SemaDecl.cpp revision 426391cd51af86f9d59eceb0fb1c42153eccbb9a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
439                                          CorrectedStr);
440      else
441        llvm_unreachable("could not have corrected a typo here");
442
443      Diag(Result->getLocation(), diag::note_previous_decl)
444        << CorrectedQuotedStr;
445
446      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
447                                  false, false, ParsedType(),
448                                  /*IsCtorOrDtorName=*/false,
449                                  /*NonTrivialTypeSourceInfo=*/true);
450    }
451    return true;
452  }
453
454  if (getLangOpts().CPlusPlus) {
455    // See if II is a class template that the user forgot to pass arguments to.
456    UnqualifiedId Name;
457    Name.setIdentifier(II, IILoc);
458    CXXScopeSpec EmptySS;
459    TemplateTy TemplateResult;
460    bool MemberOfUnknownSpecialization;
461    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
462                       Name, ParsedType(), true, TemplateResult,
463                       MemberOfUnknownSpecialization) == TNK_Type_template) {
464      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
465      Diag(IILoc, diag::err_template_missing_args) << TplName;
466      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
467        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
468          << TplDecl->getTemplateParameters()->getSourceRange();
469      }
470      return true;
471    }
472  }
473
474  // FIXME: Should we move the logic that tries to recover from a missing tag
475  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
476
477  if (!SS || (!SS->isSet() && !SS->isInvalid()))
478    Diag(IILoc, diag::err_unknown_typename) << II;
479  else if (DeclContext *DC = computeDeclContext(*SS, false))
480    Diag(IILoc, diag::err_typename_nested_not_found)
481      << II << DC << SS->getRange();
482  else if (isDependentScopeSpecifier(*SS)) {
483    unsigned DiagID = diag::err_typename_missing;
484    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
485      DiagID = diag::warn_typename_missing;
486
487    Diag(SS->getRange().getBegin(), DiagID)
488      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
489      << SourceRange(SS->getRange().getBegin(), IILoc)
490      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
491    SuggestedType = ActOnTypenameType(S, SourceLocation(),
492                                      *SS, *II, IILoc).get();
493  } else {
494    assert(SS && SS->isInvalid() &&
495           "Invalid scope specifier has already been diagnosed");
496  }
497
498  return true;
499}
500
501/// \brief Determine whether the given result set contains either a type name
502/// or
503static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
504  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
505                       NextToken.is(tok::less);
506
507  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
508    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
509      return true;
510
511    if (CheckTemplate && isa<TemplateDecl>(*I))
512      return true;
513  }
514
515  return false;
516}
517
518static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
519                                    Scope *S, CXXScopeSpec &SS,
520                                    IdentifierInfo *&Name,
521                                    SourceLocation NameLoc) {
522  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
523  SemaRef.LookupParsedName(R, S, &SS);
524  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
525    const char *TagName = 0;
526    const char *FixItTagName = 0;
527    switch (Tag->getTagKind()) {
528      case TTK_Class:
529        TagName = "class";
530        FixItTagName = "class ";
531        break;
532
533      case TTK_Enum:
534        TagName = "enum";
535        FixItTagName = "enum ";
536        break;
537
538      case TTK_Struct:
539        TagName = "struct";
540        FixItTagName = "struct ";
541        break;
542
543      case TTK_Interface:
544        TagName = "__interface";
545        FixItTagName = "__interface ";
546        break;
547
548      case TTK_Union:
549        TagName = "union";
550        FixItTagName = "union ";
551        break;
552    }
553
554    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
555      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
556      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
557
558    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
559         I != IEnd; ++I)
560      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
561        << Name << TagName;
562
563    // Replace lookup results with just the tag decl.
564    Result.clear(Sema::LookupTagName);
565    SemaRef.LookupParsedName(Result, S, &SS);
566    return true;
567  }
568
569  return false;
570}
571
572/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
573static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
574                                  QualType T, SourceLocation NameLoc) {
575  ASTContext &Context = S.Context;
576
577  TypeLocBuilder Builder;
578  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
579
580  T = S.getElaboratedType(ETK_None, SS, T);
581  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
582  ElabTL.setElaboratedKeywordLoc(SourceLocation());
583  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
584  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
585}
586
587Sema::NameClassification Sema::ClassifyName(Scope *S,
588                                            CXXScopeSpec &SS,
589                                            IdentifierInfo *&Name,
590                                            SourceLocation NameLoc,
591                                            const Token &NextToken,
592                                            bool IsAddressOfOperand,
593                                            CorrectionCandidateCallback *CCC) {
594  DeclarationNameInfo NameInfo(Name, NameLoc);
595  ObjCMethodDecl *CurMethod = getCurMethodDecl();
596
597  if (NextToken.is(tok::coloncolon)) {
598    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
599                                QualType(), false, SS, 0, false);
600
601  }
602
603  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
604  LookupParsedName(Result, S, &SS, !CurMethod);
605
606  // Perform lookup for Objective-C instance variables (including automatically
607  // synthesized instance variables), if we're in an Objective-C method.
608  // FIXME: This lookup really, really needs to be folded in to the normal
609  // unqualified lookup mechanism.
610  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
611    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
612    if (E.get() || E.isInvalid())
613      return E;
614  }
615
616  bool SecondTry = false;
617  bool IsFilteredTemplateName = false;
618
619Corrected:
620  switch (Result.getResultKind()) {
621  case LookupResult::NotFound:
622    // If an unqualified-id is followed by a '(', then we have a function
623    // call.
624    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
625      // In C++, this is an ADL-only call.
626      // FIXME: Reference?
627      if (getLangOpts().CPlusPlus)
628        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
629
630      // C90 6.3.2.2:
631      //   If the expression that precedes the parenthesized argument list in a
632      //   function call consists solely of an identifier, and if no
633      //   declaration is visible for this identifier, the identifier is
634      //   implicitly declared exactly as if, in the innermost block containing
635      //   the function call, the declaration
636      //
637      //     extern int identifier ();
638      //
639      //   appeared.
640      //
641      // We also allow this in C99 as an extension.
642      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
643        Result.addDecl(D);
644        Result.resolveKind();
645        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
646      }
647    }
648
649    // In C, we first see whether there is a tag type by the same name, in
650    // which case it's likely that the user just forget to write "enum",
651    // "struct", or "union".
652    if (!getLangOpts().CPlusPlus && !SecondTry &&
653        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
654      break;
655    }
656
657    // Perform typo correction to determine if there is another name that is
658    // close to this name.
659    if (!SecondTry && CCC) {
660      SecondTry = true;
661      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
662                                                 Result.getLookupKind(), S,
663                                                 &SS, *CCC)) {
664        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
665        unsigned QualifiedDiag = diag::err_no_member_suggest;
666        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
667        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
668
669        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
670        NamedDecl *UnderlyingFirstDecl
671          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
672        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
673            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
674          UnqualifiedDiag = diag::err_no_template_suggest;
675          QualifiedDiag = diag::err_no_member_template_suggest;
676        } else if (UnderlyingFirstDecl &&
677                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
679                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
680           UnqualifiedDiag = diag::err_unknown_typename_suggest;
681           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
682         }
683
684        if (SS.isEmpty())
685          Diag(NameLoc, UnqualifiedDiag)
686            << Name << CorrectedQuotedStr
687            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
688        else // FIXME: is this even reachable? Test it.
689          Diag(NameLoc, QualifiedDiag)
690            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
691            << SS.getRange()
692            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
693                                            CorrectedStr);
694
695        // Update the name, so that the caller has the new name.
696        Name = Corrected.getCorrectionAsIdentifierInfo();
697
698        // Typo correction corrected to a keyword.
699        if (Corrected.isKeyword())
700          return Corrected.getCorrectionAsIdentifierInfo();
701
702        // Also update the LookupResult...
703        // FIXME: This should probably go away at some point
704        Result.clear();
705        Result.setLookupName(Corrected.getCorrection());
706        if (FirstDecl) {
707          Result.addDecl(FirstDecl);
708          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
709            << CorrectedQuotedStr;
710        }
711
712        // If we found an Objective-C instance variable, let
713        // LookupInObjCMethod build the appropriate expression to
714        // reference the ivar.
715        // FIXME: This is a gross hack.
716        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
717          Result.clear();
718          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
719          return E;
720        }
721
722        goto Corrected;
723      }
724    }
725
726    // We failed to correct; just fall through and let the parser deal with it.
727    Result.suppressDiagnostics();
728    return NameClassification::Unknown();
729
730  case LookupResult::NotFoundInCurrentInstantiation: {
731    // We performed name lookup into the current instantiation, and there were
732    // dependent bases, so we treat this result the same way as any other
733    // dependent nested-name-specifier.
734
735    // C++ [temp.res]p2:
736    //   A name used in a template declaration or definition and that is
737    //   dependent on a template-parameter is assumed not to name a type
738    //   unless the applicable name lookup finds a type name or the name is
739    //   qualified by the keyword typename.
740    //
741    // FIXME: If the next token is '<', we might want to ask the parser to
742    // perform some heroics to see if we actually have a
743    // template-argument-list, which would indicate a missing 'template'
744    // keyword here.
745    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
746                                      NameInfo, IsAddressOfOperand,
747                                      /*TemplateArgs=*/0);
748  }
749
750  case LookupResult::Found:
751  case LookupResult::FoundOverloaded:
752  case LookupResult::FoundUnresolvedValue:
753    break;
754
755  case LookupResult::Ambiguous:
756    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
757        hasAnyAcceptableTemplateNames(Result)) {
758      // C++ [temp.local]p3:
759      //   A lookup that finds an injected-class-name (10.2) can result in an
760      //   ambiguity in certain cases (for example, if it is found in more than
761      //   one base class). If all of the injected-class-names that are found
762      //   refer to specializations of the same class template, and if the name
763      //   is followed by a template-argument-list, the reference refers to the
764      //   class template itself and not a specialization thereof, and is not
765      //   ambiguous.
766      //
767      // This filtering can make an ambiguous result into an unambiguous one,
768      // so try again after filtering out template names.
769      FilterAcceptableTemplateNames(Result);
770      if (!Result.isAmbiguous()) {
771        IsFilteredTemplateName = true;
772        break;
773      }
774    }
775
776    // Diagnose the ambiguity and return an error.
777    return NameClassification::Error();
778  }
779
780  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
781      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
782    // C++ [temp.names]p3:
783    //   After name lookup (3.4) finds that a name is a template-name or that
784    //   an operator-function-id or a literal- operator-id refers to a set of
785    //   overloaded functions any member of which is a function template if
786    //   this is followed by a <, the < is always taken as the delimiter of a
787    //   template-argument-list and never as the less-than operator.
788    if (!IsFilteredTemplateName)
789      FilterAcceptableTemplateNames(Result);
790
791    if (!Result.empty()) {
792      bool IsFunctionTemplate;
793      TemplateName Template;
794      if (Result.end() - Result.begin() > 1) {
795        IsFunctionTemplate = true;
796        Template = Context.getOverloadedTemplateName(Result.begin(),
797                                                     Result.end());
798      } else {
799        TemplateDecl *TD
800          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
801        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
802
803        if (SS.isSet() && !SS.isInvalid())
804          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
805                                                    /*TemplateKeyword=*/false,
806                                                      TD);
807        else
808          Template = TemplateName(TD);
809      }
810
811      if (IsFunctionTemplate) {
812        // Function templates always go through overload resolution, at which
813        // point we'll perform the various checks (e.g., accessibility) we need
814        // to based on which function we selected.
815        Result.suppressDiagnostics();
816
817        return NameClassification::FunctionTemplate(Template);
818      }
819
820      return NameClassification::TypeTemplate(Template);
821    }
822  }
823
824  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
825  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
826    DiagnoseUseOfDecl(Type, NameLoc);
827    QualType T = Context.getTypeDeclType(Type);
828    if (SS.isNotEmpty())
829      return buildNestedType(*this, SS, T, NameLoc);
830    return ParsedType::make(T);
831  }
832
833  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
834  if (!Class) {
835    // FIXME: It's unfortunate that we don't have a Type node for handling this.
836    if (ObjCCompatibleAliasDecl *Alias
837                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
838      Class = Alias->getClassInterface();
839  }
840
841  if (Class) {
842    DiagnoseUseOfDecl(Class, NameLoc);
843
844    if (NextToken.is(tok::period)) {
845      // Interface. <something> is parsed as a property reference expression.
846      // Just return "unknown" as a fall-through for now.
847      Result.suppressDiagnostics();
848      return NameClassification::Unknown();
849    }
850
851    QualType T = Context.getObjCInterfaceType(Class);
852    return ParsedType::make(T);
853  }
854
855  // We can have a type template here if we're classifying a template argument.
856  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
857    return NameClassification::TypeTemplate(
858        TemplateName(cast<TemplateDecl>(FirstDecl)));
859
860  // Check for a tag type hidden by a non-type decl in a few cases where it
861  // seems likely a type is wanted instead of the non-type that was found.
862  if (!getLangOpts().ObjC1) {
863    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
864    if ((NextToken.is(tok::identifier) ||
865         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
866        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
867      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
868      DiagnoseUseOfDecl(Type, NameLoc);
869      QualType T = Context.getTypeDeclType(Type);
870      if (SS.isNotEmpty())
871        return buildNestedType(*this, SS, T, NameLoc);
872      return ParsedType::make(T);
873    }
874  }
875
876  if (FirstDecl->isCXXClassMember())
877    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
878
879  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
880  return BuildDeclarationNameExpr(SS, Result, ADL);
881}
882
883// Determines the context to return to after temporarily entering a
884// context.  This depends in an unnecessarily complicated way on the
885// exact ordering of callbacks from the parser.
886DeclContext *Sema::getContainingDC(DeclContext *DC) {
887
888  // Functions defined inline within classes aren't parsed until we've
889  // finished parsing the top-level class, so the top-level class is
890  // the context we'll need to return to.
891  if (isa<FunctionDecl>(DC)) {
892    DC = DC->getLexicalParent();
893
894    // A function not defined within a class will always return to its
895    // lexical context.
896    if (!isa<CXXRecordDecl>(DC))
897      return DC;
898
899    // A C++ inline method/friend is parsed *after* the topmost class
900    // it was declared in is fully parsed ("complete");  the topmost
901    // class is the context we need to return to.
902    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
903      DC = RD;
904
905    // Return the declaration context of the topmost class the inline method is
906    // declared in.
907    return DC;
908  }
909
910  return DC->getLexicalParent();
911}
912
913void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
914  assert(getContainingDC(DC) == CurContext &&
915      "The next DeclContext should be lexically contained in the current one.");
916  CurContext = DC;
917  S->setEntity(DC);
918}
919
920void Sema::PopDeclContext() {
921  assert(CurContext && "DeclContext imbalance!");
922
923  CurContext = getContainingDC(CurContext);
924  assert(CurContext && "Popped translation unit!");
925}
926
927/// EnterDeclaratorContext - Used when we must lookup names in the context
928/// of a declarator's nested name specifier.
929///
930void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
931  // C++0x [basic.lookup.unqual]p13:
932  //   A name used in the definition of a static data member of class
933  //   X (after the qualified-id of the static member) is looked up as
934  //   if the name was used in a member function of X.
935  // C++0x [basic.lookup.unqual]p14:
936  //   If a variable member of a namespace is defined outside of the
937  //   scope of its namespace then any name used in the definition of
938  //   the variable member (after the declarator-id) is looked up as
939  //   if the definition of the variable member occurred in its
940  //   namespace.
941  // Both of these imply that we should push a scope whose context
942  // is the semantic context of the declaration.  We can't use
943  // PushDeclContext here because that context is not necessarily
944  // lexically contained in the current context.  Fortunately,
945  // the containing scope should have the appropriate information.
946
947  assert(!S->getEntity() && "scope already has entity");
948
949#ifndef NDEBUG
950  Scope *Ancestor = S->getParent();
951  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
952  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
953#endif
954
955  CurContext = DC;
956  S->setEntity(DC);
957}
958
959void Sema::ExitDeclaratorContext(Scope *S) {
960  assert(S->getEntity() == CurContext && "Context imbalance!");
961
962  // Switch back to the lexical context.  The safety of this is
963  // enforced by an assert in EnterDeclaratorContext.
964  Scope *Ancestor = S->getParent();
965  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
966  CurContext = (DeclContext*) Ancestor->getEntity();
967
968  // We don't need to do anything with the scope, which is going to
969  // disappear.
970}
971
972
973void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
974  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
975  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
976    // We assume that the caller has already called
977    // ActOnReenterTemplateScope
978    FD = TFD->getTemplatedDecl();
979  }
980  if (!FD)
981    return;
982
983  // Same implementation as PushDeclContext, but enters the context
984  // from the lexical parent, rather than the top-level class.
985  assert(CurContext == FD->getLexicalParent() &&
986    "The next DeclContext should be lexically contained in the current one.");
987  CurContext = FD;
988  S->setEntity(CurContext);
989
990  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
991    ParmVarDecl *Param = FD->getParamDecl(P);
992    // If the parameter has an identifier, then add it to the scope
993    if (Param->getIdentifier()) {
994      S->AddDecl(Param);
995      IdResolver.AddDecl(Param);
996    }
997  }
998}
999
1000
1001void Sema::ActOnExitFunctionContext() {
1002  // Same implementation as PopDeclContext, but returns to the lexical parent,
1003  // rather than the top-level class.
1004  assert(CurContext && "DeclContext imbalance!");
1005  CurContext = CurContext->getLexicalParent();
1006  assert(CurContext && "Popped translation unit!");
1007}
1008
1009
1010/// \brief Determine whether we allow overloading of the function
1011/// PrevDecl with another declaration.
1012///
1013/// This routine determines whether overloading is possible, not
1014/// whether some new function is actually an overload. It will return
1015/// true in C++ (where we can always provide overloads) or, as an
1016/// extension, in C when the previous function is already an
1017/// overloaded function declaration or has the "overloadable"
1018/// attribute.
1019static bool AllowOverloadingOfFunction(LookupResult &Previous,
1020                                       ASTContext &Context) {
1021  if (Context.getLangOpts().CPlusPlus)
1022    return true;
1023
1024  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1025    return true;
1026
1027  return (Previous.getResultKind() == LookupResult::Found
1028          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1029}
1030
1031/// Add this decl to the scope shadowed decl chains.
1032void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1033  // Move up the scope chain until we find the nearest enclosing
1034  // non-transparent context. The declaration will be introduced into this
1035  // scope.
1036  while (S->getEntity() &&
1037         ((DeclContext *)S->getEntity())->isTransparentContext())
1038    S = S->getParent();
1039
1040  // Add scoped declarations into their context, so that they can be
1041  // found later. Declarations without a context won't be inserted
1042  // into any context.
1043  if (AddToContext)
1044    CurContext->addDecl(D);
1045
1046  // Out-of-line definitions shouldn't be pushed into scope in C++.
1047  // Out-of-line variable and function definitions shouldn't even in C.
1048  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1049      D->isOutOfLine() &&
1050      !D->getDeclContext()->getRedeclContext()->Equals(
1051        D->getLexicalDeclContext()->getRedeclContext()))
1052    return;
1053
1054  // Template instantiations should also not be pushed into scope.
1055  if (isa<FunctionDecl>(D) &&
1056      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1057    return;
1058
1059  // If this replaces anything in the current scope,
1060  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1061                               IEnd = IdResolver.end();
1062  for (; I != IEnd; ++I) {
1063    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1064      S->RemoveDecl(*I);
1065      IdResolver.RemoveDecl(*I);
1066
1067      // Should only need to replace one decl.
1068      break;
1069    }
1070  }
1071
1072  S->AddDecl(D);
1073
1074  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1075    // Implicitly-generated labels may end up getting generated in an order that
1076    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1077    // the label at the appropriate place in the identifier chain.
1078    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1079      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1080      if (IDC == CurContext) {
1081        if (!S->isDeclScope(*I))
1082          continue;
1083      } else if (IDC->Encloses(CurContext))
1084        break;
1085    }
1086
1087    IdResolver.InsertDeclAfter(I, D);
1088  } else {
1089    IdResolver.AddDecl(D);
1090  }
1091}
1092
1093void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1094  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1095    TUScope->AddDecl(D);
1096}
1097
1098bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1099                         bool ExplicitInstantiationOrSpecialization) {
1100  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1101                                  ExplicitInstantiationOrSpecialization);
1102}
1103
1104Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1105  DeclContext *TargetDC = DC->getPrimaryContext();
1106  do {
1107    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1108      if (ScopeDC->getPrimaryContext() == TargetDC)
1109        return S;
1110  } while ((S = S->getParent()));
1111
1112  return 0;
1113}
1114
1115static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1116                                            DeclContext*,
1117                                            ASTContext&);
1118
1119/// Filters out lookup results that don't fall within the given scope
1120/// as determined by isDeclInScope.
1121void Sema::FilterLookupForScope(LookupResult &R,
1122                                DeclContext *Ctx, Scope *S,
1123                                bool ConsiderLinkage,
1124                                bool ExplicitInstantiationOrSpecialization) {
1125  LookupResult::Filter F = R.makeFilter();
1126  while (F.hasNext()) {
1127    NamedDecl *D = F.next();
1128
1129    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1130      continue;
1131
1132    if (ConsiderLinkage &&
1133        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1134      continue;
1135
1136    F.erase();
1137  }
1138
1139  F.done();
1140}
1141
1142static bool isUsingDecl(NamedDecl *D) {
1143  return isa<UsingShadowDecl>(D) ||
1144         isa<UnresolvedUsingTypenameDecl>(D) ||
1145         isa<UnresolvedUsingValueDecl>(D);
1146}
1147
1148/// Removes using shadow declarations from the lookup results.
1149static void RemoveUsingDecls(LookupResult &R) {
1150  LookupResult::Filter F = R.makeFilter();
1151  while (F.hasNext())
1152    if (isUsingDecl(F.next()))
1153      F.erase();
1154
1155  F.done();
1156}
1157
1158/// \brief Check for this common pattern:
1159/// @code
1160/// class S {
1161///   S(const S&); // DO NOT IMPLEMENT
1162///   void operator=(const S&); // DO NOT IMPLEMENT
1163/// };
1164/// @endcode
1165static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1166  // FIXME: Should check for private access too but access is set after we get
1167  // the decl here.
1168  if (D->doesThisDeclarationHaveABody())
1169    return false;
1170
1171  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1172    return CD->isCopyConstructor();
1173  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1174    return Method->isCopyAssignmentOperator();
1175  return false;
1176}
1177
1178bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1179  assert(D);
1180
1181  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1182    return false;
1183
1184  // Ignore class templates.
1185  if (D->getDeclContext()->isDependentContext() ||
1186      D->getLexicalDeclContext()->isDependentContext())
1187    return false;
1188
1189  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1190    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1191      return false;
1192
1193    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1194      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1195        return false;
1196    } else {
1197      // 'static inline' functions are used in headers; don't warn.
1198      if (FD->getStorageClass() == SC_Static &&
1199          FD->isInlineSpecified())
1200        return false;
1201    }
1202
1203    if (FD->doesThisDeclarationHaveABody() &&
1204        Context.DeclMustBeEmitted(FD))
1205      return false;
1206  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1207    // Don't warn on variables of const-qualified or reference type, since their
1208    // values can be used even if though they're not odr-used, and because const
1209    // qualified variables can appear in headers in contexts where they're not
1210    // intended to be used.
1211    // FIXME: Use more principled rules for these exemptions.
1212    if (!VD->isFileVarDecl() ||
1213        VD->getType().isConstQualified() ||
1214        VD->getType()->isReferenceType() ||
1215        Context.DeclMustBeEmitted(VD))
1216      return false;
1217
1218    if (VD->isStaticDataMember() &&
1219        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1220      return false;
1221
1222  } else {
1223    return false;
1224  }
1225
1226  // Only warn for unused decls internal to the translation unit.
1227  if (D->getLinkage() == ExternalLinkage)
1228    return false;
1229
1230  return true;
1231}
1232
1233void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1234  if (!D)
1235    return;
1236
1237  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1238    const FunctionDecl *First = FD->getFirstDeclaration();
1239    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1240      return; // First should already be in the vector.
1241  }
1242
1243  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1244    const VarDecl *First = VD->getFirstDeclaration();
1245    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1246      return; // First should already be in the vector.
1247  }
1248
1249  if (ShouldWarnIfUnusedFileScopedDecl(D))
1250    UnusedFileScopedDecls.push_back(D);
1251}
1252
1253static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1254  if (D->isInvalidDecl())
1255    return false;
1256
1257  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1258    return false;
1259
1260  if (isa<LabelDecl>(D))
1261    return true;
1262
1263  // White-list anything that isn't a local variable.
1264  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1265      !D->getDeclContext()->isFunctionOrMethod())
1266    return false;
1267
1268  // Types of valid local variables should be complete, so this should succeed.
1269  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1270
1271    // White-list anything with an __attribute__((unused)) type.
1272    QualType Ty = VD->getType();
1273
1274    // Only look at the outermost level of typedef.
1275    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1276      if (TT->getDecl()->hasAttr<UnusedAttr>())
1277        return false;
1278    }
1279
1280    // If we failed to complete the type for some reason, or if the type is
1281    // dependent, don't diagnose the variable.
1282    if (Ty->isIncompleteType() || Ty->isDependentType())
1283      return false;
1284
1285    if (const TagType *TT = Ty->getAs<TagType>()) {
1286      const TagDecl *Tag = TT->getDecl();
1287      if (Tag->hasAttr<UnusedAttr>())
1288        return false;
1289
1290      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1291        if (!RD->hasTrivialDestructor())
1292          return false;
1293
1294        if (const Expr *Init = VD->getInit()) {
1295          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1296            Init = Cleanups->getSubExpr();
1297          const CXXConstructExpr *Construct =
1298            dyn_cast<CXXConstructExpr>(Init);
1299          if (Construct && !Construct->isElidable()) {
1300            CXXConstructorDecl *CD = Construct->getConstructor();
1301            if (!CD->isTrivial())
1302              return false;
1303          }
1304        }
1305      }
1306    }
1307
1308    // TODO: __attribute__((unused)) templates?
1309  }
1310
1311  return true;
1312}
1313
1314static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1315                                     FixItHint &Hint) {
1316  if (isa<LabelDecl>(D)) {
1317    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1318                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1319    if (AfterColon.isInvalid())
1320      return;
1321    Hint = FixItHint::CreateRemoval(CharSourceRange::
1322                                    getCharRange(D->getLocStart(), AfterColon));
1323  }
1324  return;
1325}
1326
1327/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1328/// unless they are marked attr(unused).
1329void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1330  FixItHint Hint;
1331  if (!ShouldDiagnoseUnusedDecl(D))
1332    return;
1333
1334  GenerateFixForUnusedDecl(D, Context, Hint);
1335
1336  unsigned DiagID;
1337  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1338    DiagID = diag::warn_unused_exception_param;
1339  else if (isa<LabelDecl>(D))
1340    DiagID = diag::warn_unused_label;
1341  else
1342    DiagID = diag::warn_unused_variable;
1343
1344  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1345}
1346
1347static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1348  // Verify that we have no forward references left.  If so, there was a goto
1349  // or address of a label taken, but no definition of it.  Label fwd
1350  // definitions are indicated with a null substmt.
1351  if (L->getStmt() == 0)
1352    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1353}
1354
1355void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1356  if (S->decl_empty()) return;
1357  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1358         "Scope shouldn't contain decls!");
1359
1360  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1361       I != E; ++I) {
1362    Decl *TmpD = (*I);
1363    assert(TmpD && "This decl didn't get pushed??");
1364
1365    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1366    NamedDecl *D = cast<NamedDecl>(TmpD);
1367
1368    if (!D->getDeclName()) continue;
1369
1370    // Diagnose unused variables in this scope.
1371    if (!S->hasErrorOccurred())
1372      DiagnoseUnusedDecl(D);
1373
1374    // If this was a forward reference to a label, verify it was defined.
1375    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1376      CheckPoppedLabel(LD, *this);
1377
1378    // Remove this name from our lexical scope.
1379    IdResolver.RemoveDecl(D);
1380  }
1381}
1382
1383void Sema::ActOnStartFunctionDeclarator() {
1384  ++InFunctionDeclarator;
1385}
1386
1387void Sema::ActOnEndFunctionDeclarator() {
1388  assert(InFunctionDeclarator);
1389  --InFunctionDeclarator;
1390}
1391
1392/// \brief Look for an Objective-C class in the translation unit.
1393///
1394/// \param Id The name of the Objective-C class we're looking for. If
1395/// typo-correction fixes this name, the Id will be updated
1396/// to the fixed name.
1397///
1398/// \param IdLoc The location of the name in the translation unit.
1399///
1400/// \param DoTypoCorrection If true, this routine will attempt typo correction
1401/// if there is no class with the given name.
1402///
1403/// \returns The declaration of the named Objective-C class, or NULL if the
1404/// class could not be found.
1405ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1406                                              SourceLocation IdLoc,
1407                                              bool DoTypoCorrection) {
1408  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1409  // creation from this context.
1410  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1411
1412  if (!IDecl && DoTypoCorrection) {
1413    // Perform typo correction at the given location, but only if we
1414    // find an Objective-C class name.
1415    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1416    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1417                                       LookupOrdinaryName, TUScope, NULL,
1418                                       Validator)) {
1419      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1420      Diag(IdLoc, diag::err_undef_interface_suggest)
1421        << Id << IDecl->getDeclName()
1422        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1423      Diag(IDecl->getLocation(), diag::note_previous_decl)
1424        << IDecl->getDeclName();
1425
1426      Id = IDecl->getIdentifier();
1427    }
1428  }
1429  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1430  // This routine must always return a class definition, if any.
1431  if (Def && Def->getDefinition())
1432      Def = Def->getDefinition();
1433  return Def;
1434}
1435
1436/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1437/// from S, where a non-field would be declared. This routine copes
1438/// with the difference between C and C++ scoping rules in structs and
1439/// unions. For example, the following code is well-formed in C but
1440/// ill-formed in C++:
1441/// @code
1442/// struct S6 {
1443///   enum { BAR } e;
1444/// };
1445///
1446/// void test_S6() {
1447///   struct S6 a;
1448///   a.e = BAR;
1449/// }
1450/// @endcode
1451/// For the declaration of BAR, this routine will return a different
1452/// scope. The scope S will be the scope of the unnamed enumeration
1453/// within S6. In C++, this routine will return the scope associated
1454/// with S6, because the enumeration's scope is a transparent
1455/// context but structures can contain non-field names. In C, this
1456/// routine will return the translation unit scope, since the
1457/// enumeration's scope is a transparent context and structures cannot
1458/// contain non-field names.
1459Scope *Sema::getNonFieldDeclScope(Scope *S) {
1460  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1461         (S->getEntity() &&
1462          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1463         (S->isClassScope() && !getLangOpts().CPlusPlus))
1464    S = S->getParent();
1465  return S;
1466}
1467
1468/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1469/// file scope.  lazily create a decl for it. ForRedeclaration is true
1470/// if we're creating this built-in in anticipation of redeclaring the
1471/// built-in.
1472NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1473                                     Scope *S, bool ForRedeclaration,
1474                                     SourceLocation Loc) {
1475  Builtin::ID BID = (Builtin::ID)bid;
1476
1477  ASTContext::GetBuiltinTypeError Error;
1478  QualType R = Context.GetBuiltinType(BID, Error);
1479  switch (Error) {
1480  case ASTContext::GE_None:
1481    // Okay
1482    break;
1483
1484  case ASTContext::GE_Missing_stdio:
1485    if (ForRedeclaration)
1486      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1487        << Context.BuiltinInfo.GetName(BID);
1488    return 0;
1489
1490  case ASTContext::GE_Missing_setjmp:
1491    if (ForRedeclaration)
1492      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1493        << Context.BuiltinInfo.GetName(BID);
1494    return 0;
1495
1496  case ASTContext::GE_Missing_ucontext:
1497    if (ForRedeclaration)
1498      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1499        << Context.BuiltinInfo.GetName(BID);
1500    return 0;
1501  }
1502
1503  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1504    Diag(Loc, diag::ext_implicit_lib_function_decl)
1505      << Context.BuiltinInfo.GetName(BID)
1506      << R;
1507    if (Context.BuiltinInfo.getHeaderName(BID) &&
1508        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1509          != DiagnosticsEngine::Ignored)
1510      Diag(Loc, diag::note_please_include_header)
1511        << Context.BuiltinInfo.getHeaderName(BID)
1512        << Context.BuiltinInfo.GetName(BID);
1513  }
1514
1515  FunctionDecl *New = FunctionDecl::Create(Context,
1516                                           Context.getTranslationUnitDecl(),
1517                                           Loc, Loc, II, R, /*TInfo=*/0,
1518                                           SC_Extern,
1519                                           SC_None, false,
1520                                           /*hasPrototype=*/true);
1521  New->setImplicit();
1522
1523  // Create Decl objects for each parameter, adding them to the
1524  // FunctionDecl.
1525  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1526    SmallVector<ParmVarDecl*, 16> Params;
1527    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1528      ParmVarDecl *parm =
1529        ParmVarDecl::Create(Context, New, SourceLocation(),
1530                            SourceLocation(), 0,
1531                            FT->getArgType(i), /*TInfo=*/0,
1532                            SC_None, SC_None, 0);
1533      parm->setScopeInfo(0, i);
1534      Params.push_back(parm);
1535    }
1536    New->setParams(Params);
1537  }
1538
1539  AddKnownFunctionAttributes(New);
1540
1541  // TUScope is the translation-unit scope to insert this function into.
1542  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1543  // relate Scopes to DeclContexts, and probably eliminate CurContext
1544  // entirely, but we're not there yet.
1545  DeclContext *SavedContext = CurContext;
1546  CurContext = Context.getTranslationUnitDecl();
1547  PushOnScopeChains(New, TUScope);
1548  CurContext = SavedContext;
1549  return New;
1550}
1551
1552bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1553  QualType OldType;
1554  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1555    OldType = OldTypedef->getUnderlyingType();
1556  else
1557    OldType = Context.getTypeDeclType(Old);
1558  QualType NewType = New->getUnderlyingType();
1559
1560  if (NewType->isVariablyModifiedType()) {
1561    // Must not redefine a typedef with a variably-modified type.
1562    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1563    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1564      << Kind << NewType;
1565    if (Old->getLocation().isValid())
1566      Diag(Old->getLocation(), diag::note_previous_definition);
1567    New->setInvalidDecl();
1568    return true;
1569  }
1570
1571  if (OldType != NewType &&
1572      !OldType->isDependentType() &&
1573      !NewType->isDependentType() &&
1574      !Context.hasSameType(OldType, NewType)) {
1575    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1576    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1577      << Kind << NewType << OldType;
1578    if (Old->getLocation().isValid())
1579      Diag(Old->getLocation(), diag::note_previous_definition);
1580    New->setInvalidDecl();
1581    return true;
1582  }
1583  return false;
1584}
1585
1586/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1587/// same name and scope as a previous declaration 'Old'.  Figure out
1588/// how to resolve this situation, merging decls or emitting
1589/// diagnostics as appropriate. If there was an error, set New to be invalid.
1590///
1591void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1592  // If the new decl is known invalid already, don't bother doing any
1593  // merging checks.
1594  if (New->isInvalidDecl()) return;
1595
1596  // Allow multiple definitions for ObjC built-in typedefs.
1597  // FIXME: Verify the underlying types are equivalent!
1598  if (getLangOpts().ObjC1) {
1599    const IdentifierInfo *TypeID = New->getIdentifier();
1600    switch (TypeID->getLength()) {
1601    default: break;
1602    case 2:
1603      {
1604        if (!TypeID->isStr("id"))
1605          break;
1606        QualType T = New->getUnderlyingType();
1607        if (!T->isPointerType())
1608          break;
1609        if (!T->isVoidPointerType()) {
1610          QualType PT = T->getAs<PointerType>()->getPointeeType();
1611          if (!PT->isStructureType())
1612            break;
1613        }
1614        Context.setObjCIdRedefinitionType(T);
1615        // Install the built-in type for 'id', ignoring the current definition.
1616        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1617        return;
1618      }
1619    case 5:
1620      if (!TypeID->isStr("Class"))
1621        break;
1622      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1623      // Install the built-in type for 'Class', ignoring the current definition.
1624      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1625      return;
1626    case 3:
1627      if (!TypeID->isStr("SEL"))
1628        break;
1629      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1630      // Install the built-in type for 'SEL', ignoring the current definition.
1631      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1632      return;
1633    }
1634    // Fall through - the typedef name was not a builtin type.
1635  }
1636
1637  // Verify the old decl was also a type.
1638  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1639  if (!Old) {
1640    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1641      << New->getDeclName();
1642
1643    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1644    if (OldD->getLocation().isValid())
1645      Diag(OldD->getLocation(), diag::note_previous_definition);
1646
1647    return New->setInvalidDecl();
1648  }
1649
1650  // If the old declaration is invalid, just give up here.
1651  if (Old->isInvalidDecl())
1652    return New->setInvalidDecl();
1653
1654  // If the typedef types are not identical, reject them in all languages and
1655  // with any extensions enabled.
1656  if (isIncompatibleTypedef(Old, New))
1657    return;
1658
1659  // The types match.  Link up the redeclaration chain if the old
1660  // declaration was a typedef.
1661  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1662    New->setPreviousDeclaration(Typedef);
1663
1664  if (getLangOpts().MicrosoftExt)
1665    return;
1666
1667  if (getLangOpts().CPlusPlus) {
1668    // C++ [dcl.typedef]p2:
1669    //   In a given non-class scope, a typedef specifier can be used to
1670    //   redefine the name of any type declared in that scope to refer
1671    //   to the type to which it already refers.
1672    if (!isa<CXXRecordDecl>(CurContext))
1673      return;
1674
1675    // C++0x [dcl.typedef]p4:
1676    //   In a given class scope, a typedef specifier can be used to redefine
1677    //   any class-name declared in that scope that is not also a typedef-name
1678    //   to refer to the type to which it already refers.
1679    //
1680    // This wording came in via DR424, which was a correction to the
1681    // wording in DR56, which accidentally banned code like:
1682    //
1683    //   struct S {
1684    //     typedef struct A { } A;
1685    //   };
1686    //
1687    // in the C++03 standard. We implement the C++0x semantics, which
1688    // allow the above but disallow
1689    //
1690    //   struct S {
1691    //     typedef int I;
1692    //     typedef int I;
1693    //   };
1694    //
1695    // since that was the intent of DR56.
1696    if (!isa<TypedefNameDecl>(Old))
1697      return;
1698
1699    Diag(New->getLocation(), diag::err_redefinition)
1700      << New->getDeclName();
1701    Diag(Old->getLocation(), diag::note_previous_definition);
1702    return New->setInvalidDecl();
1703  }
1704
1705  // Modules always permit redefinition of typedefs, as does C11.
1706  if (getLangOpts().Modules || getLangOpts().C11)
1707    return;
1708
1709  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1710  // is normally mapped to an error, but can be controlled with
1711  // -Wtypedef-redefinition.  If either the original or the redefinition is
1712  // in a system header, don't emit this for compatibility with GCC.
1713  if (getDiagnostics().getSuppressSystemWarnings() &&
1714      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1715       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1716    return;
1717
1718  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1719    << New->getDeclName();
1720  Diag(Old->getLocation(), diag::note_previous_definition);
1721  return;
1722}
1723
1724/// DeclhasAttr - returns true if decl Declaration already has the target
1725/// attribute.
1726static bool
1727DeclHasAttr(const Decl *D, const Attr *A) {
1728  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1729  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1730  // responsible for making sure they are consistent.
1731  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1732  if (AA)
1733    return false;
1734
1735  // The following thread safety attributes can also be duplicated.
1736  switch (A->getKind()) {
1737    case attr::ExclusiveLocksRequired:
1738    case attr::SharedLocksRequired:
1739    case attr::LocksExcluded:
1740    case attr::ExclusiveLockFunction:
1741    case attr::SharedLockFunction:
1742    case attr::UnlockFunction:
1743    case attr::ExclusiveTrylockFunction:
1744    case attr::SharedTrylockFunction:
1745    case attr::GuardedBy:
1746    case attr::PtGuardedBy:
1747    case attr::AcquiredBefore:
1748    case attr::AcquiredAfter:
1749      return false;
1750    default:
1751      ;
1752  }
1753
1754  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1755  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1756  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1757    if ((*i)->getKind() == A->getKind()) {
1758      if (Ann) {
1759        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1760          return true;
1761        continue;
1762      }
1763      // FIXME: Don't hardcode this check
1764      if (OA && isa<OwnershipAttr>(*i))
1765        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1766      return true;
1767    }
1768
1769  return false;
1770}
1771
1772bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1773  InheritableAttr *NewAttr = NULL;
1774  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1775    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1776                                    AA->getIntroduced(), AA->getDeprecated(),
1777                                    AA->getObsoleted(), AA->getUnavailable(),
1778                                    AA->getMessage());
1779  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1780    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1781  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1782    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1783  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1784    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1785  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1786    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1787                              FA->getFormatIdx(), FA->getFirstArg());
1788  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1789    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1790  else if (!DeclHasAttr(D, Attr))
1791    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1792
1793  if (NewAttr) {
1794    NewAttr->setInherited(true);
1795    D->addAttr(NewAttr);
1796    return true;
1797  }
1798
1799  return false;
1800}
1801
1802static const Decl *getDefinition(const Decl *D) {
1803  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1804    return TD->getDefinition();
1805  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1806    return VD->getDefinition();
1807  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1808    const FunctionDecl* Def;
1809    if (FD->hasBody(Def))
1810      return Def;
1811  }
1812  return NULL;
1813}
1814
1815static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1816  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1817       I != E; ++I) {
1818    Attr *Attribute = *I;
1819    if (Attribute->getKind() == Kind)
1820      return true;
1821  }
1822  return false;
1823}
1824
1825/// checkNewAttributesAfterDef - If we already have a definition, check that
1826/// there are no new attributes in this declaration.
1827static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1828  if (!New->hasAttrs())
1829    return;
1830
1831  const Decl *Def = getDefinition(Old);
1832  if (!Def || Def == New)
1833    return;
1834
1835  AttrVec &NewAttributes = New->getAttrs();
1836  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1837    const Attr *NewAttribute = NewAttributes[I];
1838    if (hasAttribute(Def, NewAttribute->getKind())) {
1839      ++I;
1840      continue; // regular attr merging will take care of validating this.
1841    }
1842    S.Diag(NewAttribute->getLocation(),
1843           diag::warn_attribute_precede_definition);
1844    S.Diag(Def->getLocation(), diag::note_previous_definition);
1845    NewAttributes.erase(NewAttributes.begin() + I);
1846    --E;
1847  }
1848}
1849
1850/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1851void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1852                               bool MergeDeprecation) {
1853  // attributes declared post-definition are currently ignored
1854  checkNewAttributesAfterDef(*this, New, Old);
1855
1856  if (!Old->hasAttrs())
1857    return;
1858
1859  bool foundAny = New->hasAttrs();
1860
1861  // Ensure that any moving of objects within the allocated map is done before
1862  // we process them.
1863  if (!foundAny) New->setAttrs(AttrVec());
1864
1865  for (specific_attr_iterator<InheritableAttr>
1866         i = Old->specific_attr_begin<InheritableAttr>(),
1867         e = Old->specific_attr_end<InheritableAttr>();
1868       i != e; ++i) {
1869    // Ignore deprecated/unavailable/availability attributes if requested.
1870    if (!MergeDeprecation &&
1871        (isa<DeprecatedAttr>(*i) ||
1872         isa<UnavailableAttr>(*i) ||
1873         isa<AvailabilityAttr>(*i)))
1874      continue;
1875
1876    if (mergeDeclAttribute(New, *i))
1877      foundAny = true;
1878  }
1879
1880  if (!foundAny) New->dropAttrs();
1881}
1882
1883/// mergeParamDeclAttributes - Copy attributes from the old parameter
1884/// to the new one.
1885static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1886                                     const ParmVarDecl *oldDecl,
1887                                     ASTContext &C) {
1888  if (!oldDecl->hasAttrs())
1889    return;
1890
1891  bool foundAny = newDecl->hasAttrs();
1892
1893  // Ensure that any moving of objects within the allocated map is
1894  // done before we process them.
1895  if (!foundAny) newDecl->setAttrs(AttrVec());
1896
1897  for (specific_attr_iterator<InheritableParamAttr>
1898       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1899       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1900    if (!DeclHasAttr(newDecl, *i)) {
1901      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1902      newAttr->setInherited(true);
1903      newDecl->addAttr(newAttr);
1904      foundAny = true;
1905    }
1906  }
1907
1908  if (!foundAny) newDecl->dropAttrs();
1909}
1910
1911namespace {
1912
1913/// Used in MergeFunctionDecl to keep track of function parameters in
1914/// C.
1915struct GNUCompatibleParamWarning {
1916  ParmVarDecl *OldParm;
1917  ParmVarDecl *NewParm;
1918  QualType PromotedType;
1919};
1920
1921}
1922
1923/// getSpecialMember - get the special member enum for a method.
1924Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1925  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1926    if (Ctor->isDefaultConstructor())
1927      return Sema::CXXDefaultConstructor;
1928
1929    if (Ctor->isCopyConstructor())
1930      return Sema::CXXCopyConstructor;
1931
1932    if (Ctor->isMoveConstructor())
1933      return Sema::CXXMoveConstructor;
1934  } else if (isa<CXXDestructorDecl>(MD)) {
1935    return Sema::CXXDestructor;
1936  } else if (MD->isCopyAssignmentOperator()) {
1937    return Sema::CXXCopyAssignment;
1938  } else if (MD->isMoveAssignmentOperator()) {
1939    return Sema::CXXMoveAssignment;
1940  }
1941
1942  return Sema::CXXInvalid;
1943}
1944
1945/// canRedefineFunction - checks if a function can be redefined. Currently,
1946/// only extern inline functions can be redefined, and even then only in
1947/// GNU89 mode.
1948static bool canRedefineFunction(const FunctionDecl *FD,
1949                                const LangOptions& LangOpts) {
1950  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1951          !LangOpts.CPlusPlus &&
1952          FD->isInlineSpecified() &&
1953          FD->getStorageClass() == SC_Extern);
1954}
1955
1956/// Is the given calling convention the ABI default for the given
1957/// declaration?
1958static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1959  CallingConv ABIDefaultCC;
1960  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1961    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1962  } else {
1963    // Free C function or a static method.
1964    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1965  }
1966  return ABIDefaultCC == CC;
1967}
1968
1969/// MergeFunctionDecl - We just parsed a function 'New' from
1970/// declarator D which has the same name and scope as a previous
1971/// declaration 'Old'.  Figure out how to resolve this situation,
1972/// merging decls or emitting diagnostics as appropriate.
1973///
1974/// In C++, New and Old must be declarations that are not
1975/// overloaded. Use IsOverload to determine whether New and Old are
1976/// overloaded, and to select the Old declaration that New should be
1977/// merged with.
1978///
1979/// Returns true if there was an error, false otherwise.
1980bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1981  // Verify the old decl was also a function.
1982  FunctionDecl *Old = 0;
1983  if (FunctionTemplateDecl *OldFunctionTemplate
1984        = dyn_cast<FunctionTemplateDecl>(OldD))
1985    Old = OldFunctionTemplate->getTemplatedDecl();
1986  else
1987    Old = dyn_cast<FunctionDecl>(OldD);
1988  if (!Old) {
1989    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1990      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1991      Diag(Shadow->getTargetDecl()->getLocation(),
1992           diag::note_using_decl_target);
1993      Diag(Shadow->getUsingDecl()->getLocation(),
1994           diag::note_using_decl) << 0;
1995      return true;
1996    }
1997
1998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1999      << New->getDeclName();
2000    Diag(OldD->getLocation(), diag::note_previous_definition);
2001    return true;
2002  }
2003
2004  // Determine whether the previous declaration was a definition,
2005  // implicit declaration, or a declaration.
2006  diag::kind PrevDiag;
2007  if (Old->isThisDeclarationADefinition())
2008    PrevDiag = diag::note_previous_definition;
2009  else if (Old->isImplicit())
2010    PrevDiag = diag::note_previous_implicit_declaration;
2011  else
2012    PrevDiag = diag::note_previous_declaration;
2013
2014  QualType OldQType = Context.getCanonicalType(Old->getType());
2015  QualType NewQType = Context.getCanonicalType(New->getType());
2016
2017  // Don't complain about this if we're in GNU89 mode and the old function
2018  // is an extern inline function.
2019  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2020      New->getStorageClass() == SC_Static &&
2021      Old->getStorageClass() != SC_Static &&
2022      !canRedefineFunction(Old, getLangOpts())) {
2023    if (getLangOpts().MicrosoftExt) {
2024      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2025      Diag(Old->getLocation(), PrevDiag);
2026    } else {
2027      Diag(New->getLocation(), diag::err_static_non_static) << New;
2028      Diag(Old->getLocation(), PrevDiag);
2029      return true;
2030    }
2031  }
2032
2033  // If a function is first declared with a calling convention, but is
2034  // later declared or defined without one, the second decl assumes the
2035  // calling convention of the first.
2036  //
2037  // It's OK if a function is first declared without a calling convention,
2038  // but is later declared or defined with the default calling convention.
2039  //
2040  // For the new decl, we have to look at the NON-canonical type to tell the
2041  // difference between a function that really doesn't have a calling
2042  // convention and one that is declared cdecl. That's because in
2043  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2044  // because it is the default calling convention.
2045  //
2046  // Note also that we DO NOT return at this point, because we still have
2047  // other tests to run.
2048  const FunctionType *OldType = cast<FunctionType>(OldQType);
2049  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2050  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2051  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2052  bool RequiresAdjustment = false;
2053  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2054    // Fast path: nothing to do.
2055
2056  // Inherit the CC from the previous declaration if it was specified
2057  // there but not here.
2058  } else if (NewTypeInfo.getCC() == CC_Default) {
2059    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2060    RequiresAdjustment = true;
2061
2062  // Don't complain about mismatches when the default CC is
2063  // effectively the same as the explict one.
2064  } else if (OldTypeInfo.getCC() == CC_Default &&
2065             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2066    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2067    RequiresAdjustment = true;
2068
2069  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2070                                     NewTypeInfo.getCC())) {
2071    // Calling conventions really aren't compatible, so complain.
2072    Diag(New->getLocation(), diag::err_cconv_change)
2073      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2074      << (OldTypeInfo.getCC() == CC_Default)
2075      << (OldTypeInfo.getCC() == CC_Default ? "" :
2076          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2077    Diag(Old->getLocation(), diag::note_previous_declaration);
2078    return true;
2079  }
2080
2081  // FIXME: diagnose the other way around?
2082  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2083    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2084    RequiresAdjustment = true;
2085  }
2086
2087  // Merge regparm attribute.
2088  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2089      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2090    if (NewTypeInfo.getHasRegParm()) {
2091      Diag(New->getLocation(), diag::err_regparm_mismatch)
2092        << NewType->getRegParmType()
2093        << OldType->getRegParmType();
2094      Diag(Old->getLocation(), diag::note_previous_declaration);
2095      return true;
2096    }
2097
2098    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2099    RequiresAdjustment = true;
2100  }
2101
2102  // Merge ns_returns_retained attribute.
2103  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2104    if (NewTypeInfo.getProducesResult()) {
2105      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2106      Diag(Old->getLocation(), diag::note_previous_declaration);
2107      return true;
2108    }
2109
2110    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2111    RequiresAdjustment = true;
2112  }
2113
2114  if (RequiresAdjustment) {
2115    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2116    New->setType(QualType(NewType, 0));
2117    NewQType = Context.getCanonicalType(New->getType());
2118  }
2119
2120  if (getLangOpts().CPlusPlus) {
2121    // (C++98 13.1p2):
2122    //   Certain function declarations cannot be overloaded:
2123    //     -- Function declarations that differ only in the return type
2124    //        cannot be overloaded.
2125    QualType OldReturnType = OldType->getResultType();
2126    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2127    QualType ResQT;
2128    if (OldReturnType != NewReturnType) {
2129      if (NewReturnType->isObjCObjectPointerType()
2130          && OldReturnType->isObjCObjectPointerType())
2131        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2132      if (ResQT.isNull()) {
2133        if (New->isCXXClassMember() && New->isOutOfLine())
2134          Diag(New->getLocation(),
2135               diag::err_member_def_does_not_match_ret_type) << New;
2136        else
2137          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2138        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2139        return true;
2140      }
2141      else
2142        NewQType = ResQT;
2143    }
2144
2145    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2146    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2147    if (OldMethod && NewMethod) {
2148      // Preserve triviality.
2149      NewMethod->setTrivial(OldMethod->isTrivial());
2150
2151      // MSVC allows explicit template specialization at class scope:
2152      // 2 CXMethodDecls referring to the same function will be injected.
2153      // We don't want a redeclartion error.
2154      bool IsClassScopeExplicitSpecialization =
2155                              OldMethod->isFunctionTemplateSpecialization() &&
2156                              NewMethod->isFunctionTemplateSpecialization();
2157      bool isFriend = NewMethod->getFriendObjectKind();
2158
2159      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2160          !IsClassScopeExplicitSpecialization) {
2161        //    -- Member function declarations with the same name and the
2162        //       same parameter types cannot be overloaded if any of them
2163        //       is a static member function declaration.
2164        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2165          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2166          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2167          return true;
2168        }
2169
2170        // C++ [class.mem]p1:
2171        //   [...] A member shall not be declared twice in the
2172        //   member-specification, except that a nested class or member
2173        //   class template can be declared and then later defined.
2174        if (ActiveTemplateInstantiations.empty()) {
2175          unsigned NewDiag;
2176          if (isa<CXXConstructorDecl>(OldMethod))
2177            NewDiag = diag::err_constructor_redeclared;
2178          else if (isa<CXXDestructorDecl>(NewMethod))
2179            NewDiag = diag::err_destructor_redeclared;
2180          else if (isa<CXXConversionDecl>(NewMethod))
2181            NewDiag = diag::err_conv_function_redeclared;
2182          else
2183            NewDiag = diag::err_member_redeclared;
2184
2185          Diag(New->getLocation(), NewDiag);
2186        } else {
2187          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2188            << New << New->getType();
2189        }
2190        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2191
2192      // Complain if this is an explicit declaration of a special
2193      // member that was initially declared implicitly.
2194      //
2195      // As an exception, it's okay to befriend such methods in order
2196      // to permit the implicit constructor/destructor/operator calls.
2197      } else if (OldMethod->isImplicit()) {
2198        if (isFriend) {
2199          NewMethod->setImplicit();
2200        } else {
2201          Diag(NewMethod->getLocation(),
2202               diag::err_definition_of_implicitly_declared_member)
2203            << New << getSpecialMember(OldMethod);
2204          return true;
2205        }
2206      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2207        Diag(NewMethod->getLocation(),
2208             diag::err_definition_of_explicitly_defaulted_member)
2209          << getSpecialMember(OldMethod);
2210        return true;
2211      }
2212    }
2213
2214    // (C++98 8.3.5p3):
2215    //   All declarations for a function shall agree exactly in both the
2216    //   return type and the parameter-type-list.
2217    // We also want to respect all the extended bits except noreturn.
2218
2219    // noreturn should now match unless the old type info didn't have it.
2220    QualType OldQTypeForComparison = OldQType;
2221    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2222      assert(OldQType == QualType(OldType, 0));
2223      const FunctionType *OldTypeForComparison
2224        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2225      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2226      assert(OldQTypeForComparison.isCanonical());
2227    }
2228
2229    if (OldQTypeForComparison == NewQType)
2230      return MergeCompatibleFunctionDecls(New, Old, S);
2231
2232    // Fall through for conflicting redeclarations and redefinitions.
2233  }
2234
2235  // C: Function types need to be compatible, not identical. This handles
2236  // duplicate function decls like "void f(int); void f(enum X);" properly.
2237  if (!getLangOpts().CPlusPlus &&
2238      Context.typesAreCompatible(OldQType, NewQType)) {
2239    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2240    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2241    const FunctionProtoType *OldProto = 0;
2242    if (isa<FunctionNoProtoType>(NewFuncType) &&
2243        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2244      // The old declaration provided a function prototype, but the
2245      // new declaration does not. Merge in the prototype.
2246      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2247      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2248                                                 OldProto->arg_type_end());
2249      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2250                                         ParamTypes.data(), ParamTypes.size(),
2251                                         OldProto->getExtProtoInfo());
2252      New->setType(NewQType);
2253      New->setHasInheritedPrototype();
2254
2255      // Synthesize a parameter for each argument type.
2256      SmallVector<ParmVarDecl*, 16> Params;
2257      for (FunctionProtoType::arg_type_iterator
2258             ParamType = OldProto->arg_type_begin(),
2259             ParamEnd = OldProto->arg_type_end();
2260           ParamType != ParamEnd; ++ParamType) {
2261        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2262                                                 SourceLocation(),
2263                                                 SourceLocation(), 0,
2264                                                 *ParamType, /*TInfo=*/0,
2265                                                 SC_None, SC_None,
2266                                                 0);
2267        Param->setScopeInfo(0, Params.size());
2268        Param->setImplicit();
2269        Params.push_back(Param);
2270      }
2271
2272      New->setParams(Params);
2273    }
2274
2275    return MergeCompatibleFunctionDecls(New, Old, S);
2276  }
2277
2278  // GNU C permits a K&R definition to follow a prototype declaration
2279  // if the declared types of the parameters in the K&R definition
2280  // match the types in the prototype declaration, even when the
2281  // promoted types of the parameters from the K&R definition differ
2282  // from the types in the prototype. GCC then keeps the types from
2283  // the prototype.
2284  //
2285  // If a variadic prototype is followed by a non-variadic K&R definition,
2286  // the K&R definition becomes variadic.  This is sort of an edge case, but
2287  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2288  // C99 6.9.1p8.
2289  if (!getLangOpts().CPlusPlus &&
2290      Old->hasPrototype() && !New->hasPrototype() &&
2291      New->getType()->getAs<FunctionProtoType>() &&
2292      Old->getNumParams() == New->getNumParams()) {
2293    SmallVector<QualType, 16> ArgTypes;
2294    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2295    const FunctionProtoType *OldProto
2296      = Old->getType()->getAs<FunctionProtoType>();
2297    const FunctionProtoType *NewProto
2298      = New->getType()->getAs<FunctionProtoType>();
2299
2300    // Determine whether this is the GNU C extension.
2301    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2302                                               NewProto->getResultType());
2303    bool LooseCompatible = !MergedReturn.isNull();
2304    for (unsigned Idx = 0, End = Old->getNumParams();
2305         LooseCompatible && Idx != End; ++Idx) {
2306      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2307      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2308      if (Context.typesAreCompatible(OldParm->getType(),
2309                                     NewProto->getArgType(Idx))) {
2310        ArgTypes.push_back(NewParm->getType());
2311      } else if (Context.typesAreCompatible(OldParm->getType(),
2312                                            NewParm->getType(),
2313                                            /*CompareUnqualified=*/true)) {
2314        GNUCompatibleParamWarning Warn
2315          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2316        Warnings.push_back(Warn);
2317        ArgTypes.push_back(NewParm->getType());
2318      } else
2319        LooseCompatible = false;
2320    }
2321
2322    if (LooseCompatible) {
2323      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2324        Diag(Warnings[Warn].NewParm->getLocation(),
2325             diag::ext_param_promoted_not_compatible_with_prototype)
2326          << Warnings[Warn].PromotedType
2327          << Warnings[Warn].OldParm->getType();
2328        if (Warnings[Warn].OldParm->getLocation().isValid())
2329          Diag(Warnings[Warn].OldParm->getLocation(),
2330               diag::note_previous_declaration);
2331      }
2332
2333      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2334                                           ArgTypes.size(),
2335                                           OldProto->getExtProtoInfo()));
2336      return MergeCompatibleFunctionDecls(New, Old, S);
2337    }
2338
2339    // Fall through to diagnose conflicting types.
2340  }
2341
2342  // A function that has already been declared has been redeclared or defined
2343  // with a different type- show appropriate diagnostic
2344  if (unsigned BuiltinID = Old->getBuiltinID()) {
2345    // The user has declared a builtin function with an incompatible
2346    // signature.
2347    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2348      // The function the user is redeclaring is a library-defined
2349      // function like 'malloc' or 'printf'. Warn about the
2350      // redeclaration, then pretend that we don't know about this
2351      // library built-in.
2352      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2353      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2354        << Old << Old->getType();
2355      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2356      Old->setInvalidDecl();
2357      return false;
2358    }
2359
2360    PrevDiag = diag::note_previous_builtin_declaration;
2361  }
2362
2363  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2364  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2365  return true;
2366}
2367
2368/// \brief Completes the merge of two function declarations that are
2369/// known to be compatible.
2370///
2371/// This routine handles the merging of attributes and other
2372/// properties of function declarations form the old declaration to
2373/// the new declaration, once we know that New is in fact a
2374/// redeclaration of Old.
2375///
2376/// \returns false
2377bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2378                                        Scope *S) {
2379  // Merge the attributes
2380  mergeDeclAttributes(New, Old);
2381
2382  // Merge the storage class.
2383  if (Old->getStorageClass() != SC_Extern &&
2384      Old->getStorageClass() != SC_None)
2385    New->setStorageClass(Old->getStorageClass());
2386
2387  // Merge "pure" flag.
2388  if (Old->isPure())
2389    New->setPure();
2390
2391  // Merge attributes from the parameters.  These can mismatch with K&R
2392  // declarations.
2393  if (New->getNumParams() == Old->getNumParams())
2394    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2395      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2396                               Context);
2397
2398  if (getLangOpts().CPlusPlus)
2399    return MergeCXXFunctionDecl(New, Old, S);
2400
2401  return false;
2402}
2403
2404
2405void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2406                                ObjCMethodDecl *oldMethod) {
2407
2408  // Merge the attributes, including deprecated/unavailable
2409  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2410
2411  // Merge attributes from the parameters.
2412  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2413                                       oe = oldMethod->param_end();
2414  for (ObjCMethodDecl::param_iterator
2415         ni = newMethod->param_begin(), ne = newMethod->param_end();
2416       ni != ne && oi != oe; ++ni, ++oi)
2417    mergeParamDeclAttributes(*ni, *oi, Context);
2418
2419  CheckObjCMethodOverride(newMethod, oldMethod, true);
2420}
2421
2422/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2423/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2424/// emitting diagnostics as appropriate.
2425///
2426/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2427/// to here in AddInitializerToDecl. We can't check them before the initializer
2428/// is attached.
2429void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2430  if (New->isInvalidDecl() || Old->isInvalidDecl())
2431    return;
2432
2433  QualType MergedT;
2434  if (getLangOpts().CPlusPlus) {
2435    AutoType *AT = New->getType()->getContainedAutoType();
2436    if (AT && !AT->isDeduced()) {
2437      // We don't know what the new type is until the initializer is attached.
2438      return;
2439    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2440      // These could still be something that needs exception specs checked.
2441      return MergeVarDeclExceptionSpecs(New, Old);
2442    }
2443    // C++ [basic.link]p10:
2444    //   [...] the types specified by all declarations referring to a given
2445    //   object or function shall be identical, except that declarations for an
2446    //   array object can specify array types that differ by the presence or
2447    //   absence of a major array bound (8.3.4).
2448    else if (Old->getType()->isIncompleteArrayType() &&
2449             New->getType()->isArrayType()) {
2450      CanQual<ArrayType> OldArray
2451        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2452      CanQual<ArrayType> NewArray
2453        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2454      if (OldArray->getElementType() == NewArray->getElementType())
2455        MergedT = New->getType();
2456    } else if (Old->getType()->isArrayType() &&
2457             New->getType()->isIncompleteArrayType()) {
2458      CanQual<ArrayType> OldArray
2459        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2460      CanQual<ArrayType> NewArray
2461        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2462      if (OldArray->getElementType() == NewArray->getElementType())
2463        MergedT = Old->getType();
2464    } else if (New->getType()->isObjCObjectPointerType()
2465               && Old->getType()->isObjCObjectPointerType()) {
2466        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2467                                                        Old->getType());
2468    }
2469  } else {
2470    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2471  }
2472  if (MergedT.isNull()) {
2473    Diag(New->getLocation(), diag::err_redefinition_different_type)
2474      << New->getDeclName() << New->getType() << Old->getType();
2475    Diag(Old->getLocation(), diag::note_previous_definition);
2476    return New->setInvalidDecl();
2477  }
2478  New->setType(MergedT);
2479}
2480
2481/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2482/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2483/// situation, merging decls or emitting diagnostics as appropriate.
2484///
2485/// Tentative definition rules (C99 6.9.2p2) are checked by
2486/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2487/// definitions here, since the initializer hasn't been attached.
2488///
2489void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2490  // If the new decl is already invalid, don't do any other checking.
2491  if (New->isInvalidDecl())
2492    return;
2493
2494  // Verify the old decl was also a variable.
2495  VarDecl *Old = 0;
2496  if (!Previous.isSingleResult() ||
2497      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2498    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2499      << New->getDeclName();
2500    Diag(Previous.getRepresentativeDecl()->getLocation(),
2501         diag::note_previous_definition);
2502    return New->setInvalidDecl();
2503  }
2504
2505  // C++ [class.mem]p1:
2506  //   A member shall not be declared twice in the member-specification [...]
2507  //
2508  // Here, we need only consider static data members.
2509  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2510    Diag(New->getLocation(), diag::err_duplicate_member)
2511      << New->getIdentifier();
2512    Diag(Old->getLocation(), diag::note_previous_declaration);
2513    New->setInvalidDecl();
2514  }
2515
2516  mergeDeclAttributes(New, Old);
2517  // Warn if an already-declared variable is made a weak_import in a subsequent
2518  // declaration
2519  if (New->getAttr<WeakImportAttr>() &&
2520      Old->getStorageClass() == SC_None &&
2521      !Old->getAttr<WeakImportAttr>()) {
2522    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2523    Diag(Old->getLocation(), diag::note_previous_definition);
2524    // Remove weak_import attribute on new declaration.
2525    New->dropAttr<WeakImportAttr>();
2526  }
2527
2528  // Merge the types.
2529  MergeVarDeclTypes(New, Old);
2530  if (New->isInvalidDecl())
2531    return;
2532
2533  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2534  if (New->getStorageClass() == SC_Static &&
2535      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2536    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2537    Diag(Old->getLocation(), diag::note_previous_definition);
2538    return New->setInvalidDecl();
2539  }
2540  // C99 6.2.2p4:
2541  //   For an identifier declared with the storage-class specifier
2542  //   extern in a scope in which a prior declaration of that
2543  //   identifier is visible,23) if the prior declaration specifies
2544  //   internal or external linkage, the linkage of the identifier at
2545  //   the later declaration is the same as the linkage specified at
2546  //   the prior declaration. If no prior declaration is visible, or
2547  //   if the prior declaration specifies no linkage, then the
2548  //   identifier has external linkage.
2549  if (New->hasExternalStorage() && Old->hasLinkage())
2550    /* Okay */;
2551  else if (New->getStorageClass() != SC_Static &&
2552           Old->getStorageClass() == SC_Static) {
2553    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555    return New->setInvalidDecl();
2556  }
2557
2558  // Check if extern is followed by non-extern and vice-versa.
2559  if (New->hasExternalStorage() &&
2560      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2561    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2562    Diag(Old->getLocation(), diag::note_previous_definition);
2563    return New->setInvalidDecl();
2564  }
2565  if (Old->hasExternalStorage() &&
2566      !New->hasLinkage() && New->isLocalVarDecl()) {
2567    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2568    Diag(Old->getLocation(), diag::note_previous_definition);
2569    return New->setInvalidDecl();
2570  }
2571
2572  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2573
2574  // FIXME: The test for external storage here seems wrong? We still
2575  // need to check for mismatches.
2576  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2577      // Don't complain about out-of-line definitions of static members.
2578      !(Old->getLexicalDeclContext()->isRecord() &&
2579        !New->getLexicalDeclContext()->isRecord())) {
2580    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2581    Diag(Old->getLocation(), diag::note_previous_definition);
2582    return New->setInvalidDecl();
2583  }
2584
2585  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2586    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2587    Diag(Old->getLocation(), diag::note_previous_definition);
2588  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2589    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2590    Diag(Old->getLocation(), diag::note_previous_definition);
2591  }
2592
2593  // C++ doesn't have tentative definitions, so go right ahead and check here.
2594  const VarDecl *Def;
2595  if (getLangOpts().CPlusPlus &&
2596      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2597      (Def = Old->getDefinition())) {
2598    Diag(New->getLocation(), diag::err_redefinition)
2599      << New->getDeclName();
2600    Diag(Def->getLocation(), diag::note_previous_definition);
2601    New->setInvalidDecl();
2602    return;
2603  }
2604  // c99 6.2.2 P4.
2605  // For an identifier declared with the storage-class specifier extern in a
2606  // scope in which a prior declaration of that identifier is visible, if
2607  // the prior declaration specifies internal or external linkage, the linkage
2608  // of the identifier at the later declaration is the same as the linkage
2609  // specified at the prior declaration.
2610  // FIXME. revisit this code.
2611  if (New->hasExternalStorage() &&
2612      Old->getLinkage() == InternalLinkage &&
2613      New->getDeclContext() == Old->getDeclContext())
2614    New->setStorageClass(Old->getStorageClass());
2615
2616  // Keep a chain of previous declarations.
2617  New->setPreviousDeclaration(Old);
2618
2619  // Inherit access appropriately.
2620  New->setAccess(Old->getAccess());
2621}
2622
2623/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2624/// no declarator (e.g. "struct foo;") is parsed.
2625Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2626                                       DeclSpec &DS) {
2627  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2628}
2629
2630/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2631/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2632/// parameters to cope with template friend declarations.
2633Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2634                                       DeclSpec &DS,
2635                                       MultiTemplateParamsArg TemplateParams) {
2636  Decl *TagD = 0;
2637  TagDecl *Tag = 0;
2638  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2639      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2640      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2641      DS.getTypeSpecType() == DeclSpec::TST_union ||
2642      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2643    TagD = DS.getRepAsDecl();
2644
2645    if (!TagD) // We probably had an error
2646      return 0;
2647
2648    // Note that the above type specs guarantee that the
2649    // type rep is a Decl, whereas in many of the others
2650    // it's a Type.
2651    if (isa<TagDecl>(TagD))
2652      Tag = cast<TagDecl>(TagD);
2653    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2654      Tag = CTD->getTemplatedDecl();
2655  }
2656
2657  if (Tag) {
2658    getASTContext().addUnnamedTag(Tag);
2659    Tag->setFreeStanding();
2660    if (Tag->isInvalidDecl())
2661      return Tag;
2662  }
2663
2664  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2665    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2666    // or incomplete types shall not be restrict-qualified."
2667    if (TypeQuals & DeclSpec::TQ_restrict)
2668      Diag(DS.getRestrictSpecLoc(),
2669           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2670           << DS.getSourceRange();
2671  }
2672
2673  if (DS.isConstexprSpecified()) {
2674    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2675    // and definitions of functions and variables.
2676    if (Tag)
2677      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2678        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2679            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2680            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2681            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2682    else
2683      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2684    // Don't emit warnings after this error.
2685    return TagD;
2686  }
2687
2688  if (DS.isFriendSpecified()) {
2689    // If we're dealing with a decl but not a TagDecl, assume that
2690    // whatever routines created it handled the friendship aspect.
2691    if (TagD && !Tag)
2692      return 0;
2693    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2694  }
2695
2696  // Track whether we warned about the fact that there aren't any
2697  // declarators.
2698  bool emittedWarning = false;
2699
2700  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2701    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2702        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2703      if (getLangOpts().CPlusPlus ||
2704          Record->getDeclContext()->isRecord())
2705        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2706
2707      Diag(DS.getLocStart(), diag::ext_no_declarators)
2708        << DS.getSourceRange();
2709      emittedWarning = true;
2710    }
2711  }
2712
2713  // Check for Microsoft C extension: anonymous struct.
2714  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2715      CurContext->isRecord() &&
2716      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2717    // Handle 2 kinds of anonymous struct:
2718    //   struct STRUCT;
2719    // and
2720    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2721    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2722    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2723        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2724         DS.getRepAsType().get()->isStructureType())) {
2725      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2726        << DS.getSourceRange();
2727      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2728    }
2729  }
2730
2731  if (getLangOpts().CPlusPlus &&
2732      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2733    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2734      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2735          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2736        Diag(Enum->getLocation(), diag::ext_no_declarators)
2737          << DS.getSourceRange();
2738        emittedWarning = true;
2739      }
2740
2741  // Skip all the checks below if we have a type error.
2742  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2743
2744  if (!DS.isMissingDeclaratorOk()) {
2745    // Warn about typedefs of enums without names, since this is an
2746    // extension in both Microsoft and GNU.
2747    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2748        Tag && isa<EnumDecl>(Tag)) {
2749      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2750        << DS.getSourceRange();
2751      return Tag;
2752    }
2753
2754    Diag(DS.getLocStart(), diag::ext_no_declarators)
2755      << DS.getSourceRange();
2756    emittedWarning = true;
2757  }
2758
2759  // We're going to complain about a bunch of spurious specifiers;
2760  // only do this if we're declaring a tag, because otherwise we
2761  // should be getting diag::ext_no_declarators.
2762  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2763    return TagD;
2764
2765  // Note that a linkage-specification sets a storage class, but
2766  // 'extern "C" struct foo;' is actually valid and not theoretically
2767  // useless.
2768  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2769    if (!DS.isExternInLinkageSpec())
2770      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2771        << DeclSpec::getSpecifierName(scs);
2772
2773  if (DS.isThreadSpecified())
2774    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2775  if (DS.getTypeQualifiers()) {
2776    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2777      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2778    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2779      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2780    // Restrict is covered above.
2781  }
2782  if (DS.isInlineSpecified())
2783    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2784  if (DS.isVirtualSpecified())
2785    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2786  if (DS.isExplicitSpecified())
2787    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2788
2789  if (DS.isModulePrivateSpecified() &&
2790      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2791    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2792      << Tag->getTagKind()
2793      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2794
2795  // Warn about ignored type attributes, for example:
2796  // __attribute__((aligned)) struct A;
2797  // Attributes should be placed after tag to apply to type declaration.
2798  if (!DS.getAttributes().empty()) {
2799    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2800    if (TypeSpecType == DeclSpec::TST_class ||
2801        TypeSpecType == DeclSpec::TST_struct ||
2802        TypeSpecType == DeclSpec::TST_interface ||
2803        TypeSpecType == DeclSpec::TST_union ||
2804        TypeSpecType == DeclSpec::TST_enum) {
2805      AttributeList* attrs = DS.getAttributes().getList();
2806      while (attrs) {
2807        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2808        << attrs->getName()
2809        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2810            TypeSpecType == DeclSpec::TST_struct ? 1 :
2811            TypeSpecType == DeclSpec::TST_union ? 2 :
2812            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2813        attrs = attrs->getNext();
2814      }
2815    }
2816  }
2817
2818  ActOnDocumentableDecl(TagD);
2819
2820  return TagD;
2821}
2822
2823/// We are trying to inject an anonymous member into the given scope;
2824/// check if there's an existing declaration that can't be overloaded.
2825///
2826/// \return true if this is a forbidden redeclaration
2827static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2828                                         Scope *S,
2829                                         DeclContext *Owner,
2830                                         DeclarationName Name,
2831                                         SourceLocation NameLoc,
2832                                         unsigned diagnostic) {
2833  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2834                 Sema::ForRedeclaration);
2835  if (!SemaRef.LookupName(R, S)) return false;
2836
2837  if (R.getAsSingle<TagDecl>())
2838    return false;
2839
2840  // Pick a representative declaration.
2841  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2842  assert(PrevDecl && "Expected a non-null Decl");
2843
2844  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2845    return false;
2846
2847  SemaRef.Diag(NameLoc, diagnostic) << Name;
2848  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2849
2850  return true;
2851}
2852
2853/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2854/// anonymous struct or union AnonRecord into the owning context Owner
2855/// and scope S. This routine will be invoked just after we realize
2856/// that an unnamed union or struct is actually an anonymous union or
2857/// struct, e.g.,
2858///
2859/// @code
2860/// union {
2861///   int i;
2862///   float f;
2863/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2864///    // f into the surrounding scope.x
2865/// @endcode
2866///
2867/// This routine is recursive, injecting the names of nested anonymous
2868/// structs/unions into the owning context and scope as well.
2869static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2870                                                DeclContext *Owner,
2871                                                RecordDecl *AnonRecord,
2872                                                AccessSpecifier AS,
2873                              SmallVector<NamedDecl*, 2> &Chaining,
2874                                                      bool MSAnonStruct) {
2875  unsigned diagKind
2876    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2877                            : diag::err_anonymous_struct_member_redecl;
2878
2879  bool Invalid = false;
2880
2881  // Look every FieldDecl and IndirectFieldDecl with a name.
2882  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2883                               DEnd = AnonRecord->decls_end();
2884       D != DEnd; ++D) {
2885    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2886        cast<NamedDecl>(*D)->getDeclName()) {
2887      ValueDecl *VD = cast<ValueDecl>(*D);
2888      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2889                                       VD->getLocation(), diagKind)) {
2890        // C++ [class.union]p2:
2891        //   The names of the members of an anonymous union shall be
2892        //   distinct from the names of any other entity in the
2893        //   scope in which the anonymous union is declared.
2894        Invalid = true;
2895      } else {
2896        // C++ [class.union]p2:
2897        //   For the purpose of name lookup, after the anonymous union
2898        //   definition, the members of the anonymous union are
2899        //   considered to have been defined in the scope in which the
2900        //   anonymous union is declared.
2901        unsigned OldChainingSize = Chaining.size();
2902        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2903          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2904               PE = IF->chain_end(); PI != PE; ++PI)
2905            Chaining.push_back(*PI);
2906        else
2907          Chaining.push_back(VD);
2908
2909        assert(Chaining.size() >= 2);
2910        NamedDecl **NamedChain =
2911          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2912        for (unsigned i = 0; i < Chaining.size(); i++)
2913          NamedChain[i] = Chaining[i];
2914
2915        IndirectFieldDecl* IndirectField =
2916          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2917                                    VD->getIdentifier(), VD->getType(),
2918                                    NamedChain, Chaining.size());
2919
2920        IndirectField->setAccess(AS);
2921        IndirectField->setImplicit();
2922        SemaRef.PushOnScopeChains(IndirectField, S);
2923
2924        // That includes picking up the appropriate access specifier.
2925        if (AS != AS_none) IndirectField->setAccess(AS);
2926
2927        Chaining.resize(OldChainingSize);
2928      }
2929    }
2930  }
2931
2932  return Invalid;
2933}
2934
2935/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2936/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2937/// illegal input values are mapped to SC_None.
2938static StorageClass
2939StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2940  switch (StorageClassSpec) {
2941  case DeclSpec::SCS_unspecified:    return SC_None;
2942  case DeclSpec::SCS_extern:         return SC_Extern;
2943  case DeclSpec::SCS_static:         return SC_Static;
2944  case DeclSpec::SCS_auto:           return SC_Auto;
2945  case DeclSpec::SCS_register:       return SC_Register;
2946  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2947    // Illegal SCSs map to None: error reporting is up to the caller.
2948  case DeclSpec::SCS_mutable:        // Fall through.
2949  case DeclSpec::SCS_typedef:        return SC_None;
2950  }
2951  llvm_unreachable("unknown storage class specifier");
2952}
2953
2954/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2955/// a StorageClass. Any error reporting is up to the caller:
2956/// illegal input values are mapped to SC_None.
2957static StorageClass
2958StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2959  switch (StorageClassSpec) {
2960  case DeclSpec::SCS_unspecified:    return SC_None;
2961  case DeclSpec::SCS_extern:         return SC_Extern;
2962  case DeclSpec::SCS_static:         return SC_Static;
2963  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2964    // Illegal SCSs map to None: error reporting is up to the caller.
2965  case DeclSpec::SCS_auto:           // Fall through.
2966  case DeclSpec::SCS_mutable:        // Fall through.
2967  case DeclSpec::SCS_register:       // Fall through.
2968  case DeclSpec::SCS_typedef:        return SC_None;
2969  }
2970  llvm_unreachable("unknown storage class specifier");
2971}
2972
2973/// BuildAnonymousStructOrUnion - Handle the declaration of an
2974/// anonymous structure or union. Anonymous unions are a C++ feature
2975/// (C++ [class.union]) and a C11 feature; anonymous structures
2976/// are a C11 feature and GNU C++ extension.
2977Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2978                                             AccessSpecifier AS,
2979                                             RecordDecl *Record) {
2980  DeclContext *Owner = Record->getDeclContext();
2981
2982  // Diagnose whether this anonymous struct/union is an extension.
2983  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2984    Diag(Record->getLocation(), diag::ext_anonymous_union);
2985  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2986    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2987  else if (!Record->isUnion() && !getLangOpts().C11)
2988    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2989
2990  // C and C++ require different kinds of checks for anonymous
2991  // structs/unions.
2992  bool Invalid = false;
2993  if (getLangOpts().CPlusPlus) {
2994    const char* PrevSpec = 0;
2995    unsigned DiagID;
2996    if (Record->isUnion()) {
2997      // C++ [class.union]p6:
2998      //   Anonymous unions declared in a named namespace or in the
2999      //   global namespace shall be declared static.
3000      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3001          (isa<TranslationUnitDecl>(Owner) ||
3002           (isa<NamespaceDecl>(Owner) &&
3003            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3004        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3005          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3006
3007        // Recover by adding 'static'.
3008        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3009                               PrevSpec, DiagID);
3010      }
3011      // C++ [class.union]p6:
3012      //   A storage class is not allowed in a declaration of an
3013      //   anonymous union in a class scope.
3014      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3015               isa<RecordDecl>(Owner)) {
3016        Diag(DS.getStorageClassSpecLoc(),
3017             diag::err_anonymous_union_with_storage_spec)
3018          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3019
3020        // Recover by removing the storage specifier.
3021        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3022                               SourceLocation(),
3023                               PrevSpec, DiagID);
3024      }
3025    }
3026
3027    // Ignore const/volatile/restrict qualifiers.
3028    if (DS.getTypeQualifiers()) {
3029      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3030        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3031          << Record->isUnion() << 0
3032          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3033      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3034        Diag(DS.getVolatileSpecLoc(),
3035             diag::ext_anonymous_struct_union_qualified)
3036          << Record->isUnion() << 1
3037          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3038      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3039        Diag(DS.getRestrictSpecLoc(),
3040             diag::ext_anonymous_struct_union_qualified)
3041          << Record->isUnion() << 2
3042          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3043
3044      DS.ClearTypeQualifiers();
3045    }
3046
3047    // C++ [class.union]p2:
3048    //   The member-specification of an anonymous union shall only
3049    //   define non-static data members. [Note: nested types and
3050    //   functions cannot be declared within an anonymous union. ]
3051    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3052                                 MemEnd = Record->decls_end();
3053         Mem != MemEnd; ++Mem) {
3054      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3055        // C++ [class.union]p3:
3056        //   An anonymous union shall not have private or protected
3057        //   members (clause 11).
3058        assert(FD->getAccess() != AS_none);
3059        if (FD->getAccess() != AS_public) {
3060          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3061            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3062          Invalid = true;
3063        }
3064
3065        // C++ [class.union]p1
3066        //   An object of a class with a non-trivial constructor, a non-trivial
3067        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3068        //   assignment operator cannot be a member of a union, nor can an
3069        //   array of such objects.
3070        if (CheckNontrivialField(FD))
3071          Invalid = true;
3072      } else if ((*Mem)->isImplicit()) {
3073        // Any implicit members are fine.
3074      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3075        // This is a type that showed up in an
3076        // elaborated-type-specifier inside the anonymous struct or
3077        // union, but which actually declares a type outside of the
3078        // anonymous struct or union. It's okay.
3079      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3080        if (!MemRecord->isAnonymousStructOrUnion() &&
3081            MemRecord->getDeclName()) {
3082          // Visual C++ allows type definition in anonymous struct or union.
3083          if (getLangOpts().MicrosoftExt)
3084            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3085              << (int)Record->isUnion();
3086          else {
3087            // This is a nested type declaration.
3088            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3089              << (int)Record->isUnion();
3090            Invalid = true;
3091          }
3092        }
3093      } else if (isa<AccessSpecDecl>(*Mem)) {
3094        // Any access specifier is fine.
3095      } else {
3096        // We have something that isn't a non-static data
3097        // member. Complain about it.
3098        unsigned DK = diag::err_anonymous_record_bad_member;
3099        if (isa<TypeDecl>(*Mem))
3100          DK = diag::err_anonymous_record_with_type;
3101        else if (isa<FunctionDecl>(*Mem))
3102          DK = diag::err_anonymous_record_with_function;
3103        else if (isa<VarDecl>(*Mem))
3104          DK = diag::err_anonymous_record_with_static;
3105
3106        // Visual C++ allows type definition in anonymous struct or union.
3107        if (getLangOpts().MicrosoftExt &&
3108            DK == diag::err_anonymous_record_with_type)
3109          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3110            << (int)Record->isUnion();
3111        else {
3112          Diag((*Mem)->getLocation(), DK)
3113              << (int)Record->isUnion();
3114          Invalid = true;
3115        }
3116      }
3117    }
3118  }
3119
3120  if (!Record->isUnion() && !Owner->isRecord()) {
3121    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3122      << (int)getLangOpts().CPlusPlus;
3123    Invalid = true;
3124  }
3125
3126  // Mock up a declarator.
3127  Declarator Dc(DS, Declarator::MemberContext);
3128  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3129  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3130
3131  // Create a declaration for this anonymous struct/union.
3132  NamedDecl *Anon = 0;
3133  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3134    Anon = FieldDecl::Create(Context, OwningClass,
3135                             DS.getLocStart(),
3136                             Record->getLocation(),
3137                             /*IdentifierInfo=*/0,
3138                             Context.getTypeDeclType(Record),
3139                             TInfo,
3140                             /*BitWidth=*/0, /*Mutable=*/false,
3141                             /*InitStyle=*/ICIS_NoInit);
3142    Anon->setAccess(AS);
3143    if (getLangOpts().CPlusPlus)
3144      FieldCollector->Add(cast<FieldDecl>(Anon));
3145  } else {
3146    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3147    assert(SCSpec != DeclSpec::SCS_typedef &&
3148           "Parser allowed 'typedef' as storage class VarDecl.");
3149    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3150    if (SCSpec == DeclSpec::SCS_mutable) {
3151      // mutable can only appear on non-static class members, so it's always
3152      // an error here
3153      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3154      Invalid = true;
3155      SC = SC_None;
3156    }
3157    SCSpec = DS.getStorageClassSpecAsWritten();
3158    VarDecl::StorageClass SCAsWritten
3159      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3160
3161    Anon = VarDecl::Create(Context, Owner,
3162                           DS.getLocStart(),
3163                           Record->getLocation(), /*IdentifierInfo=*/0,
3164                           Context.getTypeDeclType(Record),
3165                           TInfo, SC, SCAsWritten);
3166
3167    // Default-initialize the implicit variable. This initialization will be
3168    // trivial in almost all cases, except if a union member has an in-class
3169    // initializer:
3170    //   union { int n = 0; };
3171    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3172  }
3173  Anon->setImplicit();
3174
3175  // Add the anonymous struct/union object to the current
3176  // context. We'll be referencing this object when we refer to one of
3177  // its members.
3178  Owner->addDecl(Anon);
3179
3180  // Inject the members of the anonymous struct/union into the owning
3181  // context and into the identifier resolver chain for name lookup
3182  // purposes.
3183  SmallVector<NamedDecl*, 2> Chain;
3184  Chain.push_back(Anon);
3185
3186  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3187                                          Chain, false))
3188    Invalid = true;
3189
3190  // Mark this as an anonymous struct/union type. Note that we do not
3191  // do this until after we have already checked and injected the
3192  // members of this anonymous struct/union type, because otherwise
3193  // the members could be injected twice: once by DeclContext when it
3194  // builds its lookup table, and once by
3195  // InjectAnonymousStructOrUnionMembers.
3196  Record->setAnonymousStructOrUnion(true);
3197
3198  if (Invalid)
3199    Anon->setInvalidDecl();
3200
3201  return Anon;
3202}
3203
3204/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3205/// Microsoft C anonymous structure.
3206/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3207/// Example:
3208///
3209/// struct A { int a; };
3210/// struct B { struct A; int b; };
3211///
3212/// void foo() {
3213///   B var;
3214///   var.a = 3;
3215/// }
3216///
3217Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3218                                           RecordDecl *Record) {
3219
3220  // If there is no Record, get the record via the typedef.
3221  if (!Record)
3222    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3223
3224  // Mock up a declarator.
3225  Declarator Dc(DS, Declarator::TypeNameContext);
3226  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3227  assert(TInfo && "couldn't build declarator info for anonymous struct");
3228
3229  // Create a declaration for this anonymous struct.
3230  NamedDecl* Anon = FieldDecl::Create(Context,
3231                             cast<RecordDecl>(CurContext),
3232                             DS.getLocStart(),
3233                             DS.getLocStart(),
3234                             /*IdentifierInfo=*/0,
3235                             Context.getTypeDeclType(Record),
3236                             TInfo,
3237                             /*BitWidth=*/0, /*Mutable=*/false,
3238                             /*InitStyle=*/ICIS_NoInit);
3239  Anon->setImplicit();
3240
3241  // Add the anonymous struct object to the current context.
3242  CurContext->addDecl(Anon);
3243
3244  // Inject the members of the anonymous struct into the current
3245  // context and into the identifier resolver chain for name lookup
3246  // purposes.
3247  SmallVector<NamedDecl*, 2> Chain;
3248  Chain.push_back(Anon);
3249
3250  RecordDecl *RecordDef = Record->getDefinition();
3251  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3252                                                        RecordDef, AS_none,
3253                                                        Chain, true))
3254    Anon->setInvalidDecl();
3255
3256  return Anon;
3257}
3258
3259/// GetNameForDeclarator - Determine the full declaration name for the
3260/// given Declarator.
3261DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3262  return GetNameFromUnqualifiedId(D.getName());
3263}
3264
3265/// \brief Retrieves the declaration name from a parsed unqualified-id.
3266DeclarationNameInfo
3267Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3268  DeclarationNameInfo NameInfo;
3269  NameInfo.setLoc(Name.StartLocation);
3270
3271  switch (Name.getKind()) {
3272
3273  case UnqualifiedId::IK_ImplicitSelfParam:
3274  case UnqualifiedId::IK_Identifier:
3275    NameInfo.setName(Name.Identifier);
3276    NameInfo.setLoc(Name.StartLocation);
3277    return NameInfo;
3278
3279  case UnqualifiedId::IK_OperatorFunctionId:
3280    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3281                                           Name.OperatorFunctionId.Operator));
3282    NameInfo.setLoc(Name.StartLocation);
3283    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3284      = Name.OperatorFunctionId.SymbolLocations[0];
3285    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3286      = Name.EndLocation.getRawEncoding();
3287    return NameInfo;
3288
3289  case UnqualifiedId::IK_LiteralOperatorId:
3290    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3291                                                           Name.Identifier));
3292    NameInfo.setLoc(Name.StartLocation);
3293    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3294    return NameInfo;
3295
3296  case UnqualifiedId::IK_ConversionFunctionId: {
3297    TypeSourceInfo *TInfo;
3298    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3299    if (Ty.isNull())
3300      return DeclarationNameInfo();
3301    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3302                                               Context.getCanonicalType(Ty)));
3303    NameInfo.setLoc(Name.StartLocation);
3304    NameInfo.setNamedTypeInfo(TInfo);
3305    return NameInfo;
3306  }
3307
3308  case UnqualifiedId::IK_ConstructorName: {
3309    TypeSourceInfo *TInfo;
3310    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3311    if (Ty.isNull())
3312      return DeclarationNameInfo();
3313    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3314                                              Context.getCanonicalType(Ty)));
3315    NameInfo.setLoc(Name.StartLocation);
3316    NameInfo.setNamedTypeInfo(TInfo);
3317    return NameInfo;
3318  }
3319
3320  case UnqualifiedId::IK_ConstructorTemplateId: {
3321    // In well-formed code, we can only have a constructor
3322    // template-id that refers to the current context, so go there
3323    // to find the actual type being constructed.
3324    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3325    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3326      return DeclarationNameInfo();
3327
3328    // Determine the type of the class being constructed.
3329    QualType CurClassType = Context.getTypeDeclType(CurClass);
3330
3331    // FIXME: Check two things: that the template-id names the same type as
3332    // CurClassType, and that the template-id does not occur when the name
3333    // was qualified.
3334
3335    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3336                                    Context.getCanonicalType(CurClassType)));
3337    NameInfo.setLoc(Name.StartLocation);
3338    // FIXME: should we retrieve TypeSourceInfo?
3339    NameInfo.setNamedTypeInfo(0);
3340    return NameInfo;
3341  }
3342
3343  case UnqualifiedId::IK_DestructorName: {
3344    TypeSourceInfo *TInfo;
3345    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3346    if (Ty.isNull())
3347      return DeclarationNameInfo();
3348    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3349                                              Context.getCanonicalType(Ty)));
3350    NameInfo.setLoc(Name.StartLocation);
3351    NameInfo.setNamedTypeInfo(TInfo);
3352    return NameInfo;
3353  }
3354
3355  case UnqualifiedId::IK_TemplateId: {
3356    TemplateName TName = Name.TemplateId->Template.get();
3357    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3358    return Context.getNameForTemplate(TName, TNameLoc);
3359  }
3360
3361  } // switch (Name.getKind())
3362
3363  llvm_unreachable("Unknown name kind");
3364}
3365
3366static QualType getCoreType(QualType Ty) {
3367  do {
3368    if (Ty->isPointerType() || Ty->isReferenceType())
3369      Ty = Ty->getPointeeType();
3370    else if (Ty->isArrayType())
3371      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3372    else
3373      return Ty.withoutLocalFastQualifiers();
3374  } while (true);
3375}
3376
3377/// hasSimilarParameters - Determine whether the C++ functions Declaration
3378/// and Definition have "nearly" matching parameters. This heuristic is
3379/// used to improve diagnostics in the case where an out-of-line function
3380/// definition doesn't match any declaration within the class or namespace.
3381/// Also sets Params to the list of indices to the parameters that differ
3382/// between the declaration and the definition. If hasSimilarParameters
3383/// returns true and Params is empty, then all of the parameters match.
3384static bool hasSimilarParameters(ASTContext &Context,
3385                                     FunctionDecl *Declaration,
3386                                     FunctionDecl *Definition,
3387                                     llvm::SmallVectorImpl<unsigned> &Params) {
3388  Params.clear();
3389  if (Declaration->param_size() != Definition->param_size())
3390    return false;
3391  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3392    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3393    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3394
3395    // The parameter types are identical
3396    if (Context.hasSameType(DefParamTy, DeclParamTy))
3397      continue;
3398
3399    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3400    QualType DefParamBaseTy = getCoreType(DefParamTy);
3401    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3402    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3403
3404    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3405        (DeclTyName && DeclTyName == DefTyName))
3406      Params.push_back(Idx);
3407    else  // The two parameters aren't even close
3408      return false;
3409  }
3410
3411  return true;
3412}
3413
3414/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3415/// declarator needs to be rebuilt in the current instantiation.
3416/// Any bits of declarator which appear before the name are valid for
3417/// consideration here.  That's specifically the type in the decl spec
3418/// and the base type in any member-pointer chunks.
3419static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3420                                                    DeclarationName Name) {
3421  // The types we specifically need to rebuild are:
3422  //   - typenames, typeofs, and decltypes
3423  //   - types which will become injected class names
3424  // Of course, we also need to rebuild any type referencing such a
3425  // type.  It's safest to just say "dependent", but we call out a
3426  // few cases here.
3427
3428  DeclSpec &DS = D.getMutableDeclSpec();
3429  switch (DS.getTypeSpecType()) {
3430  case DeclSpec::TST_typename:
3431  case DeclSpec::TST_typeofType:
3432  case DeclSpec::TST_underlyingType:
3433  case DeclSpec::TST_atomic: {
3434    // Grab the type from the parser.
3435    TypeSourceInfo *TSI = 0;
3436    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3437    if (T.isNull() || !T->isDependentType()) break;
3438
3439    // Make sure there's a type source info.  This isn't really much
3440    // of a waste; most dependent types should have type source info
3441    // attached already.
3442    if (!TSI)
3443      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3444
3445    // Rebuild the type in the current instantiation.
3446    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3447    if (!TSI) return true;
3448
3449    // Store the new type back in the decl spec.
3450    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3451    DS.UpdateTypeRep(LocType);
3452    break;
3453  }
3454
3455  case DeclSpec::TST_decltype:
3456  case DeclSpec::TST_typeofExpr: {
3457    Expr *E = DS.getRepAsExpr();
3458    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3459    if (Result.isInvalid()) return true;
3460    DS.UpdateExprRep(Result.get());
3461    break;
3462  }
3463
3464  default:
3465    // Nothing to do for these decl specs.
3466    break;
3467  }
3468
3469  // It doesn't matter what order we do this in.
3470  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3471    DeclaratorChunk &Chunk = D.getTypeObject(I);
3472
3473    // The only type information in the declarator which can come
3474    // before the declaration name is the base type of a member
3475    // pointer.
3476    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3477      continue;
3478
3479    // Rebuild the scope specifier in-place.
3480    CXXScopeSpec &SS = Chunk.Mem.Scope();
3481    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3482      return true;
3483  }
3484
3485  return false;
3486}
3487
3488Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3489  D.setFunctionDefinitionKind(FDK_Declaration);
3490  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3491
3492  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3493      Dcl && Dcl->getDeclContext()->isFileContext())
3494    Dcl->setTopLevelDeclInObjCContainer();
3495
3496  return Dcl;
3497}
3498
3499/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3500///   If T is the name of a class, then each of the following shall have a
3501///   name different from T:
3502///     - every static data member of class T;
3503///     - every member function of class T
3504///     - every member of class T that is itself a type;
3505/// \returns true if the declaration name violates these rules.
3506bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3507                                   DeclarationNameInfo NameInfo) {
3508  DeclarationName Name = NameInfo.getName();
3509
3510  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3511    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3512      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3513      return true;
3514    }
3515
3516  return false;
3517}
3518
3519/// \brief Diagnose a declaration whose declarator-id has the given
3520/// nested-name-specifier.
3521///
3522/// \param SS The nested-name-specifier of the declarator-id.
3523///
3524/// \param DC The declaration context to which the nested-name-specifier
3525/// resolves.
3526///
3527/// \param Name The name of the entity being declared.
3528///
3529/// \param Loc The location of the name of the entity being declared.
3530///
3531/// \returns true if we cannot safely recover from this error, false otherwise.
3532bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3533                                        DeclarationName Name,
3534                                      SourceLocation Loc) {
3535  DeclContext *Cur = CurContext;
3536  while (isa<LinkageSpecDecl>(Cur))
3537    Cur = Cur->getParent();
3538
3539  // C++ [dcl.meaning]p1:
3540  //   A declarator-id shall not be qualified except for the definition
3541  //   of a member function (9.3) or static data member (9.4) outside of
3542  //   its class, the definition or explicit instantiation of a function
3543  //   or variable member of a namespace outside of its namespace, or the
3544  //   definition of an explicit specialization outside of its namespace,
3545  //   or the declaration of a friend function that is a member of
3546  //   another class or namespace (11.3). [...]
3547
3548  // The user provided a superfluous scope specifier that refers back to the
3549  // class or namespaces in which the entity is already declared.
3550  //
3551  // class X {
3552  //   void X::f();
3553  // };
3554  if (Cur->Equals(DC)) {
3555    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3556                                   : diag::err_member_extra_qualification)
3557      << Name << FixItHint::CreateRemoval(SS.getRange());
3558    SS.clear();
3559    return false;
3560  }
3561
3562  // Check whether the qualifying scope encloses the scope of the original
3563  // declaration.
3564  if (!Cur->Encloses(DC)) {
3565    if (Cur->isRecord())
3566      Diag(Loc, diag::err_member_qualification)
3567        << Name << SS.getRange();
3568    else if (isa<TranslationUnitDecl>(DC))
3569      Diag(Loc, diag::err_invalid_declarator_global_scope)
3570        << Name << SS.getRange();
3571    else if (isa<FunctionDecl>(Cur))
3572      Diag(Loc, diag::err_invalid_declarator_in_function)
3573        << Name << SS.getRange();
3574    else
3575      Diag(Loc, diag::err_invalid_declarator_scope)
3576      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3577
3578    return true;
3579  }
3580
3581  if (Cur->isRecord()) {
3582    // Cannot qualify members within a class.
3583    Diag(Loc, diag::err_member_qualification)
3584      << Name << SS.getRange();
3585    SS.clear();
3586
3587    // C++ constructors and destructors with incorrect scopes can break
3588    // our AST invariants by having the wrong underlying types. If
3589    // that's the case, then drop this declaration entirely.
3590    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3591         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3592        !Context.hasSameType(Name.getCXXNameType(),
3593                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3594      return true;
3595
3596    return false;
3597  }
3598
3599  // C++11 [dcl.meaning]p1:
3600  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3601  //   not begin with a decltype-specifer"
3602  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3603  while (SpecLoc.getPrefix())
3604    SpecLoc = SpecLoc.getPrefix();
3605  if (dyn_cast_or_null<DecltypeType>(
3606        SpecLoc.getNestedNameSpecifier()->getAsType()))
3607    Diag(Loc, diag::err_decltype_in_declarator)
3608      << SpecLoc.getTypeLoc().getSourceRange();
3609
3610  return false;
3611}
3612
3613Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3614                             MultiTemplateParamsArg TemplateParamLists) {
3615  // TODO: consider using NameInfo for diagnostic.
3616  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3617  DeclarationName Name = NameInfo.getName();
3618
3619  // All of these full declarators require an identifier.  If it doesn't have
3620  // one, the ParsedFreeStandingDeclSpec action should be used.
3621  if (!Name) {
3622    if (!D.isInvalidType())  // Reject this if we think it is valid.
3623      Diag(D.getDeclSpec().getLocStart(),
3624           diag::err_declarator_need_ident)
3625        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3626    return 0;
3627  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3628    return 0;
3629
3630  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3631  // we find one that is.
3632  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3633         (S->getFlags() & Scope::TemplateParamScope) != 0)
3634    S = S->getParent();
3635
3636  DeclContext *DC = CurContext;
3637  if (D.getCXXScopeSpec().isInvalid())
3638    D.setInvalidType();
3639  else if (D.getCXXScopeSpec().isSet()) {
3640    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3641                                        UPPC_DeclarationQualifier))
3642      return 0;
3643
3644    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3645    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3646    if (!DC) {
3647      // If we could not compute the declaration context, it's because the
3648      // declaration context is dependent but does not refer to a class,
3649      // class template, or class template partial specialization. Complain
3650      // and return early, to avoid the coming semantic disaster.
3651      Diag(D.getIdentifierLoc(),
3652           diag::err_template_qualified_declarator_no_match)
3653        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3654        << D.getCXXScopeSpec().getRange();
3655      return 0;
3656    }
3657    bool IsDependentContext = DC->isDependentContext();
3658
3659    if (!IsDependentContext &&
3660        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3661      return 0;
3662
3663    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3664      Diag(D.getIdentifierLoc(),
3665           diag::err_member_def_undefined_record)
3666        << Name << DC << D.getCXXScopeSpec().getRange();
3667      D.setInvalidType();
3668    } else if (!D.getDeclSpec().isFriendSpecified()) {
3669      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3670                                      Name, D.getIdentifierLoc())) {
3671        if (DC->isRecord())
3672          return 0;
3673
3674        D.setInvalidType();
3675      }
3676    }
3677
3678    // Check whether we need to rebuild the type of the given
3679    // declaration in the current instantiation.
3680    if (EnteringContext && IsDependentContext &&
3681        TemplateParamLists.size() != 0) {
3682      ContextRAII SavedContext(*this, DC);
3683      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3684        D.setInvalidType();
3685    }
3686  }
3687
3688  if (DiagnoseClassNameShadow(DC, NameInfo))
3689    // If this is a typedef, we'll end up spewing multiple diagnostics.
3690    // Just return early; it's safer.
3691    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3692      return 0;
3693
3694  NamedDecl *New;
3695
3696  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3697  QualType R = TInfo->getType();
3698
3699  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3700                                      UPPC_DeclarationType))
3701    D.setInvalidType();
3702
3703  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3704                        ForRedeclaration);
3705
3706  // See if this is a redefinition of a variable in the same scope.
3707  if (!D.getCXXScopeSpec().isSet()) {
3708    bool IsLinkageLookup = false;
3709
3710    // If the declaration we're planning to build will be a function
3711    // or object with linkage, then look for another declaration with
3712    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3713    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3714      /* Do nothing*/;
3715    else if (R->isFunctionType()) {
3716      if (CurContext->isFunctionOrMethod() ||
3717          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3718        IsLinkageLookup = true;
3719    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3720      IsLinkageLookup = true;
3721    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3722             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3723      IsLinkageLookup = true;
3724
3725    if (IsLinkageLookup)
3726      Previous.clear(LookupRedeclarationWithLinkage);
3727
3728    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3729  } else { // Something like "int foo::x;"
3730    LookupQualifiedName(Previous, DC);
3731
3732    // C++ [dcl.meaning]p1:
3733    //   When the declarator-id is qualified, the declaration shall refer to a
3734    //  previously declared member of the class or namespace to which the
3735    //  qualifier refers (or, in the case of a namespace, of an element of the
3736    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3737    //  thereof; [...]
3738    //
3739    // Note that we already checked the context above, and that we do not have
3740    // enough information to make sure that Previous contains the declaration
3741    // we want to match. For example, given:
3742    //
3743    //   class X {
3744    //     void f();
3745    //     void f(float);
3746    //   };
3747    //
3748    //   void X::f(int) { } // ill-formed
3749    //
3750    // In this case, Previous will point to the overload set
3751    // containing the two f's declared in X, but neither of them
3752    // matches.
3753
3754    // C++ [dcl.meaning]p1:
3755    //   [...] the member shall not merely have been introduced by a
3756    //   using-declaration in the scope of the class or namespace nominated by
3757    //   the nested-name-specifier of the declarator-id.
3758    RemoveUsingDecls(Previous);
3759  }
3760
3761  if (Previous.isSingleResult() &&
3762      Previous.getFoundDecl()->isTemplateParameter()) {
3763    // Maybe we will complain about the shadowed template parameter.
3764    if (!D.isInvalidType())
3765      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3766                                      Previous.getFoundDecl());
3767
3768    // Just pretend that we didn't see the previous declaration.
3769    Previous.clear();
3770  }
3771
3772  // In C++, the previous declaration we find might be a tag type
3773  // (class or enum). In this case, the new declaration will hide the
3774  // tag type. Note that this does does not apply if we're declaring a
3775  // typedef (C++ [dcl.typedef]p4).
3776  if (Previous.isSingleTagDecl() &&
3777      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3778    Previous.clear();
3779
3780  bool AddToScope = true;
3781  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3782    if (TemplateParamLists.size()) {
3783      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3784      return 0;
3785    }
3786
3787    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3788  } else if (R->isFunctionType()) {
3789    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3790                                  TemplateParamLists,
3791                                  AddToScope);
3792  } else {
3793    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3794                                  TemplateParamLists);
3795  }
3796
3797  if (New == 0)
3798    return 0;
3799
3800  // If this has an identifier and is not an invalid redeclaration or
3801  // function template specialization, add it to the scope stack.
3802  if (New->getDeclName() && AddToScope &&
3803       !(D.isRedeclaration() && New->isInvalidDecl()))
3804    PushOnScopeChains(New, S);
3805
3806  return New;
3807}
3808
3809/// Helper method to turn variable array types into constant array
3810/// types in certain situations which would otherwise be errors (for
3811/// GCC compatibility).
3812static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3813                                                    ASTContext &Context,
3814                                                    bool &SizeIsNegative,
3815                                                    llvm::APSInt &Oversized) {
3816  // This method tries to turn a variable array into a constant
3817  // array even when the size isn't an ICE.  This is necessary
3818  // for compatibility with code that depends on gcc's buggy
3819  // constant expression folding, like struct {char x[(int)(char*)2];}
3820  SizeIsNegative = false;
3821  Oversized = 0;
3822
3823  if (T->isDependentType())
3824    return QualType();
3825
3826  QualifierCollector Qs;
3827  const Type *Ty = Qs.strip(T);
3828
3829  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3830    QualType Pointee = PTy->getPointeeType();
3831    QualType FixedType =
3832        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3833                                            Oversized);
3834    if (FixedType.isNull()) return FixedType;
3835    FixedType = Context.getPointerType(FixedType);
3836    return Qs.apply(Context, FixedType);
3837  }
3838  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3839    QualType Inner = PTy->getInnerType();
3840    QualType FixedType =
3841        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3842                                            Oversized);
3843    if (FixedType.isNull()) return FixedType;
3844    FixedType = Context.getParenType(FixedType);
3845    return Qs.apply(Context, FixedType);
3846  }
3847
3848  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3849  if (!VLATy)
3850    return QualType();
3851  // FIXME: We should probably handle this case
3852  if (VLATy->getElementType()->isVariablyModifiedType())
3853    return QualType();
3854
3855  llvm::APSInt Res;
3856  if (!VLATy->getSizeExpr() ||
3857      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3858    return QualType();
3859
3860  // Check whether the array size is negative.
3861  if (Res.isSigned() && Res.isNegative()) {
3862    SizeIsNegative = true;
3863    return QualType();
3864  }
3865
3866  // Check whether the array is too large to be addressed.
3867  unsigned ActiveSizeBits
3868    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3869                                              Res);
3870  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3871    Oversized = Res;
3872    return QualType();
3873  }
3874
3875  return Context.getConstantArrayType(VLATy->getElementType(),
3876                                      Res, ArrayType::Normal, 0);
3877}
3878
3879static void
3880FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
3881  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
3882    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
3883    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
3884                                      DstPTL->getPointeeLoc());
3885    DstPTL->setStarLoc(SrcPTL->getStarLoc());
3886    return;
3887  }
3888  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
3889    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
3890    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
3891                                      DstPTL->getInnerLoc());
3892    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
3893    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
3894    return;
3895  }
3896  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
3897  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
3898  TypeLoc SrcElemTL = SrcATL->getElementLoc();
3899  TypeLoc DstElemTL = DstATL->getElementLoc();
3900  DstElemTL.initializeFullCopy(SrcElemTL);
3901  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
3902  DstATL->setSizeExpr(SrcATL->getSizeExpr());
3903  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
3904}
3905
3906/// Helper method to turn variable array types into constant array
3907/// types in certain situations which would otherwise be errors (for
3908/// GCC compatibility).
3909static TypeSourceInfo*
3910TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
3911                                              ASTContext &Context,
3912                                              bool &SizeIsNegative,
3913                                              llvm::APSInt &Oversized) {
3914  QualType FixedTy
3915    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
3916                                          SizeIsNegative, Oversized);
3917  if (FixedTy.isNull())
3918    return 0;
3919  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
3920  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
3921                                    FixedTInfo->getTypeLoc());
3922  return FixedTInfo;
3923}
3924
3925/// \brief Register the given locally-scoped external C declaration so
3926/// that it can be found later for redeclarations
3927void
3928Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3929                                       const LookupResult &Previous,
3930                                       Scope *S) {
3931  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3932         "Decl is not a locally-scoped decl!");
3933  // Note that we have a locally-scoped external with this name.
3934  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3935
3936  if (!Previous.isSingleResult())
3937    return;
3938
3939  NamedDecl *PrevDecl = Previous.getFoundDecl();
3940
3941  // If there was a previous declaration of this variable, it may be
3942  // in our identifier chain. Update the identifier chain with the new
3943  // declaration.
3944  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3945    // The previous declaration was found on the identifer resolver
3946    // chain, so remove it from its scope.
3947
3948    if (S->isDeclScope(PrevDecl)) {
3949      // Special case for redeclarations in the SAME scope.
3950      // Because this declaration is going to be added to the identifier chain
3951      // later, we should temporarily take it OFF the chain.
3952      IdResolver.RemoveDecl(ND);
3953
3954    } else {
3955      // Find the scope for the original declaration.
3956      while (S && !S->isDeclScope(PrevDecl))
3957        S = S->getParent();
3958    }
3959
3960    if (S)
3961      S->RemoveDecl(PrevDecl);
3962  }
3963}
3964
3965llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3966Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3967  if (ExternalSource) {
3968    // Load locally-scoped external decls from the external source.
3969    SmallVector<NamedDecl *, 4> Decls;
3970    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3971    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3972      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3973        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3974      if (Pos == LocallyScopedExternalDecls.end())
3975        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3976    }
3977  }
3978
3979  return LocallyScopedExternalDecls.find(Name);
3980}
3981
3982/// \brief Diagnose function specifiers on a declaration of an identifier that
3983/// does not identify a function.
3984void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3985  // FIXME: We should probably indicate the identifier in question to avoid
3986  // confusion for constructs like "inline int a(), b;"
3987  if (D.getDeclSpec().isInlineSpecified())
3988    Diag(D.getDeclSpec().getInlineSpecLoc(),
3989         diag::err_inline_non_function);
3990
3991  if (D.getDeclSpec().isVirtualSpecified())
3992    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3993         diag::err_virtual_non_function);
3994
3995  if (D.getDeclSpec().isExplicitSpecified())
3996    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3997         diag::err_explicit_non_function);
3998}
3999
4000NamedDecl*
4001Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4002                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4003  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4004  if (D.getCXXScopeSpec().isSet()) {
4005    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4006      << D.getCXXScopeSpec().getRange();
4007    D.setInvalidType();
4008    // Pretend we didn't see the scope specifier.
4009    DC = CurContext;
4010    Previous.clear();
4011  }
4012
4013  if (getLangOpts().CPlusPlus) {
4014    // Check that there are no default arguments (C++ only).
4015    CheckExtraCXXDefaultArguments(D);
4016  }
4017
4018  DiagnoseFunctionSpecifiers(D);
4019
4020  if (D.getDeclSpec().isThreadSpecified())
4021    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4022  if (D.getDeclSpec().isConstexprSpecified())
4023    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4024      << 1;
4025
4026  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4027    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4028      << D.getName().getSourceRange();
4029    return 0;
4030  }
4031
4032  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4033  if (!NewTD) return 0;
4034
4035  // Handle attributes prior to checking for duplicates in MergeVarDecl
4036  ProcessDeclAttributes(S, NewTD, D);
4037
4038  CheckTypedefForVariablyModifiedType(S, NewTD);
4039
4040  bool Redeclaration = D.isRedeclaration();
4041  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4042  D.setRedeclaration(Redeclaration);
4043  return ND;
4044}
4045
4046void
4047Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4048  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4049  // then it shall have block scope.
4050  // Note that variably modified types must be fixed before merging the decl so
4051  // that redeclarations will match.
4052  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4053  QualType T = TInfo->getType();
4054  if (T->isVariablyModifiedType()) {
4055    getCurFunction()->setHasBranchProtectedScope();
4056
4057    if (S->getFnParent() == 0) {
4058      bool SizeIsNegative;
4059      llvm::APSInt Oversized;
4060      TypeSourceInfo *FixedTInfo =
4061        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4062                                                      SizeIsNegative,
4063                                                      Oversized);
4064      if (FixedTInfo) {
4065        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4066        NewTD->setTypeSourceInfo(FixedTInfo);
4067      } else {
4068        if (SizeIsNegative)
4069          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4070        else if (T->isVariableArrayType())
4071          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4072        else if (Oversized.getBoolValue())
4073          Diag(NewTD->getLocation(), diag::err_array_too_large)
4074            << Oversized.toString(10);
4075        else
4076          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4077        NewTD->setInvalidDecl();
4078      }
4079    }
4080  }
4081}
4082
4083
4084/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4085/// declares a typedef-name, either using the 'typedef' type specifier or via
4086/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4087NamedDecl*
4088Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4089                           LookupResult &Previous, bool &Redeclaration) {
4090  // Merge the decl with the existing one if appropriate. If the decl is
4091  // in an outer scope, it isn't the same thing.
4092  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4093                       /*ExplicitInstantiationOrSpecialization=*/false);
4094  if (!Previous.empty()) {
4095    Redeclaration = true;
4096    MergeTypedefNameDecl(NewTD, Previous);
4097  }
4098
4099  // If this is the C FILE type, notify the AST context.
4100  if (IdentifierInfo *II = NewTD->getIdentifier())
4101    if (!NewTD->isInvalidDecl() &&
4102        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4103      if (II->isStr("FILE"))
4104        Context.setFILEDecl(NewTD);
4105      else if (II->isStr("jmp_buf"))
4106        Context.setjmp_bufDecl(NewTD);
4107      else if (II->isStr("sigjmp_buf"))
4108        Context.setsigjmp_bufDecl(NewTD);
4109      else if (II->isStr("ucontext_t"))
4110        Context.setucontext_tDecl(NewTD);
4111    }
4112
4113  return NewTD;
4114}
4115
4116/// \brief Determines whether the given declaration is an out-of-scope
4117/// previous declaration.
4118///
4119/// This routine should be invoked when name lookup has found a
4120/// previous declaration (PrevDecl) that is not in the scope where a
4121/// new declaration by the same name is being introduced. If the new
4122/// declaration occurs in a local scope, previous declarations with
4123/// linkage may still be considered previous declarations (C99
4124/// 6.2.2p4-5, C++ [basic.link]p6).
4125///
4126/// \param PrevDecl the previous declaration found by name
4127/// lookup
4128///
4129/// \param DC the context in which the new declaration is being
4130/// declared.
4131///
4132/// \returns true if PrevDecl is an out-of-scope previous declaration
4133/// for a new delcaration with the same name.
4134static bool
4135isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4136                                ASTContext &Context) {
4137  if (!PrevDecl)
4138    return false;
4139
4140  if (!PrevDecl->hasLinkage())
4141    return false;
4142
4143  if (Context.getLangOpts().CPlusPlus) {
4144    // C++ [basic.link]p6:
4145    //   If there is a visible declaration of an entity with linkage
4146    //   having the same name and type, ignoring entities declared
4147    //   outside the innermost enclosing namespace scope, the block
4148    //   scope declaration declares that same entity and receives the
4149    //   linkage of the previous declaration.
4150    DeclContext *OuterContext = DC->getRedeclContext();
4151    if (!OuterContext->isFunctionOrMethod())
4152      // This rule only applies to block-scope declarations.
4153      return false;
4154
4155    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4156    if (PrevOuterContext->isRecord())
4157      // We found a member function: ignore it.
4158      return false;
4159
4160    // Find the innermost enclosing namespace for the new and
4161    // previous declarations.
4162    OuterContext = OuterContext->getEnclosingNamespaceContext();
4163    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4164
4165    // The previous declaration is in a different namespace, so it
4166    // isn't the same function.
4167    if (!OuterContext->Equals(PrevOuterContext))
4168      return false;
4169  }
4170
4171  return true;
4172}
4173
4174static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4175  CXXScopeSpec &SS = D.getCXXScopeSpec();
4176  if (!SS.isSet()) return;
4177  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4178}
4179
4180bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4181  QualType type = decl->getType();
4182  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4183  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4184    // Various kinds of declaration aren't allowed to be __autoreleasing.
4185    unsigned kind = -1U;
4186    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4187      if (var->hasAttr<BlocksAttr>())
4188        kind = 0; // __block
4189      else if (!var->hasLocalStorage())
4190        kind = 1; // global
4191    } else if (isa<ObjCIvarDecl>(decl)) {
4192      kind = 3; // ivar
4193    } else if (isa<FieldDecl>(decl)) {
4194      kind = 2; // field
4195    }
4196
4197    if (kind != -1U) {
4198      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4199        << kind;
4200    }
4201  } else if (lifetime == Qualifiers::OCL_None) {
4202    // Try to infer lifetime.
4203    if (!type->isObjCLifetimeType())
4204      return false;
4205
4206    lifetime = type->getObjCARCImplicitLifetime();
4207    type = Context.getLifetimeQualifiedType(type, lifetime);
4208    decl->setType(type);
4209  }
4210
4211  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4212    // Thread-local variables cannot have lifetime.
4213    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4214        var->isThreadSpecified()) {
4215      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4216        << var->getType();
4217      return true;
4218    }
4219  }
4220
4221  return false;
4222}
4223
4224NamedDecl*
4225Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4226                              TypeSourceInfo *TInfo, LookupResult &Previous,
4227                              MultiTemplateParamsArg TemplateParamLists) {
4228  QualType R = TInfo->getType();
4229  DeclarationName Name = GetNameForDeclarator(D).getName();
4230
4231  // Check that there are no default arguments (C++ only).
4232  if (getLangOpts().CPlusPlus)
4233    CheckExtraCXXDefaultArguments(D);
4234
4235  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4236  assert(SCSpec != DeclSpec::SCS_typedef &&
4237         "Parser allowed 'typedef' as storage class VarDecl.");
4238  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4239  if (SCSpec == DeclSpec::SCS_mutable) {
4240    // mutable can only appear on non-static class members, so it's always
4241    // an error here
4242    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4243    D.setInvalidType();
4244    SC = SC_None;
4245  }
4246  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4247  VarDecl::StorageClass SCAsWritten
4248    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4249
4250  IdentifierInfo *II = Name.getAsIdentifierInfo();
4251  if (!II) {
4252    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4253      << Name;
4254    return 0;
4255  }
4256
4257  DiagnoseFunctionSpecifiers(D);
4258
4259  if (!DC->isRecord() && S->getFnParent() == 0) {
4260    // C99 6.9p2: The storage-class specifiers auto and register shall not
4261    // appear in the declaration specifiers in an external declaration.
4262    if (SC == SC_Auto || SC == SC_Register) {
4263
4264      // If this is a register variable with an asm label specified, then this
4265      // is a GNU extension.
4266      if (SC == SC_Register && D.getAsmLabel())
4267        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4268      else
4269        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4270      D.setInvalidType();
4271    }
4272  }
4273
4274  if (getLangOpts().OpenCL) {
4275    // Set up the special work-group-local storage class for variables in the
4276    // OpenCL __local address space.
4277    if (R.getAddressSpace() == LangAS::opencl_local)
4278      SC = SC_OpenCLWorkGroupLocal;
4279  }
4280
4281  bool isExplicitSpecialization = false;
4282  VarDecl *NewVD;
4283  if (!getLangOpts().CPlusPlus) {
4284    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4285                            D.getIdentifierLoc(), II,
4286                            R, TInfo, SC, SCAsWritten);
4287
4288    if (D.isInvalidType())
4289      NewVD->setInvalidDecl();
4290  } else {
4291    if (DC->isRecord() && !CurContext->isRecord()) {
4292      // This is an out-of-line definition of a static data member.
4293      if (SC == SC_Static) {
4294        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4295             diag::err_static_out_of_line)
4296          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4297      } else if (SC == SC_None)
4298        SC = SC_Static;
4299    }
4300    if (SC == SC_Static && CurContext->isRecord()) {
4301      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4302        if (RD->isLocalClass())
4303          Diag(D.getIdentifierLoc(),
4304               diag::err_static_data_member_not_allowed_in_local_class)
4305            << Name << RD->getDeclName();
4306
4307        // C++98 [class.union]p1: If a union contains a static data member,
4308        // the program is ill-formed. C++11 drops this restriction.
4309        if (RD->isUnion())
4310          Diag(D.getIdentifierLoc(),
4311               getLangOpts().CPlusPlus0x
4312                 ? diag::warn_cxx98_compat_static_data_member_in_union
4313                 : diag::ext_static_data_member_in_union) << Name;
4314        // We conservatively disallow static data members in anonymous structs.
4315        else if (!RD->getDeclName())
4316          Diag(D.getIdentifierLoc(),
4317               diag::err_static_data_member_not_allowed_in_anon_struct)
4318            << Name << RD->isUnion();
4319      }
4320    }
4321
4322    // Match up the template parameter lists with the scope specifier, then
4323    // determine whether we have a template or a template specialization.
4324    isExplicitSpecialization = false;
4325    bool Invalid = false;
4326    if (TemplateParameterList *TemplateParams
4327        = MatchTemplateParametersToScopeSpecifier(
4328                                  D.getDeclSpec().getLocStart(),
4329                                                  D.getIdentifierLoc(),
4330                                                  D.getCXXScopeSpec(),
4331                                                  TemplateParamLists.data(),
4332                                                  TemplateParamLists.size(),
4333                                                  /*never a friend*/ false,
4334                                                  isExplicitSpecialization,
4335                                                  Invalid)) {
4336      if (TemplateParams->size() > 0) {
4337        // There is no such thing as a variable template.
4338        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4339          << II
4340          << SourceRange(TemplateParams->getTemplateLoc(),
4341                         TemplateParams->getRAngleLoc());
4342        return 0;
4343      } else {
4344        // There is an extraneous 'template<>' for this variable. Complain
4345        // about it, but allow the declaration of the variable.
4346        Diag(TemplateParams->getTemplateLoc(),
4347             diag::err_template_variable_noparams)
4348          << II
4349          << SourceRange(TemplateParams->getTemplateLoc(),
4350                         TemplateParams->getRAngleLoc());
4351      }
4352    }
4353
4354    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4355                            D.getIdentifierLoc(), II,
4356                            R, TInfo, SC, SCAsWritten);
4357
4358    // If this decl has an auto type in need of deduction, make a note of the
4359    // Decl so we can diagnose uses of it in its own initializer.
4360    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4361        R->getContainedAutoType())
4362      ParsingInitForAutoVars.insert(NewVD);
4363
4364    if (D.isInvalidType() || Invalid)
4365      NewVD->setInvalidDecl();
4366
4367    SetNestedNameSpecifier(NewVD, D);
4368
4369    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4370      NewVD->setTemplateParameterListsInfo(Context,
4371                                           TemplateParamLists.size(),
4372                                           TemplateParamLists.data());
4373    }
4374
4375    if (D.getDeclSpec().isConstexprSpecified())
4376      NewVD->setConstexpr(true);
4377  }
4378
4379  // Set the lexical context. If the declarator has a C++ scope specifier, the
4380  // lexical context will be different from the semantic context.
4381  NewVD->setLexicalDeclContext(CurContext);
4382
4383  if (D.getDeclSpec().isThreadSpecified()) {
4384    if (NewVD->hasLocalStorage())
4385      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4386    else if (!Context.getTargetInfo().isTLSSupported())
4387      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4388    else
4389      NewVD->setThreadSpecified(true);
4390  }
4391
4392  if (D.getDeclSpec().isModulePrivateSpecified()) {
4393    if (isExplicitSpecialization)
4394      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4395        << 2
4396        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4397    else if (NewVD->hasLocalStorage())
4398      Diag(NewVD->getLocation(), diag::err_module_private_local)
4399        << 0 << NewVD->getDeclName()
4400        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4401        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4402    else
4403      NewVD->setModulePrivate();
4404  }
4405
4406  // Handle attributes prior to checking for duplicates in MergeVarDecl
4407  ProcessDeclAttributes(S, NewVD, D);
4408
4409  if (getLangOpts().CUDA) {
4410    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4411    // storage [duration]."
4412    if (SC == SC_None && S->getFnParent() != 0 &&
4413       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4414      NewVD->setStorageClass(SC_Static);
4415  }
4416
4417  // In auto-retain/release, infer strong retension for variables of
4418  // retainable type.
4419  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4420    NewVD->setInvalidDecl();
4421
4422  // Handle GNU asm-label extension (encoded as an attribute).
4423  if (Expr *E = (Expr*)D.getAsmLabel()) {
4424    // The parser guarantees this is a string.
4425    StringLiteral *SE = cast<StringLiteral>(E);
4426    StringRef Label = SE->getString();
4427    if (S->getFnParent() != 0) {
4428      switch (SC) {
4429      case SC_None:
4430      case SC_Auto:
4431        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4432        break;
4433      case SC_Register:
4434        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4435          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4436        break;
4437      case SC_Static:
4438      case SC_Extern:
4439      case SC_PrivateExtern:
4440      case SC_OpenCLWorkGroupLocal:
4441        break;
4442      }
4443    }
4444
4445    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4446                                                Context, Label));
4447  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4448    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4449      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4450    if (I != ExtnameUndeclaredIdentifiers.end()) {
4451      NewVD->addAttr(I->second);
4452      ExtnameUndeclaredIdentifiers.erase(I);
4453    }
4454  }
4455
4456  // Diagnose shadowed variables before filtering for scope.
4457  if (!D.getCXXScopeSpec().isSet())
4458    CheckShadow(S, NewVD, Previous);
4459
4460  // Don't consider existing declarations that are in a different
4461  // scope and are out-of-semantic-context declarations (if the new
4462  // declaration has linkage).
4463  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4464                       isExplicitSpecialization);
4465
4466  if (!getLangOpts().CPlusPlus) {
4467    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4468  } else {
4469    // Merge the decl with the existing one if appropriate.
4470    if (!Previous.empty()) {
4471      if (Previous.isSingleResult() &&
4472          isa<FieldDecl>(Previous.getFoundDecl()) &&
4473          D.getCXXScopeSpec().isSet()) {
4474        // The user tried to define a non-static data member
4475        // out-of-line (C++ [dcl.meaning]p1).
4476        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4477          << D.getCXXScopeSpec().getRange();
4478        Previous.clear();
4479        NewVD->setInvalidDecl();
4480      }
4481    } else if (D.getCXXScopeSpec().isSet()) {
4482      // No previous declaration in the qualifying scope.
4483      Diag(D.getIdentifierLoc(), diag::err_no_member)
4484        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4485        << D.getCXXScopeSpec().getRange();
4486      NewVD->setInvalidDecl();
4487    }
4488
4489    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4490
4491    // This is an explicit specialization of a static data member. Check it.
4492    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4493        CheckMemberSpecialization(NewVD, Previous))
4494      NewVD->setInvalidDecl();
4495  }
4496
4497  // If this is a locally-scoped extern C variable, update the map of
4498  // such variables.
4499  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4500      !NewVD->isInvalidDecl())
4501    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4502
4503  // If there's a #pragma GCC visibility in scope, and this isn't a class
4504  // member, set the visibility of this variable.
4505  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4506    AddPushedVisibilityAttribute(NewVD);
4507
4508  MarkUnusedFileScopedDecl(NewVD);
4509
4510  return NewVD;
4511}
4512
4513/// \brief Diagnose variable or built-in function shadowing.  Implements
4514/// -Wshadow.
4515///
4516/// This method is called whenever a VarDecl is added to a "useful"
4517/// scope.
4518///
4519/// \param S the scope in which the shadowing name is being declared
4520/// \param R the lookup of the name
4521///
4522void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4523  // Return if warning is ignored.
4524  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4525        DiagnosticsEngine::Ignored)
4526    return;
4527
4528  // Don't diagnose declarations at file scope.
4529  if (D->hasGlobalStorage())
4530    return;
4531
4532  DeclContext *NewDC = D->getDeclContext();
4533
4534  // Only diagnose if we're shadowing an unambiguous field or variable.
4535  if (R.getResultKind() != LookupResult::Found)
4536    return;
4537
4538  NamedDecl* ShadowedDecl = R.getFoundDecl();
4539  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4540    return;
4541
4542  // Fields are not shadowed by variables in C++ static methods.
4543  if (isa<FieldDecl>(ShadowedDecl))
4544    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4545      if (MD->isStatic())
4546        return;
4547
4548  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4549    if (shadowedVar->isExternC()) {
4550      // For shadowing external vars, make sure that we point to the global
4551      // declaration, not a locally scoped extern declaration.
4552      for (VarDecl::redecl_iterator
4553             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4554           I != E; ++I)
4555        if (I->isFileVarDecl()) {
4556          ShadowedDecl = *I;
4557          break;
4558        }
4559    }
4560
4561  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4562
4563  // Only warn about certain kinds of shadowing for class members.
4564  if (NewDC && NewDC->isRecord()) {
4565    // In particular, don't warn about shadowing non-class members.
4566    if (!OldDC->isRecord())
4567      return;
4568
4569    // TODO: should we warn about static data members shadowing
4570    // static data members from base classes?
4571
4572    // TODO: don't diagnose for inaccessible shadowed members.
4573    // This is hard to do perfectly because we might friend the
4574    // shadowing context, but that's just a false negative.
4575  }
4576
4577  // Determine what kind of declaration we're shadowing.
4578  unsigned Kind;
4579  if (isa<RecordDecl>(OldDC)) {
4580    if (isa<FieldDecl>(ShadowedDecl))
4581      Kind = 3; // field
4582    else
4583      Kind = 2; // static data member
4584  } else if (OldDC->isFileContext())
4585    Kind = 1; // global
4586  else
4587    Kind = 0; // local
4588
4589  DeclarationName Name = R.getLookupName();
4590
4591  // Emit warning and note.
4592  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4593  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4594}
4595
4596/// \brief Check -Wshadow without the advantage of a previous lookup.
4597void Sema::CheckShadow(Scope *S, VarDecl *D) {
4598  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4599        DiagnosticsEngine::Ignored)
4600    return;
4601
4602  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4603                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4604  LookupName(R, S);
4605  CheckShadow(S, D, R);
4606}
4607
4608/// \brief Perform semantic checking on a newly-created variable
4609/// declaration.
4610///
4611/// This routine performs all of the type-checking required for a
4612/// variable declaration once it has been built. It is used both to
4613/// check variables after they have been parsed and their declarators
4614/// have been translated into a declaration, and to check variables
4615/// that have been instantiated from a template.
4616///
4617/// Sets NewVD->isInvalidDecl() if an error was encountered.
4618///
4619/// Returns true if the variable declaration is a redeclaration.
4620bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4621                                    LookupResult &Previous) {
4622  // If the decl is already known invalid, don't check it.
4623  if (NewVD->isInvalidDecl())
4624    return false;
4625
4626  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4627  QualType T = TInfo->getType();
4628
4629  if (T->isObjCObjectType()) {
4630    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4631      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4632    T = Context.getObjCObjectPointerType(T);
4633    NewVD->setType(T);
4634  }
4635
4636  // Emit an error if an address space was applied to decl with local storage.
4637  // This includes arrays of objects with address space qualifiers, but not
4638  // automatic variables that point to other address spaces.
4639  // ISO/IEC TR 18037 S5.1.2
4640  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4641    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4642    NewVD->setInvalidDecl();
4643    return false;
4644  }
4645
4646  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4647  // scope.
4648  if ((getLangOpts().OpenCLVersion >= 120)
4649      && NewVD->isStaticLocal()) {
4650    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4651    NewVD->setInvalidDecl();
4652    return false;
4653  }
4654
4655  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4656      && !NewVD->hasAttr<BlocksAttr>()) {
4657    if (getLangOpts().getGC() != LangOptions::NonGC)
4658      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4659    else {
4660      assert(!getLangOpts().ObjCAutoRefCount);
4661      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4662    }
4663  }
4664
4665  bool isVM = T->isVariablyModifiedType();
4666  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4667      NewVD->hasAttr<BlocksAttr>())
4668    getCurFunction()->setHasBranchProtectedScope();
4669
4670  if ((isVM && NewVD->hasLinkage()) ||
4671      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4672    bool SizeIsNegative;
4673    llvm::APSInt Oversized;
4674    TypeSourceInfo *FixedTInfo =
4675      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4676                                                    SizeIsNegative, Oversized);
4677    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4678      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4679      // FIXME: This won't give the correct result for
4680      // int a[10][n];
4681      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4682
4683      if (NewVD->isFileVarDecl())
4684        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4685        << SizeRange;
4686      else if (NewVD->getStorageClass() == SC_Static)
4687        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4688        << SizeRange;
4689      else
4690        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4691        << SizeRange;
4692      NewVD->setInvalidDecl();
4693      return false;
4694    }
4695
4696    if (FixedTInfo == 0) {
4697      if (NewVD->isFileVarDecl())
4698        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4699      else
4700        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4701      NewVD->setInvalidDecl();
4702      return false;
4703    }
4704
4705    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4706    NewVD->setType(FixedTInfo->getType());
4707    NewVD->setTypeSourceInfo(FixedTInfo);
4708  }
4709
4710  if (Previous.empty() && NewVD->isExternC()) {
4711    // Since we did not find anything by this name and we're declaring
4712    // an extern "C" variable, look for a non-visible extern "C"
4713    // declaration with the same name.
4714    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4715      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4716    if (Pos != LocallyScopedExternalDecls.end())
4717      Previous.addDecl(Pos->second);
4718  }
4719
4720  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4721    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4722      << T;
4723    NewVD->setInvalidDecl();
4724    return false;
4725  }
4726
4727  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4728    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4729    NewVD->setInvalidDecl();
4730    return false;
4731  }
4732
4733  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4734    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4735    NewVD->setInvalidDecl();
4736    return false;
4737  }
4738
4739  if (NewVD->isConstexpr() && !T->isDependentType() &&
4740      RequireLiteralType(NewVD->getLocation(), T,
4741                         diag::err_constexpr_var_non_literal)) {
4742    NewVD->setInvalidDecl();
4743    return false;
4744  }
4745
4746  if (!Previous.empty()) {
4747    MergeVarDecl(NewVD, Previous);
4748    return true;
4749  }
4750  return false;
4751}
4752
4753/// \brief Data used with FindOverriddenMethod
4754struct FindOverriddenMethodData {
4755  Sema *S;
4756  CXXMethodDecl *Method;
4757};
4758
4759/// \brief Member lookup function that determines whether a given C++
4760/// method overrides a method in a base class, to be used with
4761/// CXXRecordDecl::lookupInBases().
4762static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4763                                 CXXBasePath &Path,
4764                                 void *UserData) {
4765  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4766
4767  FindOverriddenMethodData *Data
4768    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4769
4770  DeclarationName Name = Data->Method->getDeclName();
4771
4772  // FIXME: Do we care about other names here too?
4773  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4774    // We really want to find the base class destructor here.
4775    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4776    CanQualType CT = Data->S->Context.getCanonicalType(T);
4777
4778    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4779  }
4780
4781  for (Path.Decls = BaseRecord->lookup(Name);
4782       Path.Decls.first != Path.Decls.second;
4783       ++Path.Decls.first) {
4784    NamedDecl *D = *Path.Decls.first;
4785    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4786      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4787        return true;
4788    }
4789  }
4790
4791  return false;
4792}
4793
4794namespace {
4795  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
4796}
4797/// \brief Report an error regarding overriding, along with any relevant
4798/// overriden methods.
4799///
4800/// \param DiagID the primary error to report.
4801/// \param MD the overriding method.
4802/// \param OEK which overrides to include as notes.
4803static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
4804                            OverrideErrorKind OEK = OEK_All) {
4805  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
4806  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4807                                      E = MD->end_overridden_methods();
4808       I != E; ++I) {
4809    // This check (& the OEK parameter) could be replaced by a predicate, but
4810    // without lambdas that would be overkill. This is still nicer than writing
4811    // out the diag loop 3 times.
4812    if ((OEK == OEK_All) ||
4813        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
4814        (OEK == OEK_Deleted && (*I)->isDeleted()))
4815      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
4816  }
4817}
4818
4819/// AddOverriddenMethods - See if a method overrides any in the base classes,
4820/// and if so, check that it's a valid override and remember it.
4821bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4822  // Look for virtual methods in base classes that this method might override.
4823  CXXBasePaths Paths;
4824  FindOverriddenMethodData Data;
4825  Data.Method = MD;
4826  Data.S = this;
4827  bool hasDeletedOverridenMethods = false;
4828  bool hasNonDeletedOverridenMethods = false;
4829  bool AddedAny = false;
4830  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4831    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4832         E = Paths.found_decls_end(); I != E; ++I) {
4833      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4834        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4835        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4836            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4837            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4838          hasDeletedOverridenMethods |= OldMD->isDeleted();
4839          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
4840          AddedAny = true;
4841        }
4842      }
4843    }
4844  }
4845
4846  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
4847    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
4848  }
4849  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
4850    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
4851  }
4852
4853  return AddedAny;
4854}
4855
4856namespace {
4857  // Struct for holding all of the extra arguments needed by
4858  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4859  struct ActOnFDArgs {
4860    Scope *S;
4861    Declarator &D;
4862    MultiTemplateParamsArg TemplateParamLists;
4863    bool AddToScope;
4864  };
4865}
4866
4867namespace {
4868
4869// Callback to only accept typo corrections that have a non-zero edit distance.
4870// Also only accept corrections that have the same parent decl.
4871class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4872 public:
4873  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4874                            CXXRecordDecl *Parent)
4875      : Context(Context), OriginalFD(TypoFD),
4876        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4877
4878  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4879    if (candidate.getEditDistance() == 0)
4880      return false;
4881
4882    llvm::SmallVector<unsigned, 1> MismatchedParams;
4883    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4884                                          CDeclEnd = candidate.end();
4885         CDecl != CDeclEnd; ++CDecl) {
4886      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4887
4888      if (FD && !FD->hasBody() &&
4889          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4890        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4891          CXXRecordDecl *Parent = MD->getParent();
4892          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4893            return true;
4894        } else if (!ExpectedParent) {
4895          return true;
4896        }
4897      }
4898    }
4899
4900    return false;
4901  }
4902
4903 private:
4904  ASTContext &Context;
4905  FunctionDecl *OriginalFD;
4906  CXXRecordDecl *ExpectedParent;
4907};
4908
4909}
4910
4911/// \brief Generate diagnostics for an invalid function redeclaration.
4912///
4913/// This routine handles generating the diagnostic messages for an invalid
4914/// function redeclaration, including finding possible similar declarations
4915/// or performing typo correction if there are no previous declarations with
4916/// the same name.
4917///
4918/// Returns a NamedDecl iff typo correction was performed and substituting in
4919/// the new declaration name does not cause new errors.
4920static NamedDecl* DiagnoseInvalidRedeclaration(
4921    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4922    ActOnFDArgs &ExtraArgs) {
4923  NamedDecl *Result = NULL;
4924  DeclarationName Name = NewFD->getDeclName();
4925  DeclContext *NewDC = NewFD->getDeclContext();
4926  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4927                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4928  llvm::SmallVector<unsigned, 1> MismatchedParams;
4929  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4930  TypoCorrection Correction;
4931  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4932                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4933  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4934                                  : diag::err_member_def_does_not_match;
4935
4936  NewFD->setInvalidDecl();
4937  SemaRef.LookupQualifiedName(Prev, NewDC);
4938  assert(!Prev.isAmbiguous() &&
4939         "Cannot have an ambiguity in previous-declaration lookup");
4940  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4941  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4942                                      MD ? MD->getParent() : 0);
4943  if (!Prev.empty()) {
4944    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4945         Func != FuncEnd; ++Func) {
4946      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4947      if (FD &&
4948          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4949        // Add 1 to the index so that 0 can mean the mismatch didn't
4950        // involve a parameter
4951        unsigned ParamNum =
4952            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4953        NearMatches.push_back(std::make_pair(FD, ParamNum));
4954      }
4955    }
4956  // If the qualified name lookup yielded nothing, try typo correction
4957  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4958                                         Prev.getLookupKind(), 0, 0,
4959                                         Validator, NewDC))) {
4960    // Trap errors.
4961    Sema::SFINAETrap Trap(SemaRef);
4962
4963    // Set up everything for the call to ActOnFunctionDeclarator
4964    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4965                              ExtraArgs.D.getIdentifierLoc());
4966    Previous.clear();
4967    Previous.setLookupName(Correction.getCorrection());
4968    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4969                                    CDeclEnd = Correction.end();
4970         CDecl != CDeclEnd; ++CDecl) {
4971      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4972      if (FD && !FD->hasBody() &&
4973          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4974        Previous.addDecl(FD);
4975      }
4976    }
4977    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4978    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4979    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4980    // eliminate the need for the parameter pack ExtraArgs.
4981    Result = SemaRef.ActOnFunctionDeclarator(
4982        ExtraArgs.S, ExtraArgs.D,
4983        Correction.getCorrectionDecl()->getDeclContext(),
4984        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4985        ExtraArgs.AddToScope);
4986    if (Trap.hasErrorOccurred()) {
4987      // Pretend the typo correction never occurred
4988      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4989                                ExtraArgs.D.getIdentifierLoc());
4990      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4991      Previous.clear();
4992      Previous.setLookupName(Name);
4993      Result = NULL;
4994    } else {
4995      for (LookupResult::iterator Func = Previous.begin(),
4996                               FuncEnd = Previous.end();
4997           Func != FuncEnd; ++Func) {
4998        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4999          NearMatches.push_back(std::make_pair(FD, 0));
5000      }
5001    }
5002    if (NearMatches.empty()) {
5003      // Ignore the correction if it didn't yield any close FunctionDecl matches
5004      Correction = TypoCorrection();
5005    } else {
5006      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5007                             : diag::err_member_def_does_not_match_suggest;
5008    }
5009  }
5010
5011  if (Correction) {
5012    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5013    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5014    // turn causes the correction to fully qualify the name. If we fix
5015    // CorrectTypo to minimally qualify then this change should be good.
5016    SourceRange FixItLoc(NewFD->getLocation());
5017    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5018    if (Correction.getCorrectionSpecifier() && SS.isValid())
5019      FixItLoc.setBegin(SS.getBeginLoc());
5020    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5021        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5022        << FixItHint::CreateReplacement(
5023            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5024  } else {
5025    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5026        << Name << NewDC << NewFD->getLocation();
5027  }
5028
5029  bool NewFDisConst = false;
5030  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5031    NewFDisConst = NewMD->isConst();
5032
5033  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
5034       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5035       NearMatch != NearMatchEnd; ++NearMatch) {
5036    FunctionDecl *FD = NearMatch->first;
5037    bool FDisConst = false;
5038    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5039      FDisConst = MD->isConst();
5040
5041    if (unsigned Idx = NearMatch->second) {
5042      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5043      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5044      if (Loc.isInvalid()) Loc = FD->getLocation();
5045      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5046          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5047    } else if (Correction) {
5048      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5049          << Correction.getQuoted(SemaRef.getLangOpts());
5050    } else if (FDisConst != NewFDisConst) {
5051      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5052          << NewFDisConst << FD->getSourceRange().getEnd();
5053    } else
5054      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5055  }
5056  return Result;
5057}
5058
5059static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5060                                                          Declarator &D) {
5061  switch (D.getDeclSpec().getStorageClassSpec()) {
5062  default: llvm_unreachable("Unknown storage class!");
5063  case DeclSpec::SCS_auto:
5064  case DeclSpec::SCS_register:
5065  case DeclSpec::SCS_mutable:
5066    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5067                 diag::err_typecheck_sclass_func);
5068    D.setInvalidType();
5069    break;
5070  case DeclSpec::SCS_unspecified: break;
5071  case DeclSpec::SCS_extern: return SC_Extern;
5072  case DeclSpec::SCS_static: {
5073    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5074      // C99 6.7.1p5:
5075      //   The declaration of an identifier for a function that has
5076      //   block scope shall have no explicit storage-class specifier
5077      //   other than extern
5078      // See also (C++ [dcl.stc]p4).
5079      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5080                   diag::err_static_block_func);
5081      break;
5082    } else
5083      return SC_Static;
5084  }
5085  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5086  }
5087
5088  // No explicit storage class has already been returned
5089  return SC_None;
5090}
5091
5092static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5093                                           DeclContext *DC, QualType &R,
5094                                           TypeSourceInfo *TInfo,
5095                                           FunctionDecl::StorageClass SC,
5096                                           bool &IsVirtualOkay) {
5097  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5098  DeclarationName Name = NameInfo.getName();
5099
5100  FunctionDecl *NewFD = 0;
5101  bool isInline = D.getDeclSpec().isInlineSpecified();
5102  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5103  FunctionDecl::StorageClass SCAsWritten
5104    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5105
5106  if (!SemaRef.getLangOpts().CPlusPlus) {
5107    // Determine whether the function was written with a
5108    // prototype. This true when:
5109    //   - there is a prototype in the declarator, or
5110    //   - the type R of the function is some kind of typedef or other reference
5111    //     to a type name (which eventually refers to a function type).
5112    bool HasPrototype =
5113      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5114      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5115
5116    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5117                                 D.getLocStart(), NameInfo, R,
5118                                 TInfo, SC, SCAsWritten, isInline,
5119                                 HasPrototype);
5120    if (D.isInvalidType())
5121      NewFD->setInvalidDecl();
5122
5123    // Set the lexical context.
5124    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5125
5126    return NewFD;
5127  }
5128
5129  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5130  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5131
5132  // Check that the return type is not an abstract class type.
5133  // For record types, this is done by the AbstractClassUsageDiagnoser once
5134  // the class has been completely parsed.
5135  if (!DC->isRecord() &&
5136      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5137                                     R->getAs<FunctionType>()->getResultType(),
5138                                     diag::err_abstract_type_in_decl,
5139                                     SemaRef.AbstractReturnType))
5140    D.setInvalidType();
5141
5142  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5143    // This is a C++ constructor declaration.
5144    assert(DC->isRecord() &&
5145           "Constructors can only be declared in a member context");
5146
5147    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5148    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5149                                      D.getLocStart(), NameInfo,
5150                                      R, TInfo, isExplicit, isInline,
5151                                      /*isImplicitlyDeclared=*/false,
5152                                      isConstexpr);
5153
5154  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5155    // This is a C++ destructor declaration.
5156    if (DC->isRecord()) {
5157      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5158      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5159      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5160                                        SemaRef.Context, Record,
5161                                        D.getLocStart(),
5162                                        NameInfo, R, TInfo, isInline,
5163                                        /*isImplicitlyDeclared=*/false);
5164
5165      // If the class is complete, then we now create the implicit exception
5166      // specification. If the class is incomplete or dependent, we can't do
5167      // it yet.
5168      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5169          Record->getDefinition() && !Record->isBeingDefined() &&
5170          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5171        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5172      }
5173
5174      IsVirtualOkay = true;
5175      return NewDD;
5176
5177    } else {
5178      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5179      D.setInvalidType();
5180
5181      // Create a FunctionDecl to satisfy the function definition parsing
5182      // code path.
5183      return FunctionDecl::Create(SemaRef.Context, DC,
5184                                  D.getLocStart(),
5185                                  D.getIdentifierLoc(), Name, R, TInfo,
5186                                  SC, SCAsWritten, isInline,
5187                                  /*hasPrototype=*/true, isConstexpr);
5188    }
5189
5190  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5191    if (!DC->isRecord()) {
5192      SemaRef.Diag(D.getIdentifierLoc(),
5193           diag::err_conv_function_not_member);
5194      return 0;
5195    }
5196
5197    SemaRef.CheckConversionDeclarator(D, R, SC);
5198    IsVirtualOkay = true;
5199    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5200                                     D.getLocStart(), NameInfo,
5201                                     R, TInfo, isInline, isExplicit,
5202                                     isConstexpr, SourceLocation());
5203
5204  } else if (DC->isRecord()) {
5205    // If the name of the function is the same as the name of the record,
5206    // then this must be an invalid constructor that has a return type.
5207    // (The parser checks for a return type and makes the declarator a
5208    // constructor if it has no return type).
5209    if (Name.getAsIdentifierInfo() &&
5210        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5211      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5212        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5213        << SourceRange(D.getIdentifierLoc());
5214      return 0;
5215    }
5216
5217    bool isStatic = SC == SC_Static;
5218
5219    // [class.free]p1:
5220    // Any allocation function for a class T is a static member
5221    // (even if not explicitly declared static).
5222    if (Name.getCXXOverloadedOperator() == OO_New ||
5223        Name.getCXXOverloadedOperator() == OO_Array_New)
5224      isStatic = true;
5225
5226    // [class.free]p6 Any deallocation function for a class X is a static member
5227    // (even if not explicitly declared static).
5228    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5229        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5230      isStatic = true;
5231
5232    IsVirtualOkay = !isStatic;
5233
5234    // This is a C++ method declaration.
5235    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5236                                 D.getLocStart(), NameInfo, R,
5237                                 TInfo, isStatic, SCAsWritten, isInline,
5238                                 isConstexpr, SourceLocation());
5239
5240  } else {
5241    // Determine whether the function was written with a
5242    // prototype. This true when:
5243    //   - we're in C++ (where every function has a prototype),
5244    return FunctionDecl::Create(SemaRef.Context, DC,
5245                                D.getLocStart(),
5246                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5247                                true/*HasPrototype*/, isConstexpr);
5248  }
5249}
5250
5251void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5252  // In C++, the empty parameter-type-list must be spelled "void"; a
5253  // typedef of void is not permitted.
5254  if (getLangOpts().CPlusPlus &&
5255      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5256    bool IsTypeAlias = false;
5257    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5258      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5259    else if (const TemplateSpecializationType *TST =
5260               Param->getType()->getAs<TemplateSpecializationType>())
5261      IsTypeAlias = TST->isTypeAlias();
5262    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5263      << IsTypeAlias;
5264  }
5265}
5266
5267NamedDecl*
5268Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5269                              TypeSourceInfo *TInfo, LookupResult &Previous,
5270                              MultiTemplateParamsArg TemplateParamLists,
5271                              bool &AddToScope) {
5272  QualType R = TInfo->getType();
5273
5274  assert(R.getTypePtr()->isFunctionType());
5275
5276  // TODO: consider using NameInfo for diagnostic.
5277  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5278  DeclarationName Name = NameInfo.getName();
5279  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5280
5281  if (D.getDeclSpec().isThreadSpecified())
5282    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5283
5284  // Do not allow returning a objc interface by-value.
5285  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5286    Diag(D.getIdentifierLoc(),
5287         diag::err_object_cannot_be_passed_returned_by_value) << 0
5288    << R->getAs<FunctionType>()->getResultType()
5289    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5290
5291    QualType T = R->getAs<FunctionType>()->getResultType();
5292    T = Context.getObjCObjectPointerType(T);
5293    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5294      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5295      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5296                                  FPT->getNumArgs(), EPI);
5297    }
5298    else if (isa<FunctionNoProtoType>(R))
5299      R = Context.getFunctionNoProtoType(T);
5300  }
5301
5302  bool isFriend = false;
5303  FunctionTemplateDecl *FunctionTemplate = 0;
5304  bool isExplicitSpecialization = false;
5305  bool isFunctionTemplateSpecialization = false;
5306
5307  bool isDependentClassScopeExplicitSpecialization = false;
5308  bool HasExplicitTemplateArgs = false;
5309  TemplateArgumentListInfo TemplateArgs;
5310
5311  bool isVirtualOkay = false;
5312
5313  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5314                                              isVirtualOkay);
5315  if (!NewFD) return 0;
5316
5317  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5318    NewFD->setTopLevelDeclInObjCContainer();
5319
5320  if (getLangOpts().CPlusPlus) {
5321    bool isInline = D.getDeclSpec().isInlineSpecified();
5322    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5323    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5324    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5325    isFriend = D.getDeclSpec().isFriendSpecified();
5326    if (isFriend && !isInline && D.isFunctionDefinition()) {
5327      // C++ [class.friend]p5
5328      //   A function can be defined in a friend declaration of a
5329      //   class . . . . Such a function is implicitly inline.
5330      NewFD->setImplicitlyInline();
5331    }
5332
5333    // If this is a method defined in an __interface, and is not a constructor
5334    // or an overloaded operator, then set the pure flag (isVirtual will already
5335    // return true).
5336    if (const CXXRecordDecl *Parent =
5337          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5338      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5339        NewFD->setPure(true);
5340    }
5341
5342    SetNestedNameSpecifier(NewFD, D);
5343    isExplicitSpecialization = false;
5344    isFunctionTemplateSpecialization = false;
5345    if (D.isInvalidType())
5346      NewFD->setInvalidDecl();
5347
5348    // Set the lexical context. If the declarator has a C++
5349    // scope specifier, or is the object of a friend declaration, the
5350    // lexical context will be different from the semantic context.
5351    NewFD->setLexicalDeclContext(CurContext);
5352
5353    // Match up the template parameter lists with the scope specifier, then
5354    // determine whether we have a template or a template specialization.
5355    bool Invalid = false;
5356    if (TemplateParameterList *TemplateParams
5357          = MatchTemplateParametersToScopeSpecifier(
5358                                  D.getDeclSpec().getLocStart(),
5359                                  D.getIdentifierLoc(),
5360                                  D.getCXXScopeSpec(),
5361                                  TemplateParamLists.data(),
5362                                  TemplateParamLists.size(),
5363                                  isFriend,
5364                                  isExplicitSpecialization,
5365                                  Invalid)) {
5366      if (TemplateParams->size() > 0) {
5367        // This is a function template
5368
5369        // Check that we can declare a template here.
5370        if (CheckTemplateDeclScope(S, TemplateParams))
5371          return 0;
5372
5373        // A destructor cannot be a template.
5374        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5375          Diag(NewFD->getLocation(), diag::err_destructor_template);
5376          return 0;
5377        }
5378
5379        // If we're adding a template to a dependent context, we may need to
5380        // rebuilding some of the types used within the template parameter list,
5381        // now that we know what the current instantiation is.
5382        if (DC->isDependentContext()) {
5383          ContextRAII SavedContext(*this, DC);
5384          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5385            Invalid = true;
5386        }
5387
5388
5389        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5390                                                        NewFD->getLocation(),
5391                                                        Name, TemplateParams,
5392                                                        NewFD);
5393        FunctionTemplate->setLexicalDeclContext(CurContext);
5394        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5395
5396        // For source fidelity, store the other template param lists.
5397        if (TemplateParamLists.size() > 1) {
5398          NewFD->setTemplateParameterListsInfo(Context,
5399                                               TemplateParamLists.size() - 1,
5400                                               TemplateParamLists.data());
5401        }
5402      } else {
5403        // This is a function template specialization.
5404        isFunctionTemplateSpecialization = true;
5405        // For source fidelity, store all the template param lists.
5406        NewFD->setTemplateParameterListsInfo(Context,
5407                                             TemplateParamLists.size(),
5408                                             TemplateParamLists.data());
5409
5410        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5411        if (isFriend) {
5412          // We want to remove the "template<>", found here.
5413          SourceRange RemoveRange = TemplateParams->getSourceRange();
5414
5415          // If we remove the template<> and the name is not a
5416          // template-id, we're actually silently creating a problem:
5417          // the friend declaration will refer to an untemplated decl,
5418          // and clearly the user wants a template specialization.  So
5419          // we need to insert '<>' after the name.
5420          SourceLocation InsertLoc;
5421          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5422            InsertLoc = D.getName().getSourceRange().getEnd();
5423            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5424          }
5425
5426          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5427            << Name << RemoveRange
5428            << FixItHint::CreateRemoval(RemoveRange)
5429            << FixItHint::CreateInsertion(InsertLoc, "<>");
5430        }
5431      }
5432    }
5433    else {
5434      // All template param lists were matched against the scope specifier:
5435      // this is NOT (an explicit specialization of) a template.
5436      if (TemplateParamLists.size() > 0)
5437        // For source fidelity, store all the template param lists.
5438        NewFD->setTemplateParameterListsInfo(Context,
5439                                             TemplateParamLists.size(),
5440                                             TemplateParamLists.data());
5441    }
5442
5443    if (Invalid) {
5444      NewFD->setInvalidDecl();
5445      if (FunctionTemplate)
5446        FunctionTemplate->setInvalidDecl();
5447    }
5448
5449    // C++ [dcl.fct.spec]p5:
5450    //   The virtual specifier shall only be used in declarations of
5451    //   nonstatic class member functions that appear within a
5452    //   member-specification of a class declaration; see 10.3.
5453    //
5454    if (isVirtual && !NewFD->isInvalidDecl()) {
5455      if (!isVirtualOkay) {
5456        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5457             diag::err_virtual_non_function);
5458      } else if (!CurContext->isRecord()) {
5459        // 'virtual' was specified outside of the class.
5460        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5461             diag::err_virtual_out_of_class)
5462          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5463      } else if (NewFD->getDescribedFunctionTemplate()) {
5464        // C++ [temp.mem]p3:
5465        //  A member function template shall not be virtual.
5466        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5467             diag::err_virtual_member_function_template)
5468          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5469      } else {
5470        // Okay: Add virtual to the method.
5471        NewFD->setVirtualAsWritten(true);
5472      }
5473    }
5474
5475    // C++ [dcl.fct.spec]p3:
5476    //  The inline specifier shall not appear on a block scope function
5477    //  declaration.
5478    if (isInline && !NewFD->isInvalidDecl()) {
5479      if (CurContext->isFunctionOrMethod()) {
5480        // 'inline' is not allowed on block scope function declaration.
5481        Diag(D.getDeclSpec().getInlineSpecLoc(),
5482             diag::err_inline_declaration_block_scope) << Name
5483          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5484      }
5485    }
5486
5487    // C++ [dcl.fct.spec]p6:
5488    //  The explicit specifier shall be used only in the declaration of a
5489    //  constructor or conversion function within its class definition;
5490    //  see 12.3.1 and 12.3.2.
5491    if (isExplicit && !NewFD->isInvalidDecl()) {
5492      if (!CurContext->isRecord()) {
5493        // 'explicit' was specified outside of the class.
5494        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5495             diag::err_explicit_out_of_class)
5496          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5497      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5498                 !isa<CXXConversionDecl>(NewFD)) {
5499        // 'explicit' was specified on a function that wasn't a constructor
5500        // or conversion function.
5501        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5502             diag::err_explicit_non_ctor_or_conv_function)
5503          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5504      }
5505    }
5506
5507    if (isConstexpr) {
5508      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5509      // are implicitly inline.
5510      NewFD->setImplicitlyInline();
5511
5512      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5513      // be either constructors or to return a literal type. Therefore,
5514      // destructors cannot be declared constexpr.
5515      if (isa<CXXDestructorDecl>(NewFD))
5516        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5517    }
5518
5519    // If __module_private__ was specified, mark the function accordingly.
5520    if (D.getDeclSpec().isModulePrivateSpecified()) {
5521      if (isFunctionTemplateSpecialization) {
5522        SourceLocation ModulePrivateLoc
5523          = D.getDeclSpec().getModulePrivateSpecLoc();
5524        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5525          << 0
5526          << FixItHint::CreateRemoval(ModulePrivateLoc);
5527      } else {
5528        NewFD->setModulePrivate();
5529        if (FunctionTemplate)
5530          FunctionTemplate->setModulePrivate();
5531      }
5532    }
5533
5534    if (isFriend) {
5535      // For now, claim that the objects have no previous declaration.
5536      if (FunctionTemplate) {
5537        FunctionTemplate->setObjectOfFriendDecl(false);
5538        FunctionTemplate->setAccess(AS_public);
5539      }
5540      NewFD->setObjectOfFriendDecl(false);
5541      NewFD->setAccess(AS_public);
5542    }
5543
5544    // If a function is defined as defaulted or deleted, mark it as such now.
5545    switch (D.getFunctionDefinitionKind()) {
5546      case FDK_Declaration:
5547      case FDK_Definition:
5548        break;
5549
5550      case FDK_Defaulted:
5551        NewFD->setDefaulted();
5552        break;
5553
5554      case FDK_Deleted:
5555        NewFD->setDeletedAsWritten();
5556        break;
5557    }
5558
5559    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5560        D.isFunctionDefinition()) {
5561      // C++ [class.mfct]p2:
5562      //   A member function may be defined (8.4) in its class definition, in
5563      //   which case it is an inline member function (7.1.2)
5564      NewFD->setImplicitlyInline();
5565    }
5566
5567    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5568        !CurContext->isRecord()) {
5569      // C++ [class.static]p1:
5570      //   A data or function member of a class may be declared static
5571      //   in a class definition, in which case it is a static member of
5572      //   the class.
5573
5574      // Complain about the 'static' specifier if it's on an out-of-line
5575      // member function definition.
5576      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5577           diag::err_static_out_of_line)
5578        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5579    }
5580
5581    // C++11 [except.spec]p15:
5582    //   A deallocation function with no exception-specification is treated
5583    //   as if it were specified with noexcept(true).
5584    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5585    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5586         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5587        getLangOpts().CPlusPlus0x && FPT && !FPT->hasExceptionSpec()) {
5588      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5589      EPI.ExceptionSpecType = EST_BasicNoexcept;
5590      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5591                                             FPT->arg_type_begin(),
5592                                             FPT->getNumArgs(), EPI));
5593    }
5594  }
5595
5596  // Filter out previous declarations that don't match the scope.
5597  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5598                       isExplicitSpecialization ||
5599                       isFunctionTemplateSpecialization);
5600
5601  // Handle GNU asm-label extension (encoded as an attribute).
5602  if (Expr *E = (Expr*) D.getAsmLabel()) {
5603    // The parser guarantees this is a string.
5604    StringLiteral *SE = cast<StringLiteral>(E);
5605    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5606                                                SE->getString()));
5607  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5608    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5609      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5610    if (I != ExtnameUndeclaredIdentifiers.end()) {
5611      NewFD->addAttr(I->second);
5612      ExtnameUndeclaredIdentifiers.erase(I);
5613    }
5614  }
5615
5616  // Copy the parameter declarations from the declarator D to the function
5617  // declaration NewFD, if they are available.  First scavenge them into Params.
5618  SmallVector<ParmVarDecl*, 16> Params;
5619  if (D.isFunctionDeclarator()) {
5620    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5621
5622    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5623    // function that takes no arguments, not a function that takes a
5624    // single void argument.
5625    // We let through "const void" here because Sema::GetTypeForDeclarator
5626    // already checks for that case.
5627    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5628        FTI.ArgInfo[0].Param &&
5629        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5630      // Empty arg list, don't push any params.
5631      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5632    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5633      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5634        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5635        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5636        Param->setDeclContext(NewFD);
5637        Params.push_back(Param);
5638
5639        if (Param->isInvalidDecl())
5640          NewFD->setInvalidDecl();
5641      }
5642    }
5643
5644  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5645    // When we're declaring a function with a typedef, typeof, etc as in the
5646    // following example, we'll need to synthesize (unnamed)
5647    // parameters for use in the declaration.
5648    //
5649    // @code
5650    // typedef void fn(int);
5651    // fn f;
5652    // @endcode
5653
5654    // Synthesize a parameter for each argument type.
5655    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5656         AE = FT->arg_type_end(); AI != AE; ++AI) {
5657      ParmVarDecl *Param =
5658        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5659      Param->setScopeInfo(0, Params.size());
5660      Params.push_back(Param);
5661    }
5662  } else {
5663    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5664           "Should not need args for typedef of non-prototype fn");
5665  }
5666
5667  // Finally, we know we have the right number of parameters, install them.
5668  NewFD->setParams(Params);
5669
5670  // Find all anonymous symbols defined during the declaration of this function
5671  // and add to NewFD. This lets us track decls such 'enum Y' in:
5672  //
5673  //   void f(enum Y {AA} x) {}
5674  //
5675  // which would otherwise incorrectly end up in the translation unit scope.
5676  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5677  DeclsInPrototypeScope.clear();
5678
5679  // Process the non-inheritable attributes on this declaration.
5680  ProcessDeclAttributes(S, NewFD, D,
5681                        /*NonInheritable=*/true, /*Inheritable=*/false);
5682
5683  // Functions returning a variably modified type violate C99 6.7.5.2p2
5684  // because all functions have linkage.
5685  if (!NewFD->isInvalidDecl() &&
5686      NewFD->getResultType()->isVariablyModifiedType()) {
5687    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5688    NewFD->setInvalidDecl();
5689  }
5690
5691  // Handle attributes.
5692  ProcessDeclAttributes(S, NewFD, D,
5693                        /*NonInheritable=*/false, /*Inheritable=*/true);
5694
5695  QualType RetType = NewFD->getResultType();
5696  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5697      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5698  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5699      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5700    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5701    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5702      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5703                                                        Context));
5704    }
5705  }
5706
5707  if (!getLangOpts().CPlusPlus) {
5708    // Perform semantic checking on the function declaration.
5709    bool isExplicitSpecialization=false;
5710    if (!NewFD->isInvalidDecl()) {
5711      if (NewFD->isMain())
5712        CheckMain(NewFD, D.getDeclSpec());
5713      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5714                                                  isExplicitSpecialization));
5715    }
5716    // Make graceful recovery from an invalid redeclaration.
5717    else if (!Previous.empty())
5718           D.setRedeclaration(true);
5719    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5720            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5721           "previous declaration set still overloaded");
5722  } else {
5723    // If the declarator is a template-id, translate the parser's template
5724    // argument list into our AST format.
5725    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5726      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5727      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5728      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5729      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5730                                         TemplateId->NumArgs);
5731      translateTemplateArguments(TemplateArgsPtr,
5732                                 TemplateArgs);
5733
5734      HasExplicitTemplateArgs = true;
5735
5736      if (NewFD->isInvalidDecl()) {
5737        HasExplicitTemplateArgs = false;
5738      } else if (FunctionTemplate) {
5739        // Function template with explicit template arguments.
5740        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5741          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5742
5743        HasExplicitTemplateArgs = false;
5744      } else if (!isFunctionTemplateSpecialization &&
5745                 !D.getDeclSpec().isFriendSpecified()) {
5746        // We have encountered something that the user meant to be a
5747        // specialization (because it has explicitly-specified template
5748        // arguments) but that was not introduced with a "template<>" (or had
5749        // too few of them).
5750        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5751          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5752          << FixItHint::CreateInsertion(
5753                                    D.getDeclSpec().getLocStart(),
5754                                        "template<> ");
5755        isFunctionTemplateSpecialization = true;
5756      } else {
5757        // "friend void foo<>(int);" is an implicit specialization decl.
5758        isFunctionTemplateSpecialization = true;
5759      }
5760    } else if (isFriend && isFunctionTemplateSpecialization) {
5761      // This combination is only possible in a recovery case;  the user
5762      // wrote something like:
5763      //   template <> friend void foo(int);
5764      // which we're recovering from as if the user had written:
5765      //   friend void foo<>(int);
5766      // Go ahead and fake up a template id.
5767      HasExplicitTemplateArgs = true;
5768        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5769      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5770    }
5771
5772    // If it's a friend (and only if it's a friend), it's possible
5773    // that either the specialized function type or the specialized
5774    // template is dependent, and therefore matching will fail.  In
5775    // this case, don't check the specialization yet.
5776    bool InstantiationDependent = false;
5777    if (isFunctionTemplateSpecialization && isFriend &&
5778        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5779         TemplateSpecializationType::anyDependentTemplateArguments(
5780            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5781            InstantiationDependent))) {
5782      assert(HasExplicitTemplateArgs &&
5783             "friend function specialization without template args");
5784      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5785                                                       Previous))
5786        NewFD->setInvalidDecl();
5787    } else if (isFunctionTemplateSpecialization) {
5788      if (CurContext->isDependentContext() && CurContext->isRecord()
5789          && !isFriend) {
5790        isDependentClassScopeExplicitSpecialization = true;
5791        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5792          diag::ext_function_specialization_in_class :
5793          diag::err_function_specialization_in_class)
5794          << NewFD->getDeclName();
5795      } else if (CheckFunctionTemplateSpecialization(NewFD,
5796                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5797                                                     Previous))
5798        NewFD->setInvalidDecl();
5799
5800      // C++ [dcl.stc]p1:
5801      //   A storage-class-specifier shall not be specified in an explicit
5802      //   specialization (14.7.3)
5803      if (SC != SC_None) {
5804        if (SC != NewFD->getStorageClass())
5805          Diag(NewFD->getLocation(),
5806               diag::err_explicit_specialization_inconsistent_storage_class)
5807            << SC
5808            << FixItHint::CreateRemoval(
5809                                      D.getDeclSpec().getStorageClassSpecLoc());
5810
5811        else
5812          Diag(NewFD->getLocation(),
5813               diag::ext_explicit_specialization_storage_class)
5814            << FixItHint::CreateRemoval(
5815                                      D.getDeclSpec().getStorageClassSpecLoc());
5816      }
5817
5818    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5819      if (CheckMemberSpecialization(NewFD, Previous))
5820          NewFD->setInvalidDecl();
5821    }
5822
5823    // Perform semantic checking on the function declaration.
5824    if (!isDependentClassScopeExplicitSpecialization) {
5825      if (NewFD->isInvalidDecl()) {
5826        // If this is a class member, mark the class invalid immediately.
5827        // This avoids some consistency errors later.
5828        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5829          methodDecl->getParent()->setInvalidDecl();
5830      } else {
5831        if (NewFD->isMain())
5832          CheckMain(NewFD, D.getDeclSpec());
5833        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5834                                                    isExplicitSpecialization));
5835      }
5836    }
5837
5838    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5839            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5840           "previous declaration set still overloaded");
5841
5842    NamedDecl *PrincipalDecl = (FunctionTemplate
5843                                ? cast<NamedDecl>(FunctionTemplate)
5844                                : NewFD);
5845
5846    if (isFriend && D.isRedeclaration()) {
5847      AccessSpecifier Access = AS_public;
5848      if (!NewFD->isInvalidDecl())
5849        Access = NewFD->getPreviousDecl()->getAccess();
5850
5851      NewFD->setAccess(Access);
5852      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5853
5854      PrincipalDecl->setObjectOfFriendDecl(true);
5855    }
5856
5857    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5858        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5859      PrincipalDecl->setNonMemberOperator();
5860
5861    // If we have a function template, check the template parameter
5862    // list. This will check and merge default template arguments.
5863    if (FunctionTemplate) {
5864      FunctionTemplateDecl *PrevTemplate =
5865                                     FunctionTemplate->getPreviousDecl();
5866      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5867                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5868                            D.getDeclSpec().isFriendSpecified()
5869                              ? (D.isFunctionDefinition()
5870                                   ? TPC_FriendFunctionTemplateDefinition
5871                                   : TPC_FriendFunctionTemplate)
5872                              : (D.getCXXScopeSpec().isSet() &&
5873                                 DC && DC->isRecord() &&
5874                                 DC->isDependentContext())
5875                                  ? TPC_ClassTemplateMember
5876                                  : TPC_FunctionTemplate);
5877    }
5878
5879    if (NewFD->isInvalidDecl()) {
5880      // Ignore all the rest of this.
5881    } else if (!D.isRedeclaration()) {
5882      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5883                                       AddToScope };
5884      // Fake up an access specifier if it's supposed to be a class member.
5885      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5886        NewFD->setAccess(AS_public);
5887
5888      // Qualified decls generally require a previous declaration.
5889      if (D.getCXXScopeSpec().isSet()) {
5890        // ...with the major exception of templated-scope or
5891        // dependent-scope friend declarations.
5892
5893        // TODO: we currently also suppress this check in dependent
5894        // contexts because (1) the parameter depth will be off when
5895        // matching friend templates and (2) we might actually be
5896        // selecting a friend based on a dependent factor.  But there
5897        // are situations where these conditions don't apply and we
5898        // can actually do this check immediately.
5899        if (isFriend &&
5900            (TemplateParamLists.size() ||
5901             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5902             CurContext->isDependentContext())) {
5903          // ignore these
5904        } else {
5905          // The user tried to provide an out-of-line definition for a
5906          // function that is a member of a class or namespace, but there
5907          // was no such member function declared (C++ [class.mfct]p2,
5908          // C++ [namespace.memdef]p2). For example:
5909          //
5910          // class X {
5911          //   void f() const;
5912          // };
5913          //
5914          // void X::f() { } // ill-formed
5915          //
5916          // Complain about this problem, and attempt to suggest close
5917          // matches (e.g., those that differ only in cv-qualifiers and
5918          // whether the parameter types are references).
5919
5920          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5921                                                               NewFD,
5922                                                               ExtraArgs)) {
5923            AddToScope = ExtraArgs.AddToScope;
5924            return Result;
5925          }
5926        }
5927
5928        // Unqualified local friend declarations are required to resolve
5929        // to something.
5930      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5931        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5932                                                             NewFD,
5933                                                             ExtraArgs)) {
5934          AddToScope = ExtraArgs.AddToScope;
5935          return Result;
5936        }
5937      }
5938
5939    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5940               !isFriend && !isFunctionTemplateSpecialization &&
5941               !isExplicitSpecialization) {
5942      // An out-of-line member function declaration must also be a
5943      // definition (C++ [dcl.meaning]p1).
5944      // Note that this is not the case for explicit specializations of
5945      // function templates or member functions of class templates, per
5946      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5947      // extension for compatibility with old SWIG code which likes to
5948      // generate them.
5949      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5950        << D.getCXXScopeSpec().getRange();
5951    }
5952  }
5953
5954  AddKnownFunctionAttributes(NewFD);
5955
5956  if (NewFD->hasAttr<OverloadableAttr>() &&
5957      !NewFD->getType()->getAs<FunctionProtoType>()) {
5958    Diag(NewFD->getLocation(),
5959         diag::err_attribute_overloadable_no_prototype)
5960      << NewFD;
5961
5962    // Turn this into a variadic function with no parameters.
5963    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5964    FunctionProtoType::ExtProtoInfo EPI;
5965    EPI.Variadic = true;
5966    EPI.ExtInfo = FT->getExtInfo();
5967
5968    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5969    NewFD->setType(R);
5970  }
5971
5972  // If there's a #pragma GCC visibility in scope, and this isn't a class
5973  // member, set the visibility of this function.
5974  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5975    AddPushedVisibilityAttribute(NewFD);
5976
5977  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5978  // marking the function.
5979  AddCFAuditedAttribute(NewFD);
5980
5981  // If this is a locally-scoped extern C function, update the
5982  // map of such names.
5983  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5984      && !NewFD->isInvalidDecl())
5985    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5986
5987  // Set this FunctionDecl's range up to the right paren.
5988  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5989
5990  if (getLangOpts().CPlusPlus) {
5991    if (FunctionTemplate) {
5992      if (NewFD->isInvalidDecl())
5993        FunctionTemplate->setInvalidDecl();
5994      return FunctionTemplate;
5995    }
5996  }
5997
5998  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5999  if ((getLangOpts().OpenCLVersion >= 120)
6000      && NewFD->hasAttr<OpenCLKernelAttr>()
6001      && (SC == SC_Static)) {
6002    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6003    D.setInvalidType();
6004  }
6005
6006  MarkUnusedFileScopedDecl(NewFD);
6007
6008  if (getLangOpts().CUDA)
6009    if (IdentifierInfo *II = NewFD->getIdentifier())
6010      if (!NewFD->isInvalidDecl() &&
6011          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6012        if (II->isStr("cudaConfigureCall")) {
6013          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6014            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6015
6016          Context.setcudaConfigureCallDecl(NewFD);
6017        }
6018      }
6019
6020  // Here we have an function template explicit specialization at class scope.
6021  // The actually specialization will be postponed to template instatiation
6022  // time via the ClassScopeFunctionSpecializationDecl node.
6023  if (isDependentClassScopeExplicitSpecialization) {
6024    ClassScopeFunctionSpecializationDecl *NewSpec =
6025                         ClassScopeFunctionSpecializationDecl::Create(
6026                                Context, CurContext, SourceLocation(),
6027                                cast<CXXMethodDecl>(NewFD),
6028                                HasExplicitTemplateArgs, TemplateArgs);
6029    CurContext->addDecl(NewSpec);
6030    AddToScope = false;
6031  }
6032
6033  return NewFD;
6034}
6035
6036/// \brief Perform semantic checking of a new function declaration.
6037///
6038/// Performs semantic analysis of the new function declaration
6039/// NewFD. This routine performs all semantic checking that does not
6040/// require the actual declarator involved in the declaration, and is
6041/// used both for the declaration of functions as they are parsed
6042/// (called via ActOnDeclarator) and for the declaration of functions
6043/// that have been instantiated via C++ template instantiation (called
6044/// via InstantiateDecl).
6045///
6046/// \param IsExplicitSpecialization whether this new function declaration is
6047/// an explicit specialization of the previous declaration.
6048///
6049/// This sets NewFD->isInvalidDecl() to true if there was an error.
6050///
6051/// \returns true if the function declaration is a redeclaration.
6052bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6053                                    LookupResult &Previous,
6054                                    bool IsExplicitSpecialization) {
6055  assert(!NewFD->getResultType()->isVariablyModifiedType()
6056         && "Variably modified return types are not handled here");
6057
6058  // Check for a previous declaration of this name.
6059  if (Previous.empty() && NewFD->isExternC()) {
6060    // Since we did not find anything by this name and we're declaring
6061    // an extern "C" function, look for a non-visible extern "C"
6062    // declaration with the same name.
6063    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6064      = findLocallyScopedExternalDecl(NewFD->getDeclName());
6065    if (Pos != LocallyScopedExternalDecls.end())
6066      Previous.addDecl(Pos->second);
6067  }
6068
6069  bool Redeclaration = false;
6070
6071  // Merge or overload the declaration with an existing declaration of
6072  // the same name, if appropriate.
6073  if (!Previous.empty()) {
6074    // Determine whether NewFD is an overload of PrevDecl or
6075    // a declaration that requires merging. If it's an overload,
6076    // there's no more work to do here; we'll just add the new
6077    // function to the scope.
6078
6079    NamedDecl *OldDecl = 0;
6080    if (!AllowOverloadingOfFunction(Previous, Context)) {
6081      Redeclaration = true;
6082      OldDecl = Previous.getFoundDecl();
6083    } else {
6084      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6085                            /*NewIsUsingDecl*/ false)) {
6086      case Ovl_Match:
6087        Redeclaration = true;
6088        break;
6089
6090      case Ovl_NonFunction:
6091        Redeclaration = true;
6092        break;
6093
6094      case Ovl_Overload:
6095        Redeclaration = false;
6096        break;
6097      }
6098
6099      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6100        // If a function name is overloadable in C, then every function
6101        // with that name must be marked "overloadable".
6102        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6103          << Redeclaration << NewFD;
6104        NamedDecl *OverloadedDecl = 0;
6105        if (Redeclaration)
6106          OverloadedDecl = OldDecl;
6107        else if (!Previous.empty())
6108          OverloadedDecl = Previous.getRepresentativeDecl();
6109        if (OverloadedDecl)
6110          Diag(OverloadedDecl->getLocation(),
6111               diag::note_attribute_overloadable_prev_overload);
6112        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6113                                                        Context));
6114      }
6115    }
6116
6117    if (Redeclaration) {
6118      // NewFD and OldDecl represent declarations that need to be
6119      // merged.
6120      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6121        NewFD->setInvalidDecl();
6122        return Redeclaration;
6123      }
6124
6125      Previous.clear();
6126      Previous.addDecl(OldDecl);
6127
6128      if (FunctionTemplateDecl *OldTemplateDecl
6129                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6130        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6131        FunctionTemplateDecl *NewTemplateDecl
6132          = NewFD->getDescribedFunctionTemplate();
6133        assert(NewTemplateDecl && "Template/non-template mismatch");
6134        if (CXXMethodDecl *Method
6135              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6136          Method->setAccess(OldTemplateDecl->getAccess());
6137          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6138        }
6139
6140        // If this is an explicit specialization of a member that is a function
6141        // template, mark it as a member specialization.
6142        if (IsExplicitSpecialization &&
6143            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6144          NewTemplateDecl->setMemberSpecialization();
6145          assert(OldTemplateDecl->isMemberSpecialization());
6146        }
6147
6148      } else {
6149        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6150          NewFD->setAccess(OldDecl->getAccess());
6151        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6152      }
6153    }
6154  }
6155
6156  // Semantic checking for this function declaration (in isolation).
6157  if (getLangOpts().CPlusPlus) {
6158    // C++-specific checks.
6159    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6160      CheckConstructor(Constructor);
6161    } else if (CXXDestructorDecl *Destructor =
6162                dyn_cast<CXXDestructorDecl>(NewFD)) {
6163      CXXRecordDecl *Record = Destructor->getParent();
6164      QualType ClassType = Context.getTypeDeclType(Record);
6165
6166      // FIXME: Shouldn't we be able to perform this check even when the class
6167      // type is dependent? Both gcc and edg can handle that.
6168      if (!ClassType->isDependentType()) {
6169        DeclarationName Name
6170          = Context.DeclarationNames.getCXXDestructorName(
6171                                        Context.getCanonicalType(ClassType));
6172        if (NewFD->getDeclName() != Name) {
6173          Diag(NewFD->getLocation(), diag::err_destructor_name);
6174          NewFD->setInvalidDecl();
6175          return Redeclaration;
6176        }
6177      }
6178    } else if (CXXConversionDecl *Conversion
6179               = dyn_cast<CXXConversionDecl>(NewFD)) {
6180      ActOnConversionDeclarator(Conversion);
6181    }
6182
6183    // Find any virtual functions that this function overrides.
6184    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6185      if (!Method->isFunctionTemplateSpecialization() &&
6186          !Method->getDescribedFunctionTemplate() &&
6187          Method->isCanonicalDecl()) {
6188        if (AddOverriddenMethods(Method->getParent(), Method)) {
6189          // If the function was marked as "static", we have a problem.
6190          if (NewFD->getStorageClass() == SC_Static) {
6191            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6192          }
6193        }
6194      }
6195
6196      if (Method->isStatic())
6197        checkThisInStaticMemberFunctionType(Method);
6198    }
6199
6200    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6201    if (NewFD->isOverloadedOperator() &&
6202        CheckOverloadedOperatorDeclaration(NewFD)) {
6203      NewFD->setInvalidDecl();
6204      return Redeclaration;
6205    }
6206
6207    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6208    if (NewFD->getLiteralIdentifier() &&
6209        CheckLiteralOperatorDeclaration(NewFD)) {
6210      NewFD->setInvalidDecl();
6211      return Redeclaration;
6212    }
6213
6214    // In C++, check default arguments now that we have merged decls. Unless
6215    // the lexical context is the class, because in this case this is done
6216    // during delayed parsing anyway.
6217    if (!CurContext->isRecord())
6218      CheckCXXDefaultArguments(NewFD);
6219
6220    // If this function declares a builtin function, check the type of this
6221    // declaration against the expected type for the builtin.
6222    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6223      ASTContext::GetBuiltinTypeError Error;
6224      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6225      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6226        // The type of this function differs from the type of the builtin,
6227        // so forget about the builtin entirely.
6228        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6229      }
6230    }
6231
6232    // If this function is declared as being extern "C", then check to see if
6233    // the function returns a UDT (class, struct, or union type) that is not C
6234    // compatible, and if it does, warn the user.
6235    if (NewFD->isExternC()) {
6236      QualType R = NewFD->getResultType();
6237      if (R->isIncompleteType() && !R->isVoidType())
6238        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6239            << NewFD << R;
6240      else if (!R.isPODType(Context) && !R->isVoidType() &&
6241               !R->isObjCObjectPointerType())
6242        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6243    }
6244  }
6245  return Redeclaration;
6246}
6247
6248void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6249  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6250  //   static or constexpr is ill-formed.
6251  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6252  //   shall not appear in a declaration of main.
6253  // static main is not an error under C99, but we should warn about it.
6254  if (FD->getStorageClass() == SC_Static)
6255    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6256         ? diag::err_static_main : diag::warn_static_main)
6257      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6258  if (FD->isInlineSpecified())
6259    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6260      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6261  if (FD->isConstexpr()) {
6262    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6263      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6264    FD->setConstexpr(false);
6265  }
6266
6267  QualType T = FD->getType();
6268  assert(T->isFunctionType() && "function decl is not of function type");
6269  const FunctionType* FT = T->castAs<FunctionType>();
6270
6271  // All the standards say that main() should should return 'int'.
6272  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6273    // In C and C++, main magically returns 0 if you fall off the end;
6274    // set the flag which tells us that.
6275    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6276    FD->setHasImplicitReturnZero(true);
6277
6278  // In C with GNU extensions we allow main() to have non-integer return
6279  // type, but we should warn about the extension, and we disable the
6280  // implicit-return-zero rule.
6281  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6282    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6283
6284  // Otherwise, this is just a flat-out error.
6285  } else {
6286    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6287    FD->setInvalidDecl(true);
6288  }
6289
6290  // Treat protoless main() as nullary.
6291  if (isa<FunctionNoProtoType>(FT)) return;
6292
6293  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6294  unsigned nparams = FTP->getNumArgs();
6295  assert(FD->getNumParams() == nparams);
6296
6297  bool HasExtraParameters = (nparams > 3);
6298
6299  // Darwin passes an undocumented fourth argument of type char**.  If
6300  // other platforms start sprouting these, the logic below will start
6301  // getting shifty.
6302  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6303    HasExtraParameters = false;
6304
6305  if (HasExtraParameters) {
6306    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6307    FD->setInvalidDecl(true);
6308    nparams = 3;
6309  }
6310
6311  // FIXME: a lot of the following diagnostics would be improved
6312  // if we had some location information about types.
6313
6314  QualType CharPP =
6315    Context.getPointerType(Context.getPointerType(Context.CharTy));
6316  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6317
6318  for (unsigned i = 0; i < nparams; ++i) {
6319    QualType AT = FTP->getArgType(i);
6320
6321    bool mismatch = true;
6322
6323    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6324      mismatch = false;
6325    else if (Expected[i] == CharPP) {
6326      // As an extension, the following forms are okay:
6327      //   char const **
6328      //   char const * const *
6329      //   char * const *
6330
6331      QualifierCollector qs;
6332      const PointerType* PT;
6333      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6334          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6335          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6336        qs.removeConst();
6337        mismatch = !qs.empty();
6338      }
6339    }
6340
6341    if (mismatch) {
6342      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6343      // TODO: suggest replacing given type with expected type
6344      FD->setInvalidDecl(true);
6345    }
6346  }
6347
6348  if (nparams == 1 && !FD->isInvalidDecl()) {
6349    Diag(FD->getLocation(), diag::warn_main_one_arg);
6350  }
6351
6352  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6353    Diag(FD->getLocation(), diag::err_main_template_decl);
6354    FD->setInvalidDecl();
6355  }
6356}
6357
6358bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6359  // FIXME: Need strict checking.  In C89, we need to check for
6360  // any assignment, increment, decrement, function-calls, or
6361  // commas outside of a sizeof.  In C99, it's the same list,
6362  // except that the aforementioned are allowed in unevaluated
6363  // expressions.  Everything else falls under the
6364  // "may accept other forms of constant expressions" exception.
6365  // (We never end up here for C++, so the constant expression
6366  // rules there don't matter.)
6367  if (Init->isConstantInitializer(Context, false))
6368    return false;
6369  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6370    << Init->getSourceRange();
6371  return true;
6372}
6373
6374namespace {
6375  // Visits an initialization expression to see if OrigDecl is evaluated in
6376  // its own initialization and throws a warning if it does.
6377  class SelfReferenceChecker
6378      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6379    Sema &S;
6380    Decl *OrigDecl;
6381    bool isRecordType;
6382    bool isPODType;
6383    bool isReferenceType;
6384
6385  public:
6386    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6387
6388    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6389                                                    S(S), OrigDecl(OrigDecl) {
6390      isPODType = false;
6391      isRecordType = false;
6392      isReferenceType = false;
6393      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6394        isPODType = VD->getType().isPODType(S.Context);
6395        isRecordType = VD->getType()->isRecordType();
6396        isReferenceType = VD->getType()->isReferenceType();
6397      }
6398    }
6399
6400    // For most expressions, the cast is directly above the DeclRefExpr.
6401    // For conditional operators, the cast can be outside the conditional
6402    // operator if both expressions are DeclRefExpr's.
6403    void HandleValue(Expr *E) {
6404      if (isReferenceType)
6405        return;
6406      E = E->IgnoreParenImpCasts();
6407      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6408        HandleDeclRefExpr(DRE);
6409        return;
6410      }
6411
6412      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6413        HandleValue(CO->getTrueExpr());
6414        HandleValue(CO->getFalseExpr());
6415        return;
6416      }
6417
6418      if (isa<MemberExpr>(E)) {
6419        Expr *Base = E->IgnoreParenImpCasts();
6420        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6421          // Check for static member variables and don't warn on them.
6422          if (!isa<FieldDecl>(ME->getMemberDecl()))
6423            return;
6424          Base = ME->getBase()->IgnoreParenImpCasts();
6425        }
6426        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6427          HandleDeclRefExpr(DRE);
6428        return;
6429      }
6430    }
6431
6432    // Reference types are handled here since all uses of references are
6433    // bad, not just r-value uses.
6434    void VisitDeclRefExpr(DeclRefExpr *E) {
6435      if (isReferenceType)
6436        HandleDeclRefExpr(E);
6437    }
6438
6439    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6440      if (E->getCastKind() == CK_LValueToRValue ||
6441          (isRecordType && E->getCastKind() == CK_NoOp))
6442        HandleValue(E->getSubExpr());
6443
6444      Inherited::VisitImplicitCastExpr(E);
6445    }
6446
6447    void VisitMemberExpr(MemberExpr *E) {
6448      // Don't warn on arrays since they can be treated as pointers.
6449      if (E->getType()->canDecayToPointerType()) return;
6450
6451      // Warn when a non-static method call is followed by non-static member
6452      // field accesses, which is followed by a DeclRefExpr.
6453      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6454      bool Warn = (MD && !MD->isStatic());
6455      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6456      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6457        if (!isa<FieldDecl>(ME->getMemberDecl()))
6458          Warn = false;
6459        Base = ME->getBase()->IgnoreParenImpCasts();
6460      }
6461
6462      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6463        if (Warn)
6464          HandleDeclRefExpr(DRE);
6465        return;
6466      }
6467
6468      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6469      // Visit that expression.
6470      Visit(Base);
6471    }
6472
6473    void VisitUnaryOperator(UnaryOperator *E) {
6474      // For POD record types, addresses of its own members are well-defined.
6475      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6476          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6477        if (!isPODType)
6478          HandleValue(E->getSubExpr());
6479        return;
6480      }
6481      Inherited::VisitUnaryOperator(E);
6482    }
6483
6484    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6485
6486    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6487      Decl* ReferenceDecl = DRE->getDecl();
6488      if (OrigDecl != ReferenceDecl) return;
6489      unsigned diag = isReferenceType
6490          ? diag::warn_uninit_self_reference_in_reference_init
6491          : diag::warn_uninit_self_reference_in_init;
6492      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6493                            S.PDiag(diag)
6494                              << DRE->getNameInfo().getName()
6495                              << OrigDecl->getLocation()
6496                              << DRE->getSourceRange());
6497    }
6498  };
6499
6500  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6501  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6502                                 bool DirectInit) {
6503    // Parameters arguments are occassionially constructed with itself,
6504    // for instance, in recursive functions.  Skip them.
6505    if (isa<ParmVarDecl>(OrigDecl))
6506      return;
6507
6508    E = E->IgnoreParens();
6509
6510    // Skip checking T a = a where T is not a record or reference type.
6511    // Doing so is a way to silence uninitialized warnings.
6512    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6513      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6514        if (ICE->getCastKind() == CK_LValueToRValue)
6515          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6516            if (DRE->getDecl() == OrigDecl)
6517              return;
6518
6519    SelfReferenceChecker(S, OrigDecl).Visit(E);
6520  }
6521}
6522
6523/// AddInitializerToDecl - Adds the initializer Init to the
6524/// declaration dcl. If DirectInit is true, this is C++ direct
6525/// initialization rather than copy initialization.
6526void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6527                                bool DirectInit, bool TypeMayContainAuto) {
6528  // If there is no declaration, there was an error parsing it.  Just ignore
6529  // the initializer.
6530  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6531    return;
6532
6533  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6534    // With declarators parsed the way they are, the parser cannot
6535    // distinguish between a normal initializer and a pure-specifier.
6536    // Thus this grotesque test.
6537    IntegerLiteral *IL;
6538    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6539        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6540      CheckPureMethod(Method, Init->getSourceRange());
6541    else {
6542      Diag(Method->getLocation(), diag::err_member_function_initialization)
6543        << Method->getDeclName() << Init->getSourceRange();
6544      Method->setInvalidDecl();
6545    }
6546    return;
6547  }
6548
6549  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6550  if (!VDecl) {
6551    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6552    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6553    RealDecl->setInvalidDecl();
6554    return;
6555  }
6556
6557  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6558
6559  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6560  AutoType *Auto = 0;
6561  if (TypeMayContainAuto &&
6562      (Auto = VDecl->getType()->getContainedAutoType()) &&
6563      !Auto->isDeduced()) {
6564    Expr *DeduceInit = Init;
6565    // Initializer could be a C++ direct-initializer. Deduction only works if it
6566    // contains exactly one expression.
6567    if (CXXDirectInit) {
6568      if (CXXDirectInit->getNumExprs() == 0) {
6569        // It isn't possible to write this directly, but it is possible to
6570        // end up in this situation with "auto x(some_pack...);"
6571        Diag(CXXDirectInit->getLocStart(),
6572             diag::err_auto_var_init_no_expression)
6573          << VDecl->getDeclName() << VDecl->getType()
6574          << VDecl->getSourceRange();
6575        RealDecl->setInvalidDecl();
6576        return;
6577      } else if (CXXDirectInit->getNumExprs() > 1) {
6578        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6579             diag::err_auto_var_init_multiple_expressions)
6580          << VDecl->getDeclName() << VDecl->getType()
6581          << VDecl->getSourceRange();
6582        RealDecl->setInvalidDecl();
6583        return;
6584      } else {
6585        DeduceInit = CXXDirectInit->getExpr(0);
6586      }
6587    }
6588    TypeSourceInfo *DeducedType = 0;
6589    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6590            DAR_Failed)
6591      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6592    if (!DeducedType) {
6593      RealDecl->setInvalidDecl();
6594      return;
6595    }
6596    VDecl->setTypeSourceInfo(DeducedType);
6597    VDecl->setType(DeducedType->getType());
6598    VDecl->ClearLinkageCache();
6599
6600    // In ARC, infer lifetime.
6601    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6602      VDecl->setInvalidDecl();
6603
6604    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6605    // 'id' instead of a specific object type prevents most of our usual checks.
6606    // We only want to warn outside of template instantiations, though:
6607    // inside a template, the 'id' could have come from a parameter.
6608    if (ActiveTemplateInstantiations.empty() &&
6609        DeducedType->getType()->isObjCIdType()) {
6610      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6611      Diag(Loc, diag::warn_auto_var_is_id)
6612        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6613    }
6614
6615    // If this is a redeclaration, check that the type we just deduced matches
6616    // the previously declared type.
6617    if (VarDecl *Old = VDecl->getPreviousDecl())
6618      MergeVarDeclTypes(VDecl, Old);
6619  }
6620
6621  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6622    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6623    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6624    VDecl->setInvalidDecl();
6625    return;
6626  }
6627
6628  if (!VDecl->getType()->isDependentType()) {
6629    // A definition must end up with a complete type, which means it must be
6630    // complete with the restriction that an array type might be completed by
6631    // the initializer; note that later code assumes this restriction.
6632    QualType BaseDeclType = VDecl->getType();
6633    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6634      BaseDeclType = Array->getElementType();
6635    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6636                            diag::err_typecheck_decl_incomplete_type)) {
6637      RealDecl->setInvalidDecl();
6638      return;
6639    }
6640
6641    // The variable can not have an abstract class type.
6642    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6643                               diag::err_abstract_type_in_decl,
6644                               AbstractVariableType))
6645      VDecl->setInvalidDecl();
6646  }
6647
6648  const VarDecl *Def;
6649  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6650    Diag(VDecl->getLocation(), diag::err_redefinition)
6651      << VDecl->getDeclName();
6652    Diag(Def->getLocation(), diag::note_previous_definition);
6653    VDecl->setInvalidDecl();
6654    return;
6655  }
6656
6657  const VarDecl* PrevInit = 0;
6658  if (getLangOpts().CPlusPlus) {
6659    // C++ [class.static.data]p4
6660    //   If a static data member is of const integral or const
6661    //   enumeration type, its declaration in the class definition can
6662    //   specify a constant-initializer which shall be an integral
6663    //   constant expression (5.19). In that case, the member can appear
6664    //   in integral constant expressions. The member shall still be
6665    //   defined in a namespace scope if it is used in the program and the
6666    //   namespace scope definition shall not contain an initializer.
6667    //
6668    // We already performed a redefinition check above, but for static
6669    // data members we also need to check whether there was an in-class
6670    // declaration with an initializer.
6671    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6672      Diag(VDecl->getLocation(), diag::err_redefinition)
6673        << VDecl->getDeclName();
6674      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6675      return;
6676    }
6677
6678    if (VDecl->hasLocalStorage())
6679      getCurFunction()->setHasBranchProtectedScope();
6680
6681    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6682      VDecl->setInvalidDecl();
6683      return;
6684    }
6685  }
6686
6687  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6688  // a kernel function cannot be initialized."
6689  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6690    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6691    VDecl->setInvalidDecl();
6692    return;
6693  }
6694
6695  // Get the decls type and save a reference for later, since
6696  // CheckInitializerTypes may change it.
6697  QualType DclT = VDecl->getType(), SavT = DclT;
6698
6699  // Top-level message sends default to 'id' when we're in a debugger
6700  // and we are assigning it to a variable of 'id' type.
6701  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6702    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6703      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6704      if (Result.isInvalid()) {
6705        VDecl->setInvalidDecl();
6706        return;
6707      }
6708      Init = Result.take();
6709    }
6710
6711  // Perform the initialization.
6712  if (!VDecl->isInvalidDecl()) {
6713    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6714    InitializationKind Kind
6715      = DirectInit ?
6716          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6717                                                           Init->getLocStart(),
6718                                                           Init->getLocEnd())
6719                        : InitializationKind::CreateDirectList(
6720                                                          VDecl->getLocation())
6721                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6722                                                    Init->getLocStart());
6723
6724    Expr **Args = &Init;
6725    unsigned NumArgs = 1;
6726    if (CXXDirectInit) {
6727      Args = CXXDirectInit->getExprs();
6728      NumArgs = CXXDirectInit->getNumExprs();
6729    }
6730    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6731    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6732                                        MultiExprArg(Args, NumArgs), &DclT);
6733    if (Result.isInvalid()) {
6734      VDecl->setInvalidDecl();
6735      return;
6736    }
6737
6738    Init = Result.takeAs<Expr>();
6739  }
6740
6741  // Check for self-references within variable initializers.
6742  // Variables declared within a function/method body (except for references)
6743  // are handled by a dataflow analysis.
6744  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6745      VDecl->getType()->isReferenceType()) {
6746    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6747  }
6748
6749  // If the type changed, it means we had an incomplete type that was
6750  // completed by the initializer. For example:
6751  //   int ary[] = { 1, 3, 5 };
6752  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6753  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6754    VDecl->setType(DclT);
6755
6756  // Check any implicit conversions within the expression.
6757  CheckImplicitConversions(Init, VDecl->getLocation());
6758
6759  if (!VDecl->isInvalidDecl()) {
6760    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6761
6762    if (VDecl->hasAttr<BlocksAttr>())
6763      checkRetainCycles(VDecl, Init);
6764
6765    // It is safe to assign a weak reference into a strong variable.
6766    // Although this code can still have problems:
6767    //   id x = self.weakProp;
6768    //   id y = self.weakProp;
6769    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6770    // paths through the function. This should be revisited if
6771    // -Wrepeated-use-of-weak is made flow-sensitive.
6772    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6773      DiagnosticsEngine::Level Level =
6774        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6775                                 Init->getLocStart());
6776      if (Level != DiagnosticsEngine::Ignored)
6777        getCurFunction()->markSafeWeakUse(Init);
6778    }
6779  }
6780
6781  Init = MaybeCreateExprWithCleanups(Init);
6782  // Attach the initializer to the decl.
6783  VDecl->setInit(Init);
6784
6785  if (VDecl->isLocalVarDecl()) {
6786    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6787    // static storage duration shall be constant expressions or string literals.
6788    // C++ does not have this restriction.
6789    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6790        VDecl->getStorageClass() == SC_Static)
6791      CheckForConstantInitializer(Init, DclT);
6792  } else if (VDecl->isStaticDataMember() &&
6793             VDecl->getLexicalDeclContext()->isRecord()) {
6794    // This is an in-class initialization for a static data member, e.g.,
6795    //
6796    // struct S {
6797    //   static const int value = 17;
6798    // };
6799
6800    // C++ [class.mem]p4:
6801    //   A member-declarator can contain a constant-initializer only
6802    //   if it declares a static member (9.4) of const integral or
6803    //   const enumeration type, see 9.4.2.
6804    //
6805    // C++11 [class.static.data]p3:
6806    //   If a non-volatile const static data member is of integral or
6807    //   enumeration type, its declaration in the class definition can
6808    //   specify a brace-or-equal-initializer in which every initalizer-clause
6809    //   that is an assignment-expression is a constant expression. A static
6810    //   data member of literal type can be declared in the class definition
6811    //   with the constexpr specifier; if so, its declaration shall specify a
6812    //   brace-or-equal-initializer in which every initializer-clause that is
6813    //   an assignment-expression is a constant expression.
6814
6815    // Do nothing on dependent types.
6816    if (DclT->isDependentType()) {
6817
6818    // Allow any 'static constexpr' members, whether or not they are of literal
6819    // type. We separately check that every constexpr variable is of literal
6820    // type.
6821    } else if (VDecl->isConstexpr()) {
6822
6823    // Require constness.
6824    } else if (!DclT.isConstQualified()) {
6825      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6826        << Init->getSourceRange();
6827      VDecl->setInvalidDecl();
6828
6829    // We allow integer constant expressions in all cases.
6830    } else if (DclT->isIntegralOrEnumerationType()) {
6831      // Check whether the expression is a constant expression.
6832      SourceLocation Loc;
6833      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6834        // In C++11, a non-constexpr const static data member with an
6835        // in-class initializer cannot be volatile.
6836        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6837      else if (Init->isValueDependent())
6838        ; // Nothing to check.
6839      else if (Init->isIntegerConstantExpr(Context, &Loc))
6840        ; // Ok, it's an ICE!
6841      else if (Init->isEvaluatable(Context)) {
6842        // If we can constant fold the initializer through heroics, accept it,
6843        // but report this as a use of an extension for -pedantic.
6844        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6845          << Init->getSourceRange();
6846      } else {
6847        // Otherwise, this is some crazy unknown case.  Report the issue at the
6848        // location provided by the isIntegerConstantExpr failed check.
6849        Diag(Loc, diag::err_in_class_initializer_non_constant)
6850          << Init->getSourceRange();
6851        VDecl->setInvalidDecl();
6852      }
6853
6854    // We allow foldable floating-point constants as an extension.
6855    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6856      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6857        << DclT << Init->getSourceRange();
6858      if (getLangOpts().CPlusPlus0x)
6859        Diag(VDecl->getLocation(),
6860             diag::note_in_class_initializer_float_type_constexpr)
6861          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6862
6863      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6864        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6865          << Init->getSourceRange();
6866        VDecl->setInvalidDecl();
6867      }
6868
6869    // Suggest adding 'constexpr' in C++11 for literal types.
6870    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6871      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6872        << DclT << Init->getSourceRange()
6873        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6874      VDecl->setConstexpr(true);
6875
6876    } else {
6877      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6878        << DclT << Init->getSourceRange();
6879      VDecl->setInvalidDecl();
6880    }
6881  } else if (VDecl->isFileVarDecl()) {
6882    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6883        (!getLangOpts().CPlusPlus ||
6884         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6885      Diag(VDecl->getLocation(), diag::warn_extern_init);
6886
6887    // C99 6.7.8p4. All file scoped initializers need to be constant.
6888    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6889      CheckForConstantInitializer(Init, DclT);
6890  }
6891
6892  // We will represent direct-initialization similarly to copy-initialization:
6893  //    int x(1);  -as-> int x = 1;
6894  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6895  //
6896  // Clients that want to distinguish between the two forms, can check for
6897  // direct initializer using VarDecl::getInitStyle().
6898  // A major benefit is that clients that don't particularly care about which
6899  // exactly form was it (like the CodeGen) can handle both cases without
6900  // special case code.
6901
6902  // C++ 8.5p11:
6903  // The form of initialization (using parentheses or '=') is generally
6904  // insignificant, but does matter when the entity being initialized has a
6905  // class type.
6906  if (CXXDirectInit) {
6907    assert(DirectInit && "Call-style initializer must be direct init.");
6908    VDecl->setInitStyle(VarDecl::CallInit);
6909  } else if (DirectInit) {
6910    // This must be list-initialization. No other way is direct-initialization.
6911    VDecl->setInitStyle(VarDecl::ListInit);
6912  }
6913
6914  CheckCompleteVariableDeclaration(VDecl);
6915}
6916
6917/// ActOnInitializerError - Given that there was an error parsing an
6918/// initializer for the given declaration, try to return to some form
6919/// of sanity.
6920void Sema::ActOnInitializerError(Decl *D) {
6921  // Our main concern here is re-establishing invariants like "a
6922  // variable's type is either dependent or complete".
6923  if (!D || D->isInvalidDecl()) return;
6924
6925  VarDecl *VD = dyn_cast<VarDecl>(D);
6926  if (!VD) return;
6927
6928  // Auto types are meaningless if we can't make sense of the initializer.
6929  if (ParsingInitForAutoVars.count(D)) {
6930    D->setInvalidDecl();
6931    return;
6932  }
6933
6934  QualType Ty = VD->getType();
6935  if (Ty->isDependentType()) return;
6936
6937  // Require a complete type.
6938  if (RequireCompleteType(VD->getLocation(),
6939                          Context.getBaseElementType(Ty),
6940                          diag::err_typecheck_decl_incomplete_type)) {
6941    VD->setInvalidDecl();
6942    return;
6943  }
6944
6945  // Require an abstract type.
6946  if (RequireNonAbstractType(VD->getLocation(), Ty,
6947                             diag::err_abstract_type_in_decl,
6948                             AbstractVariableType)) {
6949    VD->setInvalidDecl();
6950    return;
6951  }
6952
6953  // Don't bother complaining about constructors or destructors,
6954  // though.
6955}
6956
6957void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6958                                  bool TypeMayContainAuto) {
6959  // If there is no declaration, there was an error parsing it. Just ignore it.
6960  if (RealDecl == 0)
6961    return;
6962
6963  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6964    QualType Type = Var->getType();
6965
6966    // C++11 [dcl.spec.auto]p3
6967    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6968      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6969        << Var->getDeclName() << Type;
6970      Var->setInvalidDecl();
6971      return;
6972    }
6973
6974    // C++11 [class.static.data]p3: A static data member can be declared with
6975    // the constexpr specifier; if so, its declaration shall specify
6976    // a brace-or-equal-initializer.
6977    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6978    // the definition of a variable [...] or the declaration of a static data
6979    // member.
6980    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6981      if (Var->isStaticDataMember())
6982        Diag(Var->getLocation(),
6983             diag::err_constexpr_static_mem_var_requires_init)
6984          << Var->getDeclName();
6985      else
6986        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6987      Var->setInvalidDecl();
6988      return;
6989    }
6990
6991    switch (Var->isThisDeclarationADefinition()) {
6992    case VarDecl::Definition:
6993      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6994        break;
6995
6996      // We have an out-of-line definition of a static data member
6997      // that has an in-class initializer, so we type-check this like
6998      // a declaration.
6999      //
7000      // Fall through
7001
7002    case VarDecl::DeclarationOnly:
7003      // It's only a declaration.
7004
7005      // Block scope. C99 6.7p7: If an identifier for an object is
7006      // declared with no linkage (C99 6.2.2p6), the type for the
7007      // object shall be complete.
7008      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7009          !Var->getLinkage() && !Var->isInvalidDecl() &&
7010          RequireCompleteType(Var->getLocation(), Type,
7011                              diag::err_typecheck_decl_incomplete_type))
7012        Var->setInvalidDecl();
7013
7014      // Make sure that the type is not abstract.
7015      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7016          RequireNonAbstractType(Var->getLocation(), Type,
7017                                 diag::err_abstract_type_in_decl,
7018                                 AbstractVariableType))
7019        Var->setInvalidDecl();
7020      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7021          Var->getStorageClass() == SC_PrivateExtern) {
7022        Diag(Var->getLocation(), diag::warn_private_extern);
7023        Diag(Var->getLocation(), diag::note_private_extern);
7024      }
7025
7026      return;
7027
7028    case VarDecl::TentativeDefinition:
7029      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7030      // object that has file scope without an initializer, and without a
7031      // storage-class specifier or with the storage-class specifier "static",
7032      // constitutes a tentative definition. Note: A tentative definition with
7033      // external linkage is valid (C99 6.2.2p5).
7034      if (!Var->isInvalidDecl()) {
7035        if (const IncompleteArrayType *ArrayT
7036                                    = Context.getAsIncompleteArrayType(Type)) {
7037          if (RequireCompleteType(Var->getLocation(),
7038                                  ArrayT->getElementType(),
7039                                  diag::err_illegal_decl_array_incomplete_type))
7040            Var->setInvalidDecl();
7041        } else if (Var->getStorageClass() == SC_Static) {
7042          // C99 6.9.2p3: If the declaration of an identifier for an object is
7043          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7044          // declared type shall not be an incomplete type.
7045          // NOTE: code such as the following
7046          //     static struct s;
7047          //     struct s { int a; };
7048          // is accepted by gcc. Hence here we issue a warning instead of
7049          // an error and we do not invalidate the static declaration.
7050          // NOTE: to avoid multiple warnings, only check the first declaration.
7051          if (Var->getPreviousDecl() == 0)
7052            RequireCompleteType(Var->getLocation(), Type,
7053                                diag::ext_typecheck_decl_incomplete_type);
7054        }
7055      }
7056
7057      // Record the tentative definition; we're done.
7058      if (!Var->isInvalidDecl())
7059        TentativeDefinitions.push_back(Var);
7060      return;
7061    }
7062
7063    // Provide a specific diagnostic for uninitialized variable
7064    // definitions with incomplete array type.
7065    if (Type->isIncompleteArrayType()) {
7066      Diag(Var->getLocation(),
7067           diag::err_typecheck_incomplete_array_needs_initializer);
7068      Var->setInvalidDecl();
7069      return;
7070    }
7071
7072    // Provide a specific diagnostic for uninitialized variable
7073    // definitions with reference type.
7074    if (Type->isReferenceType()) {
7075      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7076        << Var->getDeclName()
7077        << SourceRange(Var->getLocation(), Var->getLocation());
7078      Var->setInvalidDecl();
7079      return;
7080    }
7081
7082    // Do not attempt to type-check the default initializer for a
7083    // variable with dependent type.
7084    if (Type->isDependentType())
7085      return;
7086
7087    if (Var->isInvalidDecl())
7088      return;
7089
7090    if (RequireCompleteType(Var->getLocation(),
7091                            Context.getBaseElementType(Type),
7092                            diag::err_typecheck_decl_incomplete_type)) {
7093      Var->setInvalidDecl();
7094      return;
7095    }
7096
7097    // The variable can not have an abstract class type.
7098    if (RequireNonAbstractType(Var->getLocation(), Type,
7099                               diag::err_abstract_type_in_decl,
7100                               AbstractVariableType)) {
7101      Var->setInvalidDecl();
7102      return;
7103    }
7104
7105    // Check for jumps past the implicit initializer.  C++0x
7106    // clarifies that this applies to a "variable with automatic
7107    // storage duration", not a "local variable".
7108    // C++11 [stmt.dcl]p3
7109    //   A program that jumps from a point where a variable with automatic
7110    //   storage duration is not in scope to a point where it is in scope is
7111    //   ill-formed unless the variable has scalar type, class type with a
7112    //   trivial default constructor and a trivial destructor, a cv-qualified
7113    //   version of one of these types, or an array of one of the preceding
7114    //   types and is declared without an initializer.
7115    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7116      if (const RecordType *Record
7117            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7118        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7119        // Mark the function for further checking even if the looser rules of
7120        // C++11 do not require such checks, so that we can diagnose
7121        // incompatibilities with C++98.
7122        if (!CXXRecord->isPOD())
7123          getCurFunction()->setHasBranchProtectedScope();
7124      }
7125    }
7126
7127    // C++03 [dcl.init]p9:
7128    //   If no initializer is specified for an object, and the
7129    //   object is of (possibly cv-qualified) non-POD class type (or
7130    //   array thereof), the object shall be default-initialized; if
7131    //   the object is of const-qualified type, the underlying class
7132    //   type shall have a user-declared default
7133    //   constructor. Otherwise, if no initializer is specified for
7134    //   a non- static object, the object and its subobjects, if
7135    //   any, have an indeterminate initial value); if the object
7136    //   or any of its subobjects are of const-qualified type, the
7137    //   program is ill-formed.
7138    // C++0x [dcl.init]p11:
7139    //   If no initializer is specified for an object, the object is
7140    //   default-initialized; [...].
7141    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7142    InitializationKind Kind
7143      = InitializationKind::CreateDefault(Var->getLocation());
7144
7145    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7146    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7147    if (Init.isInvalid())
7148      Var->setInvalidDecl();
7149    else if (Init.get()) {
7150      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7151      // This is important for template substitution.
7152      Var->setInitStyle(VarDecl::CallInit);
7153    }
7154
7155    CheckCompleteVariableDeclaration(Var);
7156  }
7157}
7158
7159void Sema::ActOnCXXForRangeDecl(Decl *D) {
7160  VarDecl *VD = dyn_cast<VarDecl>(D);
7161  if (!VD) {
7162    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7163    D->setInvalidDecl();
7164    return;
7165  }
7166
7167  VD->setCXXForRangeDecl(true);
7168
7169  // for-range-declaration cannot be given a storage class specifier.
7170  int Error = -1;
7171  switch (VD->getStorageClassAsWritten()) {
7172  case SC_None:
7173    break;
7174  case SC_Extern:
7175    Error = 0;
7176    break;
7177  case SC_Static:
7178    Error = 1;
7179    break;
7180  case SC_PrivateExtern:
7181    Error = 2;
7182    break;
7183  case SC_Auto:
7184    Error = 3;
7185    break;
7186  case SC_Register:
7187    Error = 4;
7188    break;
7189  case SC_OpenCLWorkGroupLocal:
7190    llvm_unreachable("Unexpected storage class");
7191  }
7192  if (VD->isConstexpr())
7193    Error = 5;
7194  if (Error != -1) {
7195    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7196      << VD->getDeclName() << Error;
7197    D->setInvalidDecl();
7198  }
7199}
7200
7201void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7202  if (var->isInvalidDecl()) return;
7203
7204  // In ARC, don't allow jumps past the implicit initialization of a
7205  // local retaining variable.
7206  if (getLangOpts().ObjCAutoRefCount &&
7207      var->hasLocalStorage()) {
7208    switch (var->getType().getObjCLifetime()) {
7209    case Qualifiers::OCL_None:
7210    case Qualifiers::OCL_ExplicitNone:
7211    case Qualifiers::OCL_Autoreleasing:
7212      break;
7213
7214    case Qualifiers::OCL_Weak:
7215    case Qualifiers::OCL_Strong:
7216      getCurFunction()->setHasBranchProtectedScope();
7217      break;
7218    }
7219  }
7220
7221  if (var->isThisDeclarationADefinition() &&
7222      var->getLinkage() == ExternalLinkage) {
7223    // Find a previous declaration that's not a definition.
7224    VarDecl *prev = var->getPreviousDecl();
7225    while (prev && prev->isThisDeclarationADefinition())
7226      prev = prev->getPreviousDecl();
7227
7228    if (!prev)
7229      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7230  }
7231
7232  // All the following checks are C++ only.
7233  if (!getLangOpts().CPlusPlus) return;
7234
7235  QualType type = var->getType();
7236  if (type->isDependentType()) return;
7237
7238  // __block variables might require us to capture a copy-initializer.
7239  if (var->hasAttr<BlocksAttr>()) {
7240    // It's currently invalid to ever have a __block variable with an
7241    // array type; should we diagnose that here?
7242
7243    // Regardless, we don't want to ignore array nesting when
7244    // constructing this copy.
7245    if (type->isStructureOrClassType()) {
7246      SourceLocation poi = var->getLocation();
7247      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7248      ExprResult result =
7249        PerformCopyInitialization(
7250                        InitializedEntity::InitializeBlock(poi, type, false),
7251                                  poi, Owned(varRef));
7252      if (!result.isInvalid()) {
7253        result = MaybeCreateExprWithCleanups(result);
7254        Expr *init = result.takeAs<Expr>();
7255        Context.setBlockVarCopyInits(var, init);
7256      }
7257    }
7258  }
7259
7260  Expr *Init = var->getInit();
7261  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7262  QualType baseType = Context.getBaseElementType(type);
7263
7264  if (!var->getDeclContext()->isDependentContext() &&
7265      Init && !Init->isValueDependent()) {
7266    if (IsGlobal && !var->isConstexpr() &&
7267        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7268                                            var->getLocation())
7269          != DiagnosticsEngine::Ignored &&
7270        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7271      Diag(var->getLocation(), diag::warn_global_constructor)
7272        << Init->getSourceRange();
7273
7274    if (var->isConstexpr()) {
7275      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7276      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7277        SourceLocation DiagLoc = var->getLocation();
7278        // If the note doesn't add any useful information other than a source
7279        // location, fold it into the primary diagnostic.
7280        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7281              diag::note_invalid_subexpr_in_const_expr) {
7282          DiagLoc = Notes[0].first;
7283          Notes.clear();
7284        }
7285        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7286          << var << Init->getSourceRange();
7287        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7288          Diag(Notes[I].first, Notes[I].second);
7289      }
7290    } else if (var->isUsableInConstantExpressions(Context)) {
7291      // Check whether the initializer of a const variable of integral or
7292      // enumeration type is an ICE now, since we can't tell whether it was
7293      // initialized by a constant expression if we check later.
7294      var->checkInitIsICE();
7295    }
7296  }
7297
7298  // Require the destructor.
7299  if (const RecordType *recordType = baseType->getAs<RecordType>())
7300    FinalizeVarWithDestructor(var, recordType);
7301}
7302
7303/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7304/// any semantic actions necessary after any initializer has been attached.
7305void
7306Sema::FinalizeDeclaration(Decl *ThisDecl) {
7307  // Note that we are no longer parsing the initializer for this declaration.
7308  ParsingInitForAutoVars.erase(ThisDecl);
7309
7310  // Now we have parsed the initializer and can update the table of magic
7311  // tag values.
7312  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7313    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7314    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7315      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7316               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7317               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7318           I != E; ++I) {
7319        const Expr *MagicValueExpr = VD->getInit();
7320        if (!MagicValueExpr) {
7321          continue;
7322        }
7323        llvm::APSInt MagicValueInt;
7324        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7325          Diag(I->getRange().getBegin(),
7326               diag::err_type_tag_for_datatype_not_ice)
7327            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7328          continue;
7329        }
7330        if (MagicValueInt.getActiveBits() > 64) {
7331          Diag(I->getRange().getBegin(),
7332               diag::err_type_tag_for_datatype_too_large)
7333            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7334          continue;
7335        }
7336        uint64_t MagicValue = MagicValueInt.getZExtValue();
7337        RegisterTypeTagForDatatype(I->getArgumentKind(),
7338                                   MagicValue,
7339                                   I->getMatchingCType(),
7340                                   I->getLayoutCompatible(),
7341                                   I->getMustBeNull());
7342      }
7343    }
7344  }
7345}
7346
7347Sema::DeclGroupPtrTy
7348Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7349                              Decl **Group, unsigned NumDecls) {
7350  SmallVector<Decl*, 8> Decls;
7351
7352  if (DS.isTypeSpecOwned())
7353    Decls.push_back(DS.getRepAsDecl());
7354
7355  for (unsigned i = 0; i != NumDecls; ++i)
7356    if (Decl *D = Group[i])
7357      Decls.push_back(D);
7358
7359  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7360    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7361      getASTContext().addUnnamedTag(Tag);
7362
7363  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7364                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7365}
7366
7367/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7368/// group, performing any necessary semantic checking.
7369Sema::DeclGroupPtrTy
7370Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7371                           bool TypeMayContainAuto) {
7372  // C++0x [dcl.spec.auto]p7:
7373  //   If the type deduced for the template parameter U is not the same in each
7374  //   deduction, the program is ill-formed.
7375  // FIXME: When initializer-list support is added, a distinction is needed
7376  // between the deduced type U and the deduced type which 'auto' stands for.
7377  //   auto a = 0, b = { 1, 2, 3 };
7378  // is legal because the deduced type U is 'int' in both cases.
7379  if (TypeMayContainAuto && NumDecls > 1) {
7380    QualType Deduced;
7381    CanQualType DeducedCanon;
7382    VarDecl *DeducedDecl = 0;
7383    for (unsigned i = 0; i != NumDecls; ++i) {
7384      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7385        AutoType *AT = D->getType()->getContainedAutoType();
7386        // Don't reissue diagnostics when instantiating a template.
7387        if (AT && D->isInvalidDecl())
7388          break;
7389        if (AT && AT->isDeduced()) {
7390          QualType U = AT->getDeducedType();
7391          CanQualType UCanon = Context.getCanonicalType(U);
7392          if (Deduced.isNull()) {
7393            Deduced = U;
7394            DeducedCanon = UCanon;
7395            DeducedDecl = D;
7396          } else if (DeducedCanon != UCanon) {
7397            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7398                 diag::err_auto_different_deductions)
7399              << Deduced << DeducedDecl->getDeclName()
7400              << U << D->getDeclName()
7401              << DeducedDecl->getInit()->getSourceRange()
7402              << D->getInit()->getSourceRange();
7403            D->setInvalidDecl();
7404            break;
7405          }
7406        }
7407      }
7408    }
7409  }
7410
7411  ActOnDocumentableDecls(Group, NumDecls);
7412
7413  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7414}
7415
7416void Sema::ActOnDocumentableDecl(Decl *D) {
7417  ActOnDocumentableDecls(&D, 1);
7418}
7419
7420void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7421  // Don't parse the comment if Doxygen diagnostics are ignored.
7422  if (NumDecls == 0 || !Group[0])
7423   return;
7424
7425  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7426                               Group[0]->getLocation())
7427        == DiagnosticsEngine::Ignored)
7428    return;
7429
7430  if (NumDecls >= 2) {
7431    // This is a decl group.  Normally it will contain only declarations
7432    // procuded from declarator list.  But in case we have any definitions or
7433    // additional declaration references:
7434    //   'typedef struct S {} S;'
7435    //   'typedef struct S *S;'
7436    //   'struct S *pS;'
7437    // FinalizeDeclaratorGroup adds these as separate declarations.
7438    Decl *MaybeTagDecl = Group[0];
7439    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7440      Group++;
7441      NumDecls--;
7442    }
7443  }
7444
7445  // See if there are any new comments that are not attached to a decl.
7446  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7447  if (!Comments.empty() &&
7448      !Comments.back()->isAttached()) {
7449    // There is at least one comment that not attached to a decl.
7450    // Maybe it should be attached to one of these decls?
7451    //
7452    // Note that this way we pick up not only comments that precede the
7453    // declaration, but also comments that *follow* the declaration -- thanks to
7454    // the lookahead in the lexer: we've consumed the semicolon and looked
7455    // ahead through comments.
7456    for (unsigned i = 0; i != NumDecls; ++i)
7457      Context.getCommentForDecl(Group[i], &PP);
7458  }
7459}
7460
7461/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7462/// to introduce parameters into function prototype scope.
7463Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7464  const DeclSpec &DS = D.getDeclSpec();
7465
7466  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7467  // C++03 [dcl.stc]p2 also permits 'auto'.
7468  VarDecl::StorageClass StorageClass = SC_None;
7469  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7470  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7471    StorageClass = SC_Register;
7472    StorageClassAsWritten = SC_Register;
7473  } else if (getLangOpts().CPlusPlus &&
7474             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7475    StorageClass = SC_Auto;
7476    StorageClassAsWritten = SC_Auto;
7477  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7478    Diag(DS.getStorageClassSpecLoc(),
7479         diag::err_invalid_storage_class_in_func_decl);
7480    D.getMutableDeclSpec().ClearStorageClassSpecs();
7481  }
7482
7483  if (D.getDeclSpec().isThreadSpecified())
7484    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7485  if (D.getDeclSpec().isConstexprSpecified())
7486    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7487      << 0;
7488
7489  DiagnoseFunctionSpecifiers(D);
7490
7491  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7492  QualType parmDeclType = TInfo->getType();
7493
7494  if (getLangOpts().CPlusPlus) {
7495    // Check that there are no default arguments inside the type of this
7496    // parameter.
7497    CheckExtraCXXDefaultArguments(D);
7498
7499    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7500    if (D.getCXXScopeSpec().isSet()) {
7501      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7502        << D.getCXXScopeSpec().getRange();
7503      D.getCXXScopeSpec().clear();
7504    }
7505  }
7506
7507  // Ensure we have a valid name
7508  IdentifierInfo *II = 0;
7509  if (D.hasName()) {
7510    II = D.getIdentifier();
7511    if (!II) {
7512      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7513        << GetNameForDeclarator(D).getName().getAsString();
7514      D.setInvalidType(true);
7515    }
7516  }
7517
7518  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7519  if (II) {
7520    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7521                   ForRedeclaration);
7522    LookupName(R, S);
7523    if (R.isSingleResult()) {
7524      NamedDecl *PrevDecl = R.getFoundDecl();
7525      if (PrevDecl->isTemplateParameter()) {
7526        // Maybe we will complain about the shadowed template parameter.
7527        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7528        // Just pretend that we didn't see the previous declaration.
7529        PrevDecl = 0;
7530      } else if (S->isDeclScope(PrevDecl)) {
7531        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7532        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7533
7534        // Recover by removing the name
7535        II = 0;
7536        D.SetIdentifier(0, D.getIdentifierLoc());
7537        D.setInvalidType(true);
7538      }
7539    }
7540  }
7541
7542  // Temporarily put parameter variables in the translation unit, not
7543  // the enclosing context.  This prevents them from accidentally
7544  // looking like class members in C++.
7545  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7546                                    D.getLocStart(),
7547                                    D.getIdentifierLoc(), II,
7548                                    parmDeclType, TInfo,
7549                                    StorageClass, StorageClassAsWritten);
7550
7551  if (D.isInvalidType())
7552    New->setInvalidDecl();
7553
7554  assert(S->isFunctionPrototypeScope());
7555  assert(S->getFunctionPrototypeDepth() >= 1);
7556  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7557                    S->getNextFunctionPrototypeIndex());
7558
7559  // Add the parameter declaration into this scope.
7560  S->AddDecl(New);
7561  if (II)
7562    IdResolver.AddDecl(New);
7563
7564  ProcessDeclAttributes(S, New, D);
7565
7566  if (D.getDeclSpec().isModulePrivateSpecified())
7567    Diag(New->getLocation(), diag::err_module_private_local)
7568      << 1 << New->getDeclName()
7569      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7570      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7571
7572  if (New->hasAttr<BlocksAttr>()) {
7573    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7574  }
7575  return New;
7576}
7577
7578/// \brief Synthesizes a variable for a parameter arising from a
7579/// typedef.
7580ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7581                                              SourceLocation Loc,
7582                                              QualType T) {
7583  /* FIXME: setting StartLoc == Loc.
7584     Would it be worth to modify callers so as to provide proper source
7585     location for the unnamed parameters, embedding the parameter's type? */
7586  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7587                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7588                                           SC_None, SC_None, 0);
7589  Param->setImplicit();
7590  return Param;
7591}
7592
7593void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7594                                    ParmVarDecl * const *ParamEnd) {
7595  // Don't diagnose unused-parameter errors in template instantiations; we
7596  // will already have done so in the template itself.
7597  if (!ActiveTemplateInstantiations.empty())
7598    return;
7599
7600  for (; Param != ParamEnd; ++Param) {
7601    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7602        !(*Param)->hasAttr<UnusedAttr>()) {
7603      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7604        << (*Param)->getDeclName();
7605    }
7606  }
7607}
7608
7609void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7610                                                  ParmVarDecl * const *ParamEnd,
7611                                                  QualType ReturnTy,
7612                                                  NamedDecl *D) {
7613  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7614    return;
7615
7616  // Warn if the return value is pass-by-value and larger than the specified
7617  // threshold.
7618  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7619    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7620    if (Size > LangOpts.NumLargeByValueCopy)
7621      Diag(D->getLocation(), diag::warn_return_value_size)
7622          << D->getDeclName() << Size;
7623  }
7624
7625  // Warn if any parameter is pass-by-value and larger than the specified
7626  // threshold.
7627  for (; Param != ParamEnd; ++Param) {
7628    QualType T = (*Param)->getType();
7629    if (T->isDependentType() || !T.isPODType(Context))
7630      continue;
7631    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7632    if (Size > LangOpts.NumLargeByValueCopy)
7633      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7634          << (*Param)->getDeclName() << Size;
7635  }
7636}
7637
7638ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7639                                  SourceLocation NameLoc, IdentifierInfo *Name,
7640                                  QualType T, TypeSourceInfo *TSInfo,
7641                                  VarDecl::StorageClass StorageClass,
7642                                  VarDecl::StorageClass StorageClassAsWritten) {
7643  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7644  if (getLangOpts().ObjCAutoRefCount &&
7645      T.getObjCLifetime() == Qualifiers::OCL_None &&
7646      T->isObjCLifetimeType()) {
7647
7648    Qualifiers::ObjCLifetime lifetime;
7649
7650    // Special cases for arrays:
7651    //   - if it's const, use __unsafe_unretained
7652    //   - otherwise, it's an error
7653    if (T->isArrayType()) {
7654      if (!T.isConstQualified()) {
7655        DelayedDiagnostics.add(
7656            sema::DelayedDiagnostic::makeForbiddenType(
7657            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7658      }
7659      lifetime = Qualifiers::OCL_ExplicitNone;
7660    } else {
7661      lifetime = T->getObjCARCImplicitLifetime();
7662    }
7663    T = Context.getLifetimeQualifiedType(T, lifetime);
7664  }
7665
7666  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7667                                         Context.getAdjustedParameterType(T),
7668                                         TSInfo,
7669                                         StorageClass, StorageClassAsWritten,
7670                                         0);
7671
7672  // Parameters can not be abstract class types.
7673  // For record types, this is done by the AbstractClassUsageDiagnoser once
7674  // the class has been completely parsed.
7675  if (!CurContext->isRecord() &&
7676      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7677                             AbstractParamType))
7678    New->setInvalidDecl();
7679
7680  // Parameter declarators cannot be interface types. All ObjC objects are
7681  // passed by reference.
7682  if (T->isObjCObjectType()) {
7683    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7684    Diag(NameLoc,
7685         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7686      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7687    T = Context.getObjCObjectPointerType(T);
7688    New->setType(T);
7689  }
7690
7691  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7692  // duration shall not be qualified by an address-space qualifier."
7693  // Since all parameters have automatic store duration, they can not have
7694  // an address space.
7695  if (T.getAddressSpace() != 0) {
7696    Diag(NameLoc, diag::err_arg_with_address_space);
7697    New->setInvalidDecl();
7698  }
7699
7700  return New;
7701}
7702
7703void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7704                                           SourceLocation LocAfterDecls) {
7705  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7706
7707  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7708  // for a K&R function.
7709  if (!FTI.hasPrototype) {
7710    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7711      --i;
7712      if (FTI.ArgInfo[i].Param == 0) {
7713        SmallString<256> Code;
7714        llvm::raw_svector_ostream(Code) << "  int "
7715                                        << FTI.ArgInfo[i].Ident->getName()
7716                                        << ";\n";
7717        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7718          << FTI.ArgInfo[i].Ident
7719          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7720
7721        // Implicitly declare the argument as type 'int' for lack of a better
7722        // type.
7723        AttributeFactory attrs;
7724        DeclSpec DS(attrs);
7725        const char* PrevSpec; // unused
7726        unsigned DiagID; // unused
7727        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7728                           PrevSpec, DiagID);
7729        // Use the identifier location for the type source range.
7730        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
7731        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
7732        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7733        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7734        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7735      }
7736    }
7737  }
7738}
7739
7740Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7741  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7742  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7743  Scope *ParentScope = FnBodyScope->getParent();
7744
7745  D.setFunctionDefinitionKind(FDK_Definition);
7746  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7747  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7748}
7749
7750static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7751  // Don't warn about invalid declarations.
7752  if (FD->isInvalidDecl())
7753    return false;
7754
7755  // Or declarations that aren't global.
7756  if (!FD->isGlobal())
7757    return false;
7758
7759  // Don't warn about C++ member functions.
7760  if (isa<CXXMethodDecl>(FD))
7761    return false;
7762
7763  // Don't warn about 'main'.
7764  if (FD->isMain())
7765    return false;
7766
7767  // Don't warn about inline functions.
7768  if (FD->isInlined())
7769    return false;
7770
7771  // Don't warn about function templates.
7772  if (FD->getDescribedFunctionTemplate())
7773    return false;
7774
7775  // Don't warn about function template specializations.
7776  if (FD->isFunctionTemplateSpecialization())
7777    return false;
7778
7779  // Don't warn for OpenCL kernels.
7780  if (FD->hasAttr<OpenCLKernelAttr>())
7781    return false;
7782
7783  bool MissingPrototype = true;
7784  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7785       Prev; Prev = Prev->getPreviousDecl()) {
7786    // Ignore any declarations that occur in function or method
7787    // scope, because they aren't visible from the header.
7788    if (Prev->getDeclContext()->isFunctionOrMethod())
7789      continue;
7790
7791    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7792    break;
7793  }
7794
7795  return MissingPrototype;
7796}
7797
7798void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7799  // Don't complain if we're in GNU89 mode and the previous definition
7800  // was an extern inline function.
7801  const FunctionDecl *Definition;
7802  if (FD->isDefined(Definition) &&
7803      !canRedefineFunction(Definition, getLangOpts())) {
7804    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7805        Definition->getStorageClass() == SC_Extern)
7806      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7807        << FD->getDeclName() << getLangOpts().CPlusPlus;
7808    else
7809      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7810    Diag(Definition->getLocation(), diag::note_previous_definition);
7811    FD->setInvalidDecl();
7812  }
7813}
7814
7815Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7816  // Clear the last template instantiation error context.
7817  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7818
7819  if (!D)
7820    return D;
7821  FunctionDecl *FD = 0;
7822
7823  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7824    FD = FunTmpl->getTemplatedDecl();
7825  else
7826    FD = cast<FunctionDecl>(D);
7827
7828  // Enter a new function scope
7829  PushFunctionScope();
7830
7831  // See if this is a redefinition.
7832  if (!FD->isLateTemplateParsed())
7833    CheckForFunctionRedefinition(FD);
7834
7835  // Builtin functions cannot be defined.
7836  if (unsigned BuiltinID = FD->getBuiltinID()) {
7837    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7838      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7839      FD->setInvalidDecl();
7840    }
7841  }
7842
7843  // The return type of a function definition must be complete
7844  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7845  QualType ResultType = FD->getResultType();
7846  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7847      !FD->isInvalidDecl() &&
7848      RequireCompleteType(FD->getLocation(), ResultType,
7849                          diag::err_func_def_incomplete_result))
7850    FD->setInvalidDecl();
7851
7852  // GNU warning -Wmissing-prototypes:
7853  //   Warn if a global function is defined without a previous
7854  //   prototype declaration. This warning is issued even if the
7855  //   definition itself provides a prototype. The aim is to detect
7856  //   global functions that fail to be declared in header files.
7857  if (ShouldWarnAboutMissingPrototype(FD))
7858    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7859
7860  if (FnBodyScope)
7861    PushDeclContext(FnBodyScope, FD);
7862
7863  // Check the validity of our function parameters
7864  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7865                           /*CheckParameterNames=*/true);
7866
7867  // Introduce our parameters into the function scope
7868  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7869    ParmVarDecl *Param = FD->getParamDecl(p);
7870    Param->setOwningFunction(FD);
7871
7872    // If this has an identifier, add it to the scope stack.
7873    if (Param->getIdentifier() && FnBodyScope) {
7874      CheckShadow(FnBodyScope, Param);
7875
7876      PushOnScopeChains(Param, FnBodyScope);
7877    }
7878  }
7879
7880  // If we had any tags defined in the function prototype,
7881  // introduce them into the function scope.
7882  if (FnBodyScope) {
7883    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7884           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7885      NamedDecl *D = *I;
7886
7887      // Some of these decls (like enums) may have been pinned to the translation unit
7888      // for lack of a real context earlier. If so, remove from the translation unit
7889      // and reattach to the current context.
7890      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7891        // Is the decl actually in the context?
7892        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7893               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7894          if (*DI == D) {
7895            Context.getTranslationUnitDecl()->removeDecl(D);
7896            break;
7897          }
7898        }
7899        // Either way, reassign the lexical decl context to our FunctionDecl.
7900        D->setLexicalDeclContext(CurContext);
7901      }
7902
7903      // If the decl has a non-null name, make accessible in the current scope.
7904      if (!D->getName().empty())
7905        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7906
7907      // Similarly, dive into enums and fish their constants out, making them
7908      // accessible in this scope.
7909      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7910        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7911               EE = ED->enumerator_end(); EI != EE; ++EI)
7912          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7913      }
7914    }
7915  }
7916
7917  // Ensure that the function's exception specification is instantiated.
7918  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7919    ResolveExceptionSpec(D->getLocation(), FPT);
7920
7921  // Checking attributes of current function definition
7922  // dllimport attribute.
7923  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7924  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7925    // dllimport attribute cannot be directly applied to definition.
7926    // Microsoft accepts dllimport for functions defined within class scope.
7927    if (!DA->isInherited() &&
7928        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7929      Diag(FD->getLocation(),
7930           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7931        << "dllimport";
7932      FD->setInvalidDecl();
7933      return FD;
7934    }
7935
7936    // Visual C++ appears to not think this is an issue, so only issue
7937    // a warning when Microsoft extensions are disabled.
7938    if (!LangOpts.MicrosoftExt) {
7939      // If a symbol previously declared dllimport is later defined, the
7940      // attribute is ignored in subsequent references, and a warning is
7941      // emitted.
7942      Diag(FD->getLocation(),
7943           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7944        << FD->getName() << "dllimport";
7945    }
7946  }
7947  // We want to attach documentation to original Decl (which might be
7948  // a function template).
7949  ActOnDocumentableDecl(D);
7950  return FD;
7951}
7952
7953/// \brief Given the set of return statements within a function body,
7954/// compute the variables that are subject to the named return value
7955/// optimization.
7956///
7957/// Each of the variables that is subject to the named return value
7958/// optimization will be marked as NRVO variables in the AST, and any
7959/// return statement that has a marked NRVO variable as its NRVO candidate can
7960/// use the named return value optimization.
7961///
7962/// This function applies a very simplistic algorithm for NRVO: if every return
7963/// statement in the function has the same NRVO candidate, that candidate is
7964/// the NRVO variable.
7965///
7966/// FIXME: Employ a smarter algorithm that accounts for multiple return
7967/// statements and the lifetimes of the NRVO candidates. We should be able to
7968/// find a maximal set of NRVO variables.
7969void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7970  ReturnStmt **Returns = Scope->Returns.data();
7971
7972  const VarDecl *NRVOCandidate = 0;
7973  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7974    if (!Returns[I]->getNRVOCandidate())
7975      return;
7976
7977    if (!NRVOCandidate)
7978      NRVOCandidate = Returns[I]->getNRVOCandidate();
7979    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7980      return;
7981  }
7982
7983  if (NRVOCandidate)
7984    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7985}
7986
7987Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7988  return ActOnFinishFunctionBody(D, BodyArg, false);
7989}
7990
7991Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7992                                    bool IsInstantiation) {
7993  FunctionDecl *FD = 0;
7994  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7995  if (FunTmpl)
7996    FD = FunTmpl->getTemplatedDecl();
7997  else
7998    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7999
8000  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8001  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8002
8003  if (FD) {
8004    FD->setBody(Body);
8005
8006    // If the function implicitly returns zero (like 'main') or is naked,
8007    // don't complain about missing return statements.
8008    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8009      WP.disableCheckFallThrough();
8010
8011    // MSVC permits the use of pure specifier (=0) on function definition,
8012    // defined at class scope, warn about this non standard construct.
8013    if (getLangOpts().MicrosoftExt && FD->isPure())
8014      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8015
8016    if (!FD->isInvalidDecl()) {
8017      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8018      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8019                                             FD->getResultType(), FD);
8020
8021      // If this is a constructor, we need a vtable.
8022      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8023        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8024
8025      // Try to apply the named return value optimization. We have to check
8026      // if we can do this here because lambdas keep return statements around
8027      // to deduce an implicit return type.
8028      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8029          !FD->isDependentContext())
8030        computeNRVO(Body, getCurFunction());
8031    }
8032
8033    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8034           "Function parsing confused");
8035  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8036    assert(MD == getCurMethodDecl() && "Method parsing confused");
8037    MD->setBody(Body);
8038    if (!MD->isInvalidDecl()) {
8039      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8040      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8041                                             MD->getResultType(), MD);
8042
8043      if (Body)
8044        computeNRVO(Body, getCurFunction());
8045    }
8046    if (getCurFunction()->ObjCShouldCallSuper) {
8047      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8048        << MD->getSelector().getAsString();
8049      getCurFunction()->ObjCShouldCallSuper = false;
8050    }
8051  } else {
8052    return 0;
8053  }
8054
8055  assert(!getCurFunction()->ObjCShouldCallSuper &&
8056         "This should only be set for ObjC methods, which should have been "
8057         "handled in the block above.");
8058
8059  // Verify and clean out per-function state.
8060  if (Body) {
8061    // C++ constructors that have function-try-blocks can't have return
8062    // statements in the handlers of that block. (C++ [except.handle]p14)
8063    // Verify this.
8064    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8065      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8066
8067    // Verify that gotos and switch cases don't jump into scopes illegally.
8068    if (getCurFunction()->NeedsScopeChecking() &&
8069        !dcl->isInvalidDecl() &&
8070        !hasAnyUnrecoverableErrorsInThisFunction() &&
8071        !PP.isCodeCompletionEnabled())
8072      DiagnoseInvalidJumps(Body);
8073
8074    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8075      if (!Destructor->getParent()->isDependentType())
8076        CheckDestructor(Destructor);
8077
8078      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8079                                             Destructor->getParent());
8080    }
8081
8082    // If any errors have occurred, clear out any temporaries that may have
8083    // been leftover. This ensures that these temporaries won't be picked up for
8084    // deletion in some later function.
8085    if (PP.getDiagnostics().hasErrorOccurred() ||
8086        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8087      DiscardCleanupsInEvaluationContext();
8088    } else if (!isa<FunctionTemplateDecl>(dcl)) {
8089      // Since the body is valid, issue any analysis-based warnings that are
8090      // enabled.
8091      ActivePolicy = &WP;
8092    }
8093
8094    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8095        (!CheckConstexprFunctionDecl(FD) ||
8096         !CheckConstexprFunctionBody(FD, Body)))
8097      FD->setInvalidDecl();
8098
8099    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8100    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8101    assert(MaybeODRUseExprs.empty() &&
8102           "Leftover expressions for odr-use checking");
8103  }
8104
8105  if (!IsInstantiation)
8106    PopDeclContext();
8107
8108  PopFunctionScopeInfo(ActivePolicy, dcl);
8109
8110  // If any errors have occurred, clear out any temporaries that may have
8111  // been leftover. This ensures that these temporaries won't be picked up for
8112  // deletion in some later function.
8113  if (getDiagnostics().hasErrorOccurred()) {
8114    DiscardCleanupsInEvaluationContext();
8115  }
8116
8117  return dcl;
8118}
8119
8120
8121/// When we finish delayed parsing of an attribute, we must attach it to the
8122/// relevant Decl.
8123void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8124                                       ParsedAttributes &Attrs) {
8125  // Always attach attributes to the underlying decl.
8126  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8127    D = TD->getTemplatedDecl();
8128  ProcessDeclAttributeList(S, D, Attrs.getList());
8129
8130  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8131    if (Method->isStatic())
8132      checkThisInStaticMemberFunctionAttributes(Method);
8133}
8134
8135
8136/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8137/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8138NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8139                                          IdentifierInfo &II, Scope *S) {
8140  // Before we produce a declaration for an implicitly defined
8141  // function, see whether there was a locally-scoped declaration of
8142  // this name as a function or variable. If so, use that
8143  // (non-visible) declaration, and complain about it.
8144  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8145    = findLocallyScopedExternalDecl(&II);
8146  if (Pos != LocallyScopedExternalDecls.end()) {
8147    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8148    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8149    return Pos->second;
8150  }
8151
8152  // Extension in C99.  Legal in C90, but warn about it.
8153  unsigned diag_id;
8154  if (II.getName().startswith("__builtin_"))
8155    diag_id = diag::warn_builtin_unknown;
8156  else if (getLangOpts().C99)
8157    diag_id = diag::ext_implicit_function_decl;
8158  else
8159    diag_id = diag::warn_implicit_function_decl;
8160  Diag(Loc, diag_id) << &II;
8161
8162  // Because typo correction is expensive, only do it if the implicit
8163  // function declaration is going to be treated as an error.
8164  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8165    TypoCorrection Corrected;
8166    DeclFilterCCC<FunctionDecl> Validator;
8167    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8168                                      LookupOrdinaryName, S, 0, Validator))) {
8169      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8170      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8171      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8172
8173      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8174          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8175
8176      if (Func->getLocation().isValid()
8177          && !II.getName().startswith("__builtin_"))
8178        Diag(Func->getLocation(), diag::note_previous_decl)
8179            << CorrectedQuotedStr;
8180    }
8181  }
8182
8183  // Set a Declarator for the implicit definition: int foo();
8184  const char *Dummy;
8185  AttributeFactory attrFactory;
8186  DeclSpec DS(attrFactory);
8187  unsigned DiagID;
8188  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8189  (void)Error; // Silence warning.
8190  assert(!Error && "Error setting up implicit decl!");
8191  SourceLocation NoLoc;
8192  Declarator D(DS, Declarator::BlockContext);
8193  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8194                                             /*IsAmbiguous=*/false,
8195                                             /*RParenLoc=*/NoLoc,
8196                                             /*ArgInfo=*/0,
8197                                             /*NumArgs=*/0,
8198                                             /*EllipsisLoc=*/NoLoc,
8199                                             /*RParenLoc=*/NoLoc,
8200                                             /*TypeQuals=*/0,
8201                                             /*RefQualifierIsLvalueRef=*/true,
8202                                             /*RefQualifierLoc=*/NoLoc,
8203                                             /*ConstQualifierLoc=*/NoLoc,
8204                                             /*VolatileQualifierLoc=*/NoLoc,
8205                                             /*MutableLoc=*/NoLoc,
8206                                             EST_None,
8207                                             /*ESpecLoc=*/NoLoc,
8208                                             /*Exceptions=*/0,
8209                                             /*ExceptionRanges=*/0,
8210                                             /*NumExceptions=*/0,
8211                                             /*NoexceptExpr=*/0,
8212                                             Loc, Loc, D),
8213                DS.getAttributes(),
8214                SourceLocation());
8215  D.SetIdentifier(&II, Loc);
8216
8217  // Insert this function into translation-unit scope.
8218
8219  DeclContext *PrevDC = CurContext;
8220  CurContext = Context.getTranslationUnitDecl();
8221
8222  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8223  FD->setImplicit();
8224
8225  CurContext = PrevDC;
8226
8227  AddKnownFunctionAttributes(FD);
8228
8229  return FD;
8230}
8231
8232/// \brief Adds any function attributes that we know a priori based on
8233/// the declaration of this function.
8234///
8235/// These attributes can apply both to implicitly-declared builtins
8236/// (like __builtin___printf_chk) or to library-declared functions
8237/// like NSLog or printf.
8238///
8239/// We need to check for duplicate attributes both here and where user-written
8240/// attributes are applied to declarations.
8241void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8242  if (FD->isInvalidDecl())
8243    return;
8244
8245  // If this is a built-in function, map its builtin attributes to
8246  // actual attributes.
8247  if (unsigned BuiltinID = FD->getBuiltinID()) {
8248    // Handle printf-formatting attributes.
8249    unsigned FormatIdx;
8250    bool HasVAListArg;
8251    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8252      if (!FD->getAttr<FormatAttr>()) {
8253        const char *fmt = "printf";
8254        unsigned int NumParams = FD->getNumParams();
8255        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8256            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8257          fmt = "NSString";
8258        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8259                                               fmt, FormatIdx+1,
8260                                               HasVAListArg ? 0 : FormatIdx+2));
8261      }
8262    }
8263    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8264                                             HasVAListArg)) {
8265     if (!FD->getAttr<FormatAttr>())
8266       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8267                                              "scanf", FormatIdx+1,
8268                                              HasVAListArg ? 0 : FormatIdx+2));
8269    }
8270
8271    // Mark const if we don't care about errno and that is the only
8272    // thing preventing the function from being const. This allows
8273    // IRgen to use LLVM intrinsics for such functions.
8274    if (!getLangOpts().MathErrno &&
8275        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8276      if (!FD->getAttr<ConstAttr>())
8277        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8278    }
8279
8280    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8281        !FD->getAttr<ReturnsTwiceAttr>())
8282      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8283    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8284      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8285    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8286      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8287  }
8288
8289  IdentifierInfo *Name = FD->getIdentifier();
8290  if (!Name)
8291    return;
8292  if ((!getLangOpts().CPlusPlus &&
8293       FD->getDeclContext()->isTranslationUnit()) ||
8294      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8295       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8296       LinkageSpecDecl::lang_c)) {
8297    // Okay: this could be a libc/libm/Objective-C function we know
8298    // about.
8299  } else
8300    return;
8301
8302  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8303    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8304    // target-specific builtins, perhaps?
8305    if (!FD->getAttr<FormatAttr>())
8306      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8307                                             "printf", 2,
8308                                             Name->isStr("vasprintf") ? 0 : 3));
8309  }
8310
8311  if (Name->isStr("__CFStringMakeConstantString")) {
8312    // We already have a __builtin___CFStringMakeConstantString,
8313    // but builds that use -fno-constant-cfstrings don't go through that.
8314    if (!FD->getAttr<FormatArgAttr>())
8315      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8316  }
8317}
8318
8319TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8320                                    TypeSourceInfo *TInfo) {
8321  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8322  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8323
8324  if (!TInfo) {
8325    assert(D.isInvalidType() && "no declarator info for valid type");
8326    TInfo = Context.getTrivialTypeSourceInfo(T);
8327  }
8328
8329  // Scope manipulation handled by caller.
8330  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8331                                           D.getLocStart(),
8332                                           D.getIdentifierLoc(),
8333                                           D.getIdentifier(),
8334                                           TInfo);
8335
8336  // Bail out immediately if we have an invalid declaration.
8337  if (D.isInvalidType()) {
8338    NewTD->setInvalidDecl();
8339    return NewTD;
8340  }
8341
8342  if (D.getDeclSpec().isModulePrivateSpecified()) {
8343    if (CurContext->isFunctionOrMethod())
8344      Diag(NewTD->getLocation(), diag::err_module_private_local)
8345        << 2 << NewTD->getDeclName()
8346        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8347        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8348    else
8349      NewTD->setModulePrivate();
8350  }
8351
8352  // C++ [dcl.typedef]p8:
8353  //   If the typedef declaration defines an unnamed class (or
8354  //   enum), the first typedef-name declared by the declaration
8355  //   to be that class type (or enum type) is used to denote the
8356  //   class type (or enum type) for linkage purposes only.
8357  // We need to check whether the type was declared in the declaration.
8358  switch (D.getDeclSpec().getTypeSpecType()) {
8359  case TST_enum:
8360  case TST_struct:
8361  case TST_interface:
8362  case TST_union:
8363  case TST_class: {
8364    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8365
8366    // Do nothing if the tag is not anonymous or already has an
8367    // associated typedef (from an earlier typedef in this decl group).
8368    if (tagFromDeclSpec->getIdentifier()) break;
8369    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8370
8371    // A well-formed anonymous tag must always be a TUK_Definition.
8372    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8373
8374    // The type must match the tag exactly;  no qualifiers allowed.
8375    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8376      break;
8377
8378    // Otherwise, set this is the anon-decl typedef for the tag.
8379    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8380    break;
8381  }
8382
8383  default:
8384    break;
8385  }
8386
8387  return NewTD;
8388}
8389
8390
8391/// \brief Check that this is a valid underlying type for an enum declaration.
8392bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8393  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8394  QualType T = TI->getType();
8395
8396  if (T->isDependentType() || T->isIntegralType(Context))
8397    return false;
8398
8399  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8400  return true;
8401}
8402
8403/// Check whether this is a valid redeclaration of a previous enumeration.
8404/// \return true if the redeclaration was invalid.
8405bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8406                                  QualType EnumUnderlyingTy,
8407                                  const EnumDecl *Prev) {
8408  bool IsFixed = !EnumUnderlyingTy.isNull();
8409
8410  if (IsScoped != Prev->isScoped()) {
8411    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8412      << Prev->isScoped();
8413    Diag(Prev->getLocation(), diag::note_previous_use);
8414    return true;
8415  }
8416
8417  if (IsFixed && Prev->isFixed()) {
8418    if (!EnumUnderlyingTy->isDependentType() &&
8419        !Prev->getIntegerType()->isDependentType() &&
8420        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8421                                        Prev->getIntegerType())) {
8422      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8423        << EnumUnderlyingTy << Prev->getIntegerType();
8424      Diag(Prev->getLocation(), diag::note_previous_use);
8425      return true;
8426    }
8427  } else if (IsFixed != Prev->isFixed()) {
8428    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8429      << Prev->isFixed();
8430    Diag(Prev->getLocation(), diag::note_previous_use);
8431    return true;
8432  }
8433
8434  return false;
8435}
8436
8437/// \brief Get diagnostic %select index for tag kind for
8438/// redeclaration diagnostic message.
8439/// WARNING: Indexes apply to particular diagnostics only!
8440///
8441/// \returns diagnostic %select index.
8442static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8443  switch (Tag) {
8444  case TTK_Struct: return 0;
8445  case TTK_Interface: return 1;
8446  case TTK_Class:  return 2;
8447  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8448  }
8449}
8450
8451/// \brief Determine if tag kind is a class-key compatible with
8452/// class for redeclaration (class, struct, or __interface).
8453///
8454/// \returns true iff the tag kind is compatible.
8455static bool isClassCompatTagKind(TagTypeKind Tag)
8456{
8457  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8458}
8459
8460/// \brief Determine whether a tag with a given kind is acceptable
8461/// as a redeclaration of the given tag declaration.
8462///
8463/// \returns true if the new tag kind is acceptable, false otherwise.
8464bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8465                                        TagTypeKind NewTag, bool isDefinition,
8466                                        SourceLocation NewTagLoc,
8467                                        const IdentifierInfo &Name) {
8468  // C++ [dcl.type.elab]p3:
8469  //   The class-key or enum keyword present in the
8470  //   elaborated-type-specifier shall agree in kind with the
8471  //   declaration to which the name in the elaborated-type-specifier
8472  //   refers. This rule also applies to the form of
8473  //   elaborated-type-specifier that declares a class-name or
8474  //   friend class since it can be construed as referring to the
8475  //   definition of the class. Thus, in any
8476  //   elaborated-type-specifier, the enum keyword shall be used to
8477  //   refer to an enumeration (7.2), the union class-key shall be
8478  //   used to refer to a union (clause 9), and either the class or
8479  //   struct class-key shall be used to refer to a class (clause 9)
8480  //   declared using the class or struct class-key.
8481  TagTypeKind OldTag = Previous->getTagKind();
8482  if (!isDefinition || !isClassCompatTagKind(NewTag))
8483    if (OldTag == NewTag)
8484      return true;
8485
8486  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8487    // Warn about the struct/class tag mismatch.
8488    bool isTemplate = false;
8489    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8490      isTemplate = Record->getDescribedClassTemplate();
8491
8492    if (!ActiveTemplateInstantiations.empty()) {
8493      // In a template instantiation, do not offer fix-its for tag mismatches
8494      // since they usually mess up the template instead of fixing the problem.
8495      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8496        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8497        << getRedeclDiagFromTagKind(OldTag);
8498      return true;
8499    }
8500
8501    if (isDefinition) {
8502      // On definitions, check previous tags and issue a fix-it for each
8503      // one that doesn't match the current tag.
8504      if (Previous->getDefinition()) {
8505        // Don't suggest fix-its for redefinitions.
8506        return true;
8507      }
8508
8509      bool previousMismatch = false;
8510      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8511           E(Previous->redecls_end()); I != E; ++I) {
8512        if (I->getTagKind() != NewTag) {
8513          if (!previousMismatch) {
8514            previousMismatch = true;
8515            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8516              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8517              << getRedeclDiagFromTagKind(I->getTagKind());
8518          }
8519          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8520            << getRedeclDiagFromTagKind(NewTag)
8521            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8522                 TypeWithKeyword::getTagTypeKindName(NewTag));
8523        }
8524      }
8525      return true;
8526    }
8527
8528    // Check for a previous definition.  If current tag and definition
8529    // are same type, do nothing.  If no definition, but disagree with
8530    // with previous tag type, give a warning, but no fix-it.
8531    const TagDecl *Redecl = Previous->getDefinition() ?
8532                            Previous->getDefinition() : Previous;
8533    if (Redecl->getTagKind() == NewTag) {
8534      return true;
8535    }
8536
8537    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8538      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8539      << getRedeclDiagFromTagKind(OldTag);
8540    Diag(Redecl->getLocation(), diag::note_previous_use);
8541
8542    // If there is a previous defintion, suggest a fix-it.
8543    if (Previous->getDefinition()) {
8544        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8545          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8546          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8547               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8548    }
8549
8550    return true;
8551  }
8552  return false;
8553}
8554
8555/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8556/// former case, Name will be non-null.  In the later case, Name will be null.
8557/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8558/// reference/declaration/definition of a tag.
8559Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8560                     SourceLocation KWLoc, CXXScopeSpec &SS,
8561                     IdentifierInfo *Name, SourceLocation NameLoc,
8562                     AttributeList *Attr, AccessSpecifier AS,
8563                     SourceLocation ModulePrivateLoc,
8564                     MultiTemplateParamsArg TemplateParameterLists,
8565                     bool &OwnedDecl, bool &IsDependent,
8566                     SourceLocation ScopedEnumKWLoc,
8567                     bool ScopedEnumUsesClassTag,
8568                     TypeResult UnderlyingType) {
8569  // If this is not a definition, it must have a name.
8570  IdentifierInfo *OrigName = Name;
8571  assert((Name != 0 || TUK == TUK_Definition) &&
8572         "Nameless record must be a definition!");
8573  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8574
8575  OwnedDecl = false;
8576  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8577  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8578
8579  // FIXME: Check explicit specializations more carefully.
8580  bool isExplicitSpecialization = false;
8581  bool Invalid = false;
8582
8583  // We only need to do this matching if we have template parameters
8584  // or a scope specifier, which also conveniently avoids this work
8585  // for non-C++ cases.
8586  if (TemplateParameterLists.size() > 0 ||
8587      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8588    if (TemplateParameterList *TemplateParams
8589          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8590                                                TemplateParameterLists.data(),
8591                                                TemplateParameterLists.size(),
8592                                                    TUK == TUK_Friend,
8593                                                    isExplicitSpecialization,
8594                                                    Invalid)) {
8595      if (TemplateParams->size() > 0) {
8596        // This is a declaration or definition of a class template (which may
8597        // be a member of another template).
8598
8599        if (Invalid)
8600          return 0;
8601
8602        OwnedDecl = false;
8603        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8604                                               SS, Name, NameLoc, Attr,
8605                                               TemplateParams, AS,
8606                                               ModulePrivateLoc,
8607                                               TemplateParameterLists.size()-1,
8608                                               TemplateParameterLists.data());
8609        return Result.get();
8610      } else {
8611        // The "template<>" header is extraneous.
8612        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8613          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8614        isExplicitSpecialization = true;
8615      }
8616    }
8617  }
8618
8619  // Figure out the underlying type if this a enum declaration. We need to do
8620  // this early, because it's needed to detect if this is an incompatible
8621  // redeclaration.
8622  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8623
8624  if (Kind == TTK_Enum) {
8625    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8626      // No underlying type explicitly specified, or we failed to parse the
8627      // type, default to int.
8628      EnumUnderlying = Context.IntTy.getTypePtr();
8629    else if (UnderlyingType.get()) {
8630      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8631      // integral type; any cv-qualification is ignored.
8632      TypeSourceInfo *TI = 0;
8633      GetTypeFromParser(UnderlyingType.get(), &TI);
8634      EnumUnderlying = TI;
8635
8636      if (CheckEnumUnderlyingType(TI))
8637        // Recover by falling back to int.
8638        EnumUnderlying = Context.IntTy.getTypePtr();
8639
8640      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8641                                          UPPC_FixedUnderlyingType))
8642        EnumUnderlying = Context.IntTy.getTypePtr();
8643
8644    } else if (getLangOpts().MicrosoftMode)
8645      // Microsoft enums are always of int type.
8646      EnumUnderlying = Context.IntTy.getTypePtr();
8647  }
8648
8649  DeclContext *SearchDC = CurContext;
8650  DeclContext *DC = CurContext;
8651  bool isStdBadAlloc = false;
8652
8653  RedeclarationKind Redecl = ForRedeclaration;
8654  if (TUK == TUK_Friend || TUK == TUK_Reference)
8655    Redecl = NotForRedeclaration;
8656
8657  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8658
8659  if (Name && SS.isNotEmpty()) {
8660    // We have a nested-name tag ('struct foo::bar').
8661
8662    // Check for invalid 'foo::'.
8663    if (SS.isInvalid()) {
8664      Name = 0;
8665      goto CreateNewDecl;
8666    }
8667
8668    // If this is a friend or a reference to a class in a dependent
8669    // context, don't try to make a decl for it.
8670    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8671      DC = computeDeclContext(SS, false);
8672      if (!DC) {
8673        IsDependent = true;
8674        return 0;
8675      }
8676    } else {
8677      DC = computeDeclContext(SS, true);
8678      if (!DC) {
8679        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8680          << SS.getRange();
8681        return 0;
8682      }
8683    }
8684
8685    if (RequireCompleteDeclContext(SS, DC))
8686      return 0;
8687
8688    SearchDC = DC;
8689    // Look-up name inside 'foo::'.
8690    LookupQualifiedName(Previous, DC);
8691
8692    if (Previous.isAmbiguous())
8693      return 0;
8694
8695    if (Previous.empty()) {
8696      // Name lookup did not find anything. However, if the
8697      // nested-name-specifier refers to the current instantiation,
8698      // and that current instantiation has any dependent base
8699      // classes, we might find something at instantiation time: treat
8700      // this as a dependent elaborated-type-specifier.
8701      // But this only makes any sense for reference-like lookups.
8702      if (Previous.wasNotFoundInCurrentInstantiation() &&
8703          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8704        IsDependent = true;
8705        return 0;
8706      }
8707
8708      // A tag 'foo::bar' must already exist.
8709      Diag(NameLoc, diag::err_not_tag_in_scope)
8710        << Kind << Name << DC << SS.getRange();
8711      Name = 0;
8712      Invalid = true;
8713      goto CreateNewDecl;
8714    }
8715  } else if (Name) {
8716    // If this is a named struct, check to see if there was a previous forward
8717    // declaration or definition.
8718    // FIXME: We're looking into outer scopes here, even when we
8719    // shouldn't be. Doing so can result in ambiguities that we
8720    // shouldn't be diagnosing.
8721    LookupName(Previous, S);
8722
8723    if (Previous.isAmbiguous() &&
8724        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8725      LookupResult::Filter F = Previous.makeFilter();
8726      while (F.hasNext()) {
8727        NamedDecl *ND = F.next();
8728        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8729          F.erase();
8730      }
8731      F.done();
8732    }
8733
8734    // Note:  there used to be some attempt at recovery here.
8735    if (Previous.isAmbiguous())
8736      return 0;
8737
8738    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8739      // FIXME: This makes sure that we ignore the contexts associated
8740      // with C structs, unions, and enums when looking for a matching
8741      // tag declaration or definition. See the similar lookup tweak
8742      // in Sema::LookupName; is there a better way to deal with this?
8743      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8744        SearchDC = SearchDC->getParent();
8745    }
8746  } else if (S->isFunctionPrototypeScope()) {
8747    // If this is an enum declaration in function prototype scope, set its
8748    // initial context to the translation unit.
8749    // FIXME: [citation needed]
8750    SearchDC = Context.getTranslationUnitDecl();
8751  }
8752
8753  if (Previous.isSingleResult() &&
8754      Previous.getFoundDecl()->isTemplateParameter()) {
8755    // Maybe we will complain about the shadowed template parameter.
8756    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8757    // Just pretend that we didn't see the previous declaration.
8758    Previous.clear();
8759  }
8760
8761  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8762      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8763    // This is a declaration of or a reference to "std::bad_alloc".
8764    isStdBadAlloc = true;
8765
8766    if (Previous.empty() && StdBadAlloc) {
8767      // std::bad_alloc has been implicitly declared (but made invisible to
8768      // name lookup). Fill in this implicit declaration as the previous
8769      // declaration, so that the declarations get chained appropriately.
8770      Previous.addDecl(getStdBadAlloc());
8771    }
8772  }
8773
8774  // If we didn't find a previous declaration, and this is a reference
8775  // (or friend reference), move to the correct scope.  In C++, we
8776  // also need to do a redeclaration lookup there, just in case
8777  // there's a shadow friend decl.
8778  if (Name && Previous.empty() &&
8779      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8780    if (Invalid) goto CreateNewDecl;
8781    assert(SS.isEmpty());
8782
8783    if (TUK == TUK_Reference) {
8784      // C++ [basic.scope.pdecl]p5:
8785      //   -- for an elaborated-type-specifier of the form
8786      //
8787      //          class-key identifier
8788      //
8789      //      if the elaborated-type-specifier is used in the
8790      //      decl-specifier-seq or parameter-declaration-clause of a
8791      //      function defined in namespace scope, the identifier is
8792      //      declared as a class-name in the namespace that contains
8793      //      the declaration; otherwise, except as a friend
8794      //      declaration, the identifier is declared in the smallest
8795      //      non-class, non-function-prototype scope that contains the
8796      //      declaration.
8797      //
8798      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8799      // C structs and unions.
8800      //
8801      // It is an error in C++ to declare (rather than define) an enum
8802      // type, including via an elaborated type specifier.  We'll
8803      // diagnose that later; for now, declare the enum in the same
8804      // scope as we would have picked for any other tag type.
8805      //
8806      // GNU C also supports this behavior as part of its incomplete
8807      // enum types extension, while GNU C++ does not.
8808      //
8809      // Find the context where we'll be declaring the tag.
8810      // FIXME: We would like to maintain the current DeclContext as the
8811      // lexical context,
8812      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8813        SearchDC = SearchDC->getParent();
8814
8815      // Find the scope where we'll be declaring the tag.
8816      while (S->isClassScope() ||
8817             (getLangOpts().CPlusPlus &&
8818              S->isFunctionPrototypeScope()) ||
8819             ((S->getFlags() & Scope::DeclScope) == 0) ||
8820             (S->getEntity() &&
8821              ((DeclContext *)S->getEntity())->isTransparentContext()))
8822        S = S->getParent();
8823    } else {
8824      assert(TUK == TUK_Friend);
8825      // C++ [namespace.memdef]p3:
8826      //   If a friend declaration in a non-local class first declares a
8827      //   class or function, the friend class or function is a member of
8828      //   the innermost enclosing namespace.
8829      SearchDC = SearchDC->getEnclosingNamespaceContext();
8830    }
8831
8832    // In C++, we need to do a redeclaration lookup to properly
8833    // diagnose some problems.
8834    if (getLangOpts().CPlusPlus) {
8835      Previous.setRedeclarationKind(ForRedeclaration);
8836      LookupQualifiedName(Previous, SearchDC);
8837    }
8838  }
8839
8840  if (!Previous.empty()) {
8841    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8842
8843    // It's okay to have a tag decl in the same scope as a typedef
8844    // which hides a tag decl in the same scope.  Finding this
8845    // insanity with a redeclaration lookup can only actually happen
8846    // in C++.
8847    //
8848    // This is also okay for elaborated-type-specifiers, which is
8849    // technically forbidden by the current standard but which is
8850    // okay according to the likely resolution of an open issue;
8851    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8852    if (getLangOpts().CPlusPlus) {
8853      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8854        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8855          TagDecl *Tag = TT->getDecl();
8856          if (Tag->getDeclName() == Name &&
8857              Tag->getDeclContext()->getRedeclContext()
8858                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8859            PrevDecl = Tag;
8860            Previous.clear();
8861            Previous.addDecl(Tag);
8862            Previous.resolveKind();
8863          }
8864        }
8865      }
8866    }
8867
8868    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8869      // If this is a use of a previous tag, or if the tag is already declared
8870      // in the same scope (so that the definition/declaration completes or
8871      // rementions the tag), reuse the decl.
8872      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8873          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8874        // Make sure that this wasn't declared as an enum and now used as a
8875        // struct or something similar.
8876        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8877                                          TUK == TUK_Definition, KWLoc,
8878                                          *Name)) {
8879          bool SafeToContinue
8880            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8881               Kind != TTK_Enum);
8882          if (SafeToContinue)
8883            Diag(KWLoc, diag::err_use_with_wrong_tag)
8884              << Name
8885              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8886                                              PrevTagDecl->getKindName());
8887          else
8888            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8889          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8890
8891          if (SafeToContinue)
8892            Kind = PrevTagDecl->getTagKind();
8893          else {
8894            // Recover by making this an anonymous redefinition.
8895            Name = 0;
8896            Previous.clear();
8897            Invalid = true;
8898          }
8899        }
8900
8901        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8902          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8903
8904          // If this is an elaborated-type-specifier for a scoped enumeration,
8905          // the 'class' keyword is not necessary and not permitted.
8906          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8907            if (ScopedEnum)
8908              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8909                << PrevEnum->isScoped()
8910                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8911            return PrevTagDecl;
8912          }
8913
8914          QualType EnumUnderlyingTy;
8915          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8916            EnumUnderlyingTy = TI->getType();
8917          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8918            EnumUnderlyingTy = QualType(T, 0);
8919
8920          // All conflicts with previous declarations are recovered by
8921          // returning the previous declaration, unless this is a definition,
8922          // in which case we want the caller to bail out.
8923          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8924                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8925            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8926        }
8927
8928        if (!Invalid) {
8929          // If this is a use, just return the declaration we found.
8930
8931          // FIXME: In the future, return a variant or some other clue
8932          // for the consumer of this Decl to know it doesn't own it.
8933          // For our current ASTs this shouldn't be a problem, but will
8934          // need to be changed with DeclGroups.
8935          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8936               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8937            return PrevTagDecl;
8938
8939          // Diagnose attempts to redefine a tag.
8940          if (TUK == TUK_Definition) {
8941            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8942              // If we're defining a specialization and the previous definition
8943              // is from an implicit instantiation, don't emit an error
8944              // here; we'll catch this in the general case below.
8945              bool IsExplicitSpecializationAfterInstantiation = false;
8946              if (isExplicitSpecialization) {
8947                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8948                  IsExplicitSpecializationAfterInstantiation =
8949                    RD->getTemplateSpecializationKind() !=
8950                    TSK_ExplicitSpecialization;
8951                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8952                  IsExplicitSpecializationAfterInstantiation =
8953                    ED->getTemplateSpecializationKind() !=
8954                    TSK_ExplicitSpecialization;
8955              }
8956
8957              if (!IsExplicitSpecializationAfterInstantiation) {
8958                // A redeclaration in function prototype scope in C isn't
8959                // visible elsewhere, so merely issue a warning.
8960                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8961                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8962                else
8963                  Diag(NameLoc, diag::err_redefinition) << Name;
8964                Diag(Def->getLocation(), diag::note_previous_definition);
8965                // If this is a redefinition, recover by making this
8966                // struct be anonymous, which will make any later
8967                // references get the previous definition.
8968                Name = 0;
8969                Previous.clear();
8970                Invalid = true;
8971              }
8972            } else {
8973              // If the type is currently being defined, complain
8974              // about a nested redefinition.
8975              const TagType *Tag
8976                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8977              if (Tag->isBeingDefined()) {
8978                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8979                Diag(PrevTagDecl->getLocation(),
8980                     diag::note_previous_definition);
8981                Name = 0;
8982                Previous.clear();
8983                Invalid = true;
8984              }
8985            }
8986
8987            // Okay, this is definition of a previously declared or referenced
8988            // tag PrevDecl. We're going to create a new Decl for it.
8989          }
8990        }
8991        // If we get here we have (another) forward declaration or we
8992        // have a definition.  Just create a new decl.
8993
8994      } else {
8995        // If we get here, this is a definition of a new tag type in a nested
8996        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8997        // new decl/type.  We set PrevDecl to NULL so that the entities
8998        // have distinct types.
8999        Previous.clear();
9000      }
9001      // If we get here, we're going to create a new Decl. If PrevDecl
9002      // is non-NULL, it's a definition of the tag declared by
9003      // PrevDecl. If it's NULL, we have a new definition.
9004
9005
9006    // Otherwise, PrevDecl is not a tag, but was found with tag
9007    // lookup.  This is only actually possible in C++, where a few
9008    // things like templates still live in the tag namespace.
9009    } else {
9010      // Use a better diagnostic if an elaborated-type-specifier
9011      // found the wrong kind of type on the first
9012      // (non-redeclaration) lookup.
9013      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9014          !Previous.isForRedeclaration()) {
9015        unsigned Kind = 0;
9016        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9017        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9018        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9019        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9020        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9021        Invalid = true;
9022
9023      // Otherwise, only diagnose if the declaration is in scope.
9024      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9025                                isExplicitSpecialization)) {
9026        // do nothing
9027
9028      // Diagnose implicit declarations introduced by elaborated types.
9029      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9030        unsigned Kind = 0;
9031        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9032        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9033        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9034        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9035        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9036        Invalid = true;
9037
9038      // Otherwise it's a declaration.  Call out a particularly common
9039      // case here.
9040      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9041        unsigned Kind = 0;
9042        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9043        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9044          << Name << Kind << TND->getUnderlyingType();
9045        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9046        Invalid = true;
9047
9048      // Otherwise, diagnose.
9049      } else {
9050        // The tag name clashes with something else in the target scope,
9051        // issue an error and recover by making this tag be anonymous.
9052        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9053        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9054        Name = 0;
9055        Invalid = true;
9056      }
9057
9058      // The existing declaration isn't relevant to us; we're in a
9059      // new scope, so clear out the previous declaration.
9060      Previous.clear();
9061    }
9062  }
9063
9064CreateNewDecl:
9065
9066  TagDecl *PrevDecl = 0;
9067  if (Previous.isSingleResult())
9068    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9069
9070  // If there is an identifier, use the location of the identifier as the
9071  // location of the decl, otherwise use the location of the struct/union
9072  // keyword.
9073  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9074
9075  // Otherwise, create a new declaration. If there is a previous
9076  // declaration of the same entity, the two will be linked via
9077  // PrevDecl.
9078  TagDecl *New;
9079
9080  bool IsForwardReference = false;
9081  if (Kind == TTK_Enum) {
9082    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9083    // enum X { A, B, C } D;    D should chain to X.
9084    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9085                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9086                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9087    // If this is an undefined enum, warn.
9088    if (TUK != TUK_Definition && !Invalid) {
9089      TagDecl *Def;
9090      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
9091        // C++0x: 7.2p2: opaque-enum-declaration.
9092        // Conflicts are diagnosed above. Do nothing.
9093      }
9094      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9095        Diag(Loc, diag::ext_forward_ref_enum_def)
9096          << New;
9097        Diag(Def->getLocation(), diag::note_previous_definition);
9098      } else {
9099        unsigned DiagID = diag::ext_forward_ref_enum;
9100        if (getLangOpts().MicrosoftMode)
9101          DiagID = diag::ext_ms_forward_ref_enum;
9102        else if (getLangOpts().CPlusPlus)
9103          DiagID = diag::err_forward_ref_enum;
9104        Diag(Loc, DiagID);
9105
9106        // If this is a forward-declared reference to an enumeration, make a
9107        // note of it; we won't actually be introducing the declaration into
9108        // the declaration context.
9109        if (TUK == TUK_Reference)
9110          IsForwardReference = true;
9111      }
9112    }
9113
9114    if (EnumUnderlying) {
9115      EnumDecl *ED = cast<EnumDecl>(New);
9116      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9117        ED->setIntegerTypeSourceInfo(TI);
9118      else
9119        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9120      ED->setPromotionType(ED->getIntegerType());
9121    }
9122
9123  } else {
9124    // struct/union/class
9125
9126    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9127    // struct X { int A; } D;    D should chain to X.
9128    if (getLangOpts().CPlusPlus) {
9129      // FIXME: Look for a way to use RecordDecl for simple structs.
9130      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9131                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9132
9133      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9134        StdBadAlloc = cast<CXXRecordDecl>(New);
9135    } else
9136      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9137                               cast_or_null<RecordDecl>(PrevDecl));
9138  }
9139
9140  // Maybe add qualifier info.
9141  if (SS.isNotEmpty()) {
9142    if (SS.isSet()) {
9143      // If this is either a declaration or a definition, check the
9144      // nested-name-specifier against the current context. We don't do this
9145      // for explicit specializations, because they have similar checking
9146      // (with more specific diagnostics) in the call to
9147      // CheckMemberSpecialization, below.
9148      if (!isExplicitSpecialization &&
9149          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9150          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9151        Invalid = true;
9152
9153      New->setQualifierInfo(SS.getWithLocInContext(Context));
9154      if (TemplateParameterLists.size() > 0) {
9155        New->setTemplateParameterListsInfo(Context,
9156                                           TemplateParameterLists.size(),
9157                                           TemplateParameterLists.data());
9158      }
9159    }
9160    else
9161      Invalid = true;
9162  }
9163
9164  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9165    // Add alignment attributes if necessary; these attributes are checked when
9166    // the ASTContext lays out the structure.
9167    //
9168    // It is important for implementing the correct semantics that this
9169    // happen here (in act on tag decl). The #pragma pack stack is
9170    // maintained as a result of parser callbacks which can occur at
9171    // many points during the parsing of a struct declaration (because
9172    // the #pragma tokens are effectively skipped over during the
9173    // parsing of the struct).
9174    if (TUK == TUK_Definition) {
9175      AddAlignmentAttributesForRecord(RD);
9176      AddMsStructLayoutForRecord(RD);
9177    }
9178  }
9179
9180  if (ModulePrivateLoc.isValid()) {
9181    if (isExplicitSpecialization)
9182      Diag(New->getLocation(), diag::err_module_private_specialization)
9183        << 2
9184        << FixItHint::CreateRemoval(ModulePrivateLoc);
9185    // __module_private__ does not apply to local classes. However, we only
9186    // diagnose this as an error when the declaration specifiers are
9187    // freestanding. Here, we just ignore the __module_private__.
9188    else if (!SearchDC->isFunctionOrMethod())
9189      New->setModulePrivate();
9190  }
9191
9192  // If this is a specialization of a member class (of a class template),
9193  // check the specialization.
9194  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9195    Invalid = true;
9196
9197  if (Invalid)
9198    New->setInvalidDecl();
9199
9200  if (Attr)
9201    ProcessDeclAttributeList(S, New, Attr);
9202
9203  // If we're declaring or defining a tag in function prototype scope
9204  // in C, note that this type can only be used within the function.
9205  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9206    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9207
9208  // Set the lexical context. If the tag has a C++ scope specifier, the
9209  // lexical context will be different from the semantic context.
9210  New->setLexicalDeclContext(CurContext);
9211
9212  // Mark this as a friend decl if applicable.
9213  // In Microsoft mode, a friend declaration also acts as a forward
9214  // declaration so we always pass true to setObjectOfFriendDecl to make
9215  // the tag name visible.
9216  if (TUK == TUK_Friend)
9217    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9218                               getLangOpts().MicrosoftExt);
9219
9220  // Set the access specifier.
9221  if (!Invalid && SearchDC->isRecord())
9222    SetMemberAccessSpecifier(New, PrevDecl, AS);
9223
9224  if (TUK == TUK_Definition)
9225    New->startDefinition();
9226
9227  // If this has an identifier, add it to the scope stack.
9228  if (TUK == TUK_Friend) {
9229    // We might be replacing an existing declaration in the lookup tables;
9230    // if so, borrow its access specifier.
9231    if (PrevDecl)
9232      New->setAccess(PrevDecl->getAccess());
9233
9234    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9235    DC->makeDeclVisibleInContext(New);
9236    if (Name) // can be null along some error paths
9237      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9238        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9239  } else if (Name) {
9240    S = getNonFieldDeclScope(S);
9241    PushOnScopeChains(New, S, !IsForwardReference);
9242    if (IsForwardReference)
9243      SearchDC->makeDeclVisibleInContext(New);
9244
9245  } else {
9246    CurContext->addDecl(New);
9247  }
9248
9249  // If this is the C FILE type, notify the AST context.
9250  if (IdentifierInfo *II = New->getIdentifier())
9251    if (!New->isInvalidDecl() &&
9252        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9253        II->isStr("FILE"))
9254      Context.setFILEDecl(New);
9255
9256  // If we were in function prototype scope (and not in C++ mode), add this
9257  // tag to the list of decls to inject into the function definition scope.
9258  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9259      InFunctionDeclarator && Name)
9260    DeclsInPrototypeScope.push_back(New);
9261
9262  if (PrevDecl)
9263    mergeDeclAttributes(New, PrevDecl);
9264
9265  // If there's a #pragma GCC visibility in scope, set the visibility of this
9266  // record.
9267  AddPushedVisibilityAttribute(New);
9268
9269  OwnedDecl = true;
9270  return New;
9271}
9272
9273void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9274  AdjustDeclIfTemplate(TagD);
9275  TagDecl *Tag = cast<TagDecl>(TagD);
9276
9277  // Enter the tag context.
9278  PushDeclContext(S, Tag);
9279
9280  ActOnDocumentableDecl(TagD);
9281
9282  // If there's a #pragma GCC visibility in scope, set the visibility of this
9283  // record.
9284  AddPushedVisibilityAttribute(Tag);
9285}
9286
9287Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9288  assert(isa<ObjCContainerDecl>(IDecl) &&
9289         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9290  DeclContext *OCD = cast<DeclContext>(IDecl);
9291  assert(getContainingDC(OCD) == CurContext &&
9292      "The next DeclContext should be lexically contained in the current one.");
9293  CurContext = OCD;
9294  return IDecl;
9295}
9296
9297void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9298                                           SourceLocation FinalLoc,
9299                                           SourceLocation LBraceLoc) {
9300  AdjustDeclIfTemplate(TagD);
9301  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9302
9303  FieldCollector->StartClass();
9304
9305  if (!Record->getIdentifier())
9306    return;
9307
9308  if (FinalLoc.isValid())
9309    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9310
9311  // C++ [class]p2:
9312  //   [...] The class-name is also inserted into the scope of the
9313  //   class itself; this is known as the injected-class-name. For
9314  //   purposes of access checking, the injected-class-name is treated
9315  //   as if it were a public member name.
9316  CXXRecordDecl *InjectedClassName
9317    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9318                            Record->getLocStart(), Record->getLocation(),
9319                            Record->getIdentifier(),
9320                            /*PrevDecl=*/0,
9321                            /*DelayTypeCreation=*/true);
9322  Context.getTypeDeclType(InjectedClassName, Record);
9323  InjectedClassName->setImplicit();
9324  InjectedClassName->setAccess(AS_public);
9325  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9326      InjectedClassName->setDescribedClassTemplate(Template);
9327  PushOnScopeChains(InjectedClassName, S);
9328  assert(InjectedClassName->isInjectedClassName() &&
9329         "Broken injected-class-name");
9330}
9331
9332void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9333                                    SourceLocation RBraceLoc) {
9334  AdjustDeclIfTemplate(TagD);
9335  TagDecl *Tag = cast<TagDecl>(TagD);
9336  Tag->setRBraceLoc(RBraceLoc);
9337
9338  // Make sure we "complete" the definition even it is invalid.
9339  if (Tag->isBeingDefined()) {
9340    assert(Tag->isInvalidDecl() && "We should already have completed it");
9341    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9342      RD->completeDefinition();
9343  }
9344
9345  if (isa<CXXRecordDecl>(Tag))
9346    FieldCollector->FinishClass();
9347
9348  // Exit this scope of this tag's definition.
9349  PopDeclContext();
9350
9351  // Notify the consumer that we've defined a tag.
9352  Consumer.HandleTagDeclDefinition(Tag);
9353}
9354
9355void Sema::ActOnObjCContainerFinishDefinition() {
9356  // Exit this scope of this interface definition.
9357  PopDeclContext();
9358}
9359
9360void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9361  assert(DC == CurContext && "Mismatch of container contexts");
9362  OriginalLexicalContext = DC;
9363  ActOnObjCContainerFinishDefinition();
9364}
9365
9366void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9367  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9368  OriginalLexicalContext = 0;
9369}
9370
9371void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9372  AdjustDeclIfTemplate(TagD);
9373  TagDecl *Tag = cast<TagDecl>(TagD);
9374  Tag->setInvalidDecl();
9375
9376  // Make sure we "complete" the definition even it is invalid.
9377  if (Tag->isBeingDefined()) {
9378    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9379      RD->completeDefinition();
9380  }
9381
9382  // We're undoing ActOnTagStartDefinition here, not
9383  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9384  // the FieldCollector.
9385
9386  PopDeclContext();
9387}
9388
9389// Note that FieldName may be null for anonymous bitfields.
9390ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9391                                IdentifierInfo *FieldName,
9392                                QualType FieldTy, Expr *BitWidth,
9393                                bool *ZeroWidth) {
9394  // Default to true; that shouldn't confuse checks for emptiness
9395  if (ZeroWidth)
9396    *ZeroWidth = true;
9397
9398  // C99 6.7.2.1p4 - verify the field type.
9399  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9400  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9401    // Handle incomplete types with specific error.
9402    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9403      return ExprError();
9404    if (FieldName)
9405      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9406        << FieldName << FieldTy << BitWidth->getSourceRange();
9407    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9408      << FieldTy << BitWidth->getSourceRange();
9409  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9410                                             UPPC_BitFieldWidth))
9411    return ExprError();
9412
9413  // If the bit-width is type- or value-dependent, don't try to check
9414  // it now.
9415  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9416    return Owned(BitWidth);
9417
9418  llvm::APSInt Value;
9419  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9420  if (ICE.isInvalid())
9421    return ICE;
9422  BitWidth = ICE.take();
9423
9424  if (Value != 0 && ZeroWidth)
9425    *ZeroWidth = false;
9426
9427  // Zero-width bitfield is ok for anonymous field.
9428  if (Value == 0 && FieldName)
9429    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9430
9431  if (Value.isSigned() && Value.isNegative()) {
9432    if (FieldName)
9433      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9434               << FieldName << Value.toString(10);
9435    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9436      << Value.toString(10);
9437  }
9438
9439  if (!FieldTy->isDependentType()) {
9440    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9441    if (Value.getZExtValue() > TypeSize) {
9442      if (!getLangOpts().CPlusPlus) {
9443        if (FieldName)
9444          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9445            << FieldName << (unsigned)Value.getZExtValue()
9446            << (unsigned)TypeSize;
9447
9448        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9449          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9450      }
9451
9452      if (FieldName)
9453        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9454          << FieldName << (unsigned)Value.getZExtValue()
9455          << (unsigned)TypeSize;
9456      else
9457        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9458          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9459    }
9460  }
9461
9462  return Owned(BitWidth);
9463}
9464
9465/// ActOnField - Each field of a C struct/union is passed into this in order
9466/// to create a FieldDecl object for it.
9467Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9468                       Declarator &D, Expr *BitfieldWidth) {
9469  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9470                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9471                               /*InitStyle=*/ICIS_NoInit, AS_public);
9472  return Res;
9473}
9474
9475/// HandleField - Analyze a field of a C struct or a C++ data member.
9476///
9477FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9478                             SourceLocation DeclStart,
9479                             Declarator &D, Expr *BitWidth,
9480                             InClassInitStyle InitStyle,
9481                             AccessSpecifier AS) {
9482  IdentifierInfo *II = D.getIdentifier();
9483  SourceLocation Loc = DeclStart;
9484  if (II) Loc = D.getIdentifierLoc();
9485
9486  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9487  QualType T = TInfo->getType();
9488  if (getLangOpts().CPlusPlus) {
9489    CheckExtraCXXDefaultArguments(D);
9490
9491    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9492                                        UPPC_DataMemberType)) {
9493      D.setInvalidType();
9494      T = Context.IntTy;
9495      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9496    }
9497  }
9498
9499  DiagnoseFunctionSpecifiers(D);
9500
9501  if (D.getDeclSpec().isThreadSpecified())
9502    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9503  if (D.getDeclSpec().isConstexprSpecified())
9504    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9505      << 2;
9506
9507  // Check to see if this name was declared as a member previously
9508  NamedDecl *PrevDecl = 0;
9509  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9510  LookupName(Previous, S);
9511  switch (Previous.getResultKind()) {
9512    case LookupResult::Found:
9513    case LookupResult::FoundUnresolvedValue:
9514      PrevDecl = Previous.getAsSingle<NamedDecl>();
9515      break;
9516
9517    case LookupResult::FoundOverloaded:
9518      PrevDecl = Previous.getRepresentativeDecl();
9519      break;
9520
9521    case LookupResult::NotFound:
9522    case LookupResult::NotFoundInCurrentInstantiation:
9523    case LookupResult::Ambiguous:
9524      break;
9525  }
9526  Previous.suppressDiagnostics();
9527
9528  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9529    // Maybe we will complain about the shadowed template parameter.
9530    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9531    // Just pretend that we didn't see the previous declaration.
9532    PrevDecl = 0;
9533  }
9534
9535  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9536    PrevDecl = 0;
9537
9538  bool Mutable
9539    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9540  SourceLocation TSSL = D.getLocStart();
9541  FieldDecl *NewFD
9542    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9543                     TSSL, AS, PrevDecl, &D);
9544
9545  if (NewFD->isInvalidDecl())
9546    Record->setInvalidDecl();
9547
9548  if (D.getDeclSpec().isModulePrivateSpecified())
9549    NewFD->setModulePrivate();
9550
9551  if (NewFD->isInvalidDecl() && PrevDecl) {
9552    // Don't introduce NewFD into scope; there's already something
9553    // with the same name in the same scope.
9554  } else if (II) {
9555    PushOnScopeChains(NewFD, S);
9556  } else
9557    Record->addDecl(NewFD);
9558
9559  return NewFD;
9560}
9561
9562/// \brief Build a new FieldDecl and check its well-formedness.
9563///
9564/// This routine builds a new FieldDecl given the fields name, type,
9565/// record, etc. \p PrevDecl should refer to any previous declaration
9566/// with the same name and in the same scope as the field to be
9567/// created.
9568///
9569/// \returns a new FieldDecl.
9570///
9571/// \todo The Declarator argument is a hack. It will be removed once
9572FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9573                                TypeSourceInfo *TInfo,
9574                                RecordDecl *Record, SourceLocation Loc,
9575                                bool Mutable, Expr *BitWidth,
9576                                InClassInitStyle InitStyle,
9577                                SourceLocation TSSL,
9578                                AccessSpecifier AS, NamedDecl *PrevDecl,
9579                                Declarator *D) {
9580  IdentifierInfo *II = Name.getAsIdentifierInfo();
9581  bool InvalidDecl = false;
9582  if (D) InvalidDecl = D->isInvalidType();
9583
9584  // If we receive a broken type, recover by assuming 'int' and
9585  // marking this declaration as invalid.
9586  if (T.isNull()) {
9587    InvalidDecl = true;
9588    T = Context.IntTy;
9589  }
9590
9591  QualType EltTy = Context.getBaseElementType(T);
9592  if (!EltTy->isDependentType()) {
9593    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9594      // Fields of incomplete type force their record to be invalid.
9595      Record->setInvalidDecl();
9596      InvalidDecl = true;
9597    } else {
9598      NamedDecl *Def;
9599      EltTy->isIncompleteType(&Def);
9600      if (Def && Def->isInvalidDecl()) {
9601        Record->setInvalidDecl();
9602        InvalidDecl = true;
9603      }
9604    }
9605  }
9606
9607  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9608  // than a variably modified type.
9609  if (!InvalidDecl && T->isVariablyModifiedType()) {
9610    bool SizeIsNegative;
9611    llvm::APSInt Oversized;
9612
9613    TypeSourceInfo *FixedTInfo =
9614      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
9615                                                    SizeIsNegative,
9616                                                    Oversized);
9617    if (FixedTInfo) {
9618      Diag(Loc, diag::warn_illegal_constant_array_size);
9619      TInfo = FixedTInfo;
9620      T = FixedTInfo->getType();
9621    } else {
9622      if (SizeIsNegative)
9623        Diag(Loc, diag::err_typecheck_negative_array_size);
9624      else if (Oversized.getBoolValue())
9625        Diag(Loc, diag::err_array_too_large)
9626          << Oversized.toString(10);
9627      else
9628        Diag(Loc, diag::err_typecheck_field_variable_size);
9629      InvalidDecl = true;
9630    }
9631  }
9632
9633  // Fields can not have abstract class types
9634  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9635                                             diag::err_abstract_type_in_decl,
9636                                             AbstractFieldType))
9637    InvalidDecl = true;
9638
9639  bool ZeroWidth = false;
9640  // If this is declared as a bit-field, check the bit-field.
9641  if (!InvalidDecl && BitWidth) {
9642    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9643    if (!BitWidth) {
9644      InvalidDecl = true;
9645      BitWidth = 0;
9646      ZeroWidth = false;
9647    }
9648  }
9649
9650  // Check that 'mutable' is consistent with the type of the declaration.
9651  if (!InvalidDecl && Mutable) {
9652    unsigned DiagID = 0;
9653    if (T->isReferenceType())
9654      DiagID = diag::err_mutable_reference;
9655    else if (T.isConstQualified())
9656      DiagID = diag::err_mutable_const;
9657
9658    if (DiagID) {
9659      SourceLocation ErrLoc = Loc;
9660      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9661        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9662      Diag(ErrLoc, DiagID);
9663      Mutable = false;
9664      InvalidDecl = true;
9665    }
9666  }
9667
9668  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9669                                       BitWidth, Mutable, InitStyle);
9670  if (InvalidDecl)
9671    NewFD->setInvalidDecl();
9672
9673  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9674    Diag(Loc, diag::err_duplicate_member) << II;
9675    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9676    NewFD->setInvalidDecl();
9677  }
9678
9679  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9680    if (Record->isUnion()) {
9681      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9682        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9683        if (RDecl->getDefinition()) {
9684          // C++ [class.union]p1: An object of a class with a non-trivial
9685          // constructor, a non-trivial copy constructor, a non-trivial
9686          // destructor, or a non-trivial copy assignment operator
9687          // cannot be a member of a union, nor can an array of such
9688          // objects.
9689          if (CheckNontrivialField(NewFD))
9690            NewFD->setInvalidDecl();
9691        }
9692      }
9693
9694      // C++ [class.union]p1: If a union contains a member of reference type,
9695      // the program is ill-formed.
9696      if (EltTy->isReferenceType()) {
9697        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9698          << NewFD->getDeclName() << EltTy;
9699        NewFD->setInvalidDecl();
9700      }
9701    }
9702  }
9703
9704  // FIXME: We need to pass in the attributes given an AST
9705  // representation, not a parser representation.
9706  if (D)
9707    // FIXME: What to pass instead of TUScope?
9708    ProcessDeclAttributes(TUScope, NewFD, *D);
9709
9710  // In auto-retain/release, infer strong retension for fields of
9711  // retainable type.
9712  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9713    NewFD->setInvalidDecl();
9714
9715  if (T.isObjCGCWeak())
9716    Diag(Loc, diag::warn_attribute_weak_on_field);
9717
9718  NewFD->setAccess(AS);
9719  return NewFD;
9720}
9721
9722bool Sema::CheckNontrivialField(FieldDecl *FD) {
9723  assert(FD);
9724  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9725
9726  if (FD->isInvalidDecl())
9727    return true;
9728
9729  QualType EltTy = Context.getBaseElementType(FD->getType());
9730  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9731    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9732    if (RDecl->getDefinition()) {
9733      // We check for copy constructors before constructors
9734      // because otherwise we'll never get complaints about
9735      // copy constructors.
9736
9737      CXXSpecialMember member = CXXInvalid;
9738      // We're required to check for any non-trivial constructors. Since the
9739      // implicit default constructor is suppressed if there are any
9740      // user-declared constructors, we just need to check that there is a
9741      // trivial default constructor and a trivial copy constructor. (We don't
9742      // worry about move constructors here, since this is a C++98 check.)
9743      if (RDecl->hasNonTrivialCopyConstructor())
9744        member = CXXCopyConstructor;
9745      else if (!RDecl->hasTrivialDefaultConstructor())
9746        member = CXXDefaultConstructor;
9747      else if (RDecl->hasNonTrivialCopyAssignment())
9748        member = CXXCopyAssignment;
9749      else if (RDecl->hasNonTrivialDestructor())
9750        member = CXXDestructor;
9751
9752      if (member != CXXInvalid) {
9753        if (!getLangOpts().CPlusPlus0x &&
9754            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9755          // Objective-C++ ARC: it is an error to have a non-trivial field of
9756          // a union. However, system headers in Objective-C programs
9757          // occasionally have Objective-C lifetime objects within unions,
9758          // and rather than cause the program to fail, we make those
9759          // members unavailable.
9760          SourceLocation Loc = FD->getLocation();
9761          if (getSourceManager().isInSystemHeader(Loc)) {
9762            if (!FD->hasAttr<UnavailableAttr>())
9763              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9764                                  "this system field has retaining ownership"));
9765            return false;
9766          }
9767        }
9768
9769        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9770               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9771               diag::err_illegal_union_or_anon_struct_member)
9772          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9773        DiagnoseNontrivial(RT, member);
9774        return !getLangOpts().CPlusPlus0x;
9775      }
9776    }
9777  }
9778
9779  return false;
9780}
9781
9782/// If the given constructor is user-declared, produce a diagnostic explaining
9783/// that it makes the class non-trivial.
9784static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9785                                               CXXConstructorDecl *CD,
9786                                               Sema::CXXSpecialMember CSM) {
9787  if (CD->isImplicit())
9788    return false;
9789
9790  SourceLocation CtorLoc = CD->getLocation();
9791  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9792  return true;
9793}
9794
9795/// DiagnoseNontrivial - Given that a class has a non-trivial
9796/// special member, figure out why.
9797/// FIXME: These checks are not correct in C++11 mode. Currently, this is OK
9798/// since we only use this in C++11 for a -Wc++98-compat warning.
9799void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9800  QualType QT(T, 0U);
9801  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9802
9803  // Check whether the member was user-declared.
9804  switch (member) {
9805  case CXXInvalid:
9806    break;
9807
9808  case CXXDefaultConstructor:
9809    if (RD->hasUserDeclaredConstructor()) {
9810      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9811      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9812        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9813          return;
9814
9815      // No user-delcared constructors; look for constructor templates.
9816      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9817          tmpl_iter;
9818      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9819           TI != TE; ++TI) {
9820        CXXConstructorDecl *CD =
9821            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9822        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9823          return;
9824      }
9825    }
9826    break;
9827
9828  case CXXCopyConstructor:
9829    if (RD->hasUserDeclaredCopyConstructor()) {
9830      SourceLocation CtorLoc =
9831        RD->getCopyConstructor(0)->getLocation();
9832      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9833      return;
9834    }
9835    break;
9836
9837  case CXXMoveConstructor:
9838    if (RD->hasUserDeclaredMoveConstructor()) {
9839      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9840      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9841      return;
9842    }
9843    break;
9844
9845  case CXXCopyAssignment:
9846    if (RD->hasUserDeclaredCopyAssignment()) {
9847      SourceLocation AssignLoc =
9848        RD->getCopyAssignmentOperator(0)->getLocation();
9849      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9850      return;
9851    }
9852    break;
9853
9854  case CXXMoveAssignment:
9855    if (RD->hasUserDeclaredMoveAssignment()) {
9856      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9857      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9858      return;
9859    }
9860    break;
9861
9862  case CXXDestructor:
9863    if (RD->hasUserDeclaredDestructor()) {
9864      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9865      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9866      return;
9867    }
9868    break;
9869  }
9870
9871  typedef CXXRecordDecl::base_class_iterator base_iter;
9872
9873  // Virtual bases and members inhibit trivial copying/construction,
9874  // but not trivial destruction.
9875  if (member != CXXDestructor) {
9876    // Check for virtual bases.  vbases includes indirect virtual bases,
9877    // so we just iterate through the direct bases.
9878    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9879      if (bi->isVirtual()) {
9880        SourceLocation BaseLoc = bi->getLocStart();
9881        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9882        return;
9883      }
9884
9885    // Check for virtual methods.
9886    typedef CXXRecordDecl::method_iterator meth_iter;
9887    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9888         ++mi) {
9889      if (mi->isVirtual()) {
9890        SourceLocation MLoc = mi->getLocStart();
9891        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9892        return;
9893      }
9894    }
9895  }
9896
9897  bool (CXXRecordDecl::*hasNonTrivial)() const;
9898  switch (member) {
9899  case CXXDefaultConstructor:
9900    hasNonTrivial = &CXXRecordDecl::hasNonTrivialDefaultConstructor; break;
9901  case CXXCopyConstructor:
9902    hasNonTrivial = &CXXRecordDecl::hasNonTrivialCopyConstructor; break;
9903  case CXXCopyAssignment:
9904    hasNonTrivial = &CXXRecordDecl::hasNonTrivialCopyAssignment; break;
9905  case CXXMoveConstructor:
9906    hasNonTrivial = &CXXRecordDecl::hasNonTrivialMoveConstructor; break;
9907  case CXXMoveAssignment:
9908    hasNonTrivial = &CXXRecordDecl::hasNonTrivialMoveAssignment; break;
9909  case CXXDestructor:
9910    hasNonTrivial = &CXXRecordDecl::hasNonTrivialDestructor; break;
9911  case CXXInvalid:
9912    llvm_unreachable("unexpected special member");
9913  }
9914
9915  // Check for nontrivial bases (and recurse).
9916  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9917    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9918    assert(BaseRT && "Don't know how to handle dependent bases");
9919    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9920    if ((BaseRecTy->*hasNonTrivial)()) {
9921      SourceLocation BaseLoc = bi->getLocStart();
9922      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9923      DiagnoseNontrivial(BaseRT, member);
9924      return;
9925    }
9926  }
9927
9928  // Check for nontrivial members (and recurse).
9929  typedef RecordDecl::field_iterator field_iter;
9930  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9931       ++fi) {
9932    QualType EltTy = Context.getBaseElementType(fi->getType());
9933    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9934      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9935
9936      if ((EltRD->*hasNonTrivial)()) {
9937        SourceLocation FLoc = fi->getLocation();
9938        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9939        DiagnoseNontrivial(EltRT, member);
9940        return;
9941      }
9942    }
9943
9944    if (EltTy->isObjCLifetimeType()) {
9945      switch (EltTy.getObjCLifetime()) {
9946      case Qualifiers::OCL_None:
9947      case Qualifiers::OCL_ExplicitNone:
9948        break;
9949
9950      case Qualifiers::OCL_Autoreleasing:
9951      case Qualifiers::OCL_Weak:
9952      case Qualifiers::OCL_Strong:
9953        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9954          << QT << EltTy.getObjCLifetime();
9955        return;
9956      }
9957    }
9958  }
9959}
9960
9961/// TranslateIvarVisibility - Translate visibility from a token ID to an
9962///  AST enum value.
9963static ObjCIvarDecl::AccessControl
9964TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9965  switch (ivarVisibility) {
9966  default: llvm_unreachable("Unknown visitibility kind");
9967  case tok::objc_private: return ObjCIvarDecl::Private;
9968  case tok::objc_public: return ObjCIvarDecl::Public;
9969  case tok::objc_protected: return ObjCIvarDecl::Protected;
9970  case tok::objc_package: return ObjCIvarDecl::Package;
9971  }
9972}
9973
9974/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9975/// in order to create an IvarDecl object for it.
9976Decl *Sema::ActOnIvar(Scope *S,
9977                                SourceLocation DeclStart,
9978                                Declarator &D, Expr *BitfieldWidth,
9979                                tok::ObjCKeywordKind Visibility) {
9980
9981  IdentifierInfo *II = D.getIdentifier();
9982  Expr *BitWidth = (Expr*)BitfieldWidth;
9983  SourceLocation Loc = DeclStart;
9984  if (II) Loc = D.getIdentifierLoc();
9985
9986  // FIXME: Unnamed fields can be handled in various different ways, for
9987  // example, unnamed unions inject all members into the struct namespace!
9988
9989  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9990  QualType T = TInfo->getType();
9991
9992  if (BitWidth) {
9993    // 6.7.2.1p3, 6.7.2.1p4
9994    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9995    if (!BitWidth)
9996      D.setInvalidType();
9997  } else {
9998    // Not a bitfield.
9999
10000    // validate II.
10001
10002  }
10003  if (T->isReferenceType()) {
10004    Diag(Loc, diag::err_ivar_reference_type);
10005    D.setInvalidType();
10006  }
10007  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10008  // than a variably modified type.
10009  else if (T->isVariablyModifiedType()) {
10010    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10011    D.setInvalidType();
10012  }
10013
10014  // Get the visibility (access control) for this ivar.
10015  ObjCIvarDecl::AccessControl ac =
10016    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10017                                        : ObjCIvarDecl::None;
10018  // Must set ivar's DeclContext to its enclosing interface.
10019  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10020  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10021    return 0;
10022  ObjCContainerDecl *EnclosingContext;
10023  if (ObjCImplementationDecl *IMPDecl =
10024      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10025    if (LangOpts.ObjCRuntime.isFragile()) {
10026    // Case of ivar declared in an implementation. Context is that of its class.
10027      EnclosingContext = IMPDecl->getClassInterface();
10028      assert(EnclosingContext && "Implementation has no class interface!");
10029    }
10030    else
10031      EnclosingContext = EnclosingDecl;
10032  } else {
10033    if (ObjCCategoryDecl *CDecl =
10034        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10035      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10036        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10037        return 0;
10038      }
10039    }
10040    EnclosingContext = EnclosingDecl;
10041  }
10042
10043  // Construct the decl.
10044  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10045                                             DeclStart, Loc, II, T,
10046                                             TInfo, ac, (Expr *)BitfieldWidth);
10047
10048  if (II) {
10049    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10050                                           ForRedeclaration);
10051    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10052        && !isa<TagDecl>(PrevDecl)) {
10053      Diag(Loc, diag::err_duplicate_member) << II;
10054      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10055      NewID->setInvalidDecl();
10056    }
10057  }
10058
10059  // Process attributes attached to the ivar.
10060  ProcessDeclAttributes(S, NewID, D);
10061
10062  if (D.isInvalidType())
10063    NewID->setInvalidDecl();
10064
10065  // In ARC, infer 'retaining' for ivars of retainable type.
10066  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10067    NewID->setInvalidDecl();
10068
10069  if (D.getDeclSpec().isModulePrivateSpecified())
10070    NewID->setModulePrivate();
10071
10072  if (II) {
10073    // FIXME: When interfaces are DeclContexts, we'll need to add
10074    // these to the interface.
10075    S->AddDecl(NewID);
10076    IdResolver.AddDecl(NewID);
10077  }
10078
10079  if (LangOpts.ObjCRuntime.isNonFragile() &&
10080      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10081    Diag(Loc, diag::warn_ivars_in_interface);
10082
10083  return NewID;
10084}
10085
10086/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10087/// class and class extensions. For every class @interface and class
10088/// extension @interface, if the last ivar is a bitfield of any type,
10089/// then add an implicit `char :0` ivar to the end of that interface.
10090void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10091                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10092  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10093    return;
10094
10095  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10096  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10097
10098  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10099    return;
10100  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10101  if (!ID) {
10102    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10103      if (!CD->IsClassExtension())
10104        return;
10105    }
10106    // No need to add this to end of @implementation.
10107    else
10108      return;
10109  }
10110  // All conditions are met. Add a new bitfield to the tail end of ivars.
10111  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10112  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10113
10114  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10115                              DeclLoc, DeclLoc, 0,
10116                              Context.CharTy,
10117                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10118                                                               DeclLoc),
10119                              ObjCIvarDecl::Private, BW,
10120                              true);
10121  AllIvarDecls.push_back(Ivar);
10122}
10123
10124void Sema::ActOnFields(Scope* S,
10125                       SourceLocation RecLoc, Decl *EnclosingDecl,
10126                       llvm::ArrayRef<Decl *> Fields,
10127                       SourceLocation LBrac, SourceLocation RBrac,
10128                       AttributeList *Attr) {
10129  assert(EnclosingDecl && "missing record or interface decl");
10130
10131  // If this is an Objective-C @implementation or category and we have
10132  // new fields here we should reset the layout of the interface since
10133  // it will now change.
10134  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10135    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10136    switch (DC->getKind()) {
10137    default: break;
10138    case Decl::ObjCCategory:
10139      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10140      break;
10141    case Decl::ObjCImplementation:
10142      Context.
10143        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10144      break;
10145    }
10146  }
10147
10148  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10149
10150  // Start counting up the number of named members; make sure to include
10151  // members of anonymous structs and unions in the total.
10152  unsigned NumNamedMembers = 0;
10153  if (Record) {
10154    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10155                                   e = Record->decls_end(); i != e; i++) {
10156      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10157        if (IFD->getDeclName())
10158          ++NumNamedMembers;
10159    }
10160  }
10161
10162  // Verify that all the fields are okay.
10163  SmallVector<FieldDecl*, 32> RecFields;
10164
10165  bool ARCErrReported = false;
10166  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10167       i != end; ++i) {
10168    FieldDecl *FD = cast<FieldDecl>(*i);
10169
10170    // Get the type for the field.
10171    const Type *FDTy = FD->getType().getTypePtr();
10172
10173    if (!FD->isAnonymousStructOrUnion()) {
10174      // Remember all fields written by the user.
10175      RecFields.push_back(FD);
10176    }
10177
10178    // If the field is already invalid for some reason, don't emit more
10179    // diagnostics about it.
10180    if (FD->isInvalidDecl()) {
10181      EnclosingDecl->setInvalidDecl();
10182      continue;
10183    }
10184
10185    // C99 6.7.2.1p2:
10186    //   A structure or union shall not contain a member with
10187    //   incomplete or function type (hence, a structure shall not
10188    //   contain an instance of itself, but may contain a pointer to
10189    //   an instance of itself), except that the last member of a
10190    //   structure with more than one named member may have incomplete
10191    //   array type; such a structure (and any union containing,
10192    //   possibly recursively, a member that is such a structure)
10193    //   shall not be a member of a structure or an element of an
10194    //   array.
10195    if (FDTy->isFunctionType()) {
10196      // Field declared as a function.
10197      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10198        << FD->getDeclName();
10199      FD->setInvalidDecl();
10200      EnclosingDecl->setInvalidDecl();
10201      continue;
10202    } else if (FDTy->isIncompleteArrayType() && Record &&
10203               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10204                ((getLangOpts().MicrosoftExt ||
10205                  getLangOpts().CPlusPlus) &&
10206                 (i + 1 == Fields.end() || Record->isUnion())))) {
10207      // Flexible array member.
10208      // Microsoft and g++ is more permissive regarding flexible array.
10209      // It will accept flexible array in union and also
10210      // as the sole element of a struct/class.
10211      if (getLangOpts().MicrosoftExt) {
10212        if (Record->isUnion())
10213          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10214            << FD->getDeclName();
10215        else if (Fields.size() == 1)
10216          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10217            << FD->getDeclName() << Record->getTagKind();
10218      } else if (getLangOpts().CPlusPlus) {
10219        if (Record->isUnion())
10220          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10221            << FD->getDeclName();
10222        else if (Fields.size() == 1)
10223          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10224            << FD->getDeclName() << Record->getTagKind();
10225      } else if (!getLangOpts().C99) {
10226      if (Record->isUnion())
10227        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10228          << FD->getDeclName();
10229      else
10230        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10231          << FD->getDeclName() << Record->getTagKind();
10232      } else if (NumNamedMembers < 1) {
10233        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10234          << FD->getDeclName();
10235        FD->setInvalidDecl();
10236        EnclosingDecl->setInvalidDecl();
10237        continue;
10238      }
10239      if (!FD->getType()->isDependentType() &&
10240          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10241        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10242          << FD->getDeclName() << FD->getType();
10243        FD->setInvalidDecl();
10244        EnclosingDecl->setInvalidDecl();
10245        continue;
10246      }
10247      // Okay, we have a legal flexible array member at the end of the struct.
10248      if (Record)
10249        Record->setHasFlexibleArrayMember(true);
10250    } else if (!FDTy->isDependentType() &&
10251               RequireCompleteType(FD->getLocation(), FD->getType(),
10252                                   diag::err_field_incomplete)) {
10253      // Incomplete type
10254      FD->setInvalidDecl();
10255      EnclosingDecl->setInvalidDecl();
10256      continue;
10257    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10258      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10259        // If this is a member of a union, then entire union becomes "flexible".
10260        if (Record && Record->isUnion()) {
10261          Record->setHasFlexibleArrayMember(true);
10262        } else {
10263          // If this is a struct/class and this is not the last element, reject
10264          // it.  Note that GCC supports variable sized arrays in the middle of
10265          // structures.
10266          if (i + 1 != Fields.end())
10267            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10268              << FD->getDeclName() << FD->getType();
10269          else {
10270            // We support flexible arrays at the end of structs in
10271            // other structs as an extension.
10272            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10273              << FD->getDeclName();
10274            if (Record)
10275              Record->setHasFlexibleArrayMember(true);
10276          }
10277        }
10278      }
10279      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10280          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10281                                 diag::err_abstract_type_in_decl,
10282                                 AbstractIvarType)) {
10283        // Ivars can not have abstract class types
10284        FD->setInvalidDecl();
10285      }
10286      if (Record && FDTTy->getDecl()->hasObjectMember())
10287        Record->setHasObjectMember(true);
10288    } else if (FDTy->isObjCObjectType()) {
10289      /// A field cannot be an Objective-c object
10290      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10291        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10292      QualType T = Context.getObjCObjectPointerType(FD->getType());
10293      FD->setType(T);
10294    } else if (!getLangOpts().CPlusPlus) {
10295      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10296        // It's an error in ARC if a field has lifetime.
10297        // We don't want to report this in a system header, though,
10298        // so we just make the field unavailable.
10299        // FIXME: that's really not sufficient; we need to make the type
10300        // itself invalid to, say, initialize or copy.
10301        QualType T = FD->getType();
10302        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10303        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10304          SourceLocation loc = FD->getLocation();
10305          if (getSourceManager().isInSystemHeader(loc)) {
10306            if (!FD->hasAttr<UnavailableAttr>()) {
10307              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10308                                "this system field has retaining ownership"));
10309            }
10310          } else {
10311            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10312              << T->isBlockPointerType();
10313          }
10314          ARCErrReported = true;
10315        }
10316      }
10317      else if (getLangOpts().ObjC1 &&
10318               getLangOpts().getGC() != LangOptions::NonGC &&
10319               Record && !Record->hasObjectMember()) {
10320        if (FD->getType()->isObjCObjectPointerType() ||
10321            FD->getType().isObjCGCStrong())
10322          Record->setHasObjectMember(true);
10323        else if (Context.getAsArrayType(FD->getType())) {
10324          QualType BaseType = Context.getBaseElementType(FD->getType());
10325          if (BaseType->isRecordType() &&
10326              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10327            Record->setHasObjectMember(true);
10328          else if (BaseType->isObjCObjectPointerType() ||
10329                   BaseType.isObjCGCStrong())
10330                 Record->setHasObjectMember(true);
10331        }
10332      }
10333    }
10334    // Keep track of the number of named members.
10335    if (FD->getIdentifier())
10336      ++NumNamedMembers;
10337  }
10338
10339  // Okay, we successfully defined 'Record'.
10340  if (Record) {
10341    bool Completed = false;
10342    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10343      if (!CXXRecord->isInvalidDecl()) {
10344        // Set access bits correctly on the directly-declared conversions.
10345        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10346        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10347             I != E; ++I)
10348          Convs->setAccess(I, (*I)->getAccess());
10349
10350        if (!CXXRecord->isDependentType()) {
10351          // Adjust user-defined destructor exception spec.
10352          if (getLangOpts().CPlusPlus0x &&
10353              CXXRecord->hasUserDeclaredDestructor())
10354            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10355
10356          // Add any implicitly-declared members to this class.
10357          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10358
10359          // If we have virtual base classes, we may end up finding multiple
10360          // final overriders for a given virtual function. Check for this
10361          // problem now.
10362          if (CXXRecord->getNumVBases()) {
10363            CXXFinalOverriderMap FinalOverriders;
10364            CXXRecord->getFinalOverriders(FinalOverriders);
10365
10366            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10367                                             MEnd = FinalOverriders.end();
10368                 M != MEnd; ++M) {
10369              for (OverridingMethods::iterator SO = M->second.begin(),
10370                                            SOEnd = M->second.end();
10371                   SO != SOEnd; ++SO) {
10372                assert(SO->second.size() > 0 &&
10373                       "Virtual function without overridding functions?");
10374                if (SO->second.size() == 1)
10375                  continue;
10376
10377                // C++ [class.virtual]p2:
10378                //   In a derived class, if a virtual member function of a base
10379                //   class subobject has more than one final overrider the
10380                //   program is ill-formed.
10381                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10382                  << (const NamedDecl *)M->first << Record;
10383                Diag(M->first->getLocation(),
10384                     diag::note_overridden_virtual_function);
10385                for (OverridingMethods::overriding_iterator
10386                          OM = SO->second.begin(),
10387                       OMEnd = SO->second.end();
10388                     OM != OMEnd; ++OM)
10389                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10390                    << (const NamedDecl *)M->first << OM->Method->getParent();
10391
10392                Record->setInvalidDecl();
10393              }
10394            }
10395            CXXRecord->completeDefinition(&FinalOverriders);
10396            Completed = true;
10397          }
10398        }
10399      }
10400    }
10401
10402    if (!Completed)
10403      Record->completeDefinition();
10404
10405  } else {
10406    ObjCIvarDecl **ClsFields =
10407      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10408    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10409      ID->setEndOfDefinitionLoc(RBrac);
10410      // Add ivar's to class's DeclContext.
10411      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10412        ClsFields[i]->setLexicalDeclContext(ID);
10413        ID->addDecl(ClsFields[i]);
10414      }
10415      // Must enforce the rule that ivars in the base classes may not be
10416      // duplicates.
10417      if (ID->getSuperClass())
10418        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10419    } else if (ObjCImplementationDecl *IMPDecl =
10420                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10421      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10422      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10423        // Ivar declared in @implementation never belongs to the implementation.
10424        // Only it is in implementation's lexical context.
10425        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10426      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10427      IMPDecl->setIvarLBraceLoc(LBrac);
10428      IMPDecl->setIvarRBraceLoc(RBrac);
10429    } else if (ObjCCategoryDecl *CDecl =
10430                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10431      // case of ivars in class extension; all other cases have been
10432      // reported as errors elsewhere.
10433      // FIXME. Class extension does not have a LocEnd field.
10434      // CDecl->setLocEnd(RBrac);
10435      // Add ivar's to class extension's DeclContext.
10436      // Diagnose redeclaration of private ivars.
10437      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10438      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10439        if (IDecl) {
10440          if (const ObjCIvarDecl *ClsIvar =
10441              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10442            Diag(ClsFields[i]->getLocation(),
10443                 diag::err_duplicate_ivar_declaration);
10444            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10445            continue;
10446          }
10447          for (const ObjCCategoryDecl *ClsExtDecl =
10448                IDecl->getFirstClassExtension();
10449               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10450            if (const ObjCIvarDecl *ClsExtIvar =
10451                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10452              Diag(ClsFields[i]->getLocation(),
10453                   diag::err_duplicate_ivar_declaration);
10454              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10455              continue;
10456            }
10457          }
10458        }
10459        ClsFields[i]->setLexicalDeclContext(CDecl);
10460        CDecl->addDecl(ClsFields[i]);
10461      }
10462      CDecl->setIvarLBraceLoc(LBrac);
10463      CDecl->setIvarRBraceLoc(RBrac);
10464    }
10465  }
10466
10467  if (Attr)
10468    ProcessDeclAttributeList(S, Record, Attr);
10469}
10470
10471/// \brief Determine whether the given integral value is representable within
10472/// the given type T.
10473static bool isRepresentableIntegerValue(ASTContext &Context,
10474                                        llvm::APSInt &Value,
10475                                        QualType T) {
10476  assert(T->isIntegralType(Context) && "Integral type required!");
10477  unsigned BitWidth = Context.getIntWidth(T);
10478
10479  if (Value.isUnsigned() || Value.isNonNegative()) {
10480    if (T->isSignedIntegerOrEnumerationType())
10481      --BitWidth;
10482    return Value.getActiveBits() <= BitWidth;
10483  }
10484  return Value.getMinSignedBits() <= BitWidth;
10485}
10486
10487// \brief Given an integral type, return the next larger integral type
10488// (or a NULL type of no such type exists).
10489static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10490  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10491  // enum checking below.
10492  assert(T->isIntegralType(Context) && "Integral type required!");
10493  const unsigned NumTypes = 4;
10494  QualType SignedIntegralTypes[NumTypes] = {
10495    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10496  };
10497  QualType UnsignedIntegralTypes[NumTypes] = {
10498    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10499    Context.UnsignedLongLongTy
10500  };
10501
10502  unsigned BitWidth = Context.getTypeSize(T);
10503  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10504                                                        : UnsignedIntegralTypes;
10505  for (unsigned I = 0; I != NumTypes; ++I)
10506    if (Context.getTypeSize(Types[I]) > BitWidth)
10507      return Types[I];
10508
10509  return QualType();
10510}
10511
10512EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10513                                          EnumConstantDecl *LastEnumConst,
10514                                          SourceLocation IdLoc,
10515                                          IdentifierInfo *Id,
10516                                          Expr *Val) {
10517  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10518  llvm::APSInt EnumVal(IntWidth);
10519  QualType EltTy;
10520
10521  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10522    Val = 0;
10523
10524  if (Val)
10525    Val = DefaultLvalueConversion(Val).take();
10526
10527  if (Val) {
10528    if (Enum->isDependentType() || Val->isTypeDependent())
10529      EltTy = Context.DependentTy;
10530    else {
10531      SourceLocation ExpLoc;
10532      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10533          !getLangOpts().MicrosoftMode) {
10534        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10535        // constant-expression in the enumerator-definition shall be a converted
10536        // constant expression of the underlying type.
10537        EltTy = Enum->getIntegerType();
10538        ExprResult Converted =
10539          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10540                                           CCEK_Enumerator);
10541        if (Converted.isInvalid())
10542          Val = 0;
10543        else
10544          Val = Converted.take();
10545      } else if (!Val->isValueDependent() &&
10546                 !(Val = VerifyIntegerConstantExpression(Val,
10547                                                         &EnumVal).take())) {
10548        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10549      } else {
10550        if (Enum->isFixed()) {
10551          EltTy = Enum->getIntegerType();
10552
10553          // In Obj-C and Microsoft mode, require the enumeration value to be
10554          // representable in the underlying type of the enumeration. In C++11,
10555          // we perform a non-narrowing conversion as part of converted constant
10556          // expression checking.
10557          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10558            if (getLangOpts().MicrosoftMode) {
10559              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10560              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10561            } else
10562              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10563          } else
10564            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10565        } else if (getLangOpts().CPlusPlus) {
10566          // C++11 [dcl.enum]p5:
10567          //   If the underlying type is not fixed, the type of each enumerator
10568          //   is the type of its initializing value:
10569          //     - If an initializer is specified for an enumerator, the
10570          //       initializing value has the same type as the expression.
10571          EltTy = Val->getType();
10572        } else {
10573          // C99 6.7.2.2p2:
10574          //   The expression that defines the value of an enumeration constant
10575          //   shall be an integer constant expression that has a value
10576          //   representable as an int.
10577
10578          // Complain if the value is not representable in an int.
10579          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10580            Diag(IdLoc, diag::ext_enum_value_not_int)
10581              << EnumVal.toString(10) << Val->getSourceRange()
10582              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10583          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10584            // Force the type of the expression to 'int'.
10585            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10586          }
10587          EltTy = Val->getType();
10588        }
10589      }
10590    }
10591  }
10592
10593  if (!Val) {
10594    if (Enum->isDependentType())
10595      EltTy = Context.DependentTy;
10596    else if (!LastEnumConst) {
10597      // C++0x [dcl.enum]p5:
10598      //   If the underlying type is not fixed, the type of each enumerator
10599      //   is the type of its initializing value:
10600      //     - If no initializer is specified for the first enumerator, the
10601      //       initializing value has an unspecified integral type.
10602      //
10603      // GCC uses 'int' for its unspecified integral type, as does
10604      // C99 6.7.2.2p3.
10605      if (Enum->isFixed()) {
10606        EltTy = Enum->getIntegerType();
10607      }
10608      else {
10609        EltTy = Context.IntTy;
10610      }
10611    } else {
10612      // Assign the last value + 1.
10613      EnumVal = LastEnumConst->getInitVal();
10614      ++EnumVal;
10615      EltTy = LastEnumConst->getType();
10616
10617      // Check for overflow on increment.
10618      if (EnumVal < LastEnumConst->getInitVal()) {
10619        // C++0x [dcl.enum]p5:
10620        //   If the underlying type is not fixed, the type of each enumerator
10621        //   is the type of its initializing value:
10622        //
10623        //     - Otherwise the type of the initializing value is the same as
10624        //       the type of the initializing value of the preceding enumerator
10625        //       unless the incremented value is not representable in that type,
10626        //       in which case the type is an unspecified integral type
10627        //       sufficient to contain the incremented value. If no such type
10628        //       exists, the program is ill-formed.
10629        QualType T = getNextLargerIntegralType(Context, EltTy);
10630        if (T.isNull() || Enum->isFixed()) {
10631          // There is no integral type larger enough to represent this
10632          // value. Complain, then allow the value to wrap around.
10633          EnumVal = LastEnumConst->getInitVal();
10634          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10635          ++EnumVal;
10636          if (Enum->isFixed())
10637            // When the underlying type is fixed, this is ill-formed.
10638            Diag(IdLoc, diag::err_enumerator_wrapped)
10639              << EnumVal.toString(10)
10640              << EltTy;
10641          else
10642            Diag(IdLoc, diag::warn_enumerator_too_large)
10643              << EnumVal.toString(10);
10644        } else {
10645          EltTy = T;
10646        }
10647
10648        // Retrieve the last enumerator's value, extent that type to the
10649        // type that is supposed to be large enough to represent the incremented
10650        // value, then increment.
10651        EnumVal = LastEnumConst->getInitVal();
10652        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10653        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10654        ++EnumVal;
10655
10656        // If we're not in C++, diagnose the overflow of enumerator values,
10657        // which in C99 means that the enumerator value is not representable in
10658        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10659        // permits enumerator values that are representable in some larger
10660        // integral type.
10661        if (!getLangOpts().CPlusPlus && !T.isNull())
10662          Diag(IdLoc, diag::warn_enum_value_overflow);
10663      } else if (!getLangOpts().CPlusPlus &&
10664                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10665        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10666        Diag(IdLoc, diag::ext_enum_value_not_int)
10667          << EnumVal.toString(10) << 1;
10668      }
10669    }
10670  }
10671
10672  if (!EltTy->isDependentType()) {
10673    // Make the enumerator value match the signedness and size of the
10674    // enumerator's type.
10675    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10676    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10677  }
10678
10679  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10680                                  Val, EnumVal);
10681}
10682
10683
10684Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10685                              SourceLocation IdLoc, IdentifierInfo *Id,
10686                              AttributeList *Attr,
10687                              SourceLocation EqualLoc, Expr *Val) {
10688  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10689  EnumConstantDecl *LastEnumConst =
10690    cast_or_null<EnumConstantDecl>(lastEnumConst);
10691
10692  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10693  // we find one that is.
10694  S = getNonFieldDeclScope(S);
10695
10696  // Verify that there isn't already something declared with this name in this
10697  // scope.
10698  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10699                                         ForRedeclaration);
10700  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10701    // Maybe we will complain about the shadowed template parameter.
10702    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10703    // Just pretend that we didn't see the previous declaration.
10704    PrevDecl = 0;
10705  }
10706
10707  if (PrevDecl) {
10708    // When in C++, we may get a TagDecl with the same name; in this case the
10709    // enum constant will 'hide' the tag.
10710    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10711           "Received TagDecl when not in C++!");
10712    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10713      if (isa<EnumConstantDecl>(PrevDecl))
10714        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10715      else
10716        Diag(IdLoc, diag::err_redefinition) << Id;
10717      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10718      return 0;
10719    }
10720  }
10721
10722  // C++ [class.mem]p15:
10723  // If T is the name of a class, then each of the following shall have a name
10724  // different from T:
10725  // - every enumerator of every member of class T that is an unscoped
10726  // enumerated type
10727  if (CXXRecordDecl *Record
10728                      = dyn_cast<CXXRecordDecl>(
10729                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10730    if (!TheEnumDecl->isScoped() &&
10731        Record->getIdentifier() && Record->getIdentifier() == Id)
10732      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10733
10734  EnumConstantDecl *New =
10735    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10736
10737  if (New) {
10738    // Process attributes.
10739    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10740
10741    // Register this decl in the current scope stack.
10742    New->setAccess(TheEnumDecl->getAccess());
10743    PushOnScopeChains(New, S);
10744  }
10745
10746  ActOnDocumentableDecl(New);
10747
10748  return New;
10749}
10750
10751void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10752                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10753                         Decl **Elements, unsigned NumElements,
10754                         Scope *S, AttributeList *Attr) {
10755  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10756  QualType EnumType = Context.getTypeDeclType(Enum);
10757
10758  if (Attr)
10759    ProcessDeclAttributeList(S, Enum, Attr);
10760
10761  if (Enum->isDependentType()) {
10762    for (unsigned i = 0; i != NumElements; ++i) {
10763      EnumConstantDecl *ECD =
10764        cast_or_null<EnumConstantDecl>(Elements[i]);
10765      if (!ECD) continue;
10766
10767      ECD->setType(EnumType);
10768    }
10769
10770    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10771    return;
10772  }
10773
10774  // TODO: If the result value doesn't fit in an int, it must be a long or long
10775  // long value.  ISO C does not support this, but GCC does as an extension,
10776  // emit a warning.
10777  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10778  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10779  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10780
10781  // Verify that all the values are okay, compute the size of the values, and
10782  // reverse the list.
10783  unsigned NumNegativeBits = 0;
10784  unsigned NumPositiveBits = 0;
10785
10786  // Keep track of whether all elements have type int.
10787  bool AllElementsInt = true;
10788
10789  for (unsigned i = 0; i != NumElements; ++i) {
10790    EnumConstantDecl *ECD =
10791      cast_or_null<EnumConstantDecl>(Elements[i]);
10792    if (!ECD) continue;  // Already issued a diagnostic.
10793
10794    const llvm::APSInt &InitVal = ECD->getInitVal();
10795
10796    // Keep track of the size of positive and negative values.
10797    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10798      NumPositiveBits = std::max(NumPositiveBits,
10799                                 (unsigned)InitVal.getActiveBits());
10800    else
10801      NumNegativeBits = std::max(NumNegativeBits,
10802                                 (unsigned)InitVal.getMinSignedBits());
10803
10804    // Keep track of whether every enum element has type int (very commmon).
10805    if (AllElementsInt)
10806      AllElementsInt = ECD->getType() == Context.IntTy;
10807  }
10808
10809  // Figure out the type that should be used for this enum.
10810  QualType BestType;
10811  unsigned BestWidth;
10812
10813  // C++0x N3000 [conv.prom]p3:
10814  //   An rvalue of an unscoped enumeration type whose underlying
10815  //   type is not fixed can be converted to an rvalue of the first
10816  //   of the following types that can represent all the values of
10817  //   the enumeration: int, unsigned int, long int, unsigned long
10818  //   int, long long int, or unsigned long long int.
10819  // C99 6.4.4.3p2:
10820  //   An identifier declared as an enumeration constant has type int.
10821  // The C99 rule is modified by a gcc extension
10822  QualType BestPromotionType;
10823
10824  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10825  // -fshort-enums is the equivalent to specifying the packed attribute on all
10826  // enum definitions.
10827  if (LangOpts.ShortEnums)
10828    Packed = true;
10829
10830  if (Enum->isFixed()) {
10831    BestType = Enum->getIntegerType();
10832    if (BestType->isPromotableIntegerType())
10833      BestPromotionType = Context.getPromotedIntegerType(BestType);
10834    else
10835      BestPromotionType = BestType;
10836    // We don't need to set BestWidth, because BestType is going to be the type
10837    // of the enumerators, but we do anyway because otherwise some compilers
10838    // warn that it might be used uninitialized.
10839    BestWidth = CharWidth;
10840  }
10841  else if (NumNegativeBits) {
10842    // If there is a negative value, figure out the smallest integer type (of
10843    // int/long/longlong) that fits.
10844    // If it's packed, check also if it fits a char or a short.
10845    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10846      BestType = Context.SignedCharTy;
10847      BestWidth = CharWidth;
10848    } else if (Packed && NumNegativeBits <= ShortWidth &&
10849               NumPositiveBits < ShortWidth) {
10850      BestType = Context.ShortTy;
10851      BestWidth = ShortWidth;
10852    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10853      BestType = Context.IntTy;
10854      BestWidth = IntWidth;
10855    } else {
10856      BestWidth = Context.getTargetInfo().getLongWidth();
10857
10858      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10859        BestType = Context.LongTy;
10860      } else {
10861        BestWidth = Context.getTargetInfo().getLongLongWidth();
10862
10863        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10864          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10865        BestType = Context.LongLongTy;
10866      }
10867    }
10868    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10869  } else {
10870    // If there is no negative value, figure out the smallest type that fits
10871    // all of the enumerator values.
10872    // If it's packed, check also if it fits a char or a short.
10873    if (Packed && NumPositiveBits <= CharWidth) {
10874      BestType = Context.UnsignedCharTy;
10875      BestPromotionType = Context.IntTy;
10876      BestWidth = CharWidth;
10877    } else if (Packed && NumPositiveBits <= ShortWidth) {
10878      BestType = Context.UnsignedShortTy;
10879      BestPromotionType = Context.IntTy;
10880      BestWidth = ShortWidth;
10881    } else if (NumPositiveBits <= IntWidth) {
10882      BestType = Context.UnsignedIntTy;
10883      BestWidth = IntWidth;
10884      BestPromotionType
10885        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10886                           ? Context.UnsignedIntTy : Context.IntTy;
10887    } else if (NumPositiveBits <=
10888               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10889      BestType = Context.UnsignedLongTy;
10890      BestPromotionType
10891        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10892                           ? Context.UnsignedLongTy : Context.LongTy;
10893    } else {
10894      BestWidth = Context.getTargetInfo().getLongLongWidth();
10895      assert(NumPositiveBits <= BestWidth &&
10896             "How could an initializer get larger than ULL?");
10897      BestType = Context.UnsignedLongLongTy;
10898      BestPromotionType
10899        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10900                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10901    }
10902  }
10903
10904  // Loop over all of the enumerator constants, changing their types to match
10905  // the type of the enum if needed.
10906  for (unsigned i = 0; i != NumElements; ++i) {
10907    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10908    if (!ECD) continue;  // Already issued a diagnostic.
10909
10910    // Standard C says the enumerators have int type, but we allow, as an
10911    // extension, the enumerators to be larger than int size.  If each
10912    // enumerator value fits in an int, type it as an int, otherwise type it the
10913    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10914    // that X has type 'int', not 'unsigned'.
10915
10916    // Determine whether the value fits into an int.
10917    llvm::APSInt InitVal = ECD->getInitVal();
10918
10919    // If it fits into an integer type, force it.  Otherwise force it to match
10920    // the enum decl type.
10921    QualType NewTy;
10922    unsigned NewWidth;
10923    bool NewSign;
10924    if (!getLangOpts().CPlusPlus &&
10925        !Enum->isFixed() &&
10926        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10927      NewTy = Context.IntTy;
10928      NewWidth = IntWidth;
10929      NewSign = true;
10930    } else if (ECD->getType() == BestType) {
10931      // Already the right type!
10932      if (getLangOpts().CPlusPlus)
10933        // C++ [dcl.enum]p4: Following the closing brace of an
10934        // enum-specifier, each enumerator has the type of its
10935        // enumeration.
10936        ECD->setType(EnumType);
10937      continue;
10938    } else {
10939      NewTy = BestType;
10940      NewWidth = BestWidth;
10941      NewSign = BestType->isSignedIntegerOrEnumerationType();
10942    }
10943
10944    // Adjust the APSInt value.
10945    InitVal = InitVal.extOrTrunc(NewWidth);
10946    InitVal.setIsSigned(NewSign);
10947    ECD->setInitVal(InitVal);
10948
10949    // Adjust the Expr initializer and type.
10950    if (ECD->getInitExpr() &&
10951        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10952      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10953                                                CK_IntegralCast,
10954                                                ECD->getInitExpr(),
10955                                                /*base paths*/ 0,
10956                                                VK_RValue));
10957    if (getLangOpts().CPlusPlus)
10958      // C++ [dcl.enum]p4: Following the closing brace of an
10959      // enum-specifier, each enumerator has the type of its
10960      // enumeration.
10961      ECD->setType(EnumType);
10962    else
10963      ECD->setType(NewTy);
10964  }
10965
10966  Enum->completeDefinition(BestType, BestPromotionType,
10967                           NumPositiveBits, NumNegativeBits);
10968
10969  // If we're declaring a function, ensure this decl isn't forgotten about -
10970  // it needs to go into the function scope.
10971  if (InFunctionDeclarator)
10972    DeclsInPrototypeScope.push_back(Enum);
10973}
10974
10975Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10976                                  SourceLocation StartLoc,
10977                                  SourceLocation EndLoc) {
10978  StringLiteral *AsmString = cast<StringLiteral>(expr);
10979
10980  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10981                                                   AsmString, StartLoc,
10982                                                   EndLoc);
10983  CurContext->addDecl(New);
10984  return New;
10985}
10986
10987DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10988                                   SourceLocation ImportLoc,
10989                                   ModuleIdPath Path) {
10990  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10991                                                Module::AllVisible,
10992                                                /*IsIncludeDirective=*/false);
10993  if (!Mod)
10994    return true;
10995
10996  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10997  Module *ModCheck = Mod;
10998  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10999    // If we've run out of module parents, just drop the remaining identifiers.
11000    // We need the length to be consistent.
11001    if (!ModCheck)
11002      break;
11003    ModCheck = ModCheck->Parent;
11004
11005    IdentifierLocs.push_back(Path[I].second);
11006  }
11007
11008  ImportDecl *Import = ImportDecl::Create(Context,
11009                                          Context.getTranslationUnitDecl(),
11010                                          AtLoc.isValid()? AtLoc : ImportLoc,
11011                                          Mod, IdentifierLocs);
11012  Context.getTranslationUnitDecl()->addDecl(Import);
11013  return Import;
11014}
11015
11016void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11017                                      IdentifierInfo* AliasName,
11018                                      SourceLocation PragmaLoc,
11019                                      SourceLocation NameLoc,
11020                                      SourceLocation AliasNameLoc) {
11021  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11022                                    LookupOrdinaryName);
11023  AsmLabelAttr *Attr =
11024     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11025
11026  if (PrevDecl)
11027    PrevDecl->addAttr(Attr);
11028  else
11029    (void)ExtnameUndeclaredIdentifiers.insert(
11030      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11031}
11032
11033void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11034                             SourceLocation PragmaLoc,
11035                             SourceLocation NameLoc) {
11036  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11037
11038  if (PrevDecl) {
11039    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11040  } else {
11041    (void)WeakUndeclaredIdentifiers.insert(
11042      std::pair<IdentifierInfo*,WeakInfo>
11043        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11044  }
11045}
11046
11047void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11048                                IdentifierInfo* AliasName,
11049                                SourceLocation PragmaLoc,
11050                                SourceLocation NameLoc,
11051                                SourceLocation AliasNameLoc) {
11052  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11053                                    LookupOrdinaryName);
11054  WeakInfo W = WeakInfo(Name, NameLoc);
11055
11056  if (PrevDecl) {
11057    if (!PrevDecl->hasAttr<AliasAttr>())
11058      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11059        DeclApplyPragmaWeak(TUScope, ND, W);
11060  } else {
11061    (void)WeakUndeclaredIdentifiers.insert(
11062      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11063  }
11064}
11065
11066Decl *Sema::getObjCDeclContext() const {
11067  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11068}
11069
11070AvailabilityResult Sema::getCurContextAvailability() const {
11071  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11072  return D->getAvailability();
11073}
11074