SemaDecl.cpp revision 43f5103f8051bbac19022e6edaf7d9138b0f3c0f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S, &SS)) {
552        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
553        unsigned QualifiedDiag = diag::err_no_member_suggest;
554        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
555        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
556
557        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
558        NamedDecl *UnderlyingFirstDecl
559          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
560        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
561            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
562          UnqualifiedDiag = diag::err_no_template_suggest;
563          QualifiedDiag = diag::err_no_member_template_suggest;
564        } else if (UnderlyingFirstDecl &&
565                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
566                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
568           UnqualifiedDiag = diag::err_unknown_typename_suggest;
569           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
570         }
571
572        if (SS.isEmpty())
573          Diag(NameLoc, UnqualifiedDiag)
574            << Name << CorrectedQuotedStr
575            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
576        else
577          Diag(NameLoc, QualifiedDiag)
578            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
579            << SS.getRange()
580            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
581
582        // Update the name, so that the caller has the new name.
583        Name = Corrected.getCorrectionAsIdentifierInfo();
584
585        // Also update the LookupResult...
586        // FIXME: This should probably go away at some point
587        Result.clear();
588        Result.setLookupName(Corrected.getCorrection());
589        if (FirstDecl) Result.addDecl(FirstDecl);
590
591        // Typo correction corrected to a keyword.
592        if (Corrected.isKeyword())
593          return Corrected.getCorrectionAsIdentifierInfo();
594
595        if (FirstDecl)
596          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
597            << CorrectedQuotedStr;
598
599        // If we found an Objective-C instance variable, let
600        // LookupInObjCMethod build the appropriate expression to
601        // reference the ivar.
602        // FIXME: This is a gross hack.
603        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
604          Result.clear();
605          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
606          return move(E);
607        }
608
609        goto Corrected;
610      }
611    }
612
613    // We failed to correct; just fall through and let the parser deal with it.
614    Result.suppressDiagnostics();
615    return NameClassification::Unknown();
616
617  case LookupResult::NotFoundInCurrentInstantiation:
618    // We performed name lookup into the current instantiation, and there were
619    // dependent bases, so we treat this result the same way as any other
620    // dependent nested-name-specifier.
621
622    // C++ [temp.res]p2:
623    //   A name used in a template declaration or definition and that is
624    //   dependent on a template-parameter is assumed not to name a type
625    //   unless the applicable name lookup finds a type name or the name is
626    //   qualified by the keyword typename.
627    //
628    // FIXME: If the next token is '<', we might want to ask the parser to
629    // perform some heroics to see if we actually have a
630    // template-argument-list, which would indicate a missing 'template'
631    // keyword here.
632    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
633
634  case LookupResult::Found:
635  case LookupResult::FoundOverloaded:
636  case LookupResult::FoundUnresolvedValue:
637    break;
638
639  case LookupResult::Ambiguous:
640    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
641        hasAnyAcceptableTemplateNames(Result)) {
642      // C++ [temp.local]p3:
643      //   A lookup that finds an injected-class-name (10.2) can result in an
644      //   ambiguity in certain cases (for example, if it is found in more than
645      //   one base class). If all of the injected-class-names that are found
646      //   refer to specializations of the same class template, and if the name
647      //   is followed by a template-argument-list, the reference refers to the
648      //   class template itself and not a specialization thereof, and is not
649      //   ambiguous.
650      //
651      // This filtering can make an ambiguous result into an unambiguous one,
652      // so try again after filtering out template names.
653      FilterAcceptableTemplateNames(Result);
654      if (!Result.isAmbiguous()) {
655        IsFilteredTemplateName = true;
656        break;
657      }
658    }
659
660    // Diagnose the ambiguity and return an error.
661    return NameClassification::Error();
662  }
663
664  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
665      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
666    // C++ [temp.names]p3:
667    //   After name lookup (3.4) finds that a name is a template-name or that
668    //   an operator-function-id or a literal- operator-id refers to a set of
669    //   overloaded functions any member of which is a function template if
670    //   this is followed by a <, the < is always taken as the delimiter of a
671    //   template-argument-list and never as the less-than operator.
672    if (!IsFilteredTemplateName)
673      FilterAcceptableTemplateNames(Result);
674
675    if (!Result.empty()) {
676      bool IsFunctionTemplate;
677      TemplateName Template;
678      if (Result.end() - Result.begin() > 1) {
679        IsFunctionTemplate = true;
680        Template = Context.getOverloadedTemplateName(Result.begin(),
681                                                     Result.end());
682      } else {
683        TemplateDecl *TD
684          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
685        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
686
687        if (SS.isSet() && !SS.isInvalid())
688          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
689                                                    /*TemplateKeyword=*/false,
690                                                      TD);
691        else
692          Template = TemplateName(TD);
693      }
694
695      if (IsFunctionTemplate) {
696        // Function templates always go through overload resolution, at which
697        // point we'll perform the various checks (e.g., accessibility) we need
698        // to based on which function we selected.
699        Result.suppressDiagnostics();
700
701        return NameClassification::FunctionTemplate(Template);
702      }
703
704      return NameClassification::TypeTemplate(Template);
705    }
706  }
707
708  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
709  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
710    DiagnoseUseOfDecl(Type, NameLoc);
711    QualType T = Context.getTypeDeclType(Type);
712    return ParsedType::make(T);
713  }
714
715  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
716  if (!Class) {
717    // FIXME: It's unfortunate that we don't have a Type node for handling this.
718    if (ObjCCompatibleAliasDecl *Alias
719                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
720      Class = Alias->getClassInterface();
721  }
722
723  if (Class) {
724    DiagnoseUseOfDecl(Class, NameLoc);
725
726    if (NextToken.is(tok::period)) {
727      // Interface. <something> is parsed as a property reference expression.
728      // Just return "unknown" as a fall-through for now.
729      Result.suppressDiagnostics();
730      return NameClassification::Unknown();
731    }
732
733    QualType T = Context.getObjCInterfaceType(Class);
734    return ParsedType::make(T);
735  }
736
737  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
738    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
739
740  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
741  return BuildDeclarationNameExpr(SS, Result, ADL);
742}
743
744// Determines the context to return to after temporarily entering a
745// context.  This depends in an unnecessarily complicated way on the
746// exact ordering of callbacks from the parser.
747DeclContext *Sema::getContainingDC(DeclContext *DC) {
748
749  // Functions defined inline within classes aren't parsed until we've
750  // finished parsing the top-level class, so the top-level class is
751  // the context we'll need to return to.
752  if (isa<FunctionDecl>(DC)) {
753    DC = DC->getLexicalParent();
754
755    // A function not defined within a class will always return to its
756    // lexical context.
757    if (!isa<CXXRecordDecl>(DC))
758      return DC;
759
760    // A C++ inline method/friend is parsed *after* the topmost class
761    // it was declared in is fully parsed ("complete");  the topmost
762    // class is the context we need to return to.
763    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
764      DC = RD;
765
766    // Return the declaration context of the topmost class the inline method is
767    // declared in.
768    return DC;
769  }
770
771  return DC->getLexicalParent();
772}
773
774void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
775  assert(getContainingDC(DC) == CurContext &&
776      "The next DeclContext should be lexically contained in the current one.");
777  CurContext = DC;
778  S->setEntity(DC);
779}
780
781void Sema::PopDeclContext() {
782  assert(CurContext && "DeclContext imbalance!");
783
784  CurContext = getContainingDC(CurContext);
785  assert(CurContext && "Popped translation unit!");
786}
787
788/// EnterDeclaratorContext - Used when we must lookup names in the context
789/// of a declarator's nested name specifier.
790///
791void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
792  // C++0x [basic.lookup.unqual]p13:
793  //   A name used in the definition of a static data member of class
794  //   X (after the qualified-id of the static member) is looked up as
795  //   if the name was used in a member function of X.
796  // C++0x [basic.lookup.unqual]p14:
797  //   If a variable member of a namespace is defined outside of the
798  //   scope of its namespace then any name used in the definition of
799  //   the variable member (after the declarator-id) is looked up as
800  //   if the definition of the variable member occurred in its
801  //   namespace.
802  // Both of these imply that we should push a scope whose context
803  // is the semantic context of the declaration.  We can't use
804  // PushDeclContext here because that context is not necessarily
805  // lexically contained in the current context.  Fortunately,
806  // the containing scope should have the appropriate information.
807
808  assert(!S->getEntity() && "scope already has entity");
809
810#ifndef NDEBUG
811  Scope *Ancestor = S->getParent();
812  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
813  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
814#endif
815
816  CurContext = DC;
817  S->setEntity(DC);
818}
819
820void Sema::ExitDeclaratorContext(Scope *S) {
821  assert(S->getEntity() == CurContext && "Context imbalance!");
822
823  // Switch back to the lexical context.  The safety of this is
824  // enforced by an assert in EnterDeclaratorContext.
825  Scope *Ancestor = S->getParent();
826  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
827  CurContext = (DeclContext*) Ancestor->getEntity();
828
829  // We don't need to do anything with the scope, which is going to
830  // disappear.
831}
832
833
834void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
835  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
836  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
837    // We assume that the caller has already called
838    // ActOnReenterTemplateScope
839    FD = TFD->getTemplatedDecl();
840  }
841  if (!FD)
842    return;
843
844  PushDeclContext(S, FD);
845  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
846    ParmVarDecl *Param = FD->getParamDecl(P);
847    // If the parameter has an identifier, then add it to the scope
848    if (Param->getIdentifier()) {
849      S->AddDecl(Param);
850      IdResolver.AddDecl(Param);
851    }
852  }
853}
854
855
856/// \brief Determine whether we allow overloading of the function
857/// PrevDecl with another declaration.
858///
859/// This routine determines whether overloading is possible, not
860/// whether some new function is actually an overload. It will return
861/// true in C++ (where we can always provide overloads) or, as an
862/// extension, in C when the previous function is already an
863/// overloaded function declaration or has the "overloadable"
864/// attribute.
865static bool AllowOverloadingOfFunction(LookupResult &Previous,
866                                       ASTContext &Context) {
867  if (Context.getLangOptions().CPlusPlus)
868    return true;
869
870  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
871    return true;
872
873  return (Previous.getResultKind() == LookupResult::Found
874          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
875}
876
877/// Add this decl to the scope shadowed decl chains.
878void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
879  // Move up the scope chain until we find the nearest enclosing
880  // non-transparent context. The declaration will be introduced into this
881  // scope.
882  while (S->getEntity() &&
883         ((DeclContext *)S->getEntity())->isTransparentContext())
884    S = S->getParent();
885
886  // Add scoped declarations into their context, so that they can be
887  // found later. Declarations without a context won't be inserted
888  // into any context.
889  if (AddToContext)
890    CurContext->addDecl(D);
891
892  // Out-of-line definitions shouldn't be pushed into scope in C++.
893  // Out-of-line variable and function definitions shouldn't even in C.
894  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
895      D->isOutOfLine() &&
896      !D->getDeclContext()->getRedeclContext()->Equals(
897        D->getLexicalDeclContext()->getRedeclContext()))
898    return;
899
900  // Template instantiations should also not be pushed into scope.
901  if (isa<FunctionDecl>(D) &&
902      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
903    return;
904
905  // If this replaces anything in the current scope,
906  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
907                               IEnd = IdResolver.end();
908  for (; I != IEnd; ++I) {
909    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
910      S->RemoveDecl(*I);
911      IdResolver.RemoveDecl(*I);
912
913      // Should only need to replace one decl.
914      break;
915    }
916  }
917
918  S->AddDecl(D);
919
920  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
921    // Implicitly-generated labels may end up getting generated in an order that
922    // isn't strictly lexical, which breaks name lookup. Be careful to insert
923    // the label at the appropriate place in the identifier chain.
924    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
925      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
926      if (IDC == CurContext) {
927        if (!S->isDeclScope(*I))
928          continue;
929      } else if (IDC->Encloses(CurContext))
930        break;
931    }
932
933    IdResolver.InsertDeclAfter(I, D);
934  } else {
935    IdResolver.AddDecl(D);
936  }
937}
938
939bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
940                         bool ExplicitInstantiationOrSpecialization) {
941  return IdResolver.isDeclInScope(D, Ctx, Context, S,
942                                  ExplicitInstantiationOrSpecialization);
943}
944
945Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
946  DeclContext *TargetDC = DC->getPrimaryContext();
947  do {
948    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
949      if (ScopeDC->getPrimaryContext() == TargetDC)
950        return S;
951  } while ((S = S->getParent()));
952
953  return 0;
954}
955
956static bool isOutOfScopePreviousDeclaration(NamedDecl *,
957                                            DeclContext*,
958                                            ASTContext&);
959
960/// Filters out lookup results that don't fall within the given scope
961/// as determined by isDeclInScope.
962void Sema::FilterLookupForScope(LookupResult &R,
963                                DeclContext *Ctx, Scope *S,
964                                bool ConsiderLinkage,
965                                bool ExplicitInstantiationOrSpecialization) {
966  LookupResult::Filter F = R.makeFilter();
967  while (F.hasNext()) {
968    NamedDecl *D = F.next();
969
970    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
971      continue;
972
973    if (ConsiderLinkage &&
974        isOutOfScopePreviousDeclaration(D, Ctx, Context))
975      continue;
976
977    F.erase();
978  }
979
980  F.done();
981}
982
983static bool isUsingDecl(NamedDecl *D) {
984  return isa<UsingShadowDecl>(D) ||
985         isa<UnresolvedUsingTypenameDecl>(D) ||
986         isa<UnresolvedUsingValueDecl>(D);
987}
988
989/// Removes using shadow declarations from the lookup results.
990static void RemoveUsingDecls(LookupResult &R) {
991  LookupResult::Filter F = R.makeFilter();
992  while (F.hasNext())
993    if (isUsingDecl(F.next()))
994      F.erase();
995
996  F.done();
997}
998
999/// \brief Check for this common pattern:
1000/// @code
1001/// class S {
1002///   S(const S&); // DO NOT IMPLEMENT
1003///   void operator=(const S&); // DO NOT IMPLEMENT
1004/// };
1005/// @endcode
1006static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1007  // FIXME: Should check for private access too but access is set after we get
1008  // the decl here.
1009  if (D->doesThisDeclarationHaveABody())
1010    return false;
1011
1012  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1013    return CD->isCopyConstructor();
1014  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1015    return Method->isCopyAssignmentOperator();
1016  return false;
1017}
1018
1019bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1020  assert(D);
1021
1022  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1023    return false;
1024
1025  // Ignore class templates.
1026  if (D->getDeclContext()->isDependentContext() ||
1027      D->getLexicalDeclContext()->isDependentContext())
1028    return false;
1029
1030  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1031    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1032      return false;
1033
1034    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1035      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1036        return false;
1037    } else {
1038      // 'static inline' functions are used in headers; don't warn.
1039      if (FD->getStorageClass() == SC_Static &&
1040          FD->isInlineSpecified())
1041        return false;
1042    }
1043
1044    if (FD->doesThisDeclarationHaveABody() &&
1045        Context.DeclMustBeEmitted(FD))
1046      return false;
1047  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1048    if (!VD->isFileVarDecl() ||
1049        VD->getType().isConstant(Context) ||
1050        Context.DeclMustBeEmitted(VD))
1051      return false;
1052
1053    if (VD->isStaticDataMember() &&
1054        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1055      return false;
1056
1057  } else {
1058    return false;
1059  }
1060
1061  // Only warn for unused decls internal to the translation unit.
1062  if (D->getLinkage() == ExternalLinkage)
1063    return false;
1064
1065  return true;
1066}
1067
1068void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1069  if (!D)
1070    return;
1071
1072  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1073    const FunctionDecl *First = FD->getFirstDeclaration();
1074    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1075      return; // First should already be in the vector.
1076  }
1077
1078  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1079    const VarDecl *First = VD->getFirstDeclaration();
1080    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084   if (ShouldWarnIfUnusedFileScopedDecl(D))
1085     UnusedFileScopedDecls.push_back(D);
1086 }
1087
1088static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1089  if (D->isInvalidDecl())
1090    return false;
1091
1092  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1093    return false;
1094
1095  if (isa<LabelDecl>(D))
1096    return true;
1097
1098  // White-list anything that isn't a local variable.
1099  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1100      !D->getDeclContext()->isFunctionOrMethod())
1101    return false;
1102
1103  // Types of valid local variables should be complete, so this should succeed.
1104  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1105
1106    // White-list anything with an __attribute__((unused)) type.
1107    QualType Ty = VD->getType();
1108
1109    // Only look at the outermost level of typedef.
1110    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1111      if (TT->getDecl()->hasAttr<UnusedAttr>())
1112        return false;
1113    }
1114
1115    // If we failed to complete the type for some reason, or if the type is
1116    // dependent, don't diagnose the variable.
1117    if (Ty->isIncompleteType() || Ty->isDependentType())
1118      return false;
1119
1120    if (const TagType *TT = Ty->getAs<TagType>()) {
1121      const TagDecl *Tag = TT->getDecl();
1122      if (Tag->hasAttr<UnusedAttr>())
1123        return false;
1124
1125      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1126        // FIXME: Checking for the presence of a user-declared constructor
1127        // isn't completely accurate; we'd prefer to check that the initializer
1128        // has no side effects.
1129        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1130          return false;
1131      }
1132    }
1133
1134    // TODO: __attribute__((unused)) templates?
1135  }
1136
1137  return true;
1138}
1139
1140static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1141                                     FixItHint &Hint) {
1142  if (isa<LabelDecl>(D)) {
1143    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1144                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1145    if (AfterColon.isInvalid())
1146      return;
1147    Hint = FixItHint::CreateRemoval(CharSourceRange::
1148                                    getCharRange(D->getLocStart(), AfterColon));
1149  }
1150  return;
1151}
1152
1153/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1154/// unless they are marked attr(unused).
1155void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1156  FixItHint Hint;
1157  if (!ShouldDiagnoseUnusedDecl(D))
1158    return;
1159
1160  GenerateFixForUnusedDecl(D, Context, Hint);
1161
1162  unsigned DiagID;
1163  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1164    DiagID = diag::warn_unused_exception_param;
1165  else if (isa<LabelDecl>(D))
1166    DiagID = diag::warn_unused_label;
1167  else
1168    DiagID = diag::warn_unused_variable;
1169
1170  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1171}
1172
1173static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1174  // Verify that we have no forward references left.  If so, there was a goto
1175  // or address of a label taken, but no definition of it.  Label fwd
1176  // definitions are indicated with a null substmt.
1177  if (L->getStmt() == 0)
1178    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1179}
1180
1181void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1182  if (S->decl_empty()) return;
1183  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1184         "Scope shouldn't contain decls!");
1185
1186  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1187       I != E; ++I) {
1188    Decl *TmpD = (*I);
1189    assert(TmpD && "This decl didn't get pushed??");
1190
1191    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1192    NamedDecl *D = cast<NamedDecl>(TmpD);
1193
1194    if (!D->getDeclName()) continue;
1195
1196    // Diagnose unused variables in this scope.
1197    if (!S->hasErrorOccurred())
1198      DiagnoseUnusedDecl(D);
1199
1200    // If this was a forward reference to a label, verify it was defined.
1201    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1202      CheckPoppedLabel(LD, *this);
1203
1204    // Remove this name from our lexical scope.
1205    IdResolver.RemoveDecl(D);
1206  }
1207}
1208
1209/// \brief Look for an Objective-C class in the translation unit.
1210///
1211/// \param Id The name of the Objective-C class we're looking for. If
1212/// typo-correction fixes this name, the Id will be updated
1213/// to the fixed name.
1214///
1215/// \param IdLoc The location of the name in the translation unit.
1216///
1217/// \param TypoCorrection If true, this routine will attempt typo correction
1218/// if there is no class with the given name.
1219///
1220/// \returns The declaration of the named Objective-C class, or NULL if the
1221/// class could not be found.
1222ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1223                                              SourceLocation IdLoc,
1224                                              bool DoTypoCorrection) {
1225  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1226  // creation from this context.
1227  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1228
1229  if (!IDecl && DoTypoCorrection) {
1230    // Perform typo correction at the given location, but only if we
1231    // find an Objective-C class name.
1232    TypoCorrection C;
1233    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1234                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1235        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1236      Diag(IdLoc, diag::err_undef_interface_suggest)
1237        << Id << IDecl->getDeclName()
1238        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1239      Diag(IDecl->getLocation(), diag::note_previous_decl)
1240        << IDecl->getDeclName();
1241
1242      Id = IDecl->getIdentifier();
1243    }
1244  }
1245
1246  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1247}
1248
1249/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1250/// from S, where a non-field would be declared. This routine copes
1251/// with the difference between C and C++ scoping rules in structs and
1252/// unions. For example, the following code is well-formed in C but
1253/// ill-formed in C++:
1254/// @code
1255/// struct S6 {
1256///   enum { BAR } e;
1257/// };
1258///
1259/// void test_S6() {
1260///   struct S6 a;
1261///   a.e = BAR;
1262/// }
1263/// @endcode
1264/// For the declaration of BAR, this routine will return a different
1265/// scope. The scope S will be the scope of the unnamed enumeration
1266/// within S6. In C++, this routine will return the scope associated
1267/// with S6, because the enumeration's scope is a transparent
1268/// context but structures can contain non-field names. In C, this
1269/// routine will return the translation unit scope, since the
1270/// enumeration's scope is a transparent context and structures cannot
1271/// contain non-field names.
1272Scope *Sema::getNonFieldDeclScope(Scope *S) {
1273  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1274         (S->getEntity() &&
1275          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1276         (S->isClassScope() && !getLangOptions().CPlusPlus))
1277    S = S->getParent();
1278  return S;
1279}
1280
1281/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1282/// file scope.  lazily create a decl for it. ForRedeclaration is true
1283/// if we're creating this built-in in anticipation of redeclaring the
1284/// built-in.
1285NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1286                                     Scope *S, bool ForRedeclaration,
1287                                     SourceLocation Loc) {
1288  Builtin::ID BID = (Builtin::ID)bid;
1289
1290  ASTContext::GetBuiltinTypeError Error;
1291  QualType R = Context.GetBuiltinType(BID, Error);
1292  switch (Error) {
1293  case ASTContext::GE_None:
1294    // Okay
1295    break;
1296
1297  case ASTContext::GE_Missing_stdio:
1298    if (ForRedeclaration)
1299      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1300        << Context.BuiltinInfo.GetName(BID);
1301    return 0;
1302
1303  case ASTContext::GE_Missing_setjmp:
1304    if (ForRedeclaration)
1305      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1306        << Context.BuiltinInfo.GetName(BID);
1307    return 0;
1308  }
1309
1310  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1311    Diag(Loc, diag::ext_implicit_lib_function_decl)
1312      << Context.BuiltinInfo.GetName(BID)
1313      << R;
1314    if (Context.BuiltinInfo.getHeaderName(BID) &&
1315        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1316          != DiagnosticsEngine::Ignored)
1317      Diag(Loc, diag::note_please_include_header)
1318        << Context.BuiltinInfo.getHeaderName(BID)
1319        << Context.BuiltinInfo.GetName(BID);
1320  }
1321
1322  FunctionDecl *New = FunctionDecl::Create(Context,
1323                                           Context.getTranslationUnitDecl(),
1324                                           Loc, Loc, II, R, /*TInfo=*/0,
1325                                           SC_Extern,
1326                                           SC_None, false,
1327                                           /*hasPrototype=*/true);
1328  New->setImplicit();
1329
1330  // Create Decl objects for each parameter, adding them to the
1331  // FunctionDecl.
1332  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1333    SmallVector<ParmVarDecl*, 16> Params;
1334    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1335      ParmVarDecl *parm =
1336        ParmVarDecl::Create(Context, New, SourceLocation(),
1337                            SourceLocation(), 0,
1338                            FT->getArgType(i), /*TInfo=*/0,
1339                            SC_None, SC_None, 0);
1340      parm->setScopeInfo(0, i);
1341      Params.push_back(parm);
1342    }
1343    New->setParams(Params);
1344  }
1345
1346  AddKnownFunctionAttributes(New);
1347
1348  // TUScope is the translation-unit scope to insert this function into.
1349  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1350  // relate Scopes to DeclContexts, and probably eliminate CurContext
1351  // entirely, but we're not there yet.
1352  DeclContext *SavedContext = CurContext;
1353  CurContext = Context.getTranslationUnitDecl();
1354  PushOnScopeChains(New, TUScope);
1355  CurContext = SavedContext;
1356  return New;
1357}
1358
1359/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1360/// same name and scope as a previous declaration 'Old'.  Figure out
1361/// how to resolve this situation, merging decls or emitting
1362/// diagnostics as appropriate. If there was an error, set New to be invalid.
1363///
1364void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1365  // If the new decl is known invalid already, don't bother doing any
1366  // merging checks.
1367  if (New->isInvalidDecl()) return;
1368
1369  // Allow multiple definitions for ObjC built-in typedefs.
1370  // FIXME: Verify the underlying types are equivalent!
1371  if (getLangOptions().ObjC1) {
1372    const IdentifierInfo *TypeID = New->getIdentifier();
1373    switch (TypeID->getLength()) {
1374    default: break;
1375    case 2:
1376      if (!TypeID->isStr("id"))
1377        break;
1378      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1379      // Install the built-in type for 'id', ignoring the current definition.
1380      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1381      return;
1382    case 5:
1383      if (!TypeID->isStr("Class"))
1384        break;
1385      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1386      // Install the built-in type for 'Class', ignoring the current definition.
1387      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1388      return;
1389    case 3:
1390      if (!TypeID->isStr("SEL"))
1391        break;
1392      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1393      // Install the built-in type for 'SEL', ignoring the current definition.
1394      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1395      return;
1396    }
1397    // Fall through - the typedef name was not a builtin type.
1398  }
1399
1400  // Verify the old decl was also a type.
1401  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1402  if (!Old) {
1403    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1404      << New->getDeclName();
1405
1406    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1407    if (OldD->getLocation().isValid())
1408      Diag(OldD->getLocation(), diag::note_previous_definition);
1409
1410    return New->setInvalidDecl();
1411  }
1412
1413  // If the old declaration is invalid, just give up here.
1414  if (Old->isInvalidDecl())
1415    return New->setInvalidDecl();
1416
1417  // Determine the "old" type we'll use for checking and diagnostics.
1418  QualType OldType;
1419  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1420    OldType = OldTypedef->getUnderlyingType();
1421  else
1422    OldType = Context.getTypeDeclType(Old);
1423
1424  // If the typedef types are not identical, reject them in all languages and
1425  // with any extensions enabled.
1426
1427  if (OldType != New->getUnderlyingType() &&
1428      Context.getCanonicalType(OldType) !=
1429      Context.getCanonicalType(New->getUnderlyingType())) {
1430    int Kind = 0;
1431    if (isa<TypeAliasDecl>(Old))
1432      Kind = 1;
1433    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1434      << Kind << New->getUnderlyingType() << OldType;
1435    if (Old->getLocation().isValid())
1436      Diag(Old->getLocation(), diag::note_previous_definition);
1437    return New->setInvalidDecl();
1438  }
1439
1440  // The types match.  Link up the redeclaration chain if the old
1441  // declaration was a typedef.
1442  // FIXME: this is a potential source of weirdness if the type
1443  // spellings don't match exactly.
1444  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1445    New->setPreviousDeclaration(Typedef);
1446
1447  // __module_private__ is propagated to later declarations.
1448  if (Old->isModulePrivate())
1449    New->setModulePrivate();
1450  else if (New->isModulePrivate())
1451    diagnoseModulePrivateRedeclaration(New, Old);
1452
1453  if (getLangOptions().MicrosoftExt)
1454    return;
1455
1456  if (getLangOptions().CPlusPlus) {
1457    // C++ [dcl.typedef]p2:
1458    //   In a given non-class scope, a typedef specifier can be used to
1459    //   redefine the name of any type declared in that scope to refer
1460    //   to the type to which it already refers.
1461    if (!isa<CXXRecordDecl>(CurContext))
1462      return;
1463
1464    // C++0x [dcl.typedef]p4:
1465    //   In a given class scope, a typedef specifier can be used to redefine
1466    //   any class-name declared in that scope that is not also a typedef-name
1467    //   to refer to the type to which it already refers.
1468    //
1469    // This wording came in via DR424, which was a correction to the
1470    // wording in DR56, which accidentally banned code like:
1471    //
1472    //   struct S {
1473    //     typedef struct A { } A;
1474    //   };
1475    //
1476    // in the C++03 standard. We implement the C++0x semantics, which
1477    // allow the above but disallow
1478    //
1479    //   struct S {
1480    //     typedef int I;
1481    //     typedef int I;
1482    //   };
1483    //
1484    // since that was the intent of DR56.
1485    if (!isa<TypedefNameDecl>(Old))
1486      return;
1487
1488    Diag(New->getLocation(), diag::err_redefinition)
1489      << New->getDeclName();
1490    Diag(Old->getLocation(), diag::note_previous_definition);
1491    return New->setInvalidDecl();
1492  }
1493
1494  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1495  // is normally mapped to an error, but can be controlled with
1496  // -Wtypedef-redefinition.  If either the original or the redefinition is
1497  // in a system header, don't emit this for compatibility with GCC.
1498  if (getDiagnostics().getSuppressSystemWarnings() &&
1499      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1500       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1501    return;
1502
1503  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1504    << New->getDeclName();
1505  Diag(Old->getLocation(), diag::note_previous_definition);
1506  return;
1507}
1508
1509/// DeclhasAttr - returns true if decl Declaration already has the target
1510/// attribute.
1511static bool
1512DeclHasAttr(const Decl *D, const Attr *A) {
1513  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1514  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1515  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1516    if ((*i)->getKind() == A->getKind()) {
1517      if (Ann) {
1518        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1519          return true;
1520        continue;
1521      }
1522      // FIXME: Don't hardcode this check
1523      if (OA && isa<OwnershipAttr>(*i))
1524        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1525      return true;
1526    }
1527
1528  return false;
1529}
1530
1531/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1532static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1533                                ASTContext &C, bool mergeDeprecation = true) {
1534  if (!oldDecl->hasAttrs())
1535    return;
1536
1537  bool foundAny = newDecl->hasAttrs();
1538
1539  // Ensure that any moving of objects within the allocated map is done before
1540  // we process them.
1541  if (!foundAny) newDecl->setAttrs(AttrVec());
1542
1543  for (specific_attr_iterator<InheritableAttr>
1544       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1545       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1546    // Ignore deprecated/unavailable/availability attributes if requested.
1547    if (!mergeDeprecation &&
1548        (isa<DeprecatedAttr>(*i) ||
1549         isa<UnavailableAttr>(*i) ||
1550         isa<AvailabilityAttr>(*i)))
1551      continue;
1552
1553    if (!DeclHasAttr(newDecl, *i)) {
1554      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1555      newAttr->setInherited(true);
1556      newDecl->addAttr(newAttr);
1557      foundAny = true;
1558    }
1559  }
1560
1561  if (!foundAny) newDecl->dropAttrs();
1562}
1563
1564/// mergeParamDeclAttributes - Copy attributes from the old parameter
1565/// to the new one.
1566static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1567                                     const ParmVarDecl *oldDecl,
1568                                     ASTContext &C) {
1569  if (!oldDecl->hasAttrs())
1570    return;
1571
1572  bool foundAny = newDecl->hasAttrs();
1573
1574  // Ensure that any moving of objects within the allocated map is
1575  // done before we process them.
1576  if (!foundAny) newDecl->setAttrs(AttrVec());
1577
1578  for (specific_attr_iterator<InheritableParamAttr>
1579       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1580       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1581    if (!DeclHasAttr(newDecl, *i)) {
1582      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1583      newAttr->setInherited(true);
1584      newDecl->addAttr(newAttr);
1585      foundAny = true;
1586    }
1587  }
1588
1589  if (!foundAny) newDecl->dropAttrs();
1590}
1591
1592namespace {
1593
1594/// Used in MergeFunctionDecl to keep track of function parameters in
1595/// C.
1596struct GNUCompatibleParamWarning {
1597  ParmVarDecl *OldParm;
1598  ParmVarDecl *NewParm;
1599  QualType PromotedType;
1600};
1601
1602}
1603
1604/// getSpecialMember - get the special member enum for a method.
1605Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1606  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1607    if (Ctor->isDefaultConstructor())
1608      return Sema::CXXDefaultConstructor;
1609
1610    if (Ctor->isCopyConstructor())
1611      return Sema::CXXCopyConstructor;
1612
1613    if (Ctor->isMoveConstructor())
1614      return Sema::CXXMoveConstructor;
1615  } else if (isa<CXXDestructorDecl>(MD)) {
1616    return Sema::CXXDestructor;
1617  } else if (MD->isCopyAssignmentOperator()) {
1618    return Sema::CXXCopyAssignment;
1619  } else if (MD->isMoveAssignmentOperator()) {
1620    return Sema::CXXMoveAssignment;
1621  }
1622
1623  return Sema::CXXInvalid;
1624}
1625
1626/// canRedefineFunction - checks if a function can be redefined. Currently,
1627/// only extern inline functions can be redefined, and even then only in
1628/// GNU89 mode.
1629static bool canRedefineFunction(const FunctionDecl *FD,
1630                                const LangOptions& LangOpts) {
1631  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1632          !LangOpts.CPlusPlus &&
1633          FD->isInlineSpecified() &&
1634          FD->getStorageClass() == SC_Extern);
1635}
1636
1637/// MergeFunctionDecl - We just parsed a function 'New' from
1638/// declarator D which has the same name and scope as a previous
1639/// declaration 'Old'.  Figure out how to resolve this situation,
1640/// merging decls or emitting diagnostics as appropriate.
1641///
1642/// In C++, New and Old must be declarations that are not
1643/// overloaded. Use IsOverload to determine whether New and Old are
1644/// overloaded, and to select the Old declaration that New should be
1645/// merged with.
1646///
1647/// Returns true if there was an error, false otherwise.
1648bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1649  // Verify the old decl was also a function.
1650  FunctionDecl *Old = 0;
1651  if (FunctionTemplateDecl *OldFunctionTemplate
1652        = dyn_cast<FunctionTemplateDecl>(OldD))
1653    Old = OldFunctionTemplate->getTemplatedDecl();
1654  else
1655    Old = dyn_cast<FunctionDecl>(OldD);
1656  if (!Old) {
1657    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1658      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1659      Diag(Shadow->getTargetDecl()->getLocation(),
1660           diag::note_using_decl_target);
1661      Diag(Shadow->getUsingDecl()->getLocation(),
1662           diag::note_using_decl) << 0;
1663      return true;
1664    }
1665
1666    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1667      << New->getDeclName();
1668    Diag(OldD->getLocation(), diag::note_previous_definition);
1669    return true;
1670  }
1671
1672  // Determine whether the previous declaration was a definition,
1673  // implicit declaration, or a declaration.
1674  diag::kind PrevDiag;
1675  if (Old->isThisDeclarationADefinition())
1676    PrevDiag = diag::note_previous_definition;
1677  else if (Old->isImplicit())
1678    PrevDiag = diag::note_previous_implicit_declaration;
1679  else
1680    PrevDiag = diag::note_previous_declaration;
1681
1682  QualType OldQType = Context.getCanonicalType(Old->getType());
1683  QualType NewQType = Context.getCanonicalType(New->getType());
1684
1685  // Don't complain about this if we're in GNU89 mode and the old function
1686  // is an extern inline function.
1687  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1688      New->getStorageClass() == SC_Static &&
1689      Old->getStorageClass() != SC_Static &&
1690      !canRedefineFunction(Old, getLangOptions())) {
1691    if (getLangOptions().MicrosoftExt) {
1692      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1693      Diag(Old->getLocation(), PrevDiag);
1694    } else {
1695      Diag(New->getLocation(), diag::err_static_non_static) << New;
1696      Diag(Old->getLocation(), PrevDiag);
1697      return true;
1698    }
1699  }
1700
1701  // If a function is first declared with a calling convention, but is
1702  // later declared or defined without one, the second decl assumes the
1703  // calling convention of the first.
1704  //
1705  // For the new decl, we have to look at the NON-canonical type to tell the
1706  // difference between a function that really doesn't have a calling
1707  // convention and one that is declared cdecl. That's because in
1708  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1709  // because it is the default calling convention.
1710  //
1711  // Note also that we DO NOT return at this point, because we still have
1712  // other tests to run.
1713  const FunctionType *OldType = cast<FunctionType>(OldQType);
1714  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1715  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1716  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1717  bool RequiresAdjustment = false;
1718  if (OldTypeInfo.getCC() != CC_Default &&
1719      NewTypeInfo.getCC() == CC_Default) {
1720    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1721    RequiresAdjustment = true;
1722  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1723                                     NewTypeInfo.getCC())) {
1724    // Calling conventions really aren't compatible, so complain.
1725    Diag(New->getLocation(), diag::err_cconv_change)
1726      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1727      << (OldTypeInfo.getCC() == CC_Default)
1728      << (OldTypeInfo.getCC() == CC_Default ? "" :
1729          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1730    Diag(Old->getLocation(), diag::note_previous_declaration);
1731    return true;
1732  }
1733
1734  // FIXME: diagnose the other way around?
1735  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1736    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1737    RequiresAdjustment = true;
1738  }
1739
1740  // Merge regparm attribute.
1741  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1742      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1743    if (NewTypeInfo.getHasRegParm()) {
1744      Diag(New->getLocation(), diag::err_regparm_mismatch)
1745        << NewType->getRegParmType()
1746        << OldType->getRegParmType();
1747      Diag(Old->getLocation(), diag::note_previous_declaration);
1748      return true;
1749    }
1750
1751    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1752    RequiresAdjustment = true;
1753  }
1754
1755  // Merge ns_returns_retained attribute.
1756  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1757    if (NewTypeInfo.getProducesResult()) {
1758      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1759      Diag(Old->getLocation(), diag::note_previous_declaration);
1760      return true;
1761    }
1762
1763    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1764    RequiresAdjustment = true;
1765  }
1766
1767  if (RequiresAdjustment) {
1768    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1769    New->setType(QualType(NewType, 0));
1770    NewQType = Context.getCanonicalType(New->getType());
1771  }
1772
1773  if (getLangOptions().CPlusPlus) {
1774    // (C++98 13.1p2):
1775    //   Certain function declarations cannot be overloaded:
1776    //     -- Function declarations that differ only in the return type
1777    //        cannot be overloaded.
1778    QualType OldReturnType = OldType->getResultType();
1779    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1780    QualType ResQT;
1781    if (OldReturnType != NewReturnType) {
1782      if (NewReturnType->isObjCObjectPointerType()
1783          && OldReturnType->isObjCObjectPointerType())
1784        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1785      if (ResQT.isNull()) {
1786        if (New->isCXXClassMember() && New->isOutOfLine())
1787          Diag(New->getLocation(),
1788               diag::err_member_def_does_not_match_ret_type) << New;
1789        else
1790          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1791        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1792        return true;
1793      }
1794      else
1795        NewQType = ResQT;
1796    }
1797
1798    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1799    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1800    if (OldMethod && NewMethod) {
1801      // Preserve triviality.
1802      NewMethod->setTrivial(OldMethod->isTrivial());
1803
1804      // MSVC allows explicit template specialization at class scope:
1805      // 2 CXMethodDecls referring to the same function will be injected.
1806      // We don't want a redeclartion error.
1807      bool IsClassScopeExplicitSpecialization =
1808                              OldMethod->isFunctionTemplateSpecialization() &&
1809                              NewMethod->isFunctionTemplateSpecialization();
1810      bool isFriend = NewMethod->getFriendObjectKind();
1811
1812      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1813          !IsClassScopeExplicitSpecialization) {
1814        //    -- Member function declarations with the same name and the
1815        //       same parameter types cannot be overloaded if any of them
1816        //       is a static member function declaration.
1817        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1818          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1819          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1820          return true;
1821        }
1822
1823        // C++ [class.mem]p1:
1824        //   [...] A member shall not be declared twice in the
1825        //   member-specification, except that a nested class or member
1826        //   class template can be declared and then later defined.
1827        unsigned NewDiag;
1828        if (isa<CXXConstructorDecl>(OldMethod))
1829          NewDiag = diag::err_constructor_redeclared;
1830        else if (isa<CXXDestructorDecl>(NewMethod))
1831          NewDiag = diag::err_destructor_redeclared;
1832        else if (isa<CXXConversionDecl>(NewMethod))
1833          NewDiag = diag::err_conv_function_redeclared;
1834        else
1835          NewDiag = diag::err_member_redeclared;
1836
1837        Diag(New->getLocation(), NewDiag);
1838        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1839
1840      // Complain if this is an explicit declaration of a special
1841      // member that was initially declared implicitly.
1842      //
1843      // As an exception, it's okay to befriend such methods in order
1844      // to permit the implicit constructor/destructor/operator calls.
1845      } else if (OldMethod->isImplicit()) {
1846        if (isFriend) {
1847          NewMethod->setImplicit();
1848        } else {
1849          Diag(NewMethod->getLocation(),
1850               diag::err_definition_of_implicitly_declared_member)
1851            << New << getSpecialMember(OldMethod);
1852          return true;
1853        }
1854      } else if (OldMethod->isExplicitlyDefaulted()) {
1855        Diag(NewMethod->getLocation(),
1856             diag::err_definition_of_explicitly_defaulted_member)
1857          << getSpecialMember(OldMethod);
1858        return true;
1859      }
1860    }
1861
1862    // (C++98 8.3.5p3):
1863    //   All declarations for a function shall agree exactly in both the
1864    //   return type and the parameter-type-list.
1865    // We also want to respect all the extended bits except noreturn.
1866
1867    // noreturn should now match unless the old type info didn't have it.
1868    QualType OldQTypeForComparison = OldQType;
1869    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1870      assert(OldQType == QualType(OldType, 0));
1871      const FunctionType *OldTypeForComparison
1872        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1873      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1874      assert(OldQTypeForComparison.isCanonical());
1875    }
1876
1877    if (OldQTypeForComparison == NewQType)
1878      return MergeCompatibleFunctionDecls(New, Old);
1879
1880    // Fall through for conflicting redeclarations and redefinitions.
1881  }
1882
1883  // C: Function types need to be compatible, not identical. This handles
1884  // duplicate function decls like "void f(int); void f(enum X);" properly.
1885  if (!getLangOptions().CPlusPlus &&
1886      Context.typesAreCompatible(OldQType, NewQType)) {
1887    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1888    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1889    const FunctionProtoType *OldProto = 0;
1890    if (isa<FunctionNoProtoType>(NewFuncType) &&
1891        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1892      // The old declaration provided a function prototype, but the
1893      // new declaration does not. Merge in the prototype.
1894      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1895      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1896                                                 OldProto->arg_type_end());
1897      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1898                                         ParamTypes.data(), ParamTypes.size(),
1899                                         OldProto->getExtProtoInfo());
1900      New->setType(NewQType);
1901      New->setHasInheritedPrototype();
1902
1903      // Synthesize a parameter for each argument type.
1904      SmallVector<ParmVarDecl*, 16> Params;
1905      for (FunctionProtoType::arg_type_iterator
1906             ParamType = OldProto->arg_type_begin(),
1907             ParamEnd = OldProto->arg_type_end();
1908           ParamType != ParamEnd; ++ParamType) {
1909        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1910                                                 SourceLocation(),
1911                                                 SourceLocation(), 0,
1912                                                 *ParamType, /*TInfo=*/0,
1913                                                 SC_None, SC_None,
1914                                                 0);
1915        Param->setScopeInfo(0, Params.size());
1916        Param->setImplicit();
1917        Params.push_back(Param);
1918      }
1919
1920      New->setParams(Params);
1921    }
1922
1923    return MergeCompatibleFunctionDecls(New, Old);
1924  }
1925
1926  // GNU C permits a K&R definition to follow a prototype declaration
1927  // if the declared types of the parameters in the K&R definition
1928  // match the types in the prototype declaration, even when the
1929  // promoted types of the parameters from the K&R definition differ
1930  // from the types in the prototype. GCC then keeps the types from
1931  // the prototype.
1932  //
1933  // If a variadic prototype is followed by a non-variadic K&R definition,
1934  // the K&R definition becomes variadic.  This is sort of an edge case, but
1935  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1936  // C99 6.9.1p8.
1937  if (!getLangOptions().CPlusPlus &&
1938      Old->hasPrototype() && !New->hasPrototype() &&
1939      New->getType()->getAs<FunctionProtoType>() &&
1940      Old->getNumParams() == New->getNumParams()) {
1941    SmallVector<QualType, 16> ArgTypes;
1942    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1943    const FunctionProtoType *OldProto
1944      = Old->getType()->getAs<FunctionProtoType>();
1945    const FunctionProtoType *NewProto
1946      = New->getType()->getAs<FunctionProtoType>();
1947
1948    // Determine whether this is the GNU C extension.
1949    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1950                                               NewProto->getResultType());
1951    bool LooseCompatible = !MergedReturn.isNull();
1952    for (unsigned Idx = 0, End = Old->getNumParams();
1953         LooseCompatible && Idx != End; ++Idx) {
1954      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1955      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1956      if (Context.typesAreCompatible(OldParm->getType(),
1957                                     NewProto->getArgType(Idx))) {
1958        ArgTypes.push_back(NewParm->getType());
1959      } else if (Context.typesAreCompatible(OldParm->getType(),
1960                                            NewParm->getType(),
1961                                            /*CompareUnqualified=*/true)) {
1962        GNUCompatibleParamWarning Warn
1963          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1964        Warnings.push_back(Warn);
1965        ArgTypes.push_back(NewParm->getType());
1966      } else
1967        LooseCompatible = false;
1968    }
1969
1970    if (LooseCompatible) {
1971      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1972        Diag(Warnings[Warn].NewParm->getLocation(),
1973             diag::ext_param_promoted_not_compatible_with_prototype)
1974          << Warnings[Warn].PromotedType
1975          << Warnings[Warn].OldParm->getType();
1976        if (Warnings[Warn].OldParm->getLocation().isValid())
1977          Diag(Warnings[Warn].OldParm->getLocation(),
1978               diag::note_previous_declaration);
1979      }
1980
1981      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1982                                           ArgTypes.size(),
1983                                           OldProto->getExtProtoInfo()));
1984      return MergeCompatibleFunctionDecls(New, Old);
1985    }
1986
1987    // Fall through to diagnose conflicting types.
1988  }
1989
1990  // A function that has already been declared has been redeclared or defined
1991  // with a different type- show appropriate diagnostic
1992  if (unsigned BuiltinID = Old->getBuiltinID()) {
1993    // The user has declared a builtin function with an incompatible
1994    // signature.
1995    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1996      // The function the user is redeclaring is a library-defined
1997      // function like 'malloc' or 'printf'. Warn about the
1998      // redeclaration, then pretend that we don't know about this
1999      // library built-in.
2000      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2001      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2002        << Old << Old->getType();
2003      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2004      Old->setInvalidDecl();
2005      return false;
2006    }
2007
2008    PrevDiag = diag::note_previous_builtin_declaration;
2009  }
2010
2011  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2012  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2013  return true;
2014}
2015
2016/// \brief Completes the merge of two function declarations that are
2017/// known to be compatible.
2018///
2019/// This routine handles the merging of attributes and other
2020/// properties of function declarations form the old declaration to
2021/// the new declaration, once we know that New is in fact a
2022/// redeclaration of Old.
2023///
2024/// \returns false
2025bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2026  // Merge the attributes
2027  mergeDeclAttributes(New, Old, Context);
2028
2029  // Merge the storage class.
2030  if (Old->getStorageClass() != SC_Extern &&
2031      Old->getStorageClass() != SC_None)
2032    New->setStorageClass(Old->getStorageClass());
2033
2034  // Merge "pure" flag.
2035  if (Old->isPure())
2036    New->setPure();
2037
2038  // __module_private__ is propagated to later declarations.
2039  if (Old->isModulePrivate())
2040    New->setModulePrivate();
2041  else if (New->isModulePrivate())
2042    diagnoseModulePrivateRedeclaration(New, Old);
2043
2044  // Merge attributes from the parameters.  These can mismatch with K&R
2045  // declarations.
2046  if (New->getNumParams() == Old->getNumParams())
2047    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2048      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2049                               Context);
2050
2051  if (getLangOptions().CPlusPlus)
2052    return MergeCXXFunctionDecl(New, Old);
2053
2054  return false;
2055}
2056
2057
2058void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2059                                const ObjCMethodDecl *oldMethod) {
2060  // We don't want to merge unavailable and deprecated attributes
2061  // except from interface to implementation.
2062  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2063
2064  // Merge the attributes.
2065  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2066
2067  // Merge attributes from the parameters.
2068  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2069  for (ObjCMethodDecl::param_iterator
2070         ni = newMethod->param_begin(), ne = newMethod->param_end();
2071       ni != ne; ++ni, ++oi)
2072    mergeParamDeclAttributes(*ni, *oi, Context);
2073
2074  CheckObjCMethodOverride(newMethod, oldMethod, true);
2075}
2076
2077/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2078/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2079/// emitting diagnostics as appropriate.
2080///
2081/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2082/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2083/// check them before the initializer is attached.
2084///
2085void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2086  if (New->isInvalidDecl() || Old->isInvalidDecl())
2087    return;
2088
2089  QualType MergedT;
2090  if (getLangOptions().CPlusPlus) {
2091    AutoType *AT = New->getType()->getContainedAutoType();
2092    if (AT && !AT->isDeduced()) {
2093      // We don't know what the new type is until the initializer is attached.
2094      return;
2095    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2096      // These could still be something that needs exception specs checked.
2097      return MergeVarDeclExceptionSpecs(New, Old);
2098    }
2099    // C++ [basic.link]p10:
2100    //   [...] the types specified by all declarations referring to a given
2101    //   object or function shall be identical, except that declarations for an
2102    //   array object can specify array types that differ by the presence or
2103    //   absence of a major array bound (8.3.4).
2104    else if (Old->getType()->isIncompleteArrayType() &&
2105             New->getType()->isArrayType()) {
2106      CanQual<ArrayType> OldArray
2107        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2108      CanQual<ArrayType> NewArray
2109        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2110      if (OldArray->getElementType() == NewArray->getElementType())
2111        MergedT = New->getType();
2112    } else if (Old->getType()->isArrayType() &&
2113             New->getType()->isIncompleteArrayType()) {
2114      CanQual<ArrayType> OldArray
2115        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2116      CanQual<ArrayType> NewArray
2117        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2118      if (OldArray->getElementType() == NewArray->getElementType())
2119        MergedT = Old->getType();
2120    } else if (New->getType()->isObjCObjectPointerType()
2121               && Old->getType()->isObjCObjectPointerType()) {
2122        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2123                                                        Old->getType());
2124    }
2125  } else {
2126    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2127  }
2128  if (MergedT.isNull()) {
2129    Diag(New->getLocation(), diag::err_redefinition_different_type)
2130      << New->getDeclName();
2131    Diag(Old->getLocation(), diag::note_previous_definition);
2132    return New->setInvalidDecl();
2133  }
2134  New->setType(MergedT);
2135}
2136
2137/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2138/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2139/// situation, merging decls or emitting diagnostics as appropriate.
2140///
2141/// Tentative definition rules (C99 6.9.2p2) are checked by
2142/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2143/// definitions here, since the initializer hasn't been attached.
2144///
2145void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2146  // If the new decl is already invalid, don't do any other checking.
2147  if (New->isInvalidDecl())
2148    return;
2149
2150  // Verify the old decl was also a variable.
2151  VarDecl *Old = 0;
2152  if (!Previous.isSingleResult() ||
2153      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2154    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2155      << New->getDeclName();
2156    Diag(Previous.getRepresentativeDecl()->getLocation(),
2157         diag::note_previous_definition);
2158    return New->setInvalidDecl();
2159  }
2160
2161  // C++ [class.mem]p1:
2162  //   A member shall not be declared twice in the member-specification [...]
2163  //
2164  // Here, we need only consider static data members.
2165  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2166    Diag(New->getLocation(), diag::err_duplicate_member)
2167      << New->getIdentifier();
2168    Diag(Old->getLocation(), diag::note_previous_declaration);
2169    New->setInvalidDecl();
2170  }
2171
2172  mergeDeclAttributes(New, Old, Context);
2173  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2174  if (New->getAttr<WeakImportAttr>() &&
2175      Old->getStorageClass() == SC_None &&
2176      !Old->getAttr<WeakImportAttr>()) {
2177    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2178    Diag(Old->getLocation(), diag::note_previous_definition);
2179    // Remove weak_import attribute on new declaration.
2180    New->dropAttr<WeakImportAttr>();
2181  }
2182
2183  // Merge the types.
2184  MergeVarDeclTypes(New, Old);
2185  if (New->isInvalidDecl())
2186    return;
2187
2188  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2189  if (New->getStorageClass() == SC_Static &&
2190      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2191    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    return New->setInvalidDecl();
2194  }
2195  // C99 6.2.2p4:
2196  //   For an identifier declared with the storage-class specifier
2197  //   extern in a scope in which a prior declaration of that
2198  //   identifier is visible,23) if the prior declaration specifies
2199  //   internal or external linkage, the linkage of the identifier at
2200  //   the later declaration is the same as the linkage specified at
2201  //   the prior declaration. If no prior declaration is visible, or
2202  //   if the prior declaration specifies no linkage, then the
2203  //   identifier has external linkage.
2204  if (New->hasExternalStorage() && Old->hasLinkage())
2205    /* Okay */;
2206  else if (New->getStorageClass() != SC_Static &&
2207           Old->getStorageClass() == SC_Static) {
2208    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2209    Diag(Old->getLocation(), diag::note_previous_definition);
2210    return New->setInvalidDecl();
2211  }
2212
2213  // Check if extern is followed by non-extern and vice-versa.
2214  if (New->hasExternalStorage() &&
2215      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2216    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2217    Diag(Old->getLocation(), diag::note_previous_definition);
2218    return New->setInvalidDecl();
2219  }
2220  if (Old->hasExternalStorage() &&
2221      !New->hasLinkage() && New->isLocalVarDecl()) {
2222    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2223    Diag(Old->getLocation(), diag::note_previous_definition);
2224    return New->setInvalidDecl();
2225  }
2226
2227  // __module_private__ is propagated to later declarations.
2228  if (Old->isModulePrivate())
2229    New->setModulePrivate();
2230  else if (New->isModulePrivate())
2231    diagnoseModulePrivateRedeclaration(New, Old);
2232
2233  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2234
2235  // FIXME: The test for external storage here seems wrong? We still
2236  // need to check for mismatches.
2237  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2238      // Don't complain about out-of-line definitions of static members.
2239      !(Old->getLexicalDeclContext()->isRecord() &&
2240        !New->getLexicalDeclContext()->isRecord())) {
2241    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2242    Diag(Old->getLocation(), diag::note_previous_definition);
2243    return New->setInvalidDecl();
2244  }
2245
2246  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2247    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2248    Diag(Old->getLocation(), diag::note_previous_definition);
2249  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2250    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2251    Diag(Old->getLocation(), diag::note_previous_definition);
2252  }
2253
2254  // C++ doesn't have tentative definitions, so go right ahead and check here.
2255  const VarDecl *Def;
2256  if (getLangOptions().CPlusPlus &&
2257      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2258      (Def = Old->getDefinition())) {
2259    Diag(New->getLocation(), diag::err_redefinition)
2260      << New->getDeclName();
2261    Diag(Def->getLocation(), diag::note_previous_definition);
2262    New->setInvalidDecl();
2263    return;
2264  }
2265  // c99 6.2.2 P4.
2266  // For an identifier declared with the storage-class specifier extern in a
2267  // scope in which a prior declaration of that identifier is visible, if
2268  // the prior declaration specifies internal or external linkage, the linkage
2269  // of the identifier at the later declaration is the same as the linkage
2270  // specified at the prior declaration.
2271  // FIXME. revisit this code.
2272  if (New->hasExternalStorage() &&
2273      Old->getLinkage() == InternalLinkage &&
2274      New->getDeclContext() == Old->getDeclContext())
2275    New->setStorageClass(Old->getStorageClass());
2276
2277  // Keep a chain of previous declarations.
2278  New->setPreviousDeclaration(Old);
2279
2280  // Inherit access appropriately.
2281  New->setAccess(Old->getAccess());
2282}
2283
2284/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2285/// no declarator (e.g. "struct foo;") is parsed.
2286Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2287                                       DeclSpec &DS) {
2288  return ParsedFreeStandingDeclSpec(S, AS, DS,
2289                                    MultiTemplateParamsArg(*this, 0, 0));
2290}
2291
2292/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2293/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2294/// parameters to cope with template friend declarations.
2295Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2296                                       DeclSpec &DS,
2297                                       MultiTemplateParamsArg TemplateParams) {
2298  Decl *TagD = 0;
2299  TagDecl *Tag = 0;
2300  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2301      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2302      DS.getTypeSpecType() == DeclSpec::TST_union ||
2303      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2304    TagD = DS.getRepAsDecl();
2305
2306    if (!TagD) // We probably had an error
2307      return 0;
2308
2309    // Note that the above type specs guarantee that the
2310    // type rep is a Decl, whereas in many of the others
2311    // it's a Type.
2312    Tag = dyn_cast<TagDecl>(TagD);
2313  }
2314
2315  if (Tag)
2316    Tag->setFreeStanding();
2317
2318  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2319    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2320    // or incomplete types shall not be restrict-qualified."
2321    if (TypeQuals & DeclSpec::TQ_restrict)
2322      Diag(DS.getRestrictSpecLoc(),
2323           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2324           << DS.getSourceRange();
2325  }
2326
2327  if (DS.isConstexprSpecified()) {
2328    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2329    // and definitions of functions and variables.
2330    if (Tag)
2331      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2332        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2333            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2334            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2335    else
2336      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2337    // Don't emit warnings after this error.
2338    return TagD;
2339  }
2340
2341  if (DS.isFriendSpecified()) {
2342    // If we're dealing with a decl but not a TagDecl, assume that
2343    // whatever routines created it handled the friendship aspect.
2344    if (TagD && !Tag)
2345      return 0;
2346    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2347  }
2348
2349  // Track whether we warned about the fact that there aren't any
2350  // declarators.
2351  bool emittedWarning = false;
2352
2353  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2354    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2355
2356    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2357        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2358      if (getLangOptions().CPlusPlus ||
2359          Record->getDeclContext()->isRecord())
2360        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2361
2362      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2363        << DS.getSourceRange();
2364      emittedWarning = true;
2365    }
2366  }
2367
2368  // Check for Microsoft C extension: anonymous struct.
2369  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2370      CurContext->isRecord() &&
2371      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2372    // Handle 2 kinds of anonymous struct:
2373    //   struct STRUCT;
2374    // and
2375    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2376    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2377    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2378        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2379         DS.getRepAsType().get()->isStructureType())) {
2380      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2381        << DS.getSourceRange();
2382      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2383    }
2384  }
2385
2386  if (getLangOptions().CPlusPlus &&
2387      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2388    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2389      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2390          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2391        Diag(Enum->getLocation(), diag::ext_no_declarators)
2392          << DS.getSourceRange();
2393        emittedWarning = true;
2394      }
2395
2396  // Skip all the checks below if we have a type error.
2397  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2398
2399  if (!DS.isMissingDeclaratorOk()) {
2400    // Warn about typedefs of enums without names, since this is an
2401    // extension in both Microsoft and GNU.
2402    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2403        Tag && isa<EnumDecl>(Tag)) {
2404      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2405        << DS.getSourceRange();
2406      return Tag;
2407    }
2408
2409    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2410      << DS.getSourceRange();
2411    emittedWarning = true;
2412  }
2413
2414  // We're going to complain about a bunch of spurious specifiers;
2415  // only do this if we're declaring a tag, because otherwise we
2416  // should be getting diag::ext_no_declarators.
2417  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2418    return TagD;
2419
2420  // Note that a linkage-specification sets a storage class, but
2421  // 'extern "C" struct foo;' is actually valid and not theoretically
2422  // useless.
2423  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2424    if (!DS.isExternInLinkageSpec())
2425      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2426        << DeclSpec::getSpecifierName(scs);
2427
2428  if (DS.isThreadSpecified())
2429    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2430  if (DS.getTypeQualifiers()) {
2431    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2432      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2433    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2434      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2435    // Restrict is covered above.
2436  }
2437  if (DS.isInlineSpecified())
2438    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2439  if (DS.isVirtualSpecified())
2440    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2441  if (DS.isExplicitSpecified())
2442    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2443
2444  if (DS.isModulePrivateSpecified() &&
2445      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2446    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2447      << Tag->getTagKind()
2448      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2449
2450  // FIXME: Warn on useless attributes
2451
2452  return TagD;
2453}
2454
2455/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2456/// builds a statement for it and returns it so it is evaluated.
2457StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2458  StmtResult R;
2459  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2460    Expr *Exp = DS.getRepAsExpr();
2461    QualType Ty = Exp->getType();
2462    if (Ty->isPointerType()) {
2463      do
2464        Ty = Ty->getAs<PointerType>()->getPointeeType();
2465      while (Ty->isPointerType());
2466    }
2467    if (Ty->isVariableArrayType()) {
2468      R = ActOnExprStmt(MakeFullExpr(Exp));
2469    }
2470  }
2471  return R;
2472}
2473
2474/// We are trying to inject an anonymous member into the given scope;
2475/// check if there's an existing declaration that can't be overloaded.
2476///
2477/// \return true if this is a forbidden redeclaration
2478static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2479                                         Scope *S,
2480                                         DeclContext *Owner,
2481                                         DeclarationName Name,
2482                                         SourceLocation NameLoc,
2483                                         unsigned diagnostic) {
2484  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2485                 Sema::ForRedeclaration);
2486  if (!SemaRef.LookupName(R, S)) return false;
2487
2488  if (R.getAsSingle<TagDecl>())
2489    return false;
2490
2491  // Pick a representative declaration.
2492  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2493  assert(PrevDecl && "Expected a non-null Decl");
2494
2495  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2496    return false;
2497
2498  SemaRef.Diag(NameLoc, diagnostic) << Name;
2499  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2500
2501  return true;
2502}
2503
2504/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2505/// anonymous struct or union AnonRecord into the owning context Owner
2506/// and scope S. This routine will be invoked just after we realize
2507/// that an unnamed union or struct is actually an anonymous union or
2508/// struct, e.g.,
2509///
2510/// @code
2511/// union {
2512///   int i;
2513///   float f;
2514/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2515///    // f into the surrounding scope.x
2516/// @endcode
2517///
2518/// This routine is recursive, injecting the names of nested anonymous
2519/// structs/unions into the owning context and scope as well.
2520static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2521                                                DeclContext *Owner,
2522                                                RecordDecl *AnonRecord,
2523                                                AccessSpecifier AS,
2524                              SmallVector<NamedDecl*, 2> &Chaining,
2525                                                      bool MSAnonStruct) {
2526  unsigned diagKind
2527    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2528                            : diag::err_anonymous_struct_member_redecl;
2529
2530  bool Invalid = false;
2531
2532  // Look every FieldDecl and IndirectFieldDecl with a name.
2533  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2534                               DEnd = AnonRecord->decls_end();
2535       D != DEnd; ++D) {
2536    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2537        cast<NamedDecl>(*D)->getDeclName()) {
2538      ValueDecl *VD = cast<ValueDecl>(*D);
2539      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2540                                       VD->getLocation(), diagKind)) {
2541        // C++ [class.union]p2:
2542        //   The names of the members of an anonymous union shall be
2543        //   distinct from the names of any other entity in the
2544        //   scope in which the anonymous union is declared.
2545        Invalid = true;
2546      } else {
2547        // C++ [class.union]p2:
2548        //   For the purpose of name lookup, after the anonymous union
2549        //   definition, the members of the anonymous union are
2550        //   considered to have been defined in the scope in which the
2551        //   anonymous union is declared.
2552        unsigned OldChainingSize = Chaining.size();
2553        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2554          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2555               PE = IF->chain_end(); PI != PE; ++PI)
2556            Chaining.push_back(*PI);
2557        else
2558          Chaining.push_back(VD);
2559
2560        assert(Chaining.size() >= 2);
2561        NamedDecl **NamedChain =
2562          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2563        for (unsigned i = 0; i < Chaining.size(); i++)
2564          NamedChain[i] = Chaining[i];
2565
2566        IndirectFieldDecl* IndirectField =
2567          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2568                                    VD->getIdentifier(), VD->getType(),
2569                                    NamedChain, Chaining.size());
2570
2571        IndirectField->setAccess(AS);
2572        IndirectField->setImplicit();
2573        SemaRef.PushOnScopeChains(IndirectField, S);
2574
2575        // That includes picking up the appropriate access specifier.
2576        if (AS != AS_none) IndirectField->setAccess(AS);
2577
2578        Chaining.resize(OldChainingSize);
2579      }
2580    }
2581  }
2582
2583  return Invalid;
2584}
2585
2586/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2587/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2588/// illegal input values are mapped to SC_None.
2589static StorageClass
2590StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2591  switch (StorageClassSpec) {
2592  case DeclSpec::SCS_unspecified:    return SC_None;
2593  case DeclSpec::SCS_extern:         return SC_Extern;
2594  case DeclSpec::SCS_static:         return SC_Static;
2595  case DeclSpec::SCS_auto:           return SC_Auto;
2596  case DeclSpec::SCS_register:       return SC_Register;
2597  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2598    // Illegal SCSs map to None: error reporting is up to the caller.
2599  case DeclSpec::SCS_mutable:        // Fall through.
2600  case DeclSpec::SCS_typedef:        return SC_None;
2601  }
2602  llvm_unreachable("unknown storage class specifier");
2603}
2604
2605/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2606/// a StorageClass. Any error reporting is up to the caller:
2607/// illegal input values are mapped to SC_None.
2608static StorageClass
2609StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2610  switch (StorageClassSpec) {
2611  case DeclSpec::SCS_unspecified:    return SC_None;
2612  case DeclSpec::SCS_extern:         return SC_Extern;
2613  case DeclSpec::SCS_static:         return SC_Static;
2614  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2615    // Illegal SCSs map to None: error reporting is up to the caller.
2616  case DeclSpec::SCS_auto:           // Fall through.
2617  case DeclSpec::SCS_mutable:        // Fall through.
2618  case DeclSpec::SCS_register:       // Fall through.
2619  case DeclSpec::SCS_typedef:        return SC_None;
2620  }
2621  llvm_unreachable("unknown storage class specifier");
2622}
2623
2624/// BuildAnonymousStructOrUnion - Handle the declaration of an
2625/// anonymous structure or union. Anonymous unions are a C++ feature
2626/// (C++ [class.union]) and a GNU C extension; anonymous structures
2627/// are a GNU C and GNU C++ extension.
2628Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2629                                             AccessSpecifier AS,
2630                                             RecordDecl *Record) {
2631  DeclContext *Owner = Record->getDeclContext();
2632
2633  // Diagnose whether this anonymous struct/union is an extension.
2634  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2635    Diag(Record->getLocation(), diag::ext_anonymous_union);
2636  else if (!Record->isUnion())
2637    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2638
2639  // C and C++ require different kinds of checks for anonymous
2640  // structs/unions.
2641  bool Invalid = false;
2642  if (getLangOptions().CPlusPlus) {
2643    const char* PrevSpec = 0;
2644    unsigned DiagID;
2645    // C++ [class.union]p3:
2646    //   Anonymous unions declared in a named namespace or in the
2647    //   global namespace shall be declared static.
2648    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2649        (isa<TranslationUnitDecl>(Owner) ||
2650         (isa<NamespaceDecl>(Owner) &&
2651          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2652      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2653      Invalid = true;
2654
2655      // Recover by adding 'static'.
2656      DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2657                             PrevSpec, DiagID);
2658    }
2659    // C++ [class.union]p3:
2660    //   A storage class is not allowed in a declaration of an
2661    //   anonymous union in a class scope.
2662    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2663             isa<RecordDecl>(Owner)) {
2664      Diag(DS.getStorageClassSpecLoc(),
2665           diag::err_anonymous_union_with_storage_spec);
2666      Invalid = true;
2667
2668      // Recover by removing the storage specifier.
2669      DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
2670                             PrevSpec, DiagID);
2671    }
2672
2673    // Ignore const/volatile/restrict qualifiers.
2674    if (DS.getTypeQualifiers()) {
2675      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2676        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2677          << Record->isUnion() << 0
2678          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2679      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2680        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2681          << Record->isUnion() << 1
2682          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2683      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2684        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2685          << Record->isUnion() << 2
2686          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2687
2688      DS.ClearTypeQualifiers();
2689    }
2690
2691    // C++ [class.union]p2:
2692    //   The member-specification of an anonymous union shall only
2693    //   define non-static data members. [Note: nested types and
2694    //   functions cannot be declared within an anonymous union. ]
2695    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2696                                 MemEnd = Record->decls_end();
2697         Mem != MemEnd; ++Mem) {
2698      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2699        // C++ [class.union]p3:
2700        //   An anonymous union shall not have private or protected
2701        //   members (clause 11).
2702        assert(FD->getAccess() != AS_none);
2703        if (FD->getAccess() != AS_public) {
2704          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2705            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2706          Invalid = true;
2707        }
2708
2709        // C++ [class.union]p1
2710        //   An object of a class with a non-trivial constructor, a non-trivial
2711        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2712        //   assignment operator cannot be a member of a union, nor can an
2713        //   array of such objects.
2714        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2715          Invalid = true;
2716      } else if ((*Mem)->isImplicit()) {
2717        // Any implicit members are fine.
2718      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2719        // This is a type that showed up in an
2720        // elaborated-type-specifier inside the anonymous struct or
2721        // union, but which actually declares a type outside of the
2722        // anonymous struct or union. It's okay.
2723      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2724        if (!MemRecord->isAnonymousStructOrUnion() &&
2725            MemRecord->getDeclName()) {
2726          // Visual C++ allows type definition in anonymous struct or union.
2727          if (getLangOptions().MicrosoftExt)
2728            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2729              << (int)Record->isUnion();
2730          else {
2731            // This is a nested type declaration.
2732            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2733              << (int)Record->isUnion();
2734            Invalid = true;
2735          }
2736        }
2737      } else if (isa<AccessSpecDecl>(*Mem)) {
2738        // Any access specifier is fine.
2739      } else {
2740        // We have something that isn't a non-static data
2741        // member. Complain about it.
2742        unsigned DK = diag::err_anonymous_record_bad_member;
2743        if (isa<TypeDecl>(*Mem))
2744          DK = diag::err_anonymous_record_with_type;
2745        else if (isa<FunctionDecl>(*Mem))
2746          DK = diag::err_anonymous_record_with_function;
2747        else if (isa<VarDecl>(*Mem))
2748          DK = diag::err_anonymous_record_with_static;
2749
2750        // Visual C++ allows type definition in anonymous struct or union.
2751        if (getLangOptions().MicrosoftExt &&
2752            DK == diag::err_anonymous_record_with_type)
2753          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2754            << (int)Record->isUnion();
2755        else {
2756          Diag((*Mem)->getLocation(), DK)
2757              << (int)Record->isUnion();
2758          Invalid = true;
2759        }
2760      }
2761    }
2762  }
2763
2764  if (!Record->isUnion() && !Owner->isRecord()) {
2765    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2766      << (int)getLangOptions().CPlusPlus;
2767    Invalid = true;
2768  }
2769
2770  // Mock up a declarator.
2771  Declarator Dc(DS, Declarator::MemberContext);
2772  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2773  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2774
2775  // Create a declaration for this anonymous struct/union.
2776  NamedDecl *Anon = 0;
2777  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2778    Anon = FieldDecl::Create(Context, OwningClass,
2779                             DS.getSourceRange().getBegin(),
2780                             Record->getLocation(),
2781                             /*IdentifierInfo=*/0,
2782                             Context.getTypeDeclType(Record),
2783                             TInfo,
2784                             /*BitWidth=*/0, /*Mutable=*/false,
2785                             /*HasInit=*/false);
2786    Anon->setAccess(AS);
2787    if (getLangOptions().CPlusPlus)
2788      FieldCollector->Add(cast<FieldDecl>(Anon));
2789  } else {
2790    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2791    assert(SCSpec != DeclSpec::SCS_typedef &&
2792           "Parser allowed 'typedef' as storage class VarDecl.");
2793    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2794    if (SCSpec == DeclSpec::SCS_mutable) {
2795      // mutable can only appear on non-static class members, so it's always
2796      // an error here
2797      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2798      Invalid = true;
2799      SC = SC_None;
2800    }
2801    SCSpec = DS.getStorageClassSpecAsWritten();
2802    VarDecl::StorageClass SCAsWritten
2803      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2804
2805    Anon = VarDecl::Create(Context, Owner,
2806                           DS.getSourceRange().getBegin(),
2807                           Record->getLocation(), /*IdentifierInfo=*/0,
2808                           Context.getTypeDeclType(Record),
2809                           TInfo, SC, SCAsWritten);
2810
2811    // Default-initialize the implicit variable. This initialization will be
2812    // trivial in almost all cases, except if a union member has an in-class
2813    // initializer:
2814    //   union { int n = 0; };
2815    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2816  }
2817  Anon->setImplicit();
2818
2819  // Add the anonymous struct/union object to the current
2820  // context. We'll be referencing this object when we refer to one of
2821  // its members.
2822  Owner->addDecl(Anon);
2823
2824  // Inject the members of the anonymous struct/union into the owning
2825  // context and into the identifier resolver chain for name lookup
2826  // purposes.
2827  SmallVector<NamedDecl*, 2> Chain;
2828  Chain.push_back(Anon);
2829
2830  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2831                                          Chain, false))
2832    Invalid = true;
2833
2834  // Mark this as an anonymous struct/union type. Note that we do not
2835  // do this until after we have already checked and injected the
2836  // members of this anonymous struct/union type, because otherwise
2837  // the members could be injected twice: once by DeclContext when it
2838  // builds its lookup table, and once by
2839  // InjectAnonymousStructOrUnionMembers.
2840  Record->setAnonymousStructOrUnion(true);
2841
2842  if (Invalid)
2843    Anon->setInvalidDecl();
2844
2845  return Anon;
2846}
2847
2848/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2849/// Microsoft C anonymous structure.
2850/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2851/// Example:
2852///
2853/// struct A { int a; };
2854/// struct B { struct A; int b; };
2855///
2856/// void foo() {
2857///   B var;
2858///   var.a = 3;
2859/// }
2860///
2861Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2862                                           RecordDecl *Record) {
2863
2864  // If there is no Record, get the record via the typedef.
2865  if (!Record)
2866    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2867
2868  // Mock up a declarator.
2869  Declarator Dc(DS, Declarator::TypeNameContext);
2870  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2871  assert(TInfo && "couldn't build declarator info for anonymous struct");
2872
2873  // Create a declaration for this anonymous struct.
2874  NamedDecl* Anon = FieldDecl::Create(Context,
2875                             cast<RecordDecl>(CurContext),
2876                             DS.getSourceRange().getBegin(),
2877                             DS.getSourceRange().getBegin(),
2878                             /*IdentifierInfo=*/0,
2879                             Context.getTypeDeclType(Record),
2880                             TInfo,
2881                             /*BitWidth=*/0, /*Mutable=*/false,
2882                             /*HasInit=*/false);
2883  Anon->setImplicit();
2884
2885  // Add the anonymous struct object to the current context.
2886  CurContext->addDecl(Anon);
2887
2888  // Inject the members of the anonymous struct into the current
2889  // context and into the identifier resolver chain for name lookup
2890  // purposes.
2891  SmallVector<NamedDecl*, 2> Chain;
2892  Chain.push_back(Anon);
2893
2894  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2895                                          Record->getDefinition(),
2896                                          AS_none, Chain, true))
2897    Anon->setInvalidDecl();
2898
2899  return Anon;
2900}
2901
2902/// GetNameForDeclarator - Determine the full declaration name for the
2903/// given Declarator.
2904DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2905  return GetNameFromUnqualifiedId(D.getName());
2906}
2907
2908/// \brief Retrieves the declaration name from a parsed unqualified-id.
2909DeclarationNameInfo
2910Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2911  DeclarationNameInfo NameInfo;
2912  NameInfo.setLoc(Name.StartLocation);
2913
2914  switch (Name.getKind()) {
2915
2916  case UnqualifiedId::IK_ImplicitSelfParam:
2917  case UnqualifiedId::IK_Identifier:
2918    NameInfo.setName(Name.Identifier);
2919    NameInfo.setLoc(Name.StartLocation);
2920    return NameInfo;
2921
2922  case UnqualifiedId::IK_OperatorFunctionId:
2923    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2924                                           Name.OperatorFunctionId.Operator));
2925    NameInfo.setLoc(Name.StartLocation);
2926    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2927      = Name.OperatorFunctionId.SymbolLocations[0];
2928    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2929      = Name.EndLocation.getRawEncoding();
2930    return NameInfo;
2931
2932  case UnqualifiedId::IK_LiteralOperatorId:
2933    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2934                                                           Name.Identifier));
2935    NameInfo.setLoc(Name.StartLocation);
2936    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2937    return NameInfo;
2938
2939  case UnqualifiedId::IK_ConversionFunctionId: {
2940    TypeSourceInfo *TInfo;
2941    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2942    if (Ty.isNull())
2943      return DeclarationNameInfo();
2944    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2945                                               Context.getCanonicalType(Ty)));
2946    NameInfo.setLoc(Name.StartLocation);
2947    NameInfo.setNamedTypeInfo(TInfo);
2948    return NameInfo;
2949  }
2950
2951  case UnqualifiedId::IK_ConstructorName: {
2952    TypeSourceInfo *TInfo;
2953    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2954    if (Ty.isNull())
2955      return DeclarationNameInfo();
2956    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2957                                              Context.getCanonicalType(Ty)));
2958    NameInfo.setLoc(Name.StartLocation);
2959    NameInfo.setNamedTypeInfo(TInfo);
2960    return NameInfo;
2961  }
2962
2963  case UnqualifiedId::IK_ConstructorTemplateId: {
2964    // In well-formed code, we can only have a constructor
2965    // template-id that refers to the current context, so go there
2966    // to find the actual type being constructed.
2967    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2968    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2969      return DeclarationNameInfo();
2970
2971    // Determine the type of the class being constructed.
2972    QualType CurClassType = Context.getTypeDeclType(CurClass);
2973
2974    // FIXME: Check two things: that the template-id names the same type as
2975    // CurClassType, and that the template-id does not occur when the name
2976    // was qualified.
2977
2978    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2979                                    Context.getCanonicalType(CurClassType)));
2980    NameInfo.setLoc(Name.StartLocation);
2981    // FIXME: should we retrieve TypeSourceInfo?
2982    NameInfo.setNamedTypeInfo(0);
2983    return NameInfo;
2984  }
2985
2986  case UnqualifiedId::IK_DestructorName: {
2987    TypeSourceInfo *TInfo;
2988    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2989    if (Ty.isNull())
2990      return DeclarationNameInfo();
2991    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2992                                              Context.getCanonicalType(Ty)));
2993    NameInfo.setLoc(Name.StartLocation);
2994    NameInfo.setNamedTypeInfo(TInfo);
2995    return NameInfo;
2996  }
2997
2998  case UnqualifiedId::IK_TemplateId: {
2999    TemplateName TName = Name.TemplateId->Template.get();
3000    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3001    return Context.getNameForTemplate(TName, TNameLoc);
3002  }
3003
3004  } // switch (Name.getKind())
3005
3006  llvm_unreachable("Unknown name kind");
3007}
3008
3009static QualType getCoreType(QualType Ty) {
3010  do {
3011    if (Ty->isPointerType() || Ty->isReferenceType())
3012      Ty = Ty->getPointeeType();
3013    else if (Ty->isArrayType())
3014      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3015    else
3016      return Ty.withoutLocalFastQualifiers();
3017  } while (true);
3018}
3019
3020/// hasSimilarParameters - Determine whether the C++ functions Declaration
3021/// and Definition have "nearly" matching parameters. This heuristic is
3022/// used to improve diagnostics in the case where an out-of-line function
3023/// definition doesn't match any declaration within the class or namespace.
3024/// Also sets Params to the list of indices to the parameters that differ
3025/// between the declaration and the definition. If hasSimilarParameters
3026/// returns true and Params is empty, then all of the parameters match.
3027static bool hasSimilarParameters(ASTContext &Context,
3028                                     FunctionDecl *Declaration,
3029                                     FunctionDecl *Definition,
3030                                     llvm::SmallVectorImpl<unsigned> &Params) {
3031  Params.clear();
3032  if (Declaration->param_size() != Definition->param_size())
3033    return false;
3034  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3035    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3036    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3037
3038    // The parameter types are identical
3039    if (Context.hasSameType(DefParamTy, DeclParamTy))
3040      continue;
3041
3042    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3043    QualType DefParamBaseTy = getCoreType(DefParamTy);
3044    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3045    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3046
3047    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3048        (DeclTyName && DeclTyName == DefTyName))
3049      Params.push_back(Idx);
3050    else  // The two parameters aren't even close
3051      return false;
3052  }
3053
3054  return true;
3055}
3056
3057/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3058/// declarator needs to be rebuilt in the current instantiation.
3059/// Any bits of declarator which appear before the name are valid for
3060/// consideration here.  That's specifically the type in the decl spec
3061/// and the base type in any member-pointer chunks.
3062static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3063                                                    DeclarationName Name) {
3064  // The types we specifically need to rebuild are:
3065  //   - typenames, typeofs, and decltypes
3066  //   - types which will become injected class names
3067  // Of course, we also need to rebuild any type referencing such a
3068  // type.  It's safest to just say "dependent", but we call out a
3069  // few cases here.
3070
3071  DeclSpec &DS = D.getMutableDeclSpec();
3072  switch (DS.getTypeSpecType()) {
3073  case DeclSpec::TST_typename:
3074  case DeclSpec::TST_typeofType:
3075  case DeclSpec::TST_decltype:
3076  case DeclSpec::TST_underlyingType:
3077  case DeclSpec::TST_atomic: {
3078    // Grab the type from the parser.
3079    TypeSourceInfo *TSI = 0;
3080    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3081    if (T.isNull() || !T->isDependentType()) break;
3082
3083    // Make sure there's a type source info.  This isn't really much
3084    // of a waste; most dependent types should have type source info
3085    // attached already.
3086    if (!TSI)
3087      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3088
3089    // Rebuild the type in the current instantiation.
3090    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3091    if (!TSI) return true;
3092
3093    // Store the new type back in the decl spec.
3094    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3095    DS.UpdateTypeRep(LocType);
3096    break;
3097  }
3098
3099  case DeclSpec::TST_typeofExpr: {
3100    Expr *E = DS.getRepAsExpr();
3101    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3102    if (Result.isInvalid()) return true;
3103    DS.UpdateExprRep(Result.get());
3104    break;
3105  }
3106
3107  default:
3108    // Nothing to do for these decl specs.
3109    break;
3110  }
3111
3112  // It doesn't matter what order we do this in.
3113  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3114    DeclaratorChunk &Chunk = D.getTypeObject(I);
3115
3116    // The only type information in the declarator which can come
3117    // before the declaration name is the base type of a member
3118    // pointer.
3119    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3120      continue;
3121
3122    // Rebuild the scope specifier in-place.
3123    CXXScopeSpec &SS = Chunk.Mem.Scope();
3124    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3125      return true;
3126  }
3127
3128  return false;
3129}
3130
3131Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3132  D.setFunctionDefinition(false);
3133  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3134}
3135
3136/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3137///   If T is the name of a class, then each of the following shall have a
3138///   name different from T:
3139///     - every static data member of class T;
3140///     - every member function of class T
3141///     - every member of class T that is itself a type;
3142/// \returns true if the declaration name violates these rules.
3143bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3144                                   DeclarationNameInfo NameInfo) {
3145  DeclarationName Name = NameInfo.getName();
3146
3147  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3148    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3149      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3150      return true;
3151    }
3152
3153  return false;
3154}
3155
3156Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3157                             MultiTemplateParamsArg TemplateParamLists) {
3158  // TODO: consider using NameInfo for diagnostic.
3159  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3160  DeclarationName Name = NameInfo.getName();
3161
3162  // All of these full declarators require an identifier.  If it doesn't have
3163  // one, the ParsedFreeStandingDeclSpec action should be used.
3164  if (!Name) {
3165    if (!D.isInvalidType())  // Reject this if we think it is valid.
3166      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3167           diag::err_declarator_need_ident)
3168        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3169    return 0;
3170  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3171    return 0;
3172
3173  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3174  // we find one that is.
3175  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3176         (S->getFlags() & Scope::TemplateParamScope) != 0)
3177    S = S->getParent();
3178
3179  DeclContext *DC = CurContext;
3180  if (D.getCXXScopeSpec().isInvalid())
3181    D.setInvalidType();
3182  else if (D.getCXXScopeSpec().isSet()) {
3183    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3184                                        UPPC_DeclarationQualifier))
3185      return 0;
3186
3187    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3188    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3189    if (!DC) {
3190      // If we could not compute the declaration context, it's because the
3191      // declaration context is dependent but does not refer to a class,
3192      // class template, or class template partial specialization. Complain
3193      // and return early, to avoid the coming semantic disaster.
3194      Diag(D.getIdentifierLoc(),
3195           diag::err_template_qualified_declarator_no_match)
3196        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3197        << D.getCXXScopeSpec().getRange();
3198      return 0;
3199    }
3200    bool IsDependentContext = DC->isDependentContext();
3201
3202    if (!IsDependentContext &&
3203        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3204      return 0;
3205
3206    if (isa<CXXRecordDecl>(DC)) {
3207      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3208        Diag(D.getIdentifierLoc(),
3209             diag::err_member_def_undefined_record)
3210          << Name << DC << D.getCXXScopeSpec().getRange();
3211        D.setInvalidType();
3212      } else if (isa<CXXRecordDecl>(CurContext) &&
3213                 !D.getDeclSpec().isFriendSpecified()) {
3214        // The user provided a superfluous scope specifier inside a class
3215        // definition:
3216        //
3217        // class X {
3218        //   void X::f();
3219        // };
3220        if (CurContext->Equals(DC))
3221          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3222            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3223        else
3224          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3225            << Name << D.getCXXScopeSpec().getRange();
3226
3227        // Pretend that this qualifier was not here.
3228        D.getCXXScopeSpec().clear();
3229      }
3230    }
3231
3232    // Check whether we need to rebuild the type of the given
3233    // declaration in the current instantiation.
3234    if (EnteringContext && IsDependentContext &&
3235        TemplateParamLists.size() != 0) {
3236      ContextRAII SavedContext(*this, DC);
3237      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3238        D.setInvalidType();
3239    }
3240  }
3241
3242  if (DiagnoseClassNameShadow(DC, NameInfo))
3243    // If this is a typedef, we'll end up spewing multiple diagnostics.
3244    // Just return early; it's safer.
3245    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3246      return 0;
3247
3248  NamedDecl *New;
3249
3250  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3251  QualType R = TInfo->getType();
3252
3253  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3254                                      UPPC_DeclarationType))
3255    D.setInvalidType();
3256
3257  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3258                        ForRedeclaration);
3259
3260  // See if this is a redefinition of a variable in the same scope.
3261  if (!D.getCXXScopeSpec().isSet()) {
3262    bool IsLinkageLookup = false;
3263
3264    // If the declaration we're planning to build will be a function
3265    // or object with linkage, then look for another declaration with
3266    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3267    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3268      /* Do nothing*/;
3269    else if (R->isFunctionType()) {
3270      if (CurContext->isFunctionOrMethod() ||
3271          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3272        IsLinkageLookup = true;
3273    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3274      IsLinkageLookup = true;
3275    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3276             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3277      IsLinkageLookup = true;
3278
3279    if (IsLinkageLookup)
3280      Previous.clear(LookupRedeclarationWithLinkage);
3281
3282    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3283  } else { // Something like "int foo::x;"
3284    LookupQualifiedName(Previous, DC);
3285
3286    // Don't consider using declarations as previous declarations for
3287    // out-of-line members.
3288    RemoveUsingDecls(Previous);
3289
3290    // C++ 7.3.1.2p2:
3291    // Members (including explicit specializations of templates) of a named
3292    // namespace can also be defined outside that namespace by explicit
3293    // qualification of the name being defined, provided that the entity being
3294    // defined was already declared in the namespace and the definition appears
3295    // after the point of declaration in a namespace that encloses the
3296    // declarations namespace.
3297    //
3298    // Note that we only check the context at this point. We don't yet
3299    // have enough information to make sure that PrevDecl is actually
3300    // the declaration we want to match. For example, given:
3301    //
3302    //   class X {
3303    //     void f();
3304    //     void f(float);
3305    //   };
3306    //
3307    //   void X::f(int) { } // ill-formed
3308    //
3309    // In this case, PrevDecl will point to the overload set
3310    // containing the two f's declared in X, but neither of them
3311    // matches.
3312
3313    // First check whether we named the global scope.
3314    if (isa<TranslationUnitDecl>(DC)) {
3315      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3316        << Name << D.getCXXScopeSpec().getRange();
3317    } else {
3318      DeclContext *Cur = CurContext;
3319      while (isa<LinkageSpecDecl>(Cur))
3320        Cur = Cur->getParent();
3321      if (!Cur->Encloses(DC)) {
3322        // The qualifying scope doesn't enclose the original declaration.
3323        // Emit diagnostic based on current scope.
3324        SourceLocation L = D.getIdentifierLoc();
3325        SourceRange R = D.getCXXScopeSpec().getRange();
3326        if (isa<FunctionDecl>(Cur))
3327          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3328        else
3329          Diag(L, diag::err_invalid_declarator_scope)
3330            << Name << cast<NamedDecl>(DC) << R;
3331        D.setInvalidType();
3332      }
3333    }
3334  }
3335
3336  if (Previous.isSingleResult() &&
3337      Previous.getFoundDecl()->isTemplateParameter()) {
3338    // Maybe we will complain about the shadowed template parameter.
3339    if (!D.isInvalidType())
3340      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3341                                          Previous.getFoundDecl()))
3342        D.setInvalidType();
3343
3344    // Just pretend that we didn't see the previous declaration.
3345    Previous.clear();
3346  }
3347
3348  // In C++, the previous declaration we find might be a tag type
3349  // (class or enum). In this case, the new declaration will hide the
3350  // tag type. Note that this does does not apply if we're declaring a
3351  // typedef (C++ [dcl.typedef]p4).
3352  if (Previous.isSingleTagDecl() &&
3353      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3354    Previous.clear();
3355
3356  bool AddToScope = true;
3357  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3358    if (TemplateParamLists.size()) {
3359      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3360      return 0;
3361    }
3362
3363    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3364  } else if (R->isFunctionType()) {
3365    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3366                                  move(TemplateParamLists),
3367                                  AddToScope);
3368  } else {
3369    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3370                                  move(TemplateParamLists));
3371  }
3372
3373  if (New == 0)
3374    return 0;
3375
3376  // If this has an identifier and is not an invalid redeclaration or
3377  // function template specialization, add it to the scope stack.
3378  if (New->getDeclName() && AddToScope &&
3379       !(D.isRedeclaration() && New->isInvalidDecl()))
3380    PushOnScopeChains(New, S);
3381
3382  return New;
3383}
3384
3385/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3386/// types into constant array types in certain situations which would otherwise
3387/// be errors (for GCC compatibility).
3388static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3389                                                    ASTContext &Context,
3390                                                    bool &SizeIsNegative,
3391                                                    llvm::APSInt &Oversized) {
3392  // This method tries to turn a variable array into a constant
3393  // array even when the size isn't an ICE.  This is necessary
3394  // for compatibility with code that depends on gcc's buggy
3395  // constant expression folding, like struct {char x[(int)(char*)2];}
3396  SizeIsNegative = false;
3397  Oversized = 0;
3398
3399  if (T->isDependentType())
3400    return QualType();
3401
3402  QualifierCollector Qs;
3403  const Type *Ty = Qs.strip(T);
3404
3405  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3406    QualType Pointee = PTy->getPointeeType();
3407    QualType FixedType =
3408        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3409                                            Oversized);
3410    if (FixedType.isNull()) return FixedType;
3411    FixedType = Context.getPointerType(FixedType);
3412    return Qs.apply(Context, FixedType);
3413  }
3414  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3415    QualType Inner = PTy->getInnerType();
3416    QualType FixedType =
3417        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3418                                            Oversized);
3419    if (FixedType.isNull()) return FixedType;
3420    FixedType = Context.getParenType(FixedType);
3421    return Qs.apply(Context, FixedType);
3422  }
3423
3424  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3425  if (!VLATy)
3426    return QualType();
3427  // FIXME: We should probably handle this case
3428  if (VLATy->getElementType()->isVariablyModifiedType())
3429    return QualType();
3430
3431  Expr::EvalResult EvalResult;
3432  if (!VLATy->getSizeExpr() ||
3433      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3434      !EvalResult.Val.isInt())
3435    return QualType();
3436
3437  // Check whether the array size is negative.
3438  llvm::APSInt &Res = EvalResult.Val.getInt();
3439  if (Res.isSigned() && Res.isNegative()) {
3440    SizeIsNegative = true;
3441    return QualType();
3442  }
3443
3444  // Check whether the array is too large to be addressed.
3445  unsigned ActiveSizeBits
3446    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3447                                              Res);
3448  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3449    Oversized = Res;
3450    return QualType();
3451  }
3452
3453  return Context.getConstantArrayType(VLATy->getElementType(),
3454                                      Res, ArrayType::Normal, 0);
3455}
3456
3457/// \brief Register the given locally-scoped external C declaration so
3458/// that it can be found later for redeclarations
3459void
3460Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3461                                       const LookupResult &Previous,
3462                                       Scope *S) {
3463  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3464         "Decl is not a locally-scoped decl!");
3465  // Note that we have a locally-scoped external with this name.
3466  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3467
3468  if (!Previous.isSingleResult())
3469    return;
3470
3471  NamedDecl *PrevDecl = Previous.getFoundDecl();
3472
3473  // If there was a previous declaration of this variable, it may be
3474  // in our identifier chain. Update the identifier chain with the new
3475  // declaration.
3476  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3477    // The previous declaration was found on the identifer resolver
3478    // chain, so remove it from its scope.
3479
3480    if (S->isDeclScope(PrevDecl)) {
3481      // Special case for redeclarations in the SAME scope.
3482      // Because this declaration is going to be added to the identifier chain
3483      // later, we should temporarily take it OFF the chain.
3484      IdResolver.RemoveDecl(ND);
3485
3486    } else {
3487      // Find the scope for the original declaration.
3488      while (S && !S->isDeclScope(PrevDecl))
3489        S = S->getParent();
3490    }
3491
3492    if (S)
3493      S->RemoveDecl(PrevDecl);
3494  }
3495}
3496
3497llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3498Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3499  if (ExternalSource) {
3500    // Load locally-scoped external decls from the external source.
3501    SmallVector<NamedDecl *, 4> Decls;
3502    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3503    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3504      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3505        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3506      if (Pos == LocallyScopedExternalDecls.end())
3507        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3508    }
3509  }
3510
3511  return LocallyScopedExternalDecls.find(Name);
3512}
3513
3514/// \brief Diagnose function specifiers on a declaration of an identifier that
3515/// does not identify a function.
3516void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3517  // FIXME: We should probably indicate the identifier in question to avoid
3518  // confusion for constructs like "inline int a(), b;"
3519  if (D.getDeclSpec().isInlineSpecified())
3520    Diag(D.getDeclSpec().getInlineSpecLoc(),
3521         diag::err_inline_non_function);
3522
3523  if (D.getDeclSpec().isVirtualSpecified())
3524    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3525         diag::err_virtual_non_function);
3526
3527  if (D.getDeclSpec().isExplicitSpecified())
3528    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3529         diag::err_explicit_non_function);
3530}
3531
3532NamedDecl*
3533Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3534                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3535  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3536  if (D.getCXXScopeSpec().isSet()) {
3537    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3538      << D.getCXXScopeSpec().getRange();
3539    D.setInvalidType();
3540    // Pretend we didn't see the scope specifier.
3541    DC = CurContext;
3542    Previous.clear();
3543  }
3544
3545  if (getLangOptions().CPlusPlus) {
3546    // Check that there are no default arguments (C++ only).
3547    CheckExtraCXXDefaultArguments(D);
3548  }
3549
3550  DiagnoseFunctionSpecifiers(D);
3551
3552  if (D.getDeclSpec().isThreadSpecified())
3553    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3554  if (D.getDeclSpec().isConstexprSpecified())
3555    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3556      << 1;
3557
3558  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3559    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3560      << D.getName().getSourceRange();
3561    return 0;
3562  }
3563
3564  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3565  if (!NewTD) return 0;
3566
3567  // Handle attributes prior to checking for duplicates in MergeVarDecl
3568  ProcessDeclAttributes(S, NewTD, D);
3569
3570  CheckTypedefForVariablyModifiedType(S, NewTD);
3571
3572  bool Redeclaration = D.isRedeclaration();
3573  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3574  D.setRedeclaration(Redeclaration);
3575  return ND;
3576}
3577
3578void
3579Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3580  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3581  // then it shall have block scope.
3582  // Note that variably modified types must be fixed before merging the decl so
3583  // that redeclarations will match.
3584  QualType T = NewTD->getUnderlyingType();
3585  if (T->isVariablyModifiedType()) {
3586    getCurFunction()->setHasBranchProtectedScope();
3587
3588    if (S->getFnParent() == 0) {
3589      bool SizeIsNegative;
3590      llvm::APSInt Oversized;
3591      QualType FixedTy =
3592          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3593                                              Oversized);
3594      if (!FixedTy.isNull()) {
3595        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3596        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3597      } else {
3598        if (SizeIsNegative)
3599          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3600        else if (T->isVariableArrayType())
3601          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3602        else if (Oversized.getBoolValue())
3603          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3604        else
3605          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3606        NewTD->setInvalidDecl();
3607      }
3608    }
3609  }
3610}
3611
3612
3613/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3614/// declares a typedef-name, either using the 'typedef' type specifier or via
3615/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3616NamedDecl*
3617Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3618                           LookupResult &Previous, bool &Redeclaration) {
3619  // Merge the decl with the existing one if appropriate. If the decl is
3620  // in an outer scope, it isn't the same thing.
3621  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3622                       /*ExplicitInstantiationOrSpecialization=*/false);
3623  if (!Previous.empty()) {
3624    Redeclaration = true;
3625    MergeTypedefNameDecl(NewTD, Previous);
3626  }
3627
3628  // If this is the C FILE type, notify the AST context.
3629  if (IdentifierInfo *II = NewTD->getIdentifier())
3630    if (!NewTD->isInvalidDecl() &&
3631        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3632      if (II->isStr("FILE"))
3633        Context.setFILEDecl(NewTD);
3634      else if (II->isStr("jmp_buf"))
3635        Context.setjmp_bufDecl(NewTD);
3636      else if (II->isStr("sigjmp_buf"))
3637        Context.setsigjmp_bufDecl(NewTD);
3638      else if (II->isStr("__builtin_va_list"))
3639        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3640    }
3641
3642  return NewTD;
3643}
3644
3645/// \brief Determines whether the given declaration is an out-of-scope
3646/// previous declaration.
3647///
3648/// This routine should be invoked when name lookup has found a
3649/// previous declaration (PrevDecl) that is not in the scope where a
3650/// new declaration by the same name is being introduced. If the new
3651/// declaration occurs in a local scope, previous declarations with
3652/// linkage may still be considered previous declarations (C99
3653/// 6.2.2p4-5, C++ [basic.link]p6).
3654///
3655/// \param PrevDecl the previous declaration found by name
3656/// lookup
3657///
3658/// \param DC the context in which the new declaration is being
3659/// declared.
3660///
3661/// \returns true if PrevDecl is an out-of-scope previous declaration
3662/// for a new delcaration with the same name.
3663static bool
3664isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3665                                ASTContext &Context) {
3666  if (!PrevDecl)
3667    return false;
3668
3669  if (!PrevDecl->hasLinkage())
3670    return false;
3671
3672  if (Context.getLangOptions().CPlusPlus) {
3673    // C++ [basic.link]p6:
3674    //   If there is a visible declaration of an entity with linkage
3675    //   having the same name and type, ignoring entities declared
3676    //   outside the innermost enclosing namespace scope, the block
3677    //   scope declaration declares that same entity and receives the
3678    //   linkage of the previous declaration.
3679    DeclContext *OuterContext = DC->getRedeclContext();
3680    if (!OuterContext->isFunctionOrMethod())
3681      // This rule only applies to block-scope declarations.
3682      return false;
3683
3684    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3685    if (PrevOuterContext->isRecord())
3686      // We found a member function: ignore it.
3687      return false;
3688
3689    // Find the innermost enclosing namespace for the new and
3690    // previous declarations.
3691    OuterContext = OuterContext->getEnclosingNamespaceContext();
3692    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3693
3694    // The previous declaration is in a different namespace, so it
3695    // isn't the same function.
3696    if (!OuterContext->Equals(PrevOuterContext))
3697      return false;
3698  }
3699
3700  return true;
3701}
3702
3703static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3704  CXXScopeSpec &SS = D.getCXXScopeSpec();
3705  if (!SS.isSet()) return;
3706  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3707}
3708
3709bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3710  QualType type = decl->getType();
3711  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3712  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3713    // Various kinds of declaration aren't allowed to be __autoreleasing.
3714    unsigned kind = -1U;
3715    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3716      if (var->hasAttr<BlocksAttr>())
3717        kind = 0; // __block
3718      else if (!var->hasLocalStorage())
3719        kind = 1; // global
3720    } else if (isa<ObjCIvarDecl>(decl)) {
3721      kind = 3; // ivar
3722    } else if (isa<FieldDecl>(decl)) {
3723      kind = 2; // field
3724    }
3725
3726    if (kind != -1U) {
3727      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3728        << kind;
3729    }
3730  } else if (lifetime == Qualifiers::OCL_None) {
3731    // Try to infer lifetime.
3732    if (!type->isObjCLifetimeType())
3733      return false;
3734
3735    lifetime = type->getObjCARCImplicitLifetime();
3736    type = Context.getLifetimeQualifiedType(type, lifetime);
3737    decl->setType(type);
3738  }
3739
3740  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3741    // Thread-local variables cannot have lifetime.
3742    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3743        var->isThreadSpecified()) {
3744      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3745        << var->getType();
3746      return true;
3747    }
3748  }
3749
3750  return false;
3751}
3752
3753NamedDecl*
3754Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3755                              TypeSourceInfo *TInfo, LookupResult &Previous,
3756                              MultiTemplateParamsArg TemplateParamLists) {
3757  QualType R = TInfo->getType();
3758  DeclarationName Name = GetNameForDeclarator(D).getName();
3759
3760  // Check that there are no default arguments (C++ only).
3761  if (getLangOptions().CPlusPlus)
3762    CheckExtraCXXDefaultArguments(D);
3763
3764  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3765  assert(SCSpec != DeclSpec::SCS_typedef &&
3766         "Parser allowed 'typedef' as storage class VarDecl.");
3767  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3768  if (SCSpec == DeclSpec::SCS_mutable) {
3769    // mutable can only appear on non-static class members, so it's always
3770    // an error here
3771    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3772    D.setInvalidType();
3773    SC = SC_None;
3774  }
3775  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3776  VarDecl::StorageClass SCAsWritten
3777    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3778
3779  IdentifierInfo *II = Name.getAsIdentifierInfo();
3780  if (!II) {
3781    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3782      << Name;
3783    return 0;
3784  }
3785
3786  DiagnoseFunctionSpecifiers(D);
3787
3788  if (!DC->isRecord() && S->getFnParent() == 0) {
3789    // C99 6.9p2: The storage-class specifiers auto and register shall not
3790    // appear in the declaration specifiers in an external declaration.
3791    if (SC == SC_Auto || SC == SC_Register) {
3792
3793      // If this is a register variable with an asm label specified, then this
3794      // is a GNU extension.
3795      if (SC == SC_Register && D.getAsmLabel())
3796        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3797      else
3798        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3799      D.setInvalidType();
3800    }
3801  }
3802
3803  if (getLangOptions().OpenCL) {
3804    // Set up the special work-group-local storage class for variables in the
3805    // OpenCL __local address space.
3806    if (R.getAddressSpace() == LangAS::opencl_local)
3807      SC = SC_OpenCLWorkGroupLocal;
3808  }
3809
3810  bool isExplicitSpecialization = false;
3811  VarDecl *NewVD;
3812  if (!getLangOptions().CPlusPlus) {
3813    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3814                            D.getIdentifierLoc(), II,
3815                            R, TInfo, SC, SCAsWritten);
3816
3817    if (D.isInvalidType())
3818      NewVD->setInvalidDecl();
3819  } else {
3820    if (DC->isRecord() && !CurContext->isRecord()) {
3821      // This is an out-of-line definition of a static data member.
3822      if (SC == SC_Static) {
3823        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3824             diag::err_static_out_of_line)
3825          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3826      } else if (SC == SC_None)
3827        SC = SC_Static;
3828    }
3829    if (SC == SC_Static) {
3830      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3831        if (RD->isLocalClass())
3832          Diag(D.getIdentifierLoc(),
3833               diag::err_static_data_member_not_allowed_in_local_class)
3834            << Name << RD->getDeclName();
3835
3836        // C++ [class.union]p1: If a union contains a static data member,
3837        // the program is ill-formed.
3838        //
3839        // We also disallow static data members in anonymous structs.
3840        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3841          Diag(D.getIdentifierLoc(),
3842               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3843            << Name << RD->isUnion();
3844      }
3845    }
3846
3847    // Match up the template parameter lists with the scope specifier, then
3848    // determine whether we have a template or a template specialization.
3849    isExplicitSpecialization = false;
3850    bool Invalid = false;
3851    if (TemplateParameterList *TemplateParams
3852        = MatchTemplateParametersToScopeSpecifier(
3853                                  D.getDeclSpec().getSourceRange().getBegin(),
3854                                                  D.getIdentifierLoc(),
3855                                                  D.getCXXScopeSpec(),
3856                                                  TemplateParamLists.get(),
3857                                                  TemplateParamLists.size(),
3858                                                  /*never a friend*/ false,
3859                                                  isExplicitSpecialization,
3860                                                  Invalid)) {
3861      if (TemplateParams->size() > 0) {
3862        // There is no such thing as a variable template.
3863        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3864          << II
3865          << SourceRange(TemplateParams->getTemplateLoc(),
3866                         TemplateParams->getRAngleLoc());
3867        return 0;
3868      } else {
3869        // There is an extraneous 'template<>' for this variable. Complain
3870        // about it, but allow the declaration of the variable.
3871        Diag(TemplateParams->getTemplateLoc(),
3872             diag::err_template_variable_noparams)
3873          << II
3874          << SourceRange(TemplateParams->getTemplateLoc(),
3875                         TemplateParams->getRAngleLoc());
3876      }
3877    }
3878
3879    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3880                            D.getIdentifierLoc(), II,
3881                            R, TInfo, SC, SCAsWritten);
3882
3883    // If this decl has an auto type in need of deduction, make a note of the
3884    // Decl so we can diagnose uses of it in its own initializer.
3885    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3886        R->getContainedAutoType())
3887      ParsingInitForAutoVars.insert(NewVD);
3888
3889    if (D.isInvalidType() || Invalid)
3890      NewVD->setInvalidDecl();
3891
3892    SetNestedNameSpecifier(NewVD, D);
3893
3894    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3895      NewVD->setTemplateParameterListsInfo(Context,
3896                                           TemplateParamLists.size(),
3897                                           TemplateParamLists.release());
3898    }
3899
3900    if (D.getDeclSpec().isConstexprSpecified()) {
3901      // FIXME: once we know whether there's an initializer, apply this to
3902      // static data members too.
3903      if (!NewVD->isStaticDataMember() &&
3904          !NewVD->isThisDeclarationADefinition()) {
3905        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3906        // of a variable. Suggest replacing it with 'const' if appropriate.
3907        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3908        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3909        // If the declarator is complex, we need to move the keyword to the
3910        // innermost chunk as we switch it from 'constexpr' to 'const'.
3911        int Kind = DeclaratorChunk::Paren;
3912        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3913          Kind = D.getTypeObject(I).Kind;
3914          if (Kind != DeclaratorChunk::Paren)
3915            break;
3916        }
3917        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3918            Kind == DeclaratorChunk::Reference)
3919          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3920            << FixItHint::CreateRemoval(ConstexprRange);
3921        else if (Kind == DeclaratorChunk::Paren)
3922          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3923            << FixItHint::CreateReplacement(ConstexprRange, "const");
3924        else
3925          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3926            << FixItHint::CreateRemoval(ConstexprRange)
3927            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3928      } else {
3929        NewVD->setConstexpr(true);
3930      }
3931    }
3932  }
3933
3934  // Set the lexical context. If the declarator has a C++ scope specifier, the
3935  // lexical context will be different from the semantic context.
3936  NewVD->setLexicalDeclContext(CurContext);
3937
3938  if (D.getDeclSpec().isThreadSpecified()) {
3939    if (NewVD->hasLocalStorage())
3940      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3941    else if (!Context.getTargetInfo().isTLSSupported())
3942      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3943    else
3944      NewVD->setThreadSpecified(true);
3945  }
3946
3947  if (D.getDeclSpec().isModulePrivateSpecified()) {
3948    if (isExplicitSpecialization)
3949      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3950        << 2
3951        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3952    else if (NewVD->hasLocalStorage())
3953      Diag(NewVD->getLocation(), diag::err_module_private_local)
3954        << 0 << NewVD->getDeclName()
3955        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3956        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3957    else
3958      NewVD->setModulePrivate();
3959  }
3960
3961  // Handle attributes prior to checking for duplicates in MergeVarDecl
3962  ProcessDeclAttributes(S, NewVD, D);
3963
3964  // In auto-retain/release, infer strong retension for variables of
3965  // retainable type.
3966  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3967    NewVD->setInvalidDecl();
3968
3969  // Handle GNU asm-label extension (encoded as an attribute).
3970  if (Expr *E = (Expr*)D.getAsmLabel()) {
3971    // The parser guarantees this is a string.
3972    StringLiteral *SE = cast<StringLiteral>(E);
3973    StringRef Label = SE->getString();
3974    if (S->getFnParent() != 0) {
3975      switch (SC) {
3976      case SC_None:
3977      case SC_Auto:
3978        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3979        break;
3980      case SC_Register:
3981        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3982          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3983        break;
3984      case SC_Static:
3985      case SC_Extern:
3986      case SC_PrivateExtern:
3987      case SC_OpenCLWorkGroupLocal:
3988        break;
3989      }
3990    }
3991
3992    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3993                                                Context, Label));
3994  }
3995
3996  // Diagnose shadowed variables before filtering for scope.
3997  if (!D.getCXXScopeSpec().isSet())
3998    CheckShadow(S, NewVD, Previous);
3999
4000  // Don't consider existing declarations that are in a different
4001  // scope and are out-of-semantic-context declarations (if the new
4002  // declaration has linkage).
4003  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4004                       isExplicitSpecialization);
4005
4006  if (!getLangOptions().CPlusPlus) {
4007    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4008  } else {
4009    // Merge the decl with the existing one if appropriate.
4010    if (!Previous.empty()) {
4011      if (Previous.isSingleResult() &&
4012          isa<FieldDecl>(Previous.getFoundDecl()) &&
4013          D.getCXXScopeSpec().isSet()) {
4014        // The user tried to define a non-static data member
4015        // out-of-line (C++ [dcl.meaning]p1).
4016        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4017          << D.getCXXScopeSpec().getRange();
4018        Previous.clear();
4019        NewVD->setInvalidDecl();
4020      }
4021    } else if (D.getCXXScopeSpec().isSet()) {
4022      // No previous declaration in the qualifying scope.
4023      Diag(D.getIdentifierLoc(), diag::err_no_member)
4024        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4025        << D.getCXXScopeSpec().getRange();
4026      NewVD->setInvalidDecl();
4027    }
4028
4029    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4030
4031    // This is an explicit specialization of a static data member. Check it.
4032    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4033        CheckMemberSpecialization(NewVD, Previous))
4034      NewVD->setInvalidDecl();
4035  }
4036
4037  // attributes declared post-definition are currently ignored
4038  // FIXME: This should be handled in attribute merging, not
4039  // here.
4040  if (Previous.isSingleResult()) {
4041    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4042    if (Def && (Def = Def->getDefinition()) &&
4043        Def != NewVD && D.hasAttributes()) {
4044      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4045      Diag(Def->getLocation(), diag::note_previous_definition);
4046    }
4047  }
4048
4049  // If this is a locally-scoped extern C variable, update the map of
4050  // such variables.
4051  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4052      !NewVD->isInvalidDecl())
4053    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4054
4055  // If there's a #pragma GCC visibility in scope, and this isn't a class
4056  // member, set the visibility of this variable.
4057  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4058    AddPushedVisibilityAttribute(NewVD);
4059
4060  MarkUnusedFileScopedDecl(NewVD);
4061
4062  return NewVD;
4063}
4064
4065/// \brief Diagnose variable or built-in function shadowing.  Implements
4066/// -Wshadow.
4067///
4068/// This method is called whenever a VarDecl is added to a "useful"
4069/// scope.
4070///
4071/// \param S the scope in which the shadowing name is being declared
4072/// \param R the lookup of the name
4073///
4074void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4075  // Return if warning is ignored.
4076  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4077        DiagnosticsEngine::Ignored)
4078    return;
4079
4080  // Don't diagnose declarations at file scope.
4081  if (D->hasGlobalStorage())
4082    return;
4083
4084  DeclContext *NewDC = D->getDeclContext();
4085
4086  // Only diagnose if we're shadowing an unambiguous field or variable.
4087  if (R.getResultKind() != LookupResult::Found)
4088    return;
4089
4090  NamedDecl* ShadowedDecl = R.getFoundDecl();
4091  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4092    return;
4093
4094  // Fields are not shadowed by variables in C++ static methods.
4095  if (isa<FieldDecl>(ShadowedDecl))
4096    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4097      if (MD->isStatic())
4098        return;
4099
4100  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4101    if (shadowedVar->isExternC()) {
4102      // For shadowing external vars, make sure that we point to the global
4103      // declaration, not a locally scoped extern declaration.
4104      for (VarDecl::redecl_iterator
4105             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4106           I != E; ++I)
4107        if (I->isFileVarDecl()) {
4108          ShadowedDecl = *I;
4109          break;
4110        }
4111    }
4112
4113  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4114
4115  // Only warn about certain kinds of shadowing for class members.
4116  if (NewDC && NewDC->isRecord()) {
4117    // In particular, don't warn about shadowing non-class members.
4118    if (!OldDC->isRecord())
4119      return;
4120
4121    // TODO: should we warn about static data members shadowing
4122    // static data members from base classes?
4123
4124    // TODO: don't diagnose for inaccessible shadowed members.
4125    // This is hard to do perfectly because we might friend the
4126    // shadowing context, but that's just a false negative.
4127  }
4128
4129  // Determine what kind of declaration we're shadowing.
4130  unsigned Kind;
4131  if (isa<RecordDecl>(OldDC)) {
4132    if (isa<FieldDecl>(ShadowedDecl))
4133      Kind = 3; // field
4134    else
4135      Kind = 2; // static data member
4136  } else if (OldDC->isFileContext())
4137    Kind = 1; // global
4138  else
4139    Kind = 0; // local
4140
4141  DeclarationName Name = R.getLookupName();
4142
4143  // Emit warning and note.
4144  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4145  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4146}
4147
4148/// \brief Check -Wshadow without the advantage of a previous lookup.
4149void Sema::CheckShadow(Scope *S, VarDecl *D) {
4150  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4151        DiagnosticsEngine::Ignored)
4152    return;
4153
4154  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4155                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4156  LookupName(R, S);
4157  CheckShadow(S, D, R);
4158}
4159
4160/// \brief Perform semantic checking on a newly-created variable
4161/// declaration.
4162///
4163/// This routine performs all of the type-checking required for a
4164/// variable declaration once it has been built. It is used both to
4165/// check variables after they have been parsed and their declarators
4166/// have been translated into a declaration, and to check variables
4167/// that have been instantiated from a template.
4168///
4169/// Sets NewVD->isInvalidDecl() if an error was encountered.
4170///
4171/// Returns true if the variable declaration is a redeclaration.
4172bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4173                                    LookupResult &Previous) {
4174  // If the decl is already known invalid, don't check it.
4175  if (NewVD->isInvalidDecl())
4176    return false;
4177
4178  QualType T = NewVD->getType();
4179
4180  if (T->isObjCObjectType()) {
4181    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4182      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4183    T = Context.getObjCObjectPointerType(T);
4184    NewVD->setType(T);
4185  }
4186
4187  // Emit an error if an address space was applied to decl with local storage.
4188  // This includes arrays of objects with address space qualifiers, but not
4189  // automatic variables that point to other address spaces.
4190  // ISO/IEC TR 18037 S5.1.2
4191  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4192    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4193    NewVD->setInvalidDecl();
4194    return false;
4195  }
4196
4197  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4198      && !NewVD->hasAttr<BlocksAttr>()) {
4199    if (getLangOptions().getGC() != LangOptions::NonGC)
4200      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4201    else
4202      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4203  }
4204
4205  bool isVM = T->isVariablyModifiedType();
4206  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4207      NewVD->hasAttr<BlocksAttr>())
4208    getCurFunction()->setHasBranchProtectedScope();
4209
4210  if ((isVM && NewVD->hasLinkage()) ||
4211      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4212    bool SizeIsNegative;
4213    llvm::APSInt Oversized;
4214    QualType FixedTy =
4215        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4216                                            Oversized);
4217
4218    if (FixedTy.isNull() && T->isVariableArrayType()) {
4219      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4220      // FIXME: This won't give the correct result for
4221      // int a[10][n];
4222      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4223
4224      if (NewVD->isFileVarDecl())
4225        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4226        << SizeRange;
4227      else if (NewVD->getStorageClass() == SC_Static)
4228        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4229        << SizeRange;
4230      else
4231        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4232        << SizeRange;
4233      NewVD->setInvalidDecl();
4234      return false;
4235    }
4236
4237    if (FixedTy.isNull()) {
4238      if (NewVD->isFileVarDecl())
4239        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4240      else
4241        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4242      NewVD->setInvalidDecl();
4243      return false;
4244    }
4245
4246    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4247    NewVD->setType(FixedTy);
4248  }
4249
4250  if (Previous.empty() && NewVD->isExternC()) {
4251    // Since we did not find anything by this name and we're declaring
4252    // an extern "C" variable, look for a non-visible extern "C"
4253    // declaration with the same name.
4254    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4255      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4256    if (Pos != LocallyScopedExternalDecls.end())
4257      Previous.addDecl(Pos->second);
4258  }
4259
4260  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4261    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4262      << T;
4263    NewVD->setInvalidDecl();
4264    return false;
4265  }
4266
4267  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4268    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4269    NewVD->setInvalidDecl();
4270    return false;
4271  }
4272
4273  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4274    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4275    NewVD->setInvalidDecl();
4276    return false;
4277  }
4278
4279  // Function pointers and references cannot have qualified function type, only
4280  // function pointer-to-members can do that.
4281  QualType Pointee;
4282  unsigned PtrOrRef = 0;
4283  if (const PointerType *Ptr = T->getAs<PointerType>())
4284    Pointee = Ptr->getPointeeType();
4285  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4286    Pointee = Ref->getPointeeType();
4287    PtrOrRef = 1;
4288  }
4289  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4290      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4291    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4292        << PtrOrRef;
4293    NewVD->setInvalidDecl();
4294    return false;
4295  }
4296
4297  if (!Previous.empty()) {
4298    MergeVarDecl(NewVD, Previous);
4299    return true;
4300  }
4301  return false;
4302}
4303
4304/// \brief Data used with FindOverriddenMethod
4305struct FindOverriddenMethodData {
4306  Sema *S;
4307  CXXMethodDecl *Method;
4308};
4309
4310/// \brief Member lookup function that determines whether a given C++
4311/// method overrides a method in a base class, to be used with
4312/// CXXRecordDecl::lookupInBases().
4313static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4314                                 CXXBasePath &Path,
4315                                 void *UserData) {
4316  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4317
4318  FindOverriddenMethodData *Data
4319    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4320
4321  DeclarationName Name = Data->Method->getDeclName();
4322
4323  // FIXME: Do we care about other names here too?
4324  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4325    // We really want to find the base class destructor here.
4326    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4327    CanQualType CT = Data->S->Context.getCanonicalType(T);
4328
4329    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4330  }
4331
4332  for (Path.Decls = BaseRecord->lookup(Name);
4333       Path.Decls.first != Path.Decls.second;
4334       ++Path.Decls.first) {
4335    NamedDecl *D = *Path.Decls.first;
4336    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4337      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4338        return true;
4339    }
4340  }
4341
4342  return false;
4343}
4344
4345/// AddOverriddenMethods - See if a method overrides any in the base classes,
4346/// and if so, check that it's a valid override and remember it.
4347bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4348  // Look for virtual methods in base classes that this method might override.
4349  CXXBasePaths Paths;
4350  FindOverriddenMethodData Data;
4351  Data.Method = MD;
4352  Data.S = this;
4353  bool AddedAny = false;
4354  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4355    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4356         E = Paths.found_decls_end(); I != E; ++I) {
4357      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4358        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4359        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4360            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4361            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4362          AddedAny = true;
4363        }
4364      }
4365    }
4366  }
4367
4368  return AddedAny;
4369}
4370
4371namespace {
4372  // Struct for holding all of the extra arguments needed by
4373  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4374  struct ActOnFDArgs {
4375    Scope *S;
4376    Declarator &D;
4377    MultiTemplateParamsArg TemplateParamLists;
4378    bool AddToScope;
4379  };
4380}
4381
4382/// \brief Generate diagnostics for an invalid function redeclaration.
4383///
4384/// This routine handles generating the diagnostic messages for an invalid
4385/// function redeclaration, including finding possible similar declarations
4386/// or performing typo correction if there are no previous declarations with
4387/// the same name.
4388///
4389/// Returns a NamedDecl iff typo correction was performed and substituting in
4390/// the new declaration name does not cause new errors.
4391static NamedDecl* DiagnoseInvalidRedeclaration(
4392    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4393    ActOnFDArgs &ExtraArgs) {
4394  NamedDecl *Result = NULL;
4395  DeclarationName Name = NewFD->getDeclName();
4396  DeclContext *NewDC = NewFD->getDeclContext();
4397  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4398                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4399  llvm::SmallVector<unsigned, 1> MismatchedParams;
4400  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4401  TypoCorrection Correction;
4402  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4403                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4404  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4405                                  : diag::err_member_def_does_not_match;
4406
4407  NewFD->setInvalidDecl();
4408  SemaRef.LookupQualifiedName(Prev, NewDC);
4409  assert(!Prev.isAmbiguous() &&
4410         "Cannot have an ambiguity in previous-declaration lookup");
4411  if (!Prev.empty()) {
4412    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4413         Func != FuncEnd; ++Func) {
4414      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4415      if (FD &&
4416          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4417        // Add 1 to the index so that 0 can mean the mismatch didn't
4418        // involve a parameter
4419        unsigned ParamNum =
4420            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4421        NearMatches.push_back(std::make_pair(FD, ParamNum));
4422      }
4423    }
4424  // If the qualified name lookup yielded nothing, try typo correction
4425  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4426                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4427             Correction.getCorrection() != Name) {
4428    // Trap errors.
4429    Sema::SFINAETrap Trap(SemaRef);
4430
4431    // Set up everything for the call to ActOnFunctionDeclarator
4432    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4433                              ExtraArgs.D.getIdentifierLoc());
4434    Previous.clear();
4435    Previous.setLookupName(Correction.getCorrection());
4436    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4437                                    CDeclEnd = Correction.end();
4438         CDecl != CDeclEnd; ++CDecl) {
4439      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4440      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4441                                     MismatchedParams)) {
4442        Previous.addDecl(FD);
4443      }
4444    }
4445    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4446    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4447    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4448    // eliminate the need for the parameter pack ExtraArgs.
4449    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4450                                             NewFD->getDeclContext(),
4451                                             NewFD->getTypeSourceInfo(),
4452                                             Previous,
4453                                             ExtraArgs.TemplateParamLists,
4454                                             ExtraArgs.AddToScope);
4455    if (Trap.hasErrorOccurred()) {
4456      // Pretend the typo correction never occurred
4457      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4458                                ExtraArgs.D.getIdentifierLoc());
4459      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4460      Previous.clear();
4461      Previous.setLookupName(Name);
4462      Result = NULL;
4463    } else {
4464      for (LookupResult::iterator Func = Previous.begin(),
4465                               FuncEnd = Previous.end();
4466           Func != FuncEnd; ++Func) {
4467        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4468          NearMatches.push_back(std::make_pair(FD, 0));
4469      }
4470    }
4471    if (NearMatches.empty()) {
4472      // Ignore the correction if it didn't yield any close FunctionDecl matches
4473      Correction = TypoCorrection();
4474    } else {
4475      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4476                             : diag::err_member_def_does_not_match_suggest;
4477    }
4478  }
4479
4480  if (Correction)
4481    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4482        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4483        << FixItHint::CreateReplacement(
4484            NewFD->getLocation(),
4485            Correction.getAsString(SemaRef.getLangOptions()));
4486  else
4487    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4488        << Name << NewDC << NewFD->getLocation();
4489
4490  bool NewFDisConst = false;
4491  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4492    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4493
4494  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4495       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4496       NearMatch != NearMatchEnd; ++NearMatch) {
4497    FunctionDecl *FD = NearMatch->first;
4498    bool FDisConst = false;
4499    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4500      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4501
4502    if (unsigned Idx = NearMatch->second) {
4503      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4504      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4505             diag::note_member_def_close_param_match)
4506          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4507    } else if (Correction) {
4508      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4509          << Correction.getQuoted(SemaRef.getLangOptions());
4510    } else if (FDisConst != NewFDisConst) {
4511      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4512          << NewFDisConst << FD->getSourceRange().getEnd();
4513    } else
4514      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4515  }
4516  return Result;
4517}
4518
4519static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
4520  switch (D.getDeclSpec().getStorageClassSpec()) {
4521  default: llvm_unreachable("Unknown storage class!");
4522  case DeclSpec::SCS_auto:
4523  case DeclSpec::SCS_register:
4524  case DeclSpec::SCS_mutable:
4525    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4526                 diag::err_typecheck_sclass_func);
4527    D.setInvalidType();
4528    break;
4529  case DeclSpec::SCS_unspecified: break;
4530  case DeclSpec::SCS_extern: return SC_Extern;
4531  case DeclSpec::SCS_static: {
4532    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4533      // C99 6.7.1p5:
4534      //   The declaration of an identifier for a function that has
4535      //   block scope shall have no explicit storage-class specifier
4536      //   other than extern
4537      // See also (C++ [dcl.stc]p4).
4538      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4539                   diag::err_static_block_func);
4540      break;
4541    } else
4542      return SC_Static;
4543  }
4544  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4545  }
4546
4547  // No explicit storage class has already been returned
4548  return SC_None;
4549}
4550
4551static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4552                                           DeclContext *DC, QualType &R,
4553                                           TypeSourceInfo *TInfo,
4554                                           FunctionDecl::StorageClass SC,
4555                                           bool &IsVirtualOkay) {
4556  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4557  DeclarationName Name = NameInfo.getName();
4558
4559  FunctionDecl *NewFD = 0;
4560  bool isInline = D.getDeclSpec().isInlineSpecified();
4561  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4562  FunctionDecl::StorageClass SCAsWritten
4563    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4564
4565  if (!SemaRef.getLangOptions().CPlusPlus) {
4566    // Determine whether the function was written with a
4567    // prototype. This true when:
4568    //   - there is a prototype in the declarator, or
4569    //   - the type R of the function is some kind of typedef or other reference
4570    //     to a type name (which eventually refers to a function type).
4571    bool HasPrototype =
4572      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4573      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4574
4575    NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getSourceRange().getBegin(),
4576                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4577                                 HasPrototype);
4578    if (D.isInvalidType())
4579      NewFD->setInvalidDecl();
4580
4581    // Set the lexical context.
4582    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4583
4584    return NewFD;
4585  }
4586
4587  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4588  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4589
4590  // Check that the return type is not an abstract class type.
4591  // For record types, this is done by the AbstractClassUsageDiagnoser once
4592  // the class has been completely parsed.
4593  if (!DC->isRecord() &&
4594      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4595                                     R->getAs<FunctionType>()->getResultType(),
4596                                     diag::err_abstract_type_in_decl,
4597                                     SemaRef.AbstractReturnType))
4598    D.setInvalidType();
4599
4600  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4601    // This is a C++ constructor declaration.
4602    assert(DC->isRecord() &&
4603           "Constructors can only be declared in a member context");
4604
4605    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4606    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4607                                      D.getSourceRange().getBegin(), NameInfo,
4608                                      R, TInfo, isExplicit, isInline,
4609                                      /*isImplicitlyDeclared=*/false,
4610                                      isConstexpr);
4611
4612  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4613    // This is a C++ destructor declaration.
4614    if (DC->isRecord()) {
4615      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4616      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4617      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4618                                        SemaRef.Context, Record,
4619                                        D.getSourceRange().getBegin(),
4620                                        NameInfo, R, TInfo, isInline,
4621                                        /*isImplicitlyDeclared=*/false);
4622
4623      // If the class is complete, then we now create the implicit exception
4624      // specification. If the class is incomplete or dependent, we can't do
4625      // it yet.
4626      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4627          Record->getDefinition() && !Record->isBeingDefined() &&
4628          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4629        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4630      }
4631
4632      IsVirtualOkay = true;
4633      return NewDD;
4634
4635    } else {
4636      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4637      D.setInvalidType();
4638
4639      // Create a FunctionDecl to satisfy the function definition parsing
4640      // code path.
4641      return FunctionDecl::Create(SemaRef.Context, DC,
4642                                  D.getSourceRange().getBegin(),
4643                                  D.getIdentifierLoc(), Name, R, TInfo,
4644                                  SC, SCAsWritten, isInline,
4645                                  /*hasPrototype=*/true, isConstexpr);
4646    }
4647
4648  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4649    if (!DC->isRecord()) {
4650      SemaRef.Diag(D.getIdentifierLoc(),
4651           diag::err_conv_function_not_member);
4652      return 0;
4653    }
4654
4655    SemaRef.CheckConversionDeclarator(D, R, SC);
4656    IsVirtualOkay = true;
4657    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4658                                     D.getSourceRange().getBegin(), NameInfo,
4659                                     R, TInfo, isInline, isExplicit,
4660                                     isConstexpr, SourceLocation());
4661
4662  } else if (DC->isRecord()) {
4663    // If the name of the function is the same as the name of the record,
4664    // then this must be an invalid constructor that has a return type.
4665    // (The parser checks for a return type and makes the declarator a
4666    // constructor if it has no return type).
4667    if (Name.getAsIdentifierInfo() &&
4668        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4669      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4670        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4671        << SourceRange(D.getIdentifierLoc());
4672      return 0;
4673    }
4674
4675    bool isStatic = SC == SC_Static;
4676
4677    // [class.free]p1:
4678    // Any allocation function for a class T is a static member
4679    // (even if not explicitly declared static).
4680    if (Name.getCXXOverloadedOperator() == OO_New ||
4681        Name.getCXXOverloadedOperator() == OO_Array_New)
4682      isStatic = true;
4683
4684    // [class.free]p6 Any deallocation function for a class X is a static member
4685    // (even if not explicitly declared static).
4686    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4687        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4688      isStatic = true;
4689
4690    IsVirtualOkay = !isStatic;
4691
4692    // This is a C++ method declaration.
4693    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4694                                 D.getSourceRange().getBegin(), NameInfo, R,
4695                                 TInfo, isStatic, SCAsWritten, isInline,
4696                                 isConstexpr, SourceLocation());
4697
4698  } else {
4699    // Determine whether the function was written with a
4700    // prototype. This true when:
4701    //   - we're in C++ (where every function has a prototype),
4702    return FunctionDecl::Create(SemaRef.Context, DC,
4703                                D.getSourceRange().getBegin(),
4704                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4705                                true/*HasPrototype*/, isConstexpr);
4706  }
4707}
4708
4709NamedDecl*
4710Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4711                              TypeSourceInfo *TInfo, LookupResult &Previous,
4712                              MultiTemplateParamsArg TemplateParamLists,
4713                              bool &AddToScope) {
4714  QualType R = TInfo->getType();
4715
4716  assert(R.getTypePtr()->isFunctionType());
4717
4718  // TODO: consider using NameInfo for diagnostic.
4719  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4720  DeclarationName Name = NameInfo.getName();
4721  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4722
4723  if (D.getDeclSpec().isThreadSpecified())
4724    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4725
4726  // Do not allow returning a objc interface by-value.
4727  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4728    Diag(D.getIdentifierLoc(),
4729         diag::err_object_cannot_be_passed_returned_by_value) << 0
4730    << R->getAs<FunctionType>()->getResultType()
4731    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4732
4733    QualType T = R->getAs<FunctionType>()->getResultType();
4734    T = Context.getObjCObjectPointerType(T);
4735    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4736      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4737      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4738                                  FPT->getNumArgs(), EPI);
4739    }
4740    else if (isa<FunctionNoProtoType>(R))
4741      R = Context.getFunctionNoProtoType(T);
4742  }
4743
4744  bool isFriend = false;
4745  FunctionTemplateDecl *FunctionTemplate = 0;
4746  bool isExplicitSpecialization = false;
4747  bool isFunctionTemplateSpecialization = false;
4748  bool isDependentClassScopeExplicitSpecialization = false;
4749  bool isVirtualOkay = false;
4750
4751  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4752                                              isVirtualOkay);
4753  if (!NewFD) return 0;
4754
4755  if (getLangOptions().CPlusPlus) {
4756    bool isInline = D.getDeclSpec().isInlineSpecified();
4757    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4758    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4759    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4760    isFriend = D.getDeclSpec().isFriendSpecified();
4761    if (isFriend && !isInline && D.isFunctionDefinition()) {
4762      // C++ [class.friend]p5
4763      //   A function can be defined in a friend declaration of a
4764      //   class . . . . Such a function is implicitly inline.
4765      NewFD->setImplicitlyInline();
4766    }
4767
4768    SetNestedNameSpecifier(NewFD, D);
4769    isExplicitSpecialization = false;
4770    isFunctionTemplateSpecialization = false;
4771    if (D.isInvalidType())
4772      NewFD->setInvalidDecl();
4773
4774    // Set the lexical context. If the declarator has a C++
4775    // scope specifier, or is the object of a friend declaration, the
4776    // lexical context will be different from the semantic context.
4777    NewFD->setLexicalDeclContext(CurContext);
4778
4779    // Match up the template parameter lists with the scope specifier, then
4780    // determine whether we have a template or a template specialization.
4781    bool Invalid = false;
4782    if (TemplateParameterList *TemplateParams
4783          = MatchTemplateParametersToScopeSpecifier(
4784                                  D.getDeclSpec().getSourceRange().getBegin(),
4785                                  D.getIdentifierLoc(),
4786                                  D.getCXXScopeSpec(),
4787                                  TemplateParamLists.get(),
4788                                  TemplateParamLists.size(),
4789                                  isFriend,
4790                                  isExplicitSpecialization,
4791                                  Invalid)) {
4792      if (TemplateParams->size() > 0) {
4793        // This is a function template
4794
4795        // Check that we can declare a template here.
4796        if (CheckTemplateDeclScope(S, TemplateParams))
4797          return 0;
4798
4799        // A destructor cannot be a template.
4800        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4801          Diag(NewFD->getLocation(), diag::err_destructor_template);
4802          return 0;
4803        }
4804
4805        // If we're adding a template to a dependent context, we may need to
4806        // rebuilding some of the types used within the template parameter list,
4807        // now that we know what the current instantiation is.
4808        if (DC->isDependentContext()) {
4809          ContextRAII SavedContext(*this, DC);
4810          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4811            Invalid = true;
4812        }
4813
4814
4815        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4816                                                        NewFD->getLocation(),
4817                                                        Name, TemplateParams,
4818                                                        NewFD);
4819        FunctionTemplate->setLexicalDeclContext(CurContext);
4820        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4821
4822        // For source fidelity, store the other template param lists.
4823        if (TemplateParamLists.size() > 1) {
4824          NewFD->setTemplateParameterListsInfo(Context,
4825                                               TemplateParamLists.size() - 1,
4826                                               TemplateParamLists.release());
4827        }
4828      } else {
4829        // This is a function template specialization.
4830        isFunctionTemplateSpecialization = true;
4831        // For source fidelity, store all the template param lists.
4832        NewFD->setTemplateParameterListsInfo(Context,
4833                                             TemplateParamLists.size(),
4834                                             TemplateParamLists.release());
4835
4836        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4837        if (isFriend) {
4838          // We want to remove the "template<>", found here.
4839          SourceRange RemoveRange = TemplateParams->getSourceRange();
4840
4841          // If we remove the template<> and the name is not a
4842          // template-id, we're actually silently creating a problem:
4843          // the friend declaration will refer to an untemplated decl,
4844          // and clearly the user wants a template specialization.  So
4845          // we need to insert '<>' after the name.
4846          SourceLocation InsertLoc;
4847          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4848            InsertLoc = D.getName().getSourceRange().getEnd();
4849            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4850          }
4851
4852          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4853            << Name << RemoveRange
4854            << FixItHint::CreateRemoval(RemoveRange)
4855            << FixItHint::CreateInsertion(InsertLoc, "<>");
4856        }
4857      }
4858    }
4859    else {
4860      // All template param lists were matched against the scope specifier:
4861      // this is NOT (an explicit specialization of) a template.
4862      if (TemplateParamLists.size() > 0)
4863        // For source fidelity, store all the template param lists.
4864        NewFD->setTemplateParameterListsInfo(Context,
4865                                             TemplateParamLists.size(),
4866                                             TemplateParamLists.release());
4867    }
4868
4869    if (Invalid) {
4870      NewFD->setInvalidDecl();
4871      if (FunctionTemplate)
4872        FunctionTemplate->setInvalidDecl();
4873    }
4874
4875    // C++ [dcl.fct.spec]p5:
4876    //   The virtual specifier shall only be used in declarations of
4877    //   nonstatic class member functions that appear within a
4878    //   member-specification of a class declaration; see 10.3.
4879    //
4880    if (isVirtual && !NewFD->isInvalidDecl()) {
4881      if (!isVirtualOkay) {
4882        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4883             diag::err_virtual_non_function);
4884      } else if (!CurContext->isRecord()) {
4885        // 'virtual' was specified outside of the class.
4886        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4887             diag::err_virtual_out_of_class)
4888          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4889      } else if (NewFD->getDescribedFunctionTemplate()) {
4890        // C++ [temp.mem]p3:
4891        //  A member function template shall not be virtual.
4892        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4893             diag::err_virtual_member_function_template)
4894          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4895      } else {
4896        // Okay: Add virtual to the method.
4897        NewFD->setVirtualAsWritten(true);
4898      }
4899    }
4900
4901    // C++ [dcl.fct.spec]p3:
4902    //  The inline specifier shall not appear on a block scope function declaration.
4903    if (isInline && !NewFD->isInvalidDecl()) {
4904      if (CurContext->isFunctionOrMethod()) {
4905        // 'inline' is not allowed on block scope function declaration.
4906        Diag(D.getDeclSpec().getInlineSpecLoc(),
4907             diag::err_inline_declaration_block_scope) << Name
4908          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4909      }
4910    }
4911
4912    // C++ [dcl.fct.spec]p6:
4913    //  The explicit specifier shall be used only in the declaration of a
4914    //  constructor or conversion function within its class definition; see 12.3.1
4915    //  and 12.3.2.
4916    if (isExplicit && !NewFD->isInvalidDecl()) {
4917      if (!CurContext->isRecord()) {
4918        // 'explicit' was specified outside of the class.
4919        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4920             diag::err_explicit_out_of_class)
4921          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4922      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4923                 !isa<CXXConversionDecl>(NewFD)) {
4924        // 'explicit' was specified on a function that wasn't a constructor
4925        // or conversion function.
4926        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4927             diag::err_explicit_non_ctor_or_conv_function)
4928          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4929      }
4930    }
4931
4932    if (isConstexpr) {
4933      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4934      // are implicitly inline.
4935      NewFD->setImplicitlyInline();
4936
4937      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4938      // be either constructors or to return a literal type. Therefore,
4939      // destructors cannot be declared constexpr.
4940      if (isa<CXXDestructorDecl>(NewFD))
4941        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4942    }
4943
4944    // If __module_private__ was specified, mark the function accordingly.
4945    if (D.getDeclSpec().isModulePrivateSpecified()) {
4946      if (isFunctionTemplateSpecialization) {
4947        SourceLocation ModulePrivateLoc
4948          = D.getDeclSpec().getModulePrivateSpecLoc();
4949        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4950          << 0
4951          << FixItHint::CreateRemoval(ModulePrivateLoc);
4952      } else {
4953        NewFD->setModulePrivate();
4954        if (FunctionTemplate)
4955          FunctionTemplate->setModulePrivate();
4956      }
4957    }
4958
4959    if (isFriend) {
4960      // For now, claim that the objects have no previous declaration.
4961      if (FunctionTemplate) {
4962        FunctionTemplate->setObjectOfFriendDecl(false);
4963        FunctionTemplate->setAccess(AS_public);
4964      }
4965      NewFD->setObjectOfFriendDecl(false);
4966      NewFD->setAccess(AS_public);
4967    }
4968
4969    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4970        D.isFunctionDefinition()) {
4971      // A method is implicitly inline if it's defined in its class
4972      // definition.
4973      NewFD->setImplicitlyInline();
4974    }
4975
4976    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4977        !CurContext->isRecord()) {
4978      // C++ [class.static]p1:
4979      //   A data or function member of a class may be declared static
4980      //   in a class definition, in which case it is a static member of
4981      //   the class.
4982
4983      // Complain about the 'static' specifier if it's on an out-of-line
4984      // member function definition.
4985      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4986           diag::err_static_out_of_line)
4987        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4988    }
4989  }
4990
4991  // Filter out previous declarations that don't match the scope.
4992  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4993                       isExplicitSpecialization ||
4994                       isFunctionTemplateSpecialization);
4995
4996  // Handle GNU asm-label extension (encoded as an attribute).
4997  if (Expr *E = (Expr*) D.getAsmLabel()) {
4998    // The parser guarantees this is a string.
4999    StringLiteral *SE = cast<StringLiteral>(E);
5000    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5001                                                SE->getString()));
5002  }
5003
5004  // Copy the parameter declarations from the declarator D to the function
5005  // declaration NewFD, if they are available.  First scavenge them into Params.
5006  SmallVector<ParmVarDecl*, 16> Params;
5007  if (D.isFunctionDeclarator()) {
5008    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5009
5010    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5011    // function that takes no arguments, not a function that takes a
5012    // single void argument.
5013    // We let through "const void" here because Sema::GetTypeForDeclarator
5014    // already checks for that case.
5015    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5016        FTI.ArgInfo[0].Param &&
5017        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5018      // Empty arg list, don't push any params.
5019      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5020
5021      // In C++, the empty parameter-type-list must be spelled "void"; a
5022      // typedef of void is not permitted.
5023      if (getLangOptions().CPlusPlus &&
5024          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5025        bool IsTypeAlias = false;
5026        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5027          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5028        else if (const TemplateSpecializationType *TST =
5029                   Param->getType()->getAs<TemplateSpecializationType>())
5030          IsTypeAlias = TST->isTypeAlias();
5031        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5032          << IsTypeAlias;
5033      }
5034    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5035      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5036        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5037        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5038        Param->setDeclContext(NewFD);
5039        Params.push_back(Param);
5040
5041        if (Param->isInvalidDecl())
5042          NewFD->setInvalidDecl();
5043      }
5044    }
5045
5046  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5047    // When we're declaring a function with a typedef, typeof, etc as in the
5048    // following example, we'll need to synthesize (unnamed)
5049    // parameters for use in the declaration.
5050    //
5051    // @code
5052    // typedef void fn(int);
5053    // fn f;
5054    // @endcode
5055
5056    // Synthesize a parameter for each argument type.
5057    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5058         AE = FT->arg_type_end(); AI != AE; ++AI) {
5059      ParmVarDecl *Param =
5060        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5061      Param->setScopeInfo(0, Params.size());
5062      Params.push_back(Param);
5063    }
5064  } else {
5065    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5066           "Should not need args for typedef of non-prototype fn");
5067  }
5068
5069  // Finally, we know we have the right number of parameters, install them.
5070  NewFD->setParams(Params);
5071
5072  // Process the non-inheritable attributes on this declaration.
5073  ProcessDeclAttributes(S, NewFD, D,
5074                        /*NonInheritable=*/true, /*Inheritable=*/false);
5075
5076  if (!getLangOptions().CPlusPlus) {
5077    // Perform semantic checking on the function declaration.
5078    bool isExplicitSpecialization=false;
5079    if (!NewFD->isInvalidDecl()) {
5080      if (NewFD->getResultType()->isVariablyModifiedType()) {
5081        // Functions returning a variably modified type violate C99 6.7.5.2p2
5082        // because all functions have linkage.
5083        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5084        NewFD->setInvalidDecl();
5085      } else {
5086        if (NewFD->isMain())
5087          CheckMain(NewFD, D.getDeclSpec());
5088        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5089                                                    isExplicitSpecialization));
5090      }
5091    }
5092    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5093            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5094           "previous declaration set still overloaded");
5095  } else {
5096    // If the declarator is a template-id, translate the parser's template
5097    // argument list into our AST format.
5098    bool HasExplicitTemplateArgs = false;
5099    TemplateArgumentListInfo TemplateArgs;
5100    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5101      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5102      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5103      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5104      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5105                                         TemplateId->getTemplateArgs(),
5106                                         TemplateId->NumArgs);
5107      translateTemplateArguments(TemplateArgsPtr,
5108                                 TemplateArgs);
5109      TemplateArgsPtr.release();
5110
5111      HasExplicitTemplateArgs = true;
5112
5113      if (NewFD->isInvalidDecl()) {
5114        HasExplicitTemplateArgs = false;
5115      } else if (FunctionTemplate) {
5116        // Function template with explicit template arguments.
5117        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5118          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5119
5120        HasExplicitTemplateArgs = false;
5121      } else if (!isFunctionTemplateSpecialization &&
5122                 !D.getDeclSpec().isFriendSpecified()) {
5123        // We have encountered something that the user meant to be a
5124        // specialization (because it has explicitly-specified template
5125        // arguments) but that was not introduced with a "template<>" (or had
5126        // too few of them).
5127        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5128          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5129          << FixItHint::CreateInsertion(
5130                                        D.getDeclSpec().getSourceRange().getBegin(),
5131                                                  "template<> ");
5132        isFunctionTemplateSpecialization = true;
5133      } else {
5134        // "friend void foo<>(int);" is an implicit specialization decl.
5135        isFunctionTemplateSpecialization = true;
5136      }
5137    } else if (isFriend && isFunctionTemplateSpecialization) {
5138      // This combination is only possible in a recovery case;  the user
5139      // wrote something like:
5140      //   template <> friend void foo(int);
5141      // which we're recovering from as if the user had written:
5142      //   friend void foo<>(int);
5143      // Go ahead and fake up a template id.
5144      HasExplicitTemplateArgs = true;
5145        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5146      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5147    }
5148
5149    // If it's a friend (and only if it's a friend), it's possible
5150    // that either the specialized function type or the specialized
5151    // template is dependent, and therefore matching will fail.  In
5152    // this case, don't check the specialization yet.
5153    bool InstantiationDependent = false;
5154    if (isFunctionTemplateSpecialization && isFriend &&
5155        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5156         TemplateSpecializationType::anyDependentTemplateArguments(
5157            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5158            InstantiationDependent))) {
5159      assert(HasExplicitTemplateArgs &&
5160             "friend function specialization without template args");
5161      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5162                                                       Previous))
5163        NewFD->setInvalidDecl();
5164    } else if (isFunctionTemplateSpecialization) {
5165      if (CurContext->isDependentContext() && CurContext->isRecord()
5166          && !isFriend) {
5167        isDependentClassScopeExplicitSpecialization = true;
5168        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5169          diag::ext_function_specialization_in_class :
5170          diag::err_function_specialization_in_class)
5171          << NewFD->getDeclName();
5172      } else if (CheckFunctionTemplateSpecialization(NewFD,
5173                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5174                                                     Previous))
5175        NewFD->setInvalidDecl();
5176
5177      // C++ [dcl.stc]p1:
5178      //   A storage-class-specifier shall not be specified in an explicit
5179      //   specialization (14.7.3)
5180      if (SC != SC_None) {
5181        if (SC != NewFD->getStorageClass())
5182          Diag(NewFD->getLocation(),
5183               diag::err_explicit_specialization_inconsistent_storage_class)
5184            << SC
5185            << FixItHint::CreateRemoval(
5186                                      D.getDeclSpec().getStorageClassSpecLoc());
5187
5188        else
5189          Diag(NewFD->getLocation(),
5190               diag::ext_explicit_specialization_storage_class)
5191            << FixItHint::CreateRemoval(
5192                                      D.getDeclSpec().getStorageClassSpecLoc());
5193      }
5194
5195    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5196      if (CheckMemberSpecialization(NewFD, Previous))
5197          NewFD->setInvalidDecl();
5198    }
5199
5200    // Perform semantic checking on the function declaration.
5201    if (!isDependentClassScopeExplicitSpecialization) {
5202      if (NewFD->isInvalidDecl()) {
5203        // If this is a class member, mark the class invalid immediately.
5204        // This avoids some consistency errors later.
5205        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5206          methodDecl->getParent()->setInvalidDecl();
5207      } else {
5208        if (NewFD->isMain())
5209          CheckMain(NewFD, D.getDeclSpec());
5210        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5211                                                    isExplicitSpecialization));
5212      }
5213    }
5214
5215    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5216            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5217           "previous declaration set still overloaded");
5218
5219    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5220        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5221      NewFD->setInvalidDecl();
5222
5223    NamedDecl *PrincipalDecl = (FunctionTemplate
5224                                ? cast<NamedDecl>(FunctionTemplate)
5225                                : NewFD);
5226
5227    if (isFriend && D.isRedeclaration()) {
5228      AccessSpecifier Access = AS_public;
5229      if (!NewFD->isInvalidDecl())
5230        Access = NewFD->getPreviousDeclaration()->getAccess();
5231
5232      NewFD->setAccess(Access);
5233      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5234
5235      PrincipalDecl->setObjectOfFriendDecl(true);
5236    }
5237
5238    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5239        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5240      PrincipalDecl->setNonMemberOperator();
5241
5242    // If we have a function template, check the template parameter
5243    // list. This will check and merge default template arguments.
5244    if (FunctionTemplate) {
5245      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5246      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5247                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5248                            D.getDeclSpec().isFriendSpecified()
5249                              ? (D.isFunctionDefinition()
5250                                   ? TPC_FriendFunctionTemplateDefinition
5251                                   : TPC_FriendFunctionTemplate)
5252                              : (D.getCXXScopeSpec().isSet() &&
5253                                 DC && DC->isRecord() &&
5254                                 DC->isDependentContext())
5255                                  ? TPC_ClassTemplateMember
5256                                  : TPC_FunctionTemplate);
5257    }
5258
5259    if (NewFD->isInvalidDecl()) {
5260      // Ignore all the rest of this.
5261    } else if (!D.isRedeclaration()) {
5262      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5263                                       AddToScope };
5264      // Fake up an access specifier if it's supposed to be a class member.
5265      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5266        NewFD->setAccess(AS_public);
5267
5268      // Qualified decls generally require a previous declaration.
5269      if (D.getCXXScopeSpec().isSet()) {
5270        // ...with the major exception of templated-scope or
5271        // dependent-scope friend declarations.
5272
5273        // TODO: we currently also suppress this check in dependent
5274        // contexts because (1) the parameter depth will be off when
5275        // matching friend templates and (2) we might actually be
5276        // selecting a friend based on a dependent factor.  But there
5277        // are situations where these conditions don't apply and we
5278        // can actually do this check immediately.
5279        if (isFriend &&
5280            (TemplateParamLists.size() ||
5281             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5282             CurContext->isDependentContext())) {
5283          // ignore these
5284        } else {
5285          // The user tried to provide an out-of-line definition for a
5286          // function that is a member of a class or namespace, but there
5287          // was no such member function declared (C++ [class.mfct]p2,
5288          // C++ [namespace.memdef]p2). For example:
5289          //
5290          // class X {
5291          //   void f() const;
5292          // };
5293          //
5294          // void X::f() { } // ill-formed
5295          //
5296          // Complain about this problem, and attempt to suggest close
5297          // matches (e.g., those that differ only in cv-qualifiers and
5298          // whether the parameter types are references).
5299
5300          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5301                                                               NewFD,
5302                                                               ExtraArgs)) {
5303            AddToScope = ExtraArgs.AddToScope;
5304            return Result;
5305          }
5306        }
5307
5308        // Unqualified local friend declarations are required to resolve
5309        // to something.
5310      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5311        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5312                                                             NewFD,
5313                                                             ExtraArgs)) {
5314          AddToScope = ExtraArgs.AddToScope;
5315          return Result;
5316        }
5317      }
5318
5319    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5320               !isFriend && !isFunctionTemplateSpecialization &&
5321               !isExplicitSpecialization) {
5322      // An out-of-line member function declaration must also be a
5323      // definition (C++ [dcl.meaning]p1).
5324      // Note that this is not the case for explicit specializations of
5325      // function templates or member functions of class templates, per
5326      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5327      // for compatibility with old SWIG code which likes to generate them.
5328      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5329        << D.getCXXScopeSpec().getRange();
5330    }
5331  }
5332
5333
5334  // Handle attributes. We need to have merged decls when handling attributes
5335  // (for example to check for conflicts, etc).
5336  // FIXME: This needs to happen before we merge declarations. Then,
5337  // let attribute merging cope with attribute conflicts.
5338  ProcessDeclAttributes(S, NewFD, D,
5339                        /*NonInheritable=*/false, /*Inheritable=*/true);
5340
5341  // attributes declared post-definition are currently ignored
5342  // FIXME: This should happen during attribute merging
5343  if (D.isRedeclaration() && Previous.isSingleResult()) {
5344    const FunctionDecl *Def;
5345    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5346    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5347      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5348      Diag(Def->getLocation(), diag::note_previous_definition);
5349    }
5350  }
5351
5352  AddKnownFunctionAttributes(NewFD);
5353
5354  if (NewFD->hasAttr<OverloadableAttr>() &&
5355      !NewFD->getType()->getAs<FunctionProtoType>()) {
5356    Diag(NewFD->getLocation(),
5357         diag::err_attribute_overloadable_no_prototype)
5358      << NewFD;
5359
5360    // Turn this into a variadic function with no parameters.
5361    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5362    FunctionProtoType::ExtProtoInfo EPI;
5363    EPI.Variadic = true;
5364    EPI.ExtInfo = FT->getExtInfo();
5365
5366    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5367    NewFD->setType(R);
5368  }
5369
5370  // If there's a #pragma GCC visibility in scope, and this isn't a class
5371  // member, set the visibility of this function.
5372  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5373    AddPushedVisibilityAttribute(NewFD);
5374
5375  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5376  // marking the function.
5377  AddCFAuditedAttribute(NewFD);
5378
5379  // If this is a locally-scoped extern C function, update the
5380  // map of such names.
5381  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5382      && !NewFD->isInvalidDecl())
5383    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5384
5385  // Set this FunctionDecl's range up to the right paren.
5386  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5387
5388  if (getLangOptions().CPlusPlus) {
5389    if (FunctionTemplate) {
5390      if (NewFD->isInvalidDecl())
5391        FunctionTemplate->setInvalidDecl();
5392      return FunctionTemplate;
5393    }
5394  }
5395
5396  MarkUnusedFileScopedDecl(NewFD);
5397
5398  if (getLangOptions().CUDA)
5399    if (IdentifierInfo *II = NewFD->getIdentifier())
5400      if (!NewFD->isInvalidDecl() &&
5401          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5402        if (II->isStr("cudaConfigureCall")) {
5403          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5404            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5405
5406          Context.setcudaConfigureCallDecl(NewFD);
5407        }
5408      }
5409
5410  // Here we have an function template explicit specialization at class scope.
5411  // The actually specialization will be postponed to template instatiation
5412  // time via the ClassScopeFunctionSpecializationDecl node.
5413  if (isDependentClassScopeExplicitSpecialization) {
5414    ClassScopeFunctionSpecializationDecl *NewSpec =
5415                         ClassScopeFunctionSpecializationDecl::Create(
5416                                Context, CurContext,  SourceLocation(),
5417                                cast<CXXMethodDecl>(NewFD));
5418    CurContext->addDecl(NewSpec);
5419    AddToScope = false;
5420  }
5421
5422  return NewFD;
5423}
5424
5425/// \brief Perform semantic checking of a new function declaration.
5426///
5427/// Performs semantic analysis of the new function declaration
5428/// NewFD. This routine performs all semantic checking that does not
5429/// require the actual declarator involved in the declaration, and is
5430/// used both for the declaration of functions as they are parsed
5431/// (called via ActOnDeclarator) and for the declaration of functions
5432/// that have been instantiated via C++ template instantiation (called
5433/// via InstantiateDecl).
5434///
5435/// \param IsExplicitSpecialiation whether this new function declaration is
5436/// an explicit specialization of the previous declaration.
5437///
5438/// This sets NewFD->isInvalidDecl() to true if there was an error.
5439///
5440/// Returns true if the function declaration is a redeclaration.
5441bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5442                                    LookupResult &Previous,
5443                                    bool IsExplicitSpecialization) {
5444  assert(!NewFD->getResultType()->isVariablyModifiedType()
5445         && "Variably modified return types are not handled here");
5446
5447  // Check for a previous declaration of this name.
5448  if (Previous.empty() && NewFD->isExternC()) {
5449    // Since we did not find anything by this name and we're declaring
5450    // an extern "C" function, look for a non-visible extern "C"
5451    // declaration with the same name.
5452    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5453      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5454    if (Pos != LocallyScopedExternalDecls.end())
5455      Previous.addDecl(Pos->second);
5456  }
5457
5458  bool Redeclaration = false;
5459
5460  // Merge or overload the declaration with an existing declaration of
5461  // the same name, if appropriate.
5462  if (!Previous.empty()) {
5463    // Determine whether NewFD is an overload of PrevDecl or
5464    // a declaration that requires merging. If it's an overload,
5465    // there's no more work to do here; we'll just add the new
5466    // function to the scope.
5467
5468    NamedDecl *OldDecl = 0;
5469    if (!AllowOverloadingOfFunction(Previous, Context)) {
5470      Redeclaration = true;
5471      OldDecl = Previous.getFoundDecl();
5472    } else {
5473      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5474                            /*NewIsUsingDecl*/ false)) {
5475      case Ovl_Match:
5476        Redeclaration = true;
5477        break;
5478
5479      case Ovl_NonFunction:
5480        Redeclaration = true;
5481        break;
5482
5483      case Ovl_Overload:
5484        Redeclaration = false;
5485        break;
5486      }
5487
5488      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5489        // If a function name is overloadable in C, then every function
5490        // with that name must be marked "overloadable".
5491        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5492          << Redeclaration << NewFD;
5493        NamedDecl *OverloadedDecl = 0;
5494        if (Redeclaration)
5495          OverloadedDecl = OldDecl;
5496        else if (!Previous.empty())
5497          OverloadedDecl = Previous.getRepresentativeDecl();
5498        if (OverloadedDecl)
5499          Diag(OverloadedDecl->getLocation(),
5500               diag::note_attribute_overloadable_prev_overload);
5501        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5502                                                        Context));
5503      }
5504    }
5505
5506    if (Redeclaration) {
5507      // NewFD and OldDecl represent declarations that need to be
5508      // merged.
5509      if (MergeFunctionDecl(NewFD, OldDecl)) {
5510        NewFD->setInvalidDecl();
5511        return Redeclaration;
5512      }
5513
5514      Previous.clear();
5515      Previous.addDecl(OldDecl);
5516
5517      if (FunctionTemplateDecl *OldTemplateDecl
5518                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5519        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5520        FunctionTemplateDecl *NewTemplateDecl
5521          = NewFD->getDescribedFunctionTemplate();
5522        assert(NewTemplateDecl && "Template/non-template mismatch");
5523        if (CXXMethodDecl *Method
5524              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5525          Method->setAccess(OldTemplateDecl->getAccess());
5526          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5527        }
5528
5529        // If this is an explicit specialization of a member that is a function
5530        // template, mark it as a member specialization.
5531        if (IsExplicitSpecialization &&
5532            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5533          NewTemplateDecl->setMemberSpecialization();
5534          assert(OldTemplateDecl->isMemberSpecialization());
5535        }
5536
5537        if (OldTemplateDecl->isModulePrivate())
5538          NewTemplateDecl->setModulePrivate();
5539
5540      } else {
5541        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5542          NewFD->setAccess(OldDecl->getAccess());
5543        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5544      }
5545    }
5546  }
5547
5548  // Semantic checking for this function declaration (in isolation).
5549  if (getLangOptions().CPlusPlus) {
5550    // C++-specific checks.
5551    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5552      CheckConstructor(Constructor);
5553    } else if (CXXDestructorDecl *Destructor =
5554                dyn_cast<CXXDestructorDecl>(NewFD)) {
5555      CXXRecordDecl *Record = Destructor->getParent();
5556      QualType ClassType = Context.getTypeDeclType(Record);
5557
5558      // FIXME: Shouldn't we be able to perform this check even when the class
5559      // type is dependent? Both gcc and edg can handle that.
5560      if (!ClassType->isDependentType()) {
5561        DeclarationName Name
5562          = Context.DeclarationNames.getCXXDestructorName(
5563                                        Context.getCanonicalType(ClassType));
5564        if (NewFD->getDeclName() != Name) {
5565          Diag(NewFD->getLocation(), diag::err_destructor_name);
5566          NewFD->setInvalidDecl();
5567          return Redeclaration;
5568        }
5569      }
5570    } else if (CXXConversionDecl *Conversion
5571               = dyn_cast<CXXConversionDecl>(NewFD)) {
5572      ActOnConversionDeclarator(Conversion);
5573    }
5574
5575    // Find any virtual functions that this function overrides.
5576    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5577      if (!Method->isFunctionTemplateSpecialization() &&
5578          !Method->getDescribedFunctionTemplate()) {
5579        if (AddOverriddenMethods(Method->getParent(), Method)) {
5580          // If the function was marked as "static", we have a problem.
5581          if (NewFD->getStorageClass() == SC_Static) {
5582            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5583              << NewFD->getDeclName();
5584            for (CXXMethodDecl::method_iterator
5585                      Overridden = Method->begin_overridden_methods(),
5586                   OverriddenEnd = Method->end_overridden_methods();
5587                 Overridden != OverriddenEnd;
5588                 ++Overridden) {
5589              Diag((*Overridden)->getLocation(),
5590                   diag::note_overridden_virtual_function);
5591            }
5592          }
5593        }
5594      }
5595    }
5596
5597    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5598    if (NewFD->isOverloadedOperator() &&
5599        CheckOverloadedOperatorDeclaration(NewFD)) {
5600      NewFD->setInvalidDecl();
5601      return Redeclaration;
5602    }
5603
5604    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5605    if (NewFD->getLiteralIdentifier() &&
5606        CheckLiteralOperatorDeclaration(NewFD)) {
5607      NewFD->setInvalidDecl();
5608      return Redeclaration;
5609    }
5610
5611    // In C++, check default arguments now that we have merged decls. Unless
5612    // the lexical context is the class, because in this case this is done
5613    // during delayed parsing anyway.
5614    if (!CurContext->isRecord())
5615      CheckCXXDefaultArguments(NewFD);
5616
5617    // If this function declares a builtin function, check the type of this
5618    // declaration against the expected type for the builtin.
5619    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5620      ASTContext::GetBuiltinTypeError Error;
5621      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5622      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5623        // The type of this function differs from the type of the builtin,
5624        // so forget about the builtin entirely.
5625        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5626      }
5627    }
5628  }
5629  return Redeclaration;
5630}
5631
5632void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5633  // C++ [basic.start.main]p3:  A program that declares main to be inline
5634  //   or static is ill-formed.
5635  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5636  //   shall not appear in a declaration of main.
5637  // static main is not an error under C99, but we should warn about it.
5638  if (FD->getStorageClass() == SC_Static)
5639    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5640         ? diag::err_static_main : diag::warn_static_main)
5641      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5642  if (FD->isInlineSpecified())
5643    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5644      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5645
5646  QualType T = FD->getType();
5647  assert(T->isFunctionType() && "function decl is not of function type");
5648  const FunctionType* FT = T->getAs<FunctionType>();
5649
5650  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5651    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5652    FD->setInvalidDecl(true);
5653  }
5654
5655  // Treat protoless main() as nullary.
5656  if (isa<FunctionNoProtoType>(FT)) return;
5657
5658  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5659  unsigned nparams = FTP->getNumArgs();
5660  assert(FD->getNumParams() == nparams);
5661
5662  bool HasExtraParameters = (nparams > 3);
5663
5664  // Darwin passes an undocumented fourth argument of type char**.  If
5665  // other platforms start sprouting these, the logic below will start
5666  // getting shifty.
5667  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5668    HasExtraParameters = false;
5669
5670  if (HasExtraParameters) {
5671    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5672    FD->setInvalidDecl(true);
5673    nparams = 3;
5674  }
5675
5676  // FIXME: a lot of the following diagnostics would be improved
5677  // if we had some location information about types.
5678
5679  QualType CharPP =
5680    Context.getPointerType(Context.getPointerType(Context.CharTy));
5681  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5682
5683  for (unsigned i = 0; i < nparams; ++i) {
5684    QualType AT = FTP->getArgType(i);
5685
5686    bool mismatch = true;
5687
5688    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5689      mismatch = false;
5690    else if (Expected[i] == CharPP) {
5691      // As an extension, the following forms are okay:
5692      //   char const **
5693      //   char const * const *
5694      //   char * const *
5695
5696      QualifierCollector qs;
5697      const PointerType* PT;
5698      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5699          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5700          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5701        qs.removeConst();
5702        mismatch = !qs.empty();
5703      }
5704    }
5705
5706    if (mismatch) {
5707      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5708      // TODO: suggest replacing given type with expected type
5709      FD->setInvalidDecl(true);
5710    }
5711  }
5712
5713  if (nparams == 1 && !FD->isInvalidDecl()) {
5714    Diag(FD->getLocation(), diag::warn_main_one_arg);
5715  }
5716
5717  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5718    Diag(FD->getLocation(), diag::err_main_template_decl);
5719    FD->setInvalidDecl();
5720  }
5721}
5722
5723bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5724  // FIXME: Need strict checking.  In C89, we need to check for
5725  // any assignment, increment, decrement, function-calls, or
5726  // commas outside of a sizeof.  In C99, it's the same list,
5727  // except that the aforementioned are allowed in unevaluated
5728  // expressions.  Everything else falls under the
5729  // "may accept other forms of constant expressions" exception.
5730  // (We never end up here for C++, so the constant expression
5731  // rules there don't matter.)
5732  if (Init->isConstantInitializer(Context, false))
5733    return false;
5734  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5735    << Init->getSourceRange();
5736  return true;
5737}
5738
5739namespace {
5740  // Visits an initialization expression to see if OrigDecl is evaluated in
5741  // its own initialization and throws a warning if it does.
5742  class SelfReferenceChecker
5743      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5744    Sema &S;
5745    Decl *OrigDecl;
5746    bool isRecordType;
5747    bool isPODType;
5748
5749  public:
5750    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5751
5752    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5753                                                    S(S), OrigDecl(OrigDecl) {
5754      isPODType = false;
5755      isRecordType = false;
5756      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5757        isPODType = VD->getType().isPODType(S.Context);
5758        isRecordType = VD->getType()->isRecordType();
5759      }
5760    }
5761
5762    void VisitExpr(Expr *E) {
5763      if (isa<ObjCMessageExpr>(*E)) return;
5764      if (isRecordType) {
5765        Expr *expr = E;
5766        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5767          ValueDecl *VD = ME->getMemberDecl();
5768          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5769          expr = ME->getBase();
5770        }
5771        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5772          HandleDeclRefExpr(DRE);
5773          return;
5774        }
5775      }
5776      Inherited::VisitExpr(E);
5777    }
5778
5779    void VisitMemberExpr(MemberExpr *E) {
5780      if (E->getType()->canDecayToPointerType()) return;
5781      if (isa<FieldDecl>(E->getMemberDecl()))
5782        if (DeclRefExpr *DRE
5783              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5784          HandleDeclRefExpr(DRE);
5785          return;
5786        }
5787      Inherited::VisitMemberExpr(E);
5788    }
5789
5790    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5791      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5792          (isRecordType && E->getCastKind() == CK_NoOp)) {
5793        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5794        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5795          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5796        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5797          HandleDeclRefExpr(DRE);
5798          return;
5799        }
5800      }
5801      Inherited::VisitImplicitCastExpr(E);
5802    }
5803
5804    void VisitUnaryOperator(UnaryOperator *E) {
5805      // For POD record types, addresses of its own members are well-defined.
5806      if (isRecordType && isPODType) return;
5807      Inherited::VisitUnaryOperator(E);
5808    }
5809
5810    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5811      Decl* ReferenceDecl = DRE->getDecl();
5812      if (OrigDecl != ReferenceDecl) return;
5813      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5814                          Sema::NotForRedeclaration);
5815      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5816                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5817                              << Result.getLookupName()
5818                              << OrigDecl->getLocation()
5819                              << DRE->getSourceRange());
5820    }
5821  };
5822}
5823
5824/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5825void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5826  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5827}
5828
5829/// AddInitializerToDecl - Adds the initializer Init to the
5830/// declaration dcl. If DirectInit is true, this is C++ direct
5831/// initialization rather than copy initialization.
5832void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5833                                bool DirectInit, bool TypeMayContainAuto) {
5834  // If there is no declaration, there was an error parsing it.  Just ignore
5835  // the initializer.
5836  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5837    return;
5838
5839  // Check for self-references within variable initializers.
5840  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5841    // Variables declared within a function/method body are handled
5842    // by a dataflow analysis.
5843    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5844      CheckSelfReference(RealDecl, Init);
5845  }
5846  else {
5847    CheckSelfReference(RealDecl, Init);
5848  }
5849
5850  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5851    // With declarators parsed the way they are, the parser cannot
5852    // distinguish between a normal initializer and a pure-specifier.
5853    // Thus this grotesque test.
5854    IntegerLiteral *IL;
5855    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5856        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5857      CheckPureMethod(Method, Init->getSourceRange());
5858    else {
5859      Diag(Method->getLocation(), diag::err_member_function_initialization)
5860        << Method->getDeclName() << Init->getSourceRange();
5861      Method->setInvalidDecl();
5862    }
5863    return;
5864  }
5865
5866  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5867  if (!VDecl) {
5868    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5869    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5870    RealDecl->setInvalidDecl();
5871    return;
5872  }
5873
5874  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5875  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5876    TypeSourceInfo *DeducedType = 0;
5877    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5878      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5879        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5880        << Init->getSourceRange();
5881    if (!DeducedType) {
5882      RealDecl->setInvalidDecl();
5883      return;
5884    }
5885    VDecl->setTypeSourceInfo(DeducedType);
5886    VDecl->setType(DeducedType->getType());
5887
5888    // In ARC, infer lifetime.
5889    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5890      VDecl->setInvalidDecl();
5891
5892    // If this is a redeclaration, check that the type we just deduced matches
5893    // the previously declared type.
5894    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5895      MergeVarDeclTypes(VDecl, Old);
5896  }
5897
5898
5899  // A definition must end up with a complete type, which means it must be
5900  // complete with the restriction that an array type might be completed by the
5901  // initializer; note that later code assumes this restriction.
5902  QualType BaseDeclType = VDecl->getType();
5903  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5904    BaseDeclType = Array->getElementType();
5905  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5906                          diag::err_typecheck_decl_incomplete_type)) {
5907    RealDecl->setInvalidDecl();
5908    return;
5909  }
5910
5911  // The variable can not have an abstract class type.
5912  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5913                             diag::err_abstract_type_in_decl,
5914                             AbstractVariableType))
5915    VDecl->setInvalidDecl();
5916
5917  const VarDecl *Def;
5918  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5919    Diag(VDecl->getLocation(), diag::err_redefinition)
5920      << VDecl->getDeclName();
5921    Diag(Def->getLocation(), diag::note_previous_definition);
5922    VDecl->setInvalidDecl();
5923    return;
5924  }
5925
5926  const VarDecl* PrevInit = 0;
5927  if (getLangOptions().CPlusPlus) {
5928    // C++ [class.static.data]p4
5929    //   If a static data member is of const integral or const
5930    //   enumeration type, its declaration in the class definition can
5931    //   specify a constant-initializer which shall be an integral
5932    //   constant expression (5.19). In that case, the member can appear
5933    //   in integral constant expressions. The member shall still be
5934    //   defined in a namespace scope if it is used in the program and the
5935    //   namespace scope definition shall not contain an initializer.
5936    //
5937    // We already performed a redefinition check above, but for static
5938    // data members we also need to check whether there was an in-class
5939    // declaration with an initializer.
5940    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5941      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5942      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5943      return;
5944    }
5945
5946    if (VDecl->hasLocalStorage())
5947      getCurFunction()->setHasBranchProtectedScope();
5948
5949    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5950      VDecl->setInvalidDecl();
5951      return;
5952    }
5953  }
5954
5955  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5956  // a kernel function cannot be initialized."
5957  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5958    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5959    VDecl->setInvalidDecl();
5960    return;
5961  }
5962
5963  // Capture the variable that is being initialized and the style of
5964  // initialization.
5965  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5966
5967  // FIXME: Poor source location information.
5968  InitializationKind Kind
5969    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5970                                                   Init->getLocStart(),
5971                                                   Init->getLocEnd())
5972                : InitializationKind::CreateCopy(VDecl->getLocation(),
5973                                                 Init->getLocStart());
5974
5975  // Get the decls type and save a reference for later, since
5976  // CheckInitializerTypes may change it.
5977  QualType DclT = VDecl->getType(), SavT = DclT;
5978  if (VDecl->isLocalVarDecl()) {
5979    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5980      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5981      VDecl->setInvalidDecl();
5982    } else if (!VDecl->isInvalidDecl()) {
5983      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5984      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5985                                                MultiExprArg(*this, &Init, 1),
5986                                                &DclT);
5987      if (Result.isInvalid()) {
5988        VDecl->setInvalidDecl();
5989        return;
5990      }
5991
5992      Init = Result.takeAs<Expr>();
5993
5994      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5995      // Don't check invalid declarations to avoid emitting useless diagnostics.
5996      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5997        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5998          CheckForConstantInitializer(Init, DclT);
5999      }
6000    }
6001  } else if (VDecl->isStaticDataMember() &&
6002             VDecl->getLexicalDeclContext()->isRecord()) {
6003    // This is an in-class initialization for a static data member, e.g.,
6004    //
6005    // struct S {
6006    //   static const int value = 17;
6007    // };
6008
6009    // Try to perform the initialization regardless.
6010    if (!VDecl->isInvalidDecl()) {
6011      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6012      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6013                                          MultiExprArg(*this, &Init, 1),
6014                                          &DclT);
6015      if (Result.isInvalid()) {
6016        VDecl->setInvalidDecl();
6017        return;
6018      }
6019
6020      Init = Result.takeAs<Expr>();
6021    }
6022
6023    // C++ [class.mem]p4:
6024    //   A member-declarator can contain a constant-initializer only
6025    //   if it declares a static member (9.4) of const integral or
6026    //   const enumeration type, see 9.4.2.
6027    //
6028    // C++0x [class.static.data]p3:
6029    //   If a non-volatile const static data member is of integral or
6030    //   enumeration type, its declaration in the class definition can
6031    //   specify a brace-or-equal-initializer in which every initalizer-clause
6032    //   that is an assignment-expression is a constant expression. A static
6033    //   data member of literal type can be declared in the class definition
6034    //   with the constexpr specifier; if so, its declaration shall specify a
6035    //   brace-or-equal-initializer in which every initializer-clause that is
6036    //   an assignment-expression is a constant expression.
6037    QualType T = VDecl->getType();
6038
6039    // Do nothing on dependent types.
6040    if (T->isDependentType()) {
6041
6042    // Allow any 'static constexpr' members, whether or not they are of literal
6043    // type. We separately check that the initializer is a constant expression,
6044    // which implicitly requires the member to be of literal type.
6045    } else if (VDecl->isConstexpr()) {
6046
6047    // Require constness.
6048    } else if (!T.isConstQualified()) {
6049      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6050        << Init->getSourceRange();
6051      VDecl->setInvalidDecl();
6052
6053    // We allow integer constant expressions in all cases.
6054    } else if (T->isIntegralOrEnumerationType()) {
6055      // Check whether the expression is a constant expression.
6056      SourceLocation Loc;
6057      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6058        // In C++0x, a non-constexpr const static data member with an
6059        // in-class initializer cannot be volatile.
6060        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6061      else if (Init->isValueDependent())
6062        ; // Nothing to check.
6063      else if (Init->isIntegerConstantExpr(Context, &Loc))
6064        ; // Ok, it's an ICE!
6065      else if (Init->isEvaluatable(Context)) {
6066        // If we can constant fold the initializer through heroics, accept it,
6067        // but report this as a use of an extension for -pedantic.
6068        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6069          << Init->getSourceRange();
6070      } else {
6071        // Otherwise, this is some crazy unknown case.  Report the issue at the
6072        // location provided by the isIntegerConstantExpr failed check.
6073        Diag(Loc, diag::err_in_class_initializer_non_constant)
6074          << Init->getSourceRange();
6075        VDecl->setInvalidDecl();
6076      }
6077
6078    // We allow floating-point constants as an extension.
6079    } else if (T->isFloatingType()) { // also permits complex, which is ok
6080      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6081        << T << Init->getSourceRange();
6082      if (getLangOptions().CPlusPlus0x)
6083        Diag(VDecl->getLocation(),
6084             diag::note_in_class_initializer_float_type_constexpr)
6085          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6086
6087      if (!Init->isValueDependent() &&
6088          !Init->isConstantInitializer(Context, false)) {
6089        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6090          << Init->getSourceRange();
6091        VDecl->setInvalidDecl();
6092      }
6093
6094    // Suggest adding 'constexpr' in C++0x for literal types.
6095    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6096      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6097        << T << Init->getSourceRange()
6098        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6099      VDecl->setConstexpr(true);
6100
6101    } else {
6102      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6103        << T << Init->getSourceRange();
6104      VDecl->setInvalidDecl();
6105    }
6106  } else if (VDecl->isFileVarDecl()) {
6107    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6108        (!getLangOptions().CPlusPlus ||
6109         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6110      Diag(VDecl->getLocation(), diag::warn_extern_init);
6111    if (!VDecl->isInvalidDecl()) {
6112      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6113      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6114                                                MultiExprArg(*this, &Init, 1),
6115                                                &DclT);
6116      if (Result.isInvalid()) {
6117        VDecl->setInvalidDecl();
6118        return;
6119      }
6120
6121      Init = Result.takeAs<Expr>();
6122    }
6123
6124    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6125    // Don't check invalid declarations to avoid emitting useless diagnostics.
6126    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6127      // C99 6.7.8p4. All file scoped initializers need to be constant.
6128      CheckForConstantInitializer(Init, DclT);
6129    }
6130  }
6131  // If the type changed, it means we had an incomplete type that was
6132  // completed by the initializer. For example:
6133  //   int ary[] = { 1, 3, 5 };
6134  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6135  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6136    VDecl->setType(DclT);
6137    Init->setType(DclT);
6138  }
6139
6140  // Check any implicit conversions within the expression.
6141  CheckImplicitConversions(Init, VDecl->getLocation());
6142
6143  if (!VDecl->isInvalidDecl())
6144    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6145
6146  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6147      !VDecl->getType()->isDependentType() &&
6148      !Init->isTypeDependent() && !Init->isValueDependent() &&
6149      !Init->isConstantInitializer(Context,
6150                                   VDecl->getType()->isReferenceType())) {
6151    // FIXME: Improve this diagnostic to explain why the initializer is not
6152    // a constant expression.
6153    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6154      << VDecl << Init->getSourceRange();
6155  }
6156
6157  Init = MaybeCreateExprWithCleanups(Init);
6158  // Attach the initializer to the decl.
6159  VDecl->setInit(Init);
6160
6161  CheckCompleteVariableDeclaration(VDecl);
6162}
6163
6164/// ActOnInitializerError - Given that there was an error parsing an
6165/// initializer for the given declaration, try to return to some form
6166/// of sanity.
6167void Sema::ActOnInitializerError(Decl *D) {
6168  // Our main concern here is re-establishing invariants like "a
6169  // variable's type is either dependent or complete".
6170  if (!D || D->isInvalidDecl()) return;
6171
6172  VarDecl *VD = dyn_cast<VarDecl>(D);
6173  if (!VD) return;
6174
6175  // Auto types are meaningless if we can't make sense of the initializer.
6176  if (ParsingInitForAutoVars.count(D)) {
6177    D->setInvalidDecl();
6178    return;
6179  }
6180
6181  QualType Ty = VD->getType();
6182  if (Ty->isDependentType()) return;
6183
6184  // Require a complete type.
6185  if (RequireCompleteType(VD->getLocation(),
6186                          Context.getBaseElementType(Ty),
6187                          diag::err_typecheck_decl_incomplete_type)) {
6188    VD->setInvalidDecl();
6189    return;
6190  }
6191
6192  // Require an abstract type.
6193  if (RequireNonAbstractType(VD->getLocation(), Ty,
6194                             diag::err_abstract_type_in_decl,
6195                             AbstractVariableType)) {
6196    VD->setInvalidDecl();
6197    return;
6198  }
6199
6200  // Don't bother complaining about constructors or destructors,
6201  // though.
6202}
6203
6204void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6205                                  bool TypeMayContainAuto) {
6206  // If there is no declaration, there was an error parsing it. Just ignore it.
6207  if (RealDecl == 0)
6208    return;
6209
6210  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6211    QualType Type = Var->getType();
6212
6213    // C++0x [dcl.spec.auto]p3
6214    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6215      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6216        << Var->getDeclName() << Type;
6217      Var->setInvalidDecl();
6218      return;
6219    }
6220
6221    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6222    // have an initializer.
6223    // C++0x [class.static.data]p3: A static data member can be declared with
6224    // the constexpr specifier; if so, its declaration shall specify
6225    // a brace-or-equal-initializer.
6226    //
6227    // A static data member's definition may inherit an initializer from an
6228    // in-class declaration.
6229    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6230      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6231        << Var->getDeclName();
6232      Var->setInvalidDecl();
6233      return;
6234    }
6235
6236    switch (Var->isThisDeclarationADefinition()) {
6237    case VarDecl::Definition:
6238      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6239        break;
6240
6241      // We have an out-of-line definition of a static data member
6242      // that has an in-class initializer, so we type-check this like
6243      // a declaration.
6244      //
6245      // Fall through
6246
6247    case VarDecl::DeclarationOnly:
6248      // It's only a declaration.
6249
6250      // Block scope. C99 6.7p7: If an identifier for an object is
6251      // declared with no linkage (C99 6.2.2p6), the type for the
6252      // object shall be complete.
6253      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6254          !Var->getLinkage() && !Var->isInvalidDecl() &&
6255          RequireCompleteType(Var->getLocation(), Type,
6256                              diag::err_typecheck_decl_incomplete_type))
6257        Var->setInvalidDecl();
6258
6259      // Make sure that the type is not abstract.
6260      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6261          RequireNonAbstractType(Var->getLocation(), Type,
6262                                 diag::err_abstract_type_in_decl,
6263                                 AbstractVariableType))
6264        Var->setInvalidDecl();
6265      return;
6266
6267    case VarDecl::TentativeDefinition:
6268      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6269      // object that has file scope without an initializer, and without a
6270      // storage-class specifier or with the storage-class specifier "static",
6271      // constitutes a tentative definition. Note: A tentative definition with
6272      // external linkage is valid (C99 6.2.2p5).
6273      if (!Var->isInvalidDecl()) {
6274        if (const IncompleteArrayType *ArrayT
6275                                    = Context.getAsIncompleteArrayType(Type)) {
6276          if (RequireCompleteType(Var->getLocation(),
6277                                  ArrayT->getElementType(),
6278                                  diag::err_illegal_decl_array_incomplete_type))
6279            Var->setInvalidDecl();
6280        } else if (Var->getStorageClass() == SC_Static) {
6281          // C99 6.9.2p3: If the declaration of an identifier for an object is
6282          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6283          // declared type shall not be an incomplete type.
6284          // NOTE: code such as the following
6285          //     static struct s;
6286          //     struct s { int a; };
6287          // is accepted by gcc. Hence here we issue a warning instead of
6288          // an error and we do not invalidate the static declaration.
6289          // NOTE: to avoid multiple warnings, only check the first declaration.
6290          if (Var->getPreviousDeclaration() == 0)
6291            RequireCompleteType(Var->getLocation(), Type,
6292                                diag::ext_typecheck_decl_incomplete_type);
6293        }
6294      }
6295
6296      // Record the tentative definition; we're done.
6297      if (!Var->isInvalidDecl())
6298        TentativeDefinitions.push_back(Var);
6299      return;
6300    }
6301
6302    // Provide a specific diagnostic for uninitialized variable
6303    // definitions with incomplete array type.
6304    if (Type->isIncompleteArrayType()) {
6305      Diag(Var->getLocation(),
6306           diag::err_typecheck_incomplete_array_needs_initializer);
6307      Var->setInvalidDecl();
6308      return;
6309    }
6310
6311    // Provide a specific diagnostic for uninitialized variable
6312    // definitions with reference type.
6313    if (Type->isReferenceType()) {
6314      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6315        << Var->getDeclName()
6316        << SourceRange(Var->getLocation(), Var->getLocation());
6317      Var->setInvalidDecl();
6318      return;
6319    }
6320
6321    // Do not attempt to type-check the default initializer for a
6322    // variable with dependent type.
6323    if (Type->isDependentType())
6324      return;
6325
6326    if (Var->isInvalidDecl())
6327      return;
6328
6329    if (RequireCompleteType(Var->getLocation(),
6330                            Context.getBaseElementType(Type),
6331                            diag::err_typecheck_decl_incomplete_type)) {
6332      Var->setInvalidDecl();
6333      return;
6334    }
6335
6336    // The variable can not have an abstract class type.
6337    if (RequireNonAbstractType(Var->getLocation(), Type,
6338                               diag::err_abstract_type_in_decl,
6339                               AbstractVariableType)) {
6340      Var->setInvalidDecl();
6341      return;
6342    }
6343
6344    // Check for jumps past the implicit initializer.  C++0x
6345    // clarifies that this applies to a "variable with automatic
6346    // storage duration", not a "local variable".
6347    // C++0x [stmt.dcl]p3
6348    //   A program that jumps from a point where a variable with automatic
6349    //   storage duration is not in scope to a point where it is in scope is
6350    //   ill-formed unless the variable has scalar type, class type with a
6351    //   trivial default constructor and a trivial destructor, a cv-qualified
6352    //   version of one of these types, or an array of one of the preceding
6353    //   types and is declared without an initializer.
6354    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6355      if (const RecordType *Record
6356            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6357        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6358        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6359            (getLangOptions().CPlusPlus0x &&
6360             (!CXXRecord->hasTrivialDefaultConstructor() ||
6361              !CXXRecord->hasTrivialDestructor())))
6362          getCurFunction()->setHasBranchProtectedScope();
6363      }
6364    }
6365
6366    // C++03 [dcl.init]p9:
6367    //   If no initializer is specified for an object, and the
6368    //   object is of (possibly cv-qualified) non-POD class type (or
6369    //   array thereof), the object shall be default-initialized; if
6370    //   the object is of const-qualified type, the underlying class
6371    //   type shall have a user-declared default
6372    //   constructor. Otherwise, if no initializer is specified for
6373    //   a non- static object, the object and its subobjects, if
6374    //   any, have an indeterminate initial value); if the object
6375    //   or any of its subobjects are of const-qualified type, the
6376    //   program is ill-formed.
6377    // C++0x [dcl.init]p11:
6378    //   If no initializer is specified for an object, the object is
6379    //   default-initialized; [...].
6380    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6381    InitializationKind Kind
6382      = InitializationKind::CreateDefault(Var->getLocation());
6383
6384    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6385    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6386                                      MultiExprArg(*this, 0, 0));
6387    if (Init.isInvalid())
6388      Var->setInvalidDecl();
6389    else if (Init.get())
6390      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6391
6392    CheckCompleteVariableDeclaration(Var);
6393  }
6394}
6395
6396void Sema::ActOnCXXForRangeDecl(Decl *D) {
6397  VarDecl *VD = dyn_cast<VarDecl>(D);
6398  if (!VD) {
6399    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6400    D->setInvalidDecl();
6401    return;
6402  }
6403
6404  VD->setCXXForRangeDecl(true);
6405
6406  // for-range-declaration cannot be given a storage class specifier.
6407  int Error = -1;
6408  switch (VD->getStorageClassAsWritten()) {
6409  case SC_None:
6410    break;
6411  case SC_Extern:
6412    Error = 0;
6413    break;
6414  case SC_Static:
6415    Error = 1;
6416    break;
6417  case SC_PrivateExtern:
6418    Error = 2;
6419    break;
6420  case SC_Auto:
6421    Error = 3;
6422    break;
6423  case SC_Register:
6424    Error = 4;
6425    break;
6426  case SC_OpenCLWorkGroupLocal:
6427    llvm_unreachable("Unexpected storage class");
6428  }
6429  if (VD->isConstexpr())
6430    Error = 5;
6431  if (Error != -1) {
6432    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6433      << VD->getDeclName() << Error;
6434    D->setInvalidDecl();
6435  }
6436}
6437
6438void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6439  if (var->isInvalidDecl()) return;
6440
6441  // In ARC, don't allow jumps past the implicit initialization of a
6442  // local retaining variable.
6443  if (getLangOptions().ObjCAutoRefCount &&
6444      var->hasLocalStorage()) {
6445    switch (var->getType().getObjCLifetime()) {
6446    case Qualifiers::OCL_None:
6447    case Qualifiers::OCL_ExplicitNone:
6448    case Qualifiers::OCL_Autoreleasing:
6449      break;
6450
6451    case Qualifiers::OCL_Weak:
6452    case Qualifiers::OCL_Strong:
6453      getCurFunction()->setHasBranchProtectedScope();
6454      break;
6455    }
6456  }
6457
6458  // All the following checks are C++ only.
6459  if (!getLangOptions().CPlusPlus) return;
6460
6461  QualType baseType = Context.getBaseElementType(var->getType());
6462  if (baseType->isDependentType()) return;
6463
6464  // __block variables might require us to capture a copy-initializer.
6465  if (var->hasAttr<BlocksAttr>()) {
6466    // It's currently invalid to ever have a __block variable with an
6467    // array type; should we diagnose that here?
6468
6469    // Regardless, we don't want to ignore array nesting when
6470    // constructing this copy.
6471    QualType type = var->getType();
6472
6473    if (type->isStructureOrClassType()) {
6474      SourceLocation poi = var->getLocation();
6475      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6476      ExprResult result =
6477        PerformCopyInitialization(
6478                        InitializedEntity::InitializeBlock(poi, type, false),
6479                                  poi, Owned(varRef));
6480      if (!result.isInvalid()) {
6481        result = MaybeCreateExprWithCleanups(result);
6482        Expr *init = result.takeAs<Expr>();
6483        Context.setBlockVarCopyInits(var, init);
6484      }
6485    }
6486  }
6487
6488  // Check for global constructors.
6489  if (!var->getDeclContext()->isDependentContext() &&
6490      var->hasGlobalStorage() &&
6491      !var->isStaticLocal() &&
6492      var->getInit() &&
6493      !var->getInit()->isConstantInitializer(Context,
6494                                             baseType->isReferenceType()))
6495    Diag(var->getLocation(), diag::warn_global_constructor)
6496      << var->getInit()->getSourceRange();
6497
6498  // Require the destructor.
6499  if (const RecordType *recordType = baseType->getAs<RecordType>())
6500    FinalizeVarWithDestructor(var, recordType);
6501}
6502
6503/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6504/// any semantic actions necessary after any initializer has been attached.
6505void
6506Sema::FinalizeDeclaration(Decl *ThisDecl) {
6507  // Note that we are no longer parsing the initializer for this declaration.
6508  ParsingInitForAutoVars.erase(ThisDecl);
6509}
6510
6511Sema::DeclGroupPtrTy
6512Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6513                              Decl **Group, unsigned NumDecls) {
6514  SmallVector<Decl*, 8> Decls;
6515
6516  if (DS.isTypeSpecOwned())
6517    Decls.push_back(DS.getRepAsDecl());
6518
6519  for (unsigned i = 0; i != NumDecls; ++i)
6520    if (Decl *D = Group[i])
6521      Decls.push_back(D);
6522
6523  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6524                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6525}
6526
6527/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6528/// group, performing any necessary semantic checking.
6529Sema::DeclGroupPtrTy
6530Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6531                           bool TypeMayContainAuto) {
6532  // C++0x [dcl.spec.auto]p7:
6533  //   If the type deduced for the template parameter U is not the same in each
6534  //   deduction, the program is ill-formed.
6535  // FIXME: When initializer-list support is added, a distinction is needed
6536  // between the deduced type U and the deduced type which 'auto' stands for.
6537  //   auto a = 0, b = { 1, 2, 3 };
6538  // is legal because the deduced type U is 'int' in both cases.
6539  if (TypeMayContainAuto && NumDecls > 1) {
6540    QualType Deduced;
6541    CanQualType DeducedCanon;
6542    VarDecl *DeducedDecl = 0;
6543    for (unsigned i = 0; i != NumDecls; ++i) {
6544      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6545        AutoType *AT = D->getType()->getContainedAutoType();
6546        // Don't reissue diagnostics when instantiating a template.
6547        if (AT && D->isInvalidDecl())
6548          break;
6549        if (AT && AT->isDeduced()) {
6550          QualType U = AT->getDeducedType();
6551          CanQualType UCanon = Context.getCanonicalType(U);
6552          if (Deduced.isNull()) {
6553            Deduced = U;
6554            DeducedCanon = UCanon;
6555            DeducedDecl = D;
6556          } else if (DeducedCanon != UCanon) {
6557            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6558                 diag::err_auto_different_deductions)
6559              << Deduced << DeducedDecl->getDeclName()
6560              << U << D->getDeclName()
6561              << DeducedDecl->getInit()->getSourceRange()
6562              << D->getInit()->getSourceRange();
6563            D->setInvalidDecl();
6564            break;
6565          }
6566        }
6567      }
6568    }
6569  }
6570
6571  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6572}
6573
6574
6575/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6576/// to introduce parameters into function prototype scope.
6577Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6578  const DeclSpec &DS = D.getDeclSpec();
6579
6580  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6581  VarDecl::StorageClass StorageClass = SC_None;
6582  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6583  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6584    StorageClass = SC_Register;
6585    StorageClassAsWritten = SC_Register;
6586  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6587    Diag(DS.getStorageClassSpecLoc(),
6588         diag::err_invalid_storage_class_in_func_decl);
6589    D.getMutableDeclSpec().ClearStorageClassSpecs();
6590  }
6591
6592  if (D.getDeclSpec().isThreadSpecified())
6593    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6594  if (D.getDeclSpec().isConstexprSpecified())
6595    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6596      << 0;
6597
6598  DiagnoseFunctionSpecifiers(D);
6599
6600  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6601  QualType parmDeclType = TInfo->getType();
6602
6603  if (getLangOptions().CPlusPlus) {
6604    // Check that there are no default arguments inside the type of this
6605    // parameter.
6606    CheckExtraCXXDefaultArguments(D);
6607
6608    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6609    if (D.getCXXScopeSpec().isSet()) {
6610      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6611        << D.getCXXScopeSpec().getRange();
6612      D.getCXXScopeSpec().clear();
6613    }
6614  }
6615
6616  // Ensure we have a valid name
6617  IdentifierInfo *II = 0;
6618  if (D.hasName()) {
6619    II = D.getIdentifier();
6620    if (!II) {
6621      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6622        << GetNameForDeclarator(D).getName().getAsString();
6623      D.setInvalidType(true);
6624    }
6625  }
6626
6627  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6628  if (II) {
6629    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6630                   ForRedeclaration);
6631    LookupName(R, S);
6632    if (R.isSingleResult()) {
6633      NamedDecl *PrevDecl = R.getFoundDecl();
6634      if (PrevDecl->isTemplateParameter()) {
6635        // Maybe we will complain about the shadowed template parameter.
6636        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6637        // Just pretend that we didn't see the previous declaration.
6638        PrevDecl = 0;
6639      } else if (S->isDeclScope(PrevDecl)) {
6640        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6641        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6642
6643        // Recover by removing the name
6644        II = 0;
6645        D.SetIdentifier(0, D.getIdentifierLoc());
6646        D.setInvalidType(true);
6647      }
6648    }
6649  }
6650
6651  // Temporarily put parameter variables in the translation unit, not
6652  // the enclosing context.  This prevents them from accidentally
6653  // looking like class members in C++.
6654  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6655                                    D.getSourceRange().getBegin(),
6656                                    D.getIdentifierLoc(), II,
6657                                    parmDeclType, TInfo,
6658                                    StorageClass, StorageClassAsWritten);
6659
6660  if (D.isInvalidType())
6661    New->setInvalidDecl();
6662
6663  assert(S->isFunctionPrototypeScope());
6664  assert(S->getFunctionPrototypeDepth() >= 1);
6665  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6666                    S->getNextFunctionPrototypeIndex());
6667
6668  // Add the parameter declaration into this scope.
6669  S->AddDecl(New);
6670  if (II)
6671    IdResolver.AddDecl(New);
6672
6673  ProcessDeclAttributes(S, New, D);
6674
6675  if (D.getDeclSpec().isModulePrivateSpecified())
6676    Diag(New->getLocation(), diag::err_module_private_local)
6677      << 1 << New->getDeclName()
6678      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6679      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6680
6681  if (New->hasAttr<BlocksAttr>()) {
6682    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6683  }
6684  return New;
6685}
6686
6687/// \brief Synthesizes a variable for a parameter arising from a
6688/// typedef.
6689ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6690                                              SourceLocation Loc,
6691                                              QualType T) {
6692  /* FIXME: setting StartLoc == Loc.
6693     Would it be worth to modify callers so as to provide proper source
6694     location for the unnamed parameters, embedding the parameter's type? */
6695  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6696                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6697                                           SC_None, SC_None, 0);
6698  Param->setImplicit();
6699  return Param;
6700}
6701
6702void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6703                                    ParmVarDecl * const *ParamEnd) {
6704  // Don't diagnose unused-parameter errors in template instantiations; we
6705  // will already have done so in the template itself.
6706  if (!ActiveTemplateInstantiations.empty())
6707    return;
6708
6709  for (; Param != ParamEnd; ++Param) {
6710    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6711        !(*Param)->hasAttr<UnusedAttr>()) {
6712      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6713        << (*Param)->getDeclName();
6714    }
6715  }
6716}
6717
6718void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6719                                                  ParmVarDecl * const *ParamEnd,
6720                                                  QualType ReturnTy,
6721                                                  NamedDecl *D) {
6722  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6723    return;
6724
6725  // Warn if the return value is pass-by-value and larger than the specified
6726  // threshold.
6727  if (ReturnTy.isPODType(Context)) {
6728    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6729    if (Size > LangOpts.NumLargeByValueCopy)
6730      Diag(D->getLocation(), diag::warn_return_value_size)
6731          << D->getDeclName() << Size;
6732  }
6733
6734  // Warn if any parameter is pass-by-value and larger than the specified
6735  // threshold.
6736  for (; Param != ParamEnd; ++Param) {
6737    QualType T = (*Param)->getType();
6738    if (!T.isPODType(Context))
6739      continue;
6740    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6741    if (Size > LangOpts.NumLargeByValueCopy)
6742      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6743          << (*Param)->getDeclName() << Size;
6744  }
6745}
6746
6747ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6748                                  SourceLocation NameLoc, IdentifierInfo *Name,
6749                                  QualType T, TypeSourceInfo *TSInfo,
6750                                  VarDecl::StorageClass StorageClass,
6751                                  VarDecl::StorageClass StorageClassAsWritten) {
6752  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6753  if (getLangOptions().ObjCAutoRefCount &&
6754      T.getObjCLifetime() == Qualifiers::OCL_None &&
6755      T->isObjCLifetimeType()) {
6756
6757    Qualifiers::ObjCLifetime lifetime;
6758
6759    // Special cases for arrays:
6760    //   - if it's const, use __unsafe_unretained
6761    //   - otherwise, it's an error
6762    if (T->isArrayType()) {
6763      if (!T.isConstQualified()) {
6764        DelayedDiagnostics.add(
6765            sema::DelayedDiagnostic::makeForbiddenType(
6766            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6767      }
6768      lifetime = Qualifiers::OCL_ExplicitNone;
6769    } else {
6770      lifetime = T->getObjCARCImplicitLifetime();
6771    }
6772    T = Context.getLifetimeQualifiedType(T, lifetime);
6773  }
6774
6775  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6776                                         Context.getAdjustedParameterType(T),
6777                                         TSInfo,
6778                                         StorageClass, StorageClassAsWritten,
6779                                         0);
6780
6781  // Parameters can not be abstract class types.
6782  // For record types, this is done by the AbstractClassUsageDiagnoser once
6783  // the class has been completely parsed.
6784  if (!CurContext->isRecord() &&
6785      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6786                             AbstractParamType))
6787    New->setInvalidDecl();
6788
6789  // Parameter declarators cannot be interface types. All ObjC objects are
6790  // passed by reference.
6791  if (T->isObjCObjectType()) {
6792    Diag(NameLoc,
6793         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6794      << FixItHint::CreateInsertion(NameLoc, "*");
6795    T = Context.getObjCObjectPointerType(T);
6796    New->setType(T);
6797  }
6798
6799  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6800  // duration shall not be qualified by an address-space qualifier."
6801  // Since all parameters have automatic store duration, they can not have
6802  // an address space.
6803  if (T.getAddressSpace() != 0) {
6804    Diag(NameLoc, diag::err_arg_with_address_space);
6805    New->setInvalidDecl();
6806  }
6807
6808  return New;
6809}
6810
6811void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6812                                           SourceLocation LocAfterDecls) {
6813  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6814
6815  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6816  // for a K&R function.
6817  if (!FTI.hasPrototype) {
6818    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6819      --i;
6820      if (FTI.ArgInfo[i].Param == 0) {
6821        llvm::SmallString<256> Code;
6822        llvm::raw_svector_ostream(Code) << "  int "
6823                                        << FTI.ArgInfo[i].Ident->getName()
6824                                        << ";\n";
6825        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6826          << FTI.ArgInfo[i].Ident
6827          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6828
6829        // Implicitly declare the argument as type 'int' for lack of a better
6830        // type.
6831        AttributeFactory attrs;
6832        DeclSpec DS(attrs);
6833        const char* PrevSpec; // unused
6834        unsigned DiagID; // unused
6835        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6836                           PrevSpec, DiagID);
6837        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6838        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6839        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6840      }
6841    }
6842  }
6843}
6844
6845Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6846                                         Declarator &D) {
6847  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6848  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6849  Scope *ParentScope = FnBodyScope->getParent();
6850
6851  D.setFunctionDefinition(true);
6852  Decl *DP = HandleDeclarator(ParentScope, D,
6853                              MultiTemplateParamsArg(*this));
6854  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6855}
6856
6857static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6858  // Don't warn about invalid declarations.
6859  if (FD->isInvalidDecl())
6860    return false;
6861
6862  // Or declarations that aren't global.
6863  if (!FD->isGlobal())
6864    return false;
6865
6866  // Don't warn about C++ member functions.
6867  if (isa<CXXMethodDecl>(FD))
6868    return false;
6869
6870  // Don't warn about 'main'.
6871  if (FD->isMain())
6872    return false;
6873
6874  // Don't warn about inline functions.
6875  if (FD->isInlined())
6876    return false;
6877
6878  // Don't warn about function templates.
6879  if (FD->getDescribedFunctionTemplate())
6880    return false;
6881
6882  // Don't warn about function template specializations.
6883  if (FD->isFunctionTemplateSpecialization())
6884    return false;
6885
6886  bool MissingPrototype = true;
6887  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6888       Prev; Prev = Prev->getPreviousDeclaration()) {
6889    // Ignore any declarations that occur in function or method
6890    // scope, because they aren't visible from the header.
6891    if (Prev->getDeclContext()->isFunctionOrMethod())
6892      continue;
6893
6894    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6895    break;
6896  }
6897
6898  return MissingPrototype;
6899}
6900
6901void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6902  // Don't complain if we're in GNU89 mode and the previous definition
6903  // was an extern inline function.
6904  const FunctionDecl *Definition;
6905  if (FD->isDefined(Definition) &&
6906      !canRedefineFunction(Definition, getLangOptions())) {
6907    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6908        Definition->getStorageClass() == SC_Extern)
6909      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6910        << FD->getDeclName() << getLangOptions().CPlusPlus;
6911    else
6912      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6913    Diag(Definition->getLocation(), diag::note_previous_definition);
6914  }
6915}
6916
6917Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6918  // Clear the last template instantiation error context.
6919  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6920
6921  if (!D)
6922    return D;
6923  FunctionDecl *FD = 0;
6924
6925  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6926    FD = FunTmpl->getTemplatedDecl();
6927  else
6928    FD = cast<FunctionDecl>(D);
6929
6930  // Enter a new function scope
6931  PushFunctionScope();
6932
6933  // See if this is a redefinition.
6934  if (!FD->isLateTemplateParsed())
6935    CheckForFunctionRedefinition(FD);
6936
6937  // Builtin functions cannot be defined.
6938  if (unsigned BuiltinID = FD->getBuiltinID()) {
6939    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6940      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6941      FD->setInvalidDecl();
6942    }
6943  }
6944
6945  // The return type of a function definition must be complete
6946  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6947  QualType ResultType = FD->getResultType();
6948  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6949      !FD->isInvalidDecl() &&
6950      RequireCompleteType(FD->getLocation(), ResultType,
6951                          diag::err_func_def_incomplete_result))
6952    FD->setInvalidDecl();
6953
6954  // GNU warning -Wmissing-prototypes:
6955  //   Warn if a global function is defined without a previous
6956  //   prototype declaration. This warning is issued even if the
6957  //   definition itself provides a prototype. The aim is to detect
6958  //   global functions that fail to be declared in header files.
6959  if (ShouldWarnAboutMissingPrototype(FD))
6960    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6961
6962  if (FnBodyScope)
6963    PushDeclContext(FnBodyScope, FD);
6964
6965  // Check the validity of our function parameters
6966  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6967                           /*CheckParameterNames=*/true);
6968
6969  // Introduce our parameters into the function scope
6970  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6971    ParmVarDecl *Param = FD->getParamDecl(p);
6972    Param->setOwningFunction(FD);
6973
6974    // If this has an identifier, add it to the scope stack.
6975    if (Param->getIdentifier() && FnBodyScope) {
6976      CheckShadow(FnBodyScope, Param);
6977
6978      PushOnScopeChains(Param, FnBodyScope);
6979    }
6980  }
6981
6982  // Checking attributes of current function definition
6983  // dllimport attribute.
6984  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6985  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6986    // dllimport attribute cannot be directly applied to definition.
6987    // Microsoft accepts dllimport for functions defined within class scope.
6988    if (!DA->isInherited() &&
6989        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6990      Diag(FD->getLocation(),
6991           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6992        << "dllimport";
6993      FD->setInvalidDecl();
6994      return FD;
6995    }
6996
6997    // Visual C++ appears to not think this is an issue, so only issue
6998    // a warning when Microsoft extensions are disabled.
6999    if (!LangOpts.MicrosoftExt) {
7000      // If a symbol previously declared dllimport is later defined, the
7001      // attribute is ignored in subsequent references, and a warning is
7002      // emitted.
7003      Diag(FD->getLocation(),
7004           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7005        << FD->getName() << "dllimport";
7006    }
7007  }
7008  return FD;
7009}
7010
7011/// \brief Given the set of return statements within a function body,
7012/// compute the variables that are subject to the named return value
7013/// optimization.
7014///
7015/// Each of the variables that is subject to the named return value
7016/// optimization will be marked as NRVO variables in the AST, and any
7017/// return statement that has a marked NRVO variable as its NRVO candidate can
7018/// use the named return value optimization.
7019///
7020/// This function applies a very simplistic algorithm for NRVO: if every return
7021/// statement in the function has the same NRVO candidate, that candidate is
7022/// the NRVO variable.
7023///
7024/// FIXME: Employ a smarter algorithm that accounts for multiple return
7025/// statements and the lifetimes of the NRVO candidates. We should be able to
7026/// find a maximal set of NRVO variables.
7027void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7028  ReturnStmt **Returns = Scope->Returns.data();
7029
7030  const VarDecl *NRVOCandidate = 0;
7031  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7032    if (!Returns[I]->getNRVOCandidate())
7033      return;
7034
7035    if (!NRVOCandidate)
7036      NRVOCandidate = Returns[I]->getNRVOCandidate();
7037    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7038      return;
7039  }
7040
7041  if (NRVOCandidate)
7042    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7043}
7044
7045Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7046  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7047}
7048
7049Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7050                                    bool IsInstantiation) {
7051  FunctionDecl *FD = 0;
7052  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7053  if (FunTmpl)
7054    FD = FunTmpl->getTemplatedDecl();
7055  else
7056    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7057
7058  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7059  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7060
7061  if (FD) {
7062    FD->setBody(Body);
7063    if (FD->isMain()) {
7064      // C and C++ allow for main to automagically return 0.
7065      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7066      FD->setHasImplicitReturnZero(true);
7067      WP.disableCheckFallThrough();
7068    } else if (FD->hasAttr<NakedAttr>()) {
7069      // If the function is marked 'naked', don't complain about missing return
7070      // statements.
7071      WP.disableCheckFallThrough();
7072    }
7073
7074    // MSVC permits the use of pure specifier (=0) on function definition,
7075    // defined at class scope, warn about this non standard construct.
7076    if (getLangOptions().MicrosoftExt && FD->isPure())
7077      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7078
7079    if (!FD->isInvalidDecl()) {
7080      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7081      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7082                                             FD->getResultType(), FD);
7083
7084      // If this is a constructor, we need a vtable.
7085      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7086        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7087
7088      computeNRVO(Body, getCurFunction());
7089    }
7090
7091    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7092  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7093    assert(MD == getCurMethodDecl() && "Method parsing confused");
7094    MD->setBody(Body);
7095    if (Body)
7096      MD->setEndLoc(Body->getLocEnd());
7097    if (!MD->isInvalidDecl()) {
7098      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7099      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7100                                             MD->getResultType(), MD);
7101
7102      if (Body)
7103        computeNRVO(Body, getCurFunction());
7104    }
7105    if (ObjCShouldCallSuperDealloc) {
7106      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7107      ObjCShouldCallSuperDealloc = false;
7108    }
7109    if (ObjCShouldCallSuperFinalize) {
7110      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7111      ObjCShouldCallSuperFinalize = false;
7112    }
7113  } else {
7114    return 0;
7115  }
7116
7117  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7118         "ObjC methods, which should have been handled in the block above.");
7119  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7120         "ObjC methods, which should have been handled in the block above.");
7121
7122  // Verify and clean out per-function state.
7123  if (Body) {
7124    // C++ constructors that have function-try-blocks can't have return
7125    // statements in the handlers of that block. (C++ [except.handle]p14)
7126    // Verify this.
7127    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7128      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7129
7130    // Verify that gotos and switch cases don't jump into scopes illegally.
7131    if (getCurFunction()->NeedsScopeChecking() &&
7132        !dcl->isInvalidDecl() &&
7133        !hasAnyUnrecoverableErrorsInThisFunction())
7134      DiagnoseInvalidJumps(Body);
7135
7136    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7137      if (!Destructor->getParent()->isDependentType())
7138        CheckDestructor(Destructor);
7139
7140      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7141                                             Destructor->getParent());
7142    }
7143
7144    // If any errors have occurred, clear out any temporaries that may have
7145    // been leftover. This ensures that these temporaries won't be picked up for
7146    // deletion in some later function.
7147    if (PP.getDiagnostics().hasErrorOccurred() ||
7148        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7149      ExprTemporaries.clear();
7150      ExprNeedsCleanups = false;
7151    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7152      // Since the body is valid, issue any analysis-based warnings that are
7153      // enabled.
7154      ActivePolicy = &WP;
7155    }
7156
7157    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7158        !CheckConstexprFunctionBody(FD, Body))
7159      FD->setInvalidDecl();
7160
7161    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7162    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7163  }
7164
7165  if (!IsInstantiation)
7166    PopDeclContext();
7167
7168  PopFunctionOrBlockScope(ActivePolicy, dcl);
7169
7170  // If any errors have occurred, clear out any temporaries that may have
7171  // been leftover. This ensures that these temporaries won't be picked up for
7172  // deletion in some later function.
7173  if (getDiagnostics().hasErrorOccurred()) {
7174    ExprTemporaries.clear();
7175    ExprNeedsCleanups = false;
7176  }
7177
7178  return dcl;
7179}
7180
7181
7182/// When we finish delayed parsing of an attribute, we must attach it to the
7183/// relevant Decl.
7184void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7185                                       ParsedAttributes &Attrs) {
7186  ProcessDeclAttributeList(S, D, Attrs.getList());
7187}
7188
7189
7190/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7191/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7192NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7193                                          IdentifierInfo &II, Scope *S) {
7194  // Before we produce a declaration for an implicitly defined
7195  // function, see whether there was a locally-scoped declaration of
7196  // this name as a function or variable. If so, use that
7197  // (non-visible) declaration, and complain about it.
7198  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7199    = findLocallyScopedExternalDecl(&II);
7200  if (Pos != LocallyScopedExternalDecls.end()) {
7201    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7202    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7203    return Pos->second;
7204  }
7205
7206  // Extension in C99.  Legal in C90, but warn about it.
7207  if (II.getName().startswith("__builtin_"))
7208    Diag(Loc, diag::warn_builtin_unknown) << &II;
7209  else if (getLangOptions().C99)
7210    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7211  else
7212    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7213
7214  // Set a Declarator for the implicit definition: int foo();
7215  const char *Dummy;
7216  AttributeFactory attrFactory;
7217  DeclSpec DS(attrFactory);
7218  unsigned DiagID;
7219  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7220  (void)Error; // Silence warning.
7221  assert(!Error && "Error setting up implicit decl!");
7222  Declarator D(DS, Declarator::BlockContext);
7223  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7224                                             0, 0, true, SourceLocation(),
7225                                             SourceLocation(), SourceLocation(),
7226                                             SourceLocation(),
7227                                             EST_None, SourceLocation(),
7228                                             0, 0, 0, 0, Loc, Loc, D),
7229                DS.getAttributes(),
7230                SourceLocation());
7231  D.SetIdentifier(&II, Loc);
7232
7233  // Insert this function into translation-unit scope.
7234
7235  DeclContext *PrevDC = CurContext;
7236  CurContext = Context.getTranslationUnitDecl();
7237
7238  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7239  FD->setImplicit();
7240
7241  CurContext = PrevDC;
7242
7243  AddKnownFunctionAttributes(FD);
7244
7245  return FD;
7246}
7247
7248/// \brief Adds any function attributes that we know a priori based on
7249/// the declaration of this function.
7250///
7251/// These attributes can apply both to implicitly-declared builtins
7252/// (like __builtin___printf_chk) or to library-declared functions
7253/// like NSLog or printf.
7254///
7255/// We need to check for duplicate attributes both here and where user-written
7256/// attributes are applied to declarations.
7257void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7258  if (FD->isInvalidDecl())
7259    return;
7260
7261  // If this is a built-in function, map its builtin attributes to
7262  // actual attributes.
7263  if (unsigned BuiltinID = FD->getBuiltinID()) {
7264    // Handle printf-formatting attributes.
7265    unsigned FormatIdx;
7266    bool HasVAListArg;
7267    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7268      if (!FD->getAttr<FormatAttr>())
7269        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7270                                                "printf", FormatIdx+1,
7271                                               HasVAListArg ? 0 : FormatIdx+2));
7272    }
7273    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7274                                             HasVAListArg)) {
7275     if (!FD->getAttr<FormatAttr>())
7276       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7277                                              "scanf", FormatIdx+1,
7278                                              HasVAListArg ? 0 : FormatIdx+2));
7279    }
7280
7281    // Mark const if we don't care about errno and that is the only
7282    // thing preventing the function from being const. This allows
7283    // IRgen to use LLVM intrinsics for such functions.
7284    if (!getLangOptions().MathErrno &&
7285        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7286      if (!FD->getAttr<ConstAttr>())
7287        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7288    }
7289
7290    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7291        !FD->getAttr<ReturnsTwiceAttr>())
7292      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7293    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7294      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7295    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7296      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7297  }
7298
7299  IdentifierInfo *Name = FD->getIdentifier();
7300  if (!Name)
7301    return;
7302  if ((!getLangOptions().CPlusPlus &&
7303       FD->getDeclContext()->isTranslationUnit()) ||
7304      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7305       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7306       LinkageSpecDecl::lang_c)) {
7307    // Okay: this could be a libc/libm/Objective-C function we know
7308    // about.
7309  } else
7310    return;
7311
7312  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7313    // FIXME: NSLog and NSLogv should be target specific
7314    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7315      // FIXME: We known better than our headers.
7316      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7317    } else
7318      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7319                                             "printf", 1,
7320                                             Name->isStr("NSLogv") ? 0 : 2));
7321  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7322    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7323    // target-specific builtins, perhaps?
7324    if (!FD->getAttr<FormatAttr>())
7325      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7326                                             "printf", 2,
7327                                             Name->isStr("vasprintf") ? 0 : 3));
7328  }
7329}
7330
7331TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7332                                    TypeSourceInfo *TInfo) {
7333  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7334  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7335
7336  if (!TInfo) {
7337    assert(D.isInvalidType() && "no declarator info for valid type");
7338    TInfo = Context.getTrivialTypeSourceInfo(T);
7339  }
7340
7341  // Scope manipulation handled by caller.
7342  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7343                                           D.getSourceRange().getBegin(),
7344                                           D.getIdentifierLoc(),
7345                                           D.getIdentifier(),
7346                                           TInfo);
7347
7348  // Bail out immediately if we have an invalid declaration.
7349  if (D.isInvalidType()) {
7350    NewTD->setInvalidDecl();
7351    return NewTD;
7352  }
7353
7354  if (D.getDeclSpec().isModulePrivateSpecified()) {
7355    if (CurContext->isFunctionOrMethod())
7356      Diag(NewTD->getLocation(), diag::err_module_private_local)
7357        << 2 << NewTD->getDeclName()
7358        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7359        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7360    else
7361      NewTD->setModulePrivate();
7362  }
7363
7364  // C++ [dcl.typedef]p8:
7365  //   If the typedef declaration defines an unnamed class (or
7366  //   enum), the first typedef-name declared by the declaration
7367  //   to be that class type (or enum type) is used to denote the
7368  //   class type (or enum type) for linkage purposes only.
7369  // We need to check whether the type was declared in the declaration.
7370  switch (D.getDeclSpec().getTypeSpecType()) {
7371  case TST_enum:
7372  case TST_struct:
7373  case TST_union:
7374  case TST_class: {
7375    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7376
7377    // Do nothing if the tag is not anonymous or already has an
7378    // associated typedef (from an earlier typedef in this decl group).
7379    if (tagFromDeclSpec->getIdentifier()) break;
7380    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7381
7382    // A well-formed anonymous tag must always be a TUK_Definition.
7383    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7384
7385    // The type must match the tag exactly;  no qualifiers allowed.
7386    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7387      break;
7388
7389    // Otherwise, set this is the anon-decl typedef for the tag.
7390    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7391    break;
7392  }
7393
7394  default:
7395    break;
7396  }
7397
7398  return NewTD;
7399}
7400
7401
7402/// \brief Determine whether a tag with a given kind is acceptable
7403/// as a redeclaration of the given tag declaration.
7404///
7405/// \returns true if the new tag kind is acceptable, false otherwise.
7406bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7407                                        TagTypeKind NewTag, bool isDefinition,
7408                                        SourceLocation NewTagLoc,
7409                                        const IdentifierInfo &Name) {
7410  // C++ [dcl.type.elab]p3:
7411  //   The class-key or enum keyword present in the
7412  //   elaborated-type-specifier shall agree in kind with the
7413  //   declaration to which the name in the elaborated-type-specifier
7414  //   refers. This rule also applies to the form of
7415  //   elaborated-type-specifier that declares a class-name or
7416  //   friend class since it can be construed as referring to the
7417  //   definition of the class. Thus, in any
7418  //   elaborated-type-specifier, the enum keyword shall be used to
7419  //   refer to an enumeration (7.2), the union class-key shall be
7420  //   used to refer to a union (clause 9), and either the class or
7421  //   struct class-key shall be used to refer to a class (clause 9)
7422  //   declared using the class or struct class-key.
7423  TagTypeKind OldTag = Previous->getTagKind();
7424  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7425    if (OldTag == NewTag)
7426      return true;
7427
7428  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7429      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7430    // Warn about the struct/class tag mismatch.
7431    bool isTemplate = false;
7432    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7433      isTemplate = Record->getDescribedClassTemplate();
7434
7435    if (!ActiveTemplateInstantiations.empty()) {
7436      // In a template instantiation, do not offer fix-its for tag mismatches
7437      // since they usually mess up the template instead of fixing the problem.
7438      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7439        << (NewTag == TTK_Class) << isTemplate << &Name;
7440      return true;
7441    }
7442
7443    if (isDefinition) {
7444      // On definitions, check previous tags and issue a fix-it for each
7445      // one that doesn't match the current tag.
7446      if (Previous->getDefinition()) {
7447        // Don't suggest fix-its for redefinitions.
7448        return true;
7449      }
7450
7451      bool previousMismatch = false;
7452      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7453           E(Previous->redecls_end()); I != E; ++I) {
7454        if (I->getTagKind() != NewTag) {
7455          if (!previousMismatch) {
7456            previousMismatch = true;
7457            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7458              << (NewTag == TTK_Class) << isTemplate << &Name;
7459          }
7460          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7461            << (NewTag == TTK_Class)
7462            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7463                                            NewTag == TTK_Class?
7464                                            "class" : "struct");
7465        }
7466      }
7467      return true;
7468    }
7469
7470    // Check for a previous definition.  If current tag and definition
7471    // are same type, do nothing.  If no definition, but disagree with
7472    // with previous tag type, give a warning, but no fix-it.
7473    const TagDecl *Redecl = Previous->getDefinition() ?
7474                            Previous->getDefinition() : Previous;
7475    if (Redecl->getTagKind() == NewTag) {
7476      return true;
7477    }
7478
7479    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7480      << (NewTag == TTK_Class)
7481      << isTemplate << &Name;
7482    Diag(Redecl->getLocation(), diag::note_previous_use);
7483
7484    // If there is a previous defintion, suggest a fix-it.
7485    if (Previous->getDefinition()) {
7486        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7487          << (Redecl->getTagKind() == TTK_Class)
7488          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7489                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7490    }
7491
7492    return true;
7493  }
7494  return false;
7495}
7496
7497/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7498/// former case, Name will be non-null.  In the later case, Name will be null.
7499/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7500/// reference/declaration/definition of a tag.
7501Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7502                     SourceLocation KWLoc, CXXScopeSpec &SS,
7503                     IdentifierInfo *Name, SourceLocation NameLoc,
7504                     AttributeList *Attr, AccessSpecifier AS,
7505                     SourceLocation ModulePrivateLoc,
7506                     MultiTemplateParamsArg TemplateParameterLists,
7507                     bool &OwnedDecl, bool &IsDependent,
7508                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7509                     TypeResult UnderlyingType) {
7510  // If this is not a definition, it must have a name.
7511  assert((Name != 0 || TUK == TUK_Definition) &&
7512         "Nameless record must be a definition!");
7513  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7514
7515  OwnedDecl = false;
7516  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7517
7518  // FIXME: Check explicit specializations more carefully.
7519  bool isExplicitSpecialization = false;
7520  bool Invalid = false;
7521
7522  // We only need to do this matching if we have template parameters
7523  // or a scope specifier, which also conveniently avoids this work
7524  // for non-C++ cases.
7525  if (TemplateParameterLists.size() > 0 ||
7526      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7527    if (TemplateParameterList *TemplateParams
7528          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7529                                                TemplateParameterLists.get(),
7530                                                TemplateParameterLists.size(),
7531                                                    TUK == TUK_Friend,
7532                                                    isExplicitSpecialization,
7533                                                    Invalid)) {
7534      if (TemplateParams->size() > 0) {
7535        // This is a declaration or definition of a class template (which may
7536        // be a member of another template).
7537
7538        if (Invalid)
7539          return 0;
7540
7541        OwnedDecl = false;
7542        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7543                                               SS, Name, NameLoc, Attr,
7544                                               TemplateParams, AS,
7545                                               ModulePrivateLoc,
7546                                           TemplateParameterLists.size() - 1,
7547                 (TemplateParameterList**) TemplateParameterLists.release());
7548        return Result.get();
7549      } else {
7550        // The "template<>" header is extraneous.
7551        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7552          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7553        isExplicitSpecialization = true;
7554      }
7555    }
7556  }
7557
7558  // Figure out the underlying type if this a enum declaration. We need to do
7559  // this early, because it's needed to detect if this is an incompatible
7560  // redeclaration.
7561  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7562
7563  if (Kind == TTK_Enum) {
7564    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7565      // No underlying type explicitly specified, or we failed to parse the
7566      // type, default to int.
7567      EnumUnderlying = Context.IntTy.getTypePtr();
7568    else if (UnderlyingType.get()) {
7569      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7570      // integral type; any cv-qualification is ignored.
7571      TypeSourceInfo *TI = 0;
7572      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7573      EnumUnderlying = TI;
7574
7575      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7576
7577      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7578        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7579          << T;
7580        // Recover by falling back to int.
7581        EnumUnderlying = Context.IntTy.getTypePtr();
7582      }
7583
7584      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7585                                          UPPC_FixedUnderlyingType))
7586        EnumUnderlying = Context.IntTy.getTypePtr();
7587
7588    } else if (getLangOptions().MicrosoftExt)
7589      // Microsoft enums are always of int type.
7590      EnumUnderlying = Context.IntTy.getTypePtr();
7591  }
7592
7593  DeclContext *SearchDC = CurContext;
7594  DeclContext *DC = CurContext;
7595  bool isStdBadAlloc = false;
7596
7597  RedeclarationKind Redecl = ForRedeclaration;
7598  if (TUK == TUK_Friend || TUK == TUK_Reference)
7599    Redecl = NotForRedeclaration;
7600
7601  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7602
7603  if (Name && SS.isNotEmpty()) {
7604    // We have a nested-name tag ('struct foo::bar').
7605
7606    // Check for invalid 'foo::'.
7607    if (SS.isInvalid()) {
7608      Name = 0;
7609      goto CreateNewDecl;
7610    }
7611
7612    // If this is a friend or a reference to a class in a dependent
7613    // context, don't try to make a decl for it.
7614    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7615      DC = computeDeclContext(SS, false);
7616      if (!DC) {
7617        IsDependent = true;
7618        return 0;
7619      }
7620    } else {
7621      DC = computeDeclContext(SS, true);
7622      if (!DC) {
7623        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7624          << SS.getRange();
7625        return 0;
7626      }
7627    }
7628
7629    if (RequireCompleteDeclContext(SS, DC))
7630      return 0;
7631
7632    SearchDC = DC;
7633    // Look-up name inside 'foo::'.
7634    LookupQualifiedName(Previous, DC);
7635
7636    if (Previous.isAmbiguous())
7637      return 0;
7638
7639    if (Previous.empty()) {
7640      // Name lookup did not find anything. However, if the
7641      // nested-name-specifier refers to the current instantiation,
7642      // and that current instantiation has any dependent base
7643      // classes, we might find something at instantiation time: treat
7644      // this as a dependent elaborated-type-specifier.
7645      // But this only makes any sense for reference-like lookups.
7646      if (Previous.wasNotFoundInCurrentInstantiation() &&
7647          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7648        IsDependent = true;
7649        return 0;
7650      }
7651
7652      // A tag 'foo::bar' must already exist.
7653      Diag(NameLoc, diag::err_not_tag_in_scope)
7654        << Kind << Name << DC << SS.getRange();
7655      Name = 0;
7656      Invalid = true;
7657      goto CreateNewDecl;
7658    }
7659  } else if (Name) {
7660    // If this is a named struct, check to see if there was a previous forward
7661    // declaration or definition.
7662    // FIXME: We're looking into outer scopes here, even when we
7663    // shouldn't be. Doing so can result in ambiguities that we
7664    // shouldn't be diagnosing.
7665    LookupName(Previous, S);
7666
7667    if (Previous.isAmbiguous() &&
7668        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7669      LookupResult::Filter F = Previous.makeFilter();
7670      while (F.hasNext()) {
7671        NamedDecl *ND = F.next();
7672        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7673          F.erase();
7674      }
7675      F.done();
7676    }
7677
7678    // Note:  there used to be some attempt at recovery here.
7679    if (Previous.isAmbiguous())
7680      return 0;
7681
7682    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7683      // FIXME: This makes sure that we ignore the contexts associated
7684      // with C structs, unions, and enums when looking for a matching
7685      // tag declaration or definition. See the similar lookup tweak
7686      // in Sema::LookupName; is there a better way to deal with this?
7687      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7688        SearchDC = SearchDC->getParent();
7689    }
7690  } else if (S->isFunctionPrototypeScope()) {
7691    // If this is an enum declaration in function prototype scope, set its
7692    // initial context to the translation unit.
7693    SearchDC = Context.getTranslationUnitDecl();
7694  }
7695
7696  if (Previous.isSingleResult() &&
7697      Previous.getFoundDecl()->isTemplateParameter()) {
7698    // Maybe we will complain about the shadowed template parameter.
7699    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7700    // Just pretend that we didn't see the previous declaration.
7701    Previous.clear();
7702  }
7703
7704  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7705      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7706    // This is a declaration of or a reference to "std::bad_alloc".
7707    isStdBadAlloc = true;
7708
7709    if (Previous.empty() && StdBadAlloc) {
7710      // std::bad_alloc has been implicitly declared (but made invisible to
7711      // name lookup). Fill in this implicit declaration as the previous
7712      // declaration, so that the declarations get chained appropriately.
7713      Previous.addDecl(getStdBadAlloc());
7714    }
7715  }
7716
7717  // If we didn't find a previous declaration, and this is a reference
7718  // (or friend reference), move to the correct scope.  In C++, we
7719  // also need to do a redeclaration lookup there, just in case
7720  // there's a shadow friend decl.
7721  if (Name && Previous.empty() &&
7722      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7723    if (Invalid) goto CreateNewDecl;
7724    assert(SS.isEmpty());
7725
7726    if (TUK == TUK_Reference) {
7727      // C++ [basic.scope.pdecl]p5:
7728      //   -- for an elaborated-type-specifier of the form
7729      //
7730      //          class-key identifier
7731      //
7732      //      if the elaborated-type-specifier is used in the
7733      //      decl-specifier-seq or parameter-declaration-clause of a
7734      //      function defined in namespace scope, the identifier is
7735      //      declared as a class-name in the namespace that contains
7736      //      the declaration; otherwise, except as a friend
7737      //      declaration, the identifier is declared in the smallest
7738      //      non-class, non-function-prototype scope that contains the
7739      //      declaration.
7740      //
7741      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7742      // C structs and unions.
7743      //
7744      // It is an error in C++ to declare (rather than define) an enum
7745      // type, including via an elaborated type specifier.  We'll
7746      // diagnose that later; for now, declare the enum in the same
7747      // scope as we would have picked for any other tag type.
7748      //
7749      // GNU C also supports this behavior as part of its incomplete
7750      // enum types extension, while GNU C++ does not.
7751      //
7752      // Find the context where we'll be declaring the tag.
7753      // FIXME: We would like to maintain the current DeclContext as the
7754      // lexical context,
7755      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7756        SearchDC = SearchDC->getParent();
7757
7758      // Find the scope where we'll be declaring the tag.
7759      while (S->isClassScope() ||
7760             (getLangOptions().CPlusPlus &&
7761              S->isFunctionPrototypeScope()) ||
7762             ((S->getFlags() & Scope::DeclScope) == 0) ||
7763             (S->getEntity() &&
7764              ((DeclContext *)S->getEntity())->isTransparentContext()))
7765        S = S->getParent();
7766    } else {
7767      assert(TUK == TUK_Friend);
7768      // C++ [namespace.memdef]p3:
7769      //   If a friend declaration in a non-local class first declares a
7770      //   class or function, the friend class or function is a member of
7771      //   the innermost enclosing namespace.
7772      SearchDC = SearchDC->getEnclosingNamespaceContext();
7773    }
7774
7775    // In C++, we need to do a redeclaration lookup to properly
7776    // diagnose some problems.
7777    if (getLangOptions().CPlusPlus) {
7778      Previous.setRedeclarationKind(ForRedeclaration);
7779      LookupQualifiedName(Previous, SearchDC);
7780    }
7781  }
7782
7783  if (!Previous.empty()) {
7784    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7785
7786    // It's okay to have a tag decl in the same scope as a typedef
7787    // which hides a tag decl in the same scope.  Finding this
7788    // insanity with a redeclaration lookup can only actually happen
7789    // in C++.
7790    //
7791    // This is also okay for elaborated-type-specifiers, which is
7792    // technically forbidden by the current standard but which is
7793    // okay according to the likely resolution of an open issue;
7794    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7795    if (getLangOptions().CPlusPlus) {
7796      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7797        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7798          TagDecl *Tag = TT->getDecl();
7799          if (Tag->getDeclName() == Name &&
7800              Tag->getDeclContext()->getRedeclContext()
7801                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7802            PrevDecl = Tag;
7803            Previous.clear();
7804            Previous.addDecl(Tag);
7805            Previous.resolveKind();
7806          }
7807        }
7808      }
7809    }
7810
7811    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7812      // If this is a use of a previous tag, or if the tag is already declared
7813      // in the same scope (so that the definition/declaration completes or
7814      // rementions the tag), reuse the decl.
7815      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7816          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7817        // Make sure that this wasn't declared as an enum and now used as a
7818        // struct or something similar.
7819        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7820                                          TUK == TUK_Definition, KWLoc,
7821                                          *Name)) {
7822          bool SafeToContinue
7823            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7824               Kind != TTK_Enum);
7825          if (SafeToContinue)
7826            Diag(KWLoc, diag::err_use_with_wrong_tag)
7827              << Name
7828              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7829                                              PrevTagDecl->getKindName());
7830          else
7831            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7832          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7833
7834          if (SafeToContinue)
7835            Kind = PrevTagDecl->getTagKind();
7836          else {
7837            // Recover by making this an anonymous redefinition.
7838            Name = 0;
7839            Previous.clear();
7840            Invalid = true;
7841          }
7842        }
7843
7844        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7845          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7846
7847          // All conflicts with previous declarations are recovered by
7848          // returning the previous declaration.
7849          if (ScopedEnum != PrevEnum->isScoped()) {
7850            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7851              << PrevEnum->isScoped();
7852            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7853            return PrevTagDecl;
7854          }
7855          else if (EnumUnderlying && PrevEnum->isFixed()) {
7856            QualType T;
7857            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7858                T = TI->getType();
7859            else
7860                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7861
7862            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7863              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7864                   diag::err_enum_redeclare_type_mismatch)
7865                << T
7866                << PrevEnum->getIntegerType();
7867              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7868              return PrevTagDecl;
7869            }
7870          }
7871          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7872            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7873              << PrevEnum->isFixed();
7874            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7875            return PrevTagDecl;
7876          }
7877        }
7878
7879        if (!Invalid) {
7880          // If this is a use, just return the declaration we found.
7881
7882          // FIXME: In the future, return a variant or some other clue
7883          // for the consumer of this Decl to know it doesn't own it.
7884          // For our current ASTs this shouldn't be a problem, but will
7885          // need to be changed with DeclGroups.
7886          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7887               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7888            return PrevTagDecl;
7889
7890          // Diagnose attempts to redefine a tag.
7891          if (TUK == TUK_Definition) {
7892            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7893              // If we're defining a specialization and the previous definition
7894              // is from an implicit instantiation, don't emit an error
7895              // here; we'll catch this in the general case below.
7896              if (!isExplicitSpecialization ||
7897                  !isa<CXXRecordDecl>(Def) ||
7898                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7899                                               == TSK_ExplicitSpecialization) {
7900                Diag(NameLoc, diag::err_redefinition) << Name;
7901                Diag(Def->getLocation(), diag::note_previous_definition);
7902                // If this is a redefinition, recover by making this
7903                // struct be anonymous, which will make any later
7904                // references get the previous definition.
7905                Name = 0;
7906                Previous.clear();
7907                Invalid = true;
7908              }
7909            } else {
7910              // If the type is currently being defined, complain
7911              // about a nested redefinition.
7912              const TagType *Tag
7913                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7914              if (Tag->isBeingDefined()) {
7915                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7916                Diag(PrevTagDecl->getLocation(),
7917                     diag::note_previous_definition);
7918                Name = 0;
7919                Previous.clear();
7920                Invalid = true;
7921              }
7922            }
7923
7924            // Okay, this is definition of a previously declared or referenced
7925            // tag PrevDecl. We're going to create a new Decl for it.
7926          }
7927        }
7928        // If we get here we have (another) forward declaration or we
7929        // have a definition.  Just create a new decl.
7930
7931      } else {
7932        // If we get here, this is a definition of a new tag type in a nested
7933        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7934        // new decl/type.  We set PrevDecl to NULL so that the entities
7935        // have distinct types.
7936        Previous.clear();
7937      }
7938      // If we get here, we're going to create a new Decl. If PrevDecl
7939      // is non-NULL, it's a definition of the tag declared by
7940      // PrevDecl. If it's NULL, we have a new definition.
7941
7942
7943    // Otherwise, PrevDecl is not a tag, but was found with tag
7944    // lookup.  This is only actually possible in C++, where a few
7945    // things like templates still live in the tag namespace.
7946    } else {
7947      assert(getLangOptions().CPlusPlus);
7948
7949      // Use a better diagnostic if an elaborated-type-specifier
7950      // found the wrong kind of type on the first
7951      // (non-redeclaration) lookup.
7952      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7953          !Previous.isForRedeclaration()) {
7954        unsigned Kind = 0;
7955        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7956        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7957        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7958        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7959        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7960        Invalid = true;
7961
7962      // Otherwise, only diagnose if the declaration is in scope.
7963      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7964                                isExplicitSpecialization)) {
7965        // do nothing
7966
7967      // Diagnose implicit declarations introduced by elaborated types.
7968      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7969        unsigned Kind = 0;
7970        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7971        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7972        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7973        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7974        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7975        Invalid = true;
7976
7977      // Otherwise it's a declaration.  Call out a particularly common
7978      // case here.
7979      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7980        unsigned Kind = 0;
7981        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7982        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7983          << Name << Kind << TND->getUnderlyingType();
7984        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7985        Invalid = true;
7986
7987      // Otherwise, diagnose.
7988      } else {
7989        // The tag name clashes with something else in the target scope,
7990        // issue an error and recover by making this tag be anonymous.
7991        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7992        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7993        Name = 0;
7994        Invalid = true;
7995      }
7996
7997      // The existing declaration isn't relevant to us; we're in a
7998      // new scope, so clear out the previous declaration.
7999      Previous.clear();
8000    }
8001  }
8002
8003CreateNewDecl:
8004
8005  TagDecl *PrevDecl = 0;
8006  if (Previous.isSingleResult())
8007    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8008
8009  // If there is an identifier, use the location of the identifier as the
8010  // location of the decl, otherwise use the location of the struct/union
8011  // keyword.
8012  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8013
8014  // Otherwise, create a new declaration. If there is a previous
8015  // declaration of the same entity, the two will be linked via
8016  // PrevDecl.
8017  TagDecl *New;
8018
8019  bool IsForwardReference = false;
8020  if (Kind == TTK_Enum) {
8021    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8022    // enum X { A, B, C } D;    D should chain to X.
8023    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8024                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8025                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8026    // If this is an undefined enum, warn.
8027    if (TUK != TUK_Definition && !Invalid) {
8028      TagDecl *Def;
8029      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8030        // C++0x: 7.2p2: opaque-enum-declaration.
8031        // Conflicts are diagnosed above. Do nothing.
8032      }
8033      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8034        Diag(Loc, diag::ext_forward_ref_enum_def)
8035          << New;
8036        Diag(Def->getLocation(), diag::note_previous_definition);
8037      } else {
8038        unsigned DiagID = diag::ext_forward_ref_enum;
8039        if (getLangOptions().MicrosoftExt)
8040          DiagID = diag::ext_ms_forward_ref_enum;
8041        else if (getLangOptions().CPlusPlus)
8042          DiagID = diag::err_forward_ref_enum;
8043        Diag(Loc, DiagID);
8044
8045        // If this is a forward-declared reference to an enumeration, make a
8046        // note of it; we won't actually be introducing the declaration into
8047        // the declaration context.
8048        if (TUK == TUK_Reference)
8049          IsForwardReference = true;
8050      }
8051    }
8052
8053    if (EnumUnderlying) {
8054      EnumDecl *ED = cast<EnumDecl>(New);
8055      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8056        ED->setIntegerTypeSourceInfo(TI);
8057      else
8058        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8059      ED->setPromotionType(ED->getIntegerType());
8060    }
8061
8062  } else {
8063    // struct/union/class
8064
8065    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8066    // struct X { int A; } D;    D should chain to X.
8067    if (getLangOptions().CPlusPlus) {
8068      // FIXME: Look for a way to use RecordDecl for simple structs.
8069      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8070                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8071
8072      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8073        StdBadAlloc = cast<CXXRecordDecl>(New);
8074    } else
8075      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8076                               cast_or_null<RecordDecl>(PrevDecl));
8077  }
8078
8079  // Maybe add qualifier info.
8080  if (SS.isNotEmpty()) {
8081    if (SS.isSet()) {
8082      New->setQualifierInfo(SS.getWithLocInContext(Context));
8083      if (TemplateParameterLists.size() > 0) {
8084        New->setTemplateParameterListsInfo(Context,
8085                                           TemplateParameterLists.size(),
8086                    (TemplateParameterList**) TemplateParameterLists.release());
8087      }
8088    }
8089    else
8090      Invalid = true;
8091  }
8092
8093  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8094    // Add alignment attributes if necessary; these attributes are checked when
8095    // the ASTContext lays out the structure.
8096    //
8097    // It is important for implementing the correct semantics that this
8098    // happen here (in act on tag decl). The #pragma pack stack is
8099    // maintained as a result of parser callbacks which can occur at
8100    // many points during the parsing of a struct declaration (because
8101    // the #pragma tokens are effectively skipped over during the
8102    // parsing of the struct).
8103    AddAlignmentAttributesForRecord(RD);
8104
8105    AddMsStructLayoutForRecord(RD);
8106  }
8107
8108  if (PrevDecl && PrevDecl->isModulePrivate())
8109    New->setModulePrivate();
8110  else if (ModulePrivateLoc.isValid()) {
8111    if (isExplicitSpecialization)
8112      Diag(New->getLocation(), diag::err_module_private_specialization)
8113        << 2
8114        << FixItHint::CreateRemoval(ModulePrivateLoc);
8115    else if (PrevDecl && !PrevDecl->isModulePrivate())
8116      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8117    // __module_private__ does not apply to local classes. However, we only
8118    // diagnose this as an error when the declaration specifiers are
8119    // freestanding. Here, we just ignore the __module_private__.
8120    // foobar
8121    else if (!SearchDC->isFunctionOrMethod())
8122      New->setModulePrivate();
8123  }
8124
8125  // If this is a specialization of a member class (of a class template),
8126  // check the specialization.
8127  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8128    Invalid = true;
8129
8130  if (Invalid)
8131    New->setInvalidDecl();
8132
8133  if (Attr)
8134    ProcessDeclAttributeList(S, New, Attr);
8135
8136  // If we're declaring or defining a tag in function prototype scope
8137  // in C, note that this type can only be used within the function.
8138  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8139    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8140
8141  // Set the lexical context. If the tag has a C++ scope specifier, the
8142  // lexical context will be different from the semantic context.
8143  New->setLexicalDeclContext(CurContext);
8144
8145  // Mark this as a friend decl if applicable.
8146  // In Microsoft mode, a friend declaration also acts as a forward
8147  // declaration so we always pass true to setObjectOfFriendDecl to make
8148  // the tag name visible.
8149  if (TUK == TUK_Friend)
8150    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8151                               getLangOptions().MicrosoftExt);
8152
8153  // Set the access specifier.
8154  if (!Invalid && SearchDC->isRecord())
8155    SetMemberAccessSpecifier(New, PrevDecl, AS);
8156
8157  if (TUK == TUK_Definition)
8158    New->startDefinition();
8159
8160  // If this has an identifier, add it to the scope stack.
8161  if (TUK == TUK_Friend) {
8162    // We might be replacing an existing declaration in the lookup tables;
8163    // if so, borrow its access specifier.
8164    if (PrevDecl)
8165      New->setAccess(PrevDecl->getAccess());
8166
8167    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8168    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8169    if (Name) // can be null along some error paths
8170      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8171        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8172  } else if (Name) {
8173    S = getNonFieldDeclScope(S);
8174    PushOnScopeChains(New, S, !IsForwardReference);
8175    if (IsForwardReference)
8176      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8177
8178  } else {
8179    CurContext->addDecl(New);
8180  }
8181
8182  // If this is the C FILE type, notify the AST context.
8183  if (IdentifierInfo *II = New->getIdentifier())
8184    if (!New->isInvalidDecl() &&
8185        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8186        II->isStr("FILE"))
8187      Context.setFILEDecl(New);
8188
8189  OwnedDecl = true;
8190  return New;
8191}
8192
8193void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8194  AdjustDeclIfTemplate(TagD);
8195  TagDecl *Tag = cast<TagDecl>(TagD);
8196
8197  // Enter the tag context.
8198  PushDeclContext(S, Tag);
8199}
8200
8201Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8202  assert(isa<ObjCContainerDecl>(IDecl) &&
8203         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8204  DeclContext *OCD = cast<DeclContext>(IDecl);
8205  assert(getContainingDC(OCD) == CurContext &&
8206      "The next DeclContext should be lexically contained in the current one.");
8207  CurContext = OCD;
8208  return IDecl;
8209}
8210
8211void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8212                                           SourceLocation FinalLoc,
8213                                           SourceLocation LBraceLoc) {
8214  AdjustDeclIfTemplate(TagD);
8215  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8216
8217  FieldCollector->StartClass();
8218
8219  if (!Record->getIdentifier())
8220    return;
8221
8222  if (FinalLoc.isValid())
8223    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8224
8225  // C++ [class]p2:
8226  //   [...] The class-name is also inserted into the scope of the
8227  //   class itself; this is known as the injected-class-name. For
8228  //   purposes of access checking, the injected-class-name is treated
8229  //   as if it were a public member name.
8230  CXXRecordDecl *InjectedClassName
8231    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8232                            Record->getLocStart(), Record->getLocation(),
8233                            Record->getIdentifier(),
8234                            /*PrevDecl=*/0,
8235                            /*DelayTypeCreation=*/true);
8236  Context.getTypeDeclType(InjectedClassName, Record);
8237  InjectedClassName->setImplicit();
8238  InjectedClassName->setAccess(AS_public);
8239  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8240      InjectedClassName->setDescribedClassTemplate(Template);
8241  PushOnScopeChains(InjectedClassName, S);
8242  assert(InjectedClassName->isInjectedClassName() &&
8243         "Broken injected-class-name");
8244}
8245
8246void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8247                                    SourceLocation RBraceLoc) {
8248  AdjustDeclIfTemplate(TagD);
8249  TagDecl *Tag = cast<TagDecl>(TagD);
8250  Tag->setRBraceLoc(RBraceLoc);
8251
8252  if (isa<CXXRecordDecl>(Tag))
8253    FieldCollector->FinishClass();
8254
8255  // Exit this scope of this tag's definition.
8256  PopDeclContext();
8257
8258  // Notify the consumer that we've defined a tag.
8259  Consumer.HandleTagDeclDefinition(Tag);
8260}
8261
8262void Sema::ActOnObjCContainerFinishDefinition() {
8263  // Exit this scope of this interface definition.
8264  PopDeclContext();
8265}
8266
8267void Sema::ActOnObjCTemporaryExitContainerContext() {
8268  OriginalLexicalContext = CurContext;
8269  ActOnObjCContainerFinishDefinition();
8270}
8271
8272void Sema::ActOnObjCReenterContainerContext() {
8273  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8274  OriginalLexicalContext = 0;
8275}
8276
8277void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8278  AdjustDeclIfTemplate(TagD);
8279  TagDecl *Tag = cast<TagDecl>(TagD);
8280  Tag->setInvalidDecl();
8281
8282  // We're undoing ActOnTagStartDefinition here, not
8283  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8284  // the FieldCollector.
8285
8286  PopDeclContext();
8287}
8288
8289// Note that FieldName may be null for anonymous bitfields.
8290bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8291                          QualType FieldTy, const Expr *BitWidth,
8292                          bool *ZeroWidth) {
8293  // Default to true; that shouldn't confuse checks for emptiness
8294  if (ZeroWidth)
8295    *ZeroWidth = true;
8296
8297  // C99 6.7.2.1p4 - verify the field type.
8298  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8299  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8300    // Handle incomplete types with specific error.
8301    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8302      return true;
8303    if (FieldName)
8304      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8305        << FieldName << FieldTy << BitWidth->getSourceRange();
8306    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8307      << FieldTy << BitWidth->getSourceRange();
8308  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8309                                             UPPC_BitFieldWidth))
8310    return true;
8311
8312  // If the bit-width is type- or value-dependent, don't try to check
8313  // it now.
8314  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8315    return false;
8316
8317  llvm::APSInt Value;
8318  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8319    return true;
8320
8321  if (Value != 0 && ZeroWidth)
8322    *ZeroWidth = false;
8323
8324  // Zero-width bitfield is ok for anonymous field.
8325  if (Value == 0 && FieldName)
8326    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8327
8328  if (Value.isSigned() && Value.isNegative()) {
8329    if (FieldName)
8330      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8331               << FieldName << Value.toString(10);
8332    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8333      << Value.toString(10);
8334  }
8335
8336  if (!FieldTy->isDependentType()) {
8337    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8338    if (Value.getZExtValue() > TypeSize) {
8339      if (!getLangOptions().CPlusPlus) {
8340        if (FieldName)
8341          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8342            << FieldName << (unsigned)Value.getZExtValue()
8343            << (unsigned)TypeSize;
8344
8345        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8346          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8347      }
8348
8349      if (FieldName)
8350        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8351          << FieldName << (unsigned)Value.getZExtValue()
8352          << (unsigned)TypeSize;
8353      else
8354        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8355          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8356    }
8357  }
8358
8359  return false;
8360}
8361
8362/// ActOnField - Each field of a C struct/union is passed into this in order
8363/// to create a FieldDecl object for it.
8364Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8365                       Declarator &D, Expr *BitfieldWidth) {
8366  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8367                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8368                               /*HasInit=*/false, AS_public);
8369  return Res;
8370}
8371
8372/// HandleField - Analyze a field of a C struct or a C++ data member.
8373///
8374FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8375                             SourceLocation DeclStart,
8376                             Declarator &D, Expr *BitWidth, bool HasInit,
8377                             AccessSpecifier AS) {
8378  IdentifierInfo *II = D.getIdentifier();
8379  SourceLocation Loc = DeclStart;
8380  if (II) Loc = D.getIdentifierLoc();
8381
8382  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8383  QualType T = TInfo->getType();
8384  if (getLangOptions().CPlusPlus) {
8385    CheckExtraCXXDefaultArguments(D);
8386
8387    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8388                                        UPPC_DataMemberType)) {
8389      D.setInvalidType();
8390      T = Context.IntTy;
8391      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8392    }
8393  }
8394
8395  DiagnoseFunctionSpecifiers(D);
8396
8397  if (D.getDeclSpec().isThreadSpecified())
8398    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8399  if (D.getDeclSpec().isConstexprSpecified())
8400    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8401      << 2;
8402
8403  // Check to see if this name was declared as a member previously
8404  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8405  LookupName(Previous, S);
8406  assert((Previous.empty() || Previous.isOverloadedResult() ||
8407          Previous.isSingleResult())
8408    && "Lookup of member name should be either overloaded, single or null");
8409
8410  // If the name is overloaded then get any declaration else get the single result
8411  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8412    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8413
8414  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8415    // Maybe we will complain about the shadowed template parameter.
8416    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8417    // Just pretend that we didn't see the previous declaration.
8418    PrevDecl = 0;
8419  }
8420
8421  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8422    PrevDecl = 0;
8423
8424  bool Mutable
8425    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8426  SourceLocation TSSL = D.getSourceRange().getBegin();
8427  FieldDecl *NewFD
8428    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8429                     TSSL, AS, PrevDecl, &D);
8430
8431  if (NewFD->isInvalidDecl())
8432    Record->setInvalidDecl();
8433
8434  if (D.getDeclSpec().isModulePrivateSpecified())
8435    NewFD->setModulePrivate();
8436
8437  if (NewFD->isInvalidDecl() && PrevDecl) {
8438    // Don't introduce NewFD into scope; there's already something
8439    // with the same name in the same scope.
8440  } else if (II) {
8441    PushOnScopeChains(NewFD, S);
8442  } else
8443    Record->addDecl(NewFD);
8444
8445  return NewFD;
8446}
8447
8448/// \brief Build a new FieldDecl and check its well-formedness.
8449///
8450/// This routine builds a new FieldDecl given the fields name, type,
8451/// record, etc. \p PrevDecl should refer to any previous declaration
8452/// with the same name and in the same scope as the field to be
8453/// created.
8454///
8455/// \returns a new FieldDecl.
8456///
8457/// \todo The Declarator argument is a hack. It will be removed once
8458FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8459                                TypeSourceInfo *TInfo,
8460                                RecordDecl *Record, SourceLocation Loc,
8461                                bool Mutable, Expr *BitWidth, bool HasInit,
8462                                SourceLocation TSSL,
8463                                AccessSpecifier AS, NamedDecl *PrevDecl,
8464                                Declarator *D) {
8465  IdentifierInfo *II = Name.getAsIdentifierInfo();
8466  bool InvalidDecl = false;
8467  if (D) InvalidDecl = D->isInvalidType();
8468
8469  // If we receive a broken type, recover by assuming 'int' and
8470  // marking this declaration as invalid.
8471  if (T.isNull()) {
8472    InvalidDecl = true;
8473    T = Context.IntTy;
8474  }
8475
8476  QualType EltTy = Context.getBaseElementType(T);
8477  if (!EltTy->isDependentType() &&
8478      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8479    // Fields of incomplete type force their record to be invalid.
8480    Record->setInvalidDecl();
8481    InvalidDecl = true;
8482  }
8483
8484  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8485  // than a variably modified type.
8486  if (!InvalidDecl && T->isVariablyModifiedType()) {
8487    bool SizeIsNegative;
8488    llvm::APSInt Oversized;
8489    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8490                                                           SizeIsNegative,
8491                                                           Oversized);
8492    if (!FixedTy.isNull()) {
8493      Diag(Loc, diag::warn_illegal_constant_array_size);
8494      T = FixedTy;
8495    } else {
8496      if (SizeIsNegative)
8497        Diag(Loc, diag::err_typecheck_negative_array_size);
8498      else if (Oversized.getBoolValue())
8499        Diag(Loc, diag::err_array_too_large)
8500          << Oversized.toString(10);
8501      else
8502        Diag(Loc, diag::err_typecheck_field_variable_size);
8503      InvalidDecl = true;
8504    }
8505  }
8506
8507  // Fields can not have abstract class types
8508  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8509                                             diag::err_abstract_type_in_decl,
8510                                             AbstractFieldType))
8511    InvalidDecl = true;
8512
8513  bool ZeroWidth = false;
8514  // If this is declared as a bit-field, check the bit-field.
8515  if (!InvalidDecl && BitWidth &&
8516      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8517    InvalidDecl = true;
8518    BitWidth = 0;
8519    ZeroWidth = false;
8520  }
8521
8522  // Check that 'mutable' is consistent with the type of the declaration.
8523  if (!InvalidDecl && Mutable) {
8524    unsigned DiagID = 0;
8525    if (T->isReferenceType())
8526      DiagID = diag::err_mutable_reference;
8527    else if (T.isConstQualified())
8528      DiagID = diag::err_mutable_const;
8529
8530    if (DiagID) {
8531      SourceLocation ErrLoc = Loc;
8532      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8533        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8534      Diag(ErrLoc, DiagID);
8535      Mutable = false;
8536      InvalidDecl = true;
8537    }
8538  }
8539
8540  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8541                                       BitWidth, Mutable, HasInit);
8542  if (InvalidDecl)
8543    NewFD->setInvalidDecl();
8544
8545  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8546    Diag(Loc, diag::err_duplicate_member) << II;
8547    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8548    NewFD->setInvalidDecl();
8549  }
8550
8551  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8552    if (Record->isUnion()) {
8553      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8554        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8555        if (RDecl->getDefinition()) {
8556          // C++ [class.union]p1: An object of a class with a non-trivial
8557          // constructor, a non-trivial copy constructor, a non-trivial
8558          // destructor, or a non-trivial copy assignment operator
8559          // cannot be a member of a union, nor can an array of such
8560          // objects.
8561          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8562            NewFD->setInvalidDecl();
8563        }
8564      }
8565
8566      // C++ [class.union]p1: If a union contains a member of reference type,
8567      // the program is ill-formed.
8568      if (EltTy->isReferenceType()) {
8569        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8570          << NewFD->getDeclName() << EltTy;
8571        NewFD->setInvalidDecl();
8572      }
8573    }
8574  }
8575
8576  // FIXME: We need to pass in the attributes given an AST
8577  // representation, not a parser representation.
8578  if (D)
8579    // FIXME: What to pass instead of TUScope?
8580    ProcessDeclAttributes(TUScope, NewFD, *D);
8581
8582  // In auto-retain/release, infer strong retension for fields of
8583  // retainable type.
8584  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8585    NewFD->setInvalidDecl();
8586
8587  if (T.isObjCGCWeak())
8588    Diag(Loc, diag::warn_attribute_weak_on_field);
8589
8590  NewFD->setAccess(AS);
8591  return NewFD;
8592}
8593
8594bool Sema::CheckNontrivialField(FieldDecl *FD) {
8595  assert(FD);
8596  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8597
8598  if (FD->isInvalidDecl())
8599    return true;
8600
8601  QualType EltTy = Context.getBaseElementType(FD->getType());
8602  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8603    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8604    if (RDecl->getDefinition()) {
8605      // We check for copy constructors before constructors
8606      // because otherwise we'll never get complaints about
8607      // copy constructors.
8608
8609      CXXSpecialMember member = CXXInvalid;
8610      if (!RDecl->hasTrivialCopyConstructor())
8611        member = CXXCopyConstructor;
8612      else if (!RDecl->hasTrivialDefaultConstructor())
8613        member = CXXDefaultConstructor;
8614      else if (!RDecl->hasTrivialCopyAssignment())
8615        member = CXXCopyAssignment;
8616      else if (!RDecl->hasTrivialDestructor())
8617        member = CXXDestructor;
8618
8619      if (member != CXXInvalid) {
8620        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8621          // Objective-C++ ARC: it is an error to have a non-trivial field of
8622          // a union. However, system headers in Objective-C programs
8623          // occasionally have Objective-C lifetime objects within unions,
8624          // and rather than cause the program to fail, we make those
8625          // members unavailable.
8626          SourceLocation Loc = FD->getLocation();
8627          if (getSourceManager().isInSystemHeader(Loc)) {
8628            if (!FD->hasAttr<UnavailableAttr>())
8629              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8630                                  "this system field has retaining ownership"));
8631            return false;
8632          }
8633        }
8634
8635        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8636              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8637        DiagnoseNontrivial(RT, member);
8638        return true;
8639      }
8640    }
8641  }
8642
8643  return false;
8644}
8645
8646/// DiagnoseNontrivial - Given that a class has a non-trivial
8647/// special member, figure out why.
8648void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8649  QualType QT(T, 0U);
8650  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8651
8652  // Check whether the member was user-declared.
8653  switch (member) {
8654  case CXXInvalid:
8655    break;
8656
8657  case CXXDefaultConstructor:
8658    if (RD->hasUserDeclaredConstructor()) {
8659      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8660      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8661        const FunctionDecl *body = 0;
8662        ci->hasBody(body);
8663        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8664          SourceLocation CtorLoc = ci->getLocation();
8665          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8666          return;
8667        }
8668      }
8669
8670      llvm_unreachable("found no user-declared constructors");
8671    }
8672    break;
8673
8674  case CXXCopyConstructor:
8675    if (RD->hasUserDeclaredCopyConstructor()) {
8676      SourceLocation CtorLoc =
8677        RD->getCopyConstructor(0)->getLocation();
8678      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8679      return;
8680    }
8681    break;
8682
8683  case CXXMoveConstructor:
8684    if (RD->hasUserDeclaredMoveConstructor()) {
8685      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8686      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8687      return;
8688    }
8689    break;
8690
8691  case CXXCopyAssignment:
8692    if (RD->hasUserDeclaredCopyAssignment()) {
8693      // FIXME: this should use the location of the copy
8694      // assignment, not the type.
8695      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8696      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8697      return;
8698    }
8699    break;
8700
8701  case CXXMoveAssignment:
8702    if (RD->hasUserDeclaredMoveAssignment()) {
8703      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8704      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8705      return;
8706    }
8707    break;
8708
8709  case CXXDestructor:
8710    if (RD->hasUserDeclaredDestructor()) {
8711      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8712      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8713      return;
8714    }
8715    break;
8716  }
8717
8718  typedef CXXRecordDecl::base_class_iterator base_iter;
8719
8720  // Virtual bases and members inhibit trivial copying/construction,
8721  // but not trivial destruction.
8722  if (member != CXXDestructor) {
8723    // Check for virtual bases.  vbases includes indirect virtual bases,
8724    // so we just iterate through the direct bases.
8725    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8726      if (bi->isVirtual()) {
8727        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8728        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8729        return;
8730      }
8731
8732    // Check for virtual methods.
8733    typedef CXXRecordDecl::method_iterator meth_iter;
8734    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8735         ++mi) {
8736      if (mi->isVirtual()) {
8737        SourceLocation MLoc = mi->getSourceRange().getBegin();
8738        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8739        return;
8740      }
8741    }
8742  }
8743
8744  bool (CXXRecordDecl::*hasTrivial)() const;
8745  switch (member) {
8746  case CXXDefaultConstructor:
8747    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8748  case CXXCopyConstructor:
8749    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8750  case CXXCopyAssignment:
8751    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8752  case CXXDestructor:
8753    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8754  default:
8755    llvm_unreachable("unexpected special member");
8756  }
8757
8758  // Check for nontrivial bases (and recurse).
8759  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8760    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8761    assert(BaseRT && "Don't know how to handle dependent bases");
8762    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8763    if (!(BaseRecTy->*hasTrivial)()) {
8764      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8765      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8766      DiagnoseNontrivial(BaseRT, member);
8767      return;
8768    }
8769  }
8770
8771  // Check for nontrivial members (and recurse).
8772  typedef RecordDecl::field_iterator field_iter;
8773  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8774       ++fi) {
8775    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8776    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8777      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8778
8779      if (!(EltRD->*hasTrivial)()) {
8780        SourceLocation FLoc = (*fi)->getLocation();
8781        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8782        DiagnoseNontrivial(EltRT, member);
8783        return;
8784      }
8785    }
8786
8787    if (EltTy->isObjCLifetimeType()) {
8788      switch (EltTy.getObjCLifetime()) {
8789      case Qualifiers::OCL_None:
8790      case Qualifiers::OCL_ExplicitNone:
8791        break;
8792
8793      case Qualifiers::OCL_Autoreleasing:
8794      case Qualifiers::OCL_Weak:
8795      case Qualifiers::OCL_Strong:
8796        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8797          << QT << EltTy.getObjCLifetime();
8798        return;
8799      }
8800    }
8801  }
8802
8803  llvm_unreachable("found no explanation for non-trivial member");
8804}
8805
8806/// TranslateIvarVisibility - Translate visibility from a token ID to an
8807///  AST enum value.
8808static ObjCIvarDecl::AccessControl
8809TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8810  switch (ivarVisibility) {
8811  default: llvm_unreachable("Unknown visitibility kind");
8812  case tok::objc_private: return ObjCIvarDecl::Private;
8813  case tok::objc_public: return ObjCIvarDecl::Public;
8814  case tok::objc_protected: return ObjCIvarDecl::Protected;
8815  case tok::objc_package: return ObjCIvarDecl::Package;
8816  }
8817}
8818
8819/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8820/// in order to create an IvarDecl object for it.
8821Decl *Sema::ActOnIvar(Scope *S,
8822                                SourceLocation DeclStart,
8823                                Declarator &D, Expr *BitfieldWidth,
8824                                tok::ObjCKeywordKind Visibility) {
8825
8826  IdentifierInfo *II = D.getIdentifier();
8827  Expr *BitWidth = (Expr*)BitfieldWidth;
8828  SourceLocation Loc = DeclStart;
8829  if (II) Loc = D.getIdentifierLoc();
8830
8831  // FIXME: Unnamed fields can be handled in various different ways, for
8832  // example, unnamed unions inject all members into the struct namespace!
8833
8834  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8835  QualType T = TInfo->getType();
8836
8837  if (BitWidth) {
8838    // 6.7.2.1p3, 6.7.2.1p4
8839    if (VerifyBitField(Loc, II, T, BitWidth)) {
8840      D.setInvalidType();
8841      BitWidth = 0;
8842    }
8843  } else {
8844    // Not a bitfield.
8845
8846    // validate II.
8847
8848  }
8849  if (T->isReferenceType()) {
8850    Diag(Loc, diag::err_ivar_reference_type);
8851    D.setInvalidType();
8852  }
8853  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8854  // than a variably modified type.
8855  else if (T->isVariablyModifiedType()) {
8856    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8857    D.setInvalidType();
8858  }
8859
8860  // Get the visibility (access control) for this ivar.
8861  ObjCIvarDecl::AccessControl ac =
8862    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8863                                        : ObjCIvarDecl::None;
8864  // Must set ivar's DeclContext to its enclosing interface.
8865  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8866  ObjCContainerDecl *EnclosingContext;
8867  if (ObjCImplementationDecl *IMPDecl =
8868      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8869    if (!LangOpts.ObjCNonFragileABI2) {
8870    // Case of ivar declared in an implementation. Context is that of its class.
8871      EnclosingContext = IMPDecl->getClassInterface();
8872      assert(EnclosingContext && "Implementation has no class interface!");
8873    }
8874    else
8875      EnclosingContext = EnclosingDecl;
8876  } else {
8877    if (ObjCCategoryDecl *CDecl =
8878        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8879      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8880        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8881        return 0;
8882      }
8883    }
8884    EnclosingContext = EnclosingDecl;
8885  }
8886
8887  // Construct the decl.
8888  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8889                                             DeclStart, Loc, II, T,
8890                                             TInfo, ac, (Expr *)BitfieldWidth);
8891
8892  if (II) {
8893    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8894                                           ForRedeclaration);
8895    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8896        && !isa<TagDecl>(PrevDecl)) {
8897      Diag(Loc, diag::err_duplicate_member) << II;
8898      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8899      NewID->setInvalidDecl();
8900    }
8901  }
8902
8903  // Process attributes attached to the ivar.
8904  ProcessDeclAttributes(S, NewID, D);
8905
8906  if (D.isInvalidType())
8907    NewID->setInvalidDecl();
8908
8909  // In ARC, infer 'retaining' for ivars of retainable type.
8910  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8911    NewID->setInvalidDecl();
8912
8913  if (D.getDeclSpec().isModulePrivateSpecified())
8914    NewID->setModulePrivate();
8915
8916  if (II) {
8917    // FIXME: When interfaces are DeclContexts, we'll need to add
8918    // these to the interface.
8919    S->AddDecl(NewID);
8920    IdResolver.AddDecl(NewID);
8921  }
8922
8923  return NewID;
8924}
8925
8926/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8927/// class and class extensions. For every class @interface and class
8928/// extension @interface, if the last ivar is a bitfield of any type,
8929/// then add an implicit `char :0` ivar to the end of that interface.
8930void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8931                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8932  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8933    return;
8934
8935  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8936  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8937
8938  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8939    return;
8940  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8941  if (!ID) {
8942    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8943      if (!CD->IsClassExtension())
8944        return;
8945    }
8946    // No need to add this to end of @implementation.
8947    else
8948      return;
8949  }
8950  // All conditions are met. Add a new bitfield to the tail end of ivars.
8951  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8952  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8953
8954  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8955                              DeclLoc, DeclLoc, 0,
8956                              Context.CharTy,
8957                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8958                                                               DeclLoc),
8959                              ObjCIvarDecl::Private, BW,
8960                              true);
8961  AllIvarDecls.push_back(Ivar);
8962}
8963
8964void Sema::ActOnFields(Scope* S,
8965                       SourceLocation RecLoc, Decl *EnclosingDecl,
8966                       llvm::ArrayRef<Decl *> Fields,
8967                       SourceLocation LBrac, SourceLocation RBrac,
8968                       AttributeList *Attr) {
8969  assert(EnclosingDecl && "missing record or interface decl");
8970
8971  // If the decl this is being inserted into is invalid, then it may be a
8972  // redeclaration or some other bogus case.  Don't try to add fields to it.
8973  if (EnclosingDecl->isInvalidDecl())
8974    return;
8975
8976  // Verify that all the fields are okay.
8977  unsigned NumNamedMembers = 0;
8978  SmallVector<FieldDecl*, 32> RecFields;
8979
8980  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8981  bool ARCErrReported = false;
8982  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8983       i != end; ++i) {
8984    FieldDecl *FD = cast<FieldDecl>(*i);
8985
8986    // Get the type for the field.
8987    const Type *FDTy = FD->getType().getTypePtr();
8988
8989    if (!FD->isAnonymousStructOrUnion()) {
8990      // Remember all fields written by the user.
8991      RecFields.push_back(FD);
8992    }
8993
8994    // If the field is already invalid for some reason, don't emit more
8995    // diagnostics about it.
8996    if (FD->isInvalidDecl()) {
8997      EnclosingDecl->setInvalidDecl();
8998      continue;
8999    }
9000
9001    // C99 6.7.2.1p2:
9002    //   A structure or union shall not contain a member with
9003    //   incomplete or function type (hence, a structure shall not
9004    //   contain an instance of itself, but may contain a pointer to
9005    //   an instance of itself), except that the last member of a
9006    //   structure with more than one named member may have incomplete
9007    //   array type; such a structure (and any union containing,
9008    //   possibly recursively, a member that is such a structure)
9009    //   shall not be a member of a structure or an element of an
9010    //   array.
9011    if (FDTy->isFunctionType()) {
9012      // Field declared as a function.
9013      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9014        << FD->getDeclName();
9015      FD->setInvalidDecl();
9016      EnclosingDecl->setInvalidDecl();
9017      continue;
9018    } else if (FDTy->isIncompleteArrayType() && Record &&
9019               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9020                ((getLangOptions().MicrosoftExt ||
9021                  getLangOptions().CPlusPlus) &&
9022                 (i + 1 == Fields.end() || Record->isUnion())))) {
9023      // Flexible array member.
9024      // Microsoft and g++ is more permissive regarding flexible array.
9025      // It will accept flexible array in union and also
9026      // as the sole element of a struct/class.
9027      if (getLangOptions().MicrosoftExt) {
9028        if (Record->isUnion())
9029          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9030            << FD->getDeclName();
9031        else if (Fields.size() == 1)
9032          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9033            << FD->getDeclName() << Record->getTagKind();
9034      } else if (getLangOptions().CPlusPlus) {
9035        if (Record->isUnion())
9036          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9037            << FD->getDeclName();
9038        else if (Fields.size() == 1)
9039          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9040            << FD->getDeclName() << Record->getTagKind();
9041      } else if (NumNamedMembers < 1) {
9042        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9043          << FD->getDeclName();
9044        FD->setInvalidDecl();
9045        EnclosingDecl->setInvalidDecl();
9046        continue;
9047      }
9048      if (!FD->getType()->isDependentType() &&
9049          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9050        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9051          << FD->getDeclName() << FD->getType();
9052        FD->setInvalidDecl();
9053        EnclosingDecl->setInvalidDecl();
9054        continue;
9055      }
9056      // Okay, we have a legal flexible array member at the end of the struct.
9057      if (Record)
9058        Record->setHasFlexibleArrayMember(true);
9059    } else if (!FDTy->isDependentType() &&
9060               RequireCompleteType(FD->getLocation(), FD->getType(),
9061                                   diag::err_field_incomplete)) {
9062      // Incomplete type
9063      FD->setInvalidDecl();
9064      EnclosingDecl->setInvalidDecl();
9065      continue;
9066    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9067      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9068        // If this is a member of a union, then entire union becomes "flexible".
9069        if (Record && Record->isUnion()) {
9070          Record->setHasFlexibleArrayMember(true);
9071        } else {
9072          // If this is a struct/class and this is not the last element, reject
9073          // it.  Note that GCC supports variable sized arrays in the middle of
9074          // structures.
9075          if (i + 1 != Fields.end())
9076            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9077              << FD->getDeclName() << FD->getType();
9078          else {
9079            // We support flexible arrays at the end of structs in
9080            // other structs as an extension.
9081            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9082              << FD->getDeclName();
9083            if (Record)
9084              Record->setHasFlexibleArrayMember(true);
9085          }
9086        }
9087      }
9088      if (Record && FDTTy->getDecl()->hasObjectMember())
9089        Record->setHasObjectMember(true);
9090    } else if (FDTy->isObjCObjectType()) {
9091      /// A field cannot be an Objective-c object
9092      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9093        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9094      QualType T = Context.getObjCObjectPointerType(FD->getType());
9095      FD->setType(T);
9096    }
9097    else if (!getLangOptions().CPlusPlus) {
9098      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9099        // It's an error in ARC if a field has lifetime.
9100        // We don't want to report this in a system header, though,
9101        // so we just make the field unavailable.
9102        // FIXME: that's really not sufficient; we need to make the type
9103        // itself invalid to, say, initialize or copy.
9104        QualType T = FD->getType();
9105        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9106        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9107          SourceLocation loc = FD->getLocation();
9108          if (getSourceManager().isInSystemHeader(loc)) {
9109            if (!FD->hasAttr<UnavailableAttr>()) {
9110              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9111                                "this system field has retaining ownership"));
9112            }
9113          } else {
9114            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9115          }
9116          ARCErrReported = true;
9117        }
9118      }
9119      else if (getLangOptions().ObjC1 &&
9120               getLangOptions().getGC() != LangOptions::NonGC &&
9121               Record && !Record->hasObjectMember()) {
9122        if (FD->getType()->isObjCObjectPointerType() ||
9123            FD->getType().isObjCGCStrong())
9124          Record->setHasObjectMember(true);
9125        else if (Context.getAsArrayType(FD->getType())) {
9126          QualType BaseType = Context.getBaseElementType(FD->getType());
9127          if (BaseType->isRecordType() &&
9128              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9129            Record->setHasObjectMember(true);
9130          else if (BaseType->isObjCObjectPointerType() ||
9131                   BaseType.isObjCGCStrong())
9132                 Record->setHasObjectMember(true);
9133        }
9134      }
9135    }
9136    // Keep track of the number of named members.
9137    if (FD->getIdentifier())
9138      ++NumNamedMembers;
9139  }
9140
9141  // Okay, we successfully defined 'Record'.
9142  if (Record) {
9143    bool Completed = false;
9144    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9145      if (!CXXRecord->isInvalidDecl()) {
9146        // Set access bits correctly on the directly-declared conversions.
9147        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9148        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9149             I != E; ++I)
9150          Convs->setAccess(I, (*I)->getAccess());
9151
9152        if (!CXXRecord->isDependentType()) {
9153          // Objective-C Automatic Reference Counting:
9154          //   If a class has a non-static data member of Objective-C pointer
9155          //   type (or array thereof), it is a non-POD type and its
9156          //   default constructor (if any), copy constructor, copy assignment
9157          //   operator, and destructor are non-trivial.
9158          //
9159          // This rule is also handled by CXXRecordDecl::completeDefinition().
9160          // However, here we check whether this particular class is only
9161          // non-POD because of the presence of an Objective-C pointer member.
9162          // If so, objects of this type cannot be shared between code compiled
9163          // with instant objects and code compiled with manual retain/release.
9164          if (getLangOptions().ObjCAutoRefCount &&
9165              CXXRecord->hasObjectMember() &&
9166              CXXRecord->getLinkage() == ExternalLinkage) {
9167            if (CXXRecord->isPOD()) {
9168              Diag(CXXRecord->getLocation(),
9169                   diag::warn_arc_non_pod_class_with_object_member)
9170               << CXXRecord;
9171            } else {
9172              // FIXME: Fix-Its would be nice here, but finding a good location
9173              // for them is going to be tricky.
9174              if (CXXRecord->hasTrivialCopyConstructor())
9175                Diag(CXXRecord->getLocation(),
9176                     diag::warn_arc_trivial_member_function_with_object_member)
9177                  << CXXRecord << 0;
9178              if (CXXRecord->hasTrivialCopyAssignment())
9179                Diag(CXXRecord->getLocation(),
9180                     diag::warn_arc_trivial_member_function_with_object_member)
9181                << CXXRecord << 1;
9182              if (CXXRecord->hasTrivialDestructor())
9183                Diag(CXXRecord->getLocation(),
9184                     diag::warn_arc_trivial_member_function_with_object_member)
9185                << CXXRecord << 2;
9186            }
9187          }
9188
9189          // Adjust user-defined destructor exception spec.
9190          if (getLangOptions().CPlusPlus0x &&
9191              CXXRecord->hasUserDeclaredDestructor())
9192            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9193
9194          // Add any implicitly-declared members to this class.
9195          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9196
9197          // If we have virtual base classes, we may end up finding multiple
9198          // final overriders for a given virtual function. Check for this
9199          // problem now.
9200          if (CXXRecord->getNumVBases()) {
9201            CXXFinalOverriderMap FinalOverriders;
9202            CXXRecord->getFinalOverriders(FinalOverriders);
9203
9204            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9205                                             MEnd = FinalOverriders.end();
9206                 M != MEnd; ++M) {
9207              for (OverridingMethods::iterator SO = M->second.begin(),
9208                                            SOEnd = M->second.end();
9209                   SO != SOEnd; ++SO) {
9210                assert(SO->second.size() > 0 &&
9211                       "Virtual function without overridding functions?");
9212                if (SO->second.size() == 1)
9213                  continue;
9214
9215                // C++ [class.virtual]p2:
9216                //   In a derived class, if a virtual member function of a base
9217                //   class subobject has more than one final overrider the
9218                //   program is ill-formed.
9219                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9220                  << (NamedDecl *)M->first << Record;
9221                Diag(M->first->getLocation(),
9222                     diag::note_overridden_virtual_function);
9223                for (OverridingMethods::overriding_iterator
9224                          OM = SO->second.begin(),
9225                       OMEnd = SO->second.end();
9226                     OM != OMEnd; ++OM)
9227                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9228                    << (NamedDecl *)M->first << OM->Method->getParent();
9229
9230                Record->setInvalidDecl();
9231              }
9232            }
9233            CXXRecord->completeDefinition(&FinalOverriders);
9234            Completed = true;
9235          }
9236        }
9237      }
9238    }
9239
9240    if (!Completed)
9241      Record->completeDefinition();
9242
9243    // Now that the record is complete, do any delayed exception spec checks
9244    // we were missing.
9245    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9246      const CXXDestructorDecl *Dtor =
9247              DelayedDestructorExceptionSpecChecks.back().first;
9248      if (Dtor->getParent() != Record)
9249        break;
9250
9251      assert(!Dtor->getParent()->isDependentType() &&
9252          "Should not ever add destructors of templates into the list.");
9253      CheckOverridingFunctionExceptionSpec(Dtor,
9254          DelayedDestructorExceptionSpecChecks.back().second);
9255      DelayedDestructorExceptionSpecChecks.pop_back();
9256    }
9257
9258  } else {
9259    ObjCIvarDecl **ClsFields =
9260      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9261    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9262      ID->setLocEnd(RBrac);
9263      // Add ivar's to class's DeclContext.
9264      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9265        ClsFields[i]->setLexicalDeclContext(ID);
9266        ID->addDecl(ClsFields[i]);
9267      }
9268      // Must enforce the rule that ivars in the base classes may not be
9269      // duplicates.
9270      if (ID->getSuperClass())
9271        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9272    } else if (ObjCImplementationDecl *IMPDecl =
9273                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9274      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9275      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9276        // Ivar declared in @implementation never belongs to the implementation.
9277        // Only it is in implementation's lexical context.
9278        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9279      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9280    } else if (ObjCCategoryDecl *CDecl =
9281                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9282      // case of ivars in class extension; all other cases have been
9283      // reported as errors elsewhere.
9284      // FIXME. Class extension does not have a LocEnd field.
9285      // CDecl->setLocEnd(RBrac);
9286      // Add ivar's to class extension's DeclContext.
9287      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9288        ClsFields[i]->setLexicalDeclContext(CDecl);
9289        CDecl->addDecl(ClsFields[i]);
9290      }
9291    }
9292  }
9293
9294  if (Attr)
9295    ProcessDeclAttributeList(S, Record, Attr);
9296
9297  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9298  // set the visibility of this record.
9299  if (Record && !Record->getDeclContext()->isRecord())
9300    AddPushedVisibilityAttribute(Record);
9301}
9302
9303/// \brief Determine whether the given integral value is representable within
9304/// the given type T.
9305static bool isRepresentableIntegerValue(ASTContext &Context,
9306                                        llvm::APSInt &Value,
9307                                        QualType T) {
9308  assert(T->isIntegralType(Context) && "Integral type required!");
9309  unsigned BitWidth = Context.getIntWidth(T);
9310
9311  if (Value.isUnsigned() || Value.isNonNegative()) {
9312    if (T->isSignedIntegerOrEnumerationType())
9313      --BitWidth;
9314    return Value.getActiveBits() <= BitWidth;
9315  }
9316  return Value.getMinSignedBits() <= BitWidth;
9317}
9318
9319// \brief Given an integral type, return the next larger integral type
9320// (or a NULL type of no such type exists).
9321static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9322  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9323  // enum checking below.
9324  assert(T->isIntegralType(Context) && "Integral type required!");
9325  const unsigned NumTypes = 4;
9326  QualType SignedIntegralTypes[NumTypes] = {
9327    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9328  };
9329  QualType UnsignedIntegralTypes[NumTypes] = {
9330    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9331    Context.UnsignedLongLongTy
9332  };
9333
9334  unsigned BitWidth = Context.getTypeSize(T);
9335  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9336                                                        : UnsignedIntegralTypes;
9337  for (unsigned I = 0; I != NumTypes; ++I)
9338    if (Context.getTypeSize(Types[I]) > BitWidth)
9339      return Types[I];
9340
9341  return QualType();
9342}
9343
9344EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9345                                          EnumConstantDecl *LastEnumConst,
9346                                          SourceLocation IdLoc,
9347                                          IdentifierInfo *Id,
9348                                          Expr *Val) {
9349  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9350  llvm::APSInt EnumVal(IntWidth);
9351  QualType EltTy;
9352
9353  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9354    Val = 0;
9355
9356  if (Val) {
9357    if (Enum->isDependentType() || Val->isTypeDependent())
9358      EltTy = Context.DependentTy;
9359    else {
9360      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9361      SourceLocation ExpLoc;
9362      if (!Val->isValueDependent() &&
9363          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9364        Val = 0;
9365      } else {
9366        if (!getLangOptions().CPlusPlus) {
9367          // C99 6.7.2.2p2:
9368          //   The expression that defines the value of an enumeration constant
9369          //   shall be an integer constant expression that has a value
9370          //   representable as an int.
9371
9372          // Complain if the value is not representable in an int.
9373          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9374            Diag(IdLoc, diag::ext_enum_value_not_int)
9375              << EnumVal.toString(10) << Val->getSourceRange()
9376              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9377          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9378            // Force the type of the expression to 'int'.
9379            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9380          }
9381        }
9382
9383        if (Enum->isFixed()) {
9384          EltTy = Enum->getIntegerType();
9385
9386          // C++0x [dcl.enum]p5:
9387          //   ... if the initializing value of an enumerator cannot be
9388          //   represented by the underlying type, the program is ill-formed.
9389          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9390            if (getLangOptions().MicrosoftExt) {
9391              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9392              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9393            } else
9394              Diag(IdLoc, diag::err_enumerator_too_large)
9395                << EltTy;
9396          } else
9397            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9398        }
9399        else {
9400          // C++0x [dcl.enum]p5:
9401          //   If the underlying type is not fixed, the type of each enumerator
9402          //   is the type of its initializing value:
9403          //     - If an initializer is specified for an enumerator, the
9404          //       initializing value has the same type as the expression.
9405          EltTy = Val->getType();
9406        }
9407      }
9408    }
9409  }
9410
9411  if (!Val) {
9412    if (Enum->isDependentType())
9413      EltTy = Context.DependentTy;
9414    else if (!LastEnumConst) {
9415      // C++0x [dcl.enum]p5:
9416      //   If the underlying type is not fixed, the type of each enumerator
9417      //   is the type of its initializing value:
9418      //     - If no initializer is specified for the first enumerator, the
9419      //       initializing value has an unspecified integral type.
9420      //
9421      // GCC uses 'int' for its unspecified integral type, as does
9422      // C99 6.7.2.2p3.
9423      if (Enum->isFixed()) {
9424        EltTy = Enum->getIntegerType();
9425      }
9426      else {
9427        EltTy = Context.IntTy;
9428      }
9429    } else {
9430      // Assign the last value + 1.
9431      EnumVal = LastEnumConst->getInitVal();
9432      ++EnumVal;
9433      EltTy = LastEnumConst->getType();
9434
9435      // Check for overflow on increment.
9436      if (EnumVal < LastEnumConst->getInitVal()) {
9437        // C++0x [dcl.enum]p5:
9438        //   If the underlying type is not fixed, the type of each enumerator
9439        //   is the type of its initializing value:
9440        //
9441        //     - Otherwise the type of the initializing value is the same as
9442        //       the type of the initializing value of the preceding enumerator
9443        //       unless the incremented value is not representable in that type,
9444        //       in which case the type is an unspecified integral type
9445        //       sufficient to contain the incremented value. If no such type
9446        //       exists, the program is ill-formed.
9447        QualType T = getNextLargerIntegralType(Context, EltTy);
9448        if (T.isNull() || Enum->isFixed()) {
9449          // There is no integral type larger enough to represent this
9450          // value. Complain, then allow the value to wrap around.
9451          EnumVal = LastEnumConst->getInitVal();
9452          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9453          ++EnumVal;
9454          if (Enum->isFixed())
9455            // When the underlying type is fixed, this is ill-formed.
9456            Diag(IdLoc, diag::err_enumerator_wrapped)
9457              << EnumVal.toString(10)
9458              << EltTy;
9459          else
9460            Diag(IdLoc, diag::warn_enumerator_too_large)
9461              << EnumVal.toString(10);
9462        } else {
9463          EltTy = T;
9464        }
9465
9466        // Retrieve the last enumerator's value, extent that type to the
9467        // type that is supposed to be large enough to represent the incremented
9468        // value, then increment.
9469        EnumVal = LastEnumConst->getInitVal();
9470        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9471        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9472        ++EnumVal;
9473
9474        // If we're not in C++, diagnose the overflow of enumerator values,
9475        // which in C99 means that the enumerator value is not representable in
9476        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9477        // permits enumerator values that are representable in some larger
9478        // integral type.
9479        if (!getLangOptions().CPlusPlus && !T.isNull())
9480          Diag(IdLoc, diag::warn_enum_value_overflow);
9481      } else if (!getLangOptions().CPlusPlus &&
9482                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9483        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9484        Diag(IdLoc, diag::ext_enum_value_not_int)
9485          << EnumVal.toString(10) << 1;
9486      }
9487    }
9488  }
9489
9490  if (!EltTy->isDependentType()) {
9491    // Make the enumerator value match the signedness and size of the
9492    // enumerator's type.
9493    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9494    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9495  }
9496
9497  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9498                                  Val, EnumVal);
9499}
9500
9501
9502Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9503                              SourceLocation IdLoc, IdentifierInfo *Id,
9504                              AttributeList *Attr,
9505                              SourceLocation EqualLoc, Expr *val) {
9506  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9507  EnumConstantDecl *LastEnumConst =
9508    cast_or_null<EnumConstantDecl>(lastEnumConst);
9509  Expr *Val = static_cast<Expr*>(val);
9510
9511  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9512  // we find one that is.
9513  S = getNonFieldDeclScope(S);
9514
9515  // Verify that there isn't already something declared with this name in this
9516  // scope.
9517  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9518                                         ForRedeclaration);
9519  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9520    // Maybe we will complain about the shadowed template parameter.
9521    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9522    // Just pretend that we didn't see the previous declaration.
9523    PrevDecl = 0;
9524  }
9525
9526  if (PrevDecl) {
9527    // When in C++, we may get a TagDecl with the same name; in this case the
9528    // enum constant will 'hide' the tag.
9529    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9530           "Received TagDecl when not in C++!");
9531    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9532      if (isa<EnumConstantDecl>(PrevDecl))
9533        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9534      else
9535        Diag(IdLoc, diag::err_redefinition) << Id;
9536      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9537      return 0;
9538    }
9539  }
9540
9541  // C++ [class.mem]p13:
9542  //   If T is the name of a class, then each of the following shall have a
9543  //   name different from T:
9544  //     - every enumerator of every member of class T that is an enumerated
9545  //       type
9546  if (CXXRecordDecl *Record
9547                      = dyn_cast<CXXRecordDecl>(
9548                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9549    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9550      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9551
9552  EnumConstantDecl *New =
9553    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9554
9555  if (New) {
9556    // Process attributes.
9557    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9558
9559    // Register this decl in the current scope stack.
9560    New->setAccess(TheEnumDecl->getAccess());
9561    PushOnScopeChains(New, S);
9562  }
9563
9564  return New;
9565}
9566
9567void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9568                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9569                         Decl **Elements, unsigned NumElements,
9570                         Scope *S, AttributeList *Attr) {
9571  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9572  QualType EnumType = Context.getTypeDeclType(Enum);
9573
9574  if (Attr)
9575    ProcessDeclAttributeList(S, Enum, Attr);
9576
9577  if (Enum->isDependentType()) {
9578    for (unsigned i = 0; i != NumElements; ++i) {
9579      EnumConstantDecl *ECD =
9580        cast_or_null<EnumConstantDecl>(Elements[i]);
9581      if (!ECD) continue;
9582
9583      ECD->setType(EnumType);
9584    }
9585
9586    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9587    return;
9588  }
9589
9590  // TODO: If the result value doesn't fit in an int, it must be a long or long
9591  // long value.  ISO C does not support this, but GCC does as an extension,
9592  // emit a warning.
9593  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9594  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9595  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9596
9597  // Verify that all the values are okay, compute the size of the values, and
9598  // reverse the list.
9599  unsigned NumNegativeBits = 0;
9600  unsigned NumPositiveBits = 0;
9601
9602  // Keep track of whether all elements have type int.
9603  bool AllElementsInt = true;
9604
9605  for (unsigned i = 0; i != NumElements; ++i) {
9606    EnumConstantDecl *ECD =
9607      cast_or_null<EnumConstantDecl>(Elements[i]);
9608    if (!ECD) continue;  // Already issued a diagnostic.
9609
9610    const llvm::APSInt &InitVal = ECD->getInitVal();
9611
9612    // Keep track of the size of positive and negative values.
9613    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9614      NumPositiveBits = std::max(NumPositiveBits,
9615                                 (unsigned)InitVal.getActiveBits());
9616    else
9617      NumNegativeBits = std::max(NumNegativeBits,
9618                                 (unsigned)InitVal.getMinSignedBits());
9619
9620    // Keep track of whether every enum element has type int (very commmon).
9621    if (AllElementsInt)
9622      AllElementsInt = ECD->getType() == Context.IntTy;
9623  }
9624
9625  // Figure out the type that should be used for this enum.
9626  QualType BestType;
9627  unsigned BestWidth;
9628
9629  // C++0x N3000 [conv.prom]p3:
9630  //   An rvalue of an unscoped enumeration type whose underlying
9631  //   type is not fixed can be converted to an rvalue of the first
9632  //   of the following types that can represent all the values of
9633  //   the enumeration: int, unsigned int, long int, unsigned long
9634  //   int, long long int, or unsigned long long int.
9635  // C99 6.4.4.3p2:
9636  //   An identifier declared as an enumeration constant has type int.
9637  // The C99 rule is modified by a gcc extension
9638  QualType BestPromotionType;
9639
9640  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9641  // -fshort-enums is the equivalent to specifying the packed attribute on all
9642  // enum definitions.
9643  if (LangOpts.ShortEnums)
9644    Packed = true;
9645
9646  if (Enum->isFixed()) {
9647    BestType = BestPromotionType = Enum->getIntegerType();
9648    // We don't need to set BestWidth, because BestType is going to be the type
9649    // of the enumerators, but we do anyway because otherwise some compilers
9650    // warn that it might be used uninitialized.
9651    BestWidth = CharWidth;
9652  }
9653  else if (NumNegativeBits) {
9654    // If there is a negative value, figure out the smallest integer type (of
9655    // int/long/longlong) that fits.
9656    // If it's packed, check also if it fits a char or a short.
9657    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9658      BestType = Context.SignedCharTy;
9659      BestWidth = CharWidth;
9660    } else if (Packed && NumNegativeBits <= ShortWidth &&
9661               NumPositiveBits < ShortWidth) {
9662      BestType = Context.ShortTy;
9663      BestWidth = ShortWidth;
9664    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9665      BestType = Context.IntTy;
9666      BestWidth = IntWidth;
9667    } else {
9668      BestWidth = Context.getTargetInfo().getLongWidth();
9669
9670      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9671        BestType = Context.LongTy;
9672      } else {
9673        BestWidth = Context.getTargetInfo().getLongLongWidth();
9674
9675        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9676          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9677        BestType = Context.LongLongTy;
9678      }
9679    }
9680    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9681  } else {
9682    // If there is no negative value, figure out the smallest type that fits
9683    // all of the enumerator values.
9684    // If it's packed, check also if it fits a char or a short.
9685    if (Packed && NumPositiveBits <= CharWidth) {
9686      BestType = Context.UnsignedCharTy;
9687      BestPromotionType = Context.IntTy;
9688      BestWidth = CharWidth;
9689    } else if (Packed && NumPositiveBits <= ShortWidth) {
9690      BestType = Context.UnsignedShortTy;
9691      BestPromotionType = Context.IntTy;
9692      BestWidth = ShortWidth;
9693    } else if (NumPositiveBits <= IntWidth) {
9694      BestType = Context.UnsignedIntTy;
9695      BestWidth = IntWidth;
9696      BestPromotionType
9697        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9698                           ? Context.UnsignedIntTy : Context.IntTy;
9699    } else if (NumPositiveBits <=
9700               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9701      BestType = Context.UnsignedLongTy;
9702      BestPromotionType
9703        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9704                           ? Context.UnsignedLongTy : Context.LongTy;
9705    } else {
9706      BestWidth = Context.getTargetInfo().getLongLongWidth();
9707      assert(NumPositiveBits <= BestWidth &&
9708             "How could an initializer get larger than ULL?");
9709      BestType = Context.UnsignedLongLongTy;
9710      BestPromotionType
9711        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9712                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9713    }
9714  }
9715
9716  // Loop over all of the enumerator constants, changing their types to match
9717  // the type of the enum if needed.
9718  for (unsigned i = 0; i != NumElements; ++i) {
9719    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9720    if (!ECD) continue;  // Already issued a diagnostic.
9721
9722    // Standard C says the enumerators have int type, but we allow, as an
9723    // extension, the enumerators to be larger than int size.  If each
9724    // enumerator value fits in an int, type it as an int, otherwise type it the
9725    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9726    // that X has type 'int', not 'unsigned'.
9727
9728    // Determine whether the value fits into an int.
9729    llvm::APSInt InitVal = ECD->getInitVal();
9730
9731    // If it fits into an integer type, force it.  Otherwise force it to match
9732    // the enum decl type.
9733    QualType NewTy;
9734    unsigned NewWidth;
9735    bool NewSign;
9736    if (!getLangOptions().CPlusPlus &&
9737        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9738      NewTy = Context.IntTy;
9739      NewWidth = IntWidth;
9740      NewSign = true;
9741    } else if (ECD->getType() == BestType) {
9742      // Already the right type!
9743      if (getLangOptions().CPlusPlus)
9744        // C++ [dcl.enum]p4: Following the closing brace of an
9745        // enum-specifier, each enumerator has the type of its
9746        // enumeration.
9747        ECD->setType(EnumType);
9748      continue;
9749    } else {
9750      NewTy = BestType;
9751      NewWidth = BestWidth;
9752      NewSign = BestType->isSignedIntegerOrEnumerationType();
9753    }
9754
9755    // Adjust the APSInt value.
9756    InitVal = InitVal.extOrTrunc(NewWidth);
9757    InitVal.setIsSigned(NewSign);
9758    ECD->setInitVal(InitVal);
9759
9760    // Adjust the Expr initializer and type.
9761    if (ECD->getInitExpr() &&
9762        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9763      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9764                                                CK_IntegralCast,
9765                                                ECD->getInitExpr(),
9766                                                /*base paths*/ 0,
9767                                                VK_RValue));
9768    if (getLangOptions().CPlusPlus)
9769      // C++ [dcl.enum]p4: Following the closing brace of an
9770      // enum-specifier, each enumerator has the type of its
9771      // enumeration.
9772      ECD->setType(EnumType);
9773    else
9774      ECD->setType(NewTy);
9775  }
9776
9777  Enum->completeDefinition(BestType, BestPromotionType,
9778                           NumPositiveBits, NumNegativeBits);
9779}
9780
9781Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9782                                  SourceLocation StartLoc,
9783                                  SourceLocation EndLoc) {
9784  StringLiteral *AsmString = cast<StringLiteral>(expr);
9785
9786  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9787                                                   AsmString, StartLoc,
9788                                                   EndLoc);
9789  CurContext->addDecl(New);
9790  return New;
9791}
9792
9793DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9794                                   IdentifierInfo &ModuleName,
9795                                   SourceLocation ModuleNameLoc) {
9796  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9797                                                     ModuleName, ModuleNameLoc);
9798  if (!Module)
9799    return true;
9800
9801  // FIXME: Actually create a declaration to describe the module import.
9802  (void)Module;
9803  return DeclResult((Decl *)0);
9804}
9805
9806void
9807Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9808                                         SourceLocation ModulePrivateKeyword) {
9809  assert(!Old->isModulePrivate() && "Old is module-private!");
9810
9811  Diag(New->getLocation(), diag::err_module_private_follows_public)
9812    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9813  Diag(Old->getLocation(), diag::note_previous_declaration)
9814    << Old->getDeclName();
9815
9816  // Drop the __module_private__ from the new declaration, since it's invalid.
9817  New->setModulePrivate(false);
9818}
9819
9820void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9821                             SourceLocation PragmaLoc,
9822                             SourceLocation NameLoc) {
9823  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9824
9825  if (PrevDecl) {
9826    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9827  } else {
9828    (void)WeakUndeclaredIdentifiers.insert(
9829      std::pair<IdentifierInfo*,WeakInfo>
9830        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9831  }
9832}
9833
9834void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9835                                IdentifierInfo* AliasName,
9836                                SourceLocation PragmaLoc,
9837                                SourceLocation NameLoc,
9838                                SourceLocation AliasNameLoc) {
9839  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9840                                    LookupOrdinaryName);
9841  WeakInfo W = WeakInfo(Name, NameLoc);
9842
9843  if (PrevDecl) {
9844    if (!PrevDecl->hasAttr<AliasAttr>())
9845      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9846        DeclApplyPragmaWeak(TUScope, ND, W);
9847  } else {
9848    (void)WeakUndeclaredIdentifiers.insert(
9849      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9850  }
9851}
9852
9853Decl *Sema::getObjCDeclContext() const {
9854  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9855}
9856
9857AvailabilityResult Sema::getCurContextAvailability() const {
9858  const Decl *D = cast<Decl>(getCurLexicalContext());
9859  // A category implicitly has the availability of the interface.
9860  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9861    D = CatD->getClassInterface();
9862
9863  return D->getAvailability();
9864}
9865