (!Previous.empty()) {
2767    if (Previous.isSingleResult() &&
2768        isa<FieldDecl>(Previous.getFoundDecl()) &&
2769        D.getCXXScopeSpec().isSet()) {
2770      // The user tried to define a non-static data member
2771      // out-of-line (C++ [dcl.meaning]p1).
2772      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2773        << D.getCXXScopeSpec().getRange();
2774      Previous.clear();
2775      NewVD->setInvalidDecl();
2776    }
2777  } else if (D.getCXXScopeSpec().isSet()) {
2778    // No previous declaration in the qualifying scope.
2779    Diag(D.getIdentifierLoc(), diag::err_no_member)
2780      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2781      << D.getCXXScopeSpec().getRange();
2782    NewVD->setInvalidDecl();
2783  }
2784
2785  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2786
2787  // This is an explicit specialization of a static data member. Check it.
2788  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2789      CheckMemberSpecialization(NewVD, Previous))
2790    NewVD->setInvalidDecl();
2791
2792  // attributes declared post-definition are currently ignored
2793  if (Previous.isSingleResult()) {
2794    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2795    if (Def && (Def = Def->getDefinition()) &&
2796        Def != NewVD && D.hasAttributes()) {
2797      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2798      Diag(Def->getLocation(), diag::note_previous_definition);
2799    }
2800  }
2801
2802  // If this is a locally-scoped extern C variable, update the map of
2803  // such variables.
2804  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2805      !NewVD->isInvalidDecl())
2806    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2807
2808  // If there's a #pragma GCC visibility in scope, and this isn't a class
2809  // member, set the visibility of this variable.
2810  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2811    AddPushedVisibilityAttribute(NewVD);
2812
2813  MarkUnusedFileScopedDecl(NewVD);
2814
2815  return NewVD;
2816}
2817
2818/// \brief Diagnose variable or built-in function shadowing.  Implements
2819/// -Wshadow.
2820///
2821/// This method is called whenever a VarDecl is added to a "useful"
2822/// scope.
2823///
2824/// \param S the scope in which the shadowing name is being declared
2825/// \param R the lookup of the name
2826///
2827void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2828  // Return if warning is ignored.
2829  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2830    return;
2831
2832  // Don't diagnose declarations at file scope.  The scope might not
2833  // have a DeclContext if (e.g.) we're parsing a function prototype.
2834  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2835  if (NewDC && NewDC->isFileContext())
2836    return;
2837
2838  // Only diagnose if we're shadowing an unambiguous field or variable.
2839  if (R.getResultKind() != LookupResult::Found)
2840    return;
2841
2842  NamedDecl* ShadowedDecl = R.getFoundDecl();
2843  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2844    return;
2845
2846  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2847
2848  // Only warn about certain kinds of shadowing for class members.
2849  if (NewDC && NewDC->isRecord()) {
2850    // In particular, don't warn about shadowing non-class members.
2851    if (!OldDC->isRecord())
2852      return;
2853
2854    // TODO: should we warn about static data members shadowing
2855    // static data members from base classes?
2856
2857    // TODO: don't diagnose for inaccessible shadowed members.
2858    // This is hard to do perfectly because we might friend the
2859    // shadowing context, but that's just a false negative.
2860  }
2861
2862  // Determine what kind of declaration we're shadowing.
2863  unsigned Kind;
2864  if (isa<RecordDecl>(OldDC)) {
2865    if (isa<FieldDecl>(ShadowedDecl))
2866      Kind = 3; // field
2867    else
2868      Kind = 2; // static data member
2869  } else if (OldDC->isFileContext())
2870    Kind = 1; // global
2871  else
2872    Kind = 0; // local
2873
2874  DeclarationName Name = R.getLookupName();
2875
2876  // Emit warning and note.
2877  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2878  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2879}
2880
2881/// \brief Check -Wshadow without the advantage of a previous lookup.
2882void Sema::CheckShadow(Scope *S, VarDecl *D) {
2883  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2884                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2885  LookupName(R, S);
2886  CheckShadow(S, D, R);
2887}
2888
2889/// \brief Perform semantic checking on a newly-created variable
2890/// declaration.
2891///
2892/// This routine performs all of the type-checking required for a
2893/// variable declaration once it has been built. It is used both to
2894/// check variables after they have been parsed and their declarators
2895/// have been translated into a declaration, and to check variables
2896/// that have been instantiated from a template.
2897///
2898/// Sets NewVD->isInvalidDecl() if an error was encountered.
2899void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2900                                    LookupResult &Previous,
2901                                    bool &Redeclaration) {
2902  // If the decl is already known invalid, don't check it.
2903  if (NewVD->isInvalidDecl())
2904    return;
2905
2906  QualType T = NewVD->getType();
2907
2908  if (T->isObjCObjectType()) {
2909    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2910    return NewVD->setInvalidDecl();
2911  }
2912
2913  // Emit an error if an address space was applied to decl with local storage.
2914  // This includes arrays of objects with address space qualifiers, but not
2915  // automatic variables that point to other address spaces.
2916  // ISO/IEC TR 18037 S5.1.2
2917  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2918    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2919    return NewVD->setInvalidDecl();
2920  }
2921
2922  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2923      && !NewVD->hasAttr<BlocksAttr>())
2924    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2925
2926  bool isVM = T->isVariablyModifiedType();
2927  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2928      NewVD->hasAttr<BlocksAttr>())
2929    setFunctionHasBranchProtectedScope();
2930
2931  if ((isVM && NewVD->hasLinkage()) ||
2932      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2933    bool SizeIsNegative;
2934    QualType FixedTy =
2935        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2936
2937    if (FixedTy.isNull() && T->isVariableArrayType()) {
2938      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2939      // FIXME: This won't give the correct result for
2940      // int a[10][n];
2941      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2942
2943      if (NewVD->isFileVarDecl())
2944        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2945        << SizeRange;
2946      else if (NewVD->getStorageClass() == VarDecl::Static)
2947        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2948        << SizeRange;
2949      else
2950        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2951        << SizeRange;
2952      return NewVD->setInvalidDecl();
2953    }
2954
2955    if (FixedTy.isNull()) {
2956      if (NewVD->isFileVarDecl())
2957        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2958      else
2959        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2960      return NewVD->setInvalidDecl();
2961    }
2962
2963    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2964    NewVD->setType(FixedTy);
2965  }
2966
2967  if (Previous.empty() && NewVD->isExternC()) {
2968    // Since we did not find anything by this name and we're declaring
2969    // an extern "C" variable, look for a non-visible extern "C"
2970    // declaration with the same name.
2971    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2972      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2973    if (Pos != LocallyScopedExternalDecls.end())
2974      Previous.addDecl(Pos->second);
2975  }
2976
2977  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2978    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2979      << T;
2980    return NewVD->setInvalidDecl();
2981  }
2982
2983  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2984    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2985    return NewVD->setInvalidDecl();
2986  }
2987
2988  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2989    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2990    return NewVD->setInvalidDecl();
2991  }
2992
2993  // Function pointers and references cannot have qualified function type, only
2994  // function pointer-to-members can do that.
2995  QualType Pointee;
2996  unsigned PtrOrRef = 0;
2997  if (const PointerType *Ptr = T->getAs<PointerType>())
2998    Pointee = Ptr->getPointeeType();
2999  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3000    Pointee = Ref->getPointeeType();
3001    PtrOrRef = 1;
3002  }
3003  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3004      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3005    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3006        << PtrOrRef;
3007    return NewVD->setInvalidDecl();
3008  }
3009
3010  if (!Previous.empty()) {
3011    Redeclaration = true;
3012    MergeVarDecl(NewVD, Previous);
3013  }
3014}
3015
3016/// \brief Data used with FindOverriddenMethod
3017struct FindOverriddenMethodData {
3018  Sema *S;
3019  CXXMethodDecl *Method;
3020};
3021
3022/// \brief Member lookup function that determines whether a given C++
3023/// method overrides a method in a base class, to be used with
3024/// CXXRecordDecl::lookupInBases().
3025static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3026                                 CXXBasePath &Path,
3027                                 void *UserData) {
3028  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3029
3030  FindOverriddenMethodData *Data
3031    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3032
3033  DeclarationName Name = Data->Method->getDeclName();
3034
3035  // FIXME: Do we care about other names here too?
3036  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3037    // We really want to find the base class destructor here.
3038    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3039    CanQualType CT = Data->S->Context.getCanonicalType(T);
3040
3041    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3042  }
3043
3044  for (Path.Decls = BaseRecord->lookup(Name);
3045       Path.Decls.first != Path.Decls.second;
3046       ++Path.Decls.first) {
3047    NamedDecl *D = *Path.Decls.first;
3048    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3049      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3050        return true;
3051    }
3052  }
3053
3054  return false;
3055}
3056
3057/// AddOverriddenMethods - See if a method overrides any in the base classes,
3058/// and if so, check that it's a valid override and remember it.
3059void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3060  // Look for virtual methods in base classes that this method might override.
3061  CXXBasePaths Paths;
3062  FindOverriddenMethodData Data;
3063  Data.Method = MD;
3064  Data.S = this;
3065  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3066    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3067         E = Paths.found_decls_end(); I != E; ++I) {
3068      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3069        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3070            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3071            !CheckOverridingFunctionAttributes(MD, OldMD))
3072          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3073      }
3074    }
3075  }
3076}
3077
3078NamedDecl*
3079Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3080                              QualType R, TypeSourceInfo *TInfo,
3081                              LookupResult &Previous,
3082                              MultiTemplateParamsArg TemplateParamLists,
3083                              bool IsFunctionDefinition, bool &Redeclaration) {
3084  assert(R.getTypePtr()->isFunctionType());
3085
3086  // TODO: consider using NameInfo for diagnostic.
3087  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3088  DeclarationName Name = NameInfo.getName();
3089  FunctionDecl::StorageClass SC = FunctionDecl::None;
3090  switch (D.getDeclSpec().getStorageClassSpec()) {
3091  default: assert(0 && "Unknown storage class!");
3092  case DeclSpec::SCS_auto:
3093  case DeclSpec::SCS_register:
3094  case DeclSpec::SCS_mutable:
3095    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3096         diag::err_typecheck_sclass_func);
3097    D.setInvalidType();
3098    break;
3099  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3100  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3101  case DeclSpec::SCS_static: {
3102    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3103      // C99 6.7.1p5:
3104      //   The declaration of an identifier for a function that has
3105      //   block scope shall have no explicit storage-class specifier
3106      //   other than extern
3107      // See also (C++ [dcl.stc]p4).
3108      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3109           diag::err_static_block_func);
3110      SC = FunctionDecl::None;
3111    } else
3112      SC = FunctionDecl::Static;
3113    break;
3114  }
3115  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3116  }
3117
3118  if (D.getDeclSpec().isThreadSpecified())
3119    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3120
3121  bool isFriend = D.getDeclSpec().isFriendSpecified();
3122  bool isInline = D.getDeclSpec().isInlineSpecified();
3123  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3124  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3125
3126  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3127  FunctionDecl::StorageClass SCAsWritten
3128    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3129
3130  // Check that the return type is not an abstract class type.
3131  // For record types, this is done by the AbstractClassUsageDiagnoser once
3132  // the class has been completely parsed.
3133  if (!DC->isRecord() &&
3134      RequireNonAbstractType(D.getIdentifierLoc(),
3135                             R->getAs<FunctionType>()->getResultType(),
3136                             diag::err_abstract_type_in_decl,
3137                             AbstractReturnType))
3138    D.setInvalidType();
3139
3140  // Do not allow returning a objc interface by-value.
3141  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3142    Diag(D.getIdentifierLoc(),
3143         diag::err_object_cannot_be_passed_returned_by_value) << 0
3144      << R->getAs<FunctionType>()->getResultType();
3145    D.setInvalidType();
3146  }
3147
3148  bool isVirtualOkay = false;
3149  FunctionDecl *NewFD;
3150
3151  if (isFriend) {
3152    // C++ [class.friend]p5
3153    //   A function can be defined in a friend declaration of a
3154    //   class . . . . Such a function is implicitly inline.
3155    isInline |= IsFunctionDefinition;
3156  }
3157
3158  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3159    // This is a C++ constructor declaration.
3160    assert(DC->isRecord() &&
3161           "Constructors can only be declared in a member context");
3162
3163    R = CheckConstructorDeclarator(D, R, SC);
3164
3165    // Create the new declaration
3166    NewFD = CXXConstructorDecl::Create(Context,
3167                                       cast<CXXRecordDecl>(DC),
3168                                       NameInfo, R, TInfo,
3169                                       isExplicit, isInline,
3170                                       /*isImplicitlyDeclared=*/false);
3171  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3172    // This is a C++ destructor declaration.
3173    if (DC->isRecord()) {
3174      R = CheckDestructorDeclarator(D, R, SC);
3175
3176      NewFD = CXXDestructorDecl::Create(Context,
3177                                        cast<CXXRecordDecl>(DC),
3178                                        NameInfo, R,
3179                                        isInline,
3180                                        /*isImplicitlyDeclared=*/false);
3181      NewFD->setTypeSourceInfo(TInfo);
3182
3183      isVirtualOkay = true;
3184    } else {
3185      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3186
3187      // Create a FunctionDecl to satisfy the function definition parsing
3188      // code path.
3189      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3190                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3191                                   /*hasPrototype=*/true);
3192      D.setInvalidType();
3193    }
3194  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3195    if (!DC->isRecord()) {
3196      Diag(D.getIdentifierLoc(),
3197           diag::err_conv_function_not_member);
3198      return 0;
3199    }
3200
3201    CheckConversionDeclarator(D, R, SC);
3202    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3203                                      NameInfo, R, TInfo,
3204                                      isInline, isExplicit);
3205
3206    isVirtualOkay = true;
3207  } else if (DC->isRecord()) {
3208    // If the of the function is the same as the name of the record, then this
3209    // must be an invalid constructor that has a return type.
3210    // (The parser checks for a return type and makes the declarator a
3211    // constructor if it has no return type).
3212    // must have an invalid constructor that has a return type
3213    if (Name.getAsIdentifierInfo() &&
3214        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3215      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3216        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3217        << SourceRange(D.getIdentifierLoc());
3218      return 0;
3219    }
3220
3221    bool isStatic = SC == FunctionDecl::Static;
3222
3223    // [class.free]p1:
3224    // Any allocation function for a class T is a static member
3225    // (even if not explicitly declared static).
3226    if (Name.getCXXOverloadedOperator() == OO_New ||
3227        Name.getCXXOverloadedOperator() == OO_Array_New)
3228      isStatic = true;
3229
3230    // [class.free]p6 Any deallocation function for a class X is a static member
3231    // (even if not explicitly declared static).
3232    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3233        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3234      isStatic = true;
3235
3236    // This is a C++ method declaration.
3237    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3238                                  NameInfo, R, TInfo,
3239                                  isStatic, SCAsWritten, isInline);
3240
3241    isVirtualOkay = !isStatic;
3242  } else {
3243    // Determine whether the function was written with a
3244    // prototype. This true when:
3245    //   - we're in C++ (where every function has a prototype),
3246    //   - there is a prototype in the declarator, or
3247    //   - the type R of the function is some kind of typedef or other reference
3248    //     to a type name (which eventually refers to a function type).
3249    bool HasPrototype =
3250       getLangOptions().CPlusPlus ||
3251       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3252       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3253
3254    NewFD = FunctionDecl::Create(Context, DC,
3255                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3256                                 HasPrototype);
3257  }
3258
3259  if (D.isInvalidType())
3260    NewFD->setInvalidDecl();
3261
3262  SetNestedNameSpecifier(NewFD, D);
3263
3264  // Set the lexical context. If the declarator has a C++
3265  // scope specifier, or is the object of a friend declaration, the
3266  // lexical context will be different from the semantic context.
3267  NewFD->setLexicalDeclContext(CurContext);
3268
3269  // Match up the template parameter lists with the scope specifier, then
3270  // determine whether we have a template or a template specialization.
3271  FunctionTemplateDecl *FunctionTemplate = 0;
3272  bool isExplicitSpecialization = false;
3273  bool isFunctionTemplateSpecialization = false;
3274  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3275  bool Invalid = false;
3276  if (TemplateParameterList *TemplateParams
3277        = MatchTemplateParametersToScopeSpecifier(
3278                                  D.getDeclSpec().getSourceRange().getBegin(),
3279                                  D.getCXXScopeSpec(),
3280                           (TemplateParameterList**)TemplateParamLists.get(),
3281                                                  TemplateParamLists.size(),
3282                                                  isFriend,
3283                                                  isExplicitSpecialization,
3284                                                  Invalid)) {
3285    // All but one template parameter lists have been matching.
3286    --NumMatchedTemplateParamLists;
3287
3288    if (TemplateParams->size() > 0) {
3289      // This is a function template
3290
3291      // Check that we can declare a template here.
3292      if (CheckTemplateDeclScope(S, TemplateParams))
3293        return 0;
3294
3295      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3296                                                      NewFD->getLocation(),
3297                                                      Name, TemplateParams,
3298                                                      NewFD);
3299      FunctionTemplate->setLexicalDeclContext(CurContext);
3300      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3301    } else {
3302      // This is a function template specialization.
3303      isFunctionTemplateSpecialization = true;
3304
3305      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3306      if (isFriend && isFunctionTemplateSpecialization) {
3307        // We want to remove the "template<>", found here.
3308        SourceRange RemoveRange = TemplateParams->getSourceRange();
3309
3310        // If we remove the template<> and the name is not a
3311        // template-id, we're actually silently creating a problem:
3312        // the friend declaration will refer to an untemplated decl,
3313        // and clearly the user wants a template specialization.  So
3314        // we need to insert '<>' after the name.
3315        SourceLocation InsertLoc;
3316        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3317          InsertLoc = D.getName().getSourceRange().getEnd();
3318          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3319        }
3320
3321        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3322          << Name << RemoveRange
3323          << FixItHint::CreateRemoval(RemoveRange)
3324          << FixItHint::CreateInsertion(InsertLoc, "<>");
3325      }
3326    }
3327  }
3328
3329  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3330    NewFD->setTemplateParameterListsInfo(Context,
3331                                         NumMatchedTemplateParamLists,
3332                        (TemplateParameterList**)TemplateParamLists.release());
3333  }
3334
3335  if (Invalid) {
3336    NewFD->setInvalidDecl();
3337    if (FunctionTemplate)
3338      FunctionTemplate->setInvalidDecl();
3339  }
3340
3341  // C++ [dcl.fct.spec]p5:
3342  //   The virtual specifier shall only be used in declarations of
3343  //   nonstatic class member functions that appear within a
3344  //   member-specification of a class declaration; see 10.3.
3345  //
3346  if (isVirtual && !NewFD->isInvalidDecl()) {
3347    if (!isVirtualOkay) {
3348       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3349           diag::err_virtual_non_function);
3350    } else if (!CurContext->isRecord()) {
3351      // 'virtual' was specified outside of the class.
3352      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3353        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3354    } else {
3355      // Okay: Add virtual to the method.
3356      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3357      CurClass->setMethodAsVirtual(NewFD);
3358    }
3359  }
3360
3361  // C++ [dcl.fct.spec]p3:
3362  //  The inline specifier shall not appear on a block scope function declaration.
3363  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3364    if (CurContext->isFunctionOrMethod()) {
3365      // 'inline' is not allowed on block scope function declaration.
3366      Diag(D.getDeclSpec().getInlineSpecLoc(),
3367           diag::err_inline_declaration_block_scope) << Name
3368        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3369    }
3370  }
3371
3372  // C++ [dcl.fct.spec]p6:
3373  //  The explicit specifier shall be used only in the declaration of a
3374  //  constructor or conversion function within its class definition; see 12.3.1
3375  //  and 12.3.2.
3376  if (isExplicit && !NewFD->isInvalidDecl()) {
3377    if (!CurContext->isRecord()) {
3378      // 'explicit' was specified outside of the class.
3379      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3380           diag::err_explicit_out_of_class)
3381        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3382    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3383               !isa<CXXConversionDecl>(NewFD)) {
3384      // 'explicit' was specified on a function that wasn't a constructor
3385      // or conversion function.
3386      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3387           diag::err_explicit_non_ctor_or_conv_function)
3388        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3389    }
3390  }
3391
3392  // Filter out previous declarations that don't match the scope.
3393  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3394
3395  if (isFriend) {
3396    // DC is the namespace in which the function is being declared.
3397    assert((DC->isFileContext() || !Previous.empty()) &&
3398           "previously-undeclared friend function being created "
3399           "in a non-namespace context");
3400
3401    // For now, claim that the objects have no previous declaration.
3402    if (FunctionTemplate) {
3403      FunctionTemplate->setObjectOfFriendDecl(false);
3404      FunctionTemplate->setAccess(AS_public);
3405    }
3406    NewFD->setObjectOfFriendDecl(false);
3407    NewFD->setAccess(AS_public);
3408  }
3409
3410  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3411      !CurContext->isRecord()) {
3412    // C++ [class.static]p1:
3413    //   A data or function member of a class may be declared static
3414    //   in a class definition, in which case it is a static member of
3415    //   the class.
3416
3417    // Complain about the 'static' specifier if it's on an out-of-line
3418    // member function definition.
3419    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3420         diag::err_static_out_of_line)
3421      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3422  }
3423
3424  // Handle GNU asm-label extension (encoded as an attribute).
3425  if (Expr *E = (Expr*) D.getAsmLabel()) {
3426    // The parser guarantees this is a string.
3427    StringLiteral *SE = cast<StringLiteral>(E);
3428    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3429  }
3430
3431  // Copy the parameter declarations from the declarator D to the function
3432  // declaration NewFD, if they are available.  First scavenge them into Params.
3433  llvm::SmallVector<ParmVarDecl*, 16> Params;
3434  if (D.getNumTypeObjects() > 0) {
3435    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3436
3437    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3438    // function that takes no arguments, not a function that takes a
3439    // single void argument.
3440    // We let through "const void" here because Sema::GetTypeForDeclarator
3441    // already checks for that case.
3442    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3443        FTI.ArgInfo[0].Param &&
3444        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3445      // Empty arg list, don't push any params.
3446      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3447
3448      // In C++, the empty parameter-type-list must be spelled "void"; a
3449      // typedef of void is not permitted.
3450      if (getLangOptions().CPlusPlus &&
3451          Param->getType().getUnqualifiedType() != Context.VoidTy)
3452        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3453      // FIXME: Leaks decl?
3454    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3455      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3456        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3457        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3458        Param->setDeclContext(NewFD);
3459        Params.push_back(Param);
3460
3461        if (Param->isInvalidDecl())
3462          NewFD->setInvalidDecl();
3463      }
3464    }
3465
3466  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3467    // When we're declaring a function with a typedef, typeof, etc as in the
3468    // following example, we'll need to synthesize (unnamed)
3469    // parameters for use in the declaration.
3470    //
3471    // @code
3472    // typedef void fn(int);
3473    // fn f;
3474    // @endcode
3475
3476    // Synthesize a parameter for each argument type.
3477    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3478         AE = FT->arg_type_end(); AI != AE; ++AI) {
3479      ParmVarDecl *Param =
3480        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3481      Params.push_back(Param);
3482    }
3483  } else {
3484    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3485           "Should not need args for typedef of non-prototype fn");
3486  }
3487  // Finally, we know we have the right number of parameters, install them.
3488  NewFD->setParams(Params.data(), Params.size());
3489
3490  // If the declarator is a template-id, translate the parser's template
3491  // argument list into our AST format.
3492  bool HasExplicitTemplateArgs = false;
3493  TemplateArgumentListInfo TemplateArgs;
3494  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3495    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3496    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3497    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3498    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3499                                       TemplateId->getTemplateArgs(),
3500                                       TemplateId->NumArgs);
3501    translateTemplateArguments(TemplateArgsPtr,
3502                               TemplateArgs);
3503    TemplateArgsPtr.release();
3504
3505    HasExplicitTemplateArgs = true;
3506
3507    if (FunctionTemplate) {
3508      // FIXME: Diagnose function template with explicit template
3509      // arguments.
3510      HasExplicitTemplateArgs = false;
3511    } else if (!isFunctionTemplateSpecialization &&
3512               !D.getDeclSpec().isFriendSpecified()) {
3513      // We have encountered something that the user meant to be a
3514      // specialization (because it has explicitly-specified template
3515      // arguments) but that was not introduced with a "template<>" (or had
3516      // too few of them).
3517      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3518        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3519        << FixItHint::CreateInsertion(
3520                                   D.getDeclSpec().getSourceRange().getBegin(),
3521                                                 "template<> ");
3522      isFunctionTemplateSpecialization = true;
3523    } else {
3524      // "friend void foo<>(int);" is an implicit specialization decl.
3525      isFunctionTemplateSpecialization = true;
3526    }
3527  } else if (isFriend && isFunctionTemplateSpecialization) {
3528    // This combination is only possible in a recovery case;  the user
3529    // wrote something like:
3530    //   template <> friend void foo(int);
3531    // which we're recovering from as if the user had written:
3532    //   friend void foo<>(int);
3533    // Go ahead and fake up a template id.
3534    HasExplicitTemplateArgs = true;
3535    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3536    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3537  }
3538
3539  // If it's a friend (and only if it's a friend), it's possible
3540  // that either the specialized function type or the specialized
3541  // template is dependent, and therefore matching will fail.  In
3542  // this case, don't check the specialization yet.
3543  if (isFunctionTemplateSpecialization && isFriend &&
3544      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3545    assert(HasExplicitTemplateArgs &&
3546           "friend function specialization without template args");
3547    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3548                                                     Previous))
3549      NewFD->setInvalidDecl();
3550  } else if (isFunctionTemplateSpecialization) {
3551    if (CheckFunctionTemplateSpecialization(NewFD,
3552                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3553                                            Previous))
3554      NewFD->setInvalidDecl();
3555  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3556    if (CheckMemberSpecialization(NewFD, Previous))
3557      NewFD->setInvalidDecl();
3558  }
3559
3560  // Perform semantic checking on the function declaration.
3561  bool OverloadableAttrRequired = false; // FIXME: HACK!
3562  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3563                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3564
3565  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3566          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3567         "previous declaration set still overloaded");
3568
3569  NamedDecl *PrincipalDecl = (FunctionTemplate
3570                              ? cast<NamedDecl>(FunctionTemplate)
3571                              : NewFD);
3572
3573  if (isFriend && Redeclaration) {
3574    AccessSpecifier Access = AS_public;
3575    if (!NewFD->isInvalidDecl())
3576      Access = NewFD->getPreviousDeclaration()->getAccess();
3577
3578    NewFD->setAccess(Access);
3579    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3580
3581    PrincipalDecl->setObjectOfFriendDecl(true);
3582  }
3583
3584  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3585      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3586    PrincipalDecl->setNonMemberOperator();
3587
3588  // If we have a function template, check the template parameter
3589  // list. This will check and merge default template arguments.
3590  if (FunctionTemplate) {
3591    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3592    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3593                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3594             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3595                                                : TPC_FunctionTemplate);
3596  }
3597
3598  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3599    // Fake up an access specifier if it's supposed to be a class member.
3600    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3601      NewFD->setAccess(AS_public);
3602
3603    // An out-of-line member function declaration must also be a
3604    // definition (C++ [dcl.meaning]p1).
3605    // Note that this is not the case for explicit specializations of
3606    // function templates or member functions of class templates, per
3607    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3608    // for compatibility with old SWIG code which likes to generate them.
3609    if (!IsFunctionDefinition && !isFriend &&
3610        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3611      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3612        << D.getCXXScopeSpec().getRange();
3613    }
3614    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3615      // The user tried to provide an out-of-line definition for a
3616      // function that is a member of a class or namespace, but there
3617      // was no such member function declared (C++ [class.mfct]p2,
3618      // C++ [namespace.memdef]p2). For example:
3619      //
3620      // class X {
3621      //   void f() const;
3622      // };
3623      //
3624      // void X::f() { } // ill-formed
3625      //
3626      // Complain about this problem, and attempt to suggest close
3627      // matches (e.g., those that differ only in cv-qualifiers and
3628      // whether the parameter types are references).
3629      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3630        << Name << DC << D.getCXXScopeSpec().getRange();
3631      NewFD->setInvalidDecl();
3632
3633      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3634                        ForRedeclaration);
3635      LookupQualifiedName(Prev, DC);
3636      assert(!Prev.isAmbiguous() &&
3637             "Cannot have an ambiguity in previous-declaration lookup");
3638      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3639           Func != FuncEnd; ++Func) {
3640        if (isa<FunctionDecl>(*Func) &&
3641            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3642          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3643      }
3644    }
3645  }
3646
3647  // Handle attributes. We need to have merged decls when handling attributes
3648  // (for example to check for conflicts, etc).
3649  // FIXME: This needs to happen before we merge declarations. Then,
3650  // let attribute merging cope with attribute conflicts.
3651  ProcessDeclAttributes(S, NewFD, D);
3652
3653  // attributes declared post-definition are currently ignored
3654  if (Redeclaration && Previous.isSingleResult()) {
3655    const FunctionDecl *Def;
3656    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3657    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3658      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3659      Diag(Def->getLocation(), diag::note_previous_definition);
3660    }
3661  }
3662
3663  AddKnownFunctionAttributes(NewFD);
3664
3665  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3666    // If a function name is overloadable in C, then every function
3667    // with that name must be marked "overloadable".
3668    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3669      << Redeclaration << NewFD;
3670    if (!Previous.empty())
3671      Diag(Previous.getRepresentativeDecl()->getLocation(),
3672           diag::note_attribute_overloadable_prev_overload);
3673    NewFD->addAttr(::new (Context) OverloadableAttr());
3674  }
3675
3676  if (NewFD->hasAttr<OverloadableAttr>() &&
3677      !NewFD->getType()->getAs<FunctionProtoType>()) {
3678    Diag(NewFD->getLocation(),
3679         diag::err_attribute_overloadable_no_prototype)
3680      << NewFD;
3681
3682    // Turn this into a variadic function with no parameters.
3683    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3684    QualType R = Context.getFunctionType(FT->getResultType(),
3685                                         0, 0, true, 0, false, false, 0, 0,
3686                                         FT->getExtInfo());
3687    NewFD->setType(R);
3688  }
3689
3690  // If there's a #pragma GCC visibility in scope, and this isn't a class
3691  // member, set the visibility of this function.
3692  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3693    AddPushedVisibilityAttribute(NewFD);
3694
3695  // If this is a locally-scoped extern C function, update the
3696  // map of such names.
3697  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3698      && !NewFD->isInvalidDecl())
3699    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3700
3701  // Set this FunctionDecl's range up to the right paren.
3702  NewFD->setLocEnd(D.getSourceRange().getEnd());
3703
3704  if (FunctionTemplate && NewFD->isInvalidDecl())
3705    FunctionTemplate->setInvalidDecl();
3706
3707  if (FunctionTemplate)
3708    return FunctionTemplate;
3709
3710  MarkUnusedFileScopedDecl(NewFD);
3711
3712  return NewFD;
3713}
3714
3715/// \brief Perform semantic checking of a new function declaration.
3716///
3717/// Performs semantic analysis of the new function declaration
3718/// NewFD. This routine performs all semantic checking that does not
3719/// require the actual declarator involved in the declaration, and is
3720/// used both for the declaration of functions as they are parsed
3721/// (called via ActOnDeclarator) and for the declaration of functions
3722/// that have been instantiated via C++ template instantiation (called
3723/// via InstantiateDecl).
3724///
3725/// \param IsExplicitSpecialiation whether this new function declaration is
3726/// an explicit specialization of the previous declaration.
3727///
3728/// This sets NewFD->isInvalidDecl() to true if there was an error.
3729void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3730                                    LookupResult &Previous,
3731                                    bool IsExplicitSpecialization,
3732                                    bool &Redeclaration,
3733                                    bool &OverloadableAttrRequired) {
3734  // If NewFD is already known erroneous, don't do any of this checking.
3735  if (NewFD->isInvalidDecl()) {
3736    // If this is a class member, mark the class invalid immediately.
3737    // This avoids some consistency errors later.
3738    if (isa<CXXMethodDecl>(NewFD))
3739      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3740
3741    return;
3742  }
3743
3744  if (NewFD->getResultType()->isVariablyModifiedType()) {
3745    // Functions returning a variably modified type violate C99 6.7.5.2p2
3746    // because all functions have linkage.
3747    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3748    return NewFD->setInvalidDecl();
3749  }
3750
3751  if (NewFD->isMain())
3752    CheckMain(NewFD);
3753
3754  // Check for a previous declaration of this name.
3755  if (Previous.empty() && NewFD->isExternC()) {
3756    // Since we did not find anything by this name and we're declaring
3757    // an extern "C" function, look for a non-visible extern "C"
3758    // declaration with the same name.
3759    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3760      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3761    if (Pos != LocallyScopedExternalDecls.end())
3762      Previous.addDecl(Pos->second);
3763  }
3764
3765  // Merge or overload the declaration with an existing declaration of
3766  // the same name, if appropriate.
3767  if (!Previous.empty()) {
3768    // Determine whether NewFD is an overload of PrevDecl or
3769    // a declaration that requires merging. If it's an overload,
3770    // there's no more work to do here; we'll just add the new
3771    // function to the scope.
3772
3773    NamedDecl *OldDecl = 0;
3774    if (!AllowOverloadingOfFunction(Previous, Context)) {
3775      Redeclaration = true;
3776      OldDecl = Previous.getFoundDecl();
3777    } else {
3778      if (!getLangOptions().CPlusPlus)
3779        OverloadableAttrRequired = true;
3780
3781      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3782                            /*NewIsUsingDecl*/ false)) {
3783      case Ovl_Match:
3784        Redeclaration = true;
3785        break;
3786
3787      case Ovl_NonFunction:
3788        Redeclaration = true;
3789        break;
3790
3791      case Ovl_Overload:
3792        Redeclaration = false;
3793        break;
3794      }
3795    }
3796
3797    if (Redeclaration) {
3798      // NewFD and OldDecl represent declarations that need to be
3799      // merged.
3800      if (MergeFunctionDecl(NewFD, OldDecl))
3801        return NewFD->setInvalidDecl();
3802
3803      Previous.clear();
3804      Previous.addDecl(OldDecl);
3805
3806      if (FunctionTemplateDecl *OldTemplateDecl
3807                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3808        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3809        FunctionTemplateDecl *NewTemplateDecl
3810          = NewFD->getDescribedFunctionTemplate();
3811        assert(NewTemplateDecl && "Template/non-template mismatch");
3812        if (CXXMethodDecl *Method
3813              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3814          Method->setAccess(OldTemplateDecl->getAccess());
3815          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3816        }
3817
3818        // If this is an explicit specialization of a member that is a function
3819        // template, mark it as a member specialization.
3820        if (IsExplicitSpecialization &&
3821            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3822          NewTemplateDecl->setMemberSpecialization();
3823          assert(OldTemplateDecl->isMemberSpecialization());
3824        }
3825      } else {
3826        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3827          NewFD->setAccess(OldDecl->getAccess());
3828        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3829      }
3830    }
3831  }
3832
3833  // Semantic checking for this function declaration (in isolation).
3834  if (getLangOptions().CPlusPlus) {
3835    // C++-specific checks.
3836    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3837      CheckConstructor(Constructor);
3838    } else if (CXXDestructorDecl *Destructor =
3839                dyn_cast<CXXDestructorDecl>(NewFD)) {
3840      CXXRecordDecl *Record = Destructor->getParent();
3841      QualType ClassType = Context.getTypeDeclType(Record);
3842
3843      // FIXME: Shouldn't we be able to perform this check even when the class
3844      // type is dependent? Both gcc and edg can handle that.
3845      if (!ClassType->isDependentType()) {
3846        DeclarationName Name
3847          = Context.DeclarationNames.getCXXDestructorName(
3848                                        Context.getCanonicalType(ClassType));
3849//         NewFD->getDeclName().dump();
3850//         Name.dump();
3851        if (NewFD->getDeclName() != Name) {
3852          Diag(NewFD->getLocation(), diag::err_destructor_name);
3853          return NewFD->setInvalidDecl();
3854        }
3855      }
3856
3857      Record->setUserDeclaredDestructor(true);
3858      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3859      // user-defined destructor.
3860      Record->setPOD(false);
3861
3862      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3863      // declared destructor.
3864      // FIXME: C++0x: don't do this for "= default" destructors
3865      Record->setHasTrivialDestructor(false);
3866    } else if (CXXConversionDecl *Conversion
3867               = dyn_cast<CXXConversionDecl>(NewFD)) {
3868      ActOnConversionDeclarator(Conversion);
3869    }
3870
3871    // Find any virtual functions that this function overrides.
3872    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3873      if (!Method->isFunctionTemplateSpecialization() &&
3874          !Method->getDescribedFunctionTemplate())
3875        AddOverriddenMethods(Method->getParent(), Method);
3876    }
3877
3878    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3879    if (NewFD->isOverloadedOperator() &&
3880        CheckOverloadedOperatorDeclaration(NewFD))
3881      return NewFD->setInvalidDecl();
3882
3883    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3884    if (NewFD->getLiteralIdentifier() &&
3885        CheckLiteralOperatorDeclaration(NewFD))
3886      return NewFD->setInvalidDecl();
3887
3888    // In C++, check default arguments now that we have merged decls. Unless
3889    // the lexical context is the class, because in this case this is done
3890    // during delayed parsing anyway.
3891    if (!CurContext->isRecord())
3892      CheckCXXDefaultArguments(NewFD);
3893  }
3894}
3895
3896void Sema::CheckMain(FunctionDecl* FD) {
3897  // C++ [basic.start.main]p3:  A program that declares main to be inline
3898  //   or static is ill-formed.
3899  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3900  //   shall not appear in a declaration of main.
3901  // static main is not an error under C99, but we should warn about it.
3902  bool isInline = FD->isInlineSpecified();
3903  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3904  if (isInline || isStatic) {
3905    unsigned diagID = diag::warn_unusual_main_decl;
3906    if (isInline || getLangOptions().CPlusPlus)
3907      diagID = diag::err_unusual_main_decl;
3908
3909    int which = isStatic + (isInline << 1) - 1;
3910    Diag(FD->getLocation(), diagID) << which;
3911  }
3912
3913  QualType T = FD->getType();
3914  assert(T->isFunctionType() && "function decl is not of function type");
3915  const FunctionType* FT = T->getAs<FunctionType>();
3916
3917  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3918    // TODO: add a replacement fixit to turn the return type into 'int'.
3919    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3920    FD->setInvalidDecl(true);
3921  }
3922
3923  // Treat protoless main() as nullary.
3924  if (isa<FunctionNoProtoType>(FT)) return;
3925
3926  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3927  unsigned nparams = FTP->getNumArgs();
3928  assert(FD->getNumParams() == nparams);
3929
3930  bool HasExtraParameters = (nparams > 3);
3931
3932  // Darwin passes an undocumented fourth argument of type char**.  If
3933  // other platforms start sprouting these, the logic below will start
3934  // getting shifty.
3935  if (nparams == 4 &&
3936      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3937    HasExtraParameters = false;
3938
3939  if (HasExtraParameters) {
3940    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3941    FD->setInvalidDecl(true);
3942    nparams = 3;
3943  }
3944
3945  // FIXME: a lot of the following diagnostics would be improved
3946  // if we had some location information about types.
3947
3948  QualType CharPP =
3949    Context.getPointerType(Context.getPointerType(Context.CharTy));
3950  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3951
3952  for (unsigned i = 0; i < nparams; ++i) {
3953    QualType AT = FTP->getArgType(i);
3954
3955    bool mismatch = true;
3956
3957    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3958      mismatch = false;
3959    else if (Expected[i] == CharPP) {
3960      // As an extension, the following forms are okay:
3961      //   char const **
3962      //   char const * const *
3963      //   char * const *
3964
3965      QualifierCollector qs;
3966      const PointerType* PT;
3967      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3968          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3969          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3970        qs.removeConst();
3971        mismatch = !qs.empty();
3972      }
3973    }
3974
3975    if (mismatch) {
3976      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3977      // TODO: suggest replacing given type with expected type
3978      FD->setInvalidDecl(true);
3979    }
3980  }
3981
3982  if (nparams == 1 && !FD->isInvalidDecl()) {
3983    Diag(FD->getLocation(), diag::warn_main_one_arg);
3984  }
3985}
3986
3987bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3988  // FIXME: Need strict checking.  In C89, we need to check for
3989  // any assignment, increment, decrement, function-calls, or
3990  // commas outside of a sizeof.  In C99, it's the same list,
3991  // except that the aforementioned are allowed in unevaluated
3992  // expressions.  Everything else falls under the
3993  // "may accept other forms of constant expressions" exception.
3994  // (We never end up here for C++, so the constant expression
3995  // rules there don't matter.)
3996  if (Init->isConstantInitializer(Context, false))
3997    return false;
3998  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3999    << Init->getSourceRange();
4000  return true;
4001}
4002
4003void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
4004  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
4005}
4006
4007/// AddInitializerToDecl - Adds the initializer Init to the
4008/// declaration dcl. If DirectInit is true, this is C++ direct
4009/// initialization rather than copy initialization.
4010void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
4011  Decl *RealDecl = dcl.getAs<Decl>();
4012  // If there is no declaration, there was an error parsing it.  Just ignore
4013  // the initializer.
4014  if (RealDecl == 0)
4015    return;
4016
4017  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4018    // With declarators parsed the way they are, the parser cannot
4019    // distinguish between a normal initializer and a pure-specifier.
4020    // Thus this grotesque test.
4021    IntegerLiteral *IL;
4022    Expr *Init = static_cast<Expr *>(init.get());
4023    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4024        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4025      CheckPureMethod(Method, Init->getSourceRange());
4026    else {
4027      Diag(Method->getLocation(), diag::err_member_function_initialization)
4028        << Method->getDeclName() << Init->getSourceRange();
4029      Method->setInvalidDecl();
4030    }
4031    return;
4032  }
4033
4034  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4035  if (!VDecl) {
4036    if (getLangOptions().CPlusPlus &&
4037        RealDecl->getLexicalDeclContext()->isRecord() &&
4038        isa<NamedDecl>(RealDecl))
4039      Diag(RealDecl->getLocation(), diag::err_member_initialization)
4040        << cast<NamedDecl>(RealDecl)->getDeclName();
4041    else
4042      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4043    RealDecl->setInvalidDecl();
4044    return;
4045  }
4046
4047  // A definition must end up with a complete type, which means it must be
4048  // complete with the restriction that an array type might be completed by the
4049  // initializer; note that later code assumes this restriction.
4050  QualType BaseDeclType = VDecl->getType();
4051  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4052    BaseDeclType = Array->getElementType();
4053  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4054                          diag::err_typecheck_decl_incomplete_type)) {
4055    RealDecl->setInvalidDecl();
4056    return;
4057  }
4058
4059  // The variable can not have an abstract class type.
4060  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4061                             diag::err_abstract_type_in_decl,
4062                             AbstractVariableType))
4063    VDecl->setInvalidDecl();
4064
4065  const VarDecl *Def;
4066  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4067    Diag(VDecl->getLocation(), diag::err_redefinition)
4068      << VDecl->getDeclName();
4069    Diag(Def->getLocation(), diag::note_previous_definition);
4070    VDecl->setInvalidDecl();
4071    return;
4072  }
4073
4074  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4075    setFunctionHasBranchProtectedScope();
4076
4077  // Take ownership of the expression, now that we're sure we have somewhere
4078  // to put it.
4079  Expr *Init = init.takeAs<Expr>();
4080  assert(Init && "missing initializer");
4081
4082  // Capture the variable that is being initialized and the style of
4083  // initialization.
4084  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4085
4086  // FIXME: Poor source location information.
4087  InitializationKind Kind
4088    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4089                                                   Init->getLocStart(),
4090                                                   Init->getLocEnd())
4091                : InitializationKind::CreateCopy(VDecl->getLocation(),
4092                                                 Init->getLocStart());
4093
4094  // Get the decls type and save a reference for later, since
4095  // CheckInitializerTypes may change it.
4096  QualType DclT = VDecl->getType(), SavT = DclT;
4097  if (VDecl->isBlockVarDecl()) {
4098    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4099      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4100      VDecl->setInvalidDecl();
4101    } else if (!VDecl->isInvalidDecl()) {
4102      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4103      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4104                                          MultiExprArg(*this, (void**)&Init, 1),
4105                                                &DclT);
4106      if (Result.isInvalid()) {
4107        VDecl->setInvalidDecl();
4108        return;
4109      }
4110
4111      Init = Result.takeAs<Expr>();
4112
4113      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4114      // Don't check invalid declarations to avoid emitting useless diagnostics.
4115      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4116        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4117          CheckForConstantInitializer(Init, DclT);
4118      }
4119    }
4120  } else if (VDecl->isStaticDataMember() &&
4121             VDecl->getLexicalDeclContext()->isRecord()) {
4122    // This is an in-class initialization for a static data member, e.g.,
4123    //
4124    // struct S {
4125    //   static const int value = 17;
4126    // };
4127
4128    // Attach the initializer
4129    VDecl->setInit(Init);
4130
4131    // C++ [class.mem]p4:
4132    //   A member-declarator can contain a constant-initializer only
4133    //   if it declares a static member (9.4) of const integral or
4134    //   const enumeration type, see 9.4.2.
4135    QualType T = VDecl->getType();
4136    if (!T->isDependentType() &&
4137        (!Context.getCanonicalType(T).isConstQualified() ||
4138         !T->isIntegralOrEnumerationType())) {
4139      Diag(VDecl->getLocation(), diag::err_member_initialization)
4140        << VDecl->getDeclName() << Init->getSourceRange();
4141      VDecl->setInvalidDecl();
4142    } else {
4143      // C++ [class.static.data]p4:
4144      //   If a static data member is of const integral or const
4145      //   enumeration type, its declaration in the class definition
4146      //   can specify a constant-initializer which shall be an
4147      //   integral constant expression (5.19).
4148      if (!Init->isTypeDependent() &&
4149          !Init->getType()->isIntegralOrEnumerationType()) {
4150        // We have a non-dependent, non-integral or enumeration type.
4151        Diag(Init->getSourceRange().getBegin(),
4152             diag::err_in_class_initializer_non_integral_type)
4153          << Init->getType() << Init->getSourceRange();
4154        VDecl->setInvalidDecl();
4155      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4156        // Check whether the expression is a constant expression.
4157        llvm::APSInt Value;
4158        SourceLocation Loc;
4159        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4160          Diag(Loc, diag::err_in_class_initializer_non_constant)
4161            << Init->getSourceRange();
4162          VDecl->setInvalidDecl();
4163        } else if (!VDecl->getType()->isDependentType())
4164          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4165      }
4166    }
4167  } else if (VDecl->isFileVarDecl()) {
4168    if (VDecl->getStorageClass() == VarDecl::Extern &&
4169        (!getLangOptions().CPlusPlus ||
4170         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4171      Diag(VDecl->getLocation(), diag::warn_extern_init);
4172    if (!VDecl->isInvalidDecl()) {
4173      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4174      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4175                                          MultiExprArg(*this, (void**)&Init, 1),
4176                                                &DclT);
4177      if (Result.isInvalid()) {
4178        VDecl->setInvalidDecl();
4179        return;
4180      }
4181
4182      Init = Result.takeAs<Expr>();
4183    }
4184
4185    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4186    // Don't check invalid declarations to avoid emitting useless diagnostics.
4187    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4188      // C99 6.7.8p4. All file scoped initializers need to be constant.
4189      CheckForConstantInitializer(Init, DclT);
4190    }
4191  }
4192  // If the type changed, it means we had an incomplete type that was
4193  // completed by the initializer. For example:
4194  //   int ary[] = { 1, 3, 5 };
4195  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4196  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4197    VDecl->setType(DclT);
4198    Init->setType(DclT);
4199  }
4200
4201  Init = MaybeCreateCXXExprWithTemporaries(Init);
4202  // Attach the initializer to the decl.
4203  VDecl->setInit(Init);
4204
4205  if (getLangOptions().CPlusPlus) {
4206    if (!VDecl->isInvalidDecl() &&
4207        !VDecl->getDeclContext()->isDependentContext() &&
4208        VDecl->hasGlobalStorage() &&
4209        !Init->isConstantInitializer(Context,
4210                                     VDecl->getType()->isReferenceType()))
4211      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4212        << Init->getSourceRange();
4213
4214    // Make sure we mark the destructor as used if necessary.
4215    QualType InitType = VDecl->getType();
4216    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4217      InitType = Context.getBaseElementType(Array);
4218    if (const RecordType *Record = InitType->getAs<RecordType>())
4219      FinalizeVarWithDestructor(VDecl, Record);
4220  }
4221
4222  return;
4223}
4224
4225/// ActOnInitializerError - Given that there was an error parsing an
4226/// initializer for the given declaration, try to return to some form
4227/// of sanity.
4228void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4229  // Our main concern here is re-establishing invariants like "a
4230  // variable's type is either dependent or complete".
4231  Decl *D = dcl.getAs<Decl>();
4232  if (!D || D->isInvalidDecl()) return;
4233
4234  VarDecl *VD = dyn_cast<VarDecl>(D);
4235  if (!VD) return;
4236
4237  QualType Ty = VD->getType();
4238  if (Ty->isDependentType()) return;
4239
4240  // Require a complete type.
4241  if (RequireCompleteType(VD->getLocation(),
4242                          Context.getBaseElementType(Ty),
4243                          diag::err_typecheck_decl_incomplete_type)) {
4244    VD->setInvalidDecl();
4245    return;
4246  }
4247
4248  // Require an abstract type.
4249  if (RequireNonAbstractType(VD->getLocation(), Ty,
4250                             diag::err_abstract_type_in_decl,
4251                             AbstractVariableType)) {
4252    VD->setInvalidDecl();
4253    return;
4254  }
4255
4256  // Don't bother complaining about constructors or destructors,
4257  // though.
4258}
4259
4260void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4261                                  bool TypeContainsUndeducedAuto) {
4262  Decl *RealDecl = dcl.getAs<Decl>();
4263
4264  // If there is no declaration, there was an error parsing it. Just ignore it.
4265  if (RealDecl == 0)
4266    return;
4267
4268  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4269    QualType Type = Var->getType();
4270
4271    // C++0x [dcl.spec.auto]p3
4272    if (TypeContainsUndeducedAuto) {
4273      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4274        << Var->getDeclName() << Type;
4275      Var->setInvalidDecl();
4276      return;
4277    }
4278
4279    switch (Var->isThisDeclarationADefinition()) {
4280    case VarDecl::Definition:
4281      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4282        break;
4283
4284      // We have an out-of-line definition of a static data member
4285      // that has an in-class initializer, so we type-check this like
4286      // a declaration.
4287      //
4288      // Fall through
4289
4290    case VarDecl::DeclarationOnly:
4291      // It's only a declaration.
4292
4293      // Block scope. C99 6.7p7: If an identifier for an object is
4294      // declared with no linkage (C99 6.2.2p6), the type for the
4295      // object shall be complete.
4296      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4297          !Var->getLinkage() && !Var->isInvalidDecl() &&
4298          RequireCompleteType(Var->getLocation(), Type,
4299                              diag::err_typecheck_decl_incomplete_type))
4300        Var->setInvalidDecl();
4301
4302      // Make sure that the type is not abstract.
4303      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4304          RequireNonAbstractType(Var->getLocation(), Type,
4305                                 diag::err_abstract_type_in_decl,
4306                                 AbstractVariableType))
4307        Var->setInvalidDecl();
4308      return;
4309
4310    case VarDecl::TentativeDefinition:
4311      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4312      // object that has file scope without an initializer, and without a
4313      // storage-class specifier or with the storage-class specifier "static",
4314      // constitutes a tentative definition. Note: A tentative definition with
4315      // external linkage is valid (C99 6.2.2p5).
4316      if (!Var->isInvalidDecl()) {
4317        if (const IncompleteArrayType *ArrayT
4318                                    = Context.getAsIncompleteArrayType(Type)) {
4319          if (RequireCompleteType(Var->getLocation(),
4320                                  ArrayT->getElementType(),
4321                                  diag::err_illegal_decl_array_incomplete_type))
4322            Var->setInvalidDecl();
4323        } else if (Var->getStorageClass() == VarDecl::Static) {
4324          // C99 6.9.2p3: If the declaration of an identifier for an object is
4325          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4326          // declared type shall not be an incomplete type.
4327          // NOTE: code such as the following
4328          //     static struct s;
4329          //     struct s { int a; };
4330          // is accepted by gcc. Hence here we issue a warning instead of
4331          // an error and we do not invalidate the static declaration.
4332          // NOTE: to avoid multiple warnings, only check the first declaration.
4333          if (Var->getPreviousDeclaration() == 0)
4334            RequireCompleteType(Var->getLocation(), Type,
4335                                diag::ext_typecheck_decl_incomplete_type);
4336        }
4337      }
4338
4339      // Record the tentative definition; we're done.
4340      if (!Var->isInvalidDecl())
4341        TentativeDefinitions.push_back(Var);
4342      return;
4343    }
4344
4345    // Provide a specific diagnostic for uninitialized variable
4346    // definitions with incomplete array type.
4347    if (Type->isIncompleteArrayType()) {
4348      Diag(Var->getLocation(),
4349           diag::err_typecheck_incomplete_array_needs_initializer);
4350      Var->setInvalidDecl();
4351      return;
4352    }
4353
4354    // Provide a specific diagnostic for uninitialized variable
4355    // definitions with reference type.
4356    if (Type->isReferenceType()) {
4357      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4358        << Var->getDeclName()
4359        << SourceRange(Var->getLocation(), Var->getLocation());
4360      Var->setInvalidDecl();
4361      return;
4362    }
4363
4364    // Do not attempt to type-check the default initializer for a
4365    // variable with dependent type.
4366    if (Type->isDependentType())
4367      return;
4368
4369    if (Var->isInvalidDecl())
4370      return;
4371
4372    if (RequireCompleteType(Var->getLocation(),
4373                            Context.getBaseElementType(Type),
4374                            diag::err_typecheck_decl_incomplete_type)) {
4375      Var->setInvalidDecl();
4376      return;
4377    }
4378
4379    // The variable can not have an abstract class type.
4380    if (RequireNonAbstractType(Var->getLocation(), Type,
4381                               diag::err_abstract_type_in_decl,
4382                               AbstractVariableType)) {
4383      Var->setInvalidDecl();
4384      return;
4385    }
4386
4387    const RecordType *Record
4388      = Context.getBaseElementType(Type)->getAs<RecordType>();
4389    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4390        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4391      // C++03 [dcl.init]p9:
4392      //   If no initializer is specified for an object, and the
4393      //   object is of (possibly cv-qualified) non-POD class type (or
4394      //   array thereof), the object shall be default-initialized; if
4395      //   the object is of const-qualified type, the underlying class
4396      //   type shall have a user-declared default
4397      //   constructor. Otherwise, if no initializer is specified for
4398      //   a non- static object, the object and its subobjects, if
4399      //   any, have an indeterminate initial value); if the object
4400      //   or any of its subobjects are of const-qualified type, the
4401      //   program is ill-formed.
4402      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4403    } else {
4404      // Check for jumps past the implicit initializer.  C++0x
4405      // clarifies that this applies to a "variable with automatic
4406      // storage duration", not a "local variable".
4407      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4408        setFunctionHasBranchProtectedScope();
4409
4410      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4411      InitializationKind Kind
4412        = InitializationKind::CreateDefault(Var->getLocation());
4413
4414      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4415      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4416                                              MultiExprArg(*this, 0, 0));
4417      if (Init.isInvalid())
4418        Var->setInvalidDecl();
4419      else if (Init.get()) {
4420        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4421
4422        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4423            Var->hasGlobalStorage() &&
4424            !Var->getDeclContext()->isDependentContext() &&
4425            !Var->getInit()->isConstantInitializer(Context, false))
4426          Diag(Var->getLocation(), diag::warn_global_constructor);
4427      }
4428    }
4429
4430    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4431      FinalizeVarWithDestructor(Var, Record);
4432  }
4433}
4434
4435Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4436                                                   DeclPtrTy *Group,
4437                                                   unsigned NumDecls) {
4438  llvm::SmallVector<Decl*, 8> Decls;
4439
4440  if (DS.isTypeSpecOwned())
4441    Decls.push_back((Decl*)DS.getTypeRep());
4442
4443  for (unsigned i = 0; i != NumDecls; ++i)
4444    if (Decl *D = Group[i].getAs<Decl>())
4445      Decls.push_back(D);
4446
4447  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4448                                                   Decls.data(), Decls.size()));
4449}
4450
4451
4452/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4453/// to introduce parameters into function prototype scope.
4454Sema::DeclPtrTy
4455Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4456  const DeclSpec &DS = D.getDeclSpec();
4457
4458  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4459  VarDecl::StorageClass StorageClass = VarDecl::None;
4460  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4461  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4462    StorageClass = VarDecl::Register;
4463    StorageClassAsWritten = VarDecl::Register;
4464  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4465    Diag(DS.getStorageClassSpecLoc(),
4466         diag::err_invalid_storage_class_in_func_decl);
4467    D.getMutableDeclSpec().ClearStorageClassSpecs();
4468  }
4469
4470  if (D.getDeclSpec().isThreadSpecified())
4471    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4472
4473  DiagnoseFunctionSpecifiers(D);
4474
4475  // Check that there are no default arguments inside the type of this
4476  // parameter (C++ only).
4477  if (getLangOptions().CPlusPlus)
4478    CheckExtraCXXDefaultArguments(D);
4479
4480  TagDecl *OwnedDecl = 0;
4481  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4482  QualType parmDeclType = TInfo->getType();
4483
4484  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4485    // C++ [dcl.fct]p6:
4486    //   Types shall not be defined in return or parameter types.
4487    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4488      << Context.getTypeDeclType(OwnedDecl);
4489  }
4490
4491  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4492  IdentifierInfo *II = D.getIdentifier();
4493  if (II) {
4494    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4495                   ForRedeclaration);
4496    LookupName(R, S);
4497    if (R.isSingleResult()) {
4498      NamedDecl *PrevDecl = R.getFoundDecl();
4499      if (PrevDecl->isTemplateParameter()) {
4500        // Maybe we will complain about the shadowed template parameter.
4501        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4502        // Just pretend that we didn't see the previous declaration.
4503        PrevDecl = 0;
4504      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4505        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4506        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4507
4508        // Recover by removing the name
4509        II = 0;
4510        D.SetIdentifier(0, D.getIdentifierLoc());
4511        D.setInvalidType(true);
4512      }
4513    }
4514  }
4515
4516  // Temporarily put parameter variables in the translation unit, not
4517  // the enclosing context.  This prevents them from accidentally
4518  // looking like class members in C++.
4519  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4520                                    TInfo, parmDeclType, II,
4521                                    D.getIdentifierLoc(),
4522                                    StorageClass, StorageClassAsWritten);
4523
4524  if (D.isInvalidType())
4525    New->setInvalidDecl();
4526
4527  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4528  if (D.getCXXScopeSpec().isSet()) {
4529    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4530      << D.getCXXScopeSpec().getRange();
4531    New->setInvalidDecl();
4532  }
4533
4534  // Add the parameter declaration into this scope.
4535  S->AddDecl(DeclPtrTy::make(New));
4536  if (II)
4537    IdResolver.AddDecl(New);
4538
4539  ProcessDeclAttributes(S, New, D);
4540
4541  if (New->hasAttr<BlocksAttr>()) {
4542    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4543  }
4544  return DeclPtrTy::make(New);
4545}
4546
4547/// \brief Synthesizes a variable for a parameter arising from a
4548/// typedef.
4549ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4550                                              SourceLocation Loc,
4551                                              QualType T) {
4552  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4553                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4554                                           VarDecl::None, VarDecl::None, 0);
4555  Param->setImplicit();
4556  return Param;
4557}
4558
4559ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4560                                  TypeSourceInfo *TSInfo, QualType T,
4561                                  IdentifierInfo *Name,
4562                                  SourceLocation NameLoc,
4563                                  VarDecl::StorageClass StorageClass,
4564                                  VarDecl::StorageClass StorageClassAsWritten) {
4565  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4566                                         adjustParameterType(T), TSInfo,
4567                                         StorageClass, StorageClassAsWritten,
4568                                         0);
4569
4570  // Parameters can not be abstract class types.
4571  // For record types, this is done by the AbstractClassUsageDiagnoser once
4572  // the class has been completely parsed.
4573  if (!CurContext->isRecord() &&
4574      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4575                             AbstractParamType))
4576    New->setInvalidDecl();
4577
4578  // Parameter declarators cannot be interface types. All ObjC objects are
4579  // passed by reference.
4580  if (T->isObjCObjectType()) {
4581    Diag(NameLoc,
4582         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4583    New->setInvalidDecl();
4584  }
4585
4586  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4587  // duration shall not be qualified by an address-space qualifier."
4588  // Since all parameters have automatic store duration, they can not have
4589  // an address space.
4590  if (T.getAddressSpace() != 0) {
4591    Diag(NameLoc, diag::err_arg_with_address_space);
4592    New->setInvalidDecl();
4593  }
4594
4595  return New;
4596}
4597
4598void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4599                                           SourceLocation LocAfterDecls) {
4600  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4601         "Not a function declarator!");
4602  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4603
4604  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4605  // for a K&R function.
4606  if (!FTI.hasPrototype) {
4607    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4608      --i;
4609      if (FTI.ArgInfo[i].Param == 0) {
4610        llvm::SmallString<256> Code;
4611        llvm::raw_svector_ostream(Code) << "  int "
4612                                        << FTI.ArgInfo[i].Ident->getName()
4613                                        << ";\n";
4614        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4615          << FTI.ArgInfo[i].Ident
4616          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4617
4618        // Implicitly declare the argument as type 'int' for lack of a better
4619        // type.
4620        DeclSpec DS;
4621        const char* PrevSpec; // unused
4622        unsigned DiagID; // unused
4623        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4624                           PrevSpec, DiagID);
4625        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4626        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4627        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4628      }
4629    }
4630  }
4631}
4632
4633Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4634                                              Declarator &D) {
4635  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4636  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4637         "Not a function declarator!");
4638  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4639
4640  if (FTI.hasPrototype) {
4641    // FIXME: Diagnose arguments without names in C.
4642  }
4643
4644  Scope *ParentScope = FnBodyScope->getParent();
4645
4646  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4647                                  MultiTemplateParamsArg(*this),
4648                                  /*IsFunctionDefinition=*/true);
4649  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4650}
4651
4652static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4653  // Don't warn about invalid declarations.
4654  if (FD->isInvalidDecl())
4655    return false;
4656
4657  // Or declarations that aren't global.
4658  if (!FD->isGlobal())
4659    return false;
4660
4661  // Don't warn about C++ member functions.
4662  if (isa<CXXMethodDecl>(FD))
4663    return false;
4664
4665  // Don't warn about 'main'.
4666  if (FD->isMain())
4667    return false;
4668
4669  // Don't warn about inline functions.
4670  if (FD->isInlineSpecified())
4671    return false;
4672
4673  // Don't warn about function templates.
4674  if (FD->getDescribedFunctionTemplate())
4675    return false;
4676
4677  // Don't warn about function template specializations.
4678  if (FD->isFunctionTemplateSpecialization())
4679    return false;
4680
4681  bool MissingPrototype = true;
4682  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4683       Prev; Prev = Prev->getPreviousDeclaration()) {
4684    // Ignore any declarations that occur in function or method
4685    // scope, because they aren't visible from the header.
4686    if (Prev->getDeclContext()->isFunctionOrMethod())
4687      continue;
4688
4689    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4690    break;
4691  }
4692
4693  return MissingPrototype;
4694}
4695
4696Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4697  // Clear the last template instantiation error context.
4698  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4699
4700  if (!D)
4701    return D;
4702  FunctionDecl *FD = 0;
4703
4704  if (FunctionTemplateDecl *FunTmpl
4705        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4706    FD = FunTmpl->getTemplatedDecl();
4707  else
4708    FD = cast<FunctionDecl>(D.getAs<Decl>());
4709
4710  // Enter a new function scope
4711  PushFunctionScope();
4712
4713  // See if this is a redefinition.
4714  // But don't complain if we're in GNU89 mode and the previous definition
4715  // was an extern inline function.
4716  const FunctionDecl *Definition;
4717  if (FD->hasBody(Definition) &&
4718      !canRedefineFunction(Definition, getLangOptions())) {
4719    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4720    Diag(Definition->getLocation(), diag::note_previous_definition);
4721  }
4722
4723  // Builtin functions cannot be defined.
4724  if (unsigned BuiltinID = FD->getBuiltinID()) {
4725    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4726      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4727      FD->setInvalidDecl();
4728    }
4729  }
4730
4731  // The return type of a function definition must be complete
4732  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4733  QualType ResultType = FD->getResultType();
4734  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4735      !FD->isInvalidDecl() &&
4736      RequireCompleteType(FD->getLocation(), ResultType,
4737                          diag::err_func_def_incomplete_result))
4738    FD->setInvalidDecl();
4739
4740  // GNU warning -Wmissing-prototypes:
4741  //   Warn if a global function is defined without a previous
4742  //   prototype declaration. This warning is issued even if the
4743  //   definition itself provides a prototype. The aim is to detect
4744  //   global functions that fail to be declared in header files.
4745  if (ShouldWarnAboutMissingPrototype(FD))
4746    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4747
4748  if (FnBodyScope)
4749    PushDeclContext(FnBodyScope, FD);
4750
4751  // Check the validity of our function parameters
4752  CheckParmsForFunctionDef(FD);
4753
4754  bool ShouldCheckShadow =
4755    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4756
4757  // Introduce our parameters into the function scope
4758  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4759    ParmVarDecl *Param = FD->getParamDecl(p);
4760    Param->setOwningFunction(FD);
4761
4762    // If this has an identifier, add it to the scope stack.
4763    if (Param->getIdentifier() && FnBodyScope) {
4764      if (ShouldCheckShadow)
4765        CheckShadow(FnBodyScope, Param);
4766
4767      PushOnScopeChains(Param, FnBodyScope);
4768    }
4769  }
4770
4771  // Checking attributes of current function definition
4772  // dllimport attribute.
4773  if (FD->getAttr<DLLImportAttr>() &&
4774      (!FD->getAttr<DLLExportAttr>())) {
4775    // dllimport attribute cannot be applied to definition.
4776    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4777      Diag(FD->getLocation(),
4778           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4779        << "dllimport";
4780      FD->setInvalidDecl();
4781      return DeclPtrTy::make(FD);
4782    }
4783
4784    // Visual C++ appears to not think this is an issue, so only issue
4785    // a warning when Microsoft extensions are disabled.
4786    if (!LangOpts.Microsoft) {
4787      // If a symbol previously declared dllimport is later defined, the
4788      // attribute is ignored in subsequent references, and a warning is
4789      // emitted.
4790      Diag(FD->getLocation(),
4791           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4792        << FD->getName() << "dllimport";
4793    }
4794  }
4795  return DeclPtrTy::make(FD);
4796}
4797
4798/// \brief Given the set of return statements within a function body,
4799/// compute the variables that are subject to the named return value
4800/// optimization.
4801///
4802/// Each of the variables that is subject to the named return value
4803/// optimization will be marked as NRVO variables in the AST, and any
4804/// return statement that has a marked NRVO variable as its NRVO candidate can
4805/// use the named return value optimization.
4806///
4807/// This function applies a very simplistic algorithm for NRVO: if every return
4808/// statement in the function has the same NRVO candidate, that candidate is
4809/// the NRVO variable.
4810///
4811/// FIXME: Employ a smarter algorithm that accounts for multiple return
4812/// statements and the lifetimes of the NRVO candidates. We should be able to
4813/// find a maximal set of NRVO variables.
4814static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4815  const VarDecl *NRVOCandidate = 0;
4816  for (unsigned I = 0; I != NumReturns; ++I) {
4817    if (!Returns[I]->getNRVOCandidate())
4818      return;
4819
4820    if (!NRVOCandidate)
4821      NRVOCandidate = Returns[I]->getNRVOCandidate();
4822    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4823      return;
4824  }
4825
4826  if (NRVOCandidate)
4827    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4828}
4829
4830Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4831  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4832}
4833
4834Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4835                                              bool IsInstantiation) {
4836  Decl *dcl = D.getAs<Decl>();
4837  Stmt *Body = BodyArg.takeAs<Stmt>();
4838
4839  FunctionDecl *FD = 0;
4840  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4841  if (FunTmpl)
4842    FD = FunTmpl->getTemplatedDecl();
4843  else
4844    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4845
4846  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4847
4848  if (FD) {
4849    FD->setBody(Body);
4850    if (FD->isMain()) {
4851      // C and C++ allow for main to automagically return 0.
4852      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4853      FD->setHasImplicitReturnZero(true);
4854      WP.disableCheckFallThrough();
4855    }
4856
4857    if (!FD->isInvalidDecl()) {
4858      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4859
4860      // If this is a constructor, we need a vtable.
4861      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4862        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4863
4864      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4865                  FunctionScopes.back()->Returns.size());
4866    }
4867
4868    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4869  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4870    assert(MD == getCurMethodDecl() && "Method parsing confused");
4871    MD->setBody(Body);
4872    MD->setEndLoc(Body->getLocEnd());
4873    if (!MD->isInvalidDecl())
4874      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4875  } else {
4876    return DeclPtrTy();
4877  }
4878
4879  // Verify and clean out per-function state.
4880
4881  // Check goto/label use.
4882  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4883       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4884    LabelStmt *L = I->second;
4885
4886    // Verify that we have no forward references left.  If so, there was a goto
4887    // or address of a label taken, but no definition of it.  Label fwd
4888    // definitions are indicated with a null substmt.
4889    if (L->getSubStmt() != 0)
4890      continue;
4891
4892    // Emit error.
4893    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4894
4895    // At this point, we have gotos that use the bogus label.  Stitch it into
4896    // the function body so that they aren't leaked and that the AST is well
4897    // formed.
4898    if (Body == 0) {
4899      // The whole function wasn't parsed correctly.
4900      continue;
4901    }
4902
4903    // Otherwise, the body is valid: we want to stitch the label decl into the
4904    // function somewhere so that it is properly owned and so that the goto
4905    // has a valid target.  Do this by creating a new compound stmt with the
4906    // label in it.
4907
4908    // Give the label a sub-statement.
4909    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4910
4911    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4912                               cast<CXXTryStmt>(Body)->getTryBlock() :
4913                               cast<CompoundStmt>(Body);
4914    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4915                                          Compound->body_end());
4916    Elements.push_back(L);
4917    Compound->setStmts(Context, Elements.data(), Elements.size());
4918  }
4919
4920  if (Body) {
4921    // C++ constructors that have function-try-blocks can't have return
4922    // statements in the handlers of that block. (C++ [except.handle]p14)
4923    // Verify this.
4924    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4925      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4926
4927    // Verify that that gotos and switch cases don't jump into scopes illegally.
4928    // Verify that that gotos and switch cases don't jump into scopes illegally.
4929    if (FunctionNeedsScopeChecking() &&
4930        !dcl->isInvalidDecl() &&
4931        !hasAnyErrorsInThisFunction())
4932      DiagnoseInvalidJumps(Body);
4933
4934    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4935      if (!Destructor->getParent()->isDependentType())
4936        CheckDestructor(Destructor);
4937
4938      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4939                                             Destructor->getParent());
4940    }
4941
4942    // If any errors have occurred, clear out any temporaries that may have
4943    // been leftover. This ensures that these temporaries won't be picked up for
4944    // deletion in some later function.
4945    if (PP.getDiagnostics().hasErrorOccurred())
4946      ExprTemporaries.clear();
4947    else if (!isa<FunctionTemplateDecl>(dcl)) {
4948      // Since the body is valid, issue any analysis-based warnings that are
4949      // enabled.
4950      QualType ResultType;
4951      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4952        ResultType = FD->getResultType();
4953      }
4954      else {
4955        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4956        ResultType = MD->getResultType();
4957      }
4958      AnalysisWarnings.IssueWarnings(WP, dcl);
4959    }
4960
4961    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4962  }
4963
4964  if (!IsInstantiation)
4965    PopDeclContext();
4966
4967  PopFunctionOrBlockScope();
4968
4969  // If any errors have occurred, clear out any temporaries that may have
4970  // been leftover. This ensures that these temporaries won't be picked up for
4971  // deletion in some later function.
4972  if (getDiagnostics().hasErrorOccurred())
4973    ExprTemporaries.clear();
4974
4975  return D;
4976}
4977
4978/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4979/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4980NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4981                                          IdentifierInfo &II, Scope *S) {
4982  // Before we produce a declaration for an implicitly defined
4983  // function, see whether there was a locally-scoped declaration of
4984  // this name as a function or variable. If so, use that
4985  // (non-visible) declaration, and complain about it.
4986  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4987    = LocallyScopedExternalDecls.find(&II);
4988  if (Pos != LocallyScopedExternalDecls.end()) {
4989    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4990    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4991    return Pos->second;
4992  }
4993
4994  // Extension in C99.  Legal in C90, but warn about it.
4995  if (II.getName().startswith("__builtin_"))
4996    Diag(Loc, diag::warn_builtin_unknown) << &II;
4997  else if (getLangOptions().C99)
4998    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4999  else
5000    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5001
5002  // Set a Declarator for the implicit definition: int foo();
5003  const char *Dummy;
5004  DeclSpec DS;
5005  unsigned DiagID;
5006  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5007  Error = Error; // Silence warning.
5008  assert(!Error && "Error setting up implicit decl!");
5009  Declarator D(DS, Declarator::BlockContext);
5010  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5011                                             0, 0, false, SourceLocation(),
5012                                             false, 0,0,0, Loc, Loc, D),
5013                SourceLocation());
5014  D.SetIdentifier(&II, Loc);
5015
5016  // Insert this function into translation-unit scope.
5017
5018  DeclContext *PrevDC = CurContext;
5019  CurContext = Context.getTranslationUnitDecl();
5020
5021  FunctionDecl *FD =
5022 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
5023  FD->setImplicit();
5024
5025  CurContext = PrevDC;
5026
5027  AddKnownFunctionAttributes(FD);
5028
5029  return FD;
5030}
5031
5032/// \brief Adds any function attributes that we know a priori based on
5033/// the declaration of this function.
5034///
5035/// These attributes can apply both to implicitly-declared builtins
5036/// (like __builtin___printf_chk) or to library-declared functions
5037/// like NSLog or printf.
5038void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5039  if (FD->isInvalidDecl())
5040    return;
5041
5042  // If this is a built-in function, map its builtin attributes to
5043  // actual attributes.
5044  if (unsigned BuiltinID = FD->getBuiltinID()) {
5045    // Handle printf-formatting attributes.
5046    unsigned FormatIdx;
5047    bool HasVAListArg;
5048    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5049      if (!FD->getAttr<FormatAttr>())
5050        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
5051                                               HasVAListArg ? 0 : FormatIdx+2));
5052    }
5053    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5054                                             HasVAListArg)) {
5055     if (!FD->getAttr<FormatAttr>())
5056       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
5057                                              HasVAListArg ? 0 : FormatIdx+2));
5058    }
5059
5060    // Mark const if we don't care about errno and that is the only
5061    // thing preventing the function from being const. This allows
5062    // IRgen to use LLVM intrinsics for such functions.
5063    if (!getLangOptions().MathErrno &&
5064        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5065      if (!FD->getAttr<ConstAttr>())
5066        FD->addAttr(::new (Context) ConstAttr());
5067    }
5068
5069    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5070      FD->setType(Context.getNoReturnType(FD->getType()));
5071    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5072      FD->addAttr(::new (Context) NoThrowAttr());
5073    if (Context.BuiltinInfo.isConst(BuiltinID))
5074      FD->addAttr(::new (Context) ConstAttr());
5075  }
5076
5077  IdentifierInfo *Name = FD->getIdentifier();
5078  if (!Name)
5079    return;
5080  if ((!getLangOptions().CPlusPlus &&
5081       FD->getDeclContext()->isTranslationUnit()) ||
5082      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5083       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5084       LinkageSpecDecl::lang_c)) {
5085    // Okay: this could be a libc/libm/Objective-C function we know
5086    // about.
5087  } else
5088    return;
5089
5090  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5091    // FIXME: NSLog and NSLogv should be target specific
5092    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5093      // FIXME: We known better than our headers.
5094      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5095    } else
5096      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
5097                                             Name->isStr("NSLogv") ? 0 : 2));
5098  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5099    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5100    // target-specific builtins, perhaps?
5101    if (!FD->getAttr<FormatAttr>())
5102      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
5103                                             Name->isStr("vasprintf") ? 0 : 3));
5104  }
5105}
5106
5107TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5108                                    TypeSourceInfo *TInfo) {
5109  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5110  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5111
5112  if (!TInfo) {
5113    assert(D.isInvalidType() && "no declarator info for valid type");
5114    TInfo = Context.getTrivialTypeSourceInfo(T);
5115  }
5116
5117  // Scope manipulation handled by caller.
5118  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5119                                           D.getIdentifierLoc(),
5120                                           D.getIdentifier(),
5121                                           TInfo);
5122
5123  if (const TagType *TT = T->getAs<TagType>()) {
5124    TagDecl *TD = TT->getDecl();
5125
5126    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5127    // keep track of the TypedefDecl.
5128    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5129      TD->setTypedefForAnonDecl(NewTD);
5130  }
5131
5132  if (D.isInvalidType())
5133    NewTD->setInvalidDecl();
5134  return NewTD;
5135}
5136
5137
5138/// \brief Determine whether a tag with a given kind is acceptable
5139/// as a redeclaration of the given tag declaration.
5140///
5141/// \returns true if the new tag kind is acceptable, false otherwise.
5142bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5143                                        TagTypeKind NewTag,
5144                                        SourceLocation NewTagLoc,
5145                                        const IdentifierInfo &Name) {
5146  // C++ [dcl.type.elab]p3:
5147  //   The class-key or enum keyword present in the
5148  //   elaborated-type-specifier shall agree in kind with the
5149  //   declaration to which the name in the elaborated-type-specifier
5150  //   refers. This rule also applies to the form of
5151  //   elaborated-type-specifier that declares a class-name or
5152  //   friend class since it can be construed as referring to the
5153  //   definition of the class. Thus, in any
5154  //   elaborated-type-specifier, the enum keyword shall be used to
5155  //   refer to an enumeration (7.2), the union class-key shall be
5156  //   used to refer to a union (clause 9), and either the class or
5157  //   struct class-key shall be used to refer to a class (clause 9)
5158  //   declared using the class or struct class-key.
5159  TagTypeKind OldTag = Previous->getTagKind();
5160  if (OldTag == NewTag)
5161    return true;
5162
5163  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5164      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5165    // Warn about the struct/class tag mismatch.
5166    bool isTemplate = false;
5167    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5168      isTemplate = Record->getDescribedClassTemplate();
5169
5170    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5171      << (NewTag == TTK_Class)
5172      << isTemplate << &Name
5173      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5174                              OldTag == TTK_Class? "class" : "struct");
5175    Diag(Previous->getLocation(), diag::note_previous_use);
5176    return true;
5177  }
5178  return false;
5179}
5180
5181/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5182/// former case, Name will be non-null.  In the later case, Name will be null.
5183/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5184/// reference/declaration/definition of a tag.
5185Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5186                               SourceLocation KWLoc, CXXScopeSpec &SS,
5187                               IdentifierInfo *Name, SourceLocation NameLoc,
5188                               AttributeList *Attr, AccessSpecifier AS,
5189                               MultiTemplateParamsArg TemplateParameterLists,
5190                               bool &OwnedDecl, bool &IsDependent) {
5191  // If this is not a definition, it must have a name.
5192  assert((Name != 0 || TUK == TUK_Definition) &&
5193         "Nameless record must be a definition!");
5194
5195  OwnedDecl = false;
5196  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5197
5198  // FIXME: Check explicit specializations more carefully.
5199  bool isExplicitSpecialization = false;
5200  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5201  bool Invalid = false;
5202  if (TUK != TUK_Reference) {
5203    if (TemplateParameterList *TemplateParams
5204          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5205                        (TemplateParameterList**)TemplateParameterLists.get(),
5206                                              TemplateParameterLists.size(),
5207                                                    TUK == TUK_Friend,
5208                                                    isExplicitSpecialization,
5209                                                    Invalid)) {
5210      // All but one template parameter lists have been matching.
5211      --NumMatchedTemplateParamLists;
5212
5213      if (TemplateParams->size() > 0) {
5214        // This is a declaration or definition of a class template (which may
5215        // be a member of another template).
5216        if (Invalid)
5217          return DeclPtrTy();
5218
5219        OwnedDecl = false;
5220        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5221                                               SS, Name, NameLoc, Attr,
5222                                               TemplateParams,
5223                                               AS);
5224        TemplateParameterLists.release();
5225        return Result.get();
5226      } else {
5227        // The "template<>" header is extraneous.
5228        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5229          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5230        isExplicitSpecialization = true;
5231      }
5232    }
5233  }
5234
5235  DeclContext *SearchDC = CurContext;
5236  DeclContext *DC = CurContext;
5237  bool isStdBadAlloc = false;
5238
5239  RedeclarationKind Redecl = ForRedeclaration;
5240  if (TUK == TUK_Friend || TUK == TUK_Reference)
5241    Redecl = NotForRedeclaration;
5242
5243  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5244
5245  if (Name && SS.isNotEmpty()) {
5246    // We have a nested-name tag ('struct foo::bar').
5247
5248    // Check for invalid 'foo::'.
5249    if (SS.isInvalid()) {
5250      Name = 0;
5251      goto CreateNewDecl;
5252    }
5253
5254    // If this is a friend or a reference to a class in a dependent
5255    // context, don't try to make a decl for it.
5256    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5257      DC = computeDeclContext(SS, false);
5258      if (!DC) {
5259        IsDependent = true;
5260        return DeclPtrTy();
5261      }
5262    } else {
5263      DC = computeDeclContext(SS, true);
5264      if (!DC) {
5265        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5266          << SS.getRange();
5267        return DeclPtrTy();
5268      }
5269    }
5270
5271    if (RequireCompleteDeclContext(SS, DC))
5272      return DeclPtrTy::make((Decl *)0);
5273
5274    SearchDC = DC;
5275    // Look-up name inside 'foo::'.
5276    LookupQualifiedName(Previous, DC);
5277
5278    if (Previous.isAmbiguous())
5279      return DeclPtrTy();
5280
5281    if (Previous.empty()) {
5282      // Name lookup did not find anything. However, if the
5283      // nested-name-specifier refers to the current instantiation,
5284      // and that current instantiation has any dependent base
5285      // classes, we might find something at instantiation time: treat
5286      // this as a dependent elaborated-type-specifier.
5287      if (Previous.wasNotFoundInCurrentInstantiation()) {
5288        IsDependent = true;
5289        return DeclPtrTy();
5290      }
5291
5292      // A tag 'foo::bar' must already exist.
5293      Diag(NameLoc, diag::err_not_tag_in_scope)
5294        << Kind << Name << DC << SS.getRange();
5295      Name = 0;
5296      Invalid = true;
5297      goto CreateNewDecl;
5298    }
5299  } else if (Name) {
5300    // If this is a named struct, check to see if there was a previous forward
5301    // declaration or definition.
5302    // FIXME: We're looking into outer scopes here, even when we
5303    // shouldn't be. Doing so can result in ambiguities that we
5304    // shouldn't be diagnosing.
5305    LookupName(Previous, S);
5306
5307    // Note:  there used to be some attempt at recovery here.
5308    if (Previous.isAmbiguous())
5309      return DeclPtrTy();
5310
5311    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5312      // FIXME: This makes sure that we ignore the contexts associated
5313      // with C structs, unions, and enums when looking for a matching
5314      // tag declaration or definition. See the similar lookup tweak
5315      // in Sema::LookupName; is there a better way to deal with this?
5316      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5317        SearchDC = SearchDC->getParent();
5318    }
5319  }
5320
5321  if (Previous.isSingleResult() &&
5322      Previous.getFoundDecl()->isTemplateParameter()) {
5323    // Maybe we will complain about the shadowed template parameter.
5324    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5325    // Just pretend that we didn't see the previous declaration.
5326    Previous.clear();
5327  }
5328
5329  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5330      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5331    // This is a declaration of or a reference to "std::bad_alloc".
5332    isStdBadAlloc = true;
5333
5334    if (Previous.empty() && StdBadAlloc) {
5335      // std::bad_alloc has been implicitly declared (but made invisible to
5336      // name lookup). Fill in this implicit declaration as the previous
5337      // declaration, so that the declarations get chained appropriately.
5338      Previous.addDecl(getStdBadAlloc());
5339    }
5340  }
5341
5342  // If we didn't find a previous declaration, and this is a reference
5343  // (or friend reference), move to the correct scope.  In C++, we
5344  // also need to do a redeclaration lookup there, just in case
5345  // there's a shadow friend decl.
5346  if (Name && Previous.empty() &&
5347      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5348    if (Invalid) goto CreateNewDecl;
5349    assert(SS.isEmpty());
5350
5351    if (TUK == TUK_Reference) {
5352      // C++ [basic.scope.pdecl]p5:
5353      //   -- for an elaborated-type-specifier of the form
5354      //
5355      //          class-key identifier
5356      //
5357      //      if the elaborated-type-specifier is used in the
5358      //      decl-specifier-seq or parameter-declaration-clause of a
5359      //      function defined in namespace scope, the identifier is
5360      //      declared as a class-name in the namespace that contains
5361      //      the declaration; otherwise, except as a friend
5362      //      declaration, the identifier is declared in the smallest
5363      //      non-class, non-function-prototype scope that contains the
5364      //      declaration.
5365      //
5366      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5367      // C structs and unions.
5368      //
5369      // It is an error in C++ to declare (rather than define) an enum
5370      // type, including via an elaborated type specifier.  We'll
5371      // diagnose that later; for now, declare the enum in the same
5372      // scope as we would have picked for any other tag type.
5373      //
5374      // GNU C also supports this behavior as part of its incomplete
5375      // enum types extension, while GNU C++ does not.
5376      //
5377      // Find the context where we'll be declaring the tag.
5378      // FIXME: We would like to maintain the current DeclContext as the
5379      // lexical context,
5380      while (SearchDC->isRecord())
5381        SearchDC = SearchDC->getParent();
5382
5383      // Find the scope where we'll be declaring the tag.
5384      while (S->isClassScope() ||
5385             (getLangOptions().CPlusPlus &&
5386              S->isFunctionPrototypeScope()) ||
5387             ((S->getFlags() & Scope::DeclScope) == 0) ||
5388             (S->getEntity() &&
5389              ((DeclContext *)S->getEntity())->isTransparentContext()))
5390        S = S->getParent();
5391    } else {
5392      assert(TUK == TUK_Friend);
5393      // C++ [namespace.memdef]p3:
5394      //   If a friend declaration in a non-local class first declares a
5395      //   class or function, the friend class or function is a member of
5396      //   the innermost enclosing namespace.
5397      SearchDC = SearchDC->getEnclosingNamespaceContext();
5398    }
5399
5400    // In C++, we need to do a redeclaration lookup to properly
5401    // diagnose some problems.
5402    if (getLangOptions().CPlusPlus) {
5403      Previous.setRedeclarationKind(ForRedeclaration);
5404      LookupQualifiedName(Previous, SearchDC);
5405    }
5406  }
5407
5408  if (!Previous.empty()) {
5409    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5410
5411    // It's okay to have a tag decl in the same scope as a typedef
5412    // which hides a tag decl in the same scope.  Finding this
5413    // insanity with a redeclaration lookup can only actually happen
5414    // in C++.
5415    //
5416    // This is also okay for elaborated-type-specifiers, which is
5417    // technically forbidden by the current standard but which is
5418    // okay according to the likely resolution of an open issue;
5419    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5420    if (getLangOptions().CPlusPlus) {
5421      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5422        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5423          TagDecl *Tag = TT->getDecl();
5424          if (Tag->getDeclName() == Name &&
5425              Tag->getDeclContext()->getLookupContext()
5426                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5427            PrevDecl = Tag;
5428            Previous.clear();
5429            Previous.addDecl(Tag);
5430          }
5431        }
5432      }
5433    }
5434
5435    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5436      // If this is a use of a previous tag, or if the tag is already declared
5437      // in the same scope (so that the definition/declaration completes or
5438      // rementions the tag), reuse the decl.
5439      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5440          isDeclInScope(PrevDecl, SearchDC, S)) {
5441        // Make sure that this wasn't declared as an enum and now used as a
5442        // struct or something similar.
5443        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5444          bool SafeToContinue
5445            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5446               Kind != TTK_Enum);
5447          if (SafeToContinue)
5448            Diag(KWLoc, diag::err_use_with_wrong_tag)
5449              << Name
5450              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5451                                              PrevTagDecl->getKindName());
5452          else
5453            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5454          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5455
5456          if (SafeToContinue)
5457            Kind = PrevTagDecl->getTagKind();
5458          else {
5459            // Recover by making this an anonymous redefinition.
5460            Name = 0;
5461            Previous.clear();
5462            Invalid = true;
5463          }
5464        }
5465
5466        if (!Invalid) {
5467          // If this is a use, just return the declaration we found.
5468
5469          // FIXME: In the future, return a variant or some other clue
5470          // for the consumer of this Decl to know it doesn't own it.
5471          // For our current ASTs this shouldn't be a problem, but will
5472          // need to be changed with DeclGroups.
5473          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5474              TUK == TUK_Friend)
5475            return DeclPtrTy::make(PrevTagDecl);
5476
5477          // Diagnose attempts to redefine a tag.
5478          if (TUK == TUK_Definition) {
5479            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5480              // If we're defining a specialization and the previous definition
5481              // is from an implicit instantiation, don't emit an error
5482              // here; we'll catch this in the general case below.
5483              if (!isExplicitSpecialization ||
5484                  !isa<CXXRecordDecl>(Def) ||
5485                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5486                                               == TSK_ExplicitSpecialization) {
5487                Diag(NameLoc, diag::err_redefinition) << Name;
5488                Diag(Def->getLocation(), diag::note_previous_definition);
5489                // If this is a redefinition, recover by making this
5490                // struct be anonymous, which will make any later
5491                // references get the previous definition.
5492                Name = 0;
5493                Previous.clear();
5494                Invalid = true;
5495              }
5496            } else {
5497              // If the type is currently being defined, complain
5498              // about a nested redefinition.
5499              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5500              if (Tag->isBeingDefined()) {
5501                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5502                Diag(PrevTagDecl->getLocation(),
5503                     diag::note_previous_definition);
5504                Name = 0;
5505                Previous.clear();
5506                Invalid = true;
5507              }
5508            }
5509
5510            // Okay, this is definition of a previously declared or referenced
5511            // tag PrevDecl. We're going to create a new Decl for it.
5512          }
5513        }
5514        // If we get here we have (another) forward declaration or we
5515        // have a definition.  Just create a new decl.
5516
5517      } else {
5518        // If we get here, this is a definition of a new tag type in a nested
5519        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5520        // new decl/type.  We set PrevDecl to NULL so that the entities
5521        // have distinct types.
5522        Previous.clear();
5523      }
5524      // If we get here, we're going to create a new Decl. If PrevDecl
5525      // is non-NULL, it's a definition of the tag declared by
5526      // PrevDecl. If it's NULL, we have a new definition.
5527
5528
5529    // Otherwise, PrevDecl is not a tag, but was found with tag
5530    // lookup.  This is only actually possible in C++, where a few
5531    // things like templates still live in the tag namespace.
5532    } else {
5533      assert(getLangOptions().CPlusPlus);
5534
5535      // Use a better diagnostic if an elaborated-type-specifier
5536      // found the wrong kind of type on the first
5537      // (non-redeclaration) lookup.
5538      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5539          !Previous.isForRedeclaration()) {
5540        unsigned Kind = 0;
5541        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5542        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5543        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5544        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5545        Invalid = true;
5546
5547      // Otherwise, only diagnose if the declaration is in scope.
5548      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5549        // do nothing
5550
5551      // Diagnose implicit declarations introduced by elaborated types.
5552      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5553        unsigned Kind = 0;
5554        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5555        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5556        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5557        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5558        Invalid = true;
5559
5560      // Otherwise it's a declaration.  Call out a particularly common
5561      // case here.
5562      } else if (isa<TypedefDecl>(PrevDecl)) {
5563        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5564          << Name
5565          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5566        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5567        Invalid = true;
5568
5569      // Otherwise, diagnose.
5570      } else {
5571        // The tag name clashes with something else in the target scope,
5572        // issue an error and recover by making this tag be anonymous.
5573        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5574        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5575        Name = 0;
5576        Invalid = true;
5577      }
5578
5579      // The existing declaration isn't relevant to us; we're in a
5580      // new scope, so clear out the previous declaration.
5581      Previous.clear();
5582    }
5583  }
5584
5585CreateNewDecl:
5586
5587  TagDecl *PrevDecl = 0;
5588  if (Previous.isSingleResult())
5589    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5590
5591  // If there is an identifier, use the location of the identifier as the
5592  // location of the decl, otherwise use the location of the struct/union
5593  // keyword.
5594  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5595
5596  // Otherwise, create a new declaration. If there is a previous
5597  // declaration of the same entity, the two will be linked via
5598  // PrevDecl.
5599  TagDecl *New;
5600
5601  if (Kind == TTK_Enum) {
5602    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5603    // enum X { A, B, C } D;    D should chain to X.
5604    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5605                           cast_or_null<EnumDecl>(PrevDecl));
5606    // If this is an undefined enum, warn.
5607    if (TUK != TUK_Definition && !Invalid) {
5608      TagDecl *Def;
5609      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5610        Diag(Loc, diag::ext_forward_ref_enum_def)
5611          << New;
5612        Diag(Def->getLocation(), diag::note_previous_definition);
5613      } else {
5614        Diag(Loc,
5615             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5616                                       : diag::ext_forward_ref_enum);
5617      }
5618    }
5619  } else {
5620    // struct/union/class
5621
5622    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5623    // struct X { int A; } D;    D should chain to X.
5624    if (getLangOptions().CPlusPlus) {
5625      // FIXME: Look for a way to use RecordDecl for simple structs.
5626      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5627                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5628
5629      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5630        StdBadAlloc = cast<CXXRecordDecl>(New);
5631    } else
5632      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5633                               cast_or_null<RecordDecl>(PrevDecl));
5634  }
5635
5636  // Maybe add qualifier info.
5637  if (SS.isNotEmpty()) {
5638    if (SS.isSet()) {
5639      NestedNameSpecifier *NNS
5640        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5641      New->setQualifierInfo(NNS, SS.getRange());
5642      if (NumMatchedTemplateParamLists > 0) {
5643        New->setTemplateParameterListsInfo(Context,
5644                                           NumMatchedTemplateParamLists,
5645                    (TemplateParameterList**) TemplateParameterLists.release());
5646      }
5647    }
5648    else
5649      Invalid = true;
5650  }
5651
5652  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5653    // Add alignment attributes if necessary; these attributes are checked when
5654    // the ASTContext lays out the structure.
5655    //
5656    // It is important for implementing the correct semantics that this
5657    // happen here (in act on tag decl). The #pragma pack stack is
5658    // maintained as a result of parser callbacks which can occur at
5659    // many points during the parsing of a struct declaration (because
5660    // the #pragma tokens are effectively skipped over during the
5661    // parsing of the struct).
5662    AddAlignmentAttributesForRecord(RD);
5663  }
5664
5665  // If this is a specialization of a member class (of a class template),
5666  // check the specialization.
5667  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5668    Invalid = true;
5669
5670  if (Invalid)
5671    New->setInvalidDecl();
5672
5673  if (Attr)
5674    ProcessDeclAttributeList(S, New, Attr);
5675
5676  // If we're declaring or defining a tag in function prototype scope
5677  // in C, note that this type can only be used within the function.
5678  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5679    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5680
5681  // Set the lexical context. If the tag has a C++ scope specifier, the
5682  // lexical context will be different from the semantic context.
5683  New->setLexicalDeclContext(CurContext);
5684
5685  // Mark this as a friend decl if applicable.
5686  if (TUK == TUK_Friend)
5687    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5688
5689  // Set the access specifier.
5690  if (!Invalid && SearchDC->isRecord())
5691    SetMemberAccessSpecifier(New, PrevDecl, AS);
5692
5693  if (TUK == TUK_Definition)
5694    New->startDefinition();
5695
5696  // If this has an identifier, add it to the scope stack.
5697  if (TUK == TUK_Friend) {
5698    // We might be replacing an existing declaration in the lookup tables;
5699    // if so, borrow its access specifier.
5700    if (PrevDecl)
5701      New->setAccess(PrevDecl->getAccess());
5702
5703    DeclContext *DC = New->getDeclContext()->getLookupContext();
5704    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5705    if (Name) // can be null along some error paths
5706      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5707        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5708  } else if (Name) {
5709    S = getNonFieldDeclScope(S);
5710    PushOnScopeChains(New, S);
5711  } else {
5712    CurContext->addDecl(New);
5713  }
5714
5715  // If this is the C FILE type, notify the AST context.
5716  if (IdentifierInfo *II = New->getIdentifier())
5717    if (!New->isInvalidDecl() &&
5718        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5719        II->isStr("FILE"))
5720      Context.setFILEDecl(New);
5721
5722  OwnedDecl = true;
5723  return DeclPtrTy::make(New);
5724}
5725
5726void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5727  AdjustDeclIfTemplate(TagD);
5728  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5729
5730  // Enter the tag context.
5731  PushDeclContext(S, Tag);
5732}
5733
5734void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5735                                           SourceLocation LBraceLoc) {
5736  AdjustDeclIfTemplate(TagD);
5737  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5738
5739  FieldCollector->StartClass();
5740
5741  if (!Record->getIdentifier())
5742    return;
5743
5744  // C++ [class]p2:
5745  //   [...] The class-name is also inserted into the scope of the
5746  //   class itself; this is known as the injected-class-name. For
5747  //   purposes of access checking, the injected-class-name is treated
5748  //   as if it were a public member name.
5749  CXXRecordDecl *InjectedClassName
5750    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5751                            CurContext, Record->getLocation(),
5752                            Record->getIdentifier(),
5753                            Record->getTagKeywordLoc(),
5754                            Record);
5755  InjectedClassName->setImplicit();
5756  InjectedClassName->setAccess(AS_public);
5757  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5758      InjectedClassName->setDescribedClassTemplate(Template);
5759  PushOnScopeChains(InjectedClassName, S);
5760  assert(InjectedClassName->isInjectedClassName() &&
5761         "Broken injected-class-name");
5762}
5763
5764void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5765                                    SourceLocation RBraceLoc) {
5766  AdjustDeclIfTemplate(TagD);
5767  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5768  Tag->setRBraceLoc(RBraceLoc);
5769
5770  if (isa<CXXRecordDecl>(Tag))
5771    FieldCollector->FinishClass();
5772
5773  // Exit this scope of this tag's definition.
5774  PopDeclContext();
5775
5776  // Notify the consumer that we've defined a tag.
5777  Consumer.HandleTagDeclDefinition(Tag);
5778}
5779
5780void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5781  AdjustDeclIfTemplate(TagD);
5782  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5783  Tag->setInvalidDecl();
5784
5785  // We're undoing ActOnTagStartDefinition here, not
5786  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5787  // the FieldCollector.
5788
5789  PopDeclContext();
5790}
5791
5792// Note that FieldName may be null for anonymous bitfields.
5793bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5794                          QualType FieldTy, const Expr *BitWidth,
5795                          bool *ZeroWidth) {
5796  // Default to true; that shouldn't confuse checks for emptiness
5797  if (ZeroWidth)
5798    *ZeroWidth = true;
5799
5800  // C99 6.7.2.1p4 - verify the field type.
5801  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5802  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5803    // Handle incomplete types with specific error.
5804    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5805      return true;
5806    if (FieldName)
5807      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5808        << FieldName << FieldTy << BitWidth->getSourceRange();
5809    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5810      << FieldTy << BitWidth->getSourceRange();
5811  }
5812
5813  // If the bit-width is type- or value-dependent, don't try to check
5814  // it now.
5815  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5816    return false;
5817
5818  llvm::APSInt Value;
5819  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5820    return true;
5821
5822  if (Value != 0 && ZeroWidth)
5823    *ZeroWidth = false;
5824
5825  // Zero-width bitfield is ok for anonymous field.
5826  if (Value == 0 && FieldName)
5827    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5828
5829  if (Value.isSigned() && Value.isNegative()) {
5830    if (FieldName)
5831      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5832               << FieldName << Value.toString(10);
5833    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5834      << Value.toString(10);
5835  }
5836
5837  if (!FieldTy->isDependentType()) {
5838    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5839    if (Value.getZExtValue() > TypeSize) {
5840      if (!getLangOptions().CPlusPlus) {
5841        if (FieldName)
5842          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5843            << FieldName << (unsigned)Value.getZExtValue()
5844            << (unsigned)TypeSize;
5845
5846        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5847          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5848      }
5849
5850      if (FieldName)
5851        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5852          << FieldName << (unsigned)Value.getZExtValue()
5853          << (unsigned)TypeSize;
5854      else
5855        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5856          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5857    }
5858  }
5859
5860  return false;
5861}
5862
5863/// ActOnField - Each field of a struct/union/class is passed into this in order
5864/// to create a FieldDecl object for it.
5865Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5866                                 SourceLocation DeclStart,
5867                                 Declarator &D, ExprTy *BitfieldWidth) {
5868  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5869                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5870                               AS_public);
5871  return DeclPtrTy::make(Res);
5872}
5873
5874/// HandleField - Analyze a field of a C struct or a C++ data member.
5875///
5876FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5877                             SourceLocation DeclStart,
5878                             Declarator &D, Expr *BitWidth,
5879                             AccessSpecifier AS) {
5880  IdentifierInfo *II = D.getIdentifier();
5881  SourceLocation Loc = DeclStart;
5882  if (II) Loc = D.getIdentifierLoc();
5883
5884  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5885  QualType T = TInfo->getType();
5886  if (getLangOptions().CPlusPlus)
5887    CheckExtraCXXDefaultArguments(D);
5888
5889  DiagnoseFunctionSpecifiers(D);
5890
5891  if (D.getDeclSpec().isThreadSpecified())
5892    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5893
5894  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5895                                         ForRedeclaration);
5896
5897  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5898    // Maybe we will complain about the shadowed template parameter.
5899    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5900    // Just pretend that we didn't see the previous declaration.
5901    PrevDecl = 0;
5902  }
5903
5904  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5905    PrevDecl = 0;
5906
5907  bool Mutable
5908    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5909  SourceLocation TSSL = D.getSourceRange().getBegin();
5910  FieldDecl *NewFD
5911    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5912                     AS, PrevDecl, &D);
5913
5914  if (NewFD->isInvalidDecl())
5915    Record->setInvalidDecl();
5916
5917  if (NewFD->isInvalidDecl() && PrevDecl) {
5918    // Don't introduce NewFD into scope; there's already something
5919    // with the same name in the same scope.
5920  } else if (II) {
5921    PushOnScopeChains(NewFD, S);
5922  } else
5923    Record->addDecl(NewFD);
5924
5925  return NewFD;
5926}
5927
5928/// \brief Build a new FieldDecl and check its well-formedness.
5929///
5930/// This routine builds a new FieldDecl given the fields name, type,
5931/// record, etc. \p PrevDecl should refer to any previous declaration
5932/// with the same name and in the same scope as the field to be
5933/// created.
5934///
5935/// \returns a new FieldDecl.
5936///
5937/// \todo The Declarator argument is a hack. It will be removed once
5938FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5939                                TypeSourceInfo *TInfo,
5940                                RecordDecl *Record, SourceLocation Loc,
5941                                bool Mutable, Expr *BitWidth,
5942                                SourceLocation TSSL,
5943                                AccessSpecifier AS, NamedDecl *PrevDecl,
5944                                Declarator *D) {
5945  IdentifierInfo *II = Name.getAsIdentifierInfo();
5946  bool InvalidDecl = false;
5947  if (D) InvalidDecl = D->isInvalidType();
5948
5949  // If we receive a broken type, recover by assuming 'int' and
5950  // marking this declaration as invalid.
5951  if (T.isNull()) {
5952    InvalidDecl = true;
5953    T = Context.IntTy;
5954  }
5955
5956  QualType EltTy = Context.getBaseElementType(T);
5957  if (!EltTy->isDependentType() &&
5958      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
5959    // Fields of incomplete type force their record to be invalid.
5960    Record->setInvalidDecl();
5961    InvalidDecl = true;
5962  }
5963
5964  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5965  // than a variably modified type.
5966  if (!InvalidDecl && T->isVariablyModifiedType()) {
5967    bool SizeIsNegative;
5968    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5969                                                           SizeIsNegative);
5970    if (!FixedTy.isNull()) {
5971      Diag(Loc, diag::warn_illegal_constant_array_size);
5972      T = FixedTy;
5973    } else {
5974      if (SizeIsNegative)
5975        Diag(Loc, diag::err_typecheck_negative_array_size);
5976      else
5977        Diag(Loc, diag::err_typecheck_field_variable_size);
5978      InvalidDecl = true;
5979    }
5980  }
5981
5982  // Fields can not have abstract class types
5983  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5984                                             diag::err_abstract_type_in_decl,
5985                                             AbstractFieldType))
5986    InvalidDecl = true;
5987
5988  bool ZeroWidth = false;
5989  // If this is declared as a bit-field, check the bit-field.
5990  if (!InvalidDecl && BitWidth &&
5991      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5992    InvalidDecl = true;
5993    DeleteExpr(BitWidth);
5994    BitWidth = 0;
5995    ZeroWidth = false;
5996  }
5997
5998  // Check that 'mutable' is consistent with the type of the declaration.
5999  if (!InvalidDecl && Mutable) {
6000    unsigned DiagID = 0;
6001    if (T->isReferenceType())
6002      DiagID = diag::err_mutable_reference;
6003    else if (T.isConstQualified())
6004      DiagID = diag::err_mutable_const;
6005
6006    if (DiagID) {
6007      SourceLocation ErrLoc = Loc;
6008      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6009        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6010      Diag(ErrLoc, DiagID);
6011      Mutable = false;
6012      InvalidDecl = true;
6013    }
6014  }
6015
6016  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6017                                       BitWidth, Mutable);
6018  if (InvalidDecl)
6019    NewFD->setInvalidDecl();
6020
6021  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6022    Diag(Loc, diag::err_duplicate_member) << II;
6023    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6024    NewFD->setInvalidDecl();
6025  }
6026
6027  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6028    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6029
6030    if (!T->isPODType())
6031      CXXRecord->setPOD(false);
6032    if (!ZeroWidth)
6033      CXXRecord->setEmpty(false);
6034
6035    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6036      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6037      if (RDecl->getDefinition()) {
6038        if (!RDecl->hasTrivialConstructor())
6039          CXXRecord->setHasTrivialConstructor(false);
6040        if (!RDecl->hasTrivialCopyConstructor())
6041          CXXRecord->setHasTrivialCopyConstructor(false);
6042        if (!RDecl->hasTrivialCopyAssignment())
6043          CXXRecord->setHasTrivialCopyAssignment(false);
6044        if (!RDecl->hasTrivialDestructor())
6045          CXXRecord->setHasTrivialDestructor(false);
6046
6047        // C++ 9.5p1: An object of a class with a non-trivial
6048        // constructor, a non-trivial copy constructor, a non-trivial
6049        // destructor, or a non-trivial copy assignment operator
6050        // cannot be a member of a union, nor can an array of such
6051        // objects.
6052        // TODO: C++0x alters this restriction significantly.
6053        if (Record->isUnion() && CheckNontrivialField(NewFD))
6054          NewFD->setInvalidDecl();
6055      }
6056    }
6057  }
6058
6059  // FIXME: We need to pass in the attributes given an AST
6060  // representation, not a parser representation.
6061  if (D)
6062    // FIXME: What to pass instead of TUScope?
6063    ProcessDeclAttributes(TUScope, NewFD, *D);
6064
6065  if (T.isObjCGCWeak())
6066    Diag(Loc, diag::warn_attribute_weak_on_field);
6067
6068  NewFD->setAccess(AS);
6069
6070  // C++ [dcl.init.aggr]p1:
6071  //   An aggregate is an array or a class (clause 9) with [...] no
6072  //   private or protected non-static data members (clause 11).
6073  // A POD must be an aggregate.
6074  if (getLangOptions().CPlusPlus &&
6075      (AS == AS_private || AS == AS_protected)) {
6076    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6077    CXXRecord->setAggregate(false);
6078    CXXRecord->setPOD(false);
6079  }
6080
6081  return NewFD;
6082}
6083
6084bool Sema::CheckNontrivialField(FieldDecl *FD) {
6085  assert(FD);
6086  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6087
6088  if (FD->isInvalidDecl())
6089    return true;
6090
6091  QualType EltTy = Context.getBaseElementType(FD->getType());
6092  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6093    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6094    if (RDecl->getDefinition()) {
6095      // We check for copy constructors before constructors
6096      // because otherwise we'll never get complaints about
6097      // copy constructors.
6098
6099      CXXSpecialMember member = CXXInvalid;
6100      if (!RDecl->hasTrivialCopyConstructor())
6101        member = CXXCopyConstructor;
6102      else if (!RDecl->hasTrivialConstructor())
6103        member = CXXConstructor;
6104      else if (!RDecl->hasTrivialCopyAssignment())
6105        member = CXXCopyAssignment;
6106      else if (!RDecl->hasTrivialDestructor())
6107        member = CXXDestructor;
6108
6109      if (member != CXXInvalid) {
6110        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6111              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6112        DiagnoseNontrivial(RT, member);
6113        return true;
6114      }
6115    }
6116  }
6117
6118  return false;
6119}
6120
6121/// DiagnoseNontrivial - Given that a class has a non-trivial
6122/// special member, figure out why.
6123void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6124  QualType QT(T, 0U);
6125  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6126
6127  // Check whether the member was user-declared.
6128  switch (member) {
6129  case CXXInvalid:
6130    break;
6131
6132  case CXXConstructor:
6133    if (RD->hasUserDeclaredConstructor()) {
6134      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6135      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6136        const FunctionDecl *body = 0;
6137        ci->hasBody(body);
6138        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6139          SourceLocation CtorLoc = ci->getLocation();
6140          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6141          return;
6142        }
6143      }
6144
6145      assert(0 && "found no user-declared constructors");
6146      return;
6147    }
6148    break;
6149
6150  case CXXCopyConstructor:
6151    if (RD->hasUserDeclaredCopyConstructor()) {
6152      SourceLocation CtorLoc =
6153        RD->getCopyConstructor(Context, 0)->getLocation();
6154      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6155      return;
6156    }
6157    break;
6158
6159  case CXXCopyAssignment:
6160    if (RD->hasUserDeclaredCopyAssignment()) {
6161      // FIXME: this should use the location of the copy
6162      // assignment, not the type.
6163      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6164      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6165      return;
6166    }
6167    break;
6168
6169  case CXXDestructor:
6170    if (RD->hasUserDeclaredDestructor()) {
6171      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6172      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6173      return;
6174    }
6175    break;
6176  }
6177
6178  typedef CXXRecordDecl::base_class_iterator base_iter;
6179
6180  // Virtual bases and members inhibit trivial copying/construction,
6181  // but not trivial destruction.
6182  if (member != CXXDestructor) {
6183    // Check for virtual bases.  vbases includes indirect virtual bases,
6184    // so we just iterate through the direct bases.
6185    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6186      if (bi->isVirtual()) {
6187        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6188        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6189        return;
6190      }
6191
6192    // Check for virtual methods.
6193    typedef CXXRecordDecl::method_iterator meth_iter;
6194    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6195         ++mi) {
6196      if (mi->isVirtual()) {
6197        SourceLocation MLoc = mi->getSourceRange().getBegin();
6198        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6199        return;
6200      }
6201    }
6202  }
6203
6204  bool (CXXRecordDecl::*hasTrivial)() const;
6205  switch (member) {
6206  case CXXConstructor:
6207    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6208  case CXXCopyConstructor:
6209    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6210  case CXXCopyAssignment:
6211    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6212  case CXXDestructor:
6213    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6214  default:
6215    assert(0 && "unexpected special member"); return;
6216  }
6217
6218  // Check for nontrivial bases (and recurse).
6219  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6220    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6221    assert(BaseRT && "Don't know how to handle dependent bases");
6222    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6223    if (!(BaseRecTy->*hasTrivial)()) {
6224      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6225      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6226      DiagnoseNontrivial(BaseRT, member);
6227      return;
6228    }
6229  }
6230
6231  // Check for nontrivial members (and recurse).
6232  typedef RecordDecl::field_iterator field_iter;
6233  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6234       ++fi) {
6235    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6236    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6237      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6238
6239      if (!(EltRD->*hasTrivial)()) {
6240        SourceLocation FLoc = (*fi)->getLocation();
6241        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6242        DiagnoseNontrivial(EltRT, member);
6243        return;
6244      }
6245    }
6246  }
6247
6248  assert(0 && "found no explanation for non-trivial member");
6249}
6250
6251/// TranslateIvarVisibility - Translate visibility from a token ID to an
6252///  AST enum value.
6253static ObjCIvarDecl::AccessControl
6254TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6255  switch (ivarVisibility) {
6256  default: assert(0 && "Unknown visitibility kind");
6257  case tok::objc_private: return ObjCIvarDecl::Private;
6258  case tok::objc_public: return ObjCIvarDecl::Public;
6259  case tok::objc_protected: return ObjCIvarDecl::Protected;
6260  case tok::objc_package: return ObjCIvarDecl::Package;
6261  }
6262}
6263
6264/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6265/// in order to create an IvarDecl object for it.
6266Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6267                                SourceLocation DeclStart,
6268                                DeclPtrTy IntfDecl,
6269                                Declarator &D, ExprTy *BitfieldWidth,
6270                                tok::ObjCKeywordKind Visibility) {
6271
6272  IdentifierInfo *II = D.getIdentifier();
6273  Expr *BitWidth = (Expr*)BitfieldWidth;
6274  SourceLocation Loc = DeclStart;
6275  if (II) Loc = D.getIdentifierLoc();
6276
6277  // FIXME: Unnamed fields can be handled in various different ways, for
6278  // example, unnamed unions inject all members into the struct namespace!
6279
6280  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6281  QualType T = TInfo->getType();
6282
6283  if (BitWidth) {
6284    // 6.7.2.1p3, 6.7.2.1p4
6285    if (VerifyBitField(Loc, II, T, BitWidth)) {
6286      D.setInvalidType();
6287      DeleteExpr(BitWidth);
6288      BitWidth = 0;
6289    }
6290  } else {
6291    // Not a bitfield.
6292
6293    // validate II.
6294
6295  }
6296  if (T->isReferenceType()) {
6297    Diag(Loc, diag::err_ivar_reference_type);
6298    D.setInvalidType();
6299  }
6300  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6301  // than a variably modified type.
6302  else if (T->isVariablyModifiedType()) {
6303    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6304    D.setInvalidType();
6305  }
6306
6307  // Get the visibility (access control) for this ivar.
6308  ObjCIvarDecl::AccessControl ac =
6309    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6310                                        : ObjCIvarDecl::None;
6311  // Must set ivar's DeclContext to its enclosing interface.
6312  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6313  ObjCContainerDecl *EnclosingContext;
6314  if (ObjCImplementationDecl *IMPDecl =
6315      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6316    // Case of ivar declared in an implementation. Context is that of its class.
6317    EnclosingContext = IMPDecl->getClassInterface();
6318    assert(EnclosingContext && "Implementation has no class interface!");
6319  } else {
6320    if (ObjCCategoryDecl *CDecl =
6321        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6322      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6323        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6324        return DeclPtrTy();
6325      }
6326    }
6327    EnclosingContext = EnclosingDecl;
6328  }
6329
6330  // Construct the decl.
6331  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6332                                             EnclosingContext, Loc, II, T,
6333                                             TInfo, ac, (Expr *)BitfieldWidth);
6334
6335  if (II) {
6336    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6337                                           ForRedeclaration);
6338    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6339        && !isa<TagDecl>(PrevDecl)) {
6340      Diag(Loc, diag::err_duplicate_member) << II;
6341      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6342      NewID->setInvalidDecl();
6343    }
6344  }
6345
6346  // Process attributes attached to the ivar.
6347  ProcessDeclAttributes(S, NewID, D);
6348
6349  if (D.isInvalidType())
6350    NewID->setInvalidDecl();
6351
6352  if (II) {
6353    // FIXME: When interfaces are DeclContexts, we'll need to add
6354    // these to the interface.
6355    S->AddDecl(DeclPtrTy::make(NewID));
6356    IdResolver.AddDecl(NewID);
6357  }
6358
6359  return DeclPtrTy::make(NewID);
6360}
6361
6362void Sema::ActOnFields(Scope* S,
6363                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6364                       DeclPtrTy *Fields, unsigned NumFields,
6365                       SourceLocation LBrac, SourceLocation RBrac,
6366                       AttributeList *Attr) {
6367  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6368  assert(EnclosingDecl && "missing record or interface decl");
6369
6370  // If the decl this is being inserted into is invalid, then it may be a
6371  // redeclaration or some other bogus case.  Don't try to add fields to it.
6372  if (EnclosingDecl->isInvalidDecl()) {
6373    // FIXME: Deallocate fields?
6374    return;
6375  }
6376
6377
6378  // Verify that all the fields are okay.
6379  unsigned NumNamedMembers = 0;
6380  llvm::SmallVector<FieldDecl*, 32> RecFields;
6381
6382  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6383  for (unsigned i = 0; i != NumFields; ++i) {
6384    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6385
6386    // Get the type for the field.
6387    Type *FDTy = FD->getType().getTypePtr();
6388
6389    if (!FD->isAnonymousStructOrUnion()) {
6390      // Remember all fields written by the user.
6391      RecFields.push_back(FD);
6392    }
6393
6394    // If the field is already invalid for some reason, don't emit more
6395    // diagnostics about it.
6396    if (FD->isInvalidDecl()) {
6397      EnclosingDecl->setInvalidDecl();
6398      continue;
6399    }
6400
6401    // C99 6.7.2.1p2:
6402    //   A structure or union shall not contain a member with
6403    //   incomplete or function type (hence, a structure shall not
6404    //   contain an instance of itself, but may contain a pointer to
6405    //   an instance of itself), except that the last member of a
6406    //   structure with more than one named member may have incomplete
6407    //   array type; such a structure (and any union containing,
6408    //   possibly recursively, a member that is such a structure)
6409    //   shall not be a member of a structure or an element of an
6410    //   array.
6411    if (FDTy->isFunctionType()) {
6412      // Field declared as a function.
6413      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6414        << FD->getDeclName();
6415      FD->setInvalidDecl();
6416      EnclosingDecl->setInvalidDecl();
6417      continue;
6418    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6419               Record && Record->isStruct()) {
6420      // Flexible array member.
6421      if (NumNamedMembers < 1) {
6422        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6423          << FD->getDeclName();
6424        FD->setInvalidDecl();
6425        EnclosingDecl->setInvalidDecl();
6426        continue;
6427      }
6428      if (!FD->getType()->isDependentType() &&
6429          !Context.getBaseElementType(FD->getType())->isPODType()) {
6430        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6431          << FD->getDeclName() << FD->getType();
6432        FD->setInvalidDecl();
6433        EnclosingDecl->setInvalidDecl();
6434        continue;
6435      }
6436
6437      // Okay, we have a legal flexible array member at the end of the struct.
6438      if (Record)
6439        Record->setHasFlexibleArrayMember(true);
6440    } else if (!FDTy->isDependentType() &&
6441               RequireCompleteType(FD->getLocation(), FD->getType(),
6442                                   diag::err_field_incomplete)) {
6443      // Incomplete type
6444      FD->setInvalidDecl();
6445      EnclosingDecl->setInvalidDecl();
6446      continue;
6447    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6448      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6449        // If this is a member of a union, then entire union becomes "flexible".
6450        if (Record && Record->isUnion()) {
6451          Record->setHasFlexibleArrayMember(true);
6452        } else {
6453          // If this is a struct/class and this is not the last element, reject
6454          // it.  Note that GCC supports variable sized arrays in the middle of
6455          // structures.
6456          if (i != NumFields-1)
6457            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6458              << FD->getDeclName() << FD->getType();
6459          else {
6460            // We support flexible arrays at the end of structs in
6461            // other structs as an extension.
6462            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6463              << FD->getDeclName();
6464            if (Record)
6465              Record->setHasFlexibleArrayMember(true);
6466          }
6467        }
6468      }
6469      if (Record && FDTTy->getDecl()->hasObjectMember())
6470        Record->setHasObjectMember(true);
6471    } else if (FDTy->isObjCObjectType()) {
6472      /// A field cannot be an Objective-c object
6473      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6474      FD->setInvalidDecl();
6475      EnclosingDecl->setInvalidDecl();
6476      continue;
6477    } else if (getLangOptions().ObjC1 &&
6478               getLangOptions().getGCMode() != LangOptions::NonGC &&
6479               Record &&
6480               (FD->getType()->isObjCObjectPointerType() ||
6481                FD->getType().isObjCGCStrong()))
6482      Record->setHasObjectMember(true);
6483    else if (Context.getAsArrayType(FD->getType())) {
6484      QualType BaseType = Context.getBaseElementType(FD->getType());
6485      if (Record && BaseType->isRecordType() &&
6486          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6487        Record->setHasObjectMember(true);
6488    }
6489    // Keep track of the number of named members.
6490    if (FD->getIdentifier())
6491      ++NumNamedMembers;
6492  }
6493
6494  // Okay, we successfully defined 'Record'.
6495  if (Record) {
6496    Record->completeDefinition();
6497  } else {
6498    ObjCIvarDecl **ClsFields =
6499      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6500    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6501      ID->setLocEnd(RBrac);
6502      // Add ivar's to class's DeclContext.
6503      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6504        ClsFields[i]->setLexicalDeclContext(ID);
6505        ID->addDecl(ClsFields[i]);
6506      }
6507      // Must enforce the rule that ivars in the base classes may not be
6508      // duplicates.
6509      if (ID->getSuperClass())
6510        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6511    } else if (ObjCImplementationDecl *IMPDecl =
6512                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6513      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6514      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6515        // Ivar declared in @implementation never belongs to the implementation.
6516        // Only it is in implementation's lexical context.
6517        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6518      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6519    } else if (ObjCCategoryDecl *CDecl =
6520                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6521      // case of ivars in class extension; all other cases have been
6522      // reported as errors elsewhere.
6523      // FIXME. Class extension does not have a LocEnd field.
6524      // CDecl->setLocEnd(RBrac);
6525      // Add ivar's to class extension's DeclContext.
6526      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6527        ClsFields[i]->setLexicalDeclContext(CDecl);
6528        CDecl->addDecl(ClsFields[i]);
6529      }
6530    }
6531  }
6532
6533  if (Attr)
6534    ProcessDeclAttributeList(S, Record, Attr);
6535
6536  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6537  // set the visibility of this record.
6538  if (Record && !Record->getDeclContext()->isRecord())
6539    AddPushedVisibilityAttribute(Record);
6540}
6541
6542/// \brief Determine whether the given integral value is representable within
6543/// the given type T.
6544static bool isRepresentableIntegerValue(ASTContext &Context,
6545                                        llvm::APSInt &Value,
6546                                        QualType T) {
6547  assert(T->isIntegralType(Context) && "Integral type required!");
6548  unsigned BitWidth = Context.getIntWidth(T);
6549
6550  if (Value.isUnsigned() || Value.isNonNegative())
6551    return Value.getActiveBits() < BitWidth;
6552
6553  return Value.getMinSignedBits() <= BitWidth;
6554}
6555
6556// \brief Given an integral type, return the next larger integral type
6557// (or a NULL type of no such type exists).
6558static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6559  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6560  // enum checking below.
6561  assert(T->isIntegralType(Context) && "Integral type required!");
6562  const unsigned NumTypes = 4;
6563  QualType SignedIntegralTypes[NumTypes] = {
6564    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6565  };
6566  QualType UnsignedIntegralTypes[NumTypes] = {
6567    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6568    Context.UnsignedLongLongTy
6569  };
6570
6571  unsigned BitWidth = Context.getTypeSize(T);
6572  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6573                                            : UnsignedIntegralTypes;
6574  for (unsigned I = 0; I != NumTypes; ++I)
6575    if (Context.getTypeSize(Types[I]) > BitWidth)
6576      return Types[I];
6577
6578  return QualType();
6579}
6580
6581EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6582                                          EnumConstantDecl *LastEnumConst,
6583                                          SourceLocation IdLoc,
6584                                          IdentifierInfo *Id,
6585                                          ExprArg val) {
6586  Expr *Val = (Expr *)val.get();
6587
6588  unsigned IntWidth = Context.Target.getIntWidth();
6589  llvm::APSInt EnumVal(IntWidth);
6590  QualType EltTy;
6591  if (Val) {
6592    if (Enum->isDependentType() || Val->isTypeDependent())
6593      EltTy = Context.DependentTy;
6594    else {
6595      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6596      SourceLocation ExpLoc;
6597      if (!Val->isValueDependent() &&
6598          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6599        Val = 0;
6600      } else {
6601        if (!getLangOptions().CPlusPlus) {
6602          // C99 6.7.2.2p2:
6603          //   The expression that defines the value of an enumeration constant
6604          //   shall be an integer constant expression that has a value
6605          //   representable as an int.
6606
6607          // Complain if the value is not representable in an int.
6608          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6609            Diag(IdLoc, diag::ext_enum_value_not_int)
6610              << EnumVal.toString(10) << Val->getSourceRange()
6611              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6612          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6613            // Force the type of the expression to 'int'.
6614            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6615
6616            if (Val != val.get()) {
6617              val.release();
6618              val = Val;
6619            }
6620          }
6621        }
6622
6623        // C++0x [dcl.enum]p5:
6624        //   If the underlying type is not fixed, the type of each enumerator
6625        //   is the type of its initializing value:
6626        //     - If an initializer is specified for an enumerator, the
6627        //       initializing value has the same type as the expression.
6628        EltTy = Val->getType();
6629      }
6630    }
6631  }
6632
6633  if (!Val) {
6634    if (Enum->isDependentType())
6635      EltTy = Context.DependentTy;
6636    else if (!LastEnumConst) {
6637      // C++0x [dcl.enum]p5:
6638      //   If the underlying type is not fixed, the type of each enumerator
6639      //   is the type of its initializing value:
6640      //     - If no initializer is specified for the first enumerator, the
6641      //       initializing value has an unspecified integral type.
6642      //
6643      // GCC uses 'int' for its unspecified integral type, as does
6644      // C99 6.7.2.2p3.
6645      EltTy = Context.IntTy;
6646    } else {
6647      // Assign the last value + 1.
6648      EnumVal = LastEnumConst->getInitVal();
6649      ++EnumVal;
6650      EltTy = LastEnumConst->getType();
6651
6652      // Check for overflow on increment.
6653      if (EnumVal < LastEnumConst->getInitVal()) {
6654        // C++0x [dcl.enum]p5:
6655        //   If the underlying type is not fixed, the type of each enumerator
6656        //   is the type of its initializing value:
6657        //
6658        //     - Otherwise the type of the initializing value is the same as
6659        //       the type of the initializing value of the preceding enumerator
6660        //       unless the incremented value is not representable in that type,
6661        //       in which case the type is an unspecified integral type
6662        //       sufficient to contain the incremented value. If no such type
6663        //       exists, the program is ill-formed.
6664        QualType T = getNextLargerIntegralType(Context, EltTy);
6665        if (T.isNull()) {
6666          // There is no integral type larger enough to represent this
6667          // value. Complain, then allow the value to wrap around.
6668          EnumVal = LastEnumConst->getInitVal();
6669          EnumVal.zext(EnumVal.getBitWidth() * 2);
6670          Diag(IdLoc, diag::warn_enumerator_too_large)
6671            << EnumVal.toString(10);
6672        } else {
6673          EltTy = T;
6674        }
6675
6676        // Retrieve the last enumerator's value, extent that type to the
6677        // type that is supposed to be large enough to represent the incremented
6678        // value, then increment.
6679        EnumVal = LastEnumConst->getInitVal();
6680        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6681        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6682        ++EnumVal;
6683
6684        // If we're not in C++, diagnose the overflow of enumerator values,
6685        // which in C99 means that the enumerator value is not representable in
6686        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6687        // permits enumerator values that are representable in some larger
6688        // integral type.
6689        if (!getLangOptions().CPlusPlus && !T.isNull())
6690          Diag(IdLoc, diag::warn_enum_value_overflow);
6691      } else if (!getLangOptions().CPlusPlus &&
6692                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6693        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6694        Diag(IdLoc, diag::ext_enum_value_not_int)
6695          << EnumVal.toString(10) << 1;
6696      }
6697    }
6698  }
6699
6700  if (!EltTy->isDependentType()) {
6701    // Make the enumerator value match the signedness and size of the
6702    // enumerator's type.
6703    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6704    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6705  }
6706
6707  val.release();
6708  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6709                                  Val, EnumVal);
6710}
6711
6712
6713Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6714                                        DeclPtrTy lastEnumConst,
6715                                        SourceLocation IdLoc,
6716                                        IdentifierInfo *Id,
6717                                        SourceLocation EqualLoc, ExprTy *val) {
6718  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6719  EnumConstantDecl *LastEnumConst =
6720    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6721  Expr *Val = static_cast<Expr*>(val);
6722
6723  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6724  // we find one that is.
6725  S = getNonFieldDeclScope(S);
6726
6727  // Verify that there isn't already something declared with this name in this
6728  // scope.
6729  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6730                                         ForRedeclaration);
6731  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6732    // Maybe we will complain about the shadowed template parameter.
6733    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6734    // Just pretend that we didn't see the previous declaration.
6735    PrevDecl = 0;
6736  }
6737
6738  if (PrevDecl) {
6739    // When in C++, we may get a TagDecl with the same name; in this case the
6740    // enum constant will 'hide' the tag.
6741    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6742           "Received TagDecl when not in C++!");
6743    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6744      if (isa<EnumConstantDecl>(PrevDecl))
6745        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6746      else
6747        Diag(IdLoc, diag::err_redefinition) << Id;
6748      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6749      return DeclPtrTy();
6750    }
6751  }
6752
6753  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6754                                            IdLoc, Id, Owned(Val));
6755
6756  // Register this decl in the current scope stack.
6757  if (New) {
6758    New->setAccess(TheEnumDecl->getAccess());
6759    PushOnScopeChains(New, S);
6760  }
6761
6762  return DeclPtrTy::make(New);
6763}
6764
6765void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6766                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6767                         DeclPtrTy *Elements, unsigned NumElements,
6768                         Scope *S, AttributeList *Attr) {
6769  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6770  QualType EnumType = Context.getTypeDeclType(Enum);
6771
6772  if (Attr)
6773    ProcessDeclAttributeList(S, Enum, Attr);
6774
6775  if (Enum->isDependentType()) {
6776    for (unsigned i = 0; i != NumElements; ++i) {
6777      EnumConstantDecl *ECD =
6778        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6779      if (!ECD) continue;
6780
6781      ECD->setType(EnumType);
6782    }
6783
6784    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6785    return;
6786  }
6787
6788  // TODO: If the result value doesn't fit in an int, it must be a long or long
6789  // long value.  ISO C does not support this, but GCC does as an extension,
6790  // emit a warning.
6791  unsigned IntWidth = Context.Target.getIntWidth();
6792  unsigned CharWidth = Context.Target.getCharWidth();
6793  unsigned ShortWidth = Context.Target.getShortWidth();
6794
6795  // Verify that all the values are okay, compute the size of the values, and
6796  // reverse the list.
6797  unsigned NumNegativeBits = 0;
6798  unsigned NumPositiveBits = 0;
6799
6800  // Keep track of whether all elements have type int.
6801  bool AllElementsInt = true;
6802
6803  for (unsigned i = 0; i != NumElements; ++i) {
6804    EnumConstantDecl *ECD =
6805      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6806    if (!ECD) continue;  // Already issued a diagnostic.
6807
6808    const llvm::APSInt &InitVal = ECD->getInitVal();
6809
6810    // Keep track of the size of positive and negative values.
6811    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6812      NumPositiveBits = std::max(NumPositiveBits,
6813                                 (unsigned)InitVal.getActiveBits());
6814    else
6815      NumNegativeBits = std::max(NumNegativeBits,
6816                                 (unsigned)InitVal.getMinSignedBits());
6817
6818    // Keep track of whether every enum element has type int (very commmon).
6819    if (AllElementsInt)
6820      AllElementsInt = ECD->getType() == Context.IntTy;
6821  }
6822
6823  // Figure out the type that should be used for this enum.
6824  // FIXME: Support -fshort-enums.
6825  QualType BestType;
6826  unsigned BestWidth;
6827
6828  // C++0x N3000 [conv.prom]p3:
6829  //   An rvalue of an unscoped enumeration type whose underlying
6830  //   type is not fixed can be converted to an rvalue of the first
6831  //   of the following types that can represent all the values of
6832  //   the enumeration: int, unsigned int, long int, unsigned long
6833  //   int, long long int, or unsigned long long int.
6834  // C99 6.4.4.3p2:
6835  //   An identifier declared as an enumeration constant has type int.
6836  // The C99 rule is modified by a gcc extension
6837  QualType BestPromotionType;
6838
6839  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6840
6841  if (NumNegativeBits) {
6842    // If there is a negative value, figure out the smallest integer type (of
6843    // int/long/longlong) that fits.
6844    // If it's packed, check also if it fits a char or a short.
6845    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6846      BestType = Context.SignedCharTy;
6847      BestWidth = CharWidth;
6848    } else if (Packed && NumNegativeBits <= ShortWidth &&
6849               NumPositiveBits < ShortWidth) {
6850      BestType = Context.ShortTy;
6851      BestWidth = ShortWidth;
6852    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6853      BestType = Context.IntTy;
6854      BestWidth = IntWidth;
6855    } else {
6856      BestWidth = Context.Target.getLongWidth();
6857
6858      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6859        BestType = Context.LongTy;
6860      } else {
6861        BestWidth = Context.Target.getLongLongWidth();
6862
6863        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6864          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6865        BestType = Context.LongLongTy;
6866      }
6867    }
6868    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6869  } else {
6870    // If there is no negative value, figure out the smallest type that fits
6871    // all of the enumerator values.
6872    // If it's packed, check also if it fits a char or a short.
6873    if (Packed && NumPositiveBits <= CharWidth) {
6874      BestType = Context.UnsignedCharTy;
6875      BestPromotionType = Context.IntTy;
6876      BestWidth = CharWidth;
6877    } else if (Packed && NumPositiveBits <= ShortWidth) {
6878      BestType = Context.UnsignedShortTy;
6879      BestPromotionType = Context.IntTy;
6880      BestWidth = ShortWidth;
6881    } else if (NumPositiveBits <= IntWidth) {
6882      BestType = Context.UnsignedIntTy;
6883      BestWidth = IntWidth;
6884      BestPromotionType
6885        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6886                           ? Context.UnsignedIntTy : Context.IntTy;
6887    } else if (NumPositiveBits <=
6888               (BestWidth = Context.Target.getLongWidth())) {
6889      BestType = Context.UnsignedLongTy;
6890      BestPromotionType
6891        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6892                           ? Context.UnsignedLongTy : Context.LongTy;
6893    } else {
6894      BestWidth = Context.Target.getLongLongWidth();
6895      assert(NumPositiveBits <= BestWidth &&
6896             "How could an initializer get larger than ULL?");
6897      BestType = Context.UnsignedLongLongTy;
6898      BestPromotionType
6899        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6900                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6901    }
6902  }
6903
6904  // Loop over all of the enumerator constants, changing their types to match
6905  // the type of the enum if needed.
6906  for (unsigned i = 0; i != NumElements; ++i) {
6907    EnumConstantDecl *ECD =
6908      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6909    if (!ECD) continue;  // Already issued a diagnostic.
6910
6911    // Standard C says the enumerators have int type, but we allow, as an
6912    // extension, the enumerators to be larger than int size.  If each
6913    // enumerator value fits in an int, type it as an int, otherwise type it the
6914    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6915    // that X has type 'int', not 'unsigned'.
6916
6917    // Determine whether the value fits into an int.
6918    llvm::APSInt InitVal = ECD->getInitVal();
6919
6920    // If it fits into an integer type, force it.  Otherwise force it to match
6921    // the enum decl type.
6922    QualType NewTy;
6923    unsigned NewWidth;
6924    bool NewSign;
6925    if (!getLangOptions().CPlusPlus &&
6926        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6927      NewTy = Context.IntTy;
6928      NewWidth = IntWidth;
6929      NewSign = true;
6930    } else if (ECD->getType() == BestType) {
6931      // Already the right type!
6932      if (getLangOptions().CPlusPlus)
6933        // C++ [dcl.enum]p4: Following the closing brace of an
6934        // enum-specifier, each enumerator has the type of its
6935        // enumeration.
6936        ECD->setType(EnumType);
6937      continue;
6938    } else {
6939      NewTy = BestType;
6940      NewWidth = BestWidth;
6941      NewSign = BestType->isSignedIntegerType();
6942    }
6943
6944    // Adjust the APSInt value.
6945    InitVal.extOrTrunc(NewWidth);
6946    InitVal.setIsSigned(NewSign);
6947    ECD->setInitVal(InitVal);
6948
6949    // Adjust the Expr initializer and type.
6950    if (ECD->getInitExpr())
6951      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6952                                                CastExpr::CK_IntegralCast,
6953                                                ECD->getInitExpr(),
6954                                                /*base paths*/ 0,
6955                                                ImplicitCastExpr::RValue));
6956    if (getLangOptions().CPlusPlus)
6957      // C++ [dcl.enum]p4: Following the closing brace of an
6958      // enum-specifier, each enumerator has the type of its
6959      // enumeration.
6960      ECD->setType(EnumType);
6961    else
6962      ECD->setType(NewTy);
6963  }
6964
6965  Enum->completeDefinition(BestType, BestPromotionType,
6966                           NumPositiveBits, NumNegativeBits);
6967}
6968
6969Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6970                                            ExprArg expr) {
6971  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6972
6973  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6974                                                   Loc, AsmString);
6975  CurContext->addDecl(New);
6976  return DeclPtrTy::make(New);
6977}
6978
6979void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6980                             SourceLocation PragmaLoc,
6981                             SourceLocation NameLoc) {
6982  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6983
6984  if (PrevDecl) {
6985    PrevDecl->addAttr(::new (Context) WeakAttr());
6986  } else {
6987    (void)WeakUndeclaredIdentifiers.insert(
6988      std::pair<IdentifierInfo*,WeakInfo>
6989        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6990  }
6991}
6992
6993void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6994                                IdentifierInfo* AliasName,
6995                                SourceLocation PragmaLoc,
6996                                SourceLocation NameLoc,
6997                                SourceLocation AliasNameLoc) {
6998  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6999                                    LookupOrdinaryName);
7000  WeakInfo W = WeakInfo(Name, NameLoc);
7001
7002  if (PrevDecl) {
7003    if (!PrevDecl->hasAttr<AliasAttr>())
7004      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7005        DeclApplyPragmaWeak(TUScope, ND, W);
7006  } else {
7007    (void)WeakUndeclaredIdentifiers.insert(
7008      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7009  }
7010}
7011