SemaDecl.cpp revision 4751a3add4986e6d68423d084289c70cb67e094a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/AST/ExprCXX.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/DenseSet.h"
34using namespace clang;
35
36Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
37  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
38
39  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
40                 isa<ObjCInterfaceDecl>(IIDecl) ||
41                 isa<TagDecl>(IIDecl)))
42    return IIDecl;
43  return 0;
44}
45
46void Sema::PushDeclContext(DeclContext *DC) {
47  assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
48            || DC->getParent() == CurContext ) &&
49      "The next DeclContext should be directly contained in the current one.");
50  CurContext = DC;
51}
52
53void Sema::PopDeclContext() {
54  assert(CurContext && "DeclContext imbalance!");
55  // If CurContext is a ObjC method, getParent() will return NULL.
56  CurContext = isa<ObjCMethodDecl>(CurContext)
57               ? Context.getTranslationUnitDecl()
58                 :  CurContext->getParent();
59}
60
61/// Add this decl to the scope shadowed decl chains.
62void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
63  S->AddDecl(D);
64
65  // C++ [basic.scope]p4:
66  //   -- exactly one declaration shall declare a class name or
67  //   enumeration name that is not a typedef name and the other
68  //   declarations shall all refer to the same object or
69  //   enumerator, or all refer to functions and function templates;
70  //   in this case the class name or enumeration name is hidden.
71  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
72    // We are pushing the name of a tag (enum or class).
73    IdentifierResolver::ctx_iterator
74      CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
75    if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
76        IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
77      // There is already a declaration with the same name in the same
78      // scope. It must be found before we find the new declaration,
79      // so swap the order on the shadowed declaration chain.
80
81      IdResolver.AddShadowedDecl(TD, *CIT);
82      return;
83    }
84  }
85
86  IdResolver.AddDecl(D);
87}
88
89void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
90  if (S->decl_empty()) return;
91  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
92
93  // We only want to remove the decls from the identifier decl chains for local
94  // scopes, when inside a function/method.
95  if (S->getFnParent() == 0)
96    return;
97
98  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
99       I != E; ++I) {
100    Decl *TmpD = static_cast<Decl*>(*I);
101    assert(TmpD && "This decl didn't get pushed??");
102    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
103    assert(D && "This decl isn't a ScopedDecl?");
104
105    IdentifierInfo *II = D->getIdentifier();
106    if (!II) continue;
107
108    // Unlink this decl from the identifier.
109    IdResolver.RemoveDecl(D);
110
111    // This will have to be revisited for C++: there we want to nest stuff in
112    // namespace decls etc.  Even for C, we might want a top-level translation
113    // unit decl or something.
114    if (!CurFunctionDecl)
115      continue;
116
117    // Chain this decl to the containing function, it now owns the memory for
118    // the decl.
119    D->setNext(CurFunctionDecl->getDeclChain());
120    CurFunctionDecl->setDeclChain(D);
121  }
122}
123
124/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
125/// return 0 if one not found.
126ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
127  // The third "scope" argument is 0 since we aren't enabling lazy built-in
128  // creation from this context.
129  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
130
131  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
132}
133
134/// LookupDecl - Look up the inner-most declaration in the specified
135/// namespace.
136Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
137                       Scope *S, bool enableLazyBuiltinCreation) {
138  if (II == 0) return 0;
139  unsigned NS = NSI;
140  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
141    NS |= Decl::IDNS_Tag;
142
143  // Scan up the scope chain looking for a decl that matches this identifier
144  // that is in the appropriate namespace.  This search should not take long, as
145  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
146  for (IdentifierResolver::iterator
147       I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
148    if ((*I)->getIdentifierNamespace() & NS)
149      return *I;
150
151  // If we didn't find a use of this identifier, and if the identifier
152  // corresponds to a compiler builtin, create the decl object for the builtin
153  // now, injecting it into translation unit scope, and return it.
154  if (NS & Decl::IDNS_Ordinary) {
155    if (enableLazyBuiltinCreation) {
156      // If this is a builtin on this (or all) targets, create the decl.
157      if (unsigned BuiltinID = II->getBuiltinID())
158        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
159    }
160    if (getLangOptions().ObjC1) {
161      // @interface and @compatibility_alias introduce typedef-like names.
162      // Unlike typedef's, they can only be introduced at file-scope (and are
163      // therefore not scoped decls). They can, however, be shadowed by
164      // other names in IDNS_Ordinary.
165      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
166      if (IDI != ObjCInterfaceDecls.end())
167        return IDI->second;
168      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
169      if (I != ObjCAliasDecls.end())
170        return I->second->getClassInterface();
171    }
172  }
173  return 0;
174}
175
176void Sema::InitBuiltinVaListType() {
177  if (!Context.getBuiltinVaListType().isNull())
178    return;
179
180  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
181  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
182  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
183  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
184}
185
186/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
187/// lazily create a decl for it.
188ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
189                                      Scope *S) {
190  Builtin::ID BID = (Builtin::ID)bid;
191
192  if (BID == Builtin::BI__builtin_va_start ||
193      BID == Builtin::BI__builtin_va_copy ||
194      BID == Builtin::BI__builtin_va_end)
195    InitBuiltinVaListType();
196
197  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
198  FunctionDecl *New = FunctionDecl::Create(Context,
199                                           Context.getTranslationUnitDecl(),
200                                           SourceLocation(), II, R,
201                                           FunctionDecl::Extern, false, 0);
202
203  // Create Decl objects for each parameter, adding them to the
204  // FunctionDecl.
205  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
206    llvm::SmallVector<ParmVarDecl*, 16> Params;
207    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
208      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
209                                           FT->getArgType(i), VarDecl::None, 0,
210                                           0));
211    New->setParams(&Params[0], Params.size());
212  }
213
214
215
216  // TUScope is the translation-unit scope to insert this function into.
217  PushOnScopeChains(New, TUScope);
218  return New;
219}
220
221/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
222/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
223/// situation, merging decls or emitting diagnostics as appropriate.
224///
225TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
226  // Verify the old decl was also a typedef.
227  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
228  if (!Old) {
229    Diag(New->getLocation(), diag::err_redefinition_different_kind,
230         New->getName());
231    Diag(OldD->getLocation(), diag::err_previous_definition);
232    return New;
233  }
234
235  // Allow multiple definitions for ObjC built-in typedefs.
236  // FIXME: Verify the underlying types are equivalent!
237  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
238    return Old;
239
240  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
241  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
242  // *either* declaration is in a system header. The code below implements
243  // this adhoc compatibility rule. FIXME: The following code will not
244  // work properly when compiling ".i" files (containing preprocessed output).
245  SourceManager &SrcMgr = Context.getSourceManager();
246  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
247  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
248  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
249  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
250  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
251
252  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
253  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
254       NewDirType != DirectoryLookup::NormalHeaderDir) ||
255      getLangOptions().Microsoft)
256    return New;
257
258  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
259  // TODO: This is totally simplistic.  It should handle merging functions
260  // together etc, merging extern int X; int X; ...
261  Diag(New->getLocation(), diag::err_redefinition, New->getName());
262  Diag(Old->getLocation(), diag::err_previous_definition);
263  return New;
264}
265
266/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
267static bool DeclHasAttr(const Decl *decl, const Attr *target) {
268  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
269    if (attr->getKind() == target->getKind())
270      return true;
271
272  return false;
273}
274
275/// MergeAttributes - append attributes from the Old decl to the New one.
276static void MergeAttributes(Decl *New, Decl *Old) {
277  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
278
279// FIXME: fix this code to cleanup the Old attrs correctly
280  while (attr) {
281     tmp = attr;
282     attr = attr->getNext();
283
284    if (!DeclHasAttr(New, tmp)) {
285       New->addAttr(tmp);
286    } else {
287       tmp->setNext(0);
288       delete(tmp);
289    }
290  }
291}
292
293/// MergeFunctionDecl - We just parsed a function 'New' from
294/// declarator D which has the same name and scope as a previous
295/// declaration 'Old'.  Figure out how to resolve this situation,
296/// merging decls or emitting diagnostics as appropriate.
297/// Redeclaration will be set true if thisNew is a redeclaration OldD.
298FunctionDecl *
299Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
300  Redeclaration = false;
301  // Verify the old decl was also a function.
302  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
303  if (!Old) {
304    Diag(New->getLocation(), diag::err_redefinition_different_kind,
305         New->getName());
306    Diag(OldD->getLocation(), diag::err_previous_definition);
307    return New;
308  }
309
310  QualType OldQType = Context.getCanonicalType(Old->getType());
311  QualType NewQType = Context.getCanonicalType(New->getType());
312
313  // C++ [dcl.fct]p3:
314  //   All declarations for a function shall agree exactly in both the
315  //   return type and the parameter-type-list.
316  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
317    MergeAttributes(New, Old);
318    Redeclaration = true;
319    return MergeCXXFunctionDecl(New, Old);
320  }
321
322  // C: Function types need to be compatible, not identical. This handles
323  // duplicate function decls like "void f(int); void f(enum X);" properly.
324  if (!getLangOptions().CPlusPlus &&
325      Context.functionTypesAreCompatible(OldQType, NewQType)) {
326    MergeAttributes(New, Old);
327    Redeclaration = true;
328    return New;
329  }
330
331  // A function that has already been declared has been redeclared or defined
332  // with a different type- show appropriate diagnostic
333  diag::kind PrevDiag;
334  if (Old->isThisDeclarationADefinition())
335    PrevDiag = diag::err_previous_definition;
336  else if (Old->isImplicit())
337    PrevDiag = diag::err_previous_implicit_declaration;
338  else
339    PrevDiag = diag::err_previous_declaration;
340
341  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
342  // TODO: This is totally simplistic.  It should handle merging functions
343  // together etc, merging extern int X; int X; ...
344  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
345  Diag(Old->getLocation(), PrevDiag);
346  return New;
347}
348
349/// equivalentArrayTypes - Used to determine whether two array types are
350/// equivalent.
351/// We need to check this explicitly as an incomplete array definition is
352/// considered a VariableArrayType, so will not match a complete array
353/// definition that would be otherwise equivalent.
354static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
355  const ArrayType *NewAT = NewQType->getAsArrayType();
356  const ArrayType *OldAT = OldQType->getAsArrayType();
357
358  if (!NewAT || !OldAT)
359    return false;
360
361  // If either (or both) array types in incomplete we need to strip off the
362  // outer VariableArrayType.  Once the outer VAT is removed the remaining
363  // types must be identical if the array types are to be considered
364  // equivalent.
365  // eg. int[][1] and int[1][1] become
366  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
367  // removing the outermost VAT gives
368  //     CAT(1, int) and CAT(1, int)
369  // which are equal, therefore the array types are equivalent.
370  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
371    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
372      return false;
373    NewQType = NewAT->getElementType().getCanonicalType();
374    OldQType = OldAT->getElementType().getCanonicalType();
375  }
376
377  return NewQType == OldQType;
378}
379
380/// MergeVarDecl - We just parsed a variable 'New' which has the same name
381/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
382/// situation, merging decls or emitting diagnostics as appropriate.
383///
384/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
385/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
386///
387VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
388  // Verify the old decl was also a variable.
389  VarDecl *Old = dyn_cast<VarDecl>(OldD);
390  if (!Old) {
391    Diag(New->getLocation(), diag::err_redefinition_different_kind,
392         New->getName());
393    Diag(OldD->getLocation(), diag::err_previous_definition);
394    return New;
395  }
396
397  MergeAttributes(New, Old);
398
399  // Verify the types match.
400  QualType OldCType = Context.getCanonicalType(Old->getType());
401  QualType NewCType = Context.getCanonicalType(New->getType());
402  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
403    Diag(New->getLocation(), diag::err_redefinition, New->getName());
404    Diag(Old->getLocation(), diag::err_previous_definition);
405    return New;
406  }
407  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
408  if (New->getStorageClass() == VarDecl::Static &&
409      (Old->getStorageClass() == VarDecl::None ||
410       Old->getStorageClass() == VarDecl::Extern)) {
411    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
412    Diag(Old->getLocation(), diag::err_previous_definition);
413    return New;
414  }
415  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
416  if (New->getStorageClass() != VarDecl::Static &&
417      Old->getStorageClass() == VarDecl::Static) {
418    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
419    Diag(Old->getLocation(), diag::err_previous_definition);
420    return New;
421  }
422  // We've verified the types match, now handle "tentative" definitions.
423  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
424    // Handle C "tentative" external object definitions (C99 6.9.2).
425    bool OldIsTentative = false;
426    bool NewIsTentative = false;
427
428    if (!Old->getInit() &&
429        (Old->getStorageClass() == VarDecl::None ||
430         Old->getStorageClass() == VarDecl::Static))
431      OldIsTentative = true;
432
433    // FIXME: this check doesn't work (since the initializer hasn't been
434    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
435    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
436    // thrown out the old decl.
437    if (!New->getInit() &&
438        (New->getStorageClass() == VarDecl::None ||
439         New->getStorageClass() == VarDecl::Static))
440      ; // change to NewIsTentative = true; once the code is moved.
441
442    if (NewIsTentative || OldIsTentative)
443      return New;
444  }
445  // Handle __private_extern__ just like extern.
446  if (Old->getStorageClass() != VarDecl::Extern &&
447      Old->getStorageClass() != VarDecl::PrivateExtern &&
448      New->getStorageClass() != VarDecl::Extern &&
449      New->getStorageClass() != VarDecl::PrivateExtern) {
450    Diag(New->getLocation(), diag::err_redefinition, New->getName());
451    Diag(Old->getLocation(), diag::err_previous_definition);
452  }
453  return New;
454}
455
456/// CheckParmsForFunctionDef - Check that the parameters of the given
457/// function are appropriate for the definition of a function. This
458/// takes care of any checks that cannot be performed on the
459/// declaration itself, e.g., that the types of each of the function
460/// parameters are complete.
461bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
462  bool HasInvalidParm = false;
463  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
464    ParmVarDecl *Param = FD->getParamDecl(p);
465
466    // C99 6.7.5.3p4: the parameters in a parameter type list in a
467    // function declarator that is part of a function definition of
468    // that function shall not have incomplete type.
469    if (Param->getType()->isIncompleteType() &&
470        !Param->isInvalidDecl()) {
471      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
472           Param->getType().getAsString());
473      Param->setInvalidDecl();
474      HasInvalidParm = true;
475    }
476  }
477
478  return HasInvalidParm;
479}
480
481/// CreateImplicitParameter - Creates an implicit function parameter
482/// in the scope S and with the given type. This routine is used, for
483/// example, to create the implicit "self" parameter in an Objective-C
484/// method.
485ParmVarDecl *
486Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
487                              SourceLocation IdLoc, QualType Type) {
488  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
489                                         VarDecl::None, 0, 0);
490  if (Id)
491    PushOnScopeChains(New, S);
492
493  return New;
494}
495
496/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
497/// no declarator (e.g. "struct foo;") is parsed.
498Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
499  // TODO: emit error on 'int;' or 'const enum foo;'.
500  // TODO: emit error on 'typedef int;'
501  // if (!DS.isMissingDeclaratorOk()) Diag(...);
502
503  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
504}
505
506bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
507  // Get the type before calling CheckSingleAssignmentConstraints(), since
508  // it can promote the expression.
509  QualType InitType = Init->getType();
510
511  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
512  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
513                                  InitType, Init, "initializing");
514}
515
516bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
517                         QualType ElementType) {
518  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
519  if (CheckSingleInitializer(expr, ElementType))
520    return true; // types weren't compatible.
521
522  if (savExpr != expr) // The type was promoted, update initializer list.
523    IList->setInit(slot, expr);
524  return false;
525}
526
527bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
528  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
529    // C99 6.7.8p14. We have an array of character type with unknown size
530    // being initialized to a string literal.
531    llvm::APSInt ConstVal(32);
532    ConstVal = strLiteral->getByteLength() + 1;
533    // Return a new array type (C99 6.7.8p22).
534    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
535                                         ArrayType::Normal, 0);
536  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
537    // C99 6.7.8p14. We have an array of character type with known size.
538    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
539      Diag(strLiteral->getSourceRange().getBegin(),
540           diag::warn_initializer_string_for_char_array_too_long,
541           strLiteral->getSourceRange());
542  } else {
543    assert(0 && "HandleStringLiteralInit(): Invalid array type");
544  }
545  // Set type from "char *" to "constant array of char".
546  strLiteral->setType(DeclT);
547  // For now, we always return false (meaning success).
548  return false;
549}
550
551StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
552  const ArrayType *AT = DeclType->getAsArrayType();
553  if (AT && AT->getElementType()->isCharType()) {
554    return dyn_cast<StringLiteral>(Init);
555  }
556  return 0;
557}
558
559// CheckInitializerListTypes - Checks the types of elements of an initializer
560// list. This function is recursive: it calls itself to initialize subelements
561// of aggregate types.  Note that the topLevel parameter essentially refers to
562// whether this expression "owns" the initializer list passed in, or if this
563// initialization is taking elements out of a parent initializer.  Each
564// call to this function adds zero or more to startIndex, reports any errors,
565// and returns true if it found any inconsistent types.
566bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
567                                     bool topLevel, unsigned& startIndex) {
568  bool hadError = false;
569
570  if (DeclType->isScalarType()) {
571    // The simplest case: initializing a single scalar
572    if (topLevel) {
573      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
574           IList->getSourceRange());
575    }
576    if (startIndex < IList->getNumInits()) {
577      Expr* expr = IList->getInit(startIndex);
578      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
579        // FIXME: Should an error be reported here instead?
580        unsigned newIndex = 0;
581        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
582      } else {
583        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
584      }
585      ++startIndex;
586    }
587    // FIXME: Should an error be reported for empty initializer list + scalar?
588  } else if (DeclType->isVectorType()) {
589    if (startIndex < IList->getNumInits()) {
590      const VectorType *VT = DeclType->getAsVectorType();
591      int maxElements = VT->getNumElements();
592      QualType elementType = VT->getElementType();
593
594      for (int i = 0; i < maxElements; ++i) {
595        // Don't attempt to go past the end of the init list
596        if (startIndex >= IList->getNumInits())
597          break;
598        Expr* expr = IList->getInit(startIndex);
599        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
600          unsigned newIndex = 0;
601          hadError |= CheckInitializerListTypes(SubInitList, elementType,
602                                                true, newIndex);
603          ++startIndex;
604        } else {
605          hadError |= CheckInitializerListTypes(IList, elementType,
606                                                false, startIndex);
607        }
608      }
609    }
610  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
611    if (DeclType->isStructureType() || DeclType->isUnionType()) {
612      if (startIndex < IList->getNumInits() && !topLevel &&
613          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
614                                     DeclType)) {
615        // We found a compatible struct; per the standard, this initializes the
616        // struct.  (The C standard technically says that this only applies for
617        // initializers for declarations with automatic scope; however, this
618        // construct is unambiguous anyway because a struct cannot contain
619        // a type compatible with itself. We'll output an error when we check
620        // if the initializer is constant.)
621        // FIXME: Is a call to CheckSingleInitializer required here?
622        ++startIndex;
623      } else {
624        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
625
626        // If the record is invalid, some of it's members are invalid. To avoid
627        // confusion, we forgo checking the intializer for the entire record.
628        if (structDecl->isInvalidDecl())
629          return true;
630
631        // If structDecl is a forward declaration, this loop won't do anything;
632        // That's okay, because an error should get printed out elsewhere. It
633        // might be worthwhile to skip over the rest of the initializer, though.
634        int numMembers = structDecl->getNumMembers() -
635                         structDecl->hasFlexibleArrayMember();
636        for (int i = 0; i < numMembers; i++) {
637          // Don't attempt to go past the end of the init list
638          if (startIndex >= IList->getNumInits())
639            break;
640          FieldDecl * curField = structDecl->getMember(i);
641          if (!curField->getIdentifier()) {
642            // Don't initialize unnamed fields, e.g. "int : 20;"
643            continue;
644          }
645          QualType fieldType = curField->getType();
646          Expr* expr = IList->getInit(startIndex);
647          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
648            unsigned newStart = 0;
649            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
650                                                  true, newStart);
651            ++startIndex;
652          } else {
653            hadError |= CheckInitializerListTypes(IList, fieldType,
654                                                  false, startIndex);
655          }
656          if (DeclType->isUnionType())
657            break;
658        }
659        // FIXME: Implement flexible array initialization GCC extension (it's a
660        // really messy extension to implement, unfortunately...the necessary
661        // information isn't actually even here!)
662      }
663    } else if (DeclType->isArrayType()) {
664      // Check for the special-case of initializing an array with a string.
665      if (startIndex < IList->getNumInits()) {
666        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
667                                                     DeclType)) {
668          CheckStringLiteralInit(lit, DeclType);
669          ++startIndex;
670          if (topLevel && startIndex < IList->getNumInits()) {
671            // We have leftover initializers; warn
672            Diag(IList->getInit(startIndex)->getLocStart(),
673                 diag::err_excess_initializers_in_char_array_initializer,
674                 IList->getInit(startIndex)->getSourceRange());
675          }
676          return false;
677        }
678      }
679      int maxElements;
680      if (DeclType->isIncompleteArrayType()) {
681        // FIXME: use a proper constant
682        maxElements = 0x7FFFFFFF;
683      } else if (const VariableArrayType *VAT =
684                                DeclType->getAsVariableArrayType()) {
685        // Check for VLAs; in standard C it would be possible to check this
686        // earlier, but I don't know where clang accepts VLAs (gcc accepts
687        // them in all sorts of strange places).
688        Diag(VAT->getSizeExpr()->getLocStart(),
689             diag::err_variable_object_no_init,
690             VAT->getSizeExpr()->getSourceRange());
691        hadError = true;
692        maxElements = 0x7FFFFFFF;
693      } else {
694        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
695        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
696      }
697      QualType elementType = DeclType->getAsArrayType()->getElementType();
698      int numElements = 0;
699      for (int i = 0; i < maxElements; ++i, ++numElements) {
700        // Don't attempt to go past the end of the init list
701        if (startIndex >= IList->getNumInits())
702          break;
703        Expr* expr = IList->getInit(startIndex);
704        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
705          unsigned newIndex = 0;
706          hadError |= CheckInitializerListTypes(SubInitList, elementType,
707                                                true, newIndex);
708          ++startIndex;
709        } else {
710          hadError |= CheckInitializerListTypes(IList, elementType,
711                                                false, startIndex);
712        }
713      }
714      if (DeclType->isIncompleteArrayType()) {
715        // If this is an incomplete array type, the actual type needs to
716        // be calculated here
717        if (numElements == 0) {
718          // Sizing an array implicitly to zero is not allowed
719          // (It could in theory be allowed, but it doesn't really matter.)
720          Diag(IList->getLocStart(),
721               diag::err_at_least_one_initializer_needed_to_size_array);
722          hadError = true;
723        } else {
724          llvm::APSInt ConstVal(32);
725          ConstVal = numElements;
726          DeclType = Context.getConstantArrayType(elementType, ConstVal,
727                                                  ArrayType::Normal, 0);
728        }
729      }
730    } else {
731      assert(0 && "Aggregate that isn't a function or array?!");
732    }
733  } else {
734    // In C, all types are either scalars or aggregates, but
735    // additional handling is needed here for C++ (and possibly others?).
736    assert(0 && "Unsupported initializer type");
737  }
738
739  // If this init list is a base list, we set the type; an initializer doesn't
740  // fundamentally have a type, but this makes the ASTs a bit easier to read
741  if (topLevel)
742    IList->setType(DeclType);
743
744  if (topLevel && startIndex < IList->getNumInits()) {
745    // We have leftover initializers; warn
746    Diag(IList->getInit(startIndex)->getLocStart(),
747         diag::warn_excess_initializers,
748         IList->getInit(startIndex)->getSourceRange());
749  }
750  return hadError;
751}
752
753bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
754  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
755  // of unknown size ("[]") or an object type that is not a variable array type.
756  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
757    return Diag(VAT->getSizeExpr()->getLocStart(),
758                diag::err_variable_object_no_init,
759                VAT->getSizeExpr()->getSourceRange());
760
761  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
762  if (!InitList) {
763    // FIXME: Handle wide strings
764    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
765      return CheckStringLiteralInit(strLiteral, DeclType);
766
767    if (DeclType->isArrayType())
768      return Diag(Init->getLocStart(),
769                  diag::err_array_init_list_required,
770                  Init->getSourceRange());
771
772    return CheckSingleInitializer(Init, DeclType);
773  }
774#if 0
775  unsigned newIndex = 0;
776  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
777#else
778  InitListChecker CheckInitList(this, InitList, DeclType);
779  return CheckInitList.HadError();
780#endif
781}
782
783Sema::DeclTy *
784Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
785  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
786  IdentifierInfo *II = D.getIdentifier();
787
788  // All of these full declarators require an identifier.  If it doesn't have
789  // one, the ParsedFreeStandingDeclSpec action should be used.
790  if (II == 0) {
791    Diag(D.getDeclSpec().getSourceRange().getBegin(),
792         diag::err_declarator_need_ident,
793         D.getDeclSpec().getSourceRange(), D.getSourceRange());
794    return 0;
795  }
796
797  // The scope passed in may not be a decl scope.  Zip up the scope tree until
798  // we find one that is.
799  while ((S->getFlags() & Scope::DeclScope) == 0)
800    S = S->getParent();
801
802  // See if this is a redefinition of a variable in the same scope.
803  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
804  ScopedDecl *New;
805  bool InvalidDecl = false;
806
807  // In C++, the previous declaration we find might be a tag type
808  // (class or enum). In this case, the new declaration will hide the
809  // tag type.
810  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
811    PrevDecl = 0;
812
813  QualType R = GetTypeForDeclarator(D, S);
814  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
815
816  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
817    // Check that there are no default arguments (C++ only).
818    if (getLangOptions().CPlusPlus)
819      CheckExtraCXXDefaultArguments(D);
820
821    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
822    if (!NewTD) return 0;
823
824    // Handle attributes prior to checking for duplicates in MergeVarDecl
825    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
826                         D.getAttributes());
827    // Merge the decl with the existing one if appropriate. If the decl is
828    // in an outer scope, it isn't the same thing.
829    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
830      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
831      if (NewTD == 0) return 0;
832    }
833    New = NewTD;
834    if (S->getFnParent() == 0) {
835      // C99 6.7.7p2: If a typedef name specifies a variably modified type
836      // then it shall have block scope.
837      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
838        // FIXME: Diagnostic needs to be fixed.
839        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
840        InvalidDecl = true;
841      }
842    }
843  } else if (R.getTypePtr()->isFunctionType()) {
844    FunctionDecl::StorageClass SC = FunctionDecl::None;
845    switch (D.getDeclSpec().getStorageClassSpec()) {
846      default: assert(0 && "Unknown storage class!");
847      case DeclSpec::SCS_auto:
848      case DeclSpec::SCS_register:
849        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
850             R.getAsString());
851        InvalidDecl = true;
852        break;
853      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
854      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
855      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
856      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
857    }
858
859    bool isInline = D.getDeclSpec().isInlineSpecified();
860    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
861                                               D.getIdentifierLoc(),
862                                               II, R, SC, isInline,
863                                               LastDeclarator);
864    // Handle attributes.
865    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
866                         D.getAttributes());
867
868    // Copy the parameter declarations from the declarator D to
869    // the function declaration NewFD, if they are available.
870    if (D.getNumTypeObjects() > 0 &&
871        D.getTypeObject(0).Fun.hasPrototype) {
872      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
873
874      // Create Decl objects for each parameter, adding them to the
875      // FunctionDecl.
876      llvm::SmallVector<ParmVarDecl*, 16> Params;
877
878      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
879      // function that takes no arguments, not a function that takes a
880      // single void argument.
881      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
882          FTI.ArgInfo[0].Param &&
883          !((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
884          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
885        // empty arg list, don't push any params.
886        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
887
888        // In C++, the empty parameter-type-list must be spelled "void"; a
889        // typedef of void is not permitted.
890        if (getLangOptions().CPlusPlus &&
891            Param->getType() != Context.VoidTy) {
892          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
893        }
894
895      } else {
896        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
897          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
898      }
899
900      NewFD->setParams(&Params[0], Params.size());
901    }
902
903    // Merge the decl with the existing one if appropriate. Since C functions
904    // are in a flat namespace, make sure we consider decls in outer scopes.
905    if (PrevDecl &&
906        (!getLangOptions().CPlusPlus ||
907         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
908      bool Redeclaration = false;
909      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
910      if (NewFD == 0) return 0;
911      if (Redeclaration) {
912        // Note that the new declaration is a redeclaration of the
913        // older declaration. Then return the older declaration: the
914        // new one is only kept within the set of previous
915        // declarations for this function.
916        FunctionDecl *OldFD = (FunctionDecl *)PrevDecl;
917        OldFD->AddRedeclaration(NewFD);
918        return OldFD;
919      }
920    }
921    New = NewFD;
922
923    // In C++, check default arguments now that we have merged decls.
924    if (getLangOptions().CPlusPlus)
925      CheckCXXDefaultArguments(NewFD);
926  } else {
927    // Check that there are no default arguments (C++ only).
928    if (getLangOptions().CPlusPlus)
929      CheckExtraCXXDefaultArguments(D);
930
931    if (R.getTypePtr()->isObjCInterfaceType()) {
932      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
933           D.getIdentifier()->getName());
934      InvalidDecl = true;
935    }
936
937    VarDecl *NewVD;
938    VarDecl::StorageClass SC;
939    switch (D.getDeclSpec().getStorageClassSpec()) {
940    default: assert(0 && "Unknown storage class!");
941    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
942    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
943    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
944    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
945    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
946    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
947    }
948    if (S->getFnParent() == 0) {
949      // C99 6.9p2: The storage-class specifiers auto and register shall not
950      // appear in the declaration specifiers in an external declaration.
951      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
952        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
953             R.getAsString());
954        InvalidDecl = true;
955      }
956      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
957                              II, R, SC, LastDeclarator);
958    } else {
959      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
960                              II, R, SC, LastDeclarator);
961    }
962    // Handle attributes prior to checking for duplicates in MergeVarDecl
963    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
964                         D.getAttributes());
965
966    // Emit an error if an address space was applied to decl with local storage.
967    // This includes arrays of objects with address space qualifiers, but not
968    // automatic variables that point to other address spaces.
969    // ISO/IEC TR 18037 S5.1.2
970    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
971      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
972      InvalidDecl = true;
973    }
974    // Merge the decl with the existing one if appropriate. If the decl is
975    // in an outer scope, it isn't the same thing.
976    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
977      NewVD = MergeVarDecl(NewVD, PrevDecl);
978      if (NewVD == 0) return 0;
979    }
980    New = NewVD;
981  }
982
983  // If this has an identifier, add it to the scope stack.
984  if (II)
985    PushOnScopeChains(New, S);
986  // If any semantic error occurred, mark the decl as invalid.
987  if (D.getInvalidType() || InvalidDecl)
988    New->setInvalidDecl();
989
990  return New;
991}
992
993bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
994  switch (Init->getStmtClass()) {
995  default:
996    Diag(Init->getExprLoc(),
997         diag::err_init_element_not_constant, Init->getSourceRange());
998    return true;
999  case Expr::ParenExprClass: {
1000    const ParenExpr* PE = cast<ParenExpr>(Init);
1001    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1002  }
1003  case Expr::CompoundLiteralExprClass:
1004    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1005  case Expr::DeclRefExprClass: {
1006    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1007    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1008      if (VD->hasGlobalStorage())
1009        return false;
1010      Diag(Init->getExprLoc(),
1011           diag::err_init_element_not_constant, Init->getSourceRange());
1012      return true;
1013    }
1014    if (isa<FunctionDecl>(D))
1015      return false;
1016    Diag(Init->getExprLoc(),
1017         diag::err_init_element_not_constant, Init->getSourceRange());
1018    return true;
1019  }
1020  case Expr::MemberExprClass: {
1021    const MemberExpr *M = cast<MemberExpr>(Init);
1022    if (M->isArrow())
1023      return CheckAddressConstantExpression(M->getBase());
1024    return CheckAddressConstantExpressionLValue(M->getBase());
1025  }
1026  case Expr::ArraySubscriptExprClass: {
1027    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1028    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1029    return CheckAddressConstantExpression(ASE->getBase()) ||
1030           CheckArithmeticConstantExpression(ASE->getIdx());
1031  }
1032  case Expr::StringLiteralClass:
1033  case Expr::PreDefinedExprClass:
1034    return false;
1035  case Expr::UnaryOperatorClass: {
1036    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1037
1038    // C99 6.6p9
1039    if (Exp->getOpcode() == UnaryOperator::Deref)
1040      return CheckAddressConstantExpression(Exp->getSubExpr());
1041
1042    Diag(Init->getExprLoc(),
1043         diag::err_init_element_not_constant, Init->getSourceRange());
1044    return true;
1045  }
1046  }
1047}
1048
1049bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1050  switch (Init->getStmtClass()) {
1051  default:
1052    Diag(Init->getExprLoc(),
1053         diag::err_init_element_not_constant, Init->getSourceRange());
1054    return true;
1055  case Expr::ParenExprClass: {
1056    const ParenExpr* PE = cast<ParenExpr>(Init);
1057    return CheckAddressConstantExpression(PE->getSubExpr());
1058  }
1059  case Expr::StringLiteralClass:
1060  case Expr::ObjCStringLiteralClass:
1061    return false;
1062  case Expr::CallExprClass: {
1063    const CallExpr *CE = cast<CallExpr>(Init);
1064    if (CE->isBuiltinConstantExpr())
1065      return false;
1066    Diag(Init->getExprLoc(),
1067         diag::err_init_element_not_constant, Init->getSourceRange());
1068    return true;
1069  }
1070  case Expr::UnaryOperatorClass: {
1071    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1072
1073    // C99 6.6p9
1074    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1075      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1076
1077    if (Exp->getOpcode() == UnaryOperator::Extension)
1078      return CheckAddressConstantExpression(Exp->getSubExpr());
1079
1080    Diag(Init->getExprLoc(),
1081         diag::err_init_element_not_constant, Init->getSourceRange());
1082    return true;
1083  }
1084  case Expr::BinaryOperatorClass: {
1085    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1086    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1087
1088    Expr *PExp = Exp->getLHS();
1089    Expr *IExp = Exp->getRHS();
1090    if (IExp->getType()->isPointerType())
1091      std::swap(PExp, IExp);
1092
1093    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1094    return CheckAddressConstantExpression(PExp) ||
1095           CheckArithmeticConstantExpression(IExp);
1096  }
1097  case Expr::ImplicitCastExprClass: {
1098    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1099
1100    // Check for implicit promotion
1101    if (SubExpr->getType()->isFunctionType() ||
1102        SubExpr->getType()->isArrayType())
1103      return CheckAddressConstantExpressionLValue(SubExpr);
1104
1105    // Check for pointer->pointer cast
1106    if (SubExpr->getType()->isPointerType())
1107      return CheckAddressConstantExpression(SubExpr);
1108
1109    if (SubExpr->getType()->isArithmeticType())
1110      return CheckArithmeticConstantExpression(SubExpr);
1111
1112    Diag(Init->getExprLoc(),
1113         diag::err_init_element_not_constant, Init->getSourceRange());
1114    return true;
1115  }
1116  case Expr::CastExprClass: {
1117    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1118
1119    // Check for pointer->pointer cast
1120    if (SubExpr->getType()->isPointerType())
1121      return CheckAddressConstantExpression(SubExpr);
1122
1123    // FIXME: Should we pedwarn for (int*)(0+0)?
1124    if (SubExpr->getType()->isArithmeticType())
1125      return CheckArithmeticConstantExpression(SubExpr);
1126
1127    Diag(Init->getExprLoc(),
1128         diag::err_init_element_not_constant, Init->getSourceRange());
1129    return true;
1130  }
1131  case Expr::ConditionalOperatorClass: {
1132    // FIXME: Should we pedwarn here?
1133    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1134    if (!Exp->getCond()->getType()->isArithmeticType()) {
1135      Diag(Init->getExprLoc(),
1136           diag::err_init_element_not_constant, Init->getSourceRange());
1137      return true;
1138    }
1139    if (CheckArithmeticConstantExpression(Exp->getCond()))
1140      return true;
1141    if (Exp->getLHS() &&
1142        CheckAddressConstantExpression(Exp->getLHS()))
1143      return true;
1144    return CheckAddressConstantExpression(Exp->getRHS());
1145  }
1146  case Expr::AddrLabelExprClass:
1147    return false;
1148  }
1149}
1150
1151bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1152  switch (Init->getStmtClass()) {
1153  default:
1154    Diag(Init->getExprLoc(),
1155         diag::err_init_element_not_constant, Init->getSourceRange());
1156    return true;
1157  case Expr::ParenExprClass: {
1158    const ParenExpr* PE = cast<ParenExpr>(Init);
1159    return CheckArithmeticConstantExpression(PE->getSubExpr());
1160  }
1161  case Expr::FloatingLiteralClass:
1162  case Expr::IntegerLiteralClass:
1163  case Expr::CharacterLiteralClass:
1164  case Expr::ImaginaryLiteralClass:
1165  case Expr::TypesCompatibleExprClass:
1166  case Expr::CXXBoolLiteralExprClass:
1167    return false;
1168  case Expr::CallExprClass: {
1169    const CallExpr *CE = cast<CallExpr>(Init);
1170    if (CE->isBuiltinConstantExpr())
1171      return false;
1172    Diag(Init->getExprLoc(),
1173         diag::err_init_element_not_constant, Init->getSourceRange());
1174    return true;
1175  }
1176  case Expr::DeclRefExprClass: {
1177    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1178    if (isa<EnumConstantDecl>(D))
1179      return false;
1180    Diag(Init->getExprLoc(),
1181         diag::err_init_element_not_constant, Init->getSourceRange());
1182    return true;
1183  }
1184  case Expr::CompoundLiteralExprClass:
1185    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1186    // but vectors are allowed to be magic.
1187    if (Init->getType()->isVectorType())
1188      return false;
1189    Diag(Init->getExprLoc(),
1190         diag::err_init_element_not_constant, Init->getSourceRange());
1191    return true;
1192  case Expr::UnaryOperatorClass: {
1193    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1194
1195    switch (Exp->getOpcode()) {
1196    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1197    // See C99 6.6p3.
1198    default:
1199      Diag(Init->getExprLoc(),
1200           diag::err_init_element_not_constant, Init->getSourceRange());
1201      return true;
1202    case UnaryOperator::SizeOf:
1203    case UnaryOperator::AlignOf:
1204    case UnaryOperator::OffsetOf:
1205      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1206      // See C99 6.5.3.4p2 and 6.6p3.
1207      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1208        return false;
1209      Diag(Init->getExprLoc(),
1210           diag::err_init_element_not_constant, Init->getSourceRange());
1211      return true;
1212    case UnaryOperator::Extension:
1213    case UnaryOperator::LNot:
1214    case UnaryOperator::Plus:
1215    case UnaryOperator::Minus:
1216    case UnaryOperator::Not:
1217      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1218    }
1219  }
1220  case Expr::SizeOfAlignOfTypeExprClass: {
1221    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1222    // Special check for void types, which are allowed as an extension
1223    if (Exp->getArgumentType()->isVoidType())
1224      return false;
1225    // alignof always evaluates to a constant.
1226    // FIXME: is sizeof(int[3.0]) a constant expression?
1227    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1228      Diag(Init->getExprLoc(),
1229           diag::err_init_element_not_constant, Init->getSourceRange());
1230      return true;
1231    }
1232    return false;
1233  }
1234  case Expr::BinaryOperatorClass: {
1235    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1236
1237    if (Exp->getLHS()->getType()->isArithmeticType() &&
1238        Exp->getRHS()->getType()->isArithmeticType()) {
1239      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1240             CheckArithmeticConstantExpression(Exp->getRHS());
1241    }
1242
1243    Diag(Init->getExprLoc(),
1244         diag::err_init_element_not_constant, Init->getSourceRange());
1245    return true;
1246  }
1247  case Expr::ImplicitCastExprClass:
1248  case Expr::CastExprClass: {
1249    const Expr *SubExpr;
1250    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1251      SubExpr = C->getSubExpr();
1252    } else {
1253      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1254    }
1255
1256    if (SubExpr->getType()->isArithmeticType())
1257      return CheckArithmeticConstantExpression(SubExpr);
1258
1259    Diag(Init->getExprLoc(),
1260         diag::err_init_element_not_constant, Init->getSourceRange());
1261    return true;
1262  }
1263  case Expr::ConditionalOperatorClass: {
1264    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1265    if (CheckArithmeticConstantExpression(Exp->getCond()))
1266      return true;
1267    if (Exp->getLHS() &&
1268        CheckArithmeticConstantExpression(Exp->getLHS()))
1269      return true;
1270    return CheckArithmeticConstantExpression(Exp->getRHS());
1271  }
1272  }
1273}
1274
1275bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1276  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1277  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1278    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1279
1280  if (Init->getType()->isReferenceType()) {
1281    // FIXME: Work out how the heck reference types work
1282    return false;
1283#if 0
1284    // A reference is constant if the address of the expression
1285    // is constant
1286    // We look through initlists here to simplify
1287    // CheckAddressConstantExpressionLValue.
1288    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1289      assert(Exp->getNumInits() > 0 &&
1290             "Refernce initializer cannot be empty");
1291      Init = Exp->getInit(0);
1292    }
1293    return CheckAddressConstantExpressionLValue(Init);
1294#endif
1295  }
1296
1297  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1298    unsigned numInits = Exp->getNumInits();
1299    for (unsigned i = 0; i < numInits; i++) {
1300      // FIXME: Need to get the type of the declaration for C++,
1301      // because it could be a reference?
1302      if (CheckForConstantInitializer(Exp->getInit(i),
1303                                      Exp->getInit(i)->getType()))
1304        return true;
1305    }
1306    return false;
1307  }
1308
1309  if (Init->isNullPointerConstant(Context))
1310    return false;
1311  if (Init->getType()->isArithmeticType()) {
1312    // Special check for pointer cast to int; we allow
1313    // an address constant cast to an integer if the integer
1314    // is of an appropriate width (this sort of code is apparently used
1315    // in some places).
1316    // FIXME: Add pedwarn?
1317    Expr* SubE = 0;
1318    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1319      SubE = ICE->getSubExpr();
1320    else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1321      SubE = CE->getSubExpr();
1322    if (SubE && (SubE->getType()->isPointerType() ||
1323                 SubE->getType()->isArrayType() ||
1324                 SubE->getType()->isFunctionType())) {
1325      unsigned IntWidth = Context.getTypeSize(Init->getType());
1326      unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1327      if (IntWidth >= PointerWidth)
1328        return CheckAddressConstantExpression(Init);
1329    }
1330
1331    return CheckArithmeticConstantExpression(Init);
1332  }
1333
1334  if (Init->getType()->isPointerType())
1335    return CheckAddressConstantExpression(Init);
1336
1337  if (Init->getType()->isArrayType())
1338    return false;
1339
1340  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1341       Init->getSourceRange());
1342  return true;
1343}
1344
1345void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1346  Decl *RealDecl = static_cast<Decl *>(dcl);
1347  Expr *Init = static_cast<Expr *>(init);
1348  assert(Init && "missing initializer");
1349
1350  // If there is no declaration, there was an error parsing it.  Just ignore
1351  // the initializer.
1352  if (RealDecl == 0) {
1353    delete Init;
1354    return;
1355  }
1356
1357  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1358  if (!VDecl) {
1359    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1360         diag::err_illegal_initializer);
1361    RealDecl->setInvalidDecl();
1362    return;
1363  }
1364  // Get the decls type and save a reference for later, since
1365  // CheckInitializerTypes may change it.
1366  QualType DclT = VDecl->getType(), SavT = DclT;
1367  if (VDecl->isBlockVarDecl()) {
1368    VarDecl::StorageClass SC = VDecl->getStorageClass();
1369    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1370      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1371      VDecl->setInvalidDecl();
1372    } else if (!VDecl->isInvalidDecl()) {
1373      if (CheckInitializerTypes(Init, DclT))
1374        VDecl->setInvalidDecl();
1375      if (SC == VarDecl::Static) // C99 6.7.8p4.
1376        CheckForConstantInitializer(Init, DclT);
1377    }
1378  } else if (VDecl->isFileVarDecl()) {
1379    if (VDecl->getStorageClass() == VarDecl::Extern)
1380      Diag(VDecl->getLocation(), diag::warn_extern_init);
1381    if (!VDecl->isInvalidDecl())
1382      if (CheckInitializerTypes(Init, DclT))
1383        VDecl->setInvalidDecl();
1384
1385    // C99 6.7.8p4. All file scoped initializers need to be constant.
1386    CheckForConstantInitializer(Init, DclT);
1387  }
1388  // If the type changed, it means we had an incomplete type that was
1389  // completed by the initializer. For example:
1390  //   int ary[] = { 1, 3, 5 };
1391  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1392  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1393    VDecl->setType(DclT);
1394    Init->setType(DclT);
1395  }
1396
1397  // Attach the initializer to the decl.
1398  VDecl->setInit(Init);
1399  return;
1400}
1401
1402/// The declarators are chained together backwards, reverse the list.
1403Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1404  // Often we have single declarators, handle them quickly.
1405  Decl *GroupDecl = static_cast<Decl*>(group);
1406  if (GroupDecl == 0)
1407    return 0;
1408
1409  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1410  ScopedDecl *NewGroup = 0;
1411  if (Group->getNextDeclarator() == 0)
1412    NewGroup = Group;
1413  else { // reverse the list.
1414    while (Group) {
1415      ScopedDecl *Next = Group->getNextDeclarator();
1416      Group->setNextDeclarator(NewGroup);
1417      NewGroup = Group;
1418      Group = Next;
1419    }
1420  }
1421  // Perform semantic analysis that depends on having fully processed both
1422  // the declarator and initializer.
1423  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1424    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1425    if (!IDecl)
1426      continue;
1427    QualType T = IDecl->getType();
1428
1429    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1430    // static storage duration, it shall not have a variable length array.
1431    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1432        IDecl->getStorageClass() == VarDecl::Static) {
1433      if (T->getAsVariableArrayType()) {
1434        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1435        IDecl->setInvalidDecl();
1436      }
1437    }
1438    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1439    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1440    if (IDecl->isBlockVarDecl() &&
1441        IDecl->getStorageClass() != VarDecl::Extern) {
1442      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1443        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1444             T.getAsString());
1445        IDecl->setInvalidDecl();
1446      }
1447    }
1448    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1449    // object that has file scope without an initializer, and without a
1450    // storage-class specifier or with the storage-class specifier "static",
1451    // constitutes a tentative definition. Note: A tentative definition with
1452    // external linkage is valid (C99 6.2.2p5).
1453    if (IDecl && !IDecl->getInit() &&
1454        (IDecl->getStorageClass() == VarDecl::Static ||
1455         IDecl->getStorageClass() == VarDecl::None)) {
1456      if (T->isIncompleteArrayType()) {
1457        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1458        // array to be completed. Don't issue a diagnostic.
1459      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1460        // C99 6.9.2p3: If the declaration of an identifier for an object is
1461        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1462        // declared type shall not be an incomplete type.
1463        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1464             T.getAsString());
1465        IDecl->setInvalidDecl();
1466      }
1467    }
1468  }
1469  return NewGroup;
1470}
1471
1472/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1473/// to introduce parameters into function prototype scope.
1474Sema::DeclTy *
1475Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1476  DeclSpec &DS = D.getDeclSpec();
1477
1478  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1479  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1480      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1481    Diag(DS.getStorageClassSpecLoc(),
1482         diag::err_invalid_storage_class_in_func_decl);
1483    DS.ClearStorageClassSpecs();
1484  }
1485  if (DS.isThreadSpecified()) {
1486    Diag(DS.getThreadSpecLoc(),
1487         diag::err_invalid_storage_class_in_func_decl);
1488    DS.ClearStorageClassSpecs();
1489  }
1490
1491  // Check that there are no default arguments inside the type of this
1492  // parameter (C++ only).
1493  if (getLangOptions().CPlusPlus)
1494    CheckExtraCXXDefaultArguments(D);
1495
1496  // In this context, we *do not* check D.getInvalidType(). If the declarator
1497  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1498  // though it will not reflect the user specified type.
1499  QualType parmDeclType = GetTypeForDeclarator(D, S);
1500
1501  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1502
1503  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1504  // Can this happen for params?  We already checked that they don't conflict
1505  // among each other.  Here they can only shadow globals, which is ok.
1506  IdentifierInfo *II = D.getIdentifier();
1507  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1508    if (S->isDeclScope(PrevDecl)) {
1509      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1510           dyn_cast<NamedDecl>(PrevDecl)->getName());
1511
1512      // Recover by removing the name
1513      II = 0;
1514      D.SetIdentifier(0, D.getIdentifierLoc());
1515    }
1516  }
1517
1518  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1519  // Doing the promotion here has a win and a loss. The win is the type for
1520  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1521  // code generator). The loss is the orginal type isn't preserved. For example:
1522  //
1523  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1524  //    int blockvardecl[5];
1525  //    sizeof(parmvardecl);  // size == 4
1526  //    sizeof(blockvardecl); // size == 20
1527  // }
1528  //
1529  // For expressions, all implicit conversions are captured using the
1530  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1531  //
1532  // FIXME: If a source translation tool needs to see the original type, then
1533  // we need to consider storing both types (in ParmVarDecl)...
1534  //
1535  if (parmDeclType->isArrayType()) {
1536    // int x[restrict 4] ->  int *restrict
1537    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1538  } else if (parmDeclType->isFunctionType())
1539    parmDeclType = Context.getPointerType(parmDeclType);
1540
1541  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1542                                         D.getIdentifierLoc(), II,
1543                                         parmDeclType, VarDecl::None,
1544                                         0, 0);
1545
1546  if (D.getInvalidType())
1547    New->setInvalidDecl();
1548
1549  if (II)
1550    PushOnScopeChains(New, S);
1551
1552  HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
1553                       D.getAttributes());
1554  return New;
1555
1556}
1557
1558Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1559  assert(CurFunctionDecl == 0 && "Function parsing confused");
1560  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1561         "Not a function declarator!");
1562  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1563
1564  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1565  // for a K&R function.
1566  if (!FTI.hasPrototype) {
1567    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1568      if (FTI.ArgInfo[i].Param == 0) {
1569        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1570             FTI.ArgInfo[i].Ident->getName());
1571        // Implicitly declare the argument as type 'int' for lack of a better
1572        // type.
1573        DeclSpec DS;
1574        const char* PrevSpec; // unused
1575        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1576                           PrevSpec);
1577        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1578        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1579        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1580      }
1581    }
1582
1583    // Since this is a function definition, act as though we have information
1584    // about the arguments.
1585    if (FTI.NumArgs)
1586      FTI.hasPrototype = true;
1587  } else {
1588    // FIXME: Diagnose arguments without names in C.
1589  }
1590
1591  Scope *GlobalScope = FnBodyScope->getParent();
1592
1593  // See if this is a redefinition.
1594  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1595                             GlobalScope);
1596  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1597    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1598      const FunctionDecl *Definition;
1599      if (FD->getBody(Definition)) {
1600        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1601             D.getIdentifier()->getName());
1602        Diag(Definition->getLocation(), diag::err_previous_definition);
1603      }
1604    }
1605  }
1606  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1607  FunctionDecl *FD = cast<FunctionDecl>(decl);
1608  CurFunctionDecl = FD;
1609  PushDeclContext(FD);
1610
1611  // Check the validity of our function parameters
1612  CheckParmsForFunctionDef(FD);
1613
1614  // Introduce our parameters into the function scope
1615  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1616    ParmVarDecl *Param = FD->getParamDecl(p);
1617    // If this has an identifier, add it to the scope stack.
1618    if (Param->getIdentifier())
1619      PushOnScopeChains(Param, FnBodyScope);
1620  }
1621
1622  return FD;
1623}
1624
1625Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1626  Decl *dcl = static_cast<Decl *>(D);
1627  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1628    FD->setBody((Stmt*)Body);
1629    assert(FD == CurFunctionDecl && "Function parsing confused");
1630    CurFunctionDecl = 0;
1631  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1632    MD->setBody((Stmt*)Body);
1633    CurMethodDecl = 0;
1634  }
1635  PopDeclContext();
1636  // Verify and clean out per-function state.
1637
1638  // Check goto/label use.
1639  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1640       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1641    // Verify that we have no forward references left.  If so, there was a goto
1642    // or address of a label taken, but no definition of it.  Label fwd
1643    // definitions are indicated with a null substmt.
1644    if (I->second->getSubStmt() == 0) {
1645      LabelStmt *L = I->second;
1646      // Emit error.
1647      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1648
1649      // At this point, we have gotos that use the bogus label.  Stitch it into
1650      // the function body so that they aren't leaked and that the AST is well
1651      // formed.
1652      if (Body) {
1653        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1654        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1655      } else {
1656        // The whole function wasn't parsed correctly, just delete this.
1657        delete L;
1658      }
1659    }
1660  }
1661  LabelMap.clear();
1662
1663  return D;
1664}
1665
1666/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1667/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1668ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1669                                           IdentifierInfo &II, Scope *S) {
1670  // Extension in C99.  Legal in C90, but warn about it.
1671  if (getLangOptions().C99)
1672    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1673  else
1674    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1675
1676  // FIXME: handle stuff like:
1677  // void foo() { extern float X(); }
1678  // void bar() { X(); }  <-- implicit decl for X in another scope.
1679
1680  // Set a Declarator for the implicit definition: int foo();
1681  const char *Dummy;
1682  DeclSpec DS;
1683  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1684  Error = Error; // Silence warning.
1685  assert(!Error && "Error setting up implicit decl!");
1686  Declarator D(DS, Declarator::BlockContext);
1687  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1688  D.SetIdentifier(&II, Loc);
1689
1690  // Insert this function into translation-unit scope.
1691
1692  DeclContext *PrevDC = CurContext;
1693  CurContext = Context.getTranslationUnitDecl();
1694
1695  FunctionDecl *FD =
1696    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1697  FD->setImplicit();
1698
1699  CurContext = PrevDC;
1700
1701  return FD;
1702}
1703
1704
1705TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1706                                    ScopedDecl *LastDeclarator) {
1707  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1708  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1709
1710  // Scope manipulation handled by caller.
1711  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1712                                           D.getIdentifierLoc(),
1713                                           D.getIdentifier(),
1714                                           T, LastDeclarator);
1715  if (D.getInvalidType())
1716    NewTD->setInvalidDecl();
1717  return NewTD;
1718}
1719
1720/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1721/// former case, Name will be non-null.  In the later case, Name will be null.
1722/// TagType indicates what kind of tag this is. TK indicates whether this is a
1723/// reference/declaration/definition of a tag.
1724Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1725                             SourceLocation KWLoc, IdentifierInfo *Name,
1726                             SourceLocation NameLoc, AttributeList *Attr) {
1727  // If this is a use of an existing tag, it must have a name.
1728  assert((Name != 0 || TK == TK_Definition) &&
1729         "Nameless record must be a definition!");
1730
1731  Decl::Kind Kind;
1732  switch (TagType) {
1733  default: assert(0 && "Unknown tag type!");
1734  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1735  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1736  case DeclSpec::TST_class:  Kind = Decl::Class; break;
1737  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1738  }
1739
1740  // If this is a named struct, check to see if there was a previous forward
1741  // declaration or definition.
1742  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1743  if (ScopedDecl *PrevDecl =
1744          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1745
1746    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1747            "unexpected Decl type");
1748    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1749      // If this is a use of a previous tag, or if the tag is already declared in
1750      // the same scope (so that the definition/declaration completes or
1751      // rementions the tag), reuse the decl.
1752      if (TK == TK_Reference ||
1753          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1754        // Make sure that this wasn't declared as an enum and now used as a struct
1755        // or something similar.
1756        if (PrevDecl->getKind() != Kind) {
1757          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1758          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1759        }
1760
1761        // If this is a use or a forward declaration, we're good.
1762        if (TK != TK_Definition)
1763          return PrevDecl;
1764
1765        // Diagnose attempts to redefine a tag.
1766        if (PrevTagDecl->isDefinition()) {
1767          Diag(NameLoc, diag::err_redefinition, Name->getName());
1768          Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1769          // If this is a redefinition, recover by making this struct be
1770          // anonymous, which will make any later references get the previous
1771          // definition.
1772          Name = 0;
1773        } else {
1774          // Okay, this is definition of a previously declared or referenced tag.
1775          // Move the location of the decl to be the definition site.
1776          PrevDecl->setLocation(NameLoc);
1777          return PrevDecl;
1778        }
1779      }
1780      // If we get here, this is a definition of a new struct type in a nested
1781      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1782      // type.
1783    } else {
1784      // The tag name clashes with a namespace name, issue an error and recover
1785      // by making this tag be anonymous.
1786      Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1787      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1788      Name = 0;
1789    }
1790  }
1791
1792  // If there is an identifier, use the location of the identifier as the
1793  // location of the decl, otherwise use the location of the struct/union
1794  // keyword.
1795  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1796
1797  // Otherwise, if this is the first time we've seen this tag, create the decl.
1798  TagDecl *New;
1799  switch (Kind) {
1800  default: assert(0 && "Unknown tag kind!");
1801  case Decl::Enum:
1802    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1803    // enum X { A, B, C } D;    D should chain to X.
1804    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1805    // If this is an undefined enum, warn.
1806    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1807    break;
1808  case Decl::Union:
1809  case Decl::Struct:
1810  case Decl::Class:
1811    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1812    // struct X { int A; } D;    D should chain to X.
1813    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1814    break;
1815  }
1816
1817  // If this has an identifier, add it to the scope stack.
1818  if (Name) {
1819    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1820    // we find one that is.
1821    while ((S->getFlags() & Scope::DeclScope) == 0)
1822      S = S->getParent();
1823
1824    // Add it to the decl chain.
1825    PushOnScopeChains(New, S);
1826  }
1827
1828  HandleDeclAttributes(New, Attr, 0);
1829  return New;
1830}
1831
1832/// ActOnField - Each field of a struct/union/class is passed into this in order
1833/// to create a FieldDecl object for it.
1834Sema::DeclTy *Sema::ActOnField(Scope *S,
1835                               SourceLocation DeclStart,
1836                               Declarator &D, ExprTy *BitfieldWidth) {
1837  IdentifierInfo *II = D.getIdentifier();
1838  Expr *BitWidth = (Expr*)BitfieldWidth;
1839  SourceLocation Loc = DeclStart;
1840  if (II) Loc = D.getIdentifierLoc();
1841
1842  // FIXME: Unnamed fields can be handled in various different ways, for
1843  // example, unnamed unions inject all members into the struct namespace!
1844
1845
1846  if (BitWidth) {
1847    // TODO: Validate.
1848    //printf("WARNING: BITFIELDS IGNORED!\n");
1849
1850    // 6.7.2.1p3
1851    // 6.7.2.1p4
1852
1853  } else {
1854    // Not a bitfield.
1855
1856    // validate II.
1857
1858  }
1859
1860  QualType T = GetTypeForDeclarator(D, S);
1861  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1862  bool InvalidDecl = false;
1863
1864  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1865  // than a variably modified type.
1866  if (T->isVariablyModifiedType()) {
1867    // FIXME: This diagnostic needs work
1868    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1869    InvalidDecl = true;
1870  }
1871  // FIXME: Chain fielddecls together.
1872  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1873
1874  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1875                       D.getAttributes());
1876
1877  if (D.getInvalidType() || InvalidDecl)
1878    NewFD->setInvalidDecl();
1879  return NewFD;
1880}
1881
1882/// TranslateIvarVisibility - Translate visibility from a token ID to an
1883///  AST enum value.
1884static ObjCIvarDecl::AccessControl
1885TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1886  switch (ivarVisibility) {
1887    case tok::objc_private: return ObjCIvarDecl::Private;
1888    case tok::objc_public: return ObjCIvarDecl::Public;
1889    case tok::objc_protected: return ObjCIvarDecl::Protected;
1890    case tok::objc_package: return ObjCIvarDecl::Package;
1891    default: assert(false && "Unknown visitibility kind");
1892  }
1893}
1894
1895/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1896/// in order to create an IvarDecl object for it.
1897Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1898                              SourceLocation DeclStart,
1899                              Declarator &D, ExprTy *BitfieldWidth,
1900                              tok::ObjCKeywordKind Visibility) {
1901  IdentifierInfo *II = D.getIdentifier();
1902  Expr *BitWidth = (Expr*)BitfieldWidth;
1903  SourceLocation Loc = DeclStart;
1904  if (II) Loc = D.getIdentifierLoc();
1905
1906  // FIXME: Unnamed fields can be handled in various different ways, for
1907  // example, unnamed unions inject all members into the struct namespace!
1908
1909
1910  if (BitWidth) {
1911    // TODO: Validate.
1912    //printf("WARNING: BITFIELDS IGNORED!\n");
1913
1914    // 6.7.2.1p3
1915    // 6.7.2.1p4
1916
1917  } else {
1918    // Not a bitfield.
1919
1920    // validate II.
1921
1922  }
1923
1924  QualType T = GetTypeForDeclarator(D, S);
1925  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1926  bool InvalidDecl = false;
1927
1928  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1929  // than a variably modified type.
1930  if (T->isVariablyModifiedType()) {
1931    // FIXME: This diagnostic needs work
1932    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1933    InvalidDecl = true;
1934  }
1935
1936  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1937
1938  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1939                       D.getAttributes());
1940
1941  if (D.getInvalidType() || InvalidDecl)
1942    NewID->setInvalidDecl();
1943  // If we have visibility info, make sure the AST is set accordingly.
1944  if (Visibility != tok::objc_not_keyword)
1945    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1946  return NewID;
1947}
1948
1949void Sema::ActOnFields(Scope* S,
1950                       SourceLocation RecLoc, DeclTy *RecDecl,
1951                       DeclTy **Fields, unsigned NumFields,
1952                       SourceLocation LBrac, SourceLocation RBrac) {
1953  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1954  assert(EnclosingDecl && "missing record or interface decl");
1955  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1956
1957  if (Record && Record->isDefinition()) {
1958    // Diagnose code like:
1959    //     struct S { struct S {} X; };
1960    // We discover this when we complete the outer S.  Reject and ignore the
1961    // outer S.
1962    Diag(Record->getLocation(), diag::err_nested_redefinition,
1963         Record->getKindName());
1964    Diag(RecLoc, diag::err_previous_definition);
1965    Record->setInvalidDecl();
1966    return;
1967  }
1968  // Verify that all the fields are okay.
1969  unsigned NumNamedMembers = 0;
1970  llvm::SmallVector<FieldDecl*, 32> RecFields;
1971  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1972
1973  for (unsigned i = 0; i != NumFields; ++i) {
1974
1975    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1976    assert(FD && "missing field decl");
1977
1978    // Remember all fields.
1979    RecFields.push_back(FD);
1980
1981    // Get the type for the field.
1982    Type *FDTy = FD->getType().getTypePtr();
1983
1984    // C99 6.7.2.1p2 - A field may not be a function type.
1985    if (FDTy->isFunctionType()) {
1986      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1987           FD->getName());
1988      FD->setInvalidDecl();
1989      EnclosingDecl->setInvalidDecl();
1990      continue;
1991    }
1992    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1993    if (FDTy->isIncompleteType()) {
1994      if (!Record) {  // Incomplete ivar type is always an error.
1995        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1996        FD->setInvalidDecl();
1997        EnclosingDecl->setInvalidDecl();
1998        continue;
1999      }
2000      if (i != NumFields-1 ||                   // ... that the last member ...
2001          Record->getKind() != Decl::Struct ||  // ... of a structure ...
2002          !FDTy->isArrayType()) {         //... may have incomplete array type.
2003        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2004        FD->setInvalidDecl();
2005        EnclosingDecl->setInvalidDecl();
2006        continue;
2007      }
2008      if (NumNamedMembers < 1) {  //... must have more than named member ...
2009        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2010             FD->getName());
2011        FD->setInvalidDecl();
2012        EnclosingDecl->setInvalidDecl();
2013        continue;
2014      }
2015      // Okay, we have a legal flexible array member at the end of the struct.
2016      if (Record)
2017        Record->setHasFlexibleArrayMember(true);
2018    }
2019    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2020    /// field of another structure or the element of an array.
2021    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2022      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2023        // If this is a member of a union, then entire union becomes "flexible".
2024        if (Record && Record->getKind() == Decl::Union) {
2025          Record->setHasFlexibleArrayMember(true);
2026        } else {
2027          // If this is a struct/class and this is not the last element, reject
2028          // it.  Note that GCC supports variable sized arrays in the middle of
2029          // structures.
2030          if (i != NumFields-1) {
2031            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2032                 FD->getName());
2033            FD->setInvalidDecl();
2034            EnclosingDecl->setInvalidDecl();
2035            continue;
2036          }
2037          // We support flexible arrays at the end of structs in other structs
2038          // as an extension.
2039          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2040               FD->getName());
2041          if (Record)
2042            Record->setHasFlexibleArrayMember(true);
2043        }
2044      }
2045    }
2046    /// A field cannot be an Objective-c object
2047    if (FDTy->isObjCInterfaceType()) {
2048      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2049           FD->getName());
2050      FD->setInvalidDecl();
2051      EnclosingDecl->setInvalidDecl();
2052      continue;
2053    }
2054    // Keep track of the number of named members.
2055    if (IdentifierInfo *II = FD->getIdentifier()) {
2056      // Detect duplicate member names.
2057      if (!FieldIDs.insert(II)) {
2058        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2059        // Find the previous decl.
2060        SourceLocation PrevLoc;
2061        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2062          assert(i != e && "Didn't find previous def!");
2063          if (RecFields[i]->getIdentifier() == II) {
2064            PrevLoc = RecFields[i]->getLocation();
2065            break;
2066          }
2067        }
2068        Diag(PrevLoc, diag::err_previous_definition);
2069        FD->setInvalidDecl();
2070        EnclosingDecl->setInvalidDecl();
2071        continue;
2072      }
2073      ++NumNamedMembers;
2074    }
2075  }
2076
2077  // Okay, we successfully defined 'Record'.
2078  if (Record) {
2079    Record->defineBody(&RecFields[0], RecFields.size());
2080    Consumer.HandleTagDeclDefinition(Record);
2081  } else {
2082    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2083    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2084      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2085    else if (ObjCImplementationDecl *IMPDecl =
2086               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2087      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2088      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2089      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2090    }
2091  }
2092}
2093
2094Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2095                                      DeclTy *lastEnumConst,
2096                                      SourceLocation IdLoc, IdentifierInfo *Id,
2097                                      SourceLocation EqualLoc, ExprTy *val) {
2098  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2099  EnumConstantDecl *LastEnumConst =
2100    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2101  Expr *Val = static_cast<Expr*>(val);
2102
2103  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2104  // we find one that is.
2105  while ((S->getFlags() & Scope::DeclScope) == 0)
2106    S = S->getParent();
2107
2108  // Verify that there isn't already something declared with this name in this
2109  // scope.
2110  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2111    if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2112      if (isa<EnumConstantDecl>(PrevDecl))
2113        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2114      else
2115        Diag(IdLoc, diag::err_redefinition, Id->getName());
2116      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2117      delete Val;
2118      return 0;
2119    }
2120  }
2121
2122  llvm::APSInt EnumVal(32);
2123  QualType EltTy;
2124  if (Val) {
2125    // Make sure to promote the operand type to int.
2126    UsualUnaryConversions(Val);
2127
2128    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2129    SourceLocation ExpLoc;
2130    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2131      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2132           Id->getName());
2133      delete Val;
2134      Val = 0;  // Just forget about it.
2135    } else {
2136      EltTy = Val->getType();
2137    }
2138  }
2139
2140  if (!Val) {
2141    if (LastEnumConst) {
2142      // Assign the last value + 1.
2143      EnumVal = LastEnumConst->getInitVal();
2144      ++EnumVal;
2145
2146      // Check for overflow on increment.
2147      if (EnumVal < LastEnumConst->getInitVal())
2148        Diag(IdLoc, diag::warn_enum_value_overflow);
2149
2150      EltTy = LastEnumConst->getType();
2151    } else {
2152      // First value, set to zero.
2153      EltTy = Context.IntTy;
2154      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2155    }
2156  }
2157
2158  EnumConstantDecl *New =
2159    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2160                             Val, EnumVal,
2161                             LastEnumConst);
2162
2163  // Register this decl in the current scope stack.
2164  PushOnScopeChains(New, S);
2165  return New;
2166}
2167
2168void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2169                         DeclTy **Elements, unsigned NumElements) {
2170  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2171  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2172
2173  // TODO: If the result value doesn't fit in an int, it must be a long or long
2174  // long value.  ISO C does not support this, but GCC does as an extension,
2175  // emit a warning.
2176  unsigned IntWidth = Context.Target.getIntWidth();
2177
2178  // Verify that all the values are okay, compute the size of the values, and
2179  // reverse the list.
2180  unsigned NumNegativeBits = 0;
2181  unsigned NumPositiveBits = 0;
2182
2183  // Keep track of whether all elements have type int.
2184  bool AllElementsInt = true;
2185
2186  EnumConstantDecl *EltList = 0;
2187  for (unsigned i = 0; i != NumElements; ++i) {
2188    EnumConstantDecl *ECD =
2189      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2190    if (!ECD) continue;  // Already issued a diagnostic.
2191
2192    // If the enum value doesn't fit in an int, emit an extension warning.
2193    const llvm::APSInt &InitVal = ECD->getInitVal();
2194    assert(InitVal.getBitWidth() >= IntWidth &&
2195           "Should have promoted value to int");
2196    if (InitVal.getBitWidth() > IntWidth) {
2197      llvm::APSInt V(InitVal);
2198      V.trunc(IntWidth);
2199      V.extend(InitVal.getBitWidth());
2200      if (V != InitVal)
2201        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2202             InitVal.toString());
2203    }
2204
2205    // Keep track of the size of positive and negative values.
2206    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2207      NumPositiveBits = std::max(NumPositiveBits,
2208                                 (unsigned)InitVal.getActiveBits());
2209    else
2210      NumNegativeBits = std::max(NumNegativeBits,
2211                                 (unsigned)InitVal.getMinSignedBits());
2212
2213    // Keep track of whether every enum element has type int (very commmon).
2214    if (AllElementsInt)
2215      AllElementsInt = ECD->getType() == Context.IntTy;
2216
2217    ECD->setNextDeclarator(EltList);
2218    EltList = ECD;
2219  }
2220
2221  // Figure out the type that should be used for this enum.
2222  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2223  QualType BestType;
2224  unsigned BestWidth;
2225
2226  if (NumNegativeBits) {
2227    // If there is a negative value, figure out the smallest integer type (of
2228    // int/long/longlong) that fits.
2229    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2230      BestType = Context.IntTy;
2231      BestWidth = IntWidth;
2232    } else {
2233      BestWidth = Context.Target.getLongWidth();
2234
2235      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2236        BestType = Context.LongTy;
2237      else {
2238        BestWidth = Context.Target.getLongLongWidth();
2239
2240        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2241          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2242        BestType = Context.LongLongTy;
2243      }
2244    }
2245  } else {
2246    // If there is no negative value, figure out which of uint, ulong, ulonglong
2247    // fits.
2248    if (NumPositiveBits <= IntWidth) {
2249      BestType = Context.UnsignedIntTy;
2250      BestWidth = IntWidth;
2251    } else if (NumPositiveBits <=
2252               (BestWidth = Context.Target.getLongWidth())) {
2253      BestType = Context.UnsignedLongTy;
2254    } else {
2255      BestWidth = Context.Target.getLongLongWidth();
2256      assert(NumPositiveBits <= BestWidth &&
2257             "How could an initializer get larger than ULL?");
2258      BestType = Context.UnsignedLongLongTy;
2259    }
2260  }
2261
2262  // Loop over all of the enumerator constants, changing their types to match
2263  // the type of the enum if needed.
2264  for (unsigned i = 0; i != NumElements; ++i) {
2265    EnumConstantDecl *ECD =
2266      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2267    if (!ECD) continue;  // Already issued a diagnostic.
2268
2269    // Standard C says the enumerators have int type, but we allow, as an
2270    // extension, the enumerators to be larger than int size.  If each
2271    // enumerator value fits in an int, type it as an int, otherwise type it the
2272    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2273    // that X has type 'int', not 'unsigned'.
2274    if (ECD->getType() == Context.IntTy) {
2275      // Make sure the init value is signed.
2276      llvm::APSInt IV = ECD->getInitVal();
2277      IV.setIsSigned(true);
2278      ECD->setInitVal(IV);
2279      continue;  // Already int type.
2280    }
2281
2282    // Determine whether the value fits into an int.
2283    llvm::APSInt InitVal = ECD->getInitVal();
2284    bool FitsInInt;
2285    if (InitVal.isUnsigned() || !InitVal.isNegative())
2286      FitsInInt = InitVal.getActiveBits() < IntWidth;
2287    else
2288      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2289
2290    // If it fits into an integer type, force it.  Otherwise force it to match
2291    // the enum decl type.
2292    QualType NewTy;
2293    unsigned NewWidth;
2294    bool NewSign;
2295    if (FitsInInt) {
2296      NewTy = Context.IntTy;
2297      NewWidth = IntWidth;
2298      NewSign = true;
2299    } else if (ECD->getType() == BestType) {
2300      // Already the right type!
2301      continue;
2302    } else {
2303      NewTy = BestType;
2304      NewWidth = BestWidth;
2305      NewSign = BestType->isSignedIntegerType();
2306    }
2307
2308    // Adjust the APSInt value.
2309    InitVal.extOrTrunc(NewWidth);
2310    InitVal.setIsSigned(NewSign);
2311    ECD->setInitVal(InitVal);
2312
2313    // Adjust the Expr initializer and type.
2314    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2315    ECD->setType(NewTy);
2316  }
2317
2318  Enum->defineElements(EltList, BestType);
2319  Consumer.HandleTagDeclDefinition(Enum);
2320}
2321
2322Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2323                                          ExprTy *expr) {
2324  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2325
2326  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2327}
2328
2329Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2330                                     SourceLocation LBrace,
2331                                     SourceLocation RBrace,
2332                                     const char *Lang,
2333                                     unsigned StrSize,
2334                                     DeclTy *D) {
2335  LinkageSpecDecl::LanguageIDs Language;
2336  Decl *dcl = static_cast<Decl *>(D);
2337  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2338    Language = LinkageSpecDecl::lang_c;
2339  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2340    Language = LinkageSpecDecl::lang_cxx;
2341  else {
2342    Diag(Loc, diag::err_bad_language);
2343    return 0;
2344  }
2345
2346  // FIXME: Add all the various semantics of linkage specifications
2347  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2348}
2349
2350void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
2351
2352  switch (Attr->getKind()) {
2353  case AttributeList::AT_vector_size:
2354    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2355      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
2356      if (!newType.isNull()) // install the new vector type into the decl
2357        vDecl->setType(newType);
2358    }
2359    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2360      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
2361                                                   Attr);
2362      if (!newType.isNull()) // install the new vector type into the decl
2363        tDecl->setUnderlyingType(newType);
2364    }
2365    break;
2366  case AttributeList::AT_ext_vector_type:
2367    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
2368      HandleExtVectorTypeAttribute(tDecl, Attr);
2369    else
2370      Diag(Attr->getLoc(),
2371           diag::err_typecheck_ext_vector_not_typedef);
2372    break;
2373  case AttributeList::AT_address_space:
2374    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2375      QualType newType = HandleAddressSpaceTypeAttribute(
2376                                                  tDecl->getUnderlyingType(),
2377                                                  Attr);
2378      tDecl->setUnderlyingType(newType);
2379    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2380      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
2381                                                         Attr);
2382      // install the new addr spaced type into the decl
2383      vDecl->setType(newType);
2384    }
2385    break;
2386  case AttributeList::AT_deprecated:
2387    HandleDeprecatedAttribute(New, Attr);
2388    break;
2389  case AttributeList::AT_visibility:
2390    HandleVisibilityAttribute(New, Attr);
2391    break;
2392  case AttributeList::AT_weak:
2393    HandleWeakAttribute(New, Attr);
2394    break;
2395  case AttributeList::AT_dllimport:
2396    HandleDLLImportAttribute(New, Attr);
2397    break;
2398  case AttributeList::AT_dllexport:
2399    HandleDLLExportAttribute(New, Attr);
2400    break;
2401  case AttributeList::AT_nothrow:
2402    HandleNothrowAttribute(New, Attr);
2403    break;
2404  case AttributeList::AT_stdcall:
2405    HandleStdCallAttribute(New, Attr);
2406    break;
2407  case AttributeList::AT_fastcall:
2408    HandleFastCallAttribute(New, Attr);
2409    break;
2410  case AttributeList::AT_aligned:
2411    HandleAlignedAttribute(New, Attr);
2412    break;
2413  case AttributeList::AT_packed:
2414    HandlePackedAttribute(New, Attr);
2415    break;
2416  case AttributeList::AT_annotate:
2417    HandleAnnotateAttribute(New, Attr);
2418    break;
2419  case AttributeList::AT_noreturn:
2420    HandleNoReturnAttribute(New, Attr);
2421    break;
2422  case AttributeList::AT_format:
2423    HandleFormatAttribute(New, Attr);
2424    break;
2425  case AttributeList::AT_transparent_union:
2426    HandleTransparentUnionAttribute(New, Attr);
2427    break;
2428  default:
2429#if 0
2430    // TODO: when we have the full set of attributes, warn about unknown ones.
2431    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2432         Attr->getName()->getName());
2433#endif
2434    break;
2435  }
2436}
2437
2438void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2439                                AttributeList *declarator_postfix) {
2440  while (declspec_prefix) {
2441    HandleDeclAttribute(New, declspec_prefix);
2442    declspec_prefix = declspec_prefix->getNext();
2443  }
2444  while (declarator_postfix) {
2445    HandleDeclAttribute(New, declarator_postfix);
2446    declarator_postfix = declarator_postfix->getNext();
2447  }
2448}
2449
2450void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
2451                                        AttributeList *rawAttr) {
2452  QualType curType = tDecl->getUnderlyingType();
2453  // check the attribute arguments.
2454  if (rawAttr->getNumArgs() != 1) {
2455    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2456         std::string("1"));
2457    return;
2458  }
2459  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2460  llvm::APSInt vecSize(32);
2461  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2462    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2463         "ext_vector_type", sizeExpr->getSourceRange());
2464    return;
2465  }
2466  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2467  // in conjunction with complex types (pointers, arrays, functions, etc.).
2468  Type *canonType = curType.getCanonicalType().getTypePtr();
2469  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2470    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2471         curType.getCanonicalType().getAsString());
2472    return;
2473  }
2474  // unlike gcc's vector_size attribute, the size is specified as the
2475  // number of elements, not the number of bytes.
2476  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2477
2478  if (vectorSize == 0) {
2479    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2480         sizeExpr->getSourceRange());
2481    return;
2482  }
2483  // Instantiate/Install the vector type, the number of elements is > 0.
2484  tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
2485  // Remember this typedef decl, we will need it later for diagnostics.
2486  ExtVectorDecls.push_back(tDecl);
2487}
2488
2489QualType Sema::HandleVectorTypeAttribute(QualType curType,
2490                                         AttributeList *rawAttr) {
2491  // check the attribute arugments.
2492  if (rawAttr->getNumArgs() != 1) {
2493    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2494         std::string("1"));
2495    return QualType();
2496  }
2497  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2498  llvm::APSInt vecSize(32);
2499  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2500    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2501         "vector_size", sizeExpr->getSourceRange());
2502    return QualType();
2503  }
2504  // navigate to the base type - we need to provide for vector pointers,
2505  // vector arrays, and functions returning vectors.
2506  Type *canonType = curType.getCanonicalType().getTypePtr();
2507
2508  if (canonType->isPointerType() || canonType->isArrayType() ||
2509      canonType->isFunctionType()) {
2510    assert(0 && "HandleVector(): Complex type construction unimplemented");
2511    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2512        do {
2513          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2514            canonType = PT->getPointeeType().getTypePtr();
2515          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2516            canonType = AT->getElementType().getTypePtr();
2517          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2518            canonType = FT->getResultType().getTypePtr();
2519        } while (canonType->isPointerType() || canonType->isArrayType() ||
2520                 canonType->isFunctionType());
2521    */
2522  }
2523  // the base type must be integer or float.
2524  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2525    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2526         curType.getCanonicalType().getAsString());
2527    return QualType();
2528  }
2529  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2530  // vecSize is specified in bytes - convert to bits.
2531  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2532
2533  // the vector size needs to be an integral multiple of the type size.
2534  if (vectorSize % typeSize) {
2535    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2536         sizeExpr->getSourceRange());
2537    return QualType();
2538  }
2539  if (vectorSize == 0) {
2540    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2541         sizeExpr->getSourceRange());
2542    return QualType();
2543  }
2544  // Instantiate the vector type, the number of elements is > 0, and not
2545  // required to be a power of 2, unlike GCC.
2546  return Context.getVectorType(curType, vectorSize/typeSize);
2547}
2548
2549void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2550  // check the attribute arguments.
2551  if (rawAttr->getNumArgs() > 0) {
2552    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2553         std::string("0"));
2554    return;
2555  }
2556
2557  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2558    TD->addAttr(new PackedAttr);
2559  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2560    // If the alignment is less than or equal to 8 bits, the packed attribute
2561    // has no effect.
2562    if (!FD->getType()->isIncompleteType() &&
2563        Context.getTypeAlign(FD->getType()) <= 8)
2564      Diag(rawAttr->getLoc(),
2565           diag::warn_attribute_ignored_for_field_of_type,
2566           rawAttr->getName()->getName(), FD->getType().getAsString());
2567    else
2568      FD->addAttr(new PackedAttr);
2569  } else
2570    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2571         rawAttr->getName()->getName());
2572}
2573
2574void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2575  // check the attribute arguments.
2576  if (rawAttr->getNumArgs() != 0) {
2577    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2578         std::string("0"));
2579    return;
2580  }
2581
2582  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2583
2584  if (!Fn) {
2585    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2586         "noreturn", "function");
2587    return;
2588  }
2589
2590  d->addAttr(new NoReturnAttr());
2591}
2592
2593void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2594  // check the attribute arguments.
2595  if (rawAttr->getNumArgs() != 0) {
2596    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2597         std::string("0"));
2598    return;
2599  }
2600
2601  d->addAttr(new DeprecatedAttr());
2602}
2603
2604void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2605  // check the attribute arguments.
2606  if (rawAttr->getNumArgs() != 1) {
2607    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2608         std::string("1"));
2609    return;
2610  }
2611
2612  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2613  Arg = Arg->IgnoreParenCasts();
2614  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2615
2616  if (Str == 0 || Str->isWide()) {
2617    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2618         "visibility", std::string("1"));
2619    return;
2620  }
2621
2622  const char *TypeStr = Str->getStrData();
2623  unsigned TypeLen = Str->getByteLength();
2624  VisibilityAttr::VisibilityTypes type;
2625
2626  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2627    type = VisibilityAttr::DefaultVisibility;
2628  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2629    type = VisibilityAttr::HiddenVisibility;
2630  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2631    type = VisibilityAttr::HiddenVisibility; // FIXME
2632  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2633    type = VisibilityAttr::ProtectedVisibility;
2634  else {
2635    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2636           "visibility", TypeStr);
2637    return;
2638  }
2639
2640  d->addAttr(new VisibilityAttr(type));
2641}
2642
2643void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2644  // check the attribute arguments.
2645  if (rawAttr->getNumArgs() != 0) {
2646    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2647         std::string("0"));
2648    return;
2649  }
2650
2651  d->addAttr(new WeakAttr());
2652}
2653
2654void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2655  // check the attribute arguments.
2656  if (rawAttr->getNumArgs() != 0) {
2657    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2658         std::string("0"));
2659    return;
2660  }
2661
2662  d->addAttr(new DLLImportAttr());
2663}
2664
2665void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2666  // check the attribute arguments.
2667  if (rawAttr->getNumArgs() != 0) {
2668    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2669         std::string("0"));
2670    return;
2671  }
2672
2673  d->addAttr(new DLLExportAttr());
2674}
2675
2676void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2677  // check the attribute arguments.
2678  if (rawAttr->getNumArgs() != 0) {
2679    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2680         std::string("0"));
2681    return;
2682  }
2683
2684  d->addAttr(new StdCallAttr());
2685}
2686
2687void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2688  // check the attribute arguments.
2689  if (rawAttr->getNumArgs() != 0) {
2690    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2691         std::string("0"));
2692    return;
2693  }
2694
2695  d->addAttr(new FastCallAttr());
2696}
2697
2698void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2699  // check the attribute arguments.
2700  if (rawAttr->getNumArgs() != 0) {
2701    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2702         std::string("0"));
2703    return;
2704  }
2705
2706  d->addAttr(new NoThrowAttr());
2707}
2708
2709static const FunctionTypeProto *getFunctionProto(Decl *d) {
2710  QualType Ty;
2711
2712  if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
2713    Ty = decl->getType();
2714  else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
2715    Ty = decl->getType();
2716  else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
2717    Ty = decl->getUnderlyingType();
2718  else
2719    return 0;
2720
2721  if (Ty->isFunctionPointerType()) {
2722    const PointerType *PtrTy = Ty->getAsPointerType();
2723    Ty = PtrTy->getPointeeType();
2724  }
2725
2726  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2727    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2728
2729  return 0;
2730}
2731
2732static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
2733  if (!T->isPointerType())
2734    return false;
2735
2736  T = T->getAsPointerType()->getPointeeType().getCanonicalType();
2737  ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
2738
2739  if (!ClsT)
2740    return false;
2741
2742  IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
2743
2744  // FIXME: Should we walk the chain of classes?
2745  return ClsName == &Ctx.Idents.get("NSString") ||
2746         ClsName == &Ctx.Idents.get("NSMutableString");
2747}
2748
2749/// Handle __attribute__((format(type,idx,firstarg))) attributes
2750/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2751void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2752
2753  if (!rawAttr->getParameterName()) {
2754    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2755           "format", std::string("1"));
2756    return;
2757  }
2758
2759  if (rawAttr->getNumArgs() != 2) {
2760    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2761         std::string("3"));
2762    return;
2763  }
2764
2765  // GCC ignores the format attribute on K&R style function
2766  // prototypes, so we ignore it as well
2767  const FunctionTypeProto *proto = getFunctionProto(d);
2768
2769  if (!proto) {
2770    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2771           "format", "function");
2772    return;
2773  }
2774
2775  // FIXME: in C++ the implicit 'this' function parameter also counts.
2776  // this is needed in order to be compatible with GCC
2777  // the index must start in 1 and the limit is numargs+1
2778  unsigned NumArgs  = proto->getNumArgs();
2779  unsigned FirstIdx = 1;
2780
2781  const char *Format = rawAttr->getParameterName()->getName();
2782  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2783
2784  // Normalize the argument, __foo__ becomes foo.
2785  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2786      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2787    Format += 2;
2788    FormatLen -= 4;
2789  }
2790
2791  bool Supported = false;
2792  bool is_NSString = false;
2793  bool is_strftime = false;
2794
2795  switch (FormatLen) {
2796    default: break;
2797    case 5:
2798      Supported = !memcmp(Format, "scanf", 5);
2799      break;
2800    case 6:
2801      Supported = !memcmp(Format, "printf", 6);
2802      break;
2803    case 7:
2804      Supported = !memcmp(Format, "strfmon", 7);
2805      break;
2806    case 8:
2807      Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
2808                  (is_NSString = !memcmp(Format, "NSString", 8));
2809      break;
2810  }
2811
2812  if (!Supported) {
2813    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2814           "format", rawAttr->getParameterName()->getName());
2815    return;
2816  }
2817
2818  // checks for the 2nd argument
2819  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2820  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2821  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2822    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2823           "format", std::string("2"), IdxExpr->getSourceRange());
2824    return;
2825  }
2826
2827  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2828    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2829           "format", std::string("2"), IdxExpr->getSourceRange());
2830    return;
2831  }
2832
2833  // FIXME: Do we need to bounds check?
2834  unsigned ArgIdx = Idx.getZExtValue() - 1;
2835
2836  // make sure the format string is really a string
2837  QualType Ty = proto->getArgType(ArgIdx);
2838
2839  if (is_NSString) {
2840    // FIXME: do we need to check if the type is NSString*?  What are
2841    //  the semantics?
2842    if (!isNSStringType(Ty, Context)) {
2843      // FIXME: Should highlight the actual expression that has the
2844      // wrong type.
2845      Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
2846           IdxExpr->getSourceRange());
2847      return;
2848    }
2849  }
2850  else if (!Ty->isPointerType() ||
2851      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2852    // FIXME: Should highlight the actual expression that has the
2853    // wrong type.
2854    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2855         IdxExpr->getSourceRange());
2856    return;
2857  }
2858
2859  // check the 3rd argument
2860  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2861  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2862  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2863    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2864           "format", std::string("3"), FirstArgExpr->getSourceRange());
2865    return;
2866  }
2867
2868  // check if the function is variadic if the 3rd argument non-zero
2869  if (FirstArg != 0) {
2870    if (proto->isVariadic()) {
2871      ++NumArgs; // +1 for ...
2872    } else {
2873      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2874      return;
2875    }
2876  }
2877
2878  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2879  // the input is just the current time + the format string
2880  if (is_strftime) {
2881    if (FirstArg != 0) {
2882      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2883             FirstArgExpr->getSourceRange());
2884      return;
2885    }
2886  // if 0 it disables parameter checking (to use with e.g. va_list)
2887  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2888    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2889           "format", std::string("3"), FirstArgExpr->getSourceRange());
2890    return;
2891  }
2892
2893  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2894                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2895}
2896
2897void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
2898  // check the attribute arguments.
2899  if (rawAttr->getNumArgs() != 0) {
2900    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2901         std::string("0"));
2902    return;
2903  }
2904
2905  TypeDecl *decl = dyn_cast<TypeDecl>(d);
2906
2907  if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
2908    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2909         "transparent_union", "union");
2910    return;
2911  }
2912
2913  //QualType QTy = Context.getTypeDeclType(decl);
2914  //const RecordType *Ty = QTy->getAsUnionType();
2915
2916// FIXME
2917// Ty->addAttr(new TransparentUnionAttr());
2918}
2919
2920void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2921  // check the attribute arguments.
2922  if (rawAttr->getNumArgs() != 1) {
2923    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2924         std::string("1"));
2925    return;
2926  }
2927  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2928  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2929
2930  // Make sure that there is a string literal as the annotation's single
2931  // argument.
2932  if (!SE) {
2933    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2934    return;
2935  }
2936  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2937                                          SE->getByteLength())));
2938}
2939
2940void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2941{
2942  // check the attribute arguments.
2943  if (rawAttr->getNumArgs() > 1) {
2944    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2945         std::string("1"));
2946    return;
2947  }
2948
2949  unsigned Align = 0;
2950
2951  if (rawAttr->getNumArgs() == 0) {
2952    // FIXME: This should be the target specific maximum alignment.
2953    // (For now we just use 128 bits which is the maximum on X86.
2954    Align = 128;
2955    return;
2956  } else {
2957    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2958    llvm::APSInt alignment(32);
2959    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2960      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2961           "aligned", alignmentExpr->getSourceRange());
2962      return;
2963    }
2964
2965    Align = alignment.getZExtValue() * 8;
2966  }
2967
2968  d->addAttr(new AlignedAttr(Align));
2969}
2970