SemaDecl.cpp revision 4684861161d3bee064fb167ad9dd35970b7d04fc
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous:
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  assert(IIDecl && "Didn't find decl");
141
142  QualType T;
143  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144    // C++ [temp.local]p2:
145    //   Within the scope of a class template specialization or
146    //   partial specialization, when the injected-class-name is
147    //   not followed by a <, it is equivalent to the
148    //   injected-class-name followed by the template-argument s
149    //   of the class template specialization or partial
150    //   specialization enclosed in <>.
151    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
152      if (RD->isInjectedClassName())
153        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
154          T = Template->getInjectedClassNameType(Context);
155
156    if (T.isNull())
157      T = Context.getTypeDeclType(TD);
158
159    if (SS)
160      T = getQualifiedNameType(*SS, T);
161
162  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
163    T = Context.getObjCInterfaceType(IDecl);
164  } else
165    return 0;
166
167  return T.getAsOpaquePtr();
168}
169
170/// isTagName() - This method is called *for error recovery purposes only*
171/// to determine if the specified name is a valid tag name ("struct foo").  If
172/// so, this returns the TST for the tag corresponding to it (TST_enum,
173/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
174/// where the user forgot to specify the tag.
175DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
176  // Do a tag name lookup in this scope.
177  LookupResult R;
178  LookupName(R, S, &II, LookupTagName, false, false);
179  if (R.getKind() == LookupResult::Found)
180    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
181      switch (TD->getTagKind()) {
182      case TagDecl::TK_struct: return DeclSpec::TST_struct;
183      case TagDecl::TK_union:  return DeclSpec::TST_union;
184      case TagDecl::TK_class:  return DeclSpec::TST_class;
185      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
186      }
187    }
188
189  return DeclSpec::TST_unspecified;
190}
191
192bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
193                                   SourceLocation IILoc,
194                                   Scope *S,
195                                   const CXXScopeSpec *SS,
196                                   TypeTy *&SuggestedType) {
197  // We don't have anything to suggest (yet).
198  SuggestedType = 0;
199
200  // FIXME: Should we move the logic that tries to recover from a missing tag
201  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
202
203  if (!SS)
204    Diag(IILoc, diag::err_unknown_typename) << &II;
205  else if (DeclContext *DC = computeDeclContext(*SS, false))
206    Diag(IILoc, diag::err_typename_nested_not_found)
207      << &II << DC << SS->getRange();
208  else if (isDependentScopeSpecifier(*SS)) {
209    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
210      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
211      << SourceRange(SS->getRange().getBegin(), IILoc)
212      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
213                                               "typename ");
214    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
215  } else {
216    assert(SS && SS->isInvalid() &&
217           "Invalid scope specifier has already been diagnosed");
218  }
219
220  return true;
221}
222
223// Determines the context to return to after temporarily entering a
224// context.  This depends in an unnecessarily complicated way on the
225// exact ordering of callbacks from the parser.
226DeclContext *Sema::getContainingDC(DeclContext *DC) {
227
228  // Functions defined inline within classes aren't parsed until we've
229  // finished parsing the top-level class, so the top-level class is
230  // the context we'll need to return to.
231  if (isa<FunctionDecl>(DC)) {
232    DC = DC->getLexicalParent();
233
234    // A function not defined within a class will always return to its
235    // lexical context.
236    if (!isa<CXXRecordDecl>(DC))
237      return DC;
238
239    // A C++ inline method/friend is parsed *after* the topmost class
240    // it was declared in is fully parsed ("complete");  the topmost
241    // class is the context we need to return to.
242    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
243      DC = RD;
244
245    // Return the declaration context of the topmost class the inline method is
246    // declared in.
247    return DC;
248  }
249
250  if (isa<ObjCMethodDecl>(DC))
251    return Context.getTranslationUnitDecl();
252
253  return DC->getLexicalParent();
254}
255
256void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
257  assert(getContainingDC(DC) == CurContext &&
258      "The next DeclContext should be lexically contained in the current one.");
259  CurContext = DC;
260  S->setEntity(DC);
261}
262
263void Sema::PopDeclContext() {
264  assert(CurContext && "DeclContext imbalance!");
265
266  CurContext = getContainingDC(CurContext);
267}
268
269/// EnterDeclaratorContext - Used when we must lookup names in the context
270/// of a declarator's nested name specifier.
271void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
272  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
273  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
274  CurContext = DC;
275  assert(CurContext && "No context?");
276  S->setEntity(CurContext);
277}
278
279void Sema::ExitDeclaratorContext(Scope *S) {
280  S->setEntity(PreDeclaratorDC);
281  PreDeclaratorDC = 0;
282
283  // Reset CurContext to the nearest enclosing context.
284  while (!S->getEntity() && S->getParent())
285    S = S->getParent();
286  CurContext = static_cast<DeclContext*>(S->getEntity());
287  assert(CurContext && "No context?");
288}
289
290/// \brief Determine whether we allow overloading of the function
291/// PrevDecl with another declaration.
292///
293/// This routine determines whether overloading is possible, not
294/// whether some new function is actually an overload. It will return
295/// true in C++ (where we can always provide overloads) or, as an
296/// extension, in C when the previous function is already an
297/// overloaded function declaration or has the "overloadable"
298/// attribute.
299static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
300  if (Context.getLangOptions().CPlusPlus)
301    return true;
302
303  if (isa<OverloadedFunctionDecl>(PrevDecl))
304    return true;
305
306  return PrevDecl->getAttr<OverloadableAttr>() != 0;
307}
308
309/// Add this decl to the scope shadowed decl chains.
310void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
311  // Move up the scope chain until we find the nearest enclosing
312  // non-transparent context. The declaration will be introduced into this
313  // scope.
314  while (S->getEntity() &&
315         ((DeclContext *)S->getEntity())->isTransparentContext())
316    S = S->getParent();
317
318  // Add scoped declarations into their context, so that they can be
319  // found later. Declarations without a context won't be inserted
320  // into any context.
321  if (AddToContext)
322    CurContext->addDecl(D);
323
324  // Out-of-line function and variable definitions should not be pushed into
325  // scope.
326  if ((isa<FunctionTemplateDecl>(D) &&
327       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
328      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
329      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
330    return;
331
332  // If this replaces anything in the current scope,
333  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
334                               IEnd = IdResolver.end();
335  for (; I != IEnd; ++I) {
336    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
337      S->RemoveDecl(DeclPtrTy::make(*I));
338      IdResolver.RemoveDecl(*I);
339
340      // Should only need to replace one decl.
341      break;
342    }
343  }
344
345  S->AddDecl(DeclPtrTy::make(D));
346  IdResolver.AddDecl(D);
347}
348
349bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
350  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
351    // Look inside the overload set to determine if any of the declarations
352    // are in scope. (Possibly) build a new overload set containing only
353    // those declarations that are in scope.
354    OverloadedFunctionDecl *NewOvl = 0;
355    bool FoundInScope = false;
356    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
357         FEnd = Ovl->function_end();
358         F != FEnd; ++F) {
359      NamedDecl *FD = F->get();
360      if (!isDeclInScope(FD, Ctx, S)) {
361        if (!NewOvl && F != Ovl->function_begin()) {
362          NewOvl = OverloadedFunctionDecl::Create(Context,
363                                                  F->get()->getDeclContext(),
364                                                  F->get()->getDeclName());
365          D = NewOvl;
366          for (OverloadedFunctionDecl::function_iterator
367               First = Ovl->function_begin();
368               First != F; ++First)
369            NewOvl->addOverload(*First);
370        }
371      } else {
372        FoundInScope = true;
373        if (NewOvl)
374          NewOvl->addOverload(*F);
375      }
376    }
377
378    return FoundInScope;
379  }
380
381  return IdResolver.isDeclInScope(D, Ctx, Context, S);
382}
383
384void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
385  if (S->decl_empty()) return;
386  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
387         "Scope shouldn't contain decls!");
388
389  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
390       I != E; ++I) {
391    Decl *TmpD = (*I).getAs<Decl>();
392    assert(TmpD && "This decl didn't get pushed??");
393
394    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
395    NamedDecl *D = cast<NamedDecl>(TmpD);
396
397    if (!D->getDeclName()) continue;
398
399    // Diagnose unused variables in this scope.
400    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
401        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
402        D->getDeclContext()->isFunctionOrMethod())
403	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
404
405    // Remove this name from our lexical scope.
406    IdResolver.RemoveDecl(D);
407  }
408}
409
410/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
411/// return 0 if one not found.
412ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
413  // The third "scope" argument is 0 since we aren't enabling lazy built-in
414  // creation from this context.
415  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
416
417  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
418}
419
420/// getNonFieldDeclScope - Retrieves the innermost scope, starting
421/// from S, where a non-field would be declared. This routine copes
422/// with the difference between C and C++ scoping rules in structs and
423/// unions. For example, the following code is well-formed in C but
424/// ill-formed in C++:
425/// @code
426/// struct S6 {
427///   enum { BAR } e;
428/// };
429///
430/// void test_S6() {
431///   struct S6 a;
432///   a.e = BAR;
433/// }
434/// @endcode
435/// For the declaration of BAR, this routine will return a different
436/// scope. The scope S will be the scope of the unnamed enumeration
437/// within S6. In C++, this routine will return the scope associated
438/// with S6, because the enumeration's scope is a transparent
439/// context but structures can contain non-field names. In C, this
440/// routine will return the translation unit scope, since the
441/// enumeration's scope is a transparent context and structures cannot
442/// contain non-field names.
443Scope *Sema::getNonFieldDeclScope(Scope *S) {
444  while (((S->getFlags() & Scope::DeclScope) == 0) ||
445         (S->getEntity() &&
446          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
447         (S->isClassScope() && !getLangOptions().CPlusPlus))
448    S = S->getParent();
449  return S;
450}
451
452void Sema::InitBuiltinVaListType() {
453  if (!Context.getBuiltinVaListType().isNull())
454    return;
455
456  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
457  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
458  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
459  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
460}
461
462/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
463/// file scope.  lazily create a decl for it. ForRedeclaration is true
464/// if we're creating this built-in in anticipation of redeclaring the
465/// built-in.
466NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
467                                     Scope *S, bool ForRedeclaration,
468                                     SourceLocation Loc) {
469  Builtin::ID BID = (Builtin::ID)bid;
470
471  if (Context.BuiltinInfo.hasVAListUse(BID))
472    InitBuiltinVaListType();
473
474  ASTContext::GetBuiltinTypeError Error;
475  QualType R = Context.GetBuiltinType(BID, Error);
476  switch (Error) {
477  case ASTContext::GE_None:
478    // Okay
479    break;
480
481  case ASTContext::GE_Missing_stdio:
482    if (ForRedeclaration)
483      Diag(Loc, diag::err_implicit_decl_requires_stdio)
484        << Context.BuiltinInfo.GetName(BID);
485    return 0;
486
487  case ASTContext::GE_Missing_setjmp:
488    if (ForRedeclaration)
489      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
490        << Context.BuiltinInfo.GetName(BID);
491    return 0;
492  }
493
494  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
495    Diag(Loc, diag::ext_implicit_lib_function_decl)
496      << Context.BuiltinInfo.GetName(BID)
497      << R;
498    if (Context.BuiltinInfo.getHeaderName(BID) &&
499        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
500          != Diagnostic::Ignored)
501      Diag(Loc, diag::note_please_include_header)
502        << Context.BuiltinInfo.getHeaderName(BID)
503        << Context.BuiltinInfo.GetName(BID);
504  }
505
506  FunctionDecl *New = FunctionDecl::Create(Context,
507                                           Context.getTranslationUnitDecl(),
508                                           Loc, II, R, /*DInfo=*/0,
509                                           FunctionDecl::Extern, false,
510                                           /*hasPrototype=*/true);
511  New->setImplicit();
512
513  // Create Decl objects for each parameter, adding them to the
514  // FunctionDecl.
515  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
516    llvm::SmallVector<ParmVarDecl*, 16> Params;
517    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
518      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
519                                           FT->getArgType(i), /*DInfo=*/0,
520                                           VarDecl::None, 0));
521    New->setParams(Context, Params.data(), Params.size());
522  }
523
524  AddKnownFunctionAttributes(New);
525
526  // TUScope is the translation-unit scope to insert this function into.
527  // FIXME: This is hideous. We need to teach PushOnScopeChains to
528  // relate Scopes to DeclContexts, and probably eliminate CurContext
529  // entirely, but we're not there yet.
530  DeclContext *SavedContext = CurContext;
531  CurContext = Context.getTranslationUnitDecl();
532  PushOnScopeChains(New, TUScope);
533  CurContext = SavedContext;
534  return New;
535}
536
537/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
538/// same name and scope as a previous declaration 'Old'.  Figure out
539/// how to resolve this situation, merging decls or emitting
540/// diagnostics as appropriate. If there was an error, set New to be invalid.
541///
542void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
543  // If either decl is known invalid already, set the new one to be invalid and
544  // don't bother doing any merging checks.
545  if (New->isInvalidDecl() || OldD->isInvalidDecl())
546    return New->setInvalidDecl();
547
548  // Allow multiple definitions for ObjC built-in typedefs.
549  // FIXME: Verify the underlying types are equivalent!
550  if (getLangOptions().ObjC1) {
551    const IdentifierInfo *TypeID = New->getIdentifier();
552    switch (TypeID->getLength()) {
553    default: break;
554    case 2:
555      if (!TypeID->isStr("id"))
556        break;
557      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
558      // Install the built-in type for 'id', ignoring the current definition.
559      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
560      return;
561    case 5:
562      if (!TypeID->isStr("Class"))
563        break;
564      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
565      // Install the built-in type for 'Class', ignoring the current definition.
566      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
567      return;
568    case 3:
569      if (!TypeID->isStr("SEL"))
570        break;
571      Context.setObjCSelType(Context.getTypeDeclType(New));
572      return;
573    case 8:
574      if (!TypeID->isStr("Protocol"))
575        break;
576      Context.setObjCProtoType(New->getUnderlyingType());
577      return;
578    }
579    // Fall through - the typedef name was not a builtin type.
580  }
581  // Verify the old decl was also a type.
582  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
583  if (!Old) {
584    Diag(New->getLocation(), diag::err_redefinition_different_kind)
585      << New->getDeclName();
586    if (OldD->getLocation().isValid())
587      Diag(OldD->getLocation(), diag::note_previous_definition);
588    return New->setInvalidDecl();
589  }
590
591  // Determine the "old" type we'll use for checking and diagnostics.
592  QualType OldType;
593  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
594    OldType = OldTypedef->getUnderlyingType();
595  else
596    OldType = Context.getTypeDeclType(Old);
597
598  // If the typedef types are not identical, reject them in all languages and
599  // with any extensions enabled.
600
601  if (OldType != New->getUnderlyingType() &&
602      Context.getCanonicalType(OldType) !=
603      Context.getCanonicalType(New->getUnderlyingType())) {
604    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
605      << New->getUnderlyingType() << OldType;
606    if (Old->getLocation().isValid())
607      Diag(Old->getLocation(), diag::note_previous_definition);
608    return New->setInvalidDecl();
609  }
610
611  if (getLangOptions().Microsoft)
612    return;
613
614  // C++ [dcl.typedef]p2:
615  //   In a given non-class scope, a typedef specifier can be used to
616  //   redefine the name of any type declared in that scope to refer
617  //   to the type to which it already refers.
618  if (getLangOptions().CPlusPlus) {
619    if (!isa<CXXRecordDecl>(CurContext))
620      return;
621    Diag(New->getLocation(), diag::err_redefinition)
622      << New->getDeclName();
623    Diag(Old->getLocation(), diag::note_previous_definition);
624    return New->setInvalidDecl();
625  }
626
627  // If we have a redefinition of a typedef in C, emit a warning.  This warning
628  // is normally mapped to an error, but can be controlled with
629  // -Wtypedef-redefinition.  If either the original or the redefinition is
630  // in a system header, don't emit this for compatibility with GCC.
631  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
632      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
633       Context.getSourceManager().isInSystemHeader(New->getLocation())))
634    return;
635
636  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
637    << New->getDeclName();
638  Diag(Old->getLocation(), diag::note_previous_definition);
639  return;
640}
641
642/// DeclhasAttr - returns true if decl Declaration already has the target
643/// attribute.
644static bool
645DeclHasAttr(const Decl *decl, const Attr *target) {
646  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
647    if (attr->getKind() == target->getKind())
648      return true;
649
650  return false;
651}
652
653/// MergeAttributes - append attributes from the Old decl to the New one.
654static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
655  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
656    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
657      Attr *NewAttr = attr->clone(C);
658      NewAttr->setInherited(true);
659      New->addAttr(NewAttr);
660    }
661  }
662}
663
664/// Used in MergeFunctionDecl to keep track of function parameters in
665/// C.
666struct GNUCompatibleParamWarning {
667  ParmVarDecl *OldParm;
668  ParmVarDecl *NewParm;
669  QualType PromotedType;
670};
671
672/// MergeFunctionDecl - We just parsed a function 'New' from
673/// declarator D which has the same name and scope as a previous
674/// declaration 'Old'.  Figure out how to resolve this situation,
675/// merging decls or emitting diagnostics as appropriate.
676///
677/// In C++, New and Old must be declarations that are not
678/// overloaded. Use IsOverload to determine whether New and Old are
679/// overloaded, and to select the Old declaration that New should be
680/// merged with.
681///
682/// Returns true if there was an error, false otherwise.
683bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
684  assert(!isa<OverloadedFunctionDecl>(OldD) &&
685         "Cannot merge with an overloaded function declaration");
686
687  // Verify the old decl was also a function.
688  FunctionDecl *Old = 0;
689  if (FunctionTemplateDecl *OldFunctionTemplate
690        = dyn_cast<FunctionTemplateDecl>(OldD))
691    Old = OldFunctionTemplate->getTemplatedDecl();
692  else
693    Old = dyn_cast<FunctionDecl>(OldD);
694  if (!Old) {
695    Diag(New->getLocation(), diag::err_redefinition_different_kind)
696      << New->getDeclName();
697    Diag(OldD->getLocation(), diag::note_previous_definition);
698    return true;
699  }
700
701  // Determine whether the previous declaration was a definition,
702  // implicit declaration, or a declaration.
703  diag::kind PrevDiag;
704  if (Old->isThisDeclarationADefinition())
705    PrevDiag = diag::note_previous_definition;
706  else if (Old->isImplicit())
707    PrevDiag = diag::note_previous_implicit_declaration;
708  else
709    PrevDiag = diag::note_previous_declaration;
710
711  QualType OldQType = Context.getCanonicalType(Old->getType());
712  QualType NewQType = Context.getCanonicalType(New->getType());
713
714  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
715      New->getStorageClass() == FunctionDecl::Static &&
716      Old->getStorageClass() != FunctionDecl::Static) {
717    Diag(New->getLocation(), diag::err_static_non_static)
718      << New;
719    Diag(Old->getLocation(), PrevDiag);
720    return true;
721  }
722
723  if (getLangOptions().CPlusPlus) {
724    // (C++98 13.1p2):
725    //   Certain function declarations cannot be overloaded:
726    //     -- Function declarations that differ only in the return type
727    //        cannot be overloaded.
728    QualType OldReturnType
729      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
730    QualType NewReturnType
731      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
732    if (OldReturnType != NewReturnType) {
733      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
734      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735      return true;
736    }
737
738    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
739    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
740    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
741        NewMethod->getLexicalDeclContext()->isRecord()) {
742      //    -- Member function declarations with the same name and the
743      //       same parameter types cannot be overloaded if any of them
744      //       is a static member function declaration.
745      if (OldMethod->isStatic() || NewMethod->isStatic()) {
746        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
747        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
748        return true;
749      }
750
751      // C++ [class.mem]p1:
752      //   [...] A member shall not be declared twice in the
753      //   member-specification, except that a nested class or member
754      //   class template can be declared and then later defined.
755      unsigned NewDiag;
756      if (isa<CXXConstructorDecl>(OldMethod))
757        NewDiag = diag::err_constructor_redeclared;
758      else if (isa<CXXDestructorDecl>(NewMethod))
759        NewDiag = diag::err_destructor_redeclared;
760      else if (isa<CXXConversionDecl>(NewMethod))
761        NewDiag = diag::err_conv_function_redeclared;
762      else
763        NewDiag = diag::err_member_redeclared;
764
765      Diag(New->getLocation(), NewDiag);
766      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
767    }
768
769    // (C++98 8.3.5p3):
770    //   All declarations for a function shall agree exactly in both the
771    //   return type and the parameter-type-list.
772    if (OldQType == NewQType)
773      return MergeCompatibleFunctionDecls(New, Old);
774
775    // Fall through for conflicting redeclarations and redefinitions.
776  }
777
778  // C: Function types need to be compatible, not identical. This handles
779  // duplicate function decls like "void f(int); void f(enum X);" properly.
780  if (!getLangOptions().CPlusPlus &&
781      Context.typesAreCompatible(OldQType, NewQType)) {
782    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
783    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
784    const FunctionProtoType *OldProto = 0;
785    if (isa<FunctionNoProtoType>(NewFuncType) &&
786        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
787      // The old declaration provided a function prototype, but the
788      // new declaration does not. Merge in the prototype.
789      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
790      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
791                                                 OldProto->arg_type_end());
792      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
793                                         ParamTypes.data(), ParamTypes.size(),
794                                         OldProto->isVariadic(),
795                                         OldProto->getTypeQuals());
796      New->setType(NewQType);
797      New->setHasInheritedPrototype();
798
799      // Synthesize a parameter for each argument type.
800      llvm::SmallVector<ParmVarDecl*, 16> Params;
801      for (FunctionProtoType::arg_type_iterator
802             ParamType = OldProto->arg_type_begin(),
803             ParamEnd = OldProto->arg_type_end();
804           ParamType != ParamEnd; ++ParamType) {
805        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
806                                                 SourceLocation(), 0,
807                                                 *ParamType, /*DInfo=*/0,
808                                                 VarDecl::None, 0);
809        Param->setImplicit();
810        Params.push_back(Param);
811      }
812
813      New->setParams(Context, Params.data(), Params.size());
814    }
815
816    return MergeCompatibleFunctionDecls(New, Old);
817  }
818
819  // GNU C permits a K&R definition to follow a prototype declaration
820  // if the declared types of the parameters in the K&R definition
821  // match the types in the prototype declaration, even when the
822  // promoted types of the parameters from the K&R definition differ
823  // from the types in the prototype. GCC then keeps the types from
824  // the prototype.
825  //
826  // If a variadic prototype is followed by a non-variadic K&R definition,
827  // the K&R definition becomes variadic.  This is sort of an edge case, but
828  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
829  // C99 6.9.1p8.
830  if (!getLangOptions().CPlusPlus &&
831      Old->hasPrototype() && !New->hasPrototype() &&
832      New->getType()->getAs<FunctionProtoType>() &&
833      Old->getNumParams() == New->getNumParams()) {
834    llvm::SmallVector<QualType, 16> ArgTypes;
835    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
836    const FunctionProtoType *OldProto
837      = Old->getType()->getAs<FunctionProtoType>();
838    const FunctionProtoType *NewProto
839      = New->getType()->getAs<FunctionProtoType>();
840
841    // Determine whether this is the GNU C extension.
842    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
843                                               NewProto->getResultType());
844    bool LooseCompatible = !MergedReturn.isNull();
845    for (unsigned Idx = 0, End = Old->getNumParams();
846         LooseCompatible && Idx != End; ++Idx) {
847      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
848      ParmVarDecl *NewParm = New->getParamDecl(Idx);
849      if (Context.typesAreCompatible(OldParm->getType(),
850                                     NewProto->getArgType(Idx))) {
851        ArgTypes.push_back(NewParm->getType());
852      } else if (Context.typesAreCompatible(OldParm->getType(),
853                                            NewParm->getType())) {
854        GNUCompatibleParamWarning Warn
855          = { OldParm, NewParm, NewProto->getArgType(Idx) };
856        Warnings.push_back(Warn);
857        ArgTypes.push_back(NewParm->getType());
858      } else
859        LooseCompatible = false;
860    }
861
862    if (LooseCompatible) {
863      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
864        Diag(Warnings[Warn].NewParm->getLocation(),
865             diag::ext_param_promoted_not_compatible_with_prototype)
866          << Warnings[Warn].PromotedType
867          << Warnings[Warn].OldParm->getType();
868        Diag(Warnings[Warn].OldParm->getLocation(),
869             diag::note_previous_declaration);
870      }
871
872      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
873                                           ArgTypes.size(),
874                                           OldProto->isVariadic(), 0));
875      return MergeCompatibleFunctionDecls(New, Old);
876    }
877
878    // Fall through to diagnose conflicting types.
879  }
880
881  // A function that has already been declared has been redeclared or defined
882  // with a different type- show appropriate diagnostic
883  if (unsigned BuiltinID = Old->getBuiltinID()) {
884    // The user has declared a builtin function with an incompatible
885    // signature.
886    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
887      // The function the user is redeclaring is a library-defined
888      // function like 'malloc' or 'printf'. Warn about the
889      // redeclaration, then pretend that we don't know about this
890      // library built-in.
891      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
892      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
893        << Old << Old->getType();
894      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
895      Old->setInvalidDecl();
896      return false;
897    }
898
899    PrevDiag = diag::note_previous_builtin_declaration;
900  }
901
902  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
903  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
904  return true;
905}
906
907/// \brief Completes the merge of two function declarations that are
908/// known to be compatible.
909///
910/// This routine handles the merging of attributes and other
911/// properties of function declarations form the old declaration to
912/// the new declaration, once we know that New is in fact a
913/// redeclaration of Old.
914///
915/// \returns false
916bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
917  // Merge the attributes
918  MergeAttributes(New, Old, Context);
919
920  // Merge the storage class.
921  if (Old->getStorageClass() != FunctionDecl::Extern &&
922      Old->getStorageClass() != FunctionDecl::None)
923    New->setStorageClass(Old->getStorageClass());
924
925  // Merge "pure" flag.
926  if (Old->isPure())
927    New->setPure();
928
929  // Merge the "deleted" flag.
930  if (Old->isDeleted())
931    New->setDeleted();
932
933  if (getLangOptions().CPlusPlus)
934    return MergeCXXFunctionDecl(New, Old);
935
936  return false;
937}
938
939/// MergeVarDecl - We just parsed a variable 'New' which has the same name
940/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
941/// situation, merging decls or emitting diagnostics as appropriate.
942///
943/// Tentative definition rules (C99 6.9.2p2) are checked by
944/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
945/// definitions here, since the initializer hasn't been attached.
946///
947void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
948  // If either decl is invalid, make sure the new one is marked invalid and
949  // don't do any other checking.
950  if (New->isInvalidDecl() || OldD->isInvalidDecl())
951    return New->setInvalidDecl();
952
953  // Verify the old decl was also a variable.
954  VarDecl *Old = dyn_cast<VarDecl>(OldD);
955  if (!Old) {
956    Diag(New->getLocation(), diag::err_redefinition_different_kind)
957      << New->getDeclName();
958    Diag(OldD->getLocation(), diag::note_previous_definition);
959    return New->setInvalidDecl();
960  }
961
962  MergeAttributes(New, Old, Context);
963
964  // Merge the types
965  QualType MergedT;
966  if (getLangOptions().CPlusPlus) {
967    if (Context.hasSameType(New->getType(), Old->getType()))
968      MergedT = New->getType();
969    // C++ [basic.types]p7:
970    //   [...] The declared type of an array object might be an array of
971    //   unknown size and therefore be incomplete at one point in a
972    //   translation unit and complete later on; [...]
973    else if (Old->getType()->isIncompleteArrayType() &&
974             New->getType()->isArrayType()) {
975      CanQual<ArrayType> OldArray
976        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
977      CanQual<ArrayType> NewArray
978        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
979      if (OldArray->getElementType() == NewArray->getElementType())
980        MergedT = New->getType();
981    }
982  } else {
983    MergedT = Context.mergeTypes(New->getType(), Old->getType());
984  }
985  if (MergedT.isNull()) {
986    Diag(New->getLocation(), diag::err_redefinition_different_type)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991  New->setType(MergedT);
992
993  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
994  if (New->getStorageClass() == VarDecl::Static &&
995      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
996    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
997    Diag(Old->getLocation(), diag::note_previous_definition);
998    return New->setInvalidDecl();
999  }
1000  // C99 6.2.2p4:
1001  //   For an identifier declared with the storage-class specifier
1002  //   extern in a scope in which a prior declaration of that
1003  //   identifier is visible,23) if the prior declaration specifies
1004  //   internal or external linkage, the linkage of the identifier at
1005  //   the later declaration is the same as the linkage specified at
1006  //   the prior declaration. If no prior declaration is visible, or
1007  //   if the prior declaration specifies no linkage, then the
1008  //   identifier has external linkage.
1009  if (New->hasExternalStorage() && Old->hasLinkage())
1010    /* Okay */;
1011  else if (New->getStorageClass() != VarDecl::Static &&
1012           Old->getStorageClass() == VarDecl::Static) {
1013    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1019
1020  // FIXME: The test for external storage here seems wrong? We still
1021  // need to check for mismatches.
1022  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1023      // Don't complain about out-of-line definitions of static members.
1024      !(Old->getLexicalDeclContext()->isRecord() &&
1025        !New->getLexicalDeclContext()->isRecord())) {
1026    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1027    Diag(Old->getLocation(), diag::note_previous_definition);
1028    return New->setInvalidDecl();
1029  }
1030
1031  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1032    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1033    Diag(Old->getLocation(), diag::note_previous_definition);
1034  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1035    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037  }
1038
1039  // Keep a chain of previous declarations.
1040  New->setPreviousDeclaration(Old);
1041}
1042
1043/// CheckFallThrough - Check that we don't fall off the end of a
1044/// Statement that should return a value.
1045///
1046/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1047/// MaybeFallThrough iff we might or might not fall off the end,
1048/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1049/// return.  We assume NeverFallThrough iff we never fall off the end of the
1050/// statement but we may return.  We assume that functions not marked noreturn
1051/// will return.
1052Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1053  // FIXME: Eventually share this CFG object when we have other warnings based
1054  // of the CFG.  This can be done using AnalysisContext.
1055  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1056
1057  // FIXME: They should never return 0, fix that, delete this code.
1058  if (cfg == 0)
1059    // FIXME: This should be NeverFallThrough
1060    return NeverFallThroughOrReturn;
1061  // The CFG leaves in dead things, and we don't want to dead code paths to
1062  // confuse us, so we mark all live things first.
1063  std::queue<CFGBlock*> workq;
1064  llvm::BitVector live(cfg->getNumBlockIDs());
1065  // Prep work queue
1066  workq.push(&cfg->getEntry());
1067  // Solve
1068  while (!workq.empty()) {
1069    CFGBlock *item = workq.front();
1070    workq.pop();
1071    live.set(item->getBlockID());
1072    for (CFGBlock::succ_iterator I=item->succ_begin(),
1073           E=item->succ_end();
1074         I != E;
1075         ++I) {
1076      if ((*I) && !live[(*I)->getBlockID()]) {
1077        live.set((*I)->getBlockID());
1078        workq.push(*I);
1079      }
1080    }
1081  }
1082
1083  // Now we know what is live, we check the live precessors of the exit block
1084  // and look for fall through paths, being careful to ignore normal returns,
1085  // and exceptional paths.
1086  bool HasLiveReturn = false;
1087  bool HasFakeEdge = false;
1088  bool HasPlainEdge = false;
1089  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1090         E = cfg->getExit().pred_end();
1091       I != E;
1092       ++I) {
1093    CFGBlock& B = **I;
1094    if (!live[B.getBlockID()])
1095      continue;
1096    if (B.size() == 0) {
1097      // A labeled empty statement, or the entry block...
1098      HasPlainEdge = true;
1099      continue;
1100    }
1101    Stmt *S = B[B.size()-1];
1102    if (isa<ReturnStmt>(S)) {
1103      HasLiveReturn = true;
1104      continue;
1105    }
1106    if (isa<ObjCAtThrowStmt>(S)) {
1107      HasFakeEdge = true;
1108      continue;
1109    }
1110    if (isa<CXXThrowExpr>(S)) {
1111      HasFakeEdge = true;
1112      continue;
1113    }
1114    bool NoReturnEdge = false;
1115    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1116      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1117      if (CEE->getType().getNoReturnAttr()) {
1118        NoReturnEdge = true;
1119        HasFakeEdge = true;
1120      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1121        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1122          if (FD->hasAttr<NoReturnAttr>()) {
1123            NoReturnEdge = true;
1124            HasFakeEdge = true;
1125          }
1126        }
1127      }
1128    }
1129    // FIXME: Add noreturn message sends.
1130    if (NoReturnEdge == false)
1131      HasPlainEdge = true;
1132  }
1133  if (!HasPlainEdge) {
1134    if (HasLiveReturn)
1135      return NeverFallThrough;
1136    return NeverFallThroughOrReturn;
1137  }
1138  if (HasFakeEdge || HasLiveReturn)
1139    return MaybeFallThrough;
1140  // This says AlwaysFallThrough for calls to functions that are not marked
1141  // noreturn, that don't return.  If people would like this warning to be more
1142  // accurate, such functions should be marked as noreturn.
1143  return AlwaysFallThrough;
1144}
1145
1146/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1147/// function that should return a value.  Check that we don't fall off the end
1148/// of a noreturn function.  We assume that functions and blocks not marked
1149/// noreturn will return.
1150void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1151  // FIXME: Would be nice if we had a better way to control cascading errors,
1152  // but for now, avoid them.  The problem is that when Parse sees:
1153  //   int foo() { return a; }
1154  // The return is eaten and the Sema code sees just:
1155  //   int foo() { }
1156  // which this code would then warn about.
1157  if (getDiagnostics().hasErrorOccurred())
1158    return;
1159
1160  bool ReturnsVoid = false;
1161  bool HasNoReturn = false;
1162  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1163    // If the result type of the function is a dependent type, we don't know
1164    // whether it will be void or not, so don't
1165    if (FD->getResultType()->isDependentType())
1166      return;
1167    if (FD->getResultType()->isVoidType())
1168      ReturnsVoid = true;
1169    if (FD->hasAttr<NoReturnAttr>())
1170      HasNoReturn = true;
1171  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1172    if (MD->getResultType()->isVoidType())
1173      ReturnsVoid = true;
1174    if (MD->hasAttr<NoReturnAttr>())
1175      HasNoReturn = true;
1176  }
1177
1178  // Short circuit for compilation speed.
1179  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1180       == Diagnostic::Ignored || ReturnsVoid)
1181      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1182          == Diagnostic::Ignored || !HasNoReturn)
1183      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1184          == Diagnostic::Ignored || !ReturnsVoid))
1185    return;
1186  // FIXME: Function try block
1187  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1188    switch (CheckFallThrough(Body)) {
1189    case MaybeFallThrough:
1190      if (HasNoReturn)
1191        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1192      else if (!ReturnsVoid)
1193        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1194      break;
1195    case AlwaysFallThrough:
1196      if (HasNoReturn)
1197        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1198      else if (!ReturnsVoid)
1199        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1200      break;
1201    case NeverFallThroughOrReturn:
1202      if (ReturnsVoid && !HasNoReturn)
1203        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1204      break;
1205    case NeverFallThrough:
1206      break;
1207    }
1208  }
1209}
1210
1211/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1212/// that should return a value.  Check that we don't fall off the end of a
1213/// noreturn block.  We assume that functions and blocks not marked noreturn
1214/// will return.
1215void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1216  // FIXME: Would be nice if we had a better way to control cascading errors,
1217  // but for now, avoid them.  The problem is that when Parse sees:
1218  //   int foo() { return a; }
1219  // The return is eaten and the Sema code sees just:
1220  //   int foo() { }
1221  // which this code would then warn about.
1222  if (getDiagnostics().hasErrorOccurred())
1223    return;
1224  bool ReturnsVoid = false;
1225  bool HasNoReturn = false;
1226  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1227    if (FT->getResultType()->isVoidType())
1228      ReturnsVoid = true;
1229    if (FT->getNoReturnAttr())
1230      HasNoReturn = true;
1231  }
1232
1233  // Short circuit for compilation speed.
1234  if (ReturnsVoid
1235      && !HasNoReturn
1236      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1237          == Diagnostic::Ignored || !ReturnsVoid))
1238    return;
1239  // FIXME: Funtion try block
1240  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1241    switch (CheckFallThrough(Body)) {
1242    case MaybeFallThrough:
1243      if (HasNoReturn)
1244        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1245      else if (!ReturnsVoid)
1246        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1247      break;
1248    case AlwaysFallThrough:
1249      if (HasNoReturn)
1250        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1251      else if (!ReturnsVoid)
1252        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1253      break;
1254    case NeverFallThroughOrReturn:
1255      if (ReturnsVoid)
1256        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1257      break;
1258    case NeverFallThrough:
1259      break;
1260    }
1261  }
1262}
1263
1264/// CheckParmsForFunctionDef - Check that the parameters of the given
1265/// function are appropriate for the definition of a function. This
1266/// takes care of any checks that cannot be performed on the
1267/// declaration itself, e.g., that the types of each of the function
1268/// parameters are complete.
1269bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1270  bool HasInvalidParm = false;
1271  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1272    ParmVarDecl *Param = FD->getParamDecl(p);
1273
1274    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1275    // function declarator that is part of a function definition of
1276    // that function shall not have incomplete type.
1277    //
1278    // This is also C++ [dcl.fct]p6.
1279    if (!Param->isInvalidDecl() &&
1280        RequireCompleteType(Param->getLocation(), Param->getType(),
1281                               diag::err_typecheck_decl_incomplete_type)) {
1282      Param->setInvalidDecl();
1283      HasInvalidParm = true;
1284    }
1285
1286    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1287    // declaration of each parameter shall include an identifier.
1288    if (Param->getIdentifier() == 0 &&
1289        !Param->isImplicit() &&
1290        !getLangOptions().CPlusPlus)
1291      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1292  }
1293
1294  return HasInvalidParm;
1295}
1296
1297/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1298/// no declarator (e.g. "struct foo;") is parsed.
1299Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1300  // FIXME: Error on auto/register at file scope
1301  // FIXME: Error on inline/virtual/explicit
1302  // FIXME: Error on invalid restrict
1303  // FIXME: Warn on useless __thread
1304  // FIXME: Warn on useless const/volatile
1305  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1306  // FIXME: Warn on useless attributes
1307  Decl *TagD = 0;
1308  TagDecl *Tag = 0;
1309  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1310      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1311      DS.getTypeSpecType() == DeclSpec::TST_union ||
1312      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1313    TagD = static_cast<Decl *>(DS.getTypeRep());
1314
1315    if (!TagD) // We probably had an error
1316      return DeclPtrTy();
1317
1318    // Note that the above type specs guarantee that the
1319    // type rep is a Decl, whereas in many of the others
1320    // it's a Type.
1321    Tag = dyn_cast<TagDecl>(TagD);
1322  }
1323
1324  if (DS.isFriendSpecified()) {
1325    // If we're dealing with a class template decl, assume that the
1326    // template routines are handling it.
1327    if (TagD && isa<ClassTemplateDecl>(TagD))
1328      return DeclPtrTy();
1329    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1330  }
1331
1332  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1333    // If there are attributes in the DeclSpec, apply them to the record.
1334    if (const AttributeList *AL = DS.getAttributes())
1335      ProcessDeclAttributeList(S, Record, AL);
1336
1337    if (!Record->getDeclName() && Record->isDefinition() &&
1338        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1339      if (getLangOptions().CPlusPlus ||
1340          Record->getDeclContext()->isRecord())
1341        return BuildAnonymousStructOrUnion(S, DS, Record);
1342
1343      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1344        << DS.getSourceRange();
1345    }
1346
1347    // Microsoft allows unnamed struct/union fields. Don't complain
1348    // about them.
1349    // FIXME: Should we support Microsoft's extensions in this area?
1350    if (Record->getDeclName() && getLangOptions().Microsoft)
1351      return DeclPtrTy::make(Tag);
1352  }
1353
1354  if (!DS.isMissingDeclaratorOk() &&
1355      DS.getTypeSpecType() != DeclSpec::TST_error) {
1356    // Warn about typedefs of enums without names, since this is an
1357    // extension in both Microsoft an GNU.
1358    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1359        Tag && isa<EnumDecl>(Tag)) {
1360      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1361        << DS.getSourceRange();
1362      return DeclPtrTy::make(Tag);
1363    }
1364
1365    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1366      << DS.getSourceRange();
1367    return DeclPtrTy();
1368  }
1369
1370  return DeclPtrTy::make(Tag);
1371}
1372
1373/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1374/// anonymous struct or union AnonRecord into the owning context Owner
1375/// and scope S. This routine will be invoked just after we realize
1376/// that an unnamed union or struct is actually an anonymous union or
1377/// struct, e.g.,
1378///
1379/// @code
1380/// union {
1381///   int i;
1382///   float f;
1383/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1384///    // f into the surrounding scope.x
1385/// @endcode
1386///
1387/// This routine is recursive, injecting the names of nested anonymous
1388/// structs/unions into the owning context and scope as well.
1389bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1390                                               RecordDecl *AnonRecord) {
1391  bool Invalid = false;
1392  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1393                               FEnd = AnonRecord->field_end();
1394       F != FEnd; ++F) {
1395    if ((*F)->getDeclName()) {
1396      LookupResult R;
1397      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1398                          LookupOrdinaryName, true);
1399      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1400      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1401        // C++ [class.union]p2:
1402        //   The names of the members of an anonymous union shall be
1403        //   distinct from the names of any other entity in the
1404        //   scope in which the anonymous union is declared.
1405        unsigned diagKind
1406          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1407                                 : diag::err_anonymous_struct_member_redecl;
1408        Diag((*F)->getLocation(), diagKind)
1409          << (*F)->getDeclName();
1410        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1411        Invalid = true;
1412      } else {
1413        // C++ [class.union]p2:
1414        //   For the purpose of name lookup, after the anonymous union
1415        //   definition, the members of the anonymous union are
1416        //   considered to have been defined in the scope in which the
1417        //   anonymous union is declared.
1418        Owner->makeDeclVisibleInContext(*F);
1419        S->AddDecl(DeclPtrTy::make(*F));
1420        IdResolver.AddDecl(*F);
1421      }
1422    } else if (const RecordType *InnerRecordType
1423                 = (*F)->getType()->getAs<RecordType>()) {
1424      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1425      if (InnerRecord->isAnonymousStructOrUnion())
1426        Invalid = Invalid ||
1427          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1428    }
1429  }
1430
1431  return Invalid;
1432}
1433
1434/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1435/// anonymous structure or union. Anonymous unions are a C++ feature
1436/// (C++ [class.union]) and a GNU C extension; anonymous structures
1437/// are a GNU C and GNU C++ extension.
1438Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1439                                                  RecordDecl *Record) {
1440  DeclContext *Owner = Record->getDeclContext();
1441
1442  // Diagnose whether this anonymous struct/union is an extension.
1443  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1444    Diag(Record->getLocation(), diag::ext_anonymous_union);
1445  else if (!Record->isUnion())
1446    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1447
1448  // C and C++ require different kinds of checks for anonymous
1449  // structs/unions.
1450  bool Invalid = false;
1451  if (getLangOptions().CPlusPlus) {
1452    const char* PrevSpec = 0;
1453    unsigned DiagID;
1454    // C++ [class.union]p3:
1455    //   Anonymous unions declared in a named namespace or in the
1456    //   global namespace shall be declared static.
1457    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1458        (isa<TranslationUnitDecl>(Owner) ||
1459         (isa<NamespaceDecl>(Owner) &&
1460          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1461      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1462      Invalid = true;
1463
1464      // Recover by adding 'static'.
1465      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1466                             PrevSpec, DiagID);
1467    }
1468    // C++ [class.union]p3:
1469    //   A storage class is not allowed in a declaration of an
1470    //   anonymous union in a class scope.
1471    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1472             isa<RecordDecl>(Owner)) {
1473      Diag(DS.getStorageClassSpecLoc(),
1474           diag::err_anonymous_union_with_storage_spec);
1475      Invalid = true;
1476
1477      // Recover by removing the storage specifier.
1478      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1479                             PrevSpec, DiagID);
1480    }
1481
1482    // C++ [class.union]p2:
1483    //   The member-specification of an anonymous union shall only
1484    //   define non-static data members. [Note: nested types and
1485    //   functions cannot be declared within an anonymous union. ]
1486    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1487                                 MemEnd = Record->decls_end();
1488         Mem != MemEnd; ++Mem) {
1489      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1490        // C++ [class.union]p3:
1491        //   An anonymous union shall not have private or protected
1492        //   members (clause 11).
1493        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1494          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1495            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1496          Invalid = true;
1497        }
1498      } else if ((*Mem)->isImplicit()) {
1499        // Any implicit members are fine.
1500      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1501        // This is a type that showed up in an
1502        // elaborated-type-specifier inside the anonymous struct or
1503        // union, but which actually declares a type outside of the
1504        // anonymous struct or union. It's okay.
1505      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1506        if (!MemRecord->isAnonymousStructOrUnion() &&
1507            MemRecord->getDeclName()) {
1508          // This is a nested type declaration.
1509          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1510            << (int)Record->isUnion();
1511          Invalid = true;
1512        }
1513      } else {
1514        // We have something that isn't a non-static data
1515        // member. Complain about it.
1516        unsigned DK = diag::err_anonymous_record_bad_member;
1517        if (isa<TypeDecl>(*Mem))
1518          DK = diag::err_anonymous_record_with_type;
1519        else if (isa<FunctionDecl>(*Mem))
1520          DK = diag::err_anonymous_record_with_function;
1521        else if (isa<VarDecl>(*Mem))
1522          DK = diag::err_anonymous_record_with_static;
1523        Diag((*Mem)->getLocation(), DK)
1524            << (int)Record->isUnion();
1525          Invalid = true;
1526      }
1527    }
1528  }
1529
1530  if (!Record->isUnion() && !Owner->isRecord()) {
1531    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1532      << (int)getLangOptions().CPlusPlus;
1533    Invalid = true;
1534  }
1535
1536  // Mock up a declarator.
1537  Declarator Dc(DS, Declarator::TypeNameContext);
1538  DeclaratorInfo *DInfo = 0;
1539  GetTypeForDeclarator(Dc, S, &DInfo);
1540  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1541
1542  // Create a declaration for this anonymous struct/union.
1543  NamedDecl *Anon = 0;
1544  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1545    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1546                             /*IdentifierInfo=*/0,
1547                             Context.getTypeDeclType(Record),
1548                             DInfo,
1549                             /*BitWidth=*/0, /*Mutable=*/false);
1550    Anon->setAccess(AS_public);
1551    if (getLangOptions().CPlusPlus)
1552      FieldCollector->Add(cast<FieldDecl>(Anon));
1553  } else {
1554    VarDecl::StorageClass SC;
1555    switch (DS.getStorageClassSpec()) {
1556    default: assert(0 && "Unknown storage class!");
1557    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1558    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1559    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1560    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1561    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1562    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1563    case DeclSpec::SCS_mutable:
1564      // mutable can only appear on non-static class members, so it's always
1565      // an error here
1566      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1567      Invalid = true;
1568      SC = VarDecl::None;
1569      break;
1570    }
1571
1572    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1573                           /*IdentifierInfo=*/0,
1574                           Context.getTypeDeclType(Record),
1575                           DInfo,
1576                           SC);
1577  }
1578  Anon->setImplicit();
1579
1580  // Add the anonymous struct/union object to the current
1581  // context. We'll be referencing this object when we refer to one of
1582  // its members.
1583  Owner->addDecl(Anon);
1584
1585  // Inject the members of the anonymous struct/union into the owning
1586  // context and into the identifier resolver chain for name lookup
1587  // purposes.
1588  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1589    Invalid = true;
1590
1591  // Mark this as an anonymous struct/union type. Note that we do not
1592  // do this until after we have already checked and injected the
1593  // members of this anonymous struct/union type, because otherwise
1594  // the members could be injected twice: once by DeclContext when it
1595  // builds its lookup table, and once by
1596  // InjectAnonymousStructOrUnionMembers.
1597  Record->setAnonymousStructOrUnion(true);
1598
1599  if (Invalid)
1600    Anon->setInvalidDecl();
1601
1602  return DeclPtrTy::make(Anon);
1603}
1604
1605
1606/// GetNameForDeclarator - Determine the full declaration name for the
1607/// given Declarator.
1608DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1609  switch (D.getKind()) {
1610  case Declarator::DK_Abstract:
1611    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1612    return DeclarationName();
1613
1614  case Declarator::DK_Normal:
1615    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1616    return DeclarationName(D.getIdentifier());
1617
1618  case Declarator::DK_Constructor: {
1619    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1620    return Context.DeclarationNames.getCXXConstructorName(
1621                                                Context.getCanonicalType(Ty));
1622  }
1623
1624  case Declarator::DK_Destructor: {
1625    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1626    return Context.DeclarationNames.getCXXDestructorName(
1627                                                Context.getCanonicalType(Ty));
1628  }
1629
1630  case Declarator::DK_Conversion: {
1631    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1632    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1633    return Context.DeclarationNames.getCXXConversionFunctionName(
1634                                                Context.getCanonicalType(Ty));
1635  }
1636
1637  case Declarator::DK_Operator:
1638    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1639    return Context.DeclarationNames.getCXXOperatorName(
1640                                                D.getOverloadedOperator());
1641
1642  case Declarator::DK_TemplateId: {
1643    TemplateName Name
1644      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1645    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1646      return Template->getDeclName();
1647    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1648      return Ovl->getDeclName();
1649
1650    return DeclarationName();
1651  }
1652  }
1653
1654  assert(false && "Unknown name kind");
1655  return DeclarationName();
1656}
1657
1658/// isNearlyMatchingFunction - Determine whether the C++ functions
1659/// Declaration and Definition are "nearly" matching. This heuristic
1660/// is used to improve diagnostics in the case where an out-of-line
1661/// function definition doesn't match any declaration within
1662/// the class or namespace.
1663static bool isNearlyMatchingFunction(ASTContext &Context,
1664                                     FunctionDecl *Declaration,
1665                                     FunctionDecl *Definition) {
1666  if (Declaration->param_size() != Definition->param_size())
1667    return false;
1668  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1669    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1670    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1671
1672    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1673    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1674    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1675      return false;
1676  }
1677
1678  return true;
1679}
1680
1681Sema::DeclPtrTy
1682Sema::HandleDeclarator(Scope *S, Declarator &D,
1683                       MultiTemplateParamsArg TemplateParamLists,
1684                       bool IsFunctionDefinition) {
1685  DeclarationName Name = GetNameForDeclarator(D);
1686
1687  // All of these full declarators require an identifier.  If it doesn't have
1688  // one, the ParsedFreeStandingDeclSpec action should be used.
1689  if (!Name) {
1690    if (!D.isInvalidType())  // Reject this if we think it is valid.
1691      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1692           diag::err_declarator_need_ident)
1693        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1694    return DeclPtrTy();
1695  }
1696
1697  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1698  // we find one that is.
1699  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1700         (S->getFlags() & Scope::TemplateParamScope) != 0)
1701    S = S->getParent();
1702
1703  // If this is an out-of-line definition of a member of a class template
1704  // or class template partial specialization, we may need to rebuild the
1705  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1706  // for more information.
1707  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1708  // handle expressions properly.
1709  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1710  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1711      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1712      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1713       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1714       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1715       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1716    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1717      // FIXME: Preserve type source info.
1718      QualType T = GetTypeFromParser(DS.getTypeRep());
1719      EnterDeclaratorContext(S, DC);
1720      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1721      ExitDeclaratorContext(S);
1722      if (T.isNull())
1723        return DeclPtrTy();
1724      DS.UpdateTypeRep(T.getAsOpaquePtr());
1725    }
1726  }
1727
1728  DeclContext *DC;
1729  NamedDecl *PrevDecl;
1730  NamedDecl *New;
1731
1732  DeclaratorInfo *DInfo = 0;
1733  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1734
1735  // See if this is a redefinition of a variable in the same scope.
1736  if (D.getCXXScopeSpec().isInvalid()) {
1737    DC = CurContext;
1738    PrevDecl = 0;
1739    D.setInvalidType();
1740  } else if (!D.getCXXScopeSpec().isSet()) {
1741    LookupNameKind NameKind = LookupOrdinaryName;
1742
1743    // If the declaration we're planning to build will be a function
1744    // or object with linkage, then look for another declaration with
1745    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1746    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1747      /* Do nothing*/;
1748    else if (R->isFunctionType()) {
1749      if (CurContext->isFunctionOrMethod() ||
1750          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1751        NameKind = LookupRedeclarationWithLinkage;
1752    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1753      NameKind = LookupRedeclarationWithLinkage;
1754    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1755             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1756      NameKind = LookupRedeclarationWithLinkage;
1757
1758    DC = CurContext;
1759    LookupResult R;
1760    LookupName(R, S, Name, NameKind, true,
1761               NameKind == LookupRedeclarationWithLinkage,
1762               D.getIdentifierLoc());
1763    PrevDecl = R.getAsSingleDecl(Context);
1764  } else { // Something like "int foo::x;"
1765    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1766
1767    if (!DC) {
1768      // If we could not compute the declaration context, it's because the
1769      // declaration context is dependent but does not refer to a class,
1770      // class template, or class template partial specialization. Complain
1771      // and return early, to avoid the coming semantic disaster.
1772      Diag(D.getIdentifierLoc(),
1773           diag::err_template_qualified_declarator_no_match)
1774        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1775        << D.getCXXScopeSpec().getRange();
1776      return DeclPtrTy();
1777    }
1778
1779    if (!DC->isDependentContext() &&
1780        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1781      return DeclPtrTy();
1782
1783    LookupResult Res;
1784    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1785    PrevDecl = Res.getAsSingleDecl(Context);
1786
1787    // C++ 7.3.1.2p2:
1788    // Members (including explicit specializations of templates) of a named
1789    // namespace can also be defined outside that namespace by explicit
1790    // qualification of the name being defined, provided that the entity being
1791    // defined was already declared in the namespace and the definition appears
1792    // after the point of declaration in a namespace that encloses the
1793    // declarations namespace.
1794    //
1795    // Note that we only check the context at this point. We don't yet
1796    // have enough information to make sure that PrevDecl is actually
1797    // the declaration we want to match. For example, given:
1798    //
1799    //   class X {
1800    //     void f();
1801    //     void f(float);
1802    //   };
1803    //
1804    //   void X::f(int) { } // ill-formed
1805    //
1806    // In this case, PrevDecl will point to the overload set
1807    // containing the two f's declared in X, but neither of them
1808    // matches.
1809
1810    // First check whether we named the global scope.
1811    if (isa<TranslationUnitDecl>(DC)) {
1812      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1813        << Name << D.getCXXScopeSpec().getRange();
1814    } else if (!CurContext->Encloses(DC)) {
1815      // The qualifying scope doesn't enclose the original declaration.
1816      // Emit diagnostic based on current scope.
1817      SourceLocation L = D.getIdentifierLoc();
1818      SourceRange R = D.getCXXScopeSpec().getRange();
1819      if (isa<FunctionDecl>(CurContext))
1820        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1821      else
1822        Diag(L, diag::err_invalid_declarator_scope)
1823          << Name << cast<NamedDecl>(DC) << R;
1824      D.setInvalidType();
1825    }
1826  }
1827
1828  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1829    // Maybe we will complain about the shadowed template parameter.
1830    if (!D.isInvalidType())
1831      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1832        D.setInvalidType();
1833
1834    // Just pretend that we didn't see the previous declaration.
1835    PrevDecl = 0;
1836  }
1837
1838  // In C++, the previous declaration we find might be a tag type
1839  // (class or enum). In this case, the new declaration will hide the
1840  // tag type. Note that this does does not apply if we're declaring a
1841  // typedef (C++ [dcl.typedef]p4).
1842  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1843      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1844    PrevDecl = 0;
1845
1846  bool Redeclaration = false;
1847  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1848    if (TemplateParamLists.size()) {
1849      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1850      return DeclPtrTy();
1851    }
1852
1853    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1854  } else if (R->isFunctionType()) {
1855    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1856                                  move(TemplateParamLists),
1857                                  IsFunctionDefinition, Redeclaration);
1858  } else {
1859    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1860                                  move(TemplateParamLists),
1861                                  Redeclaration);
1862  }
1863
1864  if (New == 0)
1865    return DeclPtrTy();
1866
1867  // If this has an identifier and is not an invalid redeclaration or
1868  // function template specialization, add it to the scope stack.
1869  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1870      !(isa<FunctionDecl>(New) &&
1871        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1872    PushOnScopeChains(New, S);
1873
1874  return DeclPtrTy::make(New);
1875}
1876
1877/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1878/// types into constant array types in certain situations which would otherwise
1879/// be errors (for GCC compatibility).
1880static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1881                                                    ASTContext &Context,
1882                                                    bool &SizeIsNegative) {
1883  // This method tries to turn a variable array into a constant
1884  // array even when the size isn't an ICE.  This is necessary
1885  // for compatibility with code that depends on gcc's buggy
1886  // constant expression folding, like struct {char x[(int)(char*)2];}
1887  SizeIsNegative = false;
1888
1889  QualifierCollector Qs;
1890  const Type *Ty = Qs.strip(T);
1891
1892  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1893    QualType Pointee = PTy->getPointeeType();
1894    QualType FixedType =
1895        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1896    if (FixedType.isNull()) return FixedType;
1897    FixedType = Context.getPointerType(FixedType);
1898    return Qs.apply(FixedType);
1899  }
1900
1901  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1902  if (!VLATy)
1903    return QualType();
1904  // FIXME: We should probably handle this case
1905  if (VLATy->getElementType()->isVariablyModifiedType())
1906    return QualType();
1907
1908  Expr::EvalResult EvalResult;
1909  if (!VLATy->getSizeExpr() ||
1910      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1911      !EvalResult.Val.isInt())
1912    return QualType();
1913
1914  llvm::APSInt &Res = EvalResult.Val.getInt();
1915  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1916    // TODO: preserve the size expression in declarator info
1917    return Context.getConstantArrayType(VLATy->getElementType(),
1918                                        Res, ArrayType::Normal, 0);
1919  }
1920
1921  SizeIsNegative = true;
1922  return QualType();
1923}
1924
1925/// \brief Register the given locally-scoped external C declaration so
1926/// that it can be found later for redeclarations
1927void
1928Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1929                                       Scope *S) {
1930  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1931         "Decl is not a locally-scoped decl!");
1932  // Note that we have a locally-scoped external with this name.
1933  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1934
1935  if (!PrevDecl)
1936    return;
1937
1938  // If there was a previous declaration of this variable, it may be
1939  // in our identifier chain. Update the identifier chain with the new
1940  // declaration.
1941  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1942    // The previous declaration was found on the identifer resolver
1943    // chain, so remove it from its scope.
1944    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1945      S = S->getParent();
1946
1947    if (S)
1948      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1949  }
1950}
1951
1952/// \brief Diagnose function specifiers on a declaration of an identifier that
1953/// does not identify a function.
1954void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1955  // FIXME: We should probably indicate the identifier in question to avoid
1956  // confusion for constructs like "inline int a(), b;"
1957  if (D.getDeclSpec().isInlineSpecified())
1958    Diag(D.getDeclSpec().getInlineSpecLoc(),
1959         diag::err_inline_non_function);
1960
1961  if (D.getDeclSpec().isVirtualSpecified())
1962    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1963         diag::err_virtual_non_function);
1964
1965  if (D.getDeclSpec().isExplicitSpecified())
1966    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1967         diag::err_explicit_non_function);
1968}
1969
1970NamedDecl*
1971Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1972                             QualType R,  DeclaratorInfo *DInfo,
1973                             NamedDecl* PrevDecl, bool &Redeclaration) {
1974  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1975  if (D.getCXXScopeSpec().isSet()) {
1976    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1977      << D.getCXXScopeSpec().getRange();
1978    D.setInvalidType();
1979    // Pretend we didn't see the scope specifier.
1980    DC = 0;
1981  }
1982
1983  if (getLangOptions().CPlusPlus) {
1984    // Check that there are no default arguments (C++ only).
1985    CheckExtraCXXDefaultArguments(D);
1986  }
1987
1988  DiagnoseFunctionSpecifiers(D);
1989
1990  if (D.getDeclSpec().isThreadSpecified())
1991    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1992
1993  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
1994  if (!NewTD) return 0;
1995
1996  // Handle attributes prior to checking for duplicates in MergeVarDecl
1997  ProcessDeclAttributes(S, NewTD, D);
1998  // Merge the decl with the existing one if appropriate. If the decl is
1999  // in an outer scope, it isn't the same thing.
2000  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2001    Redeclaration = true;
2002    MergeTypeDefDecl(NewTD, PrevDecl);
2003  }
2004
2005  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2006  // then it shall have block scope.
2007  QualType T = NewTD->getUnderlyingType();
2008  if (T->isVariablyModifiedType()) {
2009    CurFunctionNeedsScopeChecking = true;
2010
2011    if (S->getFnParent() == 0) {
2012      bool SizeIsNegative;
2013      QualType FixedTy =
2014          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2015      if (!FixedTy.isNull()) {
2016        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2017        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2018      } else {
2019        if (SizeIsNegative)
2020          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2021        else if (T->isVariableArrayType())
2022          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2023        else
2024          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2025        NewTD->setInvalidDecl();
2026      }
2027    }
2028  }
2029
2030  // If this is the C FILE type, notify the AST context.
2031  if (IdentifierInfo *II = NewTD->getIdentifier())
2032    if (!NewTD->isInvalidDecl() &&
2033        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2034      if (II->isStr("FILE"))
2035        Context.setFILEDecl(NewTD);
2036      else if (II->isStr("jmp_buf"))
2037        Context.setjmp_bufDecl(NewTD);
2038      else if (II->isStr("sigjmp_buf"))
2039        Context.setsigjmp_bufDecl(NewTD);
2040    }
2041
2042  return NewTD;
2043}
2044
2045/// \brief Determines whether the given declaration is an out-of-scope
2046/// previous declaration.
2047///
2048/// This routine should be invoked when name lookup has found a
2049/// previous declaration (PrevDecl) that is not in the scope where a
2050/// new declaration by the same name is being introduced. If the new
2051/// declaration occurs in a local scope, previous declarations with
2052/// linkage may still be considered previous declarations (C99
2053/// 6.2.2p4-5, C++ [basic.link]p6).
2054///
2055/// \param PrevDecl the previous declaration found by name
2056/// lookup
2057///
2058/// \param DC the context in which the new declaration is being
2059/// declared.
2060///
2061/// \returns true if PrevDecl is an out-of-scope previous declaration
2062/// for a new delcaration with the same name.
2063static bool
2064isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2065                                ASTContext &Context) {
2066  if (!PrevDecl)
2067    return 0;
2068
2069  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2070  // case we need to check each of the overloaded functions.
2071  if (!PrevDecl->hasLinkage())
2072    return false;
2073
2074  if (Context.getLangOptions().CPlusPlus) {
2075    // C++ [basic.link]p6:
2076    //   If there is a visible declaration of an entity with linkage
2077    //   having the same name and type, ignoring entities declared
2078    //   outside the innermost enclosing namespace scope, the block
2079    //   scope declaration declares that same entity and receives the
2080    //   linkage of the previous declaration.
2081    DeclContext *OuterContext = DC->getLookupContext();
2082    if (!OuterContext->isFunctionOrMethod())
2083      // This rule only applies to block-scope declarations.
2084      return false;
2085    else {
2086      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2087      if (PrevOuterContext->isRecord())
2088        // We found a member function: ignore it.
2089        return false;
2090      else {
2091        // Find the innermost enclosing namespace for the new and
2092        // previous declarations.
2093        while (!OuterContext->isFileContext())
2094          OuterContext = OuterContext->getParent();
2095        while (!PrevOuterContext->isFileContext())
2096          PrevOuterContext = PrevOuterContext->getParent();
2097
2098        // The previous declaration is in a different namespace, so it
2099        // isn't the same function.
2100        if (OuterContext->getPrimaryContext() !=
2101            PrevOuterContext->getPrimaryContext())
2102          return false;
2103      }
2104    }
2105  }
2106
2107  return true;
2108}
2109
2110NamedDecl*
2111Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2112                              QualType R, DeclaratorInfo *DInfo,
2113                              NamedDecl* PrevDecl,
2114                              MultiTemplateParamsArg TemplateParamLists,
2115                              bool &Redeclaration) {
2116  DeclarationName Name = GetNameForDeclarator(D);
2117
2118  // Check that there are no default arguments (C++ only).
2119  if (getLangOptions().CPlusPlus)
2120    CheckExtraCXXDefaultArguments(D);
2121
2122  VarDecl *NewVD;
2123  VarDecl::StorageClass SC;
2124  switch (D.getDeclSpec().getStorageClassSpec()) {
2125  default: assert(0 && "Unknown storage class!");
2126  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2127  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2128  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2129  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2130  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2131  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2132  case DeclSpec::SCS_mutable:
2133    // mutable can only appear on non-static class members, so it's always
2134    // an error here
2135    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2136    D.setInvalidType();
2137    SC = VarDecl::None;
2138    break;
2139  }
2140
2141  IdentifierInfo *II = Name.getAsIdentifierInfo();
2142  if (!II) {
2143    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2144      << Name.getAsString();
2145    return 0;
2146  }
2147
2148  DiagnoseFunctionSpecifiers(D);
2149
2150  if (!DC->isRecord() && S->getFnParent() == 0) {
2151    // C99 6.9p2: The storage-class specifiers auto and register shall not
2152    // appear in the declaration specifiers in an external declaration.
2153    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2154
2155      // If this is a register variable with an asm label specified, then this
2156      // is a GNU extension.
2157      if (SC == VarDecl::Register && D.getAsmLabel())
2158        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2159      else
2160        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2161      D.setInvalidType();
2162    }
2163  }
2164  if (DC->isRecord() && !CurContext->isRecord()) {
2165    // This is an out-of-line definition of a static data member.
2166    if (SC == VarDecl::Static) {
2167      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2168           diag::err_static_out_of_line)
2169        << CodeModificationHint::CreateRemoval(
2170                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2171    } else if (SC == VarDecl::None)
2172      SC = VarDecl::Static;
2173  }
2174  if (SC == VarDecl::Static) {
2175    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2176      if (RD->isLocalClass())
2177        Diag(D.getIdentifierLoc(),
2178             diag::err_static_data_member_not_allowed_in_local_class)
2179          << Name << RD->getDeclName();
2180    }
2181  }
2182
2183  // Match up the template parameter lists with the scope specifier, then
2184  // determine whether we have a template or a template specialization.
2185  bool isExplicitSpecialization = false;
2186  if (TemplateParameterList *TemplateParams
2187        = MatchTemplateParametersToScopeSpecifier(
2188                                  D.getDeclSpec().getSourceRange().getBegin(),
2189                                                  D.getCXXScopeSpec(),
2190                        (TemplateParameterList**)TemplateParamLists.get(),
2191                                                   TemplateParamLists.size(),
2192                                                  isExplicitSpecialization)) {
2193    if (TemplateParams->size() > 0) {
2194      // There is no such thing as a variable template.
2195      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2196        << II
2197        << SourceRange(TemplateParams->getTemplateLoc(),
2198                       TemplateParams->getRAngleLoc());
2199      return 0;
2200    } else {
2201      // There is an extraneous 'template<>' for this variable. Complain
2202      // about it, but allow the declaration of the variable.
2203      Diag(TemplateParams->getTemplateLoc(),
2204           diag::err_template_variable_noparams)
2205        << II
2206        << SourceRange(TemplateParams->getTemplateLoc(),
2207                       TemplateParams->getRAngleLoc());
2208
2209      isExplicitSpecialization = true;
2210    }
2211  }
2212
2213  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2214                          II, R, DInfo, SC);
2215
2216  if (D.isInvalidType())
2217    NewVD->setInvalidDecl();
2218
2219  if (D.getDeclSpec().isThreadSpecified()) {
2220    if (NewVD->hasLocalStorage())
2221      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2222    else if (!Context.Target.isTLSSupported())
2223      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2224    else
2225      NewVD->setThreadSpecified(true);
2226  }
2227
2228  // Set the lexical context. If the declarator has a C++ scope specifier, the
2229  // lexical context will be different from the semantic context.
2230  NewVD->setLexicalDeclContext(CurContext);
2231
2232  // Handle attributes prior to checking for duplicates in MergeVarDecl
2233  ProcessDeclAttributes(S, NewVD, D);
2234
2235  // Handle GNU asm-label extension (encoded as an attribute).
2236  if (Expr *E = (Expr*) D.getAsmLabel()) {
2237    // The parser guarantees this is a string.
2238    StringLiteral *SE = cast<StringLiteral>(E);
2239    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2240                                                        SE->getByteLength())));
2241  }
2242
2243  // If name lookup finds a previous declaration that is not in the
2244  // same scope as the new declaration, this may still be an
2245  // acceptable redeclaration.
2246  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2247      !(NewVD->hasLinkage() &&
2248        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2249    PrevDecl = 0;
2250
2251  // Merge the decl with the existing one if appropriate.
2252  if (PrevDecl) {
2253    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2254      // The user tried to define a non-static data member
2255      // out-of-line (C++ [dcl.meaning]p1).
2256      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2257        << D.getCXXScopeSpec().getRange();
2258      PrevDecl = 0;
2259      NewVD->setInvalidDecl();
2260    }
2261  } else if (D.getCXXScopeSpec().isSet()) {
2262    // No previous declaration in the qualifying scope.
2263    Diag(D.getIdentifierLoc(), diag::err_no_member)
2264      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2265      << D.getCXXScopeSpec().getRange();
2266    NewVD->setInvalidDecl();
2267  }
2268
2269  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2270
2271  // This is an explicit specialization of a static data member. Check it.
2272  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2273      CheckMemberSpecialization(NewVD, PrevDecl))
2274    NewVD->setInvalidDecl();
2275
2276  // attributes declared post-definition are currently ignored
2277  if (PrevDecl) {
2278    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2279    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2280      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2281      Diag(Def->getLocation(), diag::note_previous_definition);
2282    }
2283  }
2284
2285  // If this is a locally-scoped extern C variable, update the map of
2286  // such variables.
2287  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2288      !NewVD->isInvalidDecl())
2289    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2290
2291  return NewVD;
2292}
2293
2294/// \brief Perform semantic checking on a newly-created variable
2295/// declaration.
2296///
2297/// This routine performs all of the type-checking required for a
2298/// variable declaration once it has been built. It is used both to
2299/// check variables after they have been parsed and their declarators
2300/// have been translated into a declaration, and to check variables
2301/// that have been instantiated from a template.
2302///
2303/// Sets NewVD->isInvalidDecl() if an error was encountered.
2304void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2305                                    bool &Redeclaration) {
2306  // If the decl is already known invalid, don't check it.
2307  if (NewVD->isInvalidDecl())
2308    return;
2309
2310  QualType T = NewVD->getType();
2311
2312  if (T->isObjCInterfaceType()) {
2313    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2314    return NewVD->setInvalidDecl();
2315  }
2316
2317  // The variable can not have an abstract class type.
2318  if (RequireNonAbstractType(NewVD->getLocation(), T,
2319                             diag::err_abstract_type_in_decl,
2320                             AbstractVariableType))
2321    return NewVD->setInvalidDecl();
2322
2323  // Emit an error if an address space was applied to decl with local storage.
2324  // This includes arrays of objects with address space qualifiers, but not
2325  // automatic variables that point to other address spaces.
2326  // ISO/IEC TR 18037 S5.1.2
2327  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2328    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2329    return NewVD->setInvalidDecl();
2330  }
2331
2332  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2333      && !NewVD->hasAttr<BlocksAttr>())
2334    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2335
2336  bool isVM = T->isVariablyModifiedType();
2337  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2338      NewVD->hasAttr<BlocksAttr>())
2339    CurFunctionNeedsScopeChecking = true;
2340
2341  if ((isVM && NewVD->hasLinkage()) ||
2342      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2343    bool SizeIsNegative;
2344    QualType FixedTy =
2345        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2346
2347    if (FixedTy.isNull() && T->isVariableArrayType()) {
2348      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2349      // FIXME: This won't give the correct result for
2350      // int a[10][n];
2351      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2352
2353      if (NewVD->isFileVarDecl())
2354        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2355        << SizeRange;
2356      else if (NewVD->getStorageClass() == VarDecl::Static)
2357        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2358        << SizeRange;
2359      else
2360        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2361        << SizeRange;
2362      return NewVD->setInvalidDecl();
2363    }
2364
2365    if (FixedTy.isNull()) {
2366      if (NewVD->isFileVarDecl())
2367        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2368      else
2369        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2370      return NewVD->setInvalidDecl();
2371    }
2372
2373    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2374    NewVD->setType(FixedTy);
2375  }
2376
2377  if (!PrevDecl && NewVD->isExternC()) {
2378    // Since we did not find anything by this name and we're declaring
2379    // an extern "C" variable, look for a non-visible extern "C"
2380    // declaration with the same name.
2381    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2382      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2383    if (Pos != LocallyScopedExternalDecls.end())
2384      PrevDecl = Pos->second;
2385  }
2386
2387  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2388    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2389      << T;
2390    return NewVD->setInvalidDecl();
2391  }
2392
2393  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2394    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2395    return NewVD->setInvalidDecl();
2396  }
2397
2398  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2399    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2400    return NewVD->setInvalidDecl();
2401  }
2402
2403  if (PrevDecl) {
2404    Redeclaration = true;
2405    MergeVarDecl(NewVD, PrevDecl);
2406  }
2407}
2408
2409static bool isUsingDecl(Decl *D) {
2410  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2411}
2412
2413/// \brief Data used with FindOverriddenMethod
2414struct FindOverriddenMethodData {
2415  Sema *S;
2416  CXXMethodDecl *Method;
2417};
2418
2419/// \brief Member lookup function that determines whether a given C++
2420/// method overrides a method in a base class, to be used with
2421/// CXXRecordDecl::lookupInBases().
2422static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2423                                 CXXBasePath &Path,
2424                                 void *UserData) {
2425  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2426
2427  FindOverriddenMethodData *Data
2428    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2429  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2430       Path.Decls.first != Path.Decls.second;
2431       ++Path.Decls.first) {
2432    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2433      OverloadedFunctionDecl::function_iterator MatchedDecl;
2434      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2435        return true;
2436    }
2437  }
2438
2439  return false;
2440}
2441
2442NamedDecl*
2443Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2444                              QualType R, DeclaratorInfo *DInfo,
2445                              NamedDecl* PrevDecl,
2446                              MultiTemplateParamsArg TemplateParamLists,
2447                              bool IsFunctionDefinition, bool &Redeclaration) {
2448  assert(R.getTypePtr()->isFunctionType());
2449
2450  DeclarationName Name = GetNameForDeclarator(D);
2451  FunctionDecl::StorageClass SC = FunctionDecl::None;
2452  switch (D.getDeclSpec().getStorageClassSpec()) {
2453  default: assert(0 && "Unknown storage class!");
2454  case DeclSpec::SCS_auto:
2455  case DeclSpec::SCS_register:
2456  case DeclSpec::SCS_mutable:
2457    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2458         diag::err_typecheck_sclass_func);
2459    D.setInvalidType();
2460    break;
2461  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2462  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2463  case DeclSpec::SCS_static: {
2464    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2465      // C99 6.7.1p5:
2466      //   The declaration of an identifier for a function that has
2467      //   block scope shall have no explicit storage-class specifier
2468      //   other than extern
2469      // See also (C++ [dcl.stc]p4).
2470      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2471           diag::err_static_block_func);
2472      SC = FunctionDecl::None;
2473    } else
2474      SC = FunctionDecl::Static;
2475    break;
2476  }
2477  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2478  }
2479
2480  if (D.getDeclSpec().isThreadSpecified())
2481    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2482
2483  bool isFriend = D.getDeclSpec().isFriendSpecified();
2484  bool isInline = D.getDeclSpec().isInlineSpecified();
2485  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2486  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2487
2488  // Check that the return type is not an abstract class type.
2489  // For record types, this is done by the AbstractClassUsageDiagnoser once
2490  // the class has been completely parsed.
2491  if (!DC->isRecord() &&
2492      RequireNonAbstractType(D.getIdentifierLoc(),
2493                             R->getAs<FunctionType>()->getResultType(),
2494                             diag::err_abstract_type_in_decl,
2495                             AbstractReturnType))
2496    D.setInvalidType();
2497
2498  // Do not allow returning a objc interface by-value.
2499  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2500    Diag(D.getIdentifierLoc(),
2501         diag::err_object_cannot_be_passed_returned_by_value) << 0
2502      << R->getAs<FunctionType>()->getResultType();
2503    D.setInvalidType();
2504  }
2505
2506  bool isVirtualOkay = false;
2507  FunctionDecl *NewFD;
2508
2509  if (isFriend) {
2510    // DC is the namespace in which the function is being declared.
2511    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2512           "friend function being created in a non-namespace context");
2513
2514    // C++ [class.friend]p5
2515    //   A function can be defined in a friend declaration of a
2516    //   class . . . . Such a function is implicitly inline.
2517    isInline |= IsFunctionDefinition;
2518  }
2519
2520  if (D.getKind() == Declarator::DK_Constructor) {
2521    // This is a C++ constructor declaration.
2522    assert(DC->isRecord() &&
2523           "Constructors can only be declared in a member context");
2524
2525    R = CheckConstructorDeclarator(D, R, SC);
2526
2527    // Create the new declaration
2528    NewFD = CXXConstructorDecl::Create(Context,
2529                                       cast<CXXRecordDecl>(DC),
2530                                       D.getIdentifierLoc(), Name, R, DInfo,
2531                                       isExplicit, isInline,
2532                                       /*isImplicitlyDeclared=*/false);
2533  } else if (D.getKind() == Declarator::DK_Destructor) {
2534    // This is a C++ destructor declaration.
2535    if (DC->isRecord()) {
2536      R = CheckDestructorDeclarator(D, SC);
2537
2538      NewFD = CXXDestructorDecl::Create(Context,
2539                                        cast<CXXRecordDecl>(DC),
2540                                        D.getIdentifierLoc(), Name, R,
2541                                        isInline,
2542                                        /*isImplicitlyDeclared=*/false);
2543
2544      isVirtualOkay = true;
2545    } else {
2546      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2547
2548      // Create a FunctionDecl to satisfy the function definition parsing
2549      // code path.
2550      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2551                                   Name, R, DInfo, SC, isInline,
2552                                   /*hasPrototype=*/true);
2553      D.setInvalidType();
2554    }
2555  } else if (D.getKind() == Declarator::DK_Conversion) {
2556    if (!DC->isRecord()) {
2557      Diag(D.getIdentifierLoc(),
2558           diag::err_conv_function_not_member);
2559      return 0;
2560    }
2561
2562    CheckConversionDeclarator(D, R, SC);
2563    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2564                                      D.getIdentifierLoc(), Name, R, DInfo,
2565                                      isInline, isExplicit);
2566
2567    isVirtualOkay = true;
2568  } else if (DC->isRecord()) {
2569    // If the of the function is the same as the name of the record, then this
2570    // must be an invalid constructor that has a return type.
2571    // (The parser checks for a return type and makes the declarator a
2572    // constructor if it has no return type).
2573    // must have an invalid constructor that has a return type
2574    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2575      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2576        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2577        << SourceRange(D.getIdentifierLoc());
2578      return 0;
2579    }
2580
2581    // This is a C++ method declaration.
2582    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2583                                  D.getIdentifierLoc(), Name, R, DInfo,
2584                                  (SC == FunctionDecl::Static), isInline);
2585
2586    isVirtualOkay = (SC != FunctionDecl::Static);
2587  } else {
2588    // Determine whether the function was written with a
2589    // prototype. This true when:
2590    //   - we're in C++ (where every function has a prototype),
2591    //   - there is a prototype in the declarator, or
2592    //   - the type R of the function is some kind of typedef or other reference
2593    //     to a type name (which eventually refers to a function type).
2594    bool HasPrototype =
2595       getLangOptions().CPlusPlus ||
2596       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2597       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2598
2599    NewFD = FunctionDecl::Create(Context, DC,
2600                                 D.getIdentifierLoc(),
2601                                 Name, R, DInfo, SC, isInline, HasPrototype);
2602  }
2603
2604  if (D.isInvalidType())
2605    NewFD->setInvalidDecl();
2606
2607  // Set the lexical context. If the declarator has a C++
2608  // scope specifier, or is the object of a friend declaration, the
2609  // lexical context will be different from the semantic context.
2610  NewFD->setLexicalDeclContext(CurContext);
2611
2612  // Match up the template parameter lists with the scope specifier, then
2613  // determine whether we have a template or a template specialization.
2614  FunctionTemplateDecl *FunctionTemplate = 0;
2615  bool isExplicitSpecialization = false;
2616  bool isFunctionTemplateSpecialization = false;
2617  if (TemplateParameterList *TemplateParams
2618        = MatchTemplateParametersToScopeSpecifier(
2619                                  D.getDeclSpec().getSourceRange().getBegin(),
2620                                  D.getCXXScopeSpec(),
2621                           (TemplateParameterList**)TemplateParamLists.get(),
2622                                                  TemplateParamLists.size(),
2623                                                  isExplicitSpecialization)) {
2624    if (TemplateParams->size() > 0) {
2625      // This is a function template
2626
2627      // Check that we can declare a template here.
2628      if (CheckTemplateDeclScope(S, TemplateParams))
2629        return 0;
2630
2631      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2632                                                      NewFD->getLocation(),
2633                                                      Name, TemplateParams,
2634                                                      NewFD);
2635      FunctionTemplate->setLexicalDeclContext(CurContext);
2636      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2637    } else {
2638      // This is a function template specialization.
2639      isFunctionTemplateSpecialization = true;
2640    }
2641
2642    // FIXME: Free this memory properly.
2643    TemplateParamLists.release();
2644  }
2645
2646  // C++ [dcl.fct.spec]p5:
2647  //   The virtual specifier shall only be used in declarations of
2648  //   nonstatic class member functions that appear within a
2649  //   member-specification of a class declaration; see 10.3.
2650  //
2651  if (isVirtual && !NewFD->isInvalidDecl()) {
2652    if (!isVirtualOkay) {
2653       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2654           diag::err_virtual_non_function);
2655    } else if (!CurContext->isRecord()) {
2656      // 'virtual' was specified outside of the class.
2657      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2658        << CodeModificationHint::CreateRemoval(
2659                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2660    } else {
2661      // Okay: Add virtual to the method.
2662      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2663      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2664      CurClass->setAggregate(false);
2665      CurClass->setPOD(false);
2666      CurClass->setEmpty(false);
2667      CurClass->setPolymorphic(true);
2668      CurClass->setHasTrivialConstructor(false);
2669      CurClass->setHasTrivialCopyConstructor(false);
2670      CurClass->setHasTrivialCopyAssignment(false);
2671    }
2672  }
2673
2674  if (isFriend) {
2675    if (FunctionTemplate) {
2676      FunctionTemplate->setObjectOfFriendDecl(
2677                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2678      FunctionTemplate->setAccess(AS_public);
2679    }
2680    else
2681      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2682
2683    NewFD->setAccess(AS_public);
2684  }
2685
2686
2687  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2688    // Look for virtual methods in base classes that this method might override.
2689    CXXBasePaths Paths;
2690    FindOverriddenMethodData Data;
2691    Data.Method = NewMD;
2692    Data.S = this;
2693    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2694                                                Paths)) {
2695      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2696           E = Paths.found_decls_end(); I != E; ++I) {
2697        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2698          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2699              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2700            NewMD->addOverriddenMethod(OldMD);
2701        }
2702      }
2703    }
2704  }
2705
2706  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2707      !CurContext->isRecord()) {
2708    // C++ [class.static]p1:
2709    //   A data or function member of a class may be declared static
2710    //   in a class definition, in which case it is a static member of
2711    //   the class.
2712
2713    // Complain about the 'static' specifier if it's on an out-of-line
2714    // member function definition.
2715    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2716         diag::err_static_out_of_line)
2717      << CodeModificationHint::CreateRemoval(
2718                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2719  }
2720
2721  // Handle GNU asm-label extension (encoded as an attribute).
2722  if (Expr *E = (Expr*) D.getAsmLabel()) {
2723    // The parser guarantees this is a string.
2724    StringLiteral *SE = cast<StringLiteral>(E);
2725    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2726                                                        SE->getByteLength())));
2727  }
2728
2729  // Copy the parameter declarations from the declarator D to the function
2730  // declaration NewFD, if they are available.  First scavenge them into Params.
2731  llvm::SmallVector<ParmVarDecl*, 16> Params;
2732  if (D.getNumTypeObjects() > 0) {
2733    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2734
2735    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2736    // function that takes no arguments, not a function that takes a
2737    // single void argument.
2738    // We let through "const void" here because Sema::GetTypeForDeclarator
2739    // already checks for that case.
2740    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2741        FTI.ArgInfo[0].Param &&
2742        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2743      // Empty arg list, don't push any params.
2744      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2745
2746      // In C++, the empty parameter-type-list must be spelled "void"; a
2747      // typedef of void is not permitted.
2748      if (getLangOptions().CPlusPlus &&
2749          Param->getType().getUnqualifiedType() != Context.VoidTy)
2750        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2751      // FIXME: Leaks decl?
2752    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2753      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2754        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2755        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2756        Param->setDeclContext(NewFD);
2757        Params.push_back(Param);
2758      }
2759    }
2760
2761  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2762    // When we're declaring a function with a typedef, typeof, etc as in the
2763    // following example, we'll need to synthesize (unnamed)
2764    // parameters for use in the declaration.
2765    //
2766    // @code
2767    // typedef void fn(int);
2768    // fn f;
2769    // @endcode
2770
2771    // Synthesize a parameter for each argument type.
2772    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2773         AE = FT->arg_type_end(); AI != AE; ++AI) {
2774      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2775                                               SourceLocation(), 0,
2776                                               *AI, /*DInfo=*/0,
2777                                               VarDecl::None, 0);
2778      Param->setImplicit();
2779      Params.push_back(Param);
2780    }
2781  } else {
2782    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2783           "Should not need args for typedef of non-prototype fn");
2784  }
2785  // Finally, we know we have the right number of parameters, install them.
2786  NewFD->setParams(Context, Params.data(), Params.size());
2787
2788  // If name lookup finds a previous declaration that is not in the
2789  // same scope as the new declaration, this may still be an
2790  // acceptable redeclaration.
2791  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2792      !(NewFD->hasLinkage() &&
2793        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2794    PrevDecl = 0;
2795
2796  // If the declarator is a template-id, translate the parser's template
2797  // argument list into our AST format.
2798  bool HasExplicitTemplateArgs = false;
2799  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2800  SourceLocation LAngleLoc, RAngleLoc;
2801  if (D.getKind() == Declarator::DK_TemplateId) {
2802    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2803    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2804                                       TemplateId->getTemplateArgs(),
2805                                       TemplateId->getTemplateArgIsType(),
2806                                       TemplateId->NumArgs);
2807    translateTemplateArguments(TemplateArgsPtr,
2808                               TemplateId->getTemplateArgLocations(),
2809                               TemplateArgs);
2810    TemplateArgsPtr.release();
2811
2812    HasExplicitTemplateArgs = true;
2813    LAngleLoc = TemplateId->LAngleLoc;
2814    RAngleLoc = TemplateId->RAngleLoc;
2815
2816    if (FunctionTemplate) {
2817      // FIXME: Diagnose function template with explicit template
2818      // arguments.
2819      HasExplicitTemplateArgs = false;
2820    } else if (!isFunctionTemplateSpecialization &&
2821               !D.getDeclSpec().isFriendSpecified()) {
2822      // We have encountered something that the user meant to be a
2823      // specialization (because it has explicitly-specified template
2824      // arguments) but that was not introduced with a "template<>" (or had
2825      // too few of them).
2826      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2827        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2828        << CodeModificationHint::CreateInsertion(
2829                                   D.getDeclSpec().getSourceRange().getBegin(),
2830                                                 "template<> ");
2831      isFunctionTemplateSpecialization = true;
2832    }
2833  }
2834
2835  if (isFunctionTemplateSpecialization) {
2836      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2837                                              LAngleLoc, TemplateArgs.data(),
2838                                              TemplateArgs.size(), RAngleLoc,
2839                                              PrevDecl))
2840        NewFD->setInvalidDecl();
2841  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2842             CheckMemberSpecialization(NewFD, PrevDecl))
2843    NewFD->setInvalidDecl();
2844
2845  // Perform semantic checking on the function declaration.
2846  bool OverloadableAttrRequired = false; // FIXME: HACK!
2847  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2848                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2849
2850  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2851    // An out-of-line member function declaration must also be a
2852    // definition (C++ [dcl.meaning]p1).
2853    // Note that this is not the case for explicit specializations of
2854    // function templates or member functions of class templates, per
2855    // C++ [temp.expl.spec]p2.
2856    if (!IsFunctionDefinition && !isFriend &&
2857        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2858      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2859        << D.getCXXScopeSpec().getRange();
2860      NewFD->setInvalidDecl();
2861    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2862      // The user tried to provide an out-of-line definition for a
2863      // function that is a member of a class or namespace, but there
2864      // was no such member function declared (C++ [class.mfct]p2,
2865      // C++ [namespace.memdef]p2). For example:
2866      //
2867      // class X {
2868      //   void f() const;
2869      // };
2870      //
2871      // void X::f() { } // ill-formed
2872      //
2873      // Complain about this problem, and attempt to suggest close
2874      // matches (e.g., those that differ only in cv-qualifiers and
2875      // whether the parameter types are references).
2876      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2877        << Name << DC << D.getCXXScopeSpec().getRange();
2878      NewFD->setInvalidDecl();
2879
2880      LookupResult Prev;
2881      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2882      assert(!Prev.isAmbiguous() &&
2883             "Cannot have an ambiguity in previous-declaration lookup");
2884      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2885           Func != FuncEnd; ++Func) {
2886        if (isa<FunctionDecl>(*Func) &&
2887            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2888          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2889      }
2890
2891      PrevDecl = 0;
2892    }
2893  }
2894
2895  // Handle attributes. We need to have merged decls when handling attributes
2896  // (for example to check for conflicts, etc).
2897  // FIXME: This needs to happen before we merge declarations. Then,
2898  // let attribute merging cope with attribute conflicts.
2899  ProcessDeclAttributes(S, NewFD, D);
2900
2901  // attributes declared post-definition are currently ignored
2902  if (Redeclaration && PrevDecl) {
2903    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2904    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2905      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2906      Diag(Def->getLocation(), diag::note_previous_definition);
2907    }
2908  }
2909
2910  AddKnownFunctionAttributes(NewFD);
2911
2912  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2913    // If a function name is overloadable in C, then every function
2914    // with that name must be marked "overloadable".
2915    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2916      << Redeclaration << NewFD;
2917    if (PrevDecl)
2918      Diag(PrevDecl->getLocation(),
2919           diag::note_attribute_overloadable_prev_overload);
2920    NewFD->addAttr(::new (Context) OverloadableAttr());
2921  }
2922
2923  // If this is a locally-scoped extern C function, update the
2924  // map of such names.
2925  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2926      && !NewFD->isInvalidDecl())
2927    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2928
2929  // Set this FunctionDecl's range up to the right paren.
2930  NewFD->setLocEnd(D.getSourceRange().getEnd());
2931
2932  if (FunctionTemplate && NewFD->isInvalidDecl())
2933    FunctionTemplate->setInvalidDecl();
2934
2935  if (FunctionTemplate)
2936    return FunctionTemplate;
2937
2938  return NewFD;
2939}
2940
2941/// \brief Perform semantic checking of a new function declaration.
2942///
2943/// Performs semantic analysis of the new function declaration
2944/// NewFD. This routine performs all semantic checking that does not
2945/// require the actual declarator involved in the declaration, and is
2946/// used both for the declaration of functions as they are parsed
2947/// (called via ActOnDeclarator) and for the declaration of functions
2948/// that have been instantiated via C++ template instantiation (called
2949/// via InstantiateDecl).
2950///
2951/// \param IsExplicitSpecialiation whether this new function declaration is
2952/// an explicit specialization of the previous declaration.
2953///
2954/// This sets NewFD->isInvalidDecl() to true if there was an error.
2955void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2956                                    bool IsExplicitSpecialization,
2957                                    bool &Redeclaration,
2958                                    bool &OverloadableAttrRequired) {
2959  // If NewFD is already known erroneous, don't do any of this checking.
2960  if (NewFD->isInvalidDecl())
2961    return;
2962
2963  if (NewFD->getResultType()->isVariablyModifiedType()) {
2964    // Functions returning a variably modified type violate C99 6.7.5.2p2
2965    // because all functions have linkage.
2966    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2967    return NewFD->setInvalidDecl();
2968  }
2969
2970  if (NewFD->isMain())
2971    CheckMain(NewFD);
2972
2973  // Check for a previous declaration of this name.
2974  if (!PrevDecl && NewFD->isExternC()) {
2975    // Since we did not find anything by this name and we're declaring
2976    // an extern "C" function, look for a non-visible extern "C"
2977    // declaration with the same name.
2978    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2979      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2980    if (Pos != LocallyScopedExternalDecls.end())
2981      PrevDecl = Pos->second;
2982  }
2983
2984  // Merge or overload the declaration with an existing declaration of
2985  // the same name, if appropriate.
2986  if (PrevDecl) {
2987    // Determine whether NewFD is an overload of PrevDecl or
2988    // a declaration that requires merging. If it's an overload,
2989    // there's no more work to do here; we'll just add the new
2990    // function to the scope.
2991    OverloadedFunctionDecl::function_iterator MatchedDecl;
2992
2993    if (!getLangOptions().CPlusPlus &&
2994        AllowOverloadingOfFunction(PrevDecl, Context)) {
2995      OverloadableAttrRequired = true;
2996
2997      // Functions marked "overloadable" must have a prototype (that
2998      // we can't get through declaration merging).
2999      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3000        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3001          << NewFD;
3002        Redeclaration = true;
3003
3004        // Turn this into a variadic function with no parameters.
3005        QualType R = Context.getFunctionType(
3006                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3007                       0, 0, true, 0);
3008        NewFD->setType(R);
3009        return NewFD->setInvalidDecl();
3010      }
3011    }
3012
3013    if (PrevDecl &&
3014        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3015         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3016      Redeclaration = true;
3017      Decl *OldDecl = PrevDecl;
3018
3019      // If PrevDecl was an overloaded function, extract the
3020      // FunctionDecl that matched.
3021      if (isa<OverloadedFunctionDecl>(PrevDecl))
3022        OldDecl = *MatchedDecl;
3023
3024      // NewFD and OldDecl represent declarations that need to be
3025      // merged.
3026      if (MergeFunctionDecl(NewFD, OldDecl))
3027        return NewFD->setInvalidDecl();
3028
3029      if (FunctionTemplateDecl *OldTemplateDecl
3030                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3031        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3032        FunctionTemplateDecl *NewTemplateDecl
3033          = NewFD->getDescribedFunctionTemplate();
3034        assert(NewTemplateDecl && "Template/non-template mismatch");
3035        if (CXXMethodDecl *Method
3036              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3037          Method->setAccess(OldTemplateDecl->getAccess());
3038          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3039        }
3040
3041        // If this is an explicit specialization of a member that is a function
3042        // template, mark it as a member specialization.
3043        if (IsExplicitSpecialization &&
3044            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3045          NewTemplateDecl->setMemberSpecialization();
3046          assert(OldTemplateDecl->isMemberSpecialization());
3047        }
3048      } else {
3049        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3050          NewFD->setAccess(OldDecl->getAccess());
3051        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3052      }
3053    }
3054  }
3055
3056  // Semantic checking for this function declaration (in isolation).
3057  if (getLangOptions().CPlusPlus) {
3058    // C++-specific checks.
3059    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3060      CheckConstructor(Constructor);
3061    } else if (isa<CXXDestructorDecl>(NewFD)) {
3062      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3063      QualType ClassType = Context.getTypeDeclType(Record);
3064      if (!ClassType->isDependentType()) {
3065        DeclarationName Name
3066          = Context.DeclarationNames.getCXXDestructorName(
3067                                        Context.getCanonicalType(ClassType));
3068        if (NewFD->getDeclName() != Name) {
3069          Diag(NewFD->getLocation(), diag::err_destructor_name);
3070          return NewFD->setInvalidDecl();
3071        }
3072      }
3073      Record->setUserDeclaredDestructor(true);
3074      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3075      // user-defined destructor.
3076      Record->setPOD(false);
3077
3078      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3079      // declared destructor.
3080      // FIXME: C++0x: don't do this for "= default" destructors
3081      Record->setHasTrivialDestructor(false);
3082    } else if (CXXConversionDecl *Conversion
3083               = dyn_cast<CXXConversionDecl>(NewFD))
3084      ActOnConversionDeclarator(Conversion);
3085
3086    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3087    if (NewFD->isOverloadedOperator() &&
3088        CheckOverloadedOperatorDeclaration(NewFD))
3089      return NewFD->setInvalidDecl();
3090
3091    // In C++, check default arguments now that we have merged decls. Unless
3092    // the lexical context is the class, because in this case this is done
3093    // during delayed parsing anyway.
3094    if (!CurContext->isRecord())
3095      CheckCXXDefaultArguments(NewFD);
3096  }
3097}
3098
3099void Sema::CheckMain(FunctionDecl* FD) {
3100  // C++ [basic.start.main]p3:  A program that declares main to be inline
3101  //   or static is ill-formed.
3102  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3103  //   shall not appear in a declaration of main.
3104  // static main is not an error under C99, but we should warn about it.
3105  bool isInline = FD->isInlineSpecified();
3106  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3107  if (isInline || isStatic) {
3108    unsigned diagID = diag::warn_unusual_main_decl;
3109    if (isInline || getLangOptions().CPlusPlus)
3110      diagID = diag::err_unusual_main_decl;
3111
3112    int which = isStatic + (isInline << 1) - 1;
3113    Diag(FD->getLocation(), diagID) << which;
3114  }
3115
3116  QualType T = FD->getType();
3117  assert(T->isFunctionType() && "function decl is not of function type");
3118  const FunctionType* FT = T->getAs<FunctionType>();
3119
3120  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3121    // TODO: add a replacement fixit to turn the return type into 'int'.
3122    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3123    FD->setInvalidDecl(true);
3124  }
3125
3126  // Treat protoless main() as nullary.
3127  if (isa<FunctionNoProtoType>(FT)) return;
3128
3129  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3130  unsigned nparams = FTP->getNumArgs();
3131  assert(FD->getNumParams() == nparams);
3132
3133  if (nparams > 3) {
3134    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3135    FD->setInvalidDecl(true);
3136    nparams = 3;
3137  }
3138
3139  // FIXME: a lot of the following diagnostics would be improved
3140  // if we had some location information about types.
3141
3142  QualType CharPP =
3143    Context.getPointerType(Context.getPointerType(Context.CharTy));
3144  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3145
3146  for (unsigned i = 0; i < nparams; ++i) {
3147    QualType AT = FTP->getArgType(i);
3148
3149    bool mismatch = true;
3150
3151    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3152      mismatch = false;
3153    else if (Expected[i] == CharPP) {
3154      // As an extension, the following forms are okay:
3155      //   char const **
3156      //   char const * const *
3157      //   char * const *
3158
3159      QualifierCollector qs;
3160      const PointerType* PT;
3161      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3162          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3163          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3164        qs.removeConst();
3165        mismatch = !qs.empty();
3166      }
3167    }
3168
3169    if (mismatch) {
3170      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3171      // TODO: suggest replacing given type with expected type
3172      FD->setInvalidDecl(true);
3173    }
3174  }
3175
3176  if (nparams == 1 && !FD->isInvalidDecl()) {
3177    Diag(FD->getLocation(), diag::warn_main_one_arg);
3178  }
3179}
3180
3181bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3182  // FIXME: Need strict checking.  In C89, we need to check for
3183  // any assignment, increment, decrement, function-calls, or
3184  // commas outside of a sizeof.  In C99, it's the same list,
3185  // except that the aforementioned are allowed in unevaluated
3186  // expressions.  Everything else falls under the
3187  // "may accept other forms of constant expressions" exception.
3188  // (We never end up here for C++, so the constant expression
3189  // rules there don't matter.)
3190  if (Init->isConstantInitializer(Context))
3191    return false;
3192  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3193    << Init->getSourceRange();
3194  return true;
3195}
3196
3197void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3198  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3199}
3200
3201/// AddInitializerToDecl - Adds the initializer Init to the
3202/// declaration dcl. If DirectInit is true, this is C++ direct
3203/// initialization rather than copy initialization.
3204void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3205  Decl *RealDecl = dcl.getAs<Decl>();
3206  // If there is no declaration, there was an error parsing it.  Just ignore
3207  // the initializer.
3208  if (RealDecl == 0)
3209    return;
3210
3211  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3212    // With declarators parsed the way they are, the parser cannot
3213    // distinguish between a normal initializer and a pure-specifier.
3214    // Thus this grotesque test.
3215    IntegerLiteral *IL;
3216    Expr *Init = static_cast<Expr *>(init.get());
3217    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3218        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3219      if (Method->isVirtualAsWritten()) {
3220        Method->setPure();
3221
3222        // A class is abstract if at least one function is pure virtual.
3223        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3224      } else if (!Method->isInvalidDecl()) {
3225        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3226          << Method->getDeclName() << Init->getSourceRange();
3227        Method->setInvalidDecl();
3228      }
3229    } else {
3230      Diag(Method->getLocation(), diag::err_member_function_initialization)
3231        << Method->getDeclName() << Init->getSourceRange();
3232      Method->setInvalidDecl();
3233    }
3234    return;
3235  }
3236
3237  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3238  if (!VDecl) {
3239    if (getLangOptions().CPlusPlus &&
3240        RealDecl->getLexicalDeclContext()->isRecord() &&
3241        isa<NamedDecl>(RealDecl))
3242      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3243        << cast<NamedDecl>(RealDecl)->getDeclName();
3244    else
3245      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3246    RealDecl->setInvalidDecl();
3247    return;
3248  }
3249
3250  if (!VDecl->getType()->isArrayType() &&
3251      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3252                          diag::err_typecheck_decl_incomplete_type)) {
3253    RealDecl->setInvalidDecl();
3254    return;
3255  }
3256
3257  const VarDecl *Def = 0;
3258  if (VDecl->getDefinition(Def)) {
3259    Diag(VDecl->getLocation(), diag::err_redefinition)
3260      << VDecl->getDeclName();
3261    Diag(Def->getLocation(), diag::note_previous_definition);
3262    VDecl->setInvalidDecl();
3263    return;
3264  }
3265
3266  // Take ownership of the expression, now that we're sure we have somewhere
3267  // to put it.
3268  Expr *Init = init.takeAs<Expr>();
3269  assert(Init && "missing initializer");
3270
3271  // Get the decls type and save a reference for later, since
3272  // CheckInitializerTypes may change it.
3273  QualType DclT = VDecl->getType(), SavT = DclT;
3274  if (VDecl->isBlockVarDecl()) {
3275    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3276      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3277      VDecl->setInvalidDecl();
3278    } else if (!VDecl->isInvalidDecl()) {
3279      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3280                                VDecl->getDeclName(), DirectInit))
3281        VDecl->setInvalidDecl();
3282
3283      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3284      // Don't check invalid declarations to avoid emitting useless diagnostics.
3285      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3286        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3287          CheckForConstantInitializer(Init, DclT);
3288      }
3289    }
3290  } else if (VDecl->isStaticDataMember() &&
3291             VDecl->getLexicalDeclContext()->isRecord()) {
3292    // This is an in-class initialization for a static data member, e.g.,
3293    //
3294    // struct S {
3295    //   static const int value = 17;
3296    // };
3297
3298    // Attach the initializer
3299    VDecl->setInit(Context, Init);
3300
3301    // C++ [class.mem]p4:
3302    //   A member-declarator can contain a constant-initializer only
3303    //   if it declares a static member (9.4) of const integral or
3304    //   const enumeration type, see 9.4.2.
3305    QualType T = VDecl->getType();
3306    if (!T->isDependentType() &&
3307        (!Context.getCanonicalType(T).isConstQualified() ||
3308         !T->isIntegralType())) {
3309      Diag(VDecl->getLocation(), diag::err_member_initialization)
3310        << VDecl->getDeclName() << Init->getSourceRange();
3311      VDecl->setInvalidDecl();
3312    } else {
3313      // C++ [class.static.data]p4:
3314      //   If a static data member is of const integral or const
3315      //   enumeration type, its declaration in the class definition
3316      //   can specify a constant-initializer which shall be an
3317      //   integral constant expression (5.19).
3318      if (!Init->isTypeDependent() &&
3319          !Init->getType()->isIntegralType()) {
3320        // We have a non-dependent, non-integral or enumeration type.
3321        Diag(Init->getSourceRange().getBegin(),
3322             diag::err_in_class_initializer_non_integral_type)
3323          << Init->getType() << Init->getSourceRange();
3324        VDecl->setInvalidDecl();
3325      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3326        // Check whether the expression is a constant expression.
3327        llvm::APSInt Value;
3328        SourceLocation Loc;
3329        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3330          Diag(Loc, diag::err_in_class_initializer_non_constant)
3331            << Init->getSourceRange();
3332          VDecl->setInvalidDecl();
3333        } else if (!VDecl->getType()->isDependentType())
3334          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3335      }
3336    }
3337  } else if (VDecl->isFileVarDecl()) {
3338    if (VDecl->getStorageClass() == VarDecl::Extern)
3339      Diag(VDecl->getLocation(), diag::warn_extern_init);
3340    if (!VDecl->isInvalidDecl())
3341      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3342                                VDecl->getDeclName(), DirectInit))
3343        VDecl->setInvalidDecl();
3344
3345    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3346    // Don't check invalid declarations to avoid emitting useless diagnostics.
3347    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3348      // C99 6.7.8p4. All file scoped initializers need to be constant.
3349      CheckForConstantInitializer(Init, DclT);
3350    }
3351  }
3352  // If the type changed, it means we had an incomplete type that was
3353  // completed by the initializer. For example:
3354  //   int ary[] = { 1, 3, 5 };
3355  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3356  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3357    VDecl->setType(DclT);
3358    Init->setType(DclT);
3359  }
3360
3361  Init = MaybeCreateCXXExprWithTemporaries(Init,
3362                                           /*ShouldDestroyTemporaries=*/true);
3363  // Attach the initializer to the decl.
3364  VDecl->setInit(Context, Init);
3365
3366  // If the previous declaration of VDecl was a tentative definition,
3367  // remove it from the set of tentative definitions.
3368  if (VDecl->getPreviousDeclaration() &&
3369      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3370    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3371    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3372  }
3373
3374  return;
3375}
3376
3377void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3378                                  bool TypeContainsUndeducedAuto) {
3379  Decl *RealDecl = dcl.getAs<Decl>();
3380
3381  // If there is no declaration, there was an error parsing it. Just ignore it.
3382  if (RealDecl == 0)
3383    return;
3384
3385  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3386    QualType Type = Var->getType();
3387
3388    // Record tentative definitions.
3389    if (Var->isTentativeDefinition(Context)) {
3390      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3391        InsertPair =
3392           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3393
3394      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3395      // want the second one in the map.
3396      InsertPair.first->second = Var;
3397
3398      // However, for the list, we don't care about the order, just make sure
3399      // that there are no dupes for a given declaration name.
3400      if (InsertPair.second)
3401        TentativeDefinitionList.push_back(Var->getDeclName());
3402    }
3403
3404    // C++ [dcl.init.ref]p3:
3405    //   The initializer can be omitted for a reference only in a
3406    //   parameter declaration (8.3.5), in the declaration of a
3407    //   function return type, in the declaration of a class member
3408    //   within its class declaration (9.2), and where the extern
3409    //   specifier is explicitly used.
3410    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3411      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3412        << Var->getDeclName()
3413        << SourceRange(Var->getLocation(), Var->getLocation());
3414      Var->setInvalidDecl();
3415      return;
3416    }
3417
3418    // C++0x [dcl.spec.auto]p3
3419    if (TypeContainsUndeducedAuto) {
3420      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3421        << Var->getDeclName() << Type;
3422      Var->setInvalidDecl();
3423      return;
3424    }
3425
3426    // C++ [temp.expl.spec]p15:
3427    //   An explicit specialization of a static data member of a template is a
3428    //   definition if the declaration includes an initializer; otherwise, it
3429    //   is a declaration.
3430    if (Var->isStaticDataMember() &&
3431        Var->getInstantiatedFromStaticDataMember() &&
3432        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3433      return;
3434
3435    // C++ [dcl.init]p9:
3436    //   If no initializer is specified for an object, and the object
3437    //   is of (possibly cv-qualified) non-POD class type (or array
3438    //   thereof), the object shall be default-initialized; if the
3439    //   object is of const-qualified type, the underlying class type
3440    //   shall have a user-declared default constructor.
3441    //
3442    // FIXME: Diagnose the "user-declared default constructor" bit.
3443    if (getLangOptions().CPlusPlus) {
3444      QualType InitType = Type;
3445      if (const ArrayType *Array = Context.getAsArrayType(Type))
3446        InitType = Context.getBaseElementType(Array);
3447      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3448          InitType->isRecordType() && !InitType->isDependentType()) {
3449        if (!RequireCompleteType(Var->getLocation(), InitType,
3450                                 diag::err_invalid_incomplete_type_use)) {
3451          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3452
3453          CXXConstructorDecl *Constructor
3454            = PerformInitializationByConstructor(InitType,
3455                                                 MultiExprArg(*this, 0, 0),
3456                                                 Var->getLocation(),
3457                                               SourceRange(Var->getLocation(),
3458                                                           Var->getLocation()),
3459                                                 Var->getDeclName(),
3460                                                 IK_Default,
3461                                                 ConstructorArgs);
3462
3463          // FIXME: Location info for the variable initialization?
3464          if (!Constructor)
3465            Var->setInvalidDecl();
3466          else {
3467            // FIXME: Cope with initialization of arrays
3468            if (!Constructor->isTrivial() &&
3469                InitializeVarWithConstructor(Var, Constructor,
3470                                             move_arg(ConstructorArgs)))
3471              Var->setInvalidDecl();
3472
3473            FinalizeVarWithDestructor(Var, InitType);
3474          }
3475        } else {
3476          Var->setInvalidDecl();
3477        }
3478      }
3479    }
3480
3481#if 0
3482    // FIXME: Temporarily disabled because we are not properly parsing
3483    // linkage specifications on declarations, e.g.,
3484    //
3485    //   extern "C" const CGPoint CGPointerZero;
3486    //
3487    // C++ [dcl.init]p9:
3488    //
3489    //     If no initializer is specified for an object, and the
3490    //     object is of (possibly cv-qualified) non-POD class type (or
3491    //     array thereof), the object shall be default-initialized; if
3492    //     the object is of const-qualified type, the underlying class
3493    //     type shall have a user-declared default
3494    //     constructor. Otherwise, if no initializer is specified for
3495    //     an object, the object and its subobjects, if any, have an
3496    //     indeterminate initial value; if the object or any of its
3497    //     subobjects are of const-qualified type, the program is
3498    //     ill-formed.
3499    //
3500    // This isn't technically an error in C, so we don't diagnose it.
3501    //
3502    // FIXME: Actually perform the POD/user-defined default
3503    // constructor check.
3504    if (getLangOptions().CPlusPlus &&
3505        Context.getCanonicalType(Type).isConstQualified() &&
3506        !Var->hasExternalStorage())
3507      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3508        << Var->getName()
3509        << SourceRange(Var->getLocation(), Var->getLocation());
3510#endif
3511  }
3512}
3513
3514Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3515                                                   DeclPtrTy *Group,
3516                                                   unsigned NumDecls) {
3517  llvm::SmallVector<Decl*, 8> Decls;
3518
3519  if (DS.isTypeSpecOwned())
3520    Decls.push_back((Decl*)DS.getTypeRep());
3521
3522  for (unsigned i = 0; i != NumDecls; ++i)
3523    if (Decl *D = Group[i].getAs<Decl>())
3524      Decls.push_back(D);
3525
3526  // Perform semantic analysis that depends on having fully processed both
3527  // the declarator and initializer.
3528  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3529    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3530    if (!IDecl)
3531      continue;
3532    QualType T = IDecl->getType();
3533
3534    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3535    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3536    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3537      if (T->isDependentType()) {
3538        // If T is dependent, we should not require a complete type.
3539        // (RequireCompleteType shouldn't be called with dependent types.)
3540        // But we still can at least check if we've got an array of unspecified
3541        // size without an initializer.
3542        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3543            !IDecl->getInit()) {
3544          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3545            << T;
3546          IDecl->setInvalidDecl();
3547        }
3548      } else if (!IDecl->isInvalidDecl()) {
3549        // If T is an incomplete array type with an initializer list that is
3550        // dependent on something, its size has not been fixed. We could attempt
3551        // to fix the size for such arrays, but we would still have to check
3552        // here for initializers containing a C++0x vararg expansion, e.g.
3553        // template <typename... Args> void f(Args... args) {
3554        //   int vals[] = { args };
3555        // }
3556        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3557        Expr *Init = IDecl->getInit();
3558        if (IAT && Init &&
3559            (Init->isTypeDependent() || Init->isValueDependent())) {
3560          // Check that the member type of the array is complete, at least.
3561          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3562                                  diag::err_typecheck_decl_incomplete_type))
3563            IDecl->setInvalidDecl();
3564        } else if (RequireCompleteType(IDecl->getLocation(), T,
3565                                      diag::err_typecheck_decl_incomplete_type))
3566          IDecl->setInvalidDecl();
3567      }
3568    }
3569    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3570    // object that has file scope without an initializer, and without a
3571    // storage-class specifier or with the storage-class specifier "static",
3572    // constitutes a tentative definition. Note: A tentative definition with
3573    // external linkage is valid (C99 6.2.2p5).
3574    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3575      if (const IncompleteArrayType *ArrayT
3576          = Context.getAsIncompleteArrayType(T)) {
3577        if (RequireCompleteType(IDecl->getLocation(),
3578                                ArrayT->getElementType(),
3579                                diag::err_illegal_decl_array_incomplete_type))
3580          IDecl->setInvalidDecl();
3581      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3582        // C99 6.9.2p3: If the declaration of an identifier for an object is
3583        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3584        // declared type shall not be an incomplete type.
3585        // NOTE: code such as the following
3586        //     static struct s;
3587        //     struct s { int a; };
3588        // is accepted by gcc. Hence here we issue a warning instead of
3589        // an error and we do not invalidate the static declaration.
3590        // NOTE: to avoid multiple warnings, only check the first declaration.
3591        if (IDecl->getPreviousDeclaration() == 0)
3592          RequireCompleteType(IDecl->getLocation(), T,
3593                              diag::ext_typecheck_decl_incomplete_type);
3594      }
3595    }
3596  }
3597  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3598                                                   Decls.data(), Decls.size()));
3599}
3600
3601
3602/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3603/// to introduce parameters into function prototype scope.
3604Sema::DeclPtrTy
3605Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3606  const DeclSpec &DS = D.getDeclSpec();
3607
3608  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3609  VarDecl::StorageClass StorageClass = VarDecl::None;
3610  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3611    StorageClass = VarDecl::Register;
3612  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3613    Diag(DS.getStorageClassSpecLoc(),
3614         diag::err_invalid_storage_class_in_func_decl);
3615    D.getMutableDeclSpec().ClearStorageClassSpecs();
3616  }
3617
3618  if (D.getDeclSpec().isThreadSpecified())
3619    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3620
3621  DiagnoseFunctionSpecifiers(D);
3622
3623  // Check that there are no default arguments inside the type of this
3624  // parameter (C++ only).
3625  if (getLangOptions().CPlusPlus)
3626    CheckExtraCXXDefaultArguments(D);
3627
3628  DeclaratorInfo *DInfo = 0;
3629  TagDecl *OwnedDecl = 0;
3630  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3631
3632  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3633    // C++ [dcl.fct]p6:
3634    //   Types shall not be defined in return or parameter types.
3635    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3636      << Context.getTypeDeclType(OwnedDecl);
3637  }
3638
3639  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3640  // Can this happen for params?  We already checked that they don't conflict
3641  // among each other.  Here they can only shadow globals, which is ok.
3642  IdentifierInfo *II = D.getIdentifier();
3643  if (II) {
3644    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3645      if (PrevDecl->isTemplateParameter()) {
3646        // Maybe we will complain about the shadowed template parameter.
3647        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3648        // Just pretend that we didn't see the previous declaration.
3649        PrevDecl = 0;
3650      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3651        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3652
3653        // Recover by removing the name
3654        II = 0;
3655        D.SetIdentifier(0, D.getIdentifierLoc());
3656      }
3657    }
3658  }
3659
3660  // Parameters can not be abstract class types.
3661  // For record types, this is done by the AbstractClassUsageDiagnoser once
3662  // the class has been completely parsed.
3663  if (!CurContext->isRecord() &&
3664      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3665                             diag::err_abstract_type_in_decl,
3666                             AbstractParamType))
3667    D.setInvalidType(true);
3668
3669  QualType T = adjustParameterType(parmDeclType);
3670
3671  ParmVarDecl *New
3672    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3673                          T, DInfo, StorageClass, 0);
3674
3675  if (D.isInvalidType())
3676    New->setInvalidDecl();
3677
3678  // Parameter declarators cannot be interface types. All ObjC objects are
3679  // passed by reference.
3680  if (T->isObjCInterfaceType()) {
3681    Diag(D.getIdentifierLoc(),
3682         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3683    New->setInvalidDecl();
3684  }
3685
3686  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3687  if (D.getCXXScopeSpec().isSet()) {
3688    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3689      << D.getCXXScopeSpec().getRange();
3690    New->setInvalidDecl();
3691  }
3692
3693  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3694  // duration shall not be qualified by an address-space qualifier."
3695  // Since all parameters have automatic store duration, they can not have
3696  // an address space.
3697  if (T.getAddressSpace() != 0) {
3698    Diag(D.getIdentifierLoc(),
3699         diag::err_arg_with_address_space);
3700    New->setInvalidDecl();
3701  }
3702
3703
3704  // Add the parameter declaration into this scope.
3705  S->AddDecl(DeclPtrTy::make(New));
3706  if (II)
3707    IdResolver.AddDecl(New);
3708
3709  ProcessDeclAttributes(S, New, D);
3710
3711  if (New->hasAttr<BlocksAttr>()) {
3712    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3713  }
3714  return DeclPtrTy::make(New);
3715}
3716
3717void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3718                                           SourceLocation LocAfterDecls) {
3719  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3720         "Not a function declarator!");
3721  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3722
3723  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3724  // for a K&R function.
3725  if (!FTI.hasPrototype) {
3726    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3727      --i;
3728      if (FTI.ArgInfo[i].Param == 0) {
3729        llvm::SmallString<256> Code;
3730        llvm::raw_svector_ostream(Code) << "  int "
3731                                        << FTI.ArgInfo[i].Ident->getName()
3732                                        << ";\n";
3733        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3734          << FTI.ArgInfo[i].Ident
3735          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3736
3737        // Implicitly declare the argument as type 'int' for lack of a better
3738        // type.
3739        DeclSpec DS;
3740        const char* PrevSpec; // unused
3741        unsigned DiagID; // unused
3742        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3743                           PrevSpec, DiagID);
3744        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3745        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3746        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3747      }
3748    }
3749  }
3750}
3751
3752Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3753                                              Declarator &D) {
3754  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3755  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3756         "Not a function declarator!");
3757  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3758
3759  if (FTI.hasPrototype) {
3760    // FIXME: Diagnose arguments without names in C.
3761  }
3762
3763  Scope *ParentScope = FnBodyScope->getParent();
3764
3765  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3766                                  MultiTemplateParamsArg(*this),
3767                                  /*IsFunctionDefinition=*/true);
3768  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3769}
3770
3771Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3772  // Clear the last template instantiation error context.
3773  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3774
3775  if (!D)
3776    return D;
3777  FunctionDecl *FD = 0;
3778
3779  if (FunctionTemplateDecl *FunTmpl
3780        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3781    FD = FunTmpl->getTemplatedDecl();
3782  else
3783    FD = cast<FunctionDecl>(D.getAs<Decl>());
3784
3785  CurFunctionNeedsScopeChecking = false;
3786
3787  // See if this is a redefinition.
3788  const FunctionDecl *Definition;
3789  if (FD->getBody(Definition)) {
3790    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3791    Diag(Definition->getLocation(), diag::note_previous_definition);
3792  }
3793
3794  // Builtin functions cannot be defined.
3795  if (unsigned BuiltinID = FD->getBuiltinID()) {
3796    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3797      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3798      FD->setInvalidDecl();
3799    }
3800  }
3801
3802  // The return type of a function definition must be complete
3803  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3804  QualType ResultType = FD->getResultType();
3805  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3806      !FD->isInvalidDecl() &&
3807      RequireCompleteType(FD->getLocation(), ResultType,
3808                          diag::err_func_def_incomplete_result))
3809    FD->setInvalidDecl();
3810
3811  // GNU warning -Wmissing-prototypes:
3812  //   Warn if a global function is defined without a previous
3813  //   prototype declaration. This warning is issued even if the
3814  //   definition itself provides a prototype. The aim is to detect
3815  //   global functions that fail to be declared in header files.
3816  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3817      !FD->isMain()) {
3818    bool MissingPrototype = true;
3819    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3820         Prev; Prev = Prev->getPreviousDeclaration()) {
3821      // Ignore any declarations that occur in function or method
3822      // scope, because they aren't visible from the header.
3823      if (Prev->getDeclContext()->isFunctionOrMethod())
3824        continue;
3825
3826      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3827      break;
3828    }
3829
3830    if (MissingPrototype)
3831      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3832  }
3833
3834  if (FnBodyScope)
3835    PushDeclContext(FnBodyScope, FD);
3836
3837  // Check the validity of our function parameters
3838  CheckParmsForFunctionDef(FD);
3839
3840  // Introduce our parameters into the function scope
3841  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3842    ParmVarDecl *Param = FD->getParamDecl(p);
3843    Param->setOwningFunction(FD);
3844
3845    // If this has an identifier, add it to the scope stack.
3846    if (Param->getIdentifier() && FnBodyScope)
3847      PushOnScopeChains(Param, FnBodyScope);
3848  }
3849
3850  // Checking attributes of current function definition
3851  // dllimport attribute.
3852  if (FD->getAttr<DLLImportAttr>() &&
3853      (!FD->getAttr<DLLExportAttr>())) {
3854    // dllimport attribute cannot be applied to definition.
3855    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3856      Diag(FD->getLocation(),
3857           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3858        << "dllimport";
3859      FD->setInvalidDecl();
3860      return DeclPtrTy::make(FD);
3861    } else {
3862      // If a symbol previously declared dllimport is later defined, the
3863      // attribute is ignored in subsequent references, and a warning is
3864      // emitted.
3865      Diag(FD->getLocation(),
3866           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3867        << FD->getNameAsCString() << "dllimport";
3868    }
3869  }
3870  return DeclPtrTy::make(FD);
3871}
3872
3873Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3874  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3875}
3876
3877Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3878                                              bool IsInstantiation) {
3879  Decl *dcl = D.getAs<Decl>();
3880  Stmt *Body = BodyArg.takeAs<Stmt>();
3881
3882  FunctionDecl *FD = 0;
3883  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3884  if (FunTmpl)
3885    FD = FunTmpl->getTemplatedDecl();
3886  else
3887    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3888
3889  if (FD) {
3890    FD->setBody(Body);
3891    if (FD->isMain())
3892      // C and C++ allow for main to automagically return 0.
3893      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3894      FD->setHasImplicitReturnZero(true);
3895    else
3896      CheckFallThroughForFunctionDef(FD, Body);
3897
3898    if (!FD->isInvalidDecl())
3899      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3900
3901    // C++ [basic.def.odr]p2:
3902    //   [...] A virtual member function is used if it is not pure. [...]
3903    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3904      if (Method->isVirtual() && !Method->isPure())
3905        MarkDeclarationReferenced(Method->getLocation(), Method);
3906
3907    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3908  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3909    assert(MD == getCurMethodDecl() && "Method parsing confused");
3910    MD->setBody(Body);
3911    CheckFallThroughForFunctionDef(MD, Body);
3912    MD->setEndLoc(Body->getLocEnd());
3913
3914    if (!MD->isInvalidDecl())
3915      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3916  } else {
3917    Body->Destroy(Context);
3918    return DeclPtrTy();
3919  }
3920  if (!IsInstantiation)
3921    PopDeclContext();
3922
3923  // Verify and clean out per-function state.
3924
3925  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3926
3927  // Check goto/label use.
3928  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3929       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3930    LabelStmt *L = I->second;
3931
3932    // Verify that we have no forward references left.  If so, there was a goto
3933    // or address of a label taken, but no definition of it.  Label fwd
3934    // definitions are indicated with a null substmt.
3935    if (L->getSubStmt() != 0)
3936      continue;
3937
3938    // Emit error.
3939    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3940
3941    // At this point, we have gotos that use the bogus label.  Stitch it into
3942    // the function body so that they aren't leaked and that the AST is well
3943    // formed.
3944    if (Body == 0) {
3945      // The whole function wasn't parsed correctly, just delete this.
3946      L->Destroy(Context);
3947      continue;
3948    }
3949
3950    // Otherwise, the body is valid: we want to stitch the label decl into the
3951    // function somewhere so that it is properly owned and so that the goto
3952    // has a valid target.  Do this by creating a new compound stmt with the
3953    // label in it.
3954
3955    // Give the label a sub-statement.
3956    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3957
3958    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3959                               cast<CXXTryStmt>(Body)->getTryBlock() :
3960                               cast<CompoundStmt>(Body);
3961    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3962    Elements.push_back(L);
3963    Compound->setStmts(Context, &Elements[0], Elements.size());
3964  }
3965  FunctionLabelMap.clear();
3966
3967  if (!Body) return D;
3968
3969  // Verify that that gotos and switch cases don't jump into scopes illegally.
3970  if (CurFunctionNeedsScopeChecking)
3971    DiagnoseInvalidJumps(Body);
3972
3973  // C++ constructors that have function-try-blocks can't have return
3974  // statements in the handlers of that block. (C++ [except.handle]p14)
3975  // Verify this.
3976  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3977    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3978
3979  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3980    computeBaseOrMembersToDestroy(Destructor);
3981  return D;
3982}
3983
3984/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3985/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3986NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3987                                          IdentifierInfo &II, Scope *S) {
3988  // Before we produce a declaration for an implicitly defined
3989  // function, see whether there was a locally-scoped declaration of
3990  // this name as a function or variable. If so, use that
3991  // (non-visible) declaration, and complain about it.
3992  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3993    = LocallyScopedExternalDecls.find(&II);
3994  if (Pos != LocallyScopedExternalDecls.end()) {
3995    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3996    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3997    return Pos->second;
3998  }
3999
4000  // Extension in C99.  Legal in C90, but warn about it.
4001  if (II.getName().startswith("__builtin_"))
4002    Diag(Loc, diag::warn_builtin_unknown) << &II;
4003  else if (getLangOptions().C99)
4004    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4005  else
4006    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4007
4008  // Set a Declarator for the implicit definition: int foo();
4009  const char *Dummy;
4010  DeclSpec DS;
4011  unsigned DiagID;
4012  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4013  Error = Error; // Silence warning.
4014  assert(!Error && "Error setting up implicit decl!");
4015  Declarator D(DS, Declarator::BlockContext);
4016  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4017                                             0, 0, false, SourceLocation(),
4018                                             false, 0,0,0, Loc, Loc, D),
4019                SourceLocation());
4020  D.SetIdentifier(&II, Loc);
4021
4022  // Insert this function into translation-unit scope.
4023
4024  DeclContext *PrevDC = CurContext;
4025  CurContext = Context.getTranslationUnitDecl();
4026
4027  FunctionDecl *FD =
4028 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4029  FD->setImplicit();
4030
4031  CurContext = PrevDC;
4032
4033  AddKnownFunctionAttributes(FD);
4034
4035  return FD;
4036}
4037
4038/// \brief Adds any function attributes that we know a priori based on
4039/// the declaration of this function.
4040///
4041/// These attributes can apply both to implicitly-declared builtins
4042/// (like __builtin___printf_chk) or to library-declared functions
4043/// like NSLog or printf.
4044void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4045  if (FD->isInvalidDecl())
4046    return;
4047
4048  // If this is a built-in function, map its builtin attributes to
4049  // actual attributes.
4050  if (unsigned BuiltinID = FD->getBuiltinID()) {
4051    // Handle printf-formatting attributes.
4052    unsigned FormatIdx;
4053    bool HasVAListArg;
4054    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4055      if (!FD->getAttr<FormatAttr>())
4056        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4057                                             HasVAListArg ? 0 : FormatIdx + 2));
4058    }
4059
4060    // Mark const if we don't care about errno and that is the only
4061    // thing preventing the function from being const. This allows
4062    // IRgen to use LLVM intrinsics for such functions.
4063    if (!getLangOptions().MathErrno &&
4064        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4065      if (!FD->getAttr<ConstAttr>())
4066        FD->addAttr(::new (Context) ConstAttr());
4067    }
4068
4069    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4070      FD->addAttr(::new (Context) NoReturnAttr());
4071  }
4072
4073  IdentifierInfo *Name = FD->getIdentifier();
4074  if (!Name)
4075    return;
4076  if ((!getLangOptions().CPlusPlus &&
4077       FD->getDeclContext()->isTranslationUnit()) ||
4078      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4079       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4080       LinkageSpecDecl::lang_c)) {
4081    // Okay: this could be a libc/libm/Objective-C function we know
4082    // about.
4083  } else
4084    return;
4085
4086  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4087    // FIXME: NSLog and NSLogv should be target specific
4088    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4089      // FIXME: We known better than our headers.
4090      const_cast<FormatAttr *>(Format)->setType("printf");
4091    } else
4092      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4093                                             Name->isStr("NSLogv") ? 0 : 2));
4094  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4095    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4096    // target-specific builtins, perhaps?
4097    if (!FD->getAttr<FormatAttr>())
4098      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4099                                             Name->isStr("vasprintf") ? 0 : 3));
4100  }
4101}
4102
4103TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4104                                    DeclaratorInfo *DInfo) {
4105  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4106  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4107
4108  if (!DInfo) {
4109    assert(D.isInvalidType() && "no declarator info for valid type");
4110    DInfo = Context.getTrivialDeclaratorInfo(T);
4111  }
4112
4113  // Scope manipulation handled by caller.
4114  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4115                                           D.getIdentifierLoc(),
4116                                           D.getIdentifier(),
4117                                           DInfo);
4118
4119  if (const TagType *TT = T->getAs<TagType>()) {
4120    TagDecl *TD = TT->getDecl();
4121
4122    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4123    // keep track of the TypedefDecl.
4124    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4125      TD->setTypedefForAnonDecl(NewTD);
4126  }
4127
4128  if (D.isInvalidType())
4129    NewTD->setInvalidDecl();
4130  return NewTD;
4131}
4132
4133
4134/// \brief Determine whether a tag with a given kind is acceptable
4135/// as a redeclaration of the given tag declaration.
4136///
4137/// \returns true if the new tag kind is acceptable, false otherwise.
4138bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4139                                        TagDecl::TagKind NewTag,
4140                                        SourceLocation NewTagLoc,
4141                                        const IdentifierInfo &Name) {
4142  // C++ [dcl.type.elab]p3:
4143  //   The class-key or enum keyword present in the
4144  //   elaborated-type-specifier shall agree in kind with the
4145  //   declaration to which the name in theelaborated-type-specifier
4146  //   refers. This rule also applies to the form of
4147  //   elaborated-type-specifier that declares a class-name or
4148  //   friend class since it can be construed as referring to the
4149  //   definition of the class. Thus, in any
4150  //   elaborated-type-specifier, the enum keyword shall be used to
4151  //   refer to an enumeration (7.2), the union class-keyshall be
4152  //   used to refer to a union (clause 9), and either the class or
4153  //   struct class-key shall be used to refer to a class (clause 9)
4154  //   declared using the class or struct class-key.
4155  TagDecl::TagKind OldTag = Previous->getTagKind();
4156  if (OldTag == NewTag)
4157    return true;
4158
4159  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4160      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4161    // Warn about the struct/class tag mismatch.
4162    bool isTemplate = false;
4163    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4164      isTemplate = Record->getDescribedClassTemplate();
4165
4166    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4167      << (NewTag == TagDecl::TK_class)
4168      << isTemplate << &Name
4169      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4170                              OldTag == TagDecl::TK_class? "class" : "struct");
4171    Diag(Previous->getLocation(), diag::note_previous_use);
4172    return true;
4173  }
4174  return false;
4175}
4176
4177/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4178/// former case, Name will be non-null.  In the later case, Name will be null.
4179/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4180/// reference/declaration/definition of a tag.
4181Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4182                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4183                               IdentifierInfo *Name, SourceLocation NameLoc,
4184                               AttributeList *Attr, AccessSpecifier AS,
4185                               MultiTemplateParamsArg TemplateParameterLists,
4186                               bool &OwnedDecl, bool &IsDependent) {
4187  // If this is not a definition, it must have a name.
4188  assert((Name != 0 || TUK == TUK_Definition) &&
4189         "Nameless record must be a definition!");
4190
4191  OwnedDecl = false;
4192  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4193
4194  // FIXME: Check explicit specializations more carefully.
4195  bool isExplicitSpecialization = false;
4196  if (TUK != TUK_Reference) {
4197    if (TemplateParameterList *TemplateParams
4198          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4199                        (TemplateParameterList**)TemplateParameterLists.get(),
4200                                              TemplateParameterLists.size(),
4201                                                    isExplicitSpecialization)) {
4202      if (TemplateParams->size() > 0) {
4203        // This is a declaration or definition of a class template (which may
4204        // be a member of another template).
4205        OwnedDecl = false;
4206        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4207                                               SS, Name, NameLoc, Attr,
4208                                               TemplateParams,
4209                                               AS);
4210        TemplateParameterLists.release();
4211        return Result.get();
4212      } else {
4213        // The "template<>" header is extraneous.
4214        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4215          << ElaboratedType::getNameForTagKind(Kind) << Name;
4216        isExplicitSpecialization = true;
4217      }
4218    }
4219
4220    TemplateParameterLists.release();
4221  }
4222
4223  DeclContext *SearchDC = CurContext;
4224  DeclContext *DC = CurContext;
4225  NamedDecl *PrevDecl = 0;
4226  bool isStdBadAlloc = false;
4227  bool Invalid = false;
4228
4229  bool RedeclarationOnly = (TUK != TUK_Reference);
4230
4231  if (Name && SS.isNotEmpty()) {
4232    // We have a nested-name tag ('struct foo::bar').
4233
4234    // Check for invalid 'foo::'.
4235    if (SS.isInvalid()) {
4236      Name = 0;
4237      goto CreateNewDecl;
4238    }
4239
4240    // If this is a friend or a reference to a class in a dependent
4241    // context, don't try to make a decl for it.
4242    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4243      DC = computeDeclContext(SS, false);
4244      if (!DC) {
4245        IsDependent = true;
4246        return DeclPtrTy();
4247      }
4248    }
4249
4250    if (RequireCompleteDeclContext(SS))
4251      return DeclPtrTy::make((Decl *)0);
4252
4253    DC = computeDeclContext(SS, true);
4254    SearchDC = DC;
4255    // Look-up name inside 'foo::'.
4256    LookupResult R;
4257    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4258
4259    if (R.isAmbiguous()) {
4260      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4261      return DeclPtrTy();
4262    }
4263
4264    if (R.getKind() == LookupResult::Found)
4265      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4266
4267    // A tag 'foo::bar' must already exist.
4268    if (!PrevDecl) {
4269      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4270      Name = 0;
4271      Invalid = true;
4272      goto CreateNewDecl;
4273    }
4274  } else if (Name) {
4275    // If this is a named struct, check to see if there was a previous forward
4276    // declaration or definition.
4277    // FIXME: We're looking into outer scopes here, even when we
4278    // shouldn't be. Doing so can result in ambiguities that we
4279    // shouldn't be diagnosing.
4280    LookupResult R;
4281    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4282    if (R.isAmbiguous()) {
4283      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4284      // FIXME: This is not best way to recover from case like:
4285      //
4286      // struct S s;
4287      //
4288      // causes needless "incomplete type" error later.
4289      Name = 0;
4290      PrevDecl = 0;
4291      Invalid = true;
4292    } else
4293      PrevDecl = R.getAsSingleDecl(Context);
4294
4295    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4296      // FIXME: This makes sure that we ignore the contexts associated
4297      // with C structs, unions, and enums when looking for a matching
4298      // tag declaration or definition. See the similar lookup tweak
4299      // in Sema::LookupName; is there a better way to deal with this?
4300      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4301        SearchDC = SearchDC->getParent();
4302    }
4303  }
4304
4305  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4306    // Maybe we will complain about the shadowed template parameter.
4307    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4308    // Just pretend that we didn't see the previous declaration.
4309    PrevDecl = 0;
4310  }
4311
4312  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4313      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4314    // This is a declaration of or a reference to "std::bad_alloc".
4315    isStdBadAlloc = true;
4316
4317    if (!PrevDecl && StdBadAlloc) {
4318      // std::bad_alloc has been implicitly declared (but made invisible to
4319      // name lookup). Fill in this implicit declaration as the previous
4320      // declaration, so that the declarations get chained appropriately.
4321      PrevDecl = StdBadAlloc;
4322    }
4323  }
4324
4325  if (PrevDecl) {
4326    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4327      // If this is a use of a previous tag, or if the tag is already declared
4328      // in the same scope (so that the definition/declaration completes or
4329      // rementions the tag), reuse the decl.
4330      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4331          isDeclInScope(PrevDecl, SearchDC, S)) {
4332        // Make sure that this wasn't declared as an enum and now used as a
4333        // struct or something similar.
4334        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4335          bool SafeToContinue
4336            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4337               Kind != TagDecl::TK_enum);
4338          if (SafeToContinue)
4339            Diag(KWLoc, diag::err_use_with_wrong_tag)
4340              << Name
4341              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4342                                                  PrevTagDecl->getKindName());
4343          else
4344            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4345          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4346
4347          if (SafeToContinue)
4348            Kind = PrevTagDecl->getTagKind();
4349          else {
4350            // Recover by making this an anonymous redefinition.
4351            Name = 0;
4352            PrevDecl = 0;
4353            Invalid = true;
4354          }
4355        }
4356
4357        if (!Invalid) {
4358          // If this is a use, just return the declaration we found.
4359
4360          // FIXME: In the future, return a variant or some other clue
4361          // for the consumer of this Decl to know it doesn't own it.
4362          // For our current ASTs this shouldn't be a problem, but will
4363          // need to be changed with DeclGroups.
4364          if (TUK == TUK_Reference || TUK == TUK_Friend)
4365            return DeclPtrTy::make(PrevDecl);
4366
4367          // Diagnose attempts to redefine a tag.
4368          if (TUK == TUK_Definition) {
4369            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4370              // If we're defining a specialization and the previous definition
4371              // is from an implicit instantiation, don't emit an error
4372              // here; we'll catch this in the general case below.
4373              if (!isExplicitSpecialization ||
4374                  !isa<CXXRecordDecl>(Def) ||
4375                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4376                                               == TSK_ExplicitSpecialization) {
4377                Diag(NameLoc, diag::err_redefinition) << Name;
4378                Diag(Def->getLocation(), diag::note_previous_definition);
4379                // If this is a redefinition, recover by making this
4380                // struct be anonymous, which will make any later
4381                // references get the previous definition.
4382                Name = 0;
4383                PrevDecl = 0;
4384                Invalid = true;
4385              }
4386            } else {
4387              // If the type is currently being defined, complain
4388              // about a nested redefinition.
4389              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4390              if (Tag->isBeingDefined()) {
4391                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4392                Diag(PrevTagDecl->getLocation(),
4393                     diag::note_previous_definition);
4394                Name = 0;
4395                PrevDecl = 0;
4396                Invalid = true;
4397              }
4398            }
4399
4400            // Okay, this is definition of a previously declared or referenced
4401            // tag PrevDecl. We're going to create a new Decl for it.
4402          }
4403        }
4404        // If we get here we have (another) forward declaration or we
4405        // have a definition.  Just create a new decl.
4406
4407      } else {
4408        // If we get here, this is a definition of a new tag type in a nested
4409        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4410        // new decl/type.  We set PrevDecl to NULL so that the entities
4411        // have distinct types.
4412        PrevDecl = 0;
4413      }
4414      // If we get here, we're going to create a new Decl. If PrevDecl
4415      // is non-NULL, it's a definition of the tag declared by
4416      // PrevDecl. If it's NULL, we have a new definition.
4417    } else {
4418      // PrevDecl is a namespace, template, or anything else
4419      // that lives in the IDNS_Tag identifier namespace.
4420      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4421        // The tag name clashes with a namespace name, issue an error and
4422        // recover by making this tag be anonymous.
4423        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4424        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4425        Name = 0;
4426        PrevDecl = 0;
4427        Invalid = true;
4428      } else {
4429        // The existing declaration isn't relevant to us; we're in a
4430        // new scope, so clear out the previous declaration.
4431        PrevDecl = 0;
4432      }
4433    }
4434  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4435             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4436    // C++ [basic.scope.pdecl]p5:
4437    //   -- for an elaborated-type-specifier of the form
4438    //
4439    //          class-key identifier
4440    //
4441    //      if the elaborated-type-specifier is used in the
4442    //      decl-specifier-seq or parameter-declaration-clause of a
4443    //      function defined in namespace scope, the identifier is
4444    //      declared as a class-name in the namespace that contains
4445    //      the declaration; otherwise, except as a friend
4446    //      declaration, the identifier is declared in the smallest
4447    //      non-class, non-function-prototype scope that contains the
4448    //      declaration.
4449    //
4450    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4451    // C structs and unions.
4452    //
4453    // GNU C also supports this behavior as part of its incomplete
4454    // enum types extension, while GNU C++ does not.
4455    //
4456    // Find the context where we'll be declaring the tag.
4457    // FIXME: We would like to maintain the current DeclContext as the
4458    // lexical context,
4459    while (SearchDC->isRecord())
4460      SearchDC = SearchDC->getParent();
4461
4462    // Find the scope where we'll be declaring the tag.
4463    while (S->isClassScope() ||
4464           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4465           ((S->getFlags() & Scope::DeclScope) == 0) ||
4466           (S->getEntity() &&
4467            ((DeclContext *)S->getEntity())->isTransparentContext()))
4468      S = S->getParent();
4469
4470  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4471    // C++ [namespace.memdef]p3:
4472    //   If a friend declaration in a non-local class first declares a
4473    //   class or function, the friend class or function is a member of
4474    //   the innermost enclosing namespace.
4475    while (!SearchDC->isFileContext())
4476      SearchDC = SearchDC->getParent();
4477
4478    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4479    while (S->getEntity() != SearchDC)
4480      S = S->getParent();
4481  }
4482
4483CreateNewDecl:
4484
4485  // If there is an identifier, use the location of the identifier as the
4486  // location of the decl, otherwise use the location of the struct/union
4487  // keyword.
4488  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4489
4490  // Otherwise, create a new declaration. If there is a previous
4491  // declaration of the same entity, the two will be linked via
4492  // PrevDecl.
4493  TagDecl *New;
4494
4495  if (Kind == TagDecl::TK_enum) {
4496    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4497    // enum X { A, B, C } D;    D should chain to X.
4498    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4499                           cast_or_null<EnumDecl>(PrevDecl));
4500    // If this is an undefined enum, warn.
4501    if (TUK != TUK_Definition && !Invalid)  {
4502      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4503                                              : diag::ext_forward_ref_enum;
4504      Diag(Loc, DK);
4505    }
4506  } else {
4507    // struct/union/class
4508
4509    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4510    // struct X { int A; } D;    D should chain to X.
4511    if (getLangOptions().CPlusPlus) {
4512      // FIXME: Look for a way to use RecordDecl for simple structs.
4513      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4514                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4515
4516      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4517        StdBadAlloc = cast<CXXRecordDecl>(New);
4518    } else
4519      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4520                               cast_or_null<RecordDecl>(PrevDecl));
4521  }
4522
4523  if (Kind != TagDecl::TK_enum) {
4524    // Handle #pragma pack: if the #pragma pack stack has non-default
4525    // alignment, make up a packed attribute for this decl. These
4526    // attributes are checked when the ASTContext lays out the
4527    // structure.
4528    //
4529    // It is important for implementing the correct semantics that this
4530    // happen here (in act on tag decl). The #pragma pack stack is
4531    // maintained as a result of parser callbacks which can occur at
4532    // many points during the parsing of a struct declaration (because
4533    // the #pragma tokens are effectively skipped over during the
4534    // parsing of the struct).
4535    if (unsigned Alignment = getPragmaPackAlignment())
4536      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4537  }
4538
4539  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4540    // C++ [dcl.typedef]p3:
4541    //   [...] Similarly, in a given scope, a class or enumeration
4542    //   shall not be declared with the same name as a typedef-name
4543    //   that is declared in that scope and refers to a type other
4544    //   than the class or enumeration itself.
4545    LookupResult Lookup;
4546    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4547    TypedefDecl *PrevTypedef = 0;
4548    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4549      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4550
4551    NamedDecl *PrevTypedefNamed = PrevTypedef;
4552    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4553        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4554          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4555      Diag(Loc, diag::err_tag_definition_of_typedef)
4556        << Context.getTypeDeclType(New)
4557        << PrevTypedef->getUnderlyingType();
4558      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4559      Invalid = true;
4560    }
4561  }
4562
4563  // If this is a specialization of a member class (of a class template),
4564  // check the specialization.
4565  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4566    Invalid = true;
4567
4568  if (Invalid)
4569    New->setInvalidDecl();
4570
4571  if (Attr)
4572    ProcessDeclAttributeList(S, New, Attr);
4573
4574  // If we're declaring or defining a tag in function prototype scope
4575  // in C, note that this type can only be used within the function.
4576  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4577    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4578
4579  // Set the lexical context. If the tag has a C++ scope specifier, the
4580  // lexical context will be different from the semantic context.
4581  New->setLexicalDeclContext(CurContext);
4582
4583  // Mark this as a friend decl if applicable.
4584  if (TUK == TUK_Friend)
4585    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4586
4587  // Set the access specifier.
4588  if (!Invalid && TUK != TUK_Friend)
4589    SetMemberAccessSpecifier(New, PrevDecl, AS);
4590
4591  if (TUK == TUK_Definition)
4592    New->startDefinition();
4593
4594  // If this has an identifier, add it to the scope stack.
4595  if (TUK == TUK_Friend) {
4596    // We might be replacing an existing declaration in the lookup tables;
4597    // if so, borrow its access specifier.
4598    if (PrevDecl)
4599      New->setAccess(PrevDecl->getAccess());
4600
4601    // Friend tag decls are visible in fairly strange ways.
4602    if (!CurContext->isDependentContext()) {
4603      DeclContext *DC = New->getDeclContext()->getLookupContext();
4604      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4605      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4606        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4607    }
4608  } else if (Name) {
4609    S = getNonFieldDeclScope(S);
4610    PushOnScopeChains(New, S);
4611  } else {
4612    CurContext->addDecl(New);
4613  }
4614
4615  // If this is the C FILE type, notify the AST context.
4616  if (IdentifierInfo *II = New->getIdentifier())
4617    if (!New->isInvalidDecl() &&
4618        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4619        II->isStr("FILE"))
4620      Context.setFILEDecl(New);
4621
4622  OwnedDecl = true;
4623  return DeclPtrTy::make(New);
4624}
4625
4626void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4627  AdjustDeclIfTemplate(TagD);
4628  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4629
4630  // Enter the tag context.
4631  PushDeclContext(S, Tag);
4632
4633  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4634    FieldCollector->StartClass();
4635
4636    if (Record->getIdentifier()) {
4637      // C++ [class]p2:
4638      //   [...] The class-name is also inserted into the scope of the
4639      //   class itself; this is known as the injected-class-name. For
4640      //   purposes of access checking, the injected-class-name is treated
4641      //   as if it were a public member name.
4642      CXXRecordDecl *InjectedClassName
4643        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4644                                CurContext, Record->getLocation(),
4645                                Record->getIdentifier(),
4646                                Record->getTagKeywordLoc(),
4647                                Record);
4648      InjectedClassName->setImplicit();
4649      InjectedClassName->setAccess(AS_public);
4650      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4651        InjectedClassName->setDescribedClassTemplate(Template);
4652      PushOnScopeChains(InjectedClassName, S);
4653      assert(InjectedClassName->isInjectedClassName() &&
4654             "Broken injected-class-name");
4655    }
4656  }
4657}
4658
4659void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4660                                    SourceLocation RBraceLoc) {
4661  AdjustDeclIfTemplate(TagD);
4662  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4663  Tag->setRBraceLoc(RBraceLoc);
4664
4665  if (isa<CXXRecordDecl>(Tag))
4666    FieldCollector->FinishClass();
4667
4668  // Exit this scope of this tag's definition.
4669  PopDeclContext();
4670
4671  // Notify the consumer that we've defined a tag.
4672  Consumer.HandleTagDeclDefinition(Tag);
4673}
4674
4675// Note that FieldName may be null for anonymous bitfields.
4676bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4677                          QualType FieldTy, const Expr *BitWidth,
4678                          bool *ZeroWidth) {
4679  // Default to true; that shouldn't confuse checks for emptiness
4680  if (ZeroWidth)
4681    *ZeroWidth = true;
4682
4683  // C99 6.7.2.1p4 - verify the field type.
4684  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4685  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4686    // Handle incomplete types with specific error.
4687    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4688      return true;
4689    if (FieldName)
4690      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4691        << FieldName << FieldTy << BitWidth->getSourceRange();
4692    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4693      << FieldTy << BitWidth->getSourceRange();
4694  }
4695
4696  // If the bit-width is type- or value-dependent, don't try to check
4697  // it now.
4698  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4699    return false;
4700
4701  llvm::APSInt Value;
4702  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4703    return true;
4704
4705  if (Value != 0 && ZeroWidth)
4706    *ZeroWidth = false;
4707
4708  // Zero-width bitfield is ok for anonymous field.
4709  if (Value == 0 && FieldName)
4710    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4711
4712  if (Value.isSigned() && Value.isNegative()) {
4713    if (FieldName)
4714      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4715               << FieldName << Value.toString(10);
4716    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4717      << Value.toString(10);
4718  }
4719
4720  if (!FieldTy->isDependentType()) {
4721    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4722    if (Value.getZExtValue() > TypeSize) {
4723      if (FieldName)
4724        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4725          << FieldName << (unsigned)TypeSize;
4726      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4727        << (unsigned)TypeSize;
4728    }
4729  }
4730
4731  return false;
4732}
4733
4734/// ActOnField - Each field of a struct/union/class is passed into this in order
4735/// to create a FieldDecl object for it.
4736Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4737                                 SourceLocation DeclStart,
4738                                 Declarator &D, ExprTy *BitfieldWidth) {
4739  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4740                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4741                               AS_public);
4742  return DeclPtrTy::make(Res);
4743}
4744
4745/// HandleField - Analyze a field of a C struct or a C++ data member.
4746///
4747FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4748                             SourceLocation DeclStart,
4749                             Declarator &D, Expr *BitWidth,
4750                             AccessSpecifier AS) {
4751  IdentifierInfo *II = D.getIdentifier();
4752  SourceLocation Loc = DeclStart;
4753  if (II) Loc = D.getIdentifierLoc();
4754
4755  DeclaratorInfo *DInfo = 0;
4756  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4757  if (getLangOptions().CPlusPlus)
4758    CheckExtraCXXDefaultArguments(D);
4759
4760  DiagnoseFunctionSpecifiers(D);
4761
4762  if (D.getDeclSpec().isThreadSpecified())
4763    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4764
4765  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4766
4767  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4768    // Maybe we will complain about the shadowed template parameter.
4769    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4770    // Just pretend that we didn't see the previous declaration.
4771    PrevDecl = 0;
4772  }
4773
4774  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4775    PrevDecl = 0;
4776
4777  bool Mutable
4778    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4779  SourceLocation TSSL = D.getSourceRange().getBegin();
4780  FieldDecl *NewFD
4781    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4782                     AS, PrevDecl, &D);
4783  if (NewFD->isInvalidDecl() && PrevDecl) {
4784    // Don't introduce NewFD into scope; there's already something
4785    // with the same name in the same scope.
4786  } else if (II) {
4787    PushOnScopeChains(NewFD, S);
4788  } else
4789    Record->addDecl(NewFD);
4790
4791  return NewFD;
4792}
4793
4794/// \brief Build a new FieldDecl and check its well-formedness.
4795///
4796/// This routine builds a new FieldDecl given the fields name, type,
4797/// record, etc. \p PrevDecl should refer to any previous declaration
4798/// with the same name and in the same scope as the field to be
4799/// created.
4800///
4801/// \returns a new FieldDecl.
4802///
4803/// \todo The Declarator argument is a hack. It will be removed once
4804FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4805                                DeclaratorInfo *DInfo,
4806                                RecordDecl *Record, SourceLocation Loc,
4807                                bool Mutable, Expr *BitWidth,
4808                                SourceLocation TSSL,
4809                                AccessSpecifier AS, NamedDecl *PrevDecl,
4810                                Declarator *D) {
4811  IdentifierInfo *II = Name.getAsIdentifierInfo();
4812  bool InvalidDecl = false;
4813  if (D) InvalidDecl = D->isInvalidType();
4814
4815  // If we receive a broken type, recover by assuming 'int' and
4816  // marking this declaration as invalid.
4817  if (T.isNull()) {
4818    InvalidDecl = true;
4819    T = Context.IntTy;
4820  }
4821
4822  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4823  // than a variably modified type.
4824  if (T->isVariablyModifiedType()) {
4825    bool SizeIsNegative;
4826    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4827                                                           SizeIsNegative);
4828    if (!FixedTy.isNull()) {
4829      Diag(Loc, diag::warn_illegal_constant_array_size);
4830      T = FixedTy;
4831    } else {
4832      if (SizeIsNegative)
4833        Diag(Loc, diag::err_typecheck_negative_array_size);
4834      else
4835        Diag(Loc, diag::err_typecheck_field_variable_size);
4836      InvalidDecl = true;
4837    }
4838  }
4839
4840  // Fields can not have abstract class types
4841  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4842                             AbstractFieldType))
4843    InvalidDecl = true;
4844
4845  bool ZeroWidth = false;
4846  // If this is declared as a bit-field, check the bit-field.
4847  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4848    InvalidDecl = true;
4849    DeleteExpr(BitWidth);
4850    BitWidth = 0;
4851    ZeroWidth = false;
4852  }
4853
4854  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4855                                       BitWidth, Mutable);
4856  if (InvalidDecl)
4857    NewFD->setInvalidDecl();
4858
4859  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4860    Diag(Loc, diag::err_duplicate_member) << II;
4861    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4862    NewFD->setInvalidDecl();
4863  }
4864
4865  if (getLangOptions().CPlusPlus) {
4866    QualType EltTy = Context.getBaseElementType(T);
4867
4868    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4869
4870    if (!T->isPODType())
4871      CXXRecord->setPOD(false);
4872    if (!ZeroWidth)
4873      CXXRecord->setEmpty(false);
4874
4875    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4876      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4877
4878      if (!RDecl->hasTrivialConstructor())
4879        CXXRecord->setHasTrivialConstructor(false);
4880      if (!RDecl->hasTrivialCopyConstructor())
4881        CXXRecord->setHasTrivialCopyConstructor(false);
4882      if (!RDecl->hasTrivialCopyAssignment())
4883        CXXRecord->setHasTrivialCopyAssignment(false);
4884      if (!RDecl->hasTrivialDestructor())
4885        CXXRecord->setHasTrivialDestructor(false);
4886
4887      // C++ 9.5p1: An object of a class with a non-trivial
4888      // constructor, a non-trivial copy constructor, a non-trivial
4889      // destructor, or a non-trivial copy assignment operator
4890      // cannot be a member of a union, nor can an array of such
4891      // objects.
4892      // TODO: C++0x alters this restriction significantly.
4893      if (Record->isUnion()) {
4894        // We check for copy constructors before constructors
4895        // because otherwise we'll never get complaints about
4896        // copy constructors.
4897
4898        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4899
4900        CXXSpecialMember member;
4901        if (!RDecl->hasTrivialCopyConstructor())
4902          member = CXXCopyConstructor;
4903        else if (!RDecl->hasTrivialConstructor())
4904          member = CXXDefaultConstructor;
4905        else if (!RDecl->hasTrivialCopyAssignment())
4906          member = CXXCopyAssignment;
4907        else if (!RDecl->hasTrivialDestructor())
4908          member = CXXDestructor;
4909        else
4910          member = invalid;
4911
4912        if (member != invalid) {
4913          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4914          DiagnoseNontrivial(RT, member);
4915          NewFD->setInvalidDecl();
4916        }
4917      }
4918    }
4919  }
4920
4921  // FIXME: We need to pass in the attributes given an AST
4922  // representation, not a parser representation.
4923  if (D)
4924    // FIXME: What to pass instead of TUScope?
4925    ProcessDeclAttributes(TUScope, NewFD, *D);
4926
4927  if (T.isObjCGCWeak())
4928    Diag(Loc, diag::warn_attribute_weak_on_field);
4929
4930  NewFD->setAccess(AS);
4931
4932  // C++ [dcl.init.aggr]p1:
4933  //   An aggregate is an array or a class (clause 9) with [...] no
4934  //   private or protected non-static data members (clause 11).
4935  // A POD must be an aggregate.
4936  if (getLangOptions().CPlusPlus &&
4937      (AS == AS_private || AS == AS_protected)) {
4938    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4939    CXXRecord->setAggregate(false);
4940    CXXRecord->setPOD(false);
4941  }
4942
4943  return NewFD;
4944}
4945
4946/// DiagnoseNontrivial - Given that a class has a non-trivial
4947/// special member, figure out why.
4948void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4949  QualType QT(T, 0U);
4950  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4951
4952  // Check whether the member was user-declared.
4953  switch (member) {
4954  case CXXDefaultConstructor:
4955    if (RD->hasUserDeclaredConstructor()) {
4956      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4957      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
4958        const FunctionDecl *body = 0;
4959        ci->getBody(body);
4960        if (!body ||
4961            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
4962          SourceLocation CtorLoc = ci->getLocation();
4963          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4964          return;
4965        }
4966      }
4967
4968      assert(0 && "found no user-declared constructors");
4969      return;
4970    }
4971    break;
4972
4973  case CXXCopyConstructor:
4974    if (RD->hasUserDeclaredCopyConstructor()) {
4975      SourceLocation CtorLoc =
4976        RD->getCopyConstructor(Context, 0)->getLocation();
4977      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4978      return;
4979    }
4980    break;
4981
4982  case CXXCopyAssignment:
4983    if (RD->hasUserDeclaredCopyAssignment()) {
4984      // FIXME: this should use the location of the copy
4985      // assignment, not the type.
4986      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4987      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4988      return;
4989    }
4990    break;
4991
4992  case CXXDestructor:
4993    if (RD->hasUserDeclaredDestructor()) {
4994      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4995      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4996      return;
4997    }
4998    break;
4999  }
5000
5001  typedef CXXRecordDecl::base_class_iterator base_iter;
5002
5003  // Virtual bases and members inhibit trivial copying/construction,
5004  // but not trivial destruction.
5005  if (member != CXXDestructor) {
5006    // Check for virtual bases.  vbases includes indirect virtual bases,
5007    // so we just iterate through the direct bases.
5008    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5009      if (bi->isVirtual()) {
5010        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5011        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5012        return;
5013      }
5014
5015    // Check for virtual methods.
5016    typedef CXXRecordDecl::method_iterator meth_iter;
5017    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5018         ++mi) {
5019      if (mi->isVirtual()) {
5020        SourceLocation MLoc = mi->getSourceRange().getBegin();
5021        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5022        return;
5023      }
5024    }
5025  }
5026
5027  bool (CXXRecordDecl::*hasTrivial)() const;
5028  switch (member) {
5029  case CXXDefaultConstructor:
5030    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5031  case CXXCopyConstructor:
5032    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5033  case CXXCopyAssignment:
5034    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5035  case CXXDestructor:
5036    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5037  default:
5038    assert(0 && "unexpected special member"); return;
5039  }
5040
5041  // Check for nontrivial bases (and recurse).
5042  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5043    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5044    assert(BaseRT && "Don't know how to handle dependent bases");
5045    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5046    if (!(BaseRecTy->*hasTrivial)()) {
5047      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5048      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5049      DiagnoseNontrivial(BaseRT, member);
5050      return;
5051    }
5052  }
5053
5054  // Check for nontrivial members (and recurse).
5055  typedef RecordDecl::field_iterator field_iter;
5056  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5057       ++fi) {
5058    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5059    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5060      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5061
5062      if (!(EltRD->*hasTrivial)()) {
5063        SourceLocation FLoc = (*fi)->getLocation();
5064        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5065        DiagnoseNontrivial(EltRT, member);
5066        return;
5067      }
5068    }
5069  }
5070
5071  assert(0 && "found no explanation for non-trivial member");
5072}
5073
5074/// TranslateIvarVisibility - Translate visibility from a token ID to an
5075///  AST enum value.
5076static ObjCIvarDecl::AccessControl
5077TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5078  switch (ivarVisibility) {
5079  default: assert(0 && "Unknown visitibility kind");
5080  case tok::objc_private: return ObjCIvarDecl::Private;
5081  case tok::objc_public: return ObjCIvarDecl::Public;
5082  case tok::objc_protected: return ObjCIvarDecl::Protected;
5083  case tok::objc_package: return ObjCIvarDecl::Package;
5084  }
5085}
5086
5087/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5088/// in order to create an IvarDecl object for it.
5089Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5090                                SourceLocation DeclStart,
5091                                DeclPtrTy IntfDecl,
5092                                Declarator &D, ExprTy *BitfieldWidth,
5093                                tok::ObjCKeywordKind Visibility) {
5094
5095  IdentifierInfo *II = D.getIdentifier();
5096  Expr *BitWidth = (Expr*)BitfieldWidth;
5097  SourceLocation Loc = DeclStart;
5098  if (II) Loc = D.getIdentifierLoc();
5099
5100  // FIXME: Unnamed fields can be handled in various different ways, for
5101  // example, unnamed unions inject all members into the struct namespace!
5102
5103  DeclaratorInfo *DInfo = 0;
5104  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5105
5106  if (BitWidth) {
5107    // 6.7.2.1p3, 6.7.2.1p4
5108    if (VerifyBitField(Loc, II, T, BitWidth)) {
5109      D.setInvalidType();
5110      DeleteExpr(BitWidth);
5111      BitWidth = 0;
5112    }
5113  } else {
5114    // Not a bitfield.
5115
5116    // validate II.
5117
5118  }
5119
5120  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5121  // than a variably modified type.
5122  if (T->isVariablyModifiedType()) {
5123    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5124    D.setInvalidType();
5125  }
5126
5127  // Get the visibility (access control) for this ivar.
5128  ObjCIvarDecl::AccessControl ac =
5129    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5130                                        : ObjCIvarDecl::None;
5131  // Must set ivar's DeclContext to its enclosing interface.
5132  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5133  DeclContext *EnclosingContext;
5134  if (ObjCImplementationDecl *IMPDecl =
5135      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5136    // Case of ivar declared in an implementation. Context is that of its class.
5137    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5138    assert(IDecl && "No class- ActOnIvar");
5139    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5140  } else
5141    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5142  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5143
5144  // Construct the decl.
5145  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5146                                             EnclosingContext, Loc, II, T,
5147                                             DInfo, ac, (Expr *)BitfieldWidth);
5148
5149  if (II) {
5150    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5151    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5152        && !isa<TagDecl>(PrevDecl)) {
5153      Diag(Loc, diag::err_duplicate_member) << II;
5154      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5155      NewID->setInvalidDecl();
5156    }
5157  }
5158
5159  // Process attributes attached to the ivar.
5160  ProcessDeclAttributes(S, NewID, D);
5161
5162  if (D.isInvalidType())
5163    NewID->setInvalidDecl();
5164
5165  if (II) {
5166    // FIXME: When interfaces are DeclContexts, we'll need to add
5167    // these to the interface.
5168    S->AddDecl(DeclPtrTy::make(NewID));
5169    IdResolver.AddDecl(NewID);
5170  }
5171
5172  return DeclPtrTy::make(NewID);
5173}
5174
5175void Sema::ActOnFields(Scope* S,
5176                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5177                       DeclPtrTy *Fields, unsigned NumFields,
5178                       SourceLocation LBrac, SourceLocation RBrac,
5179                       AttributeList *Attr) {
5180  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5181  assert(EnclosingDecl && "missing record or interface decl");
5182
5183  // If the decl this is being inserted into is invalid, then it may be a
5184  // redeclaration or some other bogus case.  Don't try to add fields to it.
5185  if (EnclosingDecl->isInvalidDecl()) {
5186    // FIXME: Deallocate fields?
5187    return;
5188  }
5189
5190
5191  // Verify that all the fields are okay.
5192  unsigned NumNamedMembers = 0;
5193  llvm::SmallVector<FieldDecl*, 32> RecFields;
5194
5195  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5196  for (unsigned i = 0; i != NumFields; ++i) {
5197    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5198
5199    // Get the type for the field.
5200    Type *FDTy = FD->getType().getTypePtr();
5201
5202    if (!FD->isAnonymousStructOrUnion()) {
5203      // Remember all fields written by the user.
5204      RecFields.push_back(FD);
5205    }
5206
5207    // If the field is already invalid for some reason, don't emit more
5208    // diagnostics about it.
5209    if (FD->isInvalidDecl())
5210      continue;
5211
5212    // C99 6.7.2.1p2:
5213    //   A structure or union shall not contain a member with
5214    //   incomplete or function type (hence, a structure shall not
5215    //   contain an instance of itself, but may contain a pointer to
5216    //   an instance of itself), except that the last member of a
5217    //   structure with more than one named member may have incomplete
5218    //   array type; such a structure (and any union containing,
5219    //   possibly recursively, a member that is such a structure)
5220    //   shall not be a member of a structure or an element of an
5221    //   array.
5222    if (FDTy->isFunctionType()) {
5223      // Field declared as a function.
5224      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5225        << FD->getDeclName();
5226      FD->setInvalidDecl();
5227      EnclosingDecl->setInvalidDecl();
5228      continue;
5229    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5230               Record && Record->isStruct()) {
5231      // Flexible array member.
5232      if (NumNamedMembers < 1) {
5233        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5234          << FD->getDeclName();
5235        FD->setInvalidDecl();
5236        EnclosingDecl->setInvalidDecl();
5237        continue;
5238      }
5239      // Okay, we have a legal flexible array member at the end of the struct.
5240      if (Record)
5241        Record->setHasFlexibleArrayMember(true);
5242    } else if (!FDTy->isDependentType() &&
5243               RequireCompleteType(FD->getLocation(), FD->getType(),
5244                                   diag::err_field_incomplete)) {
5245      // Incomplete type
5246      FD->setInvalidDecl();
5247      EnclosingDecl->setInvalidDecl();
5248      continue;
5249    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5250      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5251        // If this is a member of a union, then entire union becomes "flexible".
5252        if (Record && Record->isUnion()) {
5253          Record->setHasFlexibleArrayMember(true);
5254        } else {
5255          // If this is a struct/class and this is not the last element, reject
5256          // it.  Note that GCC supports variable sized arrays in the middle of
5257          // structures.
5258          if (i != NumFields-1)
5259            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5260              << FD->getDeclName() << FD->getType();
5261          else {
5262            // We support flexible arrays at the end of structs in
5263            // other structs as an extension.
5264            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5265              << FD->getDeclName();
5266            if (Record)
5267              Record->setHasFlexibleArrayMember(true);
5268          }
5269        }
5270      }
5271      if (Record && FDTTy->getDecl()->hasObjectMember())
5272        Record->setHasObjectMember(true);
5273    } else if (FDTy->isObjCInterfaceType()) {
5274      /// A field cannot be an Objective-c object
5275      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5276      FD->setInvalidDecl();
5277      EnclosingDecl->setInvalidDecl();
5278      continue;
5279    } else if (getLangOptions().ObjC1 &&
5280               getLangOptions().getGCMode() != LangOptions::NonGC &&
5281               Record &&
5282               (FD->getType()->isObjCObjectPointerType() ||
5283                FD->getType().isObjCGCStrong()))
5284      Record->setHasObjectMember(true);
5285    // Keep track of the number of named members.
5286    if (FD->getIdentifier())
5287      ++NumNamedMembers;
5288  }
5289
5290  // Okay, we successfully defined 'Record'.
5291  if (Record) {
5292    Record->completeDefinition(Context);
5293  } else {
5294    ObjCIvarDecl **ClsFields =
5295      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5296    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5297      ID->setIVarList(ClsFields, RecFields.size(), Context);
5298      ID->setLocEnd(RBrac);
5299      // Add ivar's to class's DeclContext.
5300      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5301        ClsFields[i]->setLexicalDeclContext(ID);
5302        ID->addDecl(ClsFields[i]);
5303      }
5304      // Must enforce the rule that ivars in the base classes may not be
5305      // duplicates.
5306      if (ID->getSuperClass()) {
5307        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5308             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5309          ObjCIvarDecl* Ivar = (*IVI);
5310
5311          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5312            ObjCIvarDecl* prevIvar =
5313              ID->getSuperClass()->lookupInstanceVariable(II);
5314            if (prevIvar) {
5315              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5316              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5317            }
5318          }
5319        }
5320      }
5321    } else if (ObjCImplementationDecl *IMPDecl =
5322                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5323      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5324      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5325        // Ivar declared in @implementation never belongs to the implementation.
5326        // Only it is in implementation's lexical context.
5327        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5328      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5329    }
5330  }
5331
5332  if (Attr)
5333    ProcessDeclAttributeList(S, Record, Attr);
5334}
5335
5336EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5337                                          EnumConstantDecl *LastEnumConst,
5338                                          SourceLocation IdLoc,
5339                                          IdentifierInfo *Id,
5340                                          ExprArg val) {
5341  Expr *Val = (Expr *)val.get();
5342
5343  llvm::APSInt EnumVal(32);
5344  QualType EltTy;
5345  if (Val && !Val->isTypeDependent()) {
5346    // Make sure to promote the operand type to int.
5347    UsualUnaryConversions(Val);
5348    if (Val != val.get()) {
5349      val.release();
5350      val = Val;
5351    }
5352
5353    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5354    SourceLocation ExpLoc;
5355    if (!Val->isValueDependent() &&
5356        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5357      Val = 0;
5358    } else {
5359      EltTy = Val->getType();
5360    }
5361  }
5362
5363  if (!Val) {
5364    if (LastEnumConst) {
5365      // Assign the last value + 1.
5366      EnumVal = LastEnumConst->getInitVal();
5367      ++EnumVal;
5368
5369      // Check for overflow on increment.
5370      if (EnumVal < LastEnumConst->getInitVal())
5371        Diag(IdLoc, diag::warn_enum_value_overflow);
5372
5373      EltTy = LastEnumConst->getType();
5374    } else {
5375      // First value, set to zero.
5376      EltTy = Context.IntTy;
5377      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5378    }
5379  }
5380
5381  val.release();
5382  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5383                                  Val, EnumVal);
5384}
5385
5386
5387Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5388                                        DeclPtrTy lastEnumConst,
5389                                        SourceLocation IdLoc,
5390                                        IdentifierInfo *Id,
5391                                        SourceLocation EqualLoc, ExprTy *val) {
5392  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5393  EnumConstantDecl *LastEnumConst =
5394    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5395  Expr *Val = static_cast<Expr*>(val);
5396
5397  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5398  // we find one that is.
5399  S = getNonFieldDeclScope(S);
5400
5401  // Verify that there isn't already something declared with this name in this
5402  // scope.
5403  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5404  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5405    // Maybe we will complain about the shadowed template parameter.
5406    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5407    // Just pretend that we didn't see the previous declaration.
5408    PrevDecl = 0;
5409  }
5410
5411  if (PrevDecl) {
5412    // When in C++, we may get a TagDecl with the same name; in this case the
5413    // enum constant will 'hide' the tag.
5414    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5415           "Received TagDecl when not in C++!");
5416    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5417      if (isa<EnumConstantDecl>(PrevDecl))
5418        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5419      else
5420        Diag(IdLoc, diag::err_redefinition) << Id;
5421      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5422      if (Val) Val->Destroy(Context);
5423      return DeclPtrTy();
5424    }
5425  }
5426
5427  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5428                                            IdLoc, Id, Owned(Val));
5429
5430  // Register this decl in the current scope stack.
5431  if (New)
5432    PushOnScopeChains(New, S);
5433
5434  return DeclPtrTy::make(New);
5435}
5436
5437void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5438                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5439                         DeclPtrTy *Elements, unsigned NumElements,
5440                         Scope *S, AttributeList *Attr) {
5441  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5442  QualType EnumType = Context.getTypeDeclType(Enum);
5443
5444  if (Attr)
5445    ProcessDeclAttributeList(S, Enum, Attr);
5446
5447  // TODO: If the result value doesn't fit in an int, it must be a long or long
5448  // long value.  ISO C does not support this, but GCC does as an extension,
5449  // emit a warning.
5450  unsigned IntWidth = Context.Target.getIntWidth();
5451  unsigned CharWidth = Context.Target.getCharWidth();
5452  unsigned ShortWidth = Context.Target.getShortWidth();
5453
5454  // Verify that all the values are okay, compute the size of the values, and
5455  // reverse the list.
5456  unsigned NumNegativeBits = 0;
5457  unsigned NumPositiveBits = 0;
5458
5459  // Keep track of whether all elements have type int.
5460  bool AllElementsInt = true;
5461
5462  for (unsigned i = 0; i != NumElements; ++i) {
5463    EnumConstantDecl *ECD =
5464      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5465    if (!ECD) continue;  // Already issued a diagnostic.
5466
5467    // If the enum value doesn't fit in an int, emit an extension warning.
5468    const llvm::APSInt &InitVal = ECD->getInitVal();
5469    assert(InitVal.getBitWidth() >= IntWidth &&
5470           "Should have promoted value to int");
5471    if (InitVal.getBitWidth() > IntWidth) {
5472      llvm::APSInt V(InitVal);
5473      V.trunc(IntWidth);
5474      V.extend(InitVal.getBitWidth());
5475      if (V != InitVal)
5476        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5477          << InitVal.toString(10);
5478    }
5479
5480    // Keep track of the size of positive and negative values.
5481    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5482      NumPositiveBits = std::max(NumPositiveBits,
5483                                 (unsigned)InitVal.getActiveBits());
5484    else
5485      NumNegativeBits = std::max(NumNegativeBits,
5486                                 (unsigned)InitVal.getMinSignedBits());
5487
5488    // Keep track of whether every enum element has type int (very commmon).
5489    if (AllElementsInt)
5490      AllElementsInt = ECD->getType() == Context.IntTy;
5491  }
5492
5493  // Figure out the type that should be used for this enum.
5494  // FIXME: Support -fshort-enums.
5495  QualType BestType;
5496  unsigned BestWidth;
5497
5498  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5499
5500  if (NumNegativeBits) {
5501    // If there is a negative value, figure out the smallest integer type (of
5502    // int/long/longlong) that fits.
5503    // If it's packed, check also if it fits a char or a short.
5504    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5505        BestType = Context.SignedCharTy;
5506        BestWidth = CharWidth;
5507    } else if (Packed && NumNegativeBits <= ShortWidth &&
5508               NumPositiveBits < ShortWidth) {
5509        BestType = Context.ShortTy;
5510        BestWidth = ShortWidth;
5511    }
5512    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5513      BestType = Context.IntTy;
5514      BestWidth = IntWidth;
5515    } else {
5516      BestWidth = Context.Target.getLongWidth();
5517
5518      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5519        BestType = Context.LongTy;
5520      else {
5521        BestWidth = Context.Target.getLongLongWidth();
5522
5523        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5524          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5525        BestType = Context.LongLongTy;
5526      }
5527    }
5528  } else {
5529    // If there is no negative value, figure out which of uint, ulong, ulonglong
5530    // fits.
5531    // If it's packed, check also if it fits a char or a short.
5532    if (Packed && NumPositiveBits <= CharWidth) {
5533        BestType = Context.UnsignedCharTy;
5534        BestWidth = CharWidth;
5535    } else if (Packed && NumPositiveBits <= ShortWidth) {
5536        BestType = Context.UnsignedShortTy;
5537        BestWidth = ShortWidth;
5538    }
5539    else if (NumPositiveBits <= IntWidth) {
5540      BestType = Context.UnsignedIntTy;
5541      BestWidth = IntWidth;
5542    } else if (NumPositiveBits <=
5543               (BestWidth = Context.Target.getLongWidth())) {
5544      BestType = Context.UnsignedLongTy;
5545    } else {
5546      BestWidth = Context.Target.getLongLongWidth();
5547      assert(NumPositiveBits <= BestWidth &&
5548             "How could an initializer get larger than ULL?");
5549      BestType = Context.UnsignedLongLongTy;
5550    }
5551  }
5552
5553  // Loop over all of the enumerator constants, changing their types to match
5554  // the type of the enum if needed.
5555  for (unsigned i = 0; i != NumElements; ++i) {
5556    EnumConstantDecl *ECD =
5557      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5558    if (!ECD) continue;  // Already issued a diagnostic.
5559
5560    // Standard C says the enumerators have int type, but we allow, as an
5561    // extension, the enumerators to be larger than int size.  If each
5562    // enumerator value fits in an int, type it as an int, otherwise type it the
5563    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5564    // that X has type 'int', not 'unsigned'.
5565    if (ECD->getType() == Context.IntTy) {
5566      // Make sure the init value is signed.
5567      llvm::APSInt IV = ECD->getInitVal();
5568      IV.setIsSigned(true);
5569      ECD->setInitVal(IV);
5570
5571      if (getLangOptions().CPlusPlus)
5572        // C++ [dcl.enum]p4: Following the closing brace of an
5573        // enum-specifier, each enumerator has the type of its
5574        // enumeration.
5575        ECD->setType(EnumType);
5576      continue;  // Already int type.
5577    }
5578
5579    // Determine whether the value fits into an int.
5580    llvm::APSInt InitVal = ECD->getInitVal();
5581    bool FitsInInt;
5582    if (InitVal.isUnsigned() || !InitVal.isNegative())
5583      FitsInInt = InitVal.getActiveBits() < IntWidth;
5584    else
5585      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5586
5587    // If it fits into an integer type, force it.  Otherwise force it to match
5588    // the enum decl type.
5589    QualType NewTy;
5590    unsigned NewWidth;
5591    bool NewSign;
5592    if (FitsInInt) {
5593      NewTy = Context.IntTy;
5594      NewWidth = IntWidth;
5595      NewSign = true;
5596    } else if (ECD->getType() == BestType) {
5597      // Already the right type!
5598      if (getLangOptions().CPlusPlus)
5599        // C++ [dcl.enum]p4: Following the closing brace of an
5600        // enum-specifier, each enumerator has the type of its
5601        // enumeration.
5602        ECD->setType(EnumType);
5603      continue;
5604    } else {
5605      NewTy = BestType;
5606      NewWidth = BestWidth;
5607      NewSign = BestType->isSignedIntegerType();
5608    }
5609
5610    // Adjust the APSInt value.
5611    InitVal.extOrTrunc(NewWidth);
5612    InitVal.setIsSigned(NewSign);
5613    ECD->setInitVal(InitVal);
5614
5615    // Adjust the Expr initializer and type.
5616    if (ECD->getInitExpr())
5617      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5618                                                      CastExpr::CK_IntegralCast,
5619                                                      ECD->getInitExpr(),
5620                                                      /*isLvalue=*/false));
5621    if (getLangOptions().CPlusPlus)
5622      // C++ [dcl.enum]p4: Following the closing brace of an
5623      // enum-specifier, each enumerator has the type of its
5624      // enumeration.
5625      ECD->setType(EnumType);
5626    else
5627      ECD->setType(NewTy);
5628  }
5629
5630  Enum->completeDefinition(Context, BestType);
5631}
5632
5633Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5634                                            ExprArg expr) {
5635  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5636
5637  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5638                                                   Loc, AsmString);
5639  CurContext->addDecl(New);
5640  return DeclPtrTy::make(New);
5641}
5642
5643void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5644                             SourceLocation PragmaLoc,
5645                             SourceLocation NameLoc) {
5646  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5647
5648  if (PrevDecl) {
5649    PrevDecl->addAttr(::new (Context) WeakAttr());
5650  } else {
5651    (void)WeakUndeclaredIdentifiers.insert(
5652      std::pair<IdentifierInfo*,WeakInfo>
5653        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5654  }
5655}
5656
5657void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5658                                IdentifierInfo* AliasName,
5659                                SourceLocation PragmaLoc,
5660                                SourceLocation NameLoc,
5661                                SourceLocation AliasNameLoc) {
5662  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5663  WeakInfo W = WeakInfo(Name, NameLoc);
5664
5665  if (PrevDecl) {
5666    if (!PrevDecl->hasAttr<AliasAttr>())
5667      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5668        DeclApplyPragmaWeak(TUScope, ND, W);
5669  } else {
5670    (void)WeakUndeclaredIdentifiers.insert(
5671      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5672  }
5673}
5674